WO2021060929A1 - Functionalized metal-organic framework, production method therefor and method for selectively separating carbon dioxide using same - Google Patents

Functionalized metal-organic framework, production method therefor and method for selectively separating carbon dioxide using same Download PDF

Info

Publication number
WO2021060929A1
WO2021060929A1 PCT/KR2020/013122 KR2020013122W WO2021060929A1 WO 2021060929 A1 WO2021060929 A1 WO 2021060929A1 KR 2020013122 W KR2020013122 W KR 2020013122W WO 2021060929 A1 WO2021060929 A1 WO 2021060929A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
metal
organic structure
functionalized
amine
Prior art date
Application number
PCT/KR2020/013122
Other languages
French (fr)
Korean (ko)
Inventor
배윤상
강조홍
윤태웅
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2021060929A1 publication Critical patent/WO2021060929A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3425Regenerating or reactivating of sorbents or filter aids comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a functionalized metal-organic structure, a method for manufacturing the same, and a method for selectively separating carbon dioxide using the same, and in detail, a metal-organic structure functionalized with an amine-based polymer, which is a specific compound, a method for producing the same, and carbon dioxide using the same. It relates to a selective separation method.
  • the combustion gas is mainly composed of nitrogen, and carbon dioxide is the main gas that occupies the remaining content.
  • adsorption separation using a solid adsorbent can reduce renewable energy and minimize problems such as volatility and corrosion, so many types of solid adsorbents including zeolite, silica gel and activated carbon have been studied as adsorbents for separation of combustion gases. come.
  • MOFs metal-organic structures having an extremely high surface area and porosity as well as a fine pore structure as a carbon dioxide adsorbent for combustion gases are receiving great interest.
  • the present invention provides a metal-organic structure functionalized with an amine-based polymer capable of adsorbing carbon dioxide with high selectivity and a method for producing the same.
  • the present invention provides a carbon dioxide adsorbent including the functionalized metal-organic structure of the present invention and a method for selectively separating carbon dioxide using the same.
  • the present invention provides a metal-organic structure functionalized with an amine-based polymer capable of selectively adsorbing carbon dioxide from a mixed gas containing carbon dioxide with high selectivity and adsorption amount.
  • the present invention provides a metal-organic structure functionalized with an amine-based polymer having at least one hydroxy group.
  • the functionalized metal-organic structure according to an embodiment of the present invention may not have an open metal seat.
  • an amine group is included in the repeating unit, and the amine group of the amine-based polymer may be primary, secondary, tertiary or quaternary.
  • the amine-based polymer according to an embodiment of the present invention may be included in an amount of 10 to 70 parts by weight based on 100 parts by weight of the metal-organic structure before functionalization.
  • the functionalized metal-organic structure according to an embodiment of the present invention may include an organic ligand represented by Formula 1 below.
  • Each Y may be the same or different, and each Y is independently -OH or -C(O)OH, where A is a substituted or unsubstituted C6-C30 aryl or a substituted or unsubstituted C6-C30 It is a polyvalent radical of heteroaryl, and n is an integer from 1 to 10.
  • the central metal is Zr, Co, Ni, Zn, Mg, Mn, Cu, V, Cr, Fe, Al, Yb, Sc, Y, Ca, Ag, or It may be Tb, preferably NU-1000 in which the central metal is Zr.
  • the present invention provides a method for manufacturing a functionalized metal-organic structure, and the method for producing a functionalized metal-organic structure of the present invention is a functionalized metal-organic structure by impregnating an amine-based polymer in the degassed metal-organic structure. It includes the step of preparing.
  • the degassed metal-organic structure according to an embodiment of the present invention may be manufactured by heating the metal-organic structure at 80 to 200°C for 8 to 24 hours.
  • the degassed metal-organic structure according to an embodiment of the present invention may not have an open metal seat.
  • the present invention provides a carbon dioxide adsorbent comprising the functionalized metal-organic structure of the present invention.
  • the present invention provides a method for selectively separating carbon dioxide comprising the step of adsorbing carbon dioxide by contacting the carbon dioxide adsorbent of the present invention with a mixed gas containing carbon dioxide.
  • the method for selectively separating carbon dioxide according to an embodiment of the present invention may further include desorbing the adsorbed carbon dioxide to regenerate the carbon dioxide adsorbent.
  • Regeneration according to an embodiment of the present invention may be performed at 80 to 200°C for 1 to 5 hours, and the mixed gas may include carbon dioxide and nitrogen.
  • the functionalized metal-organic structure of the present invention has a hydroxy group, which is a specific functional group, and is functionalized with an amine-based polymer, so that carbon dioxide can be adsorbed with excellent selectivity and high adsorption amount.
  • the carbon dioxide adsorbent which is a functionalized metal-organic structure of the present invention, is stable, and the adsorption performance of the adsorbent is maintained even after adsorbing and desorbing carbon dioxide several times, so that the adsorbent can be reused and is very economical.
  • the method for selectively separating carbon dioxide of the present invention can be separated by adsorbing carbon dioxide with surprisingly improved selectivity and high adsorption amount under mild conditions by using the functionalized metal-organic structure of the present invention as an adsorbent.
  • the method for selectively separating carbon dioxide of the present invention has high selectivity and can be repeatedly adsorbed/desorped and thus mass-produced and continuous process is possible, making it very easy to commercialize the method for selectively separating carbon dioxide.
  • the method for selectively separating carbon dioxide of the present invention uses a functionalized metal-organic structure in which a metal-organic structure having a specific functional group, a hydroxy group, is functionalized with an amine-based polymer, which is a specific compound, as an adsorbent. It is a very effective way to separate carbon dioxide.
  • Example 1 is an FTIR graph of NU-1000 prepared in Preparation Example 1 and PEI (50)@NU-1000 prepared in Example 1 of the present invention.
  • PXRD 2 is a graph showing powder X-ray diffraction (PXRD) patterns of NU-1000 prepared in Preparation Example 1 and PEI (50)@NU-1000 prepared in Example 1 of the present invention.
  • Example 3 is a graph showing the vapor phase adsorption isotherms obtained in Example 2 and Comparative Example 1 of the present invention.
  • Example 4 is a graph showing the adsorption amount for a single surface area of the adsorbents prepared in Example 1 and Preparation Example 1 of the present invention.
  • FIG. 5 is a graph showing the adsorption amount and selectivity in the carbon dioxide and nitrogen binary gas mixture of PEI (50)@NU-1000 prepared in Example 1 of the present invention and NU-1000 prepared in Preparation Example 1.
  • FIG. 5 is a graph showing the adsorption amount and selectivity in the carbon dioxide and nitrogen binary gas mixture of PEI (50)@NU-1000 prepared in Example 1 of the present invention and NU-1000 prepared in Preparation Example 1.
  • Example 6 is a graph showing the adsorption amount of PEI (50)@NU-1000 performed in Example 4 of the present invention.
  • Metal described in the specification of the present invention includes not only alkali metals and alkaline earth metals, but also transition metals and non-metals.
  • Alkyl refers to a saturated straight or branched hydrocarbon chain radical consisting only of carbon and hydrogen atoms and attached to the rest of the molecule by a single bond.
  • the alkyl group of the present invention is 1 to 30 carbon atoms (C1-C30 alkyl), preferably 1 to 20 carbon atoms (C1-C20 alkyl), more preferably 10 to 20 carbon atoms (C10-C20 alkyl).
  • Aryl described in the specification of the present invention refers to a hydrocarbon ring-based radical comprising hydrogen, a carbon atom and at least one aromatic ring, and may have 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms.
  • Exemplary aryls include hydrogen and a hydrocarbon ring-based radical comprising 6 to 30 carbon atoms and at least one aromatic ring: a hydrocarbon ring-based radical comprising 6 to 30 carbon atoms and at least one aromatic ring; It is a hydrocarbon ring-based radical comprising hydrogen and 9 to 30 carbon atoms and at least one aromatic ring.
  • aryl radicals described in the present specification may be monocyclic, bicyclic, tricyclic or tetracyclic ring systems, which may include fused or bridged ring systems.
  • Aryl radicals include, but are not limited to, aryl radicals derived from benzene, biphenyl, indane and indene, naphthalene, and pyrene.
  • Alkylene refers to a hydrocarbon ring-based radical comprising hydrogen, a carbon atom and at least one aromatic ring from which one hydrogen or substituent has been removed from the aryl.
  • Heteroaryl described in the specification of the present invention has at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur, and at least one carbon including mono- and bicyclic ring systems. It is a 5 to 10 membered aromatic heterocycle ring containing an atom.
  • the typical heteroaryl is triazolyl, tetrazolyl, oxadiazolyl, pyridyl, furyl, benzofuranyl, thiophenyl, benzothiophenyl, quinori Neil, pyrrolyl, indolyl, oxazolyl, benzoxazolyl, imidazolyl, benzimidazolyl, thiazolyl, benzothiazolyl, isoxazolyl, pyrazolyl , Isothiazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, cinnolinyl, phthalazinyl, qui
  • Heteroarylene described in the specification of the present invention has at least one heteroatom selected from the group consisting of nitrogen, oxygen, and sulfur, in which one hydrogen or substituent is removed from the heteroaryl, and mono- and bicyclic ring systems It refers to a hydrocarbon ring-based diradical containing at least one carbon atom containing.
  • the "amine-based polymer” described in the present invention is an amine group (-N(R 1 )(R 2 )- in a molecular structure, especially a repeating unit, wherein R 1 and R 2 are independently of each other a single bond, hydrogen, or hydrocarbyl. Or heterocarbyl.), preferably may have an amine group at the main chain, side chain, or terminal.
  • substituted means that the hydrogen atom of the substituted moiety (eg, alkyl, aryl, heteroaryl, heterocycle or cycloalkyl) is replaced with a substituent.
  • R a1 and R b1 may be plural depending on the atoms to which they are bonded, preferably the alkyl may be C1-C6 alkyl, the aryl may be C6-C12, and the heterocycle may be C3-C10.
  • the present invention provides a functionalized metal-organic structure capable of effectively adsorbing carbon dioxide with high selectivity and efficiency, and the functionalized metal-organic structure of the present invention necessarily has at least one hydroxy group, and an amine-based polymer which is a specific compound It is characterized by being functionalized.
  • a metal-organic structure having at least one hydroxy group must be functionalized with an amine-based polymer.
  • the functionalized metal-organic structure of the present invention has a high amine density by functionalizing a metal-organic structure having one or more hydroxy groups with an amine-based polymer, so that carbon dioxide can be adsorbed with high selectivity and adsorption amount.
  • the functionalized metal-organic structure of the present invention is an amine-based polymer having low volatility and excellent cycle stability, and by functionalizing the metal-organic structure, carbon dioxide can be adsorbed with improved selectivity and adsorption amount.
  • the metal-organic structure functionalized with the amine-based polymer of the present invention has extremely improved carbon dioxide selectivity and adsorption amount compared to the conventional metal-organic structure functionalized with a low-molecular amine compound.
  • the functionalized metal-organic structure according to an embodiment of the present invention may not have open metal sites (unsaturated metal sites).
  • the functionalized metal-organic structure has at least one hydroxy group and does not have an open metal site, and is functionalized with an amine-based polymer, so that adsorption power with nitrogen is lowered.
  • the adsorption power with carbon dioxide is remarkably improved, so the selectivity of carbon dioxide is greatly improved.
  • the functionalized metal-organic structure according to an embodiment of the present invention may include an organic ligand represented by Formula 1 below.
  • each Y may be the same or different, each Y is independently -OH or -C(O)OH, and A is a substituted or unsubstituted C6-C30 aryl or a substituted or unsubstituted C6 Is a polyvalent radical of -C30 heteroaryl;
  • n is an integer from 1 to 10.
  • n may be an integer of 0 to 10 and an integer of 0 to 5.
  • Y is independently -C(O)OH, and A may be a substituted or unsubstituted polyvalent radical of C6-C30 aryl.
  • the organic ligand of the metal-organic structure according to an embodiment of the present invention may be 1,3,6,8-tetrakis(p-benzoic acid)pyrene(H 4 TBAPy).
  • the central metal is Zr, Co, Ni, Zn, Mg, Mn, Cu, V, Cr, Fe, Al, Yb, Sc, Y, Ca, Ag, or It may be Tb, preferably NU-1000 in which the central metal is Zr.
  • the functionalized metal-organic structure according to an embodiment of the present invention may be NU-1000 in which the central metal is Zr and the organic ligand is 1,3,6,8-tetrakis(p-benzoic acid)pyrene.
  • the functionalized metal-organic structure according to an embodiment of the present invention may have a pore size of 10 to 40 ⁇ , preferably 20 to 35 ⁇ .
  • an amine group is included in the repeating unit, and the amine group may be primary, secondary, tertiary or quaternary.
  • the amine-based polymer according to an embodiment of the present invention may include a primary or secondary amine in a repeating unit of the polymer.
  • the amine-based polymer according to an embodiment of the present invention may include an amine group in the main chain of the polymer.
  • the amine-based polymer according to an embodiment of the present invention may be represented by a repeating unit represented by Formula 2 below.
  • a 1 and A 2 are each independently a substituted or unsubstituted single bond, a C1-C30 alkylene, a carbonyl group, or O, except for cases where both A 1 and A 2 are single bonds,
  • R is hydrogen or substituted or unsubstituted C1-C30 alkyl.
  • a 1 and A 2 are independently of each other C1-C30 alkylene, R is hydrogen or C1-C30 alkyl, and the alkylene and alkyl may be further substituted with hydroxy or amino, and more
  • a 1 and A 2 are each independently C1-C10 alkylene, R is hydrogen or C1-C10 alkyl, and the alkylene and alkyl may be further substituted with hydroxy or amino.
  • the amine-based polymer according to an embodiment of the present invention is not limited, and all known polymers can be used, and examples thereof include polyethyleneimine (PEI), polyamideamine, and polyvinylamine. ), polyamidoamine, polyallylamine, poly-L-lysine, chitosan, aminated methylcellulose and aminated ethylcellulose can be one or more polymers selected from the group And, preferably, a polyimine-based polymer such as linear polyethyleneimine (LPEI) or a branched polyethyleneimine (BPEI), and a polyamine-based polymer such as polyethyleneamine, polyethylenediamine, polydiaminepropane, or polyhexan It may be methylenediamine.
  • PEI polyethyleneimine
  • polyamideamine polyamideamine
  • polyvinylamine polyvinylamine
  • polyamidoamine polyallylamine
  • poly-L-lysine poly-L-lysine
  • chitosan aminated
  • the amine-based polymer according to an embodiment of the present invention may be polyethyleneimine.
  • the amine-based polymer according to an embodiment of the present invention is not limited, but may have a weight average molecular weight of 100 to 100,000 g/mol, and preferably 100 to 10,000 g/mol.
  • the amine-based polymer included in the functionalized metal-organic structure according to an embodiment of the present invention may be 10 to 70 parts by weight based on 100 parts by weight of the metal-organic structure before functionalization, and has more improved selectivity and adsorption amount. It may be 30 to 50 parts by weight in terms of.
  • the present invention provides a method for manufacturing a functionalized metal-organic structure, and the method for producing a functionalized metal-organic structure of the present invention is a functionalized metal-organic structure by impregnating an amine-based polymer in the degassed metal-organic structure. It includes the step of preparing.
  • the degassed metal-organic structure according to an embodiment of the present invention is prepared by heating the metal-organic structure at 80 to 200°C for 8 hours to 24 hours, preferably at 100 to 150°C for 8 hours to 18 hours. I can.
  • the degassed metal-organic structure according to an embodiment of the present invention may not have an open metal site, and may preferably have one or more hydroxy groups and no open metal site.
  • the organic ligand of the metal-organic structure may be 1,3,6,8-tetrakis(p-benzoic acid)pyrene(H 4 TBAPy), and the central metal is Zr, Co, It may be Ni, Zn, Mg, Mn, Cu, V, Cr, Fe, Al, Yb, Sc, Y, Ca, Ag, or Tb, and more preferably NU-1000 in which the central metal is Zr.
  • the functionalized metal-organic structure according to an embodiment of the present invention is not limited, but the BET surface area is 500 to 2000 m 2 /g, and the total pore volume may be 0.3 to 1.3 cm 3 /g, preferably The BET surface area may be 500 to 1300 m 2 /g, and the total pore volume may be 0.3 to 0.9 cm 3 /g.
  • the present invention provides a carbon dioxide adsorbent comprising the functionalized metal-organic structure of the present invention.
  • the carbon dioxide adsorbent of the present invention has at least one hydroxy group and is a metal-organic structure functionalized with an amine-based polymer, and can be separated by adsorbing carbon dioxide with high selectivity and adsorption amount from a mixed gas containing carbon dioxide, especially from combustion gas or atmospheric gas. have.
  • the present invention provides a method for selectively separating carbon dioxide comprising the step of adsorbing carbon dioxide by contacting the carbon dioxide adsorbent of the present invention with a mixed gas containing carbon dioxide.
  • the method for selectively separating carbon dioxide of the present invention can adsorb and separate carbon dioxide with high selectivity by using the metal-organic structure functionalized with the amine-based polymer of the present invention as an adsorbent.
  • Heating according to an embodiment of the present invention may be performed at 100 to 200°C for 6 to 24 hours, preferably at 100 to 150°C for 8 to 18 hours.
  • the mixed gas including carbon dioxide may be a combustion gas including a fossil combustion gas including carbon dioxide, an atmospheric gas, and the like, and preferably may be an exhaust gas including carbon dioxide and nitrogen.
  • the selectivity of carbon dioxide/nitrogen in a ratio of 15/85 at normal pressure (1 atm) may be 100 or more, and preferably 150 to 700.
  • the method for selectively separating carbon dioxide has a selectivity of 100 or more carbon dioxide/nitrogen (carbon dioxide/nitrogen 15/85 ratio at normal pressure (1 atm)) and an adsorption amount of 0.8 mmol/g or more.
  • it has a selectivity of 100 to 700 carbon dioxide/nitrogen (a ratio of carbon dioxide/nitrogen 15/85 at normal pressure (1 atm)) and an adsorption amount of 0.8 to 2.5 mmol/g.
  • the method for selectively separating carbon dioxide according to an embodiment of the present invention may further include desorbing the adsorbed carbon dioxide to regenerate the carbon dioxide adsorbent.
  • Regeneration according to an embodiment of the present invention may be performed at 80 to 200°C for 1 to 5 hours, preferably at 100 to 200°C for 2 to 4 hours.
  • the metal-organic structure functionalized with an amine-based polymer according to an embodiment of the present invention, even if the adsorbed carbon dioxide is desorbed and regenerated and reused, the activity of the adsorbent is maintained, so that carbon dioxide/nitrogen selectivity and carbon dioxide adsorption amount are not lowered.
  • the carbon dioxide adsorbent which is a metal-organic structure functionalized with an amine polymer of the present invention, has excellent stability and can be reused several times as it maintains its activity, which is very economical.
  • BET Brunauer-Emmett-Teller
  • BET surface area was calculated within the linear range determined by the consistency criterion (NU-1000: 0.0048 ⁇ P/P0 ⁇ 0.0735, PEI(10)@NU-1000: 0.0048 ⁇ P/P0 ⁇ 0.0724, PEI(30)@NU -1000: 0.0305 ⁇ P/P0 ⁇ 0.0692, PEI(50)@NU-1000: 0.0313 ⁇ P/P0 ⁇ 0.0877 and PEI(75)@NU-1000:0.0313 ⁇ P/P0 ⁇ 0.0877).
  • the FTIR spectrum was measured in the range of 3800-480 cm 1 with an Excalibur series FTIR instrument (DIGLAB Co., Germany).
  • the activated 40 mg was dissolved in DMF (12 ml) containing HCl (0.5 ml, 8 M), left in an oven at 100° C. for 24 hours, and then cooled to room temperature. After removing the solvent from the obtained solid, it was washed with DMF and acetone, and the obtained material was immersed in acetone for 12 hours. Two or three times, it was exchanged for new acetone and immersed for 24 hours to obtain the title compound.
  • PEI(x)@NU-1000 was prepared by a wet impregnation method.
  • the NU-1000 powder prepared in Preparation Example 1 was heated at 120° C. for 12 hours under vacuum to remove water molecules and solvent molecules adsorbed to NU-1000.
  • Branched PEI-800 Alfa Aesar, Korea, weight average molecular weight 800g/mol
  • 10 ml of anhydrous methanol so as to be 10 parts by weight, 30 parts by weight, 50 parts by weight, and 75 parts by weight, respectively, based on NU-1000 and 100 parts by weight.
  • Sonication was performed for 10 minutes. 200 mg of degassed NU-1000 was slowly added thereto, and then stirred under a nitrogen atmosphere for 24 hours. When the reaction was completed, the solvent of the reaction mixture was removed under reduced pressure and then heated at 120° C.
  • NU-1000 functionalized with manufactured PEI was converted into PEI(10)@NU-1000, PEI(30)@NU-1000, PEI(50)@NU-1000, PEI(70)@NU-1000 according to the PEI content. Named it.
  • Each of the PEI (10)@NU-1000, PEI (30)@NU-1000, PEI (50)@NU-1000 and PEI (70)@NU-1000 prepared in Example 1 and prepared in Preparation Example 1 The characteristics of NU-1000 are shown in Table 1 below, and PEI(10)@NU-1000, PEI(30)@NU-1000, PEI(50)@NU-1000 and PEI(70)@NU-1000 nitrogen absorption Desorption isotherms were measured.
  • Example 2 and Comparative Example 1 Gas-phase adsorption experiments of carbon dioxide or nitrogen using NU-1000 functionalized with PEI prepared in Example 1 and NU-1000 prepared in Preparation Example 1
  • PEI (10)@NU-1000 prepared in Example 1 PEI (30)@NU-1000, PEI (50)@NU-1000, PEI (70)@NU-1000 and NU- prepared in Preparation Example 1
  • each adsorption experiment of carbon dioxide or nitrogen as a single compound was conducted.
  • PEI(10)@NU-1000, PEI(30)@NU-1000, PEI(50)@NU-1000, PEI(70)@NU-1000 and NU-1000 100 mg each under vacuum 393 K before adsorption experiment Degassed for 12 hours at.
  • the adsorption isotherm was measured from 298 K to 1 bar with a Tristar 3020 system (Micromeritics Instruments, USA) equipped with a special air circulation system (Protech Korea Instruments, Korea).
  • PEI (10)@NU-1000, PEI (30)@NU-1000, PEI (50)@NU-1000 and PEI (70)@NU-1000 of the present invention are compared with nitrogen It can be seen that carbon dioxide is more selectively adsorbed.
  • PEI(50)@NU-1000 has 4 times higher carbon dioxide adsorption than NU-1000 at 0.15 bar
  • the order is 1000> PEI(10)@NU-1000> NU-1000.
  • the adsorption amount for a single surface area was calculated by dividing the adsorption amount of each functionalized metal-organic structure by the BET surface area, which is shown in FIG. 4.
  • the adsorbent of the present invention is excellent in the adsorption amount for a single surface area, and among them, it can be seen that PEI(50)@NU-1000 shows the best adsorption amount.
  • Example 3 and Comparative Example 2 PEI (10)@NU-1000, PEI (30)@NU-1000, PEI (50)@NU-1000 and NU prepared in Example 1 and Preparation Example 1 Gas-phase adsorption experiment, a mixed gas of carbon dioxide and nitrogen using -1000
  • the gas flow rate (0-100 ml/min) was adjusted using four mass flow controllers (Bronkhorst, Germany).
  • the composition of the effluent gas stream was analyzed online using a mass spectrometer (Max300-LG Extrel, USA).
  • a sample (adsorbent) made into pellets at 500-1000 ⁇ m without a binder was initially activated at 393 K for 12 hours under vacuum and then charged into a stainless steel column (15 cm x 0.44 cm). The remaining columns were filled with 750 ⁇ m diameter glass beads. In order to remove the various impurities adsorbed during the packing process before each measurement, the column was activated at 393 K for 3 hours with 100 mL/min of helium fluid.
  • combustion gases contain a significant amount of water vapor, so it is important to evaluate the performance of the adsorbent for carbon dioxide/nitrogen separation under humid conditions.
  • the PEI(50)@NU-1000 maintains the carbon dioxide/nitrogen separation performance in a humid environment, and as a result, it can be seen that the carbon dioxide adsorbent of the present invention is stable.
  • PEI (50)@NU-1000 used for adsorption of carbon dioxide in Example 3 was degassed at 393K for 3 hours to desorb the adsorbed carbon dioxide, and then it was added to a carbon dioxide/nitrogen mixture gas (carbon dioxide and nitrogen volume ratio 15:85). Adsorption/desorption was repeated by contacting and proceeding two more times.
  • the adsorbent of the embodiment of the present invention maintains adsorption performance even if the adsorption/desorption process is repeated 3 times, and high selection It can be seen that the road can adsorb carbon dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention relates to a metal-organic framework functionalized with an amine-based polymer, a production method therefor and a method for selectively separating carbon dioxide using same. The metal-organic framework functionalized with an amine-based polymer of the present invention has one or more hydroxyl group and is functionalized with an amine-based polymer, and thus may adsorb and separate carbon dioxide with surprisingly increased selectivity and adsorption capacity.

Description

기능화된 금속-유기 구조체, 이의 제조방법 및 이를 이용하는 이산화탄소의 선택적 분리방법Functionalized metal-organic structure, manufacturing method thereof, and selective separation method of carbon dioxide using the same
본 발명은 기능화된 금속-유기 구조체, 이의 제조방법 및 이를 이용하는 이산화탄소의 선택적 분리방법에 관한 것으로, 상세하게는 특정한 화합물인 아민계 고분자로 기능화된 금속-유기 구조체, 이의 제조방법 및 이를 이용하는 이산화탄소의 선택적 분리방법에 관한 것이다.The present invention relates to a functionalized metal-organic structure, a method for manufacturing the same, and a method for selectively separating carbon dioxide using the same, and in detail, a metal-organic structure functionalized with an amine-based polymer, which is a specific compound, a method for producing the same, and carbon dioxide using the same. It relates to a selective separation method.
대기 중에 이산화탄소의 급격한 증가는 지구 온난화뿐만 아니라 예측할 수 없는 기후 변화를 야기할 수 있다. 따라서 이산화탄소 배출량 감소는 지구 전체에 있어서 가장 큰 관심사 중 하나이다. 대기에 존재하는 이산화탄소의 주요 공급원은 화석 연료의 연소 가스에 포함된 이산화탄소에 기인하는 것으로, 화석 연료 연소 가스로부터 이산화탄소를 포집하고 분리하는 것은 매우 중요하다.Rapid increases in carbon dioxide in the atmosphere can lead to unpredictable climate change as well as global warming. Therefore, reducing carbon dioxide emissions is one of the greatest concerns for the entire planet. The main source of carbon dioxide present in the atmosphere is due to carbon dioxide contained in the combustion gas of fossil fuels, and it is very important to capture and separate carbon dioxide from the combustion gas of fossil fuels.
연소 가스는 질소가 주성분이며, 이산화탄소가 나머지 함량을 차지하는 주요 가스에 해당된다.The combustion gas is mainly composed of nitrogen, and carbon dioxide is the main gas that occupies the remaining content.
따라서 질소와 이산화탄소를 포함하는 연소 가스에서 이산화탄소만을 효과적으로 포집 및 분리하고자 하는 다양한 연구가 진행되어 왔다.Therefore, various studies have been conducted to effectively capture and separate only carbon dioxide from combustion gases including nitrogen and carbon dioxide.
특히 고체 흡착제를 이용하는 흡착 분리는 재생 에너지를 감소시키고 휘발성 및 부식과 같은 문제를 최소화할 수 있어, 연소 가스의 분리를 위한 흡착제로 제올라이트, 실리카 겔 및 활성탄을 포함하는 많은 유형의 고체 흡착제가 연구되어 왔다. In particular, adsorption separation using a solid adsorbent can reduce renewable energy and minimize problems such as volatility and corrosion, so many types of solid adsorbents including zeolite, silica gel and activated carbon have been studied as adsorbents for separation of combustion gases. come.
그러나 현재까지 연소 가스 분리를 위한 이산화탄소 흡착제에 대한 모든 기준을 충족할 수 있는 물질은 거의 없는 실정이다.However, there are few materials that can meet all the criteria for carbon dioxide adsorbent for the separation of combustion gases to date.
일례로, 우수한 이산화탄소 분리 성능을 가진 아민용액을 이용하여 흡착 분리하는 방법이 연구되었으나, 이 방법은 높은 재생 비용과 휘발성 및 흡수제의 부식 문제와 같은 몇 가지 단점을 가진다.As an example, a method of adsorption separation using an amine solution having excellent carbon dioxide separation performance has been studied, but this method has several disadvantages such as high regeneration cost, volatility, and corrosion of an absorbent.
한편 최근에 연소 가스의 이산화탄소 흡착제로 극도로 높은 표면적 및 다공성을 가질 뿐만 아니라 미세한 기공 구조를 갖는 금속-유기 구조체(MOFs)가 큰 관심을 받고 있다.Meanwhile, metal-organic structures (MOFs) having an extremely high surface area and porosity as well as a fine pore structure as a carbon dioxide adsorbent for combustion gases are receiving great interest.
금속-유기 구조체와 아민 흡착제의 장점을 결합시키기위해 금속-유기 구조체의 기공 내에 다양한 아민을 함침시키는 시도가 진행되고 있다.In order to combine the advantages of the metal-organic structure and the amine adsorbent, attempts have been made to impregnate various amines in the pores of the metal-organic structure.
그러나 보다 향상된 선택성 및 흡착량으로 이산화탄소를 포집할 수 있는 흡착제가 여전히 요구되고 있는 실정이다.However, there is still a demand for an adsorbent capable of capturing carbon dioxide with improved selectivity and adsorption amount.
본 발명은 높은 선택도로 이산화탄소를 흡착할 수 있는 아민계 고분자로 기능화된 금속-유기 구조체 및 이의 제조방법을 제공한다.The present invention provides a metal-organic structure functionalized with an amine-based polymer capable of adsorbing carbon dioxide with high selectivity and a method for producing the same.
또한 본 발명은 본 발명의 기능화된 금속-유기 구조체를 포함하는 이산화탄소 흡착제 및 이를 이용한 이산화탄소의 선택적 분리방법을 제공한다.In addition, the present invention provides a carbon dioxide adsorbent including the functionalized metal-organic structure of the present invention and a method for selectively separating carbon dioxide using the same.
본 발명은 이산화탄소를 포함하는 혼합가스로부터 높은 선택도 및 흡착량으로 이산화탄소를 선택적으로 흡착할 수 있는 아민계 고분자로 기능화된 금속-유기 구조체를 제공한다.The present invention provides a metal-organic structure functionalized with an amine-based polymer capable of selectively adsorbing carbon dioxide from a mixed gas containing carbon dioxide with high selectivity and adsorption amount.
즉, 본 발명은 하나이상의 히드록시기를 가지며, 아민계 고분자로 기능화된 금속-유기 구조체를 제공한다.That is, the present invention provides a metal-organic structure functionalized with an amine-based polymer having at least one hydroxy group.
본 발명의 일 실시예에 따른 기능화된 금속-유기 구조체는 열린 금속 자리를 가지지 않는 것일 수 있다.The functionalized metal-organic structure according to an embodiment of the present invention may not have an open metal seat.
바람직하게 본 발명의 일 실시예에 따른 아민계 고분자는 아민기가 반복단위에 포함되며, 상기 아민계 고분자의 아민기는 1차, 2차, 3차 또는 4차일 수 있다.Preferably, in the amine-based polymer according to an embodiment of the present invention, an amine group is included in the repeating unit, and the amine group of the amine-based polymer may be primary, secondary, tertiary or quaternary.
본 발명의 일 실시예에 따른 아민계 고분자는 기능화되기 전의 금속-유기 구조체 100중량부에 대하여 10 내지 70중량부로 포함될 수 있다.The amine-based polymer according to an embodiment of the present invention may be included in an amount of 10 to 70 parts by weight based on 100 parts by weight of the metal-organic structure before functionalization.
본 발명의 일 실시예에 따른 기능화된 금속-유기 구조체는 하기 화학식 1로 표시되는 유기 리간드를 포함하는 것일 수 있다.The functionalized metal-organic structure according to an embodiment of the present invention may include an organic ligand represented by Formula 1 below.
[화학식 1][Formula 1]
Y-A-(Y) n YA-(Y) n
화학식 1에서, In formula 1,
각각의 Y는 동일하거나 상이할 수 있고, 각각의 Y는 독립적으로 -OH 또는 -C(O)OH이며, 여기서, A는 치환 또는 비치환된 C6-C30아릴 또는 치환 또는 비치환된 C6-C30 헤테로아릴의 다가 라디칼이고, n은 1 내지 10의 정수이다.Each Y may be the same or different, and each Y is independently -OH or -C(O)OH, where A is a substituted or unsubstituted C6-C30 aryl or a substituted or unsubstituted C6-C30 It is a polyvalent radical of heteroaryl, and n is an integer from 1 to 10.
본 발명의 일 실시예에 따른 기능화된 금속-유기 구조체는 중심금속이 Zr, Co, Ni, Zn, Mg, Mn, Cu, V, Cr, Fe, Al, Yb, Sc, Y, Ca, Ag 또는 Tb일 수 있으며, 바람직하게 중심금속이 Zr인 NU-1000일 수 있다.In the functionalized metal-organic structure according to an embodiment of the present invention, the central metal is Zr, Co, Ni, Zn, Mg, Mn, Cu, V, Cr, Fe, Al, Yb, Sc, Y, Ca, Ag, or It may be Tb, preferably NU-1000 in which the central metal is Zr.
또한 본 발명은 기능화된 금속-유기 구조체의 제조방법을 제공하는 것으로, 본 발명의 기능화된 금속-유기 구조체의 제조방법은 탈기된 금속-유기 구조체에 아민계 고분자를 함침시켜 기능화된 금속-유기 구조체를 제조하는 단계를 포함한다.In addition, the present invention provides a method for manufacturing a functionalized metal-organic structure, and the method for producing a functionalized metal-organic structure of the present invention is a functionalized metal-organic structure by impregnating an amine-based polymer in the degassed metal-organic structure. It includes the step of preparing.
본 발명의 일 실시예에 따른 탈기된 금속-유기 구조체는 금속-유기 구조체를 80 내지 200℃에서 8시간 내지 24시간동안 가열하여 제조하는 것일 수 있다.The degassed metal-organic structure according to an embodiment of the present invention may be manufactured by heating the metal-organic structure at 80 to 200°C for 8 to 24 hours.
본 발명의 일 실시예에 따른 탈기된 금속-유기 구조체는 열린 금속 자리를 가지지 않는 것일 수 있다.The degassed metal-organic structure according to an embodiment of the present invention may not have an open metal seat.
또한 본 발명은 본 발명의 기능화된 금속-유기 구조체를 포함하는 이산화탄소 흡착제를 제공한다.In addition, the present invention provides a carbon dioxide adsorbent comprising the functionalized metal-organic structure of the present invention.
또한 본 발명은 본 발명의 이산화탄소 흡착제를 이산화탄소를 포함하는 혼합가스에 접촉시켜 이산화탄소를 흡착하는 단계를 포함하는 이산화탄소의 선택적 분리방법을 제공한다.In addition, the present invention provides a method for selectively separating carbon dioxide comprising the step of adsorbing carbon dioxide by contacting the carbon dioxide adsorbent of the present invention with a mixed gas containing carbon dioxide.
본 발명의 일 실시예에 따른 이산화탄소의 선택적 분리방법은 A method for selectively separating carbon dioxide according to an embodiment of the present invention
이산화탄소 흡착제를 가열하여 활성화시키는 단계; 및Heating and activating the carbon dioxide adsorbent; And
상기 활성화된 이산화탄소 흡착제를 이산화탄소를 포함하는 혼합가스에 접촉시켜 이산화탄소를 흡착하는 단계;를 포함한다.And adsorbing carbon dioxide by contacting the activated carbon dioxide adsorbent with a mixed gas containing carbon dioxide.
본 발명의 일 실시예에 따른 이산화탄소의 선택적 분리방법은 흡착된 이산화탄소를 탈착하여 이산화탄소 흡착제를 재생시키는 단계를 더 포함할 수 있다.The method for selectively separating carbon dioxide according to an embodiment of the present invention may further include desorbing the adsorbed carbon dioxide to regenerate the carbon dioxide adsorbent.
본 발명의 일실시예에 따른 재생은 80 내지 200℃에서 1 내지 5시간동안 수행될 수 있으며, 혼합가스는 이산화탄소 및 질소를 포함하는 것일 수 있다.Regeneration according to an embodiment of the present invention may be performed at 80 to 200°C for 1 to 5 hours, and the mixed gas may include carbon dioxide and nitrogen.
본 발명의 기능화된 금속-유기 구조체는 특정한 작용기인 히드록시기를 가지는 동시에 아민계 고분자로 기능화되어 우수한 선택도 및 높은 흡착량으로 이산화탄소를 흡착할 수 있다.The functionalized metal-organic structure of the present invention has a hydroxy group, which is a specific functional group, and is functionalized with an amine-based polymer, so that carbon dioxide can be adsorbed with excellent selectivity and high adsorption amount.
또한 본 발명의 기능화된 금속-유기 구조체인 이산화탄소 흡착제는 안정하여 여러 차례 이산화탄소를 흡착하고 탈착하여도 흡착제의 흡착성능이 유지됨으로써 흡착제의 재사용이 가능해 매우 경제적이다.In addition, the carbon dioxide adsorbent, which is a functionalized metal-organic structure of the present invention, is stable, and the adsorption performance of the adsorbent is maintained even after adsorbing and desorbing carbon dioxide several times, so that the adsorbent can be reused and is very economical.
나아가 본 발명의 이산화탄소의 선택적 분리방법은 본 발명의 기능화된 금속-유기 구조체를 흡착제로 사용함으로써 온화한 조건에서 놀랍도록 향상된 선택도 및 높은 흡착량으로 이산화탄소를 흡착하여 분리할 수 있다.Furthermore, the method for selectively separating carbon dioxide of the present invention can be separated by adsorbing carbon dioxide with surprisingly improved selectivity and high adsorption amount under mild conditions by using the functionalized metal-organic structure of the present invention as an adsorbent.
또한 본 발명의 이산화탄소의 선택적 분리방법은 높은 선택도를 가지며 반복적으로 흡착/탈착이 가능해 대량생산 및 연속공정이 가능함으로 이산화탄소의 선택적 분리방법의 상용화가 매우 용이하다.In addition, the method for selectively separating carbon dioxide of the present invention has high selectivity and can be repeatedly adsorbed/desorped and thus mass-produced and continuous process is possible, making it very easy to commercialize the method for selectively separating carbon dioxide.
따라서 본 발명의 이산화탄소의 선택적 분리방법은 특정한 작용기인 히드록시기를 가지는 금속-유기 구조체를 특정한 화합물인 아민계 고분자로 기능화시킨 기능화된 금속-유기 구조체를 흡착제로 사용함으로써 저비용으로 높은 선택도 및 흡착량으로 이산화탄소를 분리할 수 있는 매우 효과적인 방법이다.Therefore, the method for selectively separating carbon dioxide of the present invention uses a functionalized metal-organic structure in which a metal-organic structure having a specific functional group, a hydroxy group, is functionalized with an amine-based polymer, which is a specific compound, as an adsorbent. It is a very effective way to separate carbon dioxide.
도 1은 본 발명의 제조예 1 에서 제조된 NU-1000 및 실시예 1에서 제조된 PEI(50)@NU-1000의 FTIR 그래프이다.1 is an FTIR graph of NU-1000 prepared in Preparation Example 1 and PEI (50)@NU-1000 prepared in Example 1 of the present invention.
도 2는 본 발명의 제조예 1 에서 제조된 NU-1000 및 실시예 1에서 제조된 PEI(50)@NU-1000의 분말 X선 회절(PXRD)패턴을 나타낸 그래프이다.2 is a graph showing powder X-ray diffraction (PXRD) patterns of NU-1000 prepared in Preparation Example 1 and PEI (50)@NU-1000 prepared in Example 1 of the present invention.
도 3은 본 발명의 실시예 2 및 비교예 1에서 얻어진 기상 흡착등온선을 나타낸 그래프이다.3 is a graph showing the vapor phase adsorption isotherms obtained in Example 2 and Comparative Example 1 of the present invention.
도 4는 본 발명의 실시예 1 및 제조예 1에서 제조된 흡착제의 단일 표면적에 대한 흡착량을 나타낸 그래프이다.4 is a graph showing the adsorption amount for a single surface area of the adsorbents prepared in Example 1 and Preparation Example 1 of the present invention.
도 5는 본 발명의 실시예 1 에서 제조된 PEI(50)@NU-1000 및 제조예 1에서 제조된 NU-1000의 이산화탄소 및 질소 이원 혼합가스에서의 흡착량 및 선택도를 나타낸 그래프이다.5 is a graph showing the adsorption amount and selectivity in the carbon dioxide and nitrogen binary gas mixture of PEI (50)@NU-1000 prepared in Example 1 of the present invention and NU-1000 prepared in Preparation Example 1. FIG.
도 6은 본 발명의 실시예 4에서 수행된 PEI(50)@NU-1000의 흡착량을 나타낸 그래프이다.6 is a graph showing the adsorption amount of PEI (50)@NU-1000 performed in Example 4 of the present invention.
본 발명의 명세서에 기재된 "금속"은 알칼리금속, 알칼리토금속 뿐만 아니라 전이금속, 비금속도 포함한다."Metal" described in the specification of the present invention includes not only alkali metals and alkaline earth metals, but also transition metals and non-metals.
본 발명의 명세서에 기재된 "알킬"은 오직 탄소 및 수소 원자로만 이루어지고, 단일 결합에 의해 분자의 나머지 부분에 부착되는 포화 직쇄형 또는 분지형 탄화수소쇄 라디칼을 지칭한다. 본 발명의 알킬기는 1 내지 30개의 탄소원자(C1-C30알킬), 바람직하게 1 내지 20개의 탄소원자(C1-C20알킬), 보다 바람직하게는 10 내지 20개의 탄소원자(C10-C20알킬)일 수 있으며, 구체적인 일례로 메틸, 에틸, n-프로필, 1-메틸에틸 (이소-프로필), 헥실, n-부틸, i-부틸, t-부틸, n-펜틸, i-아밀, n-헥실, n-헵틸, n-옥틸, 2-에틸헥실, n-노닐, n-데실, 도데실, 테트라데실, 헥사데실, 헵타데실, 옥타데실 또는 올레일 등을 포함한다."Alkyl" as described in the present specification refers to a saturated straight or branched hydrocarbon chain radical consisting only of carbon and hydrogen atoms and attached to the rest of the molecule by a single bond. The alkyl group of the present invention is 1 to 30 carbon atoms (C1-C30 alkyl), preferably 1 to 20 carbon atoms (C1-C20 alkyl), more preferably 10 to 20 carbon atoms (C10-C20 alkyl). And specific examples include methyl, ethyl, n-propyl, 1-methylethyl (iso-propyl), hexyl, n-butyl, i-butyl, t-butyl, n-pentyl, i-amyl, n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, dodecyl, tetradecyl, hexadecyl, heptadecyl, octadecyl or oleyl, and the like.
본 발명의 명세서에 기재된 "아릴"은 수소, 탄소 원자 및 적어도 1개의 방향족 고리를 포함하는 탄화수소 고리계 라디칼을 지칭하는 것으로, 6 내지 30개의 탄소원자, 바람직하게 6 내지 20개의 탄소원자를 가질 수 있다. 예시적인 아릴은 수소 및 6 내지 30의 탄소 원자 및 적어도 1개의 방향족 고리를 포함하는 탄화수소 고리계 라디칼: 6 내지 30개의 탄소 원자 및 적어도 1개의 방향족 고리를 포함하는 탄화수소 고리계 라디칼; 수소 및 9 내지 30개의 탄소 원자 및 적어도 1개의 방향족 고리를 포함하는 탄화수소 고리계 라디칼이다."Aryl" described in the specification of the present invention refers to a hydrocarbon ring-based radical comprising hydrogen, a carbon atom and at least one aromatic ring, and may have 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms. . Exemplary aryls include hydrogen and a hydrocarbon ring-based radical comprising 6 to 30 carbon atoms and at least one aromatic ring: a hydrocarbon ring-based radical comprising 6 to 30 carbon atoms and at least one aromatic ring; It is a hydrocarbon ring-based radical comprising hydrogen and 9 to 30 carbon atoms and at least one aromatic ring.
본 발명의 명세서에 기재된 아릴 라디칼은 융합된 또는 가교된 고리계를 포함할 수 있는, 모노시클릭, 비시클릭, 트리시클릭 또는 테트라시클릭 고리계일 수 있다. 아릴 라디칼은 벤젠, 비페닐, 인단 및 인덴, 나프탈렌, 파이렌으로부터 유래된 아릴 라디칼을 포함하나 이에 제한되지는 않는다.The aryl radicals described in the present specification may be monocyclic, bicyclic, tricyclic or tetracyclic ring systems, which may include fused or bridged ring systems. Aryl radicals include, but are not limited to, aryl radicals derived from benzene, biphenyl, indane and indene, naphthalene, and pyrene.
본 발명의 명세서에 기재된 "아릴렌"은 아릴에서 하나의 수소 또는 치환기가 제거된, 수소, 탄소 원자 및 적어도 1개의 방향족 고리를 포함하는 탄화수소 고리계 라디칼을 지칭하는 것이다."Arylene" as described herein refers to a hydrocarbon ring-based radical comprising hydrogen, a carbon atom and at least one aromatic ring from which one hydrogen or substituent has been removed from the aryl.
본 발명의 명세서에 기재된 "본 명세서에서 사용된 "헤테로아릴"은 질소, 산소 및 황으로 구성된 군으로부터 선택된 적어도 하나의 헤테로원자를 가지고, 모노- 및 바이사이클릭 링 시스템을 포함하는 적어도 하나의 탄소 원자를 포함하는 5 내지 10 멤버의 방향족 헤테로고리(heterocycle) 링이다. 대표적인 헤테로아릴은 트리아졸일, 테트라졸일, 옥사디아졸일, 피리딜, 퓨릴, 벤조퓨라닐, 티오페닐, 벤조티오페닐, 퀴노리닐, 피롤일(pyrrolyl), 인돌일, 옥사졸일, 벤족사졸일(benzoxazolyl), 이미다졸일, 벤즈이미다졸일, 티아졸일(thiazolyl), 벤조티아졸일, 이속사졸일, 파이라졸일(pyrazolyl), 이소티아졸일, 피리다지닐, 피리미디닐, 파이라지닐, 트리아지닐, 신놀리닐(cinnolinyl), 프탈라지닐, 퀴나졸리닐, 피리미딜, 옥세타닐, 아제피닐, 피페라지닐, 모포리닐(morpholinyl), 디옥사닐, 티에타닐 및 옥사졸일이다. 헤테로아릴 그룹은 모노사이클릭 또는 바이사이클릭일 수 있다. 헤테로아릴은 용어 헤테로아릴환, 헤테로아릴 그룹 또는 헤테로방향족과 혼용하여 사용될 수 있으며, 이들 용어는 모두 임의로 치환된 환을 포함할 수 있다.“Heteroaryl” described in the specification of the present invention has at least one heteroatom selected from the group consisting of nitrogen, oxygen and sulfur, and at least one carbon including mono- and bicyclic ring systems. It is a 5 to 10 membered aromatic heterocycle ring containing an atom.The typical heteroaryl is triazolyl, tetrazolyl, oxadiazolyl, pyridyl, furyl, benzofuranyl, thiophenyl, benzothiophenyl, quinori Neil, pyrrolyl, indolyl, oxazolyl, benzoxazolyl, imidazolyl, benzimidazolyl, thiazolyl, benzothiazolyl, isoxazolyl, pyrazolyl , Isothiazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, cinnolinyl, phthalazinyl, quinazolinyl, pyrimidyl, oxetanyl, azepinyl, piperazinyl, The heteroaryl group may be monocyclic or bicyclic Heteroaryl may be used interchangeably with the terms heteroaryl ring, heteroaryl group or heteroaromatic group. And all of these terms may include optionally substituted rings.
본 발명의 명세서에 기재된 "헤테로아릴렌"은 헤테로아릴에서 하나의 수소 또는 치환기가 제거된, 질소, 산소 및 황으로 구성된 군으로부터 선택된 적어도 하나의 헤테로원자를 가지고, 모노- 및 바이사이클릭 링 시스템을 포함하는 적어도 하나의 탄소 원자를 포함하는 포함하는 탄화수소 고리계 다이라디칼을 지칭하는 것이다."Heteroarylene" described in the specification of the present invention has at least one heteroatom selected from the group consisting of nitrogen, oxygen, and sulfur, in which one hydrogen or substituent is removed from the heteroaryl, and mono- and bicyclic ring systems It refers to a hydrocarbon ring-based diradical containing at least one carbon atom containing.
본 발명에 기재된 "아민계 고분자"는 분자 구조 내, 특히 반복단위에 아민기(-N(R 1)(R 2)-, 여기서 R 1 및 R 2는 서로 독립적으로 단일결합, 수소, 하이드로카빌 또는 헤테로카빌이다.)를 갖는 물질로서, 바람직하기로 주쇄, 측쇄 또는 말단에 아민기를 가질 수 있다. The "amine-based polymer" described in the present invention is an amine group (-N(R 1 )(R 2 )- in a molecular structure, especially a repeating unit, wherein R 1 and R 2 are independently of each other a single bond, hydrogen, or hydrocarbyl. Or heterocarbyl.), preferably may have an amine group at the main chain, side chain, or terminal.
본 명세서에서 사용된 용어 "치환된"(substituted)은 치환되는 부분(예를 들어, 알킬, 아릴, 헤테로아릴, 헤테로사이클 또는 사이클로알킬)의 수소 원자가 치환기로 대체되는 것을 의미한다. 치환체와 관련하여 별도의 기재가 없는 한, 본 발명의 임의로 치환된 치환체로는 할로겐, 하이드록실, (저급)알킬, 할로알킬, 모노- 또는 디-알킬아미노, 아릴, 헤테로사이클, -NO 2, -NR a1R b1, -NR a1C(=O) R b1, -NR a1C(=O)NR a1R b1, -NR a1C(=O)OR b1, -NR a1SO 2R b1, -OR a1, -CN, -C(=O)R a1, -C(=O)OR a1, -C(=O)NR a1R b1, -OC(=O)R a1, -OC(=O)OR a1, -OC(=O)NR a1R b1, -NR a1SO 2R b1, -PO 3R a1, -PO(OR a1)(OR b1), -SO 2R a1, -S(O)R a1, -SO(NR a1)R b1 (예를 들어, sulfoximine), -S(NR a1)R b1 (예를 들어, sulfilimine) 및 -SR a1가 이용될 수 있으며, 여기에서 R a1와 R b1는 같거나 다를 수 있으며, 서로 독립적으로 하이드로겐, 할로겐, 아미노, 알킬, 알콕시알킬, 할로알킬, 아릴 또는 헤테로사이클이고, 또는 부착된 질소원자와 같이 R a1와 R b1는 헤테로사이클 형태가 될 수 있다. 여기서 R a1와 R b1는 결합된 원자에 따라 복수 개일 수 있으며, 바람직하게 상기 알킬은 C1- C6알킬일 수 있으며, 아릴은 C6-C12일 수 있으며, 헤테로사이클은 C3-C10일 수 있다.As used herein, the term "substituted" means that the hydrogen atom of the substituted moiety (eg, alkyl, aryl, heteroaryl, heterocycle or cycloalkyl) is replaced with a substituent. Unless otherwise stated in relation to the substituent, optionally substituted substituents of the present invention include halogen, hydroxyl, (lower) alkyl, haloalkyl, mono- or di-alkylamino, aryl, heterocycle, -NO 2 , -NR a1 R b1 , -NR a1 C(=O) R b1 , -NR a1 C(=O)NR a1 R b1 , -NR a1 C(=O)OR b1 , -NR a1 SO 2 R b1 ,- OR a1 , -CN, -C(=O)R a1 , -C(=O)OR a1 , -C(=O)NR a1 R b1 , -OC(=O)R a1 , -OC(=O) OR a1 , -OC(=O)NR a1 R b1 , -NR a1 SO 2 R b1 , -PO 3 R a1 , -PO(OR a1 )(OR b1 ), -SO 2 R a1 , -S(O) R a1 , -SO(NR a1 )R b1 (e.g., sulfoximine), -S(NR a1 )R b1 (e.g., sulfilimine) and -SR a1 may be used, where R a1 and R b1 may be the same or different, and independently of each other, hydrogen, halogen, amino, alkyl, alkoxyalkyl, haloalkyl, aryl or heterocycle, or R a1 and R b1 , like the attached nitrogen atom, will be in the form of a heterocycle. I can. Here, R a1 and R b1 may be plural depending on the atoms to which they are bonded, preferably the alkyl may be C1-C6 alkyl, the aryl may be C6-C12, and the heterocycle may be C3-C10.
이하 본 발명의 기능화된 금속-유기 구조체, 이의 제조방법 및 이를 이용하는 이산화탄소의 선택적 분리방법에 대해 상세하게 설명한다.Hereinafter, the functionalized metal-organic structure of the present invention, a method for manufacturing the same, and a method for selectively separating carbon dioxide using the same will be described in detail.
본 발명은 높은 선택도 및 효율로 이산화탄소를 효과적으로 흡착할 수 있는 기능화된 금속-유기 구조체를 제공하는 것으로, 본 발명의 기능화된 금속-유기 구조체는 반드시 하나이상의 히드록시기를 가지며, 특정한 화합물인 아민계 고분자로 기능화된 것을 특징으로 한다.The present invention provides a functionalized metal-organic structure capable of effectively adsorbing carbon dioxide with high selectivity and efficiency, and the functionalized metal-organic structure of the present invention necessarily has at least one hydroxy group, and an amine-based polymer which is a specific compound It is characterized by being functionalized.
즉, 본 발명의 기능화된 금속-유기 구조체는 반드시 하나이상의 히드록시기를 가지는 금속-유기 구조체를 아민계 고분자로 기능화시킨 것이다.That is, in the functionalized metal-organic structure of the present invention, a metal-organic structure having at least one hydroxy group must be functionalized with an amine-based polymer.
본 발명의 기능화된 금속-유기 구조체는 하나이상의 히드록시기를 가지는 금속-유기 구조체를 아민계 고분자로 기능화시킴으로 높은 아민 밀도를 가져 높은 선택도 및 흡착량으로 이산화탄소를 흡착할 수 있다.The functionalized metal-organic structure of the present invention has a high amine density by functionalizing a metal-organic structure having one or more hydroxy groups with an amine-based polymer, so that carbon dioxide can be adsorbed with high selectivity and adsorption amount.
더불어 본 발명의 기능화된 금속-유기 구조체는 휘발성이 적고 우수한 주기 안정성을 가지는 아민계 고분자로 금속-유기 구조체를 기능화시킴으로써 보다 향상된 선택도 및 흡착량으로 이산화탄소를 흡착할 수 있다.In addition, the functionalized metal-organic structure of the present invention is an amine-based polymer having low volatility and excellent cycle stability, and by functionalizing the metal-organic structure, carbon dioxide can be adsorbed with improved selectivity and adsorption amount.
따라서 본 발명의 아민계 고분자로 기능화된 금속-유기 구조체는 종래의 저분자 아민 화합물로 기능화된 금속-유기 구조체와 대비하여 극히 향상된 이산화탄소 선택도 및 흡착량을 가진다.Accordingly, the metal-organic structure functionalized with the amine-based polymer of the present invention has extremely improved carbon dioxide selectivity and adsorption amount compared to the conventional metal-organic structure functionalized with a low-molecular amine compound.
본 발명의 일 실시예에 따른 기능화된 금속-유기 구조체는 열린 금속 자리(open metal site, unsaturated metal sites)를 가지지 않는 것일 수 있다.The functionalized metal-organic structure according to an embodiment of the present invention may not have open metal sites (unsaturated metal sites).
구체적으로 본 발명의 일 실시예에 따른 기능화된 금속-유기 구조체는 기능화된 금속-유기 구조체가 하나이상의 히드록시기를 가지는 동시에 열린 금속 자리를 가지지 않고, 아민계 고분자로 기능화됨으로써 질소와의 흡착력은 저하되고 이산화탄소와의 흡착력은 놀랍도록 향상됨으로써 이산화탄소 선택도가 극히 향상된다.Specifically, in the functionalized metal-organic structure according to an embodiment of the present invention, the functionalized metal-organic structure has at least one hydroxy group and does not have an open metal site, and is functionalized with an amine-based polymer, so that adsorption power with nitrogen is lowered. The adsorption power with carbon dioxide is remarkably improved, so the selectivity of carbon dioxide is greatly improved.
본 발명의 일 실시예에 따른 기능화된 금속-유기 구조체는 하기 화학식 1로 표시되는 유기 리간드를 포함하는 것일 수 있다.The functionalized metal-organic structure according to an embodiment of the present invention may include an organic ligand represented by Formula 1 below.
[화학식 1][Formula 1]
Y-A-(Y)nY-A-(Y)n
화학식 1에서, 각각의 Y는 동일하거나 상이할 수 있고, 각각의 Y는 독립적으로 -OH 또는 -C(O)OH이며, A는 치환 또는 비치환된 C6-C30아릴 또는 치환 또는 비치환된 C6-C30 헤테로아릴의 다가 라디칼이며;In Formula 1, each Y may be the same or different, each Y is independently -OH or -C(O)OH, and A is a substituted or unsubstituted C6-C30 aryl or a substituted or unsubstituted C6 Is a polyvalent radical of -C30 heteroaryl;
n은 1 내지 10의 정수이다.n is an integer from 1 to 10.
바람직하게 본 발명의 일 실시예에 따른 상기 화학식 1에서 n은 0 내지 10의 정수, 0 내지 5의 정수일 수 있다.Preferably, in Formula 1 according to an embodiment of the present invention, n may be an integer of 0 to 10 and an integer of 0 to 5.
바람직하게 본 발명의 일 실시예에 따른 상기 화학식 1에서 Y는 독립적으로 -C(O)OH이며, A는 치환 또는 비치환된 C6-C30아릴의 다가 라디칼일 수 있다.Preferably, in Formula 1 according to an embodiment of the present invention, Y is independently -C(O)OH, and A may be a substituted or unsubstituted polyvalent radical of C6-C30 aryl.
바람직하게 본 발명의 일 실시예에 따른 금속-유기 구조체의 유기 리간드는 1,3,6,8-tetrakis(p-benzoic acid)pyrene(H 4TBAPy)일 수 있다.Preferably, the organic ligand of the metal-organic structure according to an embodiment of the present invention may be 1,3,6,8-tetrakis(p-benzoic acid)pyrene(H 4 TBAPy).
본 발명의 일 실시예에 따른 기능화된 금속-유기 구조체는 중심금속이 Zr, Co, Ni, Zn, Mg, Mn, Cu, V, Cr, Fe, Al, Yb, Sc, Y, Ca, Ag 또는 Tb일 수 있으며, 바람직하게 중심금속이 Zr인 NU-1000일 수 있다.In the functionalized metal-organic structure according to an embodiment of the present invention, the central metal is Zr, Co, Ni, Zn, Mg, Mn, Cu, V, Cr, Fe, Al, Yb, Sc, Y, Ca, Ag, or It may be Tb, preferably NU-1000 in which the central metal is Zr.
바람직하게 본 발명의 일 실시예에 따른 기능화된 금속-유기 구조체는 중심금속이 Zr이며, 유기 리간드가 1,3,6,8-tetrakis(p-benzoic acid)pyrene인 NU-1000일 수 있다.Preferably, the functionalized metal-organic structure according to an embodiment of the present invention may be NU-1000 in which the central metal is Zr and the organic ligand is 1,3,6,8-tetrakis(p-benzoic acid)pyrene.
본 발명의 일 실시예에 따른 기능화된 금속-유기 구조체는 기공크기가 10 내지 40Å일 수 있으며, 바람직하게 20 내지 35Å일 수 있다.The functionalized metal-organic structure according to an embodiment of the present invention may have a pore size of 10 to 40 Å, preferably 20 to 35 Å.
바람직하게 본 발명의 일 실시예에 따른 아민계 고분자는 아민기가 반복단위에 포함되며, 상기 아민기는 1차, 2차, 3차 또는 4차일 수 있다.Preferably, in the amine-based polymer according to an embodiment of the present invention, an amine group is included in the repeating unit, and the amine group may be primary, secondary, tertiary or quaternary.
바람직하게 본 발명의 일 실시예에 따른 아민계 고분자는 고분자의 반복단위에 1차 또는 2차 아민이 포함된 것일 수 있다.Preferably, the amine-based polymer according to an embodiment of the present invention may include a primary or secondary amine in a repeating unit of the polymer.
바람직하게 본 발명의 일 실시예에 따른 아민계 고분자는 고분자 주쇄에 아민기가 포함된 것일 수 있다.Preferably, the amine-based polymer according to an embodiment of the present invention may include an amine group in the main chain of the polymer.
바람직하게 본 발명의 일 실시예에 따른 아민계 고분자는 하기 화학식 2로 표시되는 반복단위로 표시될 수 있다.Preferably, the amine-based polymer according to an embodiment of the present invention may be represented by a repeating unit represented by Formula 2 below.
[화학식 2][Formula 2]
Figure PCTKR2020013122-appb-img-000001
Figure PCTKR2020013122-appb-img-000001
화학식 2에서In formula 2
(상기 A 1 및 A 2는 서로 독립적으로 치환되거나 치환되지 않은 단일결합, C1-C30알킬렌, 카르보닐기, 또는 O이며, A 1 및 A 2 모두가 단일결합인 경우는 제외되며,(A 1 and A 2 are each independently a substituted or unsubstituted single bond, a C1-C30 alkylene, a carbonyl group, or O, except for cases where both A 1 and A 2 are single bonds,
R은 수소 또는 치환되거나 치환되지 않은 C1-C30알킬이다.)R is hydrogen or substituted or unsubstituted C1-C30 alkyl.)
바람직하게 상기 화학식 2에서 A 1 및 A 2는 서로 독립적으로 C1-C30알킬렌이며, R은 수소 또는 C1-C30알킬이며, 상기 알킬렌 및 알킬은 히드록시, 아미노로 더 치환될 수 있으며, 보다 바람직하게 A 1 및 A 2는 서로 독립적으로 C1-C10알킬렌이며, R은 수소 또는 C1-C10알킬이며, 상기 알킬렌 및 알킬은 히드록시, 아미노로 더 치환될 수 있다.Preferably, in Formula 2, A 1 and A 2 are independently of each other C1-C30 alkylene, R is hydrogen or C1-C30 alkyl, and the alkylene and alkyl may be further substituted with hydroxy or amino, and more Preferably, A 1 and A 2 are each independently C1-C10 alkylene, R is hydrogen or C1-C10 alkyl, and the alkylene and alkyl may be further substituted with hydroxy or amino.
본 발명의 일 실시예에 따른 아민계 고분자는 한정이 있지 않아, 공지된 바의 모든 고분자가 사용 가능하며, 일례로 폴리에틸렌이민(Polyethyleneimine: PEI), 폴리아미드아민(Polyamideamine), 폴리비닐아민(Polyvinylamine), 폴리아미도아민(Polyamidoamine), 폴리알릴아민(Polyallylamine), 폴리라이신(Poly-L-lysine), 키토산(Chitosan), 아민화 메틸셀룰로오스 및 아민화 에틸셀룰로오스 군으로부터 선택된 하나 또는 둘 이상의 고분자일 수 있으며, 바람직하게는 폴리이민계 고분자인 선형 폴리에틸렌이민(linear polyethyleneimine, LPEI) 또는 분쇄형 폴리에틸렌아민(branched polyethyleneimine, BPEI)일 수 있으며, 폴리아민계 고분자인 폴리에틸렌아민, 폴리에틸렌디아민, 폴리디아민프로판 또는 폴리헥사메틸렌디아민일 수 있다.The amine-based polymer according to an embodiment of the present invention is not limited, and all known polymers can be used, and examples thereof include polyethyleneimine (PEI), polyamideamine, and polyvinylamine. ), polyamidoamine, polyallylamine, poly-L-lysine, chitosan, aminated methylcellulose and aminated ethylcellulose can be one or more polymers selected from the group And, preferably, a polyimine-based polymer such as linear polyethyleneimine (LPEI) or a branched polyethyleneimine (BPEI), and a polyamine-based polymer such as polyethyleneamine, polyethylenediamine, polydiaminepropane, or polyhexan It may be methylenediamine.
바람직하게 본 발명의 일 실시예에 따른 아민계 고분자는 폴리에틸렌이민계일 수 있다.Preferably, the amine-based polymer according to an embodiment of the present invention may be polyethyleneimine.
본 발명의 일 실시예에 따른 아민계 고분자는 한정이 있는 것은 아니나, 중량평균분자량이 100 내지 100,000g/mol일 수 있으며, 바람직하게는 100 내지 10,000g/mol일 수 있다.The amine-based polymer according to an embodiment of the present invention is not limited, but may have a weight average molecular weight of 100 to 100,000 g/mol, and preferably 100 to 10,000 g/mol.
본 발명의 일 실시예에 따른 기능화된 금속-유기 구조체에 포함되는 아민계 고분자는 기능화되기 전의 금속-유기 구조체 100중량부에 대해 10 내지 70중량부일 수 있으며, 보다 향상된 선택도 및 흡착량을 가지기위한 측면에서 30 내지 50중량부일 수 있다.The amine-based polymer included in the functionalized metal-organic structure according to an embodiment of the present invention may be 10 to 70 parts by weight based on 100 parts by weight of the metal-organic structure before functionalization, and has more improved selectivity and adsorption amount. It may be 30 to 50 parts by weight in terms of.
또한 본 발명은 기능화된 금속-유기 구조체의 제조방법을 제공하는 것으로, 본 발명의 기능화된 금속-유기 구조체의 제조방법은 탈기된 금속-유기 구조체에 아민계 고분자를 함침시켜 기능화된 금속-유기 구조체를 제조하는 단계를 포함한다.In addition, the present invention provides a method for manufacturing a functionalized metal-organic structure, and the method for producing a functionalized metal-organic structure of the present invention is a functionalized metal-organic structure by impregnating an amine-based polymer in the degassed metal-organic structure. It includes the step of preparing.
본 발명의 일 실시예에 따른 탈기된 금속-유기 구조체는 금속-유기 구조체를 80 내지 200℃에서 8시간 내지 24시간동안, 바람직하게는 100 내지 150℃에서 8시간 내지 18시간동안 가열하여 제조할 수 있다.The degassed metal-organic structure according to an embodiment of the present invention is prepared by heating the metal-organic structure at 80 to 200°C for 8 hours to 24 hours, preferably at 100 to 150°C for 8 hours to 18 hours. I can.
본 발명의 일 실시예에 따른 탈기된 금속-유기 구조체는 열린 금속 자리를 가지지 않는 것일 수 있으며, 바람직하게 하나 이상의 히드록시기를 가지고 열린 금속 자리를 가지지 않은 것일 수 있다.The degassed metal-organic structure according to an embodiment of the present invention may not have an open metal site, and may preferably have one or more hydroxy groups and no open metal site.
바람직하게 본 발명의 일 실시예에 따른 금속-유기 구조체의 유기 리간드는 1,3,6,8-tetrakis(p-benzoic acid)pyrene(H 4TBAPy)일 수 있으며, 중심금속이 Zr, Co, Ni, Zn, Mg, Mn, Cu, V, Cr, Fe, Al, Yb, Sc, Y, Ca, Ag 또는 Tb 일 수 있으며, 보다 바람직하게 중심금속이 Zr인 NU-1000일 수 있다.Preferably, the organic ligand of the metal-organic structure according to an embodiment of the present invention may be 1,3,6,8-tetrakis(p-benzoic acid)pyrene(H 4 TBAPy), and the central metal is Zr, Co, It may be Ni, Zn, Mg, Mn, Cu, V, Cr, Fe, Al, Yb, Sc, Y, Ca, Ag, or Tb, and more preferably NU-1000 in which the central metal is Zr.
본 발명의 일 실시예에 따른 기능화된 금속-유기 구조체는 한정이 있는 것은 아니나, BET 표면적이 500내지 2000 m 2/g이며, 총 기공 부피가 0.3 내지 1.3 cm 3/g일 수 있으며, 바람직하게 BET 표면적이 500내지 1300 m 2/g이며, 총 기공 부피가 0.3 내지 0.9 cm 3/g일 수 있다.The functionalized metal-organic structure according to an embodiment of the present invention is not limited, but the BET surface area is 500 to 2000 m 2 /g, and the total pore volume may be 0.3 to 1.3 cm 3 /g, preferably The BET surface area may be 500 to 1300 m 2 /g, and the total pore volume may be 0.3 to 0.9 cm 3 /g.
또한 본 발명은 본 발명의 기능화된 금속-유기 구조체를 포함하는 이산화탄소 흡착제를 제공한다.In addition, the present invention provides a carbon dioxide adsorbent comprising the functionalized metal-organic structure of the present invention.
본 발명의 이산화탄소 흡착제는 하나이상의 히드록시기를 가지며, 아민계 고분자로 기능화된 금속-유기 구조체로 이산화탄소를 포함하는 혼합가스 특히 연소 가스 또는 대기가스에서 높은 선택도 및 흡착량으로 이산화탄소를 흡착하여 분리할 수 있다.The carbon dioxide adsorbent of the present invention has at least one hydroxy group and is a metal-organic structure functionalized with an amine-based polymer, and can be separated by adsorbing carbon dioxide with high selectivity and adsorption amount from a mixed gas containing carbon dioxide, especially from combustion gas or atmospheric gas. have.
또한 본 발명은 본 발명의 이산화탄소 흡착제를 이산화탄소를 포함하는 혼합가스에 접촉시켜 이산화탄소를 흡착하는 단계를 포함하는 이산화탄소의 선택적 분리방법을 제공한다.In addition, the present invention provides a method for selectively separating carbon dioxide comprising the step of adsorbing carbon dioxide by contacting the carbon dioxide adsorbent of the present invention with a mixed gas containing carbon dioxide.
본 발명의 이산화탄소의 선택적 분리방법은 본 발명의 아민계 고분자로 기능화된 금속-유기 구조체를 흡착제로 사용함으로써 높은 선택도로 이산화탄소를 흡착 분리할 수 있다.The method for selectively separating carbon dioxide of the present invention can adsorb and separate carbon dioxide with high selectivity by using the metal-organic structure functionalized with the amine-based polymer of the present invention as an adsorbent.
구체적으로 본 발명의 일 실시예에 따른 이산화탄소의 선택적 분리방법은 Specifically, the method for selectively separating carbon dioxide according to an embodiment of the present invention
이산화탄소 흡착제를 가열하여 활성화시키는 단계; 및Heating and activating the carbon dioxide adsorbent; And
상기 활성화된 이산화탄소 흡착제를 이산화탄소를 포함하는 혼합가스에 접촉시켜 이산화탄소를 흡착하는 단계;를 포함한다.And adsorbing carbon dioxide by contacting the activated carbon dioxide adsorbent with a mixed gas containing carbon dioxide.
본 발명의 일 실시예에 따른 가열은 100 내지 200℃에서 6 내지 24시간, 바람직하게 100 내지 150℃에서 8 내지 18시간동안 수행될 수 있다.Heating according to an embodiment of the present invention may be performed at 100 to 200°C for 6 to 24 hours, preferably at 100 to 150°C for 8 to 18 hours.
본 발명의 일 실시예에 따른 이산화탄소를 포함하는 혼합가스는 이산화탄소를 포함하는 화석 연소 가스를 포함하는 연소 가스, 대기가스 등 일 수 있으며, 바람직하게는 이산화탄소 및 질소를 포함하는 배기 가스일 수 있다.The mixed gas including carbon dioxide according to an embodiment of the present invention may be a combustion gas including a fossil combustion gas including carbon dioxide, an atmospheric gas, and the like, and preferably may be an exhaust gas including carbon dioxide and nitrogen.
본 발명의 일 실시예에 따른 상압(1atm)에서의 15/85 비율의 이산화탄소/질소의 선택도는 100이상일 수 있으며, 바람직하게 150 내지 700일 수 있다.The selectivity of carbon dioxide/nitrogen in a ratio of 15/85 at normal pressure (1 atm) according to an embodiment of the present invention may be 100 or more, and preferably 150 to 700.
구체적으로 본 발명의 일 실시예에 따른 이산화탄소의 선택적 분리방법은 100이상의 의 이산화탄소/질소(상압(1atm)에서의 이산화탄소/질소 15/85 비율)의 선택도 및 0.8mmol/g이상의 흡착량을 가진다. 바람직하게는 100 내지 700의 이산화탄소/질소(상압(1atm)에서의 이산화탄소/질소 15/85 비율)의 선택도 및 0.8 내지 2.5mmol/g의 흡착량을 가진다.Specifically, the method for selectively separating carbon dioxide according to an embodiment of the present invention has a selectivity of 100 or more carbon dioxide/nitrogen (carbon dioxide/nitrogen 15/85 ratio at normal pressure (1 atm)) and an adsorption amount of 0.8 mmol/g or more. . Preferably, it has a selectivity of 100 to 700 carbon dioxide/nitrogen (a ratio of carbon dioxide/nitrogen 15/85 at normal pressure (1 atm)) and an adsorption amount of 0.8 to 2.5 mmol/g.
본 발명의 일 실시예에 따른 이산화탄소의 선택적 분리방법은 흡착된 이산화탄소를 탈착하여 이산화탄소 흡착제를 재생시키는 단계를 더 포함할 수 있다.The method for selectively separating carbon dioxide according to an embodiment of the present invention may further include desorbing the adsorbed carbon dioxide to regenerate the carbon dioxide adsorbent.
본 발명의 일 실시예에 따른 재생은 80 내지 200℃에서 1 내지 5시간동안, 바람직하게 100 내지 200℃에서 2 내지 4시간동안 수행될 수 있다.Regeneration according to an embodiment of the present invention may be performed at 80 to 200°C for 1 to 5 hours, preferably at 100 to 200°C for 2 to 4 hours.
본 발명의 일 실시예에 따른 아민계 고분자로 기능화된 금속-유기 구조체는 흡착된 이산화탄소를 탈착하고 재생시켜 재사용하여도 흡착제의 활성이 유지되어 이산화탄소/질소 선택도 및 이산화탄소 흡착량이 저하되지 않는다.In the metal-organic structure functionalized with an amine-based polymer according to an embodiment of the present invention, even if the adsorbed carbon dioxide is desorbed and regenerated and reused, the activity of the adsorbent is maintained, so that carbon dioxide/nitrogen selectivity and carbon dioxide adsorption amount are not lowered.
즉, 본 발명의 아민계 고분자로 기능화된 금속-유기 구조체인 이산화탄소 흡착제는 안정성이 우수하여 활성이 유지됨에 따라 여러 번 재사용이 가능하여 매우 경제적이다.That is, the carbon dioxide adsorbent, which is a metal-organic structure functionalized with an amine polymer of the present invention, has excellent stability and can be reused several times as it maintains its activity, which is very economical.
이하 본 발명을 실시예에 의해 상세하게 설명한다. 그러나 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are merely illustrative of the present invention, and the contents of the present invention are not limited to the following examples.
하기의 실시예에서 제조된 이산화탄소 흡착제의 특성 및 이산화탄소 흡착제를 이용한 이산화탄소의 흡착방법의 실험 결과는 하기의 장치 및 방법으로 측정하였다.The properties of the carbon dioxide adsorbent prepared in the following examples and the experimental results of the carbon dioxide adsorption method using the carbon dioxide adsorbent were measured by the following apparatus and method.
TriStar 3020 표면적 및 다공성 분석기 (Micromeritics Instruments, USA)로 77 K에서 질소 흡착/탈착 등온선을 기반으로 Brunauer-Emmett-Teller (BET) 표면 및 총 세공 부피를 평가하였다. BET 표면적은 일관성 기준에 의해 결정된 선형 범위 내에서 계산하였다(NU-1000: 0.0048 < P/P0 < 0.0735, PEI(10)@NU-1000: 0.0048 < P/P0 < 0.0724, PEI(30)@NU-1000: 0.0305 < P/P0 < 0.0692, PEI(50)@NU-1000: 0.0313 < P/P0 < 0.0877 and PEI(75)@NU-1000:0.0313 < P/P0 < 0.0877). 총 세공 부피는 P/P0=0.98에서 결정하였다. 각 시료는 다이나믹 진공 하에서 분석하기 전에 393K에서 12시간동안 탈기시켰다. Brunauer-Emmett-Teller (BET) surface and total pore volume were evaluated based on nitrogen adsorption/desorption isotherms at 77 K with a TriStar 3020 surface area and porosity analyzer (Micromeritics Instruments, USA). BET surface area was calculated within the linear range determined by the consistency criterion (NU-1000: 0.0048 <P/P0 <0.0735, PEI(10)@NU-1000: 0.0048 <P/P0 <0.0724, PEI(30)@NU -1000: 0.0305 <P/P0 <0.0692, PEI(50)@NU-1000: 0.0313 <P/P0 <0.0877 and PEI(75)@NU-1000:0.0313 <P/P0 <0.0877). The total pore volume was determined at P/P0=0.98. Each sample was degassed for 12 hours at 393K before analysis under dynamic vacuum.
분말 X선회절(PXRD)패턴(Rigaku Miniflex (Rigaku Co., Japan))은 2 ° 내지25 ° 범위의 2θ각에서 0.02 °/s의 주사율로 니켈-여과된 CuKα선(λ = 1.54059Å을 사용하여 측정하였다. FTIR 스펙트럼은 Excalibur series FTIR 기기 (DIGLAB Co., Germany)로3800-480 cm 1 범위에서 측정하였다.Powder X-ray diffraction (PXRD) pattern (Rigaku Miniflex (Rigaku Co., Japan)) uses a nickel-filtered CuKα ray (λ = 1.54059Å) at a scanning rate of 0.02 °/s at a 2θ angle ranging from 2 ° to 25 °. The FTIR spectrum was measured in the range of 3800-480 cm 1 with an Excalibur series FTIR instrument (DIGLAB Co., Germany).
[제조예 1] NU-1000의 제조[Production Example 1] Preparation of NU-1000
Nat. Protoc. 11 (2016) 149-1621와 유사하게 NU-1000을 제조하였다. Nat. Protoc. NU-1000 was prepared similarly to 11 (2016) 149-1621.
ZrCl 4 (70 mg, 0.3 mmol) 및 벤조산(2700 mg, 22 mmol)을 디메틸폼아마이드(DMF) (8 ml)에 녹이고 균일한 용액이 될 때까지 초음파 처리하였다. 얻어진 용액을 80℃의 오븐에서 1시간동안 방치한 후 실온으로 냉각시켰다. 여기에 H 4TBAPy (40 mg, 0.06 mmol)을 첨가하여 20분동안 초음파 처리하고 다시 80℃의 오븐에서 48시간동안 방치한 후 실온으로 냉각시켰다. 얻어진 물질은 여과하고 DMF로 세척한 후 HCl(8M solution 0.5ml)로 활성화시켰다. 활성화된 40 mg을 HCl(0.5 ml, 8 M)이 포함된 DMF (12 ml)에 녹여 100℃의 오븐에서 24시간동안 방치한 후 실온으로 냉각시켰다. 얻어진 고체에서 용매를 제거한 후 DMF와 아세톤으로 세척하고 얻어진 물질은 12시간동안 아세톤에 침지시켰다. 두 세차례 새로운 아세톤으로 교환하여 24시간동안 침지시켜 표제 화합물을 얻었다.ZrCl 4 (70 mg, 0.3 mmol) and benzoic acid (2700 mg, 22 mmol) were dissolved in dimethylformamide (DMF) (8 ml) and sonicated until a homogeneous solution was obtained. The resulting solution was allowed to stand in an oven at 80° C. for 1 hour and then cooled to room temperature. H 4 TBAPy (40 mg, 0.06 mmol) was added thereto, sonicated for 20 minutes, and allowed to stand in an oven at 80° C. for 48 hours, and then cooled to room temperature. The obtained material was filtered, washed with DMF, and activated with HCl (8M solution 0.5ml). The activated 40 mg was dissolved in DMF (12 ml) containing HCl (0.5 ml, 8 M), left in an oven at 100° C. for 24 hours, and then cooled to room temperature. After removing the solvent from the obtained solid, it was washed with DMF and acetone, and the obtained material was immersed in acetone for 12 hours. Two or three times, it was exchanged for new acetone and immersed for 24 hours to obtain the title compound.
[실시예 1] 아민계 고분자(PEI)로 기능화된 금속-유기 구조체(PEI(x)@NU-1000, 여기서 x는 PEI의 함량을 의미함)의 제조[Example 1] Preparation of a metal-organic structure functionalized with an amine-based polymer (PEI) (PEI(x)@NU-1000, where x means the content of PEI)
PEI(x)@NU-1000는 습식 함침방법으로 제조하였다.PEI(x)@NU-1000 was prepared by a wet impregnation method.
먼저 제조예 1에서 제조된 NU-1000분말을 진공하 120℃에서 12시간동안 가열하여 NU-1000에 흡착된 물분자 및 용매 분자를 제거하였다. Branched PEI-800 (Alfa Aesar, Korea, 중량평균분자량 800g/mol)을 NU-1000, 100중량부에 대해 각각 10중량부, 30중량부, 50중량부, 75중량부가 되도록 무수 메탄올 10 ml에 녹이고 10분동안 초음파 처리하였다. 여기에 탈기된 200 mg의 NU-1000을 천천히 첨가한 후 질소 분위기하에서 24시간동안 교반시켰다. 반응이 완료되면 반응혼합물의 용매를 감압하에서 제거한 후 120℃에서 12시간동안 가열하여 PEI로 기능화된 NU-1000을 각각 제조하였다. 제조된 PEI로 기능화된 NU-1000을 PEI 함량에 따라 PEI(10)@NU-1000, PEI(30)@NU-1000, PEI(50)@NU-1000, PEI(70)@NU-1000으로 명명하였다.First, the NU-1000 powder prepared in Preparation Example 1 was heated at 120° C. for 12 hours under vacuum to remove water molecules and solvent molecules adsorbed to NU-1000. Branched PEI-800 (Alfa Aesar, Korea, weight average molecular weight 800g/mol) was dissolved in 10 ml of anhydrous methanol so as to be 10 parts by weight, 30 parts by weight, 50 parts by weight, and 75 parts by weight, respectively, based on NU-1000 and 100 parts by weight. Sonication was performed for 10 minutes. 200 mg of degassed NU-1000 was slowly added thereto, and then stirred under a nitrogen atmosphere for 24 hours. When the reaction was completed, the solvent of the reaction mixture was removed under reduced pressure and then heated at 120° C. for 12 hours to prepare NU-1000 functionalized with PEI, respectively. NU-1000 functionalized with manufactured PEI was converted into PEI(10)@NU-1000, PEI(30)@NU-1000, PEI(50)@NU-1000, PEI(70)@NU-1000 according to the PEI content. Named it.
얻어진 PEI(50)@NU-1000 및 제조예 1에서 제조된 NU-1000의 FTIR을 측정하여 도 1에 나타내었으며, 분말 X선 회절(PXRD)패턴을 도 2에 나타내었다.The FTIR of the obtained PEI(50)@NU-1000 and NU-1000 prepared in Preparation Example 1 were measured and shown in FIG. 1, and a powder X-ray diffraction (PXRD) pattern is shown in FIG.
도 1 및 도 2에서 보이는 바와 같이 PEI(50)@NU-1000 및 NU-1000이 제조되었음을 알 수 있다.1 and 2, it can be seen that PEI (50)@NU-1000 and NU-1000 were manufactured.
실시예 1에서 제조된 각각의 PEI(10)@NU-1000, PEI(30)@NU-1000, PEI(50)@NU-1000 및PEI(70)@NU-1000와 제조예 1에서 제조된 NU-1000의 특성을 하기 표 1에 나타내었으며, PEI(10)@NU-1000, PEI(30)@NU-1000, PEI(50)@NU-1000 및PEI(70)@NU-1000 질소 흡탈착 등온선을 측정하였다.Each of the PEI (10)@NU-1000, PEI (30)@NU-1000, PEI (50)@NU-1000 and PEI (70)@NU-1000 prepared in Example 1 and prepared in Preparation Example 1 The characteristics of NU-1000 are shown in Table 1 below, and PEI(10)@NU-1000, PEI(30)@NU-1000, PEI(50)@NU-1000 and PEI(70)@NU-1000 nitrogen absorption Desorption isotherms were measured.
NU-1000NU-1000 PEI(10)@NU-1000PEI(10)@NU-1000 PEI(30)@NU-1000PEI(30)@NU-1000 PEI(50)@NU-1000PEI(50)@NU-1000 PEI(70)@NU-1000PEI(70)@NU-1000
BET 표면적(m 2/g)BET surface area (m 2 /g) 22262226 19291929 12641264 604604 44
총 세공부피cm 3/gTotal pore volume cm 3 /g 1.481.48 1.291.29 0.890.89 0.420.42 0.030.03
표 1에서 보이는 바와 같이 PEI의 함량에 따라 BET 표면적 및 총 기공 부피가 변화하는 것을 알 수 있다.As shown in Table 1, it can be seen that the BET surface area and total pore volume change according to the content of PEI.
[실시예 2 및 비교예 1] 실시예 1에서 제조된 PEI로 기능화된 NU-1000 및 제조예 1에서 제조된 NU-1000을 이용한 이산화탄소 또는 질소 각각의 기상 흡착 실험 [Example 2 and Comparative Example 1] Gas-phase adsorption experiments of carbon dioxide or nitrogen using NU-1000 functionalized with PEI prepared in Example 1 and NU-1000 prepared in Preparation Example 1
실시예 1에서 제조된 PEI(10)@NU-1000, PEI(30)@NU-1000, PEI(50)@NU-1000, PEI(70)@NU-1000 및 제조예 1에서 제조된 NU-1000의 흡착량을 알아보기위해 단일화합물인 이산화탄소 또는 질소 각각의 흡착실험을 진행하였다.PEI (10)@NU-1000 prepared in Example 1, PEI (30)@NU-1000, PEI (50)@NU-1000, PEI (70)@NU-1000 and NU- prepared in Preparation Example 1 In order to find out the adsorption amount of 1000, each adsorption experiment of carbon dioxide or nitrogen as a single compound was conducted.
흡착실험 전에 PEI(10)@NU-1000, PEI(30)@NU-1000, PEI(50)@NU-1000, PEI(70)@NU-1000 및 NU-1000 각 100 mg을 진공하393 K에서 12시간동안 탈기시켰다. 흡착등온선은 특수 공기 순환 시스템(Protech Korea Instruments, Korea)이 구비된 Tristar 3020 system (Micromeritics Instruments, USA)으로 298 K에서 1 bar까지 측정하였다.PEI(10)@NU-1000, PEI(30)@NU-1000, PEI(50)@NU-1000, PEI(70)@NU-1000 and NU-1000 100 mg each under vacuum 393 K before adsorption experiment Degassed for 12 hours at. The adsorption isotherm was measured from 298 K to 1 bar with a Tristar 3020 system (Micromeritics Instruments, USA) equipped with a special air circulation system (Protech Korea Instruments, Korea).
그 결과 얻어진 흡착 등온선을 도 3에 나타내었다.The resulting adsorption isotherm is shown in FIG. 3.
도 3에서 보이는 바와 같이, 본 발명의 PEI(10)@NU-1000, PEI(30)@NU-1000, PEI(50)@NU-1000 및 PEI(70)@NU-1000가 질소와 대비하여 이산화탄소를 더 선택적으로 흡착함을 알 수 있다.As shown in Figure 3, PEI (10)@NU-1000, PEI (30)@NU-1000, PEI (50)@NU-1000 and PEI (70)@NU-1000 of the present invention are compared with nitrogen It can be seen that carbon dioxide is more selectively adsorbed.
또한 0.15bar에서 PEI(50)@NU-1000는 NU-1000와 대비하여 4배나 높은 이산화탄소 흡착량을 가짐을 알 수 있으며, 1bar에서는 PEI(30)@NU-1000 > PEI(50)@NU-1000 > PEI(10)@NU-1000 > NU-1000의 순서를 가짐을 알 수 있다.In addition, it can be seen that PEI(50)@NU-1000 has 4 times higher carbon dioxide adsorption than NU-1000 at 0.15 bar, and PEI(30)@NU-1000> PEI(50)@NU- at 1 bar It can be seen that the order is 1000> PEI(10)@NU-1000> NU-1000.
이는 PEI로 기능화함에 따라 금속-유기 구조체의 BET 표면적이 감소되며 이산화탄소와의 상호 작용은 우수한 것을 알 수 있다.It can be seen that functionalization with PEI reduces the BET surface area of the metal-organic structure, and the interaction with carbon dioxide is excellent.
또한 각 기능화된 금속-유기 구조체의 흡착량을BET 표면적으로 나누어 단일 표면적에 대한 흡착량을 계산하였으며, 이를 도 4에 나타내었다.In addition, the adsorption amount for a single surface area was calculated by dividing the adsorption amount of each functionalized metal-organic structure by the BET surface area, which is shown in FIG. 4.
도 4에 보이는 바와 같이 단일 표면적에 대한 흡착량도 본 발명의 흡착제가 우수함을 알 수 있으며, 이중 PEI(50)@NU-1000가 가장 우수한 흡착량을 보임을 알 수 있다.As shown in FIG. 4, it can be seen that the adsorbent of the present invention is excellent in the adsorption amount for a single surface area, and among them, it can be seen that PEI(50)@NU-1000 shows the best adsorption amount.
[실시예 3및 비교예 2] 실시예 1 및 제조예 1에서 제조된 에서 제조된 PEI(10)@NU-1000, PEI(30)@NU-1000, PEI(50)@NU-1000 및 NU-1000를 이용한 이산화탄소 및 질소의 혼합가스인 기상 흡착 실험[Example 3 and Comparative Example 2] PEI (10)@NU-1000, PEI (30)@NU-1000, PEI (50)@NU-1000 and NU prepared in Example 1 and Preparation Example 1 Gas-phase adsorption experiment, a mixed gas of carbon dioxide and nitrogen using -1000
이산화탄소 및 질소의 혼합가스에서 이산화탄소와 질소의 분리의 측정은 맞춤형 고정층(custom-built fixed bed)에서 수행하였다.The measurement of the separation of carbon dioxide and nitrogen in a mixture of carbon dioxide and nitrogen was performed in a custom-built fixed bed.
4개의 질량 유량 제어기(Bronkhorst, Germany)를 사용하여 가스 유속(0-100 ml / min)을 조정하였다. 유출 가스 흐름의 조성은 질량 분석기 (Max300-LG Extrel, USA)를 사용하여 온라인으로 분석하였다. 바인더 없이 500-1000 ㎛에서 펠렛으로 제조된 샘플(흡착제)을 진공하에 12 시간동안 393K에서 초기에 활성화시킨 다음 스테인레스스틸 컬럼(15 cm × 0.44 cm)에 충전시켰다. 나머지 컬럼은 직경 750㎛의 유리 비드로 채웠다. 각 측정 전에 패킹진행동안 흡착된 다양한 불순물을 제거하기 위해, 컬럼을 393K에서 3 시간동안 100mL/ 분의 헬륨유체를 사용하여 활성화시켰다. t = 0에서, 헬륨유체를 이산화탄소/질소 혼합가스(CO 2 : N 2 = 15 : 85(v/v), 총 유속 = 20 mL/min)로 전환시켰으며, 측정은 298 K와 100 kPa에서 측정되었다.The gas flow rate (0-100 ml/min) was adjusted using four mass flow controllers (Bronkhorst, Germany). The composition of the effluent gas stream was analyzed online using a mass spectrometer (Max300-LG Extrel, USA). A sample (adsorbent) made into pellets at 500-1000 μm without a binder was initially activated at 393 K for 12 hours under vacuum and then charged into a stainless steel column (15 cm x 0.44 cm). The remaining columns were filled with 750 μm diameter glass beads. In order to remove the various impurities adsorbed during the packing process before each measurement, the column was activated at 393 K for 3 hours with 100 mL/min of helium fluid. At t = 0, the helium fluid was converted to a carbon dioxide/nitrogen mixture gas (CO 2 : N 2 = 15: 85 (v/v), total flow rate = 20 mL/min), and the measurement was performed at 298 K and 100 kPa. Was measured.
측정된 결과를 도 5(a)에 나타내었다.The measured results are shown in Fig. 5(a).
도 5(a)에서 보이는 바와 같이 이산화탄소와 질소는 흡착에 있어 차이를 보이고 있으며, 질소가 먼저 약한 흡착 및 빠른 이동으로 인해 베드에 흡착되지만 시간이 지남에 따라 흡착된 질소의 대부분은 더 강하게 흡착되는 이산화탄소로 대체된다. 이 결과는 PEI(50)NU-1000 펠렛으로 채워진 충진베드가 동적 유동조건 하 이산화탄소/질소 혼합가스에서 이산화탄소를 효율적으로 분리할 수 있음을 알 수 있다.As shown in FIG. 5(a), carbon dioxide and nitrogen show a difference in adsorption, and nitrogen is first adsorbed to the bed due to weak adsorption and rapid movement, but most of the adsorbed nitrogen is more strongly adsorbed over time. Replaced by carbon dioxide. This result shows that the packed bed filled with PEI(50)NU-1000 pellets can efficiently separate carbon dioxide from the carbon dioxide/nitrogen mixture gas under dynamic flow conditions.
또한 연소 가스에는 상당량의 수증기가 포함되어 있어 습한 조건에서 이산화탄소/질소 분리를 위한 흡착제의 성능을 평가하는 것이 중요하다.In addition, combustion gases contain a significant amount of water vapor, so it is important to evaluate the performance of the adsorbent for carbon dioxide/nitrogen separation under humid conditions.
따라서 PEI(50)@NU-1000의 파과 곡선을 습도 조건에서 측정하였다. 그 결과 습윤 조건(습도 40%) 하에서도 도 5(a)와 유사한 파과 곡선이 얻어졌다. 얻어진 파과 곡선을 도 5(b)에 나타내었다.Therefore, the breakthrough curve of PEI(50)@NU-1000 was measured under humidity conditions. As a result, a breakthrough curve similar to that of Fig. 5(a) was obtained even under wet conditions (humidity 40%). The obtained breakthrough curve is shown in Fig. 5(b).
도 5(b)에서 보이는 바와 같이 PEI(50)@NU-1000은 습기가 많은 환경에서 이산화탄소/질소 분리 성능이 유지됨을 알 수 있으며, 이로서 본 발명의 이산화탄소 흡착제가 안정함을 알 수 있다.As shown in FIG. 5(b), it can be seen that the PEI(50)@NU-1000 maintains the carbon dioxide/nitrogen separation performance in a humid environment, and as a result, it can be seen that the carbon dioxide adsorbent of the present invention is stable.
[실시예 4] 본 발명의 제조예 1에서 제조된 PEI(50)@NU-1000의 재생 및 반복 기상 흡착 실험[Example 4] Regeneration and repeated gas phase adsorption experiment of PEI (50)@NU-1000 prepared in Preparation Example 1 of the present invention
실시예 3에서 이산화탄소의 흡착에 사용된 PEI(50)@NU-1000를 393K에서 3시간동안 탈기하여 흡착된 이산화탄소를 탈착시킨 후 이를 다시 이산화탄소/질소 혼합 가스(이산화탄소와 질소 부피비 15:85)에 접촉시켜 흡착/탈착을 반복하여 두차례 더 진행하였다.PEI (50)@NU-1000 used for adsorption of carbon dioxide in Example 3 was degassed at 393K for 3 hours to desorb the adsorbed carbon dioxide, and then it was added to a carbon dioxide/nitrogen mixture gas (carbon dioxide and nitrogen volume ratio 15:85). Adsorption/desorption was repeated by contacting and proceeding two more times.
그 결과를 도 6에 나타내었으며, 도 6에서 보이는 바와 같이 본 발명의 실시예의 흡착제인 PEI(50)@NU-1000는 흡착/탈착 과정을 3 회 반복하여도 흡착성능이 유지될 뿐만 아니라 높은 선택도로 이산화탄소를 흡착할 수 있음을 알 수 있다. The results are shown in FIG. 6, and as shown in FIG. 6, PEI(50)@NU-1000, the adsorbent of the embodiment of the present invention, maintains adsorption performance even if the adsorption/desorption process is repeated 3 times, and high selection It can be seen that the road can adsorb carbon dioxide.

Claims (16)

  1. 하나 이상의 히드록시기를 가지며, 아민계 고분자로 기능화된 금속-유기 구조체.A metal-organic structure that has at least one hydroxy group and is functionalized with an amine-based polymer.
  2. 제 1항에 있어서,The method of claim 1,
    상기 기능화된 금속-유기 구조체는 열린 금속 자리를 가지지 않는 것인 기능화된 금속-유기 구조체.The functionalized metal-organic structure, wherein the functionalized metal-organic structure does not have an open metal site.
  3. 제 1항에 있어서,The method of claim 1,
    상기 아민계 고분자는 아민기가 반복단위에 포함되며, 상기 아민계 고분자의 아민기는 1차, 2차, 3차 또는 4차인 기능화된 금속-유기 구조체.The amine-based polymer includes an amine group in the repeating unit, and the amine group of the amine-based polymer is primary, secondary, tertiary or quaternary functionalized metal-organic structure.
  4. 제 1항에 있어서,The method of claim 1,
    상기 아민계 고분자는 기능화되기 전의 금속-유기 구조체 100중량부에 대하여 10 내지 70중량부로 포함된 것인 기능화된 금속-유기 구조체.The amine-based polymer is a functionalized metal-organic structure that is contained in an amount of 10 to 70 parts by weight based on 100 parts by weight of the metal-organic structure before functionalization.
  5. 제 1항에 있어서,The method of claim 1,
    상기 기능화된 금속-유기 구조체는 하기 화학식 1로 표시되는 유기 리간드를 포함하는 것인 기능화된 금속-유기 구조체.The functionalized metal-organic structure is a functionalized metal-organic structure comprising an organic ligand represented by the following formula (1).
    [화학식 1][Formula 1]
    Y-A-(Y) n YA-(Y) n
    화학식 1에서, 각각의 Y는 동일하거나 상이할 수 있고, 각각의 Y는 독립적으로 -OH 또는 -C(O)OH이며, A는 치환 또는 비치환된 C6-C30아릴 또는 치환 또는 비치환된 C6-C30 헤테로아릴의 다가 라디칼이고, n은 1 내지 10의 정수이다.In Formula 1, each Y may be the same or different, each Y is independently -OH or -C(O)OH, and A is a substituted or unsubstituted C6-C30 aryl or a substituted or unsubstituted C6 -C30 is a polyvalent radical of heteroaryl, and n is an integer from 1 to 10.
  6. 제 1항에 있어서,The method of claim 1,
    상기 기능화된 금속-유기 구조체는 중심금속이 Zr, Co, Ni, Zn, Mg, Mn, Cu, V, Cr, Fe, Al, Yb, Sc, Y, Ca, Ag 또는Tb 인 기능화된 금속-유기 구조체.The functionalized metal-organic structure is a functionalized metal-organic whose central metal is Zr, Co, Ni, Zn, Mg, Mn, Cu, V, Cr, Fe, Al, Yb, Sc, Y, Ca, Ag or Tb. Structure.
  7. 제 1항에 있어서,The method of claim 1,
    상기 기능화된 금속-유기 구조체는 중심금속이 Zr인 NU-1000인 기능화된 금속-유기 구조체.The functionalized metal-organic structure is a functionalized metal-organic structure of NU-1000 whose central metal is Zr.
  8. 탈기된 금속-유기 구조체에 아민계 고분자를 함침시켜 기능화된 금속-유기 구조체를 제조하는 단계를 포함하는 기능화된 금속-유기 구조체의 제조방법.A method for producing a functionalized metal-organic structure comprising the step of preparing a functionalized metal-organic structure by impregnating the degassed metal-organic structure with an amine-based polymer.
  9. 제 8항에 있어서,The method of claim 8,
    상기 탈기된 금속-유기 구조체는 금속-유기 구조체를 80 내지 200℃에서 8시간 내지 24시간동안 가열하여 제조된 것인 기능화된 금속-유기 구조체의 제조방법The degassed metal-organic structure is manufactured by heating the metal-organic structure at 80 to 200°C for 8 to 24 hours.
  10. 제 8항에 있어서,The method of claim 8,
    상기 탈기된 금속-유기 구조체는 열린 금속 자리를 가지지 않는 것인 기능화된 금속-유기 구조체의 제조방법.The method of manufacturing a functionalized metal-organic structure, wherein the degassed metal-organic structure does not have an open metal site.
  11. 제 1항 내지 제 7항에서 선택되는 어느 한 항의 기능화된 금속-유기 구조체를 포함하는 이산화탄소 흡착제.A carbon dioxide adsorbent comprising the functionalized metal-organic structure of any one of claims 1 to 7.
  12. 제 11항의 이산화탄소 흡착제를 이산화탄소를 포함하는 혼합가스에 접촉시켜 이산화탄소를 흡착하는 단계를 포함하는 이산화탄소의 선택적 분리방법.A method for selectively separating carbon dioxide comprising the step of adsorbing carbon dioxide by contacting the carbon dioxide adsorbent of claim 11 with a mixed gas containing carbon dioxide.
  13. 제 12항에 있어서,The method of claim 12,
    이산화탄소 흡착제를 가열하여 활성화시키는 단계; 및Heating and activating the carbon dioxide adsorbent; And
    상기 활성화된 이산화탄소 흡착제를 이산화탄소를 포함하는 혼합가스에 접촉시켜 이산화탄소를 흡착하는 단계;를 포함하는 이산화탄소의 선택적 분리방법.Adsorbing carbon dioxide by bringing the activated carbon dioxide adsorbent into contact with a mixed gas containing carbon dioxide.
  14. 제 13항에 있어서,The method of claim 13,
    상기 분리방법은 흡착된 이산화탄소를 탈착하여 이산화탄소 흡착제를 재생시키는 단계를 더 포함하는 이산화탄소의 선택적 분리방법.The separation method further comprises desorbing the adsorbed carbon dioxide to regenerate the carbon dioxide adsorbent.
  15. 제 14항에 있어서,The method of claim 14,
    상기 재생은 80 내지 200℃에서 1 내지 5시간동안 수행되는 이산화탄소의 선택적 분리방법.The regeneration is a method for selectively separating carbon dioxide performed at 80 to 200°C for 1 to 5 hours.
  16. 제 12항에 있어서,The method of claim 12,
    상기 혼합가스는 이산화탄소 및 질소를 포함하는 것인 이산화탄소의 선택적 분리방법.The method for selectively separating carbon dioxide, wherein the mixed gas contains carbon dioxide and nitrogen.
PCT/KR2020/013122 2019-09-25 2020-09-25 Functionalized metal-organic framework, production method therefor and method for selectively separating carbon dioxide using same WO2021060929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190117903A KR102286472B1 (en) 2019-09-25 2019-09-25 A functionalized metal-organic framework, a method for producing the same, and a method for selectively separating carbon dioxide using the same
KR10-2019-0117903 2019-09-25

Publications (1)

Publication Number Publication Date
WO2021060929A1 true WO2021060929A1 (en) 2021-04-01

Family

ID=75165282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013122 WO2021060929A1 (en) 2019-09-25 2020-09-25 Functionalized metal-organic framework, production method therefor and method for selectively separating carbon dioxide using same

Country Status (2)

Country Link
KR (1) KR102286472B1 (en)
WO (1) WO2021060929A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505131A (en) * 2022-09-19 2022-12-23 西南交通大学 Amino-functionalized luminescent metal organic framework and preparation method and application thereof
CN115895152A (en) * 2022-09-19 2023-04-04 西南交通大学 pH membrane sensor, preparation method of pH membrane sensor and pH value detection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170015495A (en) * 2014-06-10 2017-02-08 캠브리지 엔터프라이즈 리미티드 Metal-organic frameworks

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102028613B1 (en) 2016-10-21 2019-10-04 고려대학교 산학협력단 Amine-functionalized MOF-based CO2 adsorbents

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170015495A (en) * 2014-06-10 2017-02-08 캠브리지 엔터프라이즈 리미티드 Metal-organic frameworks

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KANG JO HONG; YOON TAE-UNG; KIM SEO-YUL; KIM MIN-BUM; KIM HYUNG-JU; YANG HEE-CHUL; BAE YOUN-SANG: "Extraordinarily selective adsorption of CO2over N2in a polyethyleneimine-impregnated NU-1000 material", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 281, 1 June 2019 (2019-06-01), pages 84 - 91, XP085653500, ISSN: 1387-1811, DOI: 10.1016/j.micromeso.2019.03.001 *
LUZ IGNACIO, SOUKRI MUSTAPHA, LAIL MARTY: "Flying MOFs: polyamine-containing fluidized MOF/SiO 2 hybrid materials for CO 2 capture from post-combustion flue gas", CHEMICAL SCIENCE, vol. 9, no. 20, 11 April 2018 (2018-04-11), pages 4589 - 4599, XP055794790, ISSN: 2041-6520, DOI: 10.1039/C7SC05372J *
YICHAO LIN, QIUJU YAN, CHUNLONG KONG , LIANG CHEN: "Polyethyleneimine Incorporated Metal-Organic Frameworks Adsorbent for Highly Selective CO2 Capture", SCIENTIFIC REPORTS, vol. 3, 1859, 17 May 2013 (2013-05-17), pages 1 - 7, XP055419585, DOI: 10.1038/srep01859 *
ZHU JUNJIE, WU LINBO, BU ZHIYANG, JIE SUYUN, LI BO-GENG: "Polyethyleneimine-Modified UiO-66-NH 2 (Zr) Metal–Organic Frameworks: Preparation and Enhanced CO 2 Selective Adsorption", ACS OMEGA, vol. 4, no. 2, 13 February 2019 (2019-02-13), pages 3188 - 3197, XP055794780, ISSN: 2470-1343, DOI: 10.1021/acsomega.8b02319 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505131A (en) * 2022-09-19 2022-12-23 西南交通大学 Amino-functionalized luminescent metal organic framework and preparation method and application thereof
CN115895152A (en) * 2022-09-19 2023-04-04 西南交通大学 pH membrane sensor, preparation method of pH membrane sensor and pH value detection method
CN115505131B (en) * 2022-09-19 2023-07-11 西南交通大学 Amino-functionalized luminescent metal organic framework, and preparation method and application thereof
CN115895152B (en) * 2022-09-19 2023-12-26 西南交通大学 PH film sensor, preparation method of PH film sensor and detection method of pH value

Also Published As

Publication number Publication date
KR102286472B1 (en) 2021-08-06
KR20210036013A (en) 2021-04-02

Similar Documents

Publication Publication Date Title
Molavi et al. Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66 (Zr)
WO2021060929A1 (en) Functionalized metal-organic framework, production method therefor and method for selectively separating carbon dioxide using same
WO2018212594A1 (en) Porous composite having metal-organic clusters dispersed in mesopores of carrier and method for separating propane-propylene gas mixture using same
US6491740B1 (en) Metallo-organic polymers for gas separation and purification
Ben et al. Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF)
Shen et al. Polarity engineering of porous aromatic frameworks for specific water contaminant capture
Chen et al. Highly efficient mechanochemical synthesis of an indium based metal-organic framework with excellent water stability
KR102361888B1 (en) Polyamine-added metal-organic frameworks for carbon dioxide separation
WO2021040455A1 (en) Novel aluminum-based metal-organic framework having three dimensional porous structure and comprising at least two types of ligands, preparation method therefor, and use thereof
WO2013025046A2 (en) Complex comprising crystalline hybrid nanoporous material powder
Zhang et al. Advances of metal-organic frameworks in adsorption and separation applications
WO2019231297A1 (en) Novel metal-organic framework having porous structure formed from zirconium cluster secondary building unit and multi-binding linker
WO2010056092A9 (en) Organic framework
WO2012043942A1 (en) Granular carbon dioxide adsorbent in which amine-based material is impregnated, and preparation method thereof
US11446634B2 (en) Pcstructures including supported polyamines and methods of making the supported polyamines
WO2017026619A1 (en) Preparation of magnesium metal-organic framework (mg-mof) and amine functionalization thereof
CN113490537B (en) Metal organic framework for gas adsorption
KR101490202B1 (en) Microporous carbon dioxide adsorbents and method for manufacturing the same
CN114163594A (en) Preparation of hydrazone porous covalent organic framework material containing amino functional group and application of hydrazone porous covalent organic framework material in gaseous iodine adsorption
WO2015147441A1 (en) Porous organic/inorganic composite, and preparation method therefor
EP2117676B1 (en) Method for separating gases using a porous metal organic framework material
KR102075341B1 (en) Isoreticular series of metal-organic polyhedra and its manufacturing method
WO2020246746A2 (en) Carbon dioxide adsorbent based on hydrophobic silane-coated amine-functionalized mof/alumina composite
CN110681365A (en) Conjugated microporous polymers, method for the production thereof and use thereof
WO2017090825A1 (en) Diamine-zeolite composite and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869024

Country of ref document: EP

Kind code of ref document: A1