WO2021060914A1 - Anti-claudin-3 chimeric antigen receptor - Google Patents

Anti-claudin-3 chimeric antigen receptor Download PDF

Info

Publication number
WO2021060914A1
WO2021060914A1 PCT/KR2020/013072 KR2020013072W WO2021060914A1 WO 2021060914 A1 WO2021060914 A1 WO 2021060914A1 KR 2020013072 W KR2020013072 W KR 2020013072W WO 2021060914 A1 WO2021060914 A1 WO 2021060914A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
claudin
chimeric antigen
antigen receptor
seq
Prior art date
Application number
PCT/KR2020/013072
Other languages
French (fr)
Korean (ko)
Inventor
신영기
김성수
양호빈
이지혜
이. 그래햄티모시
아라우호파트리씨아 로사 데
Original Assignee
(재)록원바이오융합연구재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (재)록원바이오융합연구재단 filed Critical (재)록원바이오융합연구재단
Publication of WO2021060914A1 publication Critical patent/WO2021060914A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4613Natural-killer cells [NK or NK-T]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70596Molecules with a "CD"-designation not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0646Natural killers cells [NK], NKT cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to an anti-cladin-3 chimeric antigen receptor, and more particularly, to the use of immune cells comprising the chimeric antigen receptor for the prevention or treatment of cancer.
  • Claudin is a major essential membrane protein for tight junctions (TJ) between cells.
  • TJ tight junctions
  • the claudin family has a similar structure that penetrates the cell wall and is embedded in it, and most have a structure with two extracellular loops.
  • Claudin is known to play a role in controlling the flow of molecules between cells, but recent studies have reported that it is closely related to the occurrence of cancers such as colon cancer, gastric cancer, breast cancer, esophageal cancer, and ovarian cancer. About 90% of malignant tumors originate from the epithelium.
  • claudin which constitutes TJ between normal epithelial tissues, is difficult to detect on the surface of tissues or organs, but in the early stages of epithelial tumor development, control of the mitotic spindle is released, and cells proliferate by out-of-plane division. And claudin is exposed to the tissue surface.
  • the increase or decrease of the expression of claudin with high specificity in cancer tissues can be used as a predictive indicator for cancer production, and as claudin becomes a useful biomarker in the diagnosis and treatment of cancer, a therapeutic agent targeting claudin in various groups. Trying to develop.
  • a chimeric antigen receptor is a receptor engineered to contain one or more intracellular signaling domains and antigen binding domains for immune cell activation.
  • Chimeric antigen receptor-immunocytes introduced into immune cells such as cytotoxic T cells and natural killer cells (hereinafter referred to as NK cells) engineered to express chimeric antigen receptors on the surface are antigens to which the antigen-binding domain binds. It is targeted and activated by binding to the antigen, causing an immune response against cells expressing the antigen.
  • the antigen-binding domain of a chimeric antigen receptor is generally a monoclonal antibody or a functional fragment thereof (eg, single-chain variable fragment, scFv). That is, the chimeric antigen receptor is designed to recognize an antigen in a non-MHC-restricted manner, and thus is a receptor capable of targeting the antigen regardless of the type of HLA to which the chimeric antigen receptor immune cell is administered.
  • scFv single-chain variable fragment
  • the effect on the second-generation chimeric antigen receptor to which the intracellular signaling domain derived from the immune co-stimulatory molecule is added compared to the first-generation chimeric antigen receptor consisting of an antigen-binding domain, an intracellular signaling domain, and a transmembrane domain connecting them. was dramatically improved.
  • the third-generation chimeric antigen receptor is designed to contain two or more intracellular signaling domains derived from co-stimulatory molecules compared to the first-generation chimeric antigen receptor in order to improve the proliferative ability and persistence of modified T cells.
  • the present inventors completed the present invention by devising a chimeric antigen receptor and an immune cell therapeutic incorporating the chimeric antigen receptor having a specific high binding ability to claudin 3, which is specifically expressed in solid cancer cells compared to normal cells.
  • the technical problem to be achieved by the present invention is i) Claudin-3 binding domain; ii) transmembrane domain; And iii) an intracellular signaling domain.
  • Another technical problem to be achieved by the present invention is to provide a polynucleotide encoding the chimeric antigen receptor.
  • Another technical problem to be achieved by the present invention is to provide a recombinant vector comprising the polynucleotide.
  • Another technical problem to be achieved by the present invention is to provide an isolated host cell comprising the chimeric antigen receptor.
  • Another technical problem to be achieved by the present invention is to provide a pharmaceutical composition for preventing or treating cancer comprising the host cell as an active ingredient.
  • the present invention is i) Claudin-3 binding domain (Claudin-3 binding domain); ii) transmembrane domain; And iii) an intracellular signaling domain.
  • the binding domain may specifically bind to a second extracellular loop (ECL-2) region of claudin-3, and the second extracellular loop region of claudin-3 is represented by SEQ ID NO: 2 It may include an amino acid sequence.
  • the claudin-3 binding domain may be an antibody or a functional fragment thereof.
  • the antibody is selected from the group consisting of IgG, IgA, IgM, IgE and IgD, and the functional fragment is a diabody, Fab, F(ab'), F(ab')2, Fv, dsFv, and scFv. It may be selected from the group consisting of.
  • the claudin-3 binding domain is a heavy chain complementarity determining region 1 (VH-CDR1) comprising an amino acid sequence represented by SEQ ID NO: 3, a heavy chain complementarity determining region 2 (VH-CDR2) comprising an amino acid sequence represented by SEQ ID NO: 4 , And a heavy chain variable region comprising a heavy chain complementarity determining region 3 (VH-CDR3) comprising the amino acid sequence represented by SEQ ID NO: 5; And light chain complementarity determining region 1 (VL-CDR1) comprising the amino acid sequence represented by SEQ ID NO: 6, light chain complementarity determining region 2 (VL-CDR2) comprising the amino acid sequence represented by SEQ ID NO: 7, and SEQ ID NO: 8.
  • VH-CDR1 comprising an amino acid sequence represented by SEQ ID NO: 3
  • VH-CDR3 a heavy chain variable region comprising a heavy chain complementarity determining region 3 (VH-CDR3) comprising the amino acid sequence represented by SEQ ID NO:
  • the epitope that includes the light chain variable region including the light chain complementarity determining region 3 (VL-CDR3) containing the indicated amino acid sequence or recognized by the claudin-3 binding domain including the heavy chain variable region and the light chain variable region It could be a competitive combination.
  • the claudin-3 binding domain is a heavy chain complementarity determining region 1 (VH-CDR1) comprising an amino acid sequence represented by SEQ ID NO: 9, a heavy chain complementarity determining region 2 (VH-CDR2) comprising an amino acid sequence represented by SEQ ID NO: 10.
  • VH-CDR3 a heavy chain variable region comprising a heavy chain complementarity determining region 3 (VH-CDR3) comprising the amino acid sequence represented by SEQ ID NO: 11
  • light chain complementarity determining region 1 (VL-CDR1) comprising the amino acid sequence represented by SEQ ID NO: 12, light chain complementarity determining region 2 (VL-CDR2) comprising the amino acid sequence represented by SEQ ID NO: 13, and SEQ ID NO: 14.
  • the epitope that includes the light chain variable region including the light chain complementarity determining region 3 (VL-CDR3) containing the indicated amino acid sequence or recognized by the claudin-3 binding domain including the heavy chain variable region and the light chain variable region It could be a competitive combination.
  • the claudin-3 binding domain is a scFv comprising an amino acid of SEQ ID NO: 15 or 16 or an amino acid having at least 80%, 85%, 90%, 95%, 97%, 98% or 99% complementarity with the amino acid sequence. I can.
  • the intracellular signaling domain is CD3 zeta ( ⁇ , zeta), TCR zeta, FcR gamma, FcR beta, CD3 gamma, CD3 delta, CD3 epsilon, CDS, CD22, CD79a, CD79b, CD278, CD66d, DAP10, DAP12, Fc ⁇ RI And it may be characterized in that it is derived from a protein selected from the group consisting of a combination thereof.
  • the chimeric antigen receptor may be characterized in that it further comprises a costimulatory domain.
  • the costimulatory domains are MHC class I molecules, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, SLAM proteins (signaling lymphocytic activation molecules), NK cell activating receptors, BTLA, Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1 , LFA-1(CD11a/CD18, lymphocyte function-associated antigen-1), 4-1BB(CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR) , KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta
  • the transmembrane domain is TCR alpha chain, TCR beta chain, TCR zeta chain, CD28, CD3 epsilon, CD45, CD4, CD5, CDS, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, It may be characterized by being derived from a protein selected from the group consisting of CD154 and CD8.
  • the chimeric antigen receptor may further include a hinge.
  • the chimeric antigen receptor may further include a leader sequence at the N-terminus.
  • the chimeric antigen receptor may be characterized in that it comprises a sequence selected from the group consisting of SEQ ID NO: 24, SEQ ID NO: 25, and SEQ ID NO: 26.
  • Another aspect of the present invention provides a polynucleotide encoding the chimeric antigen receptor.
  • Another aspect of the present invention provides a recombinant vector comprising the polynucleotide.
  • Another aspect of the present invention provides an isolated host cell comprising the chimeric antigen receptor.
  • the host cell may be obtained from a subject to which the host cell is to be administered, or may be obtained from an allogeneic subject other than the subject to which the host cell is to be administered.
  • the host cells are mesenchymal stem cells (MSCs), dedifferentiation inducing stem cells (iPSCs), CD34 cells, hematopoietic endothelial cells, hematopoietic stem cells (HSCs), hematopoietic pluripotent progenitor cells, embryonic stem cells (ESCs), or immune cells. It can be.
  • the immune cells may be selected from the group consisting of T cell precursors, NK cell precursors, T cells, NK (Natural Killer) cells, NKT (Natural Killer T) cells, B cells, monocytes, macrophages, and dendritic cells. .
  • Another aspect of the present invention provides a pharmaceutical composition for preventing or treating cancer comprising the host cell as an active ingredient.
  • the cancer is selected from the group consisting of ovarian cancer, colon cancer, bladder cancer, lung cancer, liver cancer, gastric cancer, esophageal cancer, breast cancer, prostate cancer, pancreatic cancer, uterine cancer, cervical cancer, melanoma, colon cancer, kidney cancer, and metastatic pleural tumor.
  • ovarian cancer colon cancer, bladder cancer, lung cancer, liver cancer, gastric cancer, esophageal cancer, breast cancer, prostate cancer, pancreatic cancer, uterine cancer, cervical cancer, melanoma, colon cancer, kidney cancer, and metastatic pleural tumor.
  • the immune cells modified to express the chimeric antigen receptor of the present invention recognize and bind to the claudin 3 (particularly, the ECL-2 region) specifically exposed in cancer cells, especially solid cancer cells, compared to normal cells.
  • the chimeric antigen receptor of the present invention contains an antibody that specifically binds to ECL-2 and functional fragments thereof, and has higher selectivity and avidity than conventional antibodies targeting ECL-1. Therefore, the immune cells expressing the chimeric antigen receptor of the present invention may exhibit a particularly strong anticancer effect against solid cancer and at the same time exhibit low toxicity against normal cells not exposed to claudin-3.
  • scFvs selected using CHO-CLDN3 cell line biopanning and L-Claudin-33 cell line ELISA to be.
  • 2 is a flow cytometry result of binding to CHO-CLDN3 cells for scFvs selected using CHO-CLDN3 cell line biopanning and L-Claudin-3 cell line ELISA.
  • Figure 4a is the phylogenetic relationship of claudin families.
  • Figure 4b is the extracellular first loop (EL1, Extracellular 1st loop) and extracellular second loop (EL2, Extracellular 2nd) of CLDN4, CLDN5, CLDN6, CLDN8, CLDN9, CLDN17 and CLDN1 and mouse CLDN3 located phylogenetic close to CLDN3. loop) region shows sequence homology.
  • 5A and 5B show that HEK293 cells transformed to express each of the human claudin family proteins (CLDN1, CLDN3, CLDN4, CLDN5, CLDN6, CLDN8, CLDN9, CLDN17) were treated with the 4G3 antibody of the present invention and flow cytometric analysis. , It is a result of confirming the specific binding ability to CLDN3 expressing cells.
  • 5C is a result of confirming the binding ability to CLDN3 expressing cells by treating HEK293 cells transformed to express mouse CLDN3 with the 4G3 antibody of the present invention and performing flow cytometry.
  • OVCAR-3 and Caov-3 which are cell lines overexpressing claudin 3 as ovarian cancer, and TOV-112D, a cell line with very low claudin 3 expression, and hCLDN3/TOV-112D cells transformed to overexpress CLDN3. This is a result of comparatively confirming the binding specificity of the 4G3 antibody by treating the 4G3 antibody of the present invention and performing flow cytometry.
  • FIG. 7 shows the results of immunoprecipitation analysis using the 4G3 antibody of the present invention for OVCAR-3, Caov-3, TOV-112D and hCLDN3/TOV-112D cells (input: cell lysate).
  • Figure 8a shows the results of immunofluorescence staining for OVCAR-3, Caov-3, TOV-112D and hCLDN3/TOV-112D cells using a control antibody (control IgG).
  • 8B is a result of immunofluorescence staining for OVCAR-3, Caov-3, TOV-112D and hCLDN3/TOV-112D cells using 4G3 antibody.
  • 9A is a result of flow cytometry analysis of binding of an antibody of the present invention (4G3 IgG) to CHO-K1 cells (negative cell line, control).
  • 9B is a result of flow cytometry analysis of binding of the antibody (4G3 IgG) of the present invention to CHO-CLDN3 cells (positive cell line, control).
  • 9C is a result of measuring the binding affinity (dissociation constant (KD)) of the antibody (4G3 IgG) of the present invention in CLDN3 expressing cells (hCLDN3/HEK293 and hCLDN3/TOV-112D) by LigandTracer Green (ridgeview).
  • KD dissociation constant
  • Figure 10a is a fusion protein comprising a region of amino acids 1 to 104 of CLDN1 as an extracellular 1st loop (EL1) and a region of amino acids 104 to 220 of CLDN3 as an extracellula 2nd loop (EL2).
  • EL1 extracellular 1st loop
  • EL2 extracellula 2nd loop
  • hCLDN1-3/HEK293 cells expressing (hCLDN1-3/HEK293) and cells (hCLDN3-1/HEK293) expressing a fusion protein comprising a CLDN3 amino acid 1-103 region as EL1 and a CLDN1 amino acid 105-211 region as EL2
  • Figure 10b is a result of flow cytometric analysis of hCLDN1-3/HEK293 or hCLDN3-1/HEK293 cells treated with 4G3 antibody (top), and Western blotting results confirming whether the desired fusion protein was properly expressed in the cells. (lower).
  • FIG. 11A is a result of confirming the in vivo tumor targeting ability of the 4G3 antibody of the present invention in a tumor xenograft animal model
  • FIG. 11B is a result of quantifying fluorescence intensity after organ extraction in the animal model.
  • FIG. 12 is a schematic diagram of an embodiment of a vector containing a nucleic acid encoding a CAR having a 4G3 scFv as an extracellular domain.
  • FIG. 13 is an image confirming the expression of RFP635, a marker on the vector, in Jurkat cells into which vector construct 1 (FIG. 13A) or 2 (FIG. 13B) was introduced.
  • FIG. 14 is a result of confirming changes in expression of claudin-3 in Jurkat cells expressing CAR construct 1 and expression of CD69 (FIGS. 14a and b) and CD25 (FIGS. 14c and d) after co-culture with non-expressing cells by FACS. .
  • FIG. 15 is a result of confirming changes in expression of claudin-3 in Jurkat cells expressing CAR construct 2 and expression of CD69 (FIGS. 15a and b) and CD25 (FIGS. 15c and d) after co-culture with non-expressing cells by FACS. .
  • a chimeric antigen receptor is i) claudin-3 binding domain; ii) transmembrane domain; And iii) an intracellular signaling domain.
  • chimeric antigen receptor refers to an antigen-binding domain (eg, single-chain variable fragment) of an antibody linked to a domain for activation of immune cells (such as NK cells or T-cells).
  • scFv is an artificially produced hybrid protein or polypeptide.
  • Chimeric antigen receptors have the ability to redirect specificity and responsiveness to selected targets in a non-MHC-restricted manner using the antigen-binding properties of monoclonal antibodies.
  • Non-MHC-restricted antigen recognition provides immune cells expressing chimeric antigen receptors with the ability to recognize antigens independent of antigen processing of antigen presenting cells, and is a major part of tumor cell immune evasion. It makes it possible to exhibit an immune response regardless of the inhibition of the antigen presentation pathway, which is one of the mechanisms.
  • the chimeric antigen receptor of the present invention specifically binds to claudin-3, which is specifically exposed to cancer cells, especially solid cancer cells, compared to normal cells.
  • claudin-3 (also referred to as CLDN3)” as used herein is a protein belonging to the claudin family, and exists in a portion where tight junctions occur, and is unique to remove spaces between cells in tight junctions. Plays the role of. Tight junctions are rigid structures that connect adjacent cell membranes in tissues of organisms such as animals. Claudin-3 is a structural protein that regulates the intercellular permeability of small solutes such as ions. Claudin-3 is a protein having four transmembrane regions, and has a structure in which the N- and C-terminals are present inside the cell and two loops are exposed to the outside of the cell.
  • the loop of the amino acid region closer to the N-terminus than in the entire protein sequence of claudin-3 is referred to as the first extracellular loop (represented as ECL-1 or EL1 in the present invention), and the other loop is seen. In the present invention, it is referred to as an extracellular second loop (denoted as ECL-2 or EL2 in the present invention).
  • the claudin-3 may be human-derived, according to SEQ ID NO: 1, wherein the extracellular first loop is a region containing the 27 to 80 amino acids of the claudin-3 protein amino acid sequence according to SEQ ID NO: 1.
  • the extracellular second loop refers to a region containing amino acids 144 to 159 of the claudin-3 protein amino acid sequence (see SEQ ID NO: 2).
  • the claudin-3 binding domain may specifically bind to the extracellular second loop region of claudin-3, and the extracellular second loop region of claudin-3 includes the amino acid sequence represented by SEQ ID NO: 2. I can.
  • Claudin-3 (Claudin-3 or CLDN-3) is known to function as a toxin receptor for Clostridium perfringens enterotoxin (CPE). CPE binds to claudin-3 and claudin-4 and then forms a large complex that causes cell necrosis, creating voids in the cell membrane.
  • TJ tight junctions
  • claudin-3 protein has been reported to increase the degree of exposure in many cancerous tissues such as ovarian cancer, prostate cancer, breast cancer, uterine cancer, liver cancer, lung cancer, pancreatic cancer, gastric cancer, bladder cancer and colon cancer.
  • the Swedish Human Protein Atlas (HPA) website http://www.proteinatlas.org/) is available as a reference for the claudin-3 expression profile for disease.
  • the expression of claudin-3 and claudin-4 is particularly elevated in chemotherapy-resistant and/or recurrent uterine cancer, which is known to have the highest mortality rate among gynecological cancers in the United States.
  • anticancer drugs specifically targeting claudin-3 exposed in a tumor state is still showing limitations.
  • claudin-3 is known as claudin-3 in the art
  • a specific biological origin and sequence may not be particularly limited.
  • claudin-3 of the present invention is derived from a mouse (Mus musculus), and NCBI (Genbank) Accession No. Known as Q9Z0G9, etc., as derived from rats (Rattus norvegicus), NCBI (Genbank) Accession No. Known as Q63400, etc., as derived from chicken (Gallus gallus), NCBI (Genbank) Accession No. Known as Q98SR2, etc., as derived from dog (Canis lupus familiaris), NCBI (Genbank) Accession No.
  • the chimeric antigen receptor having a unique claudin-3 binding domain provided by the present invention has excellent ability to specifically target only claudin-3 without cross-reactivity with other claudin family against claudin-3 expressing cells, and has a very good avidity (affinity ), it is expected that the ability to kill cancer cells exposed to claudin-3 will be very good.
  • the claudin-3 binding domain of the present invention specifically attaches to the ECL-2 region of claudin-3, and accordingly, the claudin-3 forms an incomplete junction unlike normal tissues that are not exposed to the surface.
  • the antibody (or functional fragment thereof) of the present invention can be selectively accessible to the tumor tissue exposed to claudin-3, and this ability is particularly significant in that it can significantly reduce the toxicity problem of anticancer drugs against normal cells. Is big.
  • the claudin-3 binding domain of the chimeric antigen receptor of the present invention may be an antibody or a functional fragment thereof.
  • antibody is also called immunoglobulin (Ig), and is a generic term for proteins that selectively act on antigens and are involved in immunity in vivo.
  • Whole antibodies found in nature are generally composed of two pairs of light chain (LC) and heavy chain (HC), which are polypeptides consisting of several domains, or two pairs of these HC/LCs.
  • the basic unit is the structure of There are 5 types of heavy chains that make up mammalian antibodies, and there are 5 types, denoted by the Greek letters ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , and different types of antibodies, such as IgA, IgD, IgE, IgG, and IgM, respectively, depending on the type of heavy chain. Will constitute.
  • the heavy and light chains of an antibody are structurally divided into a variable region and a constant region according to the variability of the amino acid sequence.
  • the constant region of the heavy chain is composed of 3 or 4 heavy chain constant regions such as CH1, CH2 and CH3 (IgA, IgD and IgG antibodies) and CH4 (IgE and IgM antibodies) depending on the type of antibody, and the light chain is one constant region. It is composed of phosphorus CL.
  • the variable regions of the heavy and light chains each consist of one domain of the heavy chain variable region (VH) or the light chain variable region (VL).
  • the light chain and the heavy chain are connected by one covalent disulfide bond as each variable region and the constant region are aligned side by side, and the heavy chain of the two molecules bonded to the light chain is connected through two covalent disulfide bonds.
  • the whole antibody specifically binds to the antigen through the variable regions of the heavy and light chains, and the whole antibody consists of two pairs of heavy and light chains (HC/LC), so that the entire antibody of one molecule has two variable regions. It has a bivalent single specificity that binds to the same two antigens.
  • variable region including the region where the antibody binds to the antigen is subdivided into a framework region (FR) with low sequence variability and a complementary determining region (CDR), a hypervariable region with high sequence variability. do.
  • FR framework region
  • CDR complementary determining region
  • three CDRs and four FRs are arranged in the order of FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4 in the direction from the N-terminus to the C-terminus, respectively.
  • the CDR with the highest sequence variability directly binds to the antigen, and is most important for antigen specificity of the antibody.
  • the type of antibody according to the present invention is not limited as long as it has a combination of the aforementioned CDRs.
  • IgG immunoglobulin G
  • IgA immunoglobulin A
  • IgM immunoglobulin M
  • IgE immunoglobulin A
  • IgG immunoglobulin G
  • IgG as its subtype includes, but is not limited to, IgG1, IgG2, IgG3, IgG4, and the like.
  • it may be a monoclonal antibody derived from one B cell, or a polyclonal antibody derived from multiple B cells, but a group of antibodies having substantially the same amino acid sequence of the heavy and light chains of the antibody. It is preferably a phosphorus monoclonal antibody.
  • the functional fragment of an antibody refers to a fragment that maintains the antigen-specific binding ability of the entire antibody, and specifically, Fab, F(ab'), F(ab')2, Fv, scFv, diabody ) Or dsFv.
  • Fab fragment antigen-binding
  • F(ab')2 is a fragment produced by hydrolyzing an antibody with pepsin. Two Fabs are linked by a disulfide bond at a heavy chain hinge.
  • F(ab') is a monomeric antibody fragment in which a heavy chain hinge is added to a Fab separated by reducing the disulfide bond of the F(ab')2 fragment.
  • Fv (variable fragment) is an antibody fragment consisting only of the variable regions of each of the heavy and light chains.
  • a single chain variable fragment (scFv) is a recombinant antibody fragment in which a heavy chain variable region (VH) and a light chain variable region (VL) are connected by a flexible peptide linker.
  • a diabody refers to a fragment in which the VH and VL of an scFv are connected by a very short linker, so that they cannot be bonded to each other, and form a dimer by bonding with the VL and VH of other scFvs of the same type, respectively.
  • dsFv refers to a polypeptide obtained by substituting a cysteine residue for one of the amino acid residues of VH and VL through an S-S bond between the cysteine residues. Amino acid residues substituted with cysteine residues can be selected based on prediction of the conformational structure of an antibody according to the method described by Reiter et al. (Protein Engineering, 7, 697 (1994)).
  • the claudin-3 binding domain of the present invention comprises a heavy chain complementarity determining region 1 (VH-CDR1) comprising an amino acid sequence represented by SEQ ID NO: 3, and a heavy chain complementarity determining region 2 (VH-) comprising an amino acid sequence represented by SEQ ID NO: 4 CDR2), and a heavy chain variable region comprising a heavy chain complementarity determining region 3 (VH-CDR3) comprising an amino acid sequence represented by SEQ ID NO: 5; And light chain complementarity determining region 1 (VL-CDR1) comprising the amino acid sequence represented by SEQ ID NO: 6, light chain complementarity determining region 2 (VL-CDR2) comprising the amino acid sequence represented by SEQ ID NO: 7, and SEQ ID NO: 8.
  • the epitope that includes the light chain variable region including the light chain complementarity determining region 3 (VL-CDR3) containing the indicated amino acid sequence or recognized by the claudin-3 binding domain including the heavy chain variable region and the light chain variable region It could be a competitive combination.
  • the claudin-3 binding domain of the present invention is a heavy chain complementarity determining region 1 (VH-CDR1) comprising an amino acid sequence represented by SEQ ID NO: 9, and a heavy chain complementarity determining region 2 comprising an amino acid sequence represented by SEQ ID NO: 10 ( VH-CDR2), and a heavy chain variable region comprising a heavy chain complementarity determining region 3 (VH-CDR3) comprising an amino acid sequence represented by SEQ ID NO: 11;
  • light chain complementarity determining region 1 (VL-CDR1) comprising the amino acid sequence represented by SEQ ID NO: 12, light chain complementarity determining region 2 (VL-CDR2) comprising the amino acid sequence represented by SEQ ID NO: 13, and SEQ ID NO: 14.
  • the epitope that includes the light chain variable region including the light chain complementarity determining region 3 (VL-CDR3) containing the indicated amino acid sequence or recognized by the claudin-3 binding domain including the heavy chain variable region and the light chain variable region It could be a competitive combination.
  • the heavy chain variable portion (VH) and the corresponding light chain variable portion (VL) may be linked through a peptide linker, preferably through a peptide linker comprising an amino acid sequence (GGGGS)3.
  • the claudin-3 binding domain is a scFv comprising an amino acid of SEQ ID NO: 15 or 16 or an amino acid having at least 80%, 85%, 90%, 95%, 97%, 98% or 99% complementarity with the amino acid sequence. I can.
  • the chimeric antigen receptor of the present invention comprises a transmembrane domain.
  • the transmembrane domain can be derived from natural or synthetic sources known in the art.
  • the transmembrane domain is, for example, the transmembrane domain is TCR alpha chain, TCR beta chain, TCR zeta chain, CD28, CD3 epsilon, CD45, CD4, CD5, CDS, CD9, CD16, CD22, CD33, CD37, CD64, CD80 , CD86, CD134, CD137, CD154, and CD8 may be a transmembrane domain derived from a protein selected from the group consisting of, but is not limited thereto.
  • the transmembrane domain may be derived from NKG2D or CD8, and may include a sequence selected from SEQ ID NO: 19, SEQ ID NO: 20, and SEQ ID NO: 21.
  • the chimeric antigen receptor of the present invention may include an intracellular signaling domain.
  • intracellular signaling domain transmits information for inducing cell activation through an associated signaling pathway by generating a second messenger or functioning as an effector in response to the secondary messenger. It refers to a functional part of a protein that acts by doing so.
  • the “cell activation” means that the activity of the corresponding cell is increased, and the type of such activation is not particularly limited, but may be, for example, promoting an immune response of a cell. In particular, when the cell is an immune cell, the activation may be understood as including both promoting an immune response of the cell itself and increasing the number of immune cells.
  • the intracellular signal transduction domain is specially provided as long as it can transmit a signal capable of activating cells (especially immune cells) when the antigen is bound to an antigen-binding site (antibody of the present invention or a functional fragment thereof) located outside the cell. It is not limited to its kind.
  • the chimeric antigen receptor of the present invention may include a signaling domain within a CD3 ⁇ cell.
  • the chimeric antigen receptor of the present invention may include the sequence of SEQ ID NO: 17.
  • the chimeric antigen receptor of the present invention may further include a costimulatory domain together with an intracellular signaling domain, depending on the cell type.
  • the co-stimulatory domain is included in the chimeric antigen receptor of the present invention, and in addition to the primary signal by the intracellular signaling domain, the co-stimulatory domain plays a role of transmitting a maximum activation signal to the corresponding cell (especially, an immune cell), It refers to the intracellular portion of a chimeric antigen receptor, which contains the intracellular domain of a costimulatory molecule. That is, some immune cells, such as T lymphocytes and NK cells, require two signals for maximum activation, namely a primary activation signal and a costimulatory signal, and chimeric antigen receptors also require antigen binding to the extracellular domain. It may optionally include a co-stimulation domain to cause transmission of both a primary activation signal and a co-stimulation signal.
  • the co-stimulatory molecule is a cell surface molecule, which means a molecule necessary to bring about a sufficient response of an immune cell to an antigen, and its kind is not particularly limited as long as it is known in the art.
  • MHC class I molecules MHC class I molecules
  • TNF receptor proteins TNF receptor proteins
  • immunoglobulin-like proteins cytokine receptors
  • integrins SLAM proteins (signaling lymphocytic activation molecules)
  • NK cell activation Receptors NK cell activating receptors
  • BTLA Toll ligand receptor
  • the co-stimulatory domain may be an intracellular portion of a molecule selected from the group consisting of such co-stimulatory molecules and combinations thereof (one or two or more).
  • the chimeric antigen receptor of the present invention may include SLAMF4 (CD244, 2B4) as a costimulatory domain.
  • the costimulatory domain of the present invention may include the amino acid sequence of SEQ ID NO: 18.
  • the costimulatory domain may be connected to the N-terminus or C-terminus of the signaling domain, and may also be included between a plurality of signal transduction domains.
  • the chimeric antigen receptor of the present invention may further comprise such a hinge.
  • the hinge is a linking site in which the antigen-binding domain is introduced between the antigen-binding domain and the transmembrane domain so that the target antigen can be more flexibly recognized at a certain distance from the cell membrane of the cell into which the chimeric antigen receptor has been introduced.
  • the hinge is selected from the group consisting of CD8, CD28, CD3 ⁇ , CD40, 4-1BB, OX40, CD84, CD166, CD8a, CD8b, ICOS, ICAM-1, CTLA-4, CD27, CD40/My88, NKGD2, and combinations thereof. It may include those derived from proteins.
  • the hinge may be a hinge derived from CD8a, and may include SEQ ID NO: 22.
  • the chimeric antigen receptor of the present invention may further include such a leader sequence at the N-terminus.
  • the leader sequence is also called a signal peptide, and exists at the N-terminus of the protein to allow the protein to move to the secretory pathway. In general, it is at the N-terminus to allow the chimeric antigen receptor to be expressed on the cell membrane.
  • the leader sequence consists of CD8, Megf10, FcR ⁇ , Bai1, MerTK, TIM4, Stabilin-1, Stabilin-2, RAGE, CD300f, Integrin subunit ⁇ v, Integrin subunit ⁇ 5, CD36, LRP1, SCARF1, C1Qa and Axl, and combinations thereof. It may include those selected from the group.
  • the leader sequence may be derived from CD8, and may include SEQ ID NO: 23.
  • Each domain constituting the chimeric antigen receptor may be directly connected, and optionally, may be connected by a short oligopeptide or polypeptide linker.
  • the linker is not particularly limited to its length or type, as long as it is a linker capable of inducing cell activation through an intracellular domain when the antigen is bound to an antibody located outside the cell, such as (G4S)3 linker, that is, GGGGSGGGGSGGGGS, etc. Can be used.
  • the chimeric antigen receptor of the present invention may include a sequence selected from the group consisting of SEQ ID NO: 24, SEQ ID NO: 25, and SEQ ID NO: 26.
  • the chimeric antigen receptor of the present invention may be present by being expressed in NK cells or T cells.
  • the NK cells or T cells expressing the chimeric antigen receptor bind to the claudin-3 region present on the cancer cells to induce activation of the NK cells or T cells, and the activated NK cells or T cells release cytotoxic factors. And induces cell lysis and/or cell death of cancer cells.
  • the present invention provides a polynucleotide encoding the above-described chimeric antigen receptor.
  • the polynucleotide is not particularly limited in its base combination as long as it encodes the chimeric antigen receptor protein of the present invention, and may be prepared by a polynucleotide synthesis technique known in the art.
  • the description of the chimeric antigen receptor is as described above.
  • the polynucleotide of the present invention may include the nucleotide sequence of SEQ ID NO: 34 or SEQ ID NO: 35 encoding scFv that specifically binds to claudin-3.
  • the polynucleotide of the present invention may include the nucleotide sequence of SEQ ID NO: 36 encoding the hinge derived from CD8.
  • the polynucleotide of the present invention may include one of the nucleotide sequences of SEQ ID NO: 37 (from NKG2D), SEQ ID NO: 38 (modification from NKG2D) and SEQ ID NO: 39 (from CD8) encoding the transmembrane domain.
  • polynucleotide of the present invention may include the nucleotide sequence of SEQ ID NO: 40 encoding the intracellular signaling domain derived from CD3 ⁇ .
  • polynucleotide of the present invention may include the nucleotide sequence of SEQ ID NO: 41 encoding the costimulatory domain derived from SLAMF4 (CD244, 2B4).
  • polynucleotide of the present invention may include the nucleotide sequence of SEQ ID NO: 42 encoding the CD8 leader.
  • the present invention provides a recombinant vector comprising the polynucleotide described above.
  • the description of the polynucleotide is as described above.
  • the term “vector” refers to a carrier that delivers the polynucleotide of the present invention to a host cell in order to transform the host cell to express the chimeric antigen receptor of the present invention.
  • the vector of the present invention may be selected from any commercially available expression vector, and “recombinant” means that such vector has been prepared to have the desired configuration.
  • the vector may be DNA, RNA, or plasmid, and may be a viral vector such as a lentiviral vector, adenovirus vector or retroviral vector.
  • the recombinant vector of the present invention may include a promoter for expressing a chimeric antigen receptor in a state operably linked to a polynucleotide encoding the chimeric antigen receptor.
  • the recombinant vector of the present invention may further include a construct capable of expressing differentiation factors and growth factors necessary for differentiation and growth of transformed cells in addition to the chimeric antigen receptor.
  • the vector of the present invention can be delivered to the safe harbor of the host cell genome.
  • the vector of the present invention may include attB, attP, attL or attR, and thus may be introduced into an insertion site recognized in the host cell gene by bacteriophage integrase. .
  • the present invention provides an isolated host cell comprising the chimeric antigen receptor.
  • the terms used herein are as described above.
  • the host cell can then be administered to a subject in need thereof.
  • the host cell of the present invention contains a chimeric antigen receptor that specifically binds to claudin-3, when administered to a patient with a neoplasm that exposes claudin-3, in particular, a malignant tumor These neoplasms can be selectively removed.
  • the host cell may be obtained from a subject to which the host cell is to be administered, that is, an autologous cell, or may be obtained from an allogeneic subject other than the subject to which the host cell is to be administered.
  • the host cell herein may be an immune cell or a less differentiated cell.
  • the genome-engineered differentiated immune cells can be obtained through the process of differentiating the transformed less differentiated cells after the genome manipulation of the less differentiated cells.
  • the host cells include mesenchymal stem cells (MSCs), dedifferentiation inducing stem cells (iPSCs), CD34 cells, hematopoietic endothelial cells, hematopoietic stem cells (HSCs), hematopoietic pluripotent progenitor cells, embryonic stem cells (ESCs), Or it may be an immune cell.
  • the immune cells may be selected from the group consisting of T cell precursors, NK cell precursors, T cells, NK (Natural Killer) cells, NKT (Natural Killer T) cells, B cells, monocytes, macrophages and dendritic cells.
  • NK cells refers to mononuclear cells arising from lymphoid progenitor cells in the bone marrow, and the morphological and biological properties typically include the expression of cluster determinant (CD) CD16, CD56, and/or CD57; Absence of alpha/beta or gamma/delta TCR complexes on the cell surface; The ability to bind and kill target cells that fail to express the “self” major histocompatibility complex (MHC)/human leukocyte antigen (HLA) protein; And the ability to kill tumor cells or other diseased cells that express a ligand for the activating NK receptor.
  • CD cluster determinant
  • CD56 gamma/delta TCR complexes on the cell surface
  • MHC major histocompatibility complex
  • HLA human leukocyte antigen
  • NK cells are characterized by their ability to bind and kill several types of tumor cell lines without the need for prior immunization or activation. NK cells can also release soluble proteins and cytokines that exert a modulating effect on the immune system; Multiple rounds of cell division can produce daughter cells with similar biological properties to the parent cell. Upon activation by interferons and/or cytokines, NK cells mediate the lysis of tumor cells and cells infected by intracellular pathogens by mechanisms that require direct, physical contact between NK cells and target cells.
  • Lysis of target cells involves the release of cytotoxic granules from NK cells to the surface of the bound target, and effector proteins such as Perforin and Granzyme B that pass through the target plasma membrane and induce apoptosis or programmed cell death. .
  • NK cells normal, healthy cells are protected from lysis by NK cells.
  • NK cell activity is regulated by a complex mechanism involving both stimulating and inhibitory signals.
  • T cell refers to a lymphocyte derived from the thymus gland and refers to a lymphocyte that plays a major role in the immunity of cells.
  • the T cells include CD4+ T cells (helper T cells, TH cells), CD8+ T cells (cytotoxic T cells, CTL), memory T cells, regulatory T cells (Treg cells) natural killer T cells, and the like.
  • the T cell into which the antigen receptor is introduced may preferably be a CD8 + T cell, but is not limited thereto.
  • antigen-specific CD8 + T cells are evaluated as the most effective immune cells for immunotherapy of cancer.
  • a complicated process and a long period are required to isolate antigen-specific CD8 + T cells for use in cancer immunotherapy.
  • a chimeric antigen receptor (CAR)-modified T cell was designed as one of the methods for mass-producing antigen-specific CD8 + T cells in a short time (Porter DL et al ., N Engl J Med. 2011;365:725-33.).
  • the chimeric antigen receptor is a form in which the scFv of an antibody that recognizes a specific antigen is combined with a signaling domain that causes T cell activation, preferably a co-stimulatory molecule and a signaling domain of CD3 ⁇ .
  • a signaling domain that causes T cell activation, preferably a co-stimulatory molecule and a signaling domain of CD3 ⁇ .
  • the antibody portion constituting the chimeric antigen receptor recognizes a specific antigen, it induces strong T cell proliferation signaling to selectively proliferate CD8 + T cells. These proliferated cells contribute to the immunotherapy of cancer.
  • the present invention provides a pharmaceutical composition for preventing or treating cancer comprising the host cell as an active ingredient.
  • the terms used herein are as described above.
  • the host cell expressing the chimeric antigen receptor may be administered to an individual as an immune cell by itself or differentiated to exhibit anticancer activity.
  • immune cells modified to express the chimeric antigen receptor of the present invention specifically recognize and bind to claudin-3 (particularly, ECL-2 region) exposed to cancer cells compared to normal cells, and thus immunity It can be seen that it can have a cancer cell therapeutic effect according to cell activation.
  • many technologies for treating hematologic cancer-oriented chimeric antigen receptor-expressing immune cells have been made, and considering that the existing chimeric antigen receptor technologies have a high possibility of targeting normal cells, the present invention is specific to only solid cancer cells compared to normal cells.
  • the present invention can provide a pharmaceutical composition for preventing or treating cancer comprising the chimeric antigen receptor-expressing cells of the present invention as an active ingredient.
  • Solid cancer to be treated by the pharmaceutical composition of the present invention is ovarian cancer, colon cancer, bladder cancer, lung cancer, liver cancer, gastric cancer, esophageal cancer, breast cancer, prostate cancer, pancreatic cancer, uterine cancer, cervical cancer, melanoma, colon cancer, kidney cancer and metastatic pleura It may be selected from the group consisting of tumors, but is not limited thereto.
  • compositions of the present invention may comprise host cells expressing the aforementioned chimeric antigen receptor in combination with one or more pharmaceutically or physiologically acceptable carriers, diluents or excipients.
  • the composition may include buffering agents such as neutral buffered saline, phosphate buffered saline, and the like; Carbohydrates such as glucose, mannose, sucrose or dextran, mannitol; protein; Polypeptides or amino acids such as glycine; Antioxidants; Chelating agents such as EDTA or glutathione; Adjuvant (eg, aluminum hydroxide); And preservatives.
  • the pharmaceutical composition of the present invention is formulated for intravenous administration in one aspect.
  • the pharmaceutical composition of the present invention can be administered in a manner suitable for the disease to be treated (or prevented).
  • the amount and frequency of administration will be determined by factors such as the patient's condition, the type and severity of the patient's disease, but the appropriate dosage will be determined by clinical trials.
  • the pharmaceutical composition is for example endotoxin, mycoplasma, replication competent lentivirus (RCL), p24, VSV-G nucleic acid, HIV gag, residual anti-CD3/anti-CD28 coated beads, mouse antibody , Contaminants selected from the group consisting of aggregated human serum, bovine serum albumin, bovine serum, culture medium components, vector packaging cells or plasmid components, bacteria and fungi, for example, free of detectable levels of contaminants.
  • RCL replication competent lentivirus
  • VSV-G nucleic acid HIV gag
  • residual anti-CD3/anti-CD28 coated beads mouse antibody
  • Contaminants selected from the group consisting of aggregated human serum, bovine serum albumin, bovine serum, culture medium components, vector packaging cells or plasmid components, bacteria and fungi, for example, free of detectable levels of contaminants.
  • The'individual' may be an animal, preferably an animal including a mammal, particularly a human, and may be a cell, tissue, organ, etc. derived from an animal.
  • the individual may be a patient in need of the effect.
  • The'treatment' of the present invention refers generically to improving the symptoms of cancer or cancer, which may include curing, substantially preventing, or improving the condition, and one originating from cancer. It includes, but is not limited to, alleviating, curing, or preventing symptoms or most of the symptoms.
  • Example 1 ScFv screening specifically binding to claudin-3 (CLDN3)
  • claudin-3 was provided in the form of an expression cell line and claudin-3 lipoparticles.
  • CHO-K1 cell line was used to make a cell line expressing claudin-3 (NCBI reference number_O15551 (see SEQ ID NO: 1)).
  • claudin-3 expression vector the claudin-3 gene was inserted into pcDNA3.1 (invitrogen) using restriction enzymes HindIII and BamH1.
  • the prepared claudin-3 expression vector was transfected and treated with 400 ⁇ g/ml geneticin (g418) to select transformants.
  • the lipoparticles exposing the claudin-3 to the surface (hereinafter referred to as claudin-3 lipoparticles) were ordered and used by Integralmolecular (Cat. No. RR-0733A).
  • a phage library display was used.
  • the library was a synthesized human scFv library, and for specific information on the library, see A Novel Human scFv Library with Non-Combinatorial Synthetic CDR Diversity (Bai X. et al ., PLoS ONE., 10(10):e0141045 (2015) ).
  • the scFv expressed in the scFv library was tagged with an HA tag so that it could be detected by an anti-HA FITC antibody (Genscript, A01621). Biopanning was performed as follows using the scFv library.
  • CHO-CLDN3 claudin-3 expressing CHO-K1 cell line
  • the scFv library stock was blocked with 3% FBS/PBS at room temperature.
  • CHO-K1 cells (negative cell line) are mixed with the blocking library stock, and depletion is performed at room temperature for 1 hour. After the depletion is over, the supernatant obtained by centrifugation is mixed with the antigen CHO-CLDN3 cells and reacted at room temperature for 1 hour.
  • the cell pellet obtained by centrifugation was washed with 3% FBS/PBS, and then reacted with 100 mM TEA (triethylamine) for 5 minutes at room temperature so that only specifically bound scFv-phages could be eluted, and neutralized with pH 8.5 Tris. After the reaction, it was prepared in the form of an scFv-antigen conjugate.
  • the prepared scFv-antigen conjugate (conugate) was added to E. coli TG1 cells for infection, and then incubated overnight at 37°C in LB/ampicillin/glucose agar medium. The E.
  • coli TG1 cells were transferred to SB/Ampicillin medium and cultured until the OD600 value reached 0.5, and then 1 ⁇ 10 11 to 1 ⁇ 10 12 helper phage was added, followed by 37 for 1 hour. After incubation at °C, kanamycin was added and cultured again overnight. After the overnight culture was centrifuged, the supernatant was reacted with the PEG solution at 4°C, and then centrifuged again to separate the pellet. After dissolving the pellet in PBS, the supernatant obtained by centrifugation was obtained as a scFv library solution. This process was repeated 4 times to obtain a scFv candidate group that specifically binds to the claudin-3 antigen.
  • the scFv library stock was mixed with lipoparticle null (lipoparticle not containing claudin-3), and blocking and depletion were simultaneously performed for 1 hour at room temperature with 4% skim milk.
  • 1 ml of PBS containing claudin-3 lipoparticles was added to an immunotube and reacted at 4° C. for 16 hours to coat the inner surface of the tube.
  • the antigen solution was decanted and washed once to remove uncoated antigen.
  • the antigen (Cludin-3 lipoparticle) coated on the immune tube was blocked with 4% skim milk for 1 hour at room temperature.
  • skim milk was removed, mixed with scFv library stock, and reacted at room temperature for 1 hour. After washing with PBS, reacted with 100 mM TEA for 5 minutes at room temperature so that only specifically bound scFv-phages could be eluted, and neutralized with pH 8.5 Tris to prepare a scFv-antigen conjugate form.
  • the prepared scFv-antigen conjugate (conugate) was added to E. coli TG1 cells for infection, and then incubated overnight at 37°C in LB/ampicillin/glucose agar medium. The E.
  • coli TG1 cells were transferred to SB/Ampicillin medium and cultured until the OD600 value reached 0.5, and then 1 ⁇ 10 11 to 1 ⁇ 10 12 helper phage was added, followed by 37 for 1 hour. After incubation at °C, kanamycin was added and cultured again overnight. After the overnight culture was centrifuged, the supernatant was reacted with the PEG solution at 4°C, and then centrifuged again to separate the pellet. The pellet was dissolved in PBS, and then centrifuged to obtain the supernatant as an scFv library solution. This process was repeated 4 times to obtain a scFv candidate group that specifically binds to the antigen of claudin-3.
  • ELISA analysis was performed on the claudin-3 expressing cell line.
  • the claudin-3 expressing cell line (hereinafter referred to as L-claudin-3 cells) was transfected with the claudin-3 expression vector prepared in Example 1-1 to L cells, and then 600 ⁇ g/ml of geneticin ( geneticin, g418) was used to select transformants.
  • Each of the panned library stocks in each step in Example 1-2 (screening results using a claudin-3 expressing cell line or claudin-3 lipoparticles separately) was used as SB/ampicillin/glucose agar.
  • each single colony was inoculated in 200 ⁇ l of SB/Ampicillin medium, incubated at 37°C for 3 hours, and then mixed so that the IPTG concentration became 1 mM, and then again at 30°C. Incubate overnight.
  • the culture medium was centrifuged to separate only the cells, and then the cells were lysed using a TES buffer to obtain scFv.
  • the obtained scFv was treated on a plate in which L-cladin-3 cells were dispensed at 1 ⁇ 10 5 each, reacted at room temperature for 1 hour, and then a secondary antibody (anti-HA HRP, santacruz, Cat. No. sc-7392) was added.
  • the top 23 excellent scFvs were primarily selected (1C4, 1F11, 2A12, 2B4, 2E5, 2E12, 2F8, 3A2, 3H8, 4A2, 4A3, 4B7, 4B10, 4D7, 3D2, 3D7, 3F11, 4A8, 4A9, 4A12, 4E4, 4G3, 4G7).
  • scFv candidates selected through the ELISA binding to CHO-CLDN3 cells was confirmed using flow cytometry.
  • native CHO-K1 cells were used. Cells being subcultured were separated into single cell units using trypsin and prepared in 3% FBS/PBS.
  • the selected scFv candidates were inoculated into 5 ml of SB/Ampicillin medium, incubated at 37°C for 3 hours, mixed so that the IPTG concentration was 1 mM, and cultured again at 30°C overnight. When the culture was completed, the culture medium was centrifuged to separate only the cells, and then the cells were lysed using a TES buffer to obtain scFv.
  • CHO-K1 cells negative cell line, control
  • CHO-CLDN3 cells experimental group
  • the anti-HA taq FITC antibody was diluted 1:100 (diluted with 100 ⁇ l of 3% FBS/PBS), treated with 100 ul, and reacted at room temperature for 1 hour. After completion of the reaction, it was washed and analyzed with BD FACS Calibur.
  • Antibody Heavy chain variable region CDRH1 CDRH2 CDRH3 2B4 GYYWS (SEQ ID NO: 9) TIHPGDSDTRYNPSLQ G (SEQ ID NO: 10) RQGYSLFDI (SEQ ID NO: 11) 4G3 SYAMS (SEQ ID NO: 3) IINPSGASTSHAQRFQG (SEQ ID NO: 4) RYGRYGSFDI (SEQ ID NO: Number 5)
  • Example 2 Preparation of antibody IgG containing 4G3 scFv 2-1. 4G3 IgG cloning
  • the previously selected 4G3 scFv was converted to the form of IgG, which is a more commonly used antibody.
  • An expression vector capable of expressing the entire IgG form was constructed based on the CDR regions of the scFv.
  • a light chain variable region and a heavy chain variable region of scFv were obtained through PCR, respectively, and the primers shown in Table 2 below were used for 4G3.
  • the light chain variable region sequence is cloned into pOptiVec (Invitrogen), an expression vector into which a light chain constant region sequence is inserted, and the heavy chain variable region sequence is inserted into a heavy chain constant region.
  • Each was cloned into the expression vector pcDNA 3.3 (Invitrogen).
  • the second screening proceed with puromycin 30 ug/ml, MTX 500 nM or puromycin 50 ug/ml, MTX 1000 nM, and when the final cell viability criterion is reached, the second screening is terminated and the expression level through SFB (Simple Fed Batch). The higher group was selected.
  • SFB Simple Fed Batch
  • Each antibody-producing cell line prepared in 2-2 was subjected to CO2 8%, 37°C, 100-120 rpm conditions in CD FortiCHOTM medium, and glucose was 4 g/L, 4 g/L, respectively on the 3rd, 5th, and 7th days. It was cultured for a total of 14 days while adding g/L and 6 g/L each. After completion of the culture, the culture solution was centrifuged with an ultra-centrifuge 6000g, and the supernatant was filtered using a 0.2 um filter.
  • Protein A resin (Mabselect SuRe, 11-0026-01 AD, GE Healthcare Life Sciences) was used for purification, and an equilibrium buffer (20 mM Sodium Phosphate, 150 mM NaCl, pH 7.2), washing buffer (35 mM Sodium Phosphate, 500 mM NaCl, pH 7.2), elution buffer (0.1 M Sodium Citrate, pH 3.6) was used.
  • an equilibrium buffer (20 mM Sodium Phosphate, 150 mM NaCl, pH 7.2
  • washing buffer 35 mM Sodium Phosphate, 500 mM NaCl, pH 7.2
  • elution buffer 0.1 M Sodium Citrate, pH 3.6
  • IgG antibody proteins produced under reducing and non-reducing conditions, respectively, were confirmed by a conventional SDS-PAGE technique, and it was confirmed that both the light and heavy chains of each antibody were well expressed at the expected molecular weight. 3 shows the results of SDS-PAGE confirmation for 4G3 IgG antibody.
  • a construct of chimeric antigen receptor (CAR) including scFv in a puC vector (CAR construct 1: SEQ ID NO: 24; CAR construct 2: SEQ ID NO: 25) is synthesized and ordered to IDT, and an expression vector (vector construct in sequence Tree 1: SEQ ID NO: 27; Vector construct 2: SEQ ID NO: 28; all can be schematically illustrated as in Figure 12) was completed.
  • RFP635 and luciferase gene were included after CAR gene using translational insulators T2A and P2A so that expression could be confirmed.
  • the completed vector was transformed into each of Jurkat cells and NK cells, which are cell lines derived from T cell leukemia, to confirm expression and activity. Transformation was performed by electroporation using Thermo Fisher's Neon transfection system kit. Transformation conditions for each cell line provided by Thermo were optimized and used (1500 V, 10 ms/3 pulses), followed by stabilization at 37° C. and 5% CO 2 for one day.
  • CLDN1 O95832
  • a typical claudin was used as a comparative group for this experiment.
  • anti-CLDN1 (FAB4618G, R&D systems), anti-CLDN3 (FAB4620F, R&D systems), anti-CLDN4 (FAB4219F, R&D systems), anti-CLDN5 (ab131259, Abcam), anti-CLDN6 (ABIN1720916, Antibodies-online), anti-CLDN8 (MAB5275, R&D systems), anti-CLDN9 (ab187116, Abcam), anti-CLDN17 (MAB4619, R&D systems) antibodies.
  • Example 2 For the hCLDNs/HEK293 cell lines and mCLDN3/HEK293s for various claudins prepared in Experimental Example 1-1, cross reactivity of the antibodies prepared in Example 2-3 was confirmed.
  • Native HEK293 cells were used as a negative control. First, the cells were separated into single cells using a cell dissociation buffer (Gibco, 13151-014), and then 2.5 ⁇ 10 5 were seeded, and 5 ug/ml of each antibody was added thereto and iced for 1 hour. It was reacted above.
  • a cell dissociation buffer Gibco, 13151-014
  • 5A and 5B are the results of the flow cytometry, comparatively showing the binding specificity of the 4G3 antibody to claudin-3. There was no peak shift in any experimental group using CLDN4, CLDN5, CLDN6, CLDN8, CLDN9 and CLDN17, which were phylogenetic close to CLDN3.
  • the experimental results using mouse CLDN3 are shown in Fig. 5c, and it was confirmed that the antibody of the present invention also binds to mouse CLDN3, which has high homology with mouse human CLDN3.
  • each antibody of the present invention did not bind to other claudin families other than human CLDN3 and mouse CLDN3. That is, it was confirmed that each antibody of the present invention specifically binds only CLDN3 without cross-reaction with other claudin types having high homology.
  • Example 2-3 The binding power of the antibodies prepared in Example 2-3 to cancer cells was confirmed.
  • the prepared hCLDN3/TOV-112D cells were used.
  • the production of hCLDN3/TOV-112D cells was performed in the same manner as described in Experimental Example 1-1.
  • Antibody treatment and flow cytometry for the cells were performed in the same manner as in Experimental Example 1-2.
  • FIG. 6 comparatively shows the binding specificity of the 4G3 antibody to the cancer cells.
  • control IgG As an antibody negative control (control IgG), a commercially available whole human antibody (009-000-003, Jackson Immunoresearch) was used.
  • Each cell of OVCAR-3 (ATCC), Caov-3 (ATCC), TOV-112D (ATCC), hCLDN3/TOV-112D was released with PBS added with protease inhibitor (11697498001, Roche), and then 2 with an ultrasonic grinder. After performing the second on/5 second off 10 times, the supernatant was taken by centrifugation at 15000 rpm for 15 minutes at 4°C.
  • the antibody of the present invention specifically targets claudin-3 in the cancer cells.
  • Each of the cells of OVCAR-3 (ATCC), Caov-3 (ATCC), TOV-112D (ATCC), and hCLDN3/TOV-112D was added to a 4 well cell culture slide by 2 ⁇ 10 5 cells and cultured for 24 hours.
  • a control antibody ChoromePure Human IgG, 009-000-003, Jackson ImmonoResearch
  • the antibody of the present invention was added to the culture medium at a concentration of 5 ug/ul, followed by stirring at 4° C. for 1 hour to react. After washing with PBS, 4% cells were fixed with formaldehyde for 15 minutes at room temperature.
  • 4G3 IgG antibodies prepared according to Example 2-3 their binding ability to claudin-3 was confirmed.
  • Flow cytometry was performed using CHO-CLDN3 cells, and specific experiments were performed in the same manner as in Experimental Examples 1-3.
  • native CHO-K1 cells were used, and commercially available anti-CLDN3 (FAB4620F, R&D systems) antibody was used as a control group.
  • LignadTrcer Green is a cell-based measurement device that can measure in real time whether an antibody conjugated with FITC binds to an antigen on antigen-expressing cells. FITC was conjugated to the developed antibody using the FITC Antibody Labeling Kit (53027, Pierce).
  • Each gene was transduced into HEK293 (KCLB), and then a resistant cell line was selected with G418 to produce a cell line continuously expressing the fusion protein of hCLDN1-3 or hCLDN3-1. These were designated as hCLDN1-3/HEK293 and hCLDN3- 1/HEK293, respectively (see FIG. 10A). Whether the desired fusion protein was expressed in each cell line was confirmed by a conventional Western blotting method using anti-CLDN3 (341700, Invitrogen), anti-CLDN1 (sc-137121, Santa Cruz Biotechnology, Inc.) (FIG. 10B) See the bottom of). Treatment of the 4G3 antibody and flow cytometry for hCLDN1-3/HEK293 or hCLDN3-1/HEK293 cells were performed in the same manner as in Experimental Example 1-2.
  • the tumor xenograft animal model is a human ovarian cancer cell OVCAR-3 (ATCC) and human breast cancer cell T47D (ATCC) 5 ⁇ 10 6 were suspended in 100 ul PBS, and this was the lower part of a 6-week-old Athymic nude female mouse. It was produced by subcutaneous injection on the side. In the case of T47D, 17 ⁇ -estradiol pellet (SE-121, Alternative Research of America) was planted subcutaneously.
  • a control antibody ChoPure Human IgG, 009-000-003, Jackson ImmonoResearch
  • a CF750 fluorophore to the 4G3 antibody were used in VivoBriteTM Rapid Antibody Labeling Kit (92161, Biotium). It was joined by using.
  • the fluorescence/antibody molar ratio (degree of labeling, DOL) was measured to be 2.29 and 2.82, respectively, according to the recommended expected ratio according to the formula provided in the kit.
  • a control antibody or 4G3 antibody labeled with CF750 fluorescence was intravenously injected at a dose of 100 ug/100 ul.
  • Fluorescent signals emitted from mice were detected using a small animal in vivo imaging system (In Vivo Imaging System, IVIS SpectrumCT, PerkinElmer) at 6 hours, 24 hours, 48 hours, 72 hours, and 96 hours, and the last time point Liver, kidney, lung, spleen, small intestine, and tumor were excised and the fluorescence signal of antibody distribution by tissue was confirmed. Fluorescence signals were analyzed using Living Imaging Software supplied by the manufacturer.
  • the 4G3 antibody of the present invention specifically targets the transplanted tumor over time compared to the control antibody (control IgG), and is accumulated in the tumor compared to other tissues.
  • control IgG control antibody
  • Experimental Example 4-1 the effect of CAR was tested using cells in which the transduction and the expression activity of the construct in the vector were confirmed.
  • a cell activation experiment was performed with a cell line expressing claudin-3 and a cell line not expressing, and hCLDN3/TOV-112D and TOV-112D (co-culture negative control) used in Experimental Example 1-3 were used as the cell lines, respectively. I did.

Abstract

The present invention relates to a chimeric antigen receptor (CAR) comprising a claudin-3 binding domain. Immune cells modified to express the chimeric antigen receptor of the present invention recognize and bind claudin 3 (particularly ECL-2 domain) exposed specifically on cancer cells relative to normal cells, especially solid cancer cells. In particular, the chimeric antigen receptor of the present invention comprises an antibody binding specifically to ECL-2 and a functional fragment thereof and has higher selectivity and binding affinity than conventional antibodies targeting ECL-1. Therefore, the immune cells having the chimeric antigen receptor of the present invention expressed thereon effectuate strong anticancer effects particularly on solid cancers while exhibiting low toxicity.

Description

항-클라우딘-3 키메라 항원 수용체 Anti-Claudin-3 Chimeric Antigen Receptor
본 발명은 항-클라우딘-3 키메라 항원 수용체에 관한 것으로, 더욱 상세하게는 상기 키메라 항원 수용체를 포함하는 면역세포의 암의 예방 또는 치료 용도에 관한 것이다.The present invention relates to an anti-cladin-3 chimeric antigen receptor, and more particularly, to the use of immune cells comprising the chimeric antigen receptor for the prevention or treatment of cancer.
클라우딘(claudin, CLDN)은 세포 간 밀착연접(tight junction, TJ)의 주요 필수 막단백질로서 포유류의 경우 27개의 패밀리가 있으며, 사람의 경우 포유류에서 클라우딘 13을 제외한 클라우딘 패밀리를 가지고 있다. 클라우딘 패밀리는 세포벽을 투과하여 박혀 있는 형태의 유사한 구조를 가지며, 대부분 두 개의 세포 외 루프(extracellular loop)를 가지고 있는 구조를 가지고 있다. 클라우딘은 세포 간 분자들의 흐름을 제어하는 역할을 하는 것으로 알려져 있으나, 최근 다양한 연구들을 통하여 결장암, 위암, 유방암, 식도암 및 난소암 등 암의 발생과도 밀접한 관련성이 있다는 연구가 보고되고 있다. 악성 종양의 약 90%는 상피(epithelium)에서 유래한다. 정상 상피 세포에서, 세포는 상피 평면(epithelial plane)과 평행하게 위치된다. 따라서 정상적인 상피 조직간의 TJ를 구성하는 클라우딘은 조직 또는 기관의 표면에서 검출되기 힘들지만, 상피 종양 발생의 초기 단계에서 유사 분열 방추체(mitotic spindle)의 조절이 해제되고 세포가 평면을 벗어난 분열에 의해 증식되어 클라우딘이 조직 표면으로 노출된다.Claudin (CLDN) is a major essential membrane protein for tight junctions (TJ) between cells. In the case of mammals, there are 27 families, and in the case of humans, the claudin family excluding claudin 13 in mammals. The claudin family has a similar structure that penetrates the cell wall and is embedded in it, and most have a structure with two extracellular loops. Claudin is known to play a role in controlling the flow of molecules between cells, but recent studies have reported that it is closely related to the occurrence of cancers such as colon cancer, gastric cancer, breast cancer, esophageal cancer, and ovarian cancer. About 90% of malignant tumors originate from the epithelium. In normal epithelial cells, the cells are located parallel to the epithelial plane. Therefore, claudin, which constitutes TJ between normal epithelial tissues, is difficult to detect on the surface of tissues or organs, but in the early stages of epithelial tumor development, control of the mitotic spindle is released, and cells proliferate by out-of-plane division. And claudin is exposed to the tissue surface.
특히, 뚜렷한 증상이 없고 수술과 화학적 요법 이외에는 적절한 치료 방법이 없어 예후가 나쁜 것으로 알려져 있는 난소암에서 클라우딘 패밀리 중 클라우딘-3와 클라우딘-4가 과발현된다는 것이 보고되었다(Claudin Proteins in Human Cancer: Promising New Targets for Diagnosis and Therapy, P.J. Morin, Cancer Res. 65: 9604-9006 (2005)). 또한 84명의 난소 장액성 선암(ovarian serous adenocarcinoma) 환자의 생존율과 클라우딘 3의 발현율을 Kaplan-Meier 기법의 생존커브로 확인한 결과, 클라우딘 3의 발현율이 환자의 수명 단축과 밀접한 관계가 있다는 연구가 보고되었다(Expression profile of tight junction protein claudin 3 and claudin 4 in ovarian serous adenocarcinoma with prognostic, Choi et al., Histol. Histopathol. 22:1185~1195(2005)). 이와 같이 암 조직에서 특이성이 높은 클라우딘 발현의 증감여부는 암 생성에 대한 예측지시인자로 사용될 수 있으며, 또한 암의 진단과 치료에 있어 클라우딘이 유용한 바이오마커가 되어 다양한 그룹에서 클라우딘을 타겟으로 하는 치료제 개발을 시도 중에 있다.In particular, it has been reported that claudin-3 and claudin-4 are overexpressed among the claudin family in ovarian cancer, which is known to have a poor prognosis because there is no obvious symptom and there is no appropriate treatment method other than surgery and chemotherapy (Claudin Proteins in Human Cancer: Promising New Targets for Diagnosis and Therapy, PJ Morin, Cancer Res. 65: 9604-9006 (2005)). In addition, as a result of confirming the survival rate of 84 patients with ovarian serous adenocarcinoma and the expression rate of claudin 3 by the survival curve of the Kaplan-Meier technique, a study was reported that the expression rate of claudin 3 was closely related to the shortening of the patient's lifespan. (Expression profile of tight junction protein claudin 3 and claudin 4 in ovarian serous adenocarcinoma with prognostic, Choi et al ., Histol. Histopathol. 22:1185~1195 (2005)). As described above, the increase or decrease of the expression of claudin with high specificity in cancer tissues can be used as a predictive indicator for cancer production, and as claudin becomes a useful biomarker in the diagnosis and treatment of cancer, a therapeutic agent targeting claudin in various groups. Trying to develop.
한편, 키메라 항원 수용체(chimeric antigen receptor, CAR)는 면역 세포 활성화를 위한 하나 이상의 세포 내 신호전달 도메인 및 항원 결합 도메인이 포함되도록 조작된 수용체이다. 키메라 항원 수용체를 표면에 발현하도록 조작된 세포독성 T세포, 자연살해 세포 (natural killer cell, 이하 NK 세포) 등의 면역세포에 도입한 키메라 항원 수용체-면역세포는 상기 항원 결합 도메인이 결합하는 항원으로 표적화되며 해당 항원과의 결합에 의해 활성화되어 상기 항원을 발현하는 세포에 대한 면역반응을 일으키게 된다.Meanwhile, a chimeric antigen receptor (CAR) is a receptor engineered to contain one or more intracellular signaling domains and antigen binding domains for immune cell activation. Chimeric antigen receptor-immunocytes introduced into immune cells such as cytotoxic T cells and natural killer cells (hereinafter referred to as NK cells) engineered to express chimeric antigen receptors on the surface are antigens to which the antigen-binding domain binds. It is targeted and activated by binding to the antigen, causing an immune response against cells expressing the antigen.
키메라 항원 수용체의 항원 결합 도메인은 일반적으로 단일클론 항체(monoclonal antibody) 또는 그 기능적 단편(예컨대, 단일쇄 가변단편, single-chain variable fragment, scFv)을 이용한다. 즉, 이처럼 키메라 항원 수용체는 비-MHC-제한적 방식으로 항원을 인식하도록 설계되어 키메라 항원 수용체 면역세포 투여 대상의 HLA 유형에 관계없이 항원을 표적화할 수 있는 수용체이다. The antigen-binding domain of a chimeric antigen receptor is generally a monoclonal antibody or a functional fragment thereof (eg, single-chain variable fragment, scFv). That is, the chimeric antigen receptor is designed to recognize an antigen in a non-MHC-restricted manner, and thus is a receptor capable of targeting the antigen regardless of the type of HLA to which the chimeric antigen receptor immune cell is administered.
지난 10년간 다양한 세포 표면 종양 항원을 표적으로 하는 다수의 키메라 항원 수용체가 보고되어 왔다. 항원 결합 도메인 및 세포 내 신호전달 도메인과, 이들을 연결하는 막통과 도메인으로 구성된 제1세대 키메라 항원 수용체에 비해 면역 공자극 분자 유래의 세포 내 신호전달 도메인이 추가된 제2세대 키메라 항원 수용체에서 그 효과가 극적으로 개선되었다. 제3세대 키메라 항원 수용체는 변형된 T 세포의 증식 능력과 지속성 향상을 위해 제1세대 키메라 항원 수용체에 비해 공자극 분자 유래의 세포 내 신호전달 도메인을 둘 이상 포함하도록 고안되었다.Over the past decade, a number of chimeric antigen receptors have been reported that target a variety of cell surface tumor antigens. The effect on the second-generation chimeric antigen receptor to which the intracellular signaling domain derived from the immune co-stimulatory molecule is added compared to the first-generation chimeric antigen receptor consisting of an antigen-binding domain, an intracellular signaling domain, and a transmembrane domain connecting them. Was dramatically improved. The third-generation chimeric antigen receptor is designed to contain two or more intracellular signaling domains derived from co-stimulatory molecules compared to the first-generation chimeric antigen receptor in order to improve the proliferative ability and persistence of modified T cells.
그러나 현재까지 상용화된 키메라 항원 수용체가 도입된 면역세포를 이용한 치료는 혈액암에 국한되어 있다. 이는, 고형암에서는 종양세포 유래 케모카인(chemokine) 및 면역세포 상 케모카인 수용체가 매칭되지 않는 경우가 존재하는데 이 경우 종양 위치로의 유도 및 침투가 어려우며, 침투하더라도 암세포에 의한 면역세포 작용에 억제적인 인자의 분비 및 세포 생존에 불리한 환경(예컨대 양분 결핍, 산화 스트레스, 저산소) 등 저해적인 종양미세환경(tumor microenvironment)에서 투여된 면역세포가 의도된 효과를 내기 어렵기 때문이다.However, treatment using immune cells into which chimeric antigen receptors have been commercialized so far is limited to hematologic cancer. In solid cancer, there are cases where the tumor cell-derived chemokine and the chemokine receptor on the immune cell do not match. In this case, it is difficult to induce and penetrate into the tumor location. This is because immune cells administered in an inhibitory tumor microenvironment such as an environment adverse to secretion and cell survival (eg, nutrient deficiency, oxidative stress, hypoxia) are difficult to produce the intended effect.
이러한 상황에서 본 발명자들은 정상세포 대비 고형암세포에서 특이적으로 발현되는 클라우딘 3에 대하여 특이적으로 높은 결합력을 갖는 키메라 항원 수용체 및 키메라 항원 수용체를 도입한 면역세포 치료제를 고안하여 본 발명을 완성하였다.In this situation, the present inventors completed the present invention by devising a chimeric antigen receptor and an immune cell therapeutic incorporating the chimeric antigen receptor having a specific high binding ability to claudin 3, which is specifically expressed in solid cancer cells compared to normal cells.
본 발명이 이루고자 하는 기술적 과제는 i) 클라우딘-3 결합 도메인(Claudin-3 binding domain); ii) 막통과 도메인(transmembrane domain); 및 iii) 세포 내 신호전달 도메인(intracellular signaling domain)을 포함하는 것을 특징으로 하는 키메라 항원 수용체를 제공하는 것이다.The technical problem to be achieved by the present invention is i) Claudin-3 binding domain; ii) transmembrane domain; And iii) an intracellular signaling domain.
본 발명이 이루고자 하는 다른 기술적 과제는 상기 키메라 항원 수용체를 암호화하는 폴리뉴클레오타이드를 제공하는 것이다.Another technical problem to be achieved by the present invention is to provide a polynucleotide encoding the chimeric antigen receptor.
본 발명이 이루고자 하는 또 다른 기술적 과제는 상기 폴리뉴클레오타이드를 포함하는 재조합 벡터를 제공하는 것이다.Another technical problem to be achieved by the present invention is to provide a recombinant vector comprising the polynucleotide.
본 발명이 이루고자 하는 또 다른 기술적 과제는 상기 키메라 항원 수용체를 포함하는 단리된 숙주 세포를 제공하는 것이다.Another technical problem to be achieved by the present invention is to provide an isolated host cell comprising the chimeric antigen receptor.
본 발명이 이루고자 하는 또 다른 기술적 과제는 상기 숙주 세포를 유효성분으로 포함하는 암의 예방 또는 치료용 약제학적 조성물을 제공하는 것이다.Another technical problem to be achieved by the present invention is to provide a pharmaceutical composition for preventing or treating cancer comprising the host cell as an active ingredient.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the technical problems mentioned above, and other technical problems that are not mentioned can be clearly understood by those of ordinary skill in the technical field to which the present invention belongs from the following description. There will be.
상기 기술적 과제를 달성하기 위한 하나의 양태로서, 본 발명은 i) 클라우딘-3 결합 도메인(Claudin-3 binding domain); ii) 막통과 도메인(transmembrane domain); 및 iii) 세포 내 신호전달 도메인(intracellular signaling domain)을 포함하는 것을 특징으로 하는 키메라 항원 수용체를 제공한다.As one aspect for achieving the above technical problem, the present invention is i) Claudin-3 binding domain (Claudin-3 binding domain); ii) transmembrane domain; And iii) an intracellular signaling domain.
여기서, 상기 결합 도메인은 클라우딘-3의 세포 외 두번째 루프(second extracellular loop, ECL-2) 영역에 특이적으로 결합하는 것일 수 있으며, 상기 클라우딘-3의 세포 외 두번째 루프 영역은 서열번호 2 로 표시되는 아미노산 서열을 포함하는 것일 수 있다.Here, the binding domain may specifically bind to a second extracellular loop (ECL-2) region of claudin-3, and the second extracellular loop region of claudin-3 is represented by SEQ ID NO: 2 It may include an amino acid sequence.
상기 클라우딘-3 결합 도메인은 항체 또는 이의 기능적 단편인 것일 수 있다. 상기 항체는 IgG, IgA, IgM, IgE 및 IgD로 이루어진 군에서 선택되며, 상기 기능적 단편은 디아바디(diabody), Fab, F(ab'), F(ab')2, Fv, dsFv 및 scFv로 이루어진 군에서 선택되는 것일 수 있다.The claudin-3 binding domain may be an antibody or a functional fragment thereof. The antibody is selected from the group consisting of IgG, IgA, IgM, IgE and IgD, and the functional fragment is a diabody, Fab, F(ab'), F(ab')2, Fv, dsFv, and scFv. It may be selected from the group consisting of.
상기 클라우딘-3 결합 도메인은 서열번호 3으로 표시되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 1(VH-CDR1), 서열번호 4로 표시되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 2(VH-CDR2), 및 서열번호 5로 표시되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 3(VH-CDR3)을 포함하는 중쇄 가변영역; 및 서열번호 6으로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 1(VL-CDR1), 서열번호 7로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 2(VL-CDR2), 및 서열번호 8로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 3(VL-CDR3)을 포함하는 경쇄 가변영역을 포함하는 것이거나 상기 중쇄 가변영역 및 상기 경쇄 가변영역을 포함하는 클라우딘-3 결합 도메인이 인식하는 에피토프에 경쟁적으로 결합하는 것일 수 있다. The claudin-3 binding domain is a heavy chain complementarity determining region 1 (VH-CDR1) comprising an amino acid sequence represented by SEQ ID NO: 3, a heavy chain complementarity determining region 2 (VH-CDR2) comprising an amino acid sequence represented by SEQ ID NO: 4 , And a heavy chain variable region comprising a heavy chain complementarity determining region 3 (VH-CDR3) comprising the amino acid sequence represented by SEQ ID NO: 5; And light chain complementarity determining region 1 (VL-CDR1) comprising the amino acid sequence represented by SEQ ID NO: 6, light chain complementarity determining region 2 (VL-CDR2) comprising the amino acid sequence represented by SEQ ID NO: 7, and SEQ ID NO: 8. The epitope that includes the light chain variable region including the light chain complementarity determining region 3 (VL-CDR3) containing the indicated amino acid sequence or recognized by the claudin-3 binding domain including the heavy chain variable region and the light chain variable region It could be a competitive combination.
상기 클라우딘-3 결합 도메인은 서열번호 9으로 표시되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 1(VH-CDR1), 서열번호 10으로 표시되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 2(VH-CDR2), 및 서열번호 11로 표시 되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 3(VH-CDR3)을 포함하는 중쇄 가변영역; 및 서열번호 12로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 1(VL-CDR1), 서열번호 13으로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 2(VL-CDR2), 및 서열번호 14로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 3(VL-CDR3)을 포함하는 경쇄 가변영역을 포함하는 것이거나 상기 중쇄 가변영역 및 상기 경쇄 가변영역을 포함하는 클라우딘-3 결합 도메인이 인식하는 에피토프에 경쟁적으로 결합하는 것일 수 있다. The claudin-3 binding domain is a heavy chain complementarity determining region 1 (VH-CDR1) comprising an amino acid sequence represented by SEQ ID NO: 9, a heavy chain complementarity determining region 2 (VH-CDR2) comprising an amino acid sequence represented by SEQ ID NO: 10. , And a heavy chain variable region comprising a heavy chain complementarity determining region 3 (VH-CDR3) comprising the amino acid sequence represented by SEQ ID NO: 11; And light chain complementarity determining region 1 (VL-CDR1) comprising the amino acid sequence represented by SEQ ID NO: 12, light chain complementarity determining region 2 (VL-CDR2) comprising the amino acid sequence represented by SEQ ID NO: 13, and SEQ ID NO: 14. The epitope that includes the light chain variable region including the light chain complementarity determining region 3 (VL-CDR3) containing the indicated amino acid sequence or recognized by the claudin-3 binding domain including the heavy chain variable region and the light chain variable region It could be a competitive combination.
상기 클라우딘-3 결합 도메인은 서열번호 15 또는 16의 아미노산 또는 상기 아미노산 서열과 80%, 85%, 90%, 95%, 97%, 98% 또는 99% 이상의 상보성을 갖는 아미노산을 포함하는 scFv 인 것일 수 있다.The claudin-3 binding domain is a scFv comprising an amino acid of SEQ ID NO: 15 or 16 or an amino acid having at least 80%, 85%, 90%, 95%, 97%, 98% or 99% complementarity with the amino acid sequence. I can.
상기 세포 내 신호전달 도메인은 CD3 제타(ξ, zeta), TCR 제타, FcR 감마, FcR 베타, CD3 감마, CD3 델타, CD3 엡실론, CDS, CD22, CD79a, CD79b, CD278, CD66d, DAP10, DAP12, FcεRI 및 이들의 조합으로 이루어지는 군에서 선택된 단백질로부터 유래된 것을 특징으로 하는 것일 수 있다.The intracellular signaling domain is CD3 zeta (ξ, zeta), TCR zeta, FcR gamma, FcR beta, CD3 gamma, CD3 delta, CD3 epsilon, CDS, CD22, CD79a, CD79b, CD278, CD66d, DAP10, DAP12, FcεRI And it may be characterized in that it is derived from a protein selected from the group consisting of a combination thereof.
상기 키메라 항원 수용체는 공자극 도메인(costimulatory domain)을 추가로 포함하는 것을 특징으로 할 수 있다. 상기 공자극 도메인은 MHC 클래스 I 분자(MHC class I molecules), TNF 수용체 단백질(TNF receptor proteins), 면역글로불린-유사 단백질(Immunoglobulin-like proteins), 사이토카인 수용체(cytokine receptors), 인테그린(integrins), SLAM 단백질(signaling lymphocytic activation molecules), NK 세포 활성화 수용체(NK cell activating receptors), BTLA, Toll 리간드 수용체(Toll ligand receptor), OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1(CD11a/CD18, lymphocyte function-associated antigen-1), 4-1BB(CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, CD83과 특이적으로 결합하는 리간드, PD-1 및 이들의 조합으로 이루어지는 군에서 선택된 공자극 분자로부터 유래된 것을 특징으로 할 수 있다.The chimeric antigen receptor may be characterized in that it further comprises a costimulatory domain. The costimulatory domains are MHC class I molecules, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, SLAM proteins (signaling lymphocytic activation molecules), NK cell activating receptors, BTLA, Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1 , LFA-1(CD11a/CD18, lymphocyte function-associated antigen-1), 4-1BB(CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR) , KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6 , CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL , DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108 ), S LAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, a ligand that specifically binds to CD83, PD-1 and It may be characterized in that it is derived from a costimulatory molecule selected from the group consisting of a combination thereof.
상기 막통과 도메인은 TCR 알파 체인, TCR 베타 체인, TCR 제타 체인, CD28, CD3 엡실론, CD45, CD4, CD5, CDS, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154 및 CD8으로 이루어지는 군에서 선택된 단백질로부터 유래된 것을 특징으로 할 수 있다.The transmembrane domain is TCR alpha chain, TCR beta chain, TCR zeta chain, CD28, CD3 epsilon, CD45, CD4, CD5, CDS, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, It may be characterized by being derived from a protein selected from the group consisting of CD154 and CD8.
상기 키메라 항원 수용체는 힌지(hinge)를 추가로 포함하는 것일 수 있다.The chimeric antigen receptor may further include a hinge.
상기 키메라 항원 수용체는 N말단에 리더(leader) 서열을 추가로 포함하는 것일 수 있다.The chimeric antigen receptor may further include a leader sequence at the N-terminus.
상기 키메라 항원 수용체는 서열번호 24, 서열번호 25 및 서열번호 26으로 이루어진 군에서 선택된 서열을 포함하는 것을 특징으로 할 수 있다.The chimeric antigen receptor may be characterized in that it comprises a sequence selected from the group consisting of SEQ ID NO: 24, SEQ ID NO: 25, and SEQ ID NO: 26.
본 발명의 다른 일 측면은, 상기 키메라 항원 수용체를 암호화하는 폴리뉴클레오타이드를 제공한다.Another aspect of the present invention provides a polynucleotide encoding the chimeric antigen receptor.
본 발명의 또 다른 일 측면은, 상기 폴리뉴클레오타이드를 포함하는 재조합 벡터를 제공한다.Another aspect of the present invention provides a recombinant vector comprising the polynucleotide.
본 발명의 또 다른 일 측면은, 상기 키메라 항원 수용체를 포함하는 단리된 숙주 세포를 제공한다.Another aspect of the present invention provides an isolated host cell comprising the chimeric antigen receptor.
여기서, 상기 숙주 세포는 상기 숙주 세포가 투여될 대상으로부터 수득되거나, 상기 숙주 세포가 투여될 대상이 아닌 동종이계(allogeneic) 개체로부터 수득된 것일 수 있다.Here, the host cell may be obtained from a subject to which the host cell is to be administered, or may be obtained from an allogeneic subject other than the subject to which the host cell is to be administered.
상기 숙주 세포는 중간엽줄기세포(MSCs), 역분화유도줄기 세포(iPSCs), CD34 세포, 조혈 내피 세포, 조혈모세포(HSCs), 조혈 다능성 전구 세포, 배아 줄기 세포(ESCs), 또는 면역 세포인 것일 수 있다. 상기 면역 세포는 T세포 전구체 , NK세포 전구체, T 세포, NK(Natural Killer) 세포, NKT(Natural K iller T) 세포, B세포, 단핵구, 대식세포 및 수지상세포로 이루어지는 군에서 선택되는 것일 수 있다.The host cells are mesenchymal stem cells (MSCs), dedifferentiation inducing stem cells (iPSCs), CD34 cells, hematopoietic endothelial cells, hematopoietic stem cells (HSCs), hematopoietic pluripotent progenitor cells, embryonic stem cells (ESCs), or immune cells. It can be. The immune cells may be selected from the group consisting of T cell precursors, NK cell precursors, T cells, NK (Natural Killer) cells, NKT (Natural Killer T) cells, B cells, monocytes, macrophages, and dendritic cells. .
본 발명의 또 다른 일 측면은, 상기 숙주 세포를 유효성분으로 포함하는 암의 예방 또는 치료용 약제학적 조성물을 제공한다.Another aspect of the present invention provides a pharmaceutical composition for preventing or treating cancer comprising the host cell as an active ingredient.
여기서 상기 암은 난소암, 결장암, 방광암, 폐암, 간암, 위암, 식도암, 유방암, 전립선암, 췌장암, 자궁암, 자궁경부암, 흑색종, 대장암, 신장암 및 전이성 흉막 종양으로 이루어진 군으로부터 선택되는 것일 수 있다.Here, the cancer is selected from the group consisting of ovarian cancer, colon cancer, bladder cancer, lung cancer, liver cancer, gastric cancer, esophageal cancer, breast cancer, prostate cancer, pancreatic cancer, uterine cancer, cervical cancer, melanoma, colon cancer, kidney cancer, and metastatic pleural tumor. I can.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본 발명을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 추가적인 실시예가 존재할 수 있다.The above-described problem solving means are merely exemplary and should not be construed as limiting the present invention. In addition to the above-described exemplary embodiments, additional embodiments may exist in the drawings and detailed description of the invention.
본 발명의 키메라 항원 수용체가 발현되도록 변형된 면역세포는 정상세포 대비 암세포, 그 중에서도 고형암세포에서 특이적으로 노출된 클라우딘 3(특히, ECL-2 영역)을 인지하여 결합한다. 특히 본 발명의 키메라 항원 수용체는 ECL-2에 특이적으로 결합하는 항체 및 이의 기능적 단편들을 포함하고 있으며, ECL-1을 표적하는 기존의 항체들보다 높은 선택성과 결합력을 가지고 있다. 따라서, 본 발명의 키메라 항원 수용체가 발현된 면역세포는 고형암에 대해 특별히 강한 항암효과를 나타내며 동시에 클라우딘-3를 노출하지 않는 정상세포에 대해서는 낮은 독성을 나타낼 수 있다.The immune cells modified to express the chimeric antigen receptor of the present invention recognize and bind to the claudin 3 (particularly, the ECL-2 region) specifically exposed in cancer cells, especially solid cancer cells, compared to normal cells. In particular, the chimeric antigen receptor of the present invention contains an antibody that specifically binds to ECL-2 and functional fragments thereof, and has higher selectivity and avidity than conventional antibodies targeting ECL-1. Therefore, the immune cells expressing the chimeric antigen receptor of the present invention may exhibit a particularly strong anticancer effect against solid cancer and at the same time exhibit low toxicity against normal cells not exposed to claudin-3.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above effects, and should be understood to include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 CHO-CLDN3 세포주 바이오패닝 및 L-클라우딘-33 세포주 ELISA를 이용하여 선별된 scFv들에 대하여, CHO-K1세포(negative cell line, 대조군)에 대한 결합을 유세포분석(Flow cytometry)한 결과이다.1 is a flow cytometry result of binding to CHO-K1 cells (negative cell line, control) for scFvs selected using CHO-CLDN3 cell line biopanning and L-Claudin-33 cell line ELISA to be.
도 2는 CHO-CLDN3 세포주 바이오패닝 및 L-클라우딘-3 세포주 ELISA를 이용하여 선별된 scFv들에 대하여, CHO-CLDN3 세포에 대한 결합을 유세포분석(Flow cytometry)한 결과이다.2 is a flow cytometry result of binding to CHO-CLDN3 cells for scFvs selected using CHO-CLDN3 cell line biopanning and L-Claudin-3 cell line ELISA.
도 3은 각각 환원(reducing) 조건 및 비환원(non reducing) 조건에서 생산된 IgG 항체 단백질에 대한 SDS-PAGE 실험결과이다.3 is an SDS-PAGE test result for IgG antibody proteins produced under reducing and non-reducing conditions, respectively.
도 4a는 클라우딘 패밀리들의 계통분석 유연관계이다.Figure 4a is the phylogenetic relationship of claudin families.
도 4b는 CLDN3과 계통분석적으로 가까이 위치한 CLDN4, CLDN5, CLDN6, CLDN8, CLDN9, CLDN17 및 CLDN1과 마우스 CLDN3의 세포 외 첫 번째 루프(EL1, Extracellular 1st loop) 및 세포 외 두 번째 루프(EL2, Extracellular 2nd loop) 영역의 서열 상동성을 나타낸다.Figure 4b is the extracellular first loop (EL1, Extracellular 1st loop) and extracellular second loop (EL2, Extracellular 2nd) of CLDN4, CLDN5, CLDN6, CLDN8, CLDN9, CLDN17 and CLDN1 and mouse CLDN3 located phylogenetic close to CLDN3. loop) region shows sequence homology.
도 5a 및 도 5b는 각각의 인간 클라우딘 패밀리 단백질(CLDN1, CLDN3, CLDN4, CLDN5, CLDN6, CLDN8, CLDN9, CLDN17)을 발현하도록 형질전환된 HEK293 세포들에 본 발명의 4G3 항체를 처리하고 유세포분석하여, CLDN3 발현 세포에 대한 특이적 결합 능력을 확인한 결과이다.5A and 5B show that HEK293 cells transformed to express each of the human claudin family proteins (CLDN1, CLDN3, CLDN4, CLDN5, CLDN6, CLDN8, CLDN9, CLDN17) were treated with the 4G3 antibody of the present invention and flow cytometric analysis. , It is a result of confirming the specific binding ability to CLDN3 expressing cells.
도 5c는 마우스 CLDN3을 발현하도록 형질전환된 HEK293 세포에 본 발명의 4G3 항체를 처리하고 유세포분석하여, CLDN3 발현 세포에 대한 결합 능력을 확인한 결과이다.5C is a result of confirming the binding ability to CLDN3 expressing cells by treating HEK293 cells transformed to express mouse CLDN3 with the 4G3 antibody of the present invention and performing flow cytometry.
도 6은 난소암으로서 클라우딘 3를 과발현하는 세포주인 OVCAR-3 및 Caov-3과, 클라우딘 3 발현이 매우 낮은 세포주인 TOV-112D, 여기에 CLDN3를 과발현하도록 형질전환시킨 hCLDN3/TOV-112D 세포에 본 발명의 4G3 항체를 처리하고 유세포분석하여, 4G3 항체의 결합특이성을 비교적으로 확인한 결과이다.6 shows OVCAR-3 and Caov-3, which are cell lines overexpressing claudin 3 as ovarian cancer, and TOV-112D, a cell line with very low claudin 3 expression, and hCLDN3/TOV-112D cells transformed to overexpress CLDN3. This is a result of comparatively confirming the binding specificity of the 4G3 antibody by treating the 4G3 antibody of the present invention and performing flow cytometry.
도 7은 OVCAR-3, Caov-3, TOV-112D 및 hCLDN3/TOV-112D 세포에 대하여, 본 발명의 4G3 항체를 이용해 면역침강(Immumnoprecipitation) 분석을 수행한 결과이다(input: 세포 용해물). 7 shows the results of immunoprecipitation analysis using the 4G3 antibody of the present invention for OVCAR-3, Caov-3, TOV-112D and hCLDN3/TOV-112D cells (input: cell lysate).
도 8a는 OVCAR-3, Caov-3, TOV-112D 및 hCLDN3/TOV-112D 세포에 대하여 대조군 항체(control IgG)를 이용하여 면역형광염색한 결과이다.Figure 8a shows the results of immunofluorescence staining for OVCAR-3, Caov-3, TOV-112D and hCLDN3/TOV-112D cells using a control antibody (control IgG).
도 8b는 OVCAR-3, Caov-3, TOV-112D 및 hCLDN3/TOV-112D 세포에 대하여 4G3 항체를 이용하여 면역형광염색한 결과이다.8B is a result of immunofluorescence staining for OVCAR-3, Caov-3, TOV-112D and hCLDN3/TOV-112D cells using 4G3 antibody.
도 9a는 본원 발명 항체(4G3 IgG)의 CHO-K1세포(negative cell line, 대조군)에 대한 결합을 유세포분석(Flow cytometry)한 결과이다.9A is a result of flow cytometry analysis of binding of an antibody of the present invention (4G3 IgG) to CHO-K1 cells (negative cell line, control).
도 9b는 본원 발명 항체(4G3 IgG)의 CHO-CLDN3세포(positive cell line, 대조군)에 대한 결합을 유세포분석(Flow cytometry)한 결과이다.9B is a result of flow cytometry analysis of binding of the antibody (4G3 IgG) of the present invention to CHO-CLDN3 cells (positive cell line, control).
도 9c는 CLDN3 발현 세포들(hCLDN3/HEK293 및 hCLDN3/TOV-112D)에서 본원 발명 항체(4G3 IgG)의 결합 친화도(해리 상수(KD))를 LigandTracer Green(ridgeview)로 측정한 결과이다.9C is a result of measuring the binding affinity (dissociation constant (KD)) of the antibody (4G3 IgG) of the present invention in CLDN3 expressing cells (hCLDN3/HEK293 and hCLDN3/TOV-112D) by LigandTracer Green (ridgeview).
도 10a는 세포 외 첫 번째 루프(extracellular 1st loop, EL1)로서 CLDN1의 아미노산 1~104번 영역과 세포 외 두 번째 루프(extracellula 2nd loop, EL2)로서 CLDN3 아미노산 104~220번 영역을 포함하는 융합단백질을 발현하는 세포(hCLDN1-3/HEK293)와, EL1으로서 CLDN3 아미노산 1~103번 영역과 EL2로서 CLDN1 아미노산 105~211번 영역을 포함하는 융합단백질을 발현하는 세포(hCLDN3-1/HEK293)에서, 각 융합단백질의 발현(구조) 양상에 대한 모식도이다.Figure 10a is a fusion protein comprising a region of amino acids 1 to 104 of CLDN1 as an extracellular 1st loop (EL1) and a region of amino acids 104 to 220 of CLDN3 as an extracellula 2nd loop (EL2). In cells expressing (hCLDN1-3/HEK293) and cells (hCLDN3-1/HEK293) expressing a fusion protein comprising a CLDN3 amino acid 1-103 region as EL1 and a CLDN1 amino acid 105-211 region as EL2, It is a schematic diagram of the expression (structure) pattern of each fusion protein.
도 10b는 hCLDN1-3/HEK293 또는 hCLDN3-1/HEK293 세포에 대하여 4G3 항체를 처리하고 유세포분석한 결과와(상단), 상기 세포들에서 목적하는 융합단백질이 제대로 발현되었는지를 확인한 웨스턴블로팅 결과이다(하단).Figure 10b is a result of flow cytometric analysis of hCLDN1-3/HEK293 or hCLDN3-1/HEK293 cells treated with 4G3 antibody (top), and Western blotting results confirming whether the desired fusion protein was properly expressed in the cells. (lower).
도 11a은 종양 이종이식(xenograft) 동물모델에서 본원 발명 4G3 항체의 in vivo 종양 표적능을 확인한 결과이며, 도 11b는 상기 동물모델에서 장기 적출 후 형광강도를 정량화한 결과이다. 11A is a result of confirming the in vivo tumor targeting ability of the 4G3 antibody of the present invention in a tumor xenograft animal model, and FIG. 11B is a result of quantifying fluorescence intensity after organ extraction in the animal model.
도 12는 4G3 scFv를 세포 외 도메인으로 갖는 CAR를 코딩하는 핵산을 포함하는 벡터의 일 실시예를 도식화한 것이다.12 is a schematic diagram of an embodiment of a vector containing a nucleic acid encoding a CAR having a 4G3 scFv as an extracellular domain.
도 13은 벡터 컨스트럭트 1(도 13a) 또는 2(도13b)를 도입한 Jurkat 세포 내 벡터 상 마커인 RFP635의 발현을 확인한 이미지이다.FIG. 13 is an image confirming the expression of RFP635, a marker on the vector, in Jurkat cells into which vector construct 1 (FIG. 13A) or 2 (FIG. 13B) was introduced.
도 14는 CAR 컨스트럭트 1을 발현하는 Jurkat 세포의 클라우딘-3 발현 및 비발현 세포와의 공배양 이후 CD69(도 14a 및 b) 및 CD25(도 14c 및 d) 발현 변화를 FACS로 확인한 결과이다.FIG. 14 is a result of confirming changes in expression of claudin-3 in Jurkat cells expressing CAR construct 1 and expression of CD69 (FIGS. 14a and b) and CD25 (FIGS. 14c and d) after co-culture with non-expressing cells by FACS. .
도 15는 CAR 컨스트럭트 2를 발현하는 Jurkat 세포의 클라우딘-3 발현 및 비발현 세포와의 공배양 이후 CD69(도 15a 및 b) 및 CD25(도 15c 및 d) 발현 변화를 FACS로 확인한 결과이다.FIG. 15 is a result of confirming changes in expression of claudin-3 in Jurkat cells expressing CAR construct 2 and expression of CD69 (FIGS. 15a and b) and CD25 (FIGS. 15c and d) after co-culture with non-expressing cells by FACS. .
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, the present invention will be described with reference to the accompanying drawings. However, the present invention may be implemented in various different forms, and therefore is not limited to the embodiments described herein. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and similar reference numerals are attached to similar parts throughout the specification.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present specification, terms such as "comprise" or "have" are intended to designate the presence of features, numbers, steps, actions, components, parts, or combinations thereof described in the specification, but one or more other features. It is to be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof does not preclude in advance.
본 발명의 일측면에 따른, 키메라 항원 수용체는 i) 클라우딘-3 결합 도메인(Claudin-3 binding domain); ii) 막통과 도메인(transmembrane domain); 및 iii) 세포 내 신호전달 도메인(intracellular signaling domain)을 포함하는 것을 특징으로 한다.According to an aspect of the present invention, a chimeric antigen receptor is i) claudin-3 binding domain; ii) transmembrane domain; And iii) an intracellular signaling domain.
본원에서 사용되는 용어 “키메라 항원 수용체(chimeric antigen receptor, CAR)”는 면역세포(NK세포 또는 T-세포 등)의 활성화를 위한 도메인에 연결된 항체의 항원 결합 도메인(예를 들어, 단일쇄 가변 단편(scFv))을 포함하는, 인공적으로 제작된 하이브리드 단백질 또는 폴리펩타이드이다. 키메라 항원 수용체는 단일클론 항체의 항원-결합 성질을 이용하여 비-MHC-제한 방식으로 선택된 표적에 대한 특이성 및 반응성을 재유도(redirect)하는 능력을 갖는다. 비-MHC-제한된 항원 인식은 키메라 항원 수용체를 발현하는 면역세포에게 항원제시세포(antigen presenting cell)의 항원 처리(antigen processing)와 무관하게 항원을 인식하는 능력을 제공하여, 종양세포 면역회피의 주요 기작 중 하나인 항원제시 경로 억제와 관계없이 면역반응을 나타낼 수 있도록 한다. As used herein, the term “chimeric antigen receptor (CAR)” refers to an antigen-binding domain (eg, single-chain variable fragment) of an antibody linked to a domain for activation of immune cells (such as NK cells or T-cells). (scFv)) is an artificially produced hybrid protein or polypeptide. Chimeric antigen receptors have the ability to redirect specificity and responsiveness to selected targets in a non-MHC-restricted manner using the antigen-binding properties of monoclonal antibodies. Non-MHC-restricted antigen recognition provides immune cells expressing chimeric antigen receptors with the ability to recognize antigens independent of antigen processing of antigen presenting cells, and is a major part of tumor cell immune evasion. It makes it possible to exhibit an immune response regardless of the inhibition of the antigen presentation pathway, which is one of the mechanisms.
본 발명의 키메라 항원 수용체는 정상세포와 비교하여 암세포, 그 중에서도 고형암세포에서 노출이 특이적으로 나타나는 클라우딘-3에 특이적으로 결합한다. The chimeric antigen receptor of the present invention specifically binds to claudin-3, which is specifically exposed to cancer cells, especially solid cancer cells, compared to normal cells.
본원에서 사용되는 용어 “클라우딘-3(claudin-3, CLDN3으로도 표기)”은 클라우딘 패밀리에 속하는 단백질로서, 밀착연접(tight junction)이 일어나는 부분에 존재하여 밀착연접에서 세포 간의 공간을 제거하는 특유의 역할을 한다. 밀착연접(tight junction)은 동물과 같은 유기체의 조직에서 인접한 세포막을 연결하는 견고한 구조물이다. 클라우딘-3는 이온과 같은 작은 용질(solute)의 세포 간 투과성을 조절하는 구조단백질이다. 클라우딘-3는 4개의 막통과(transmembrane)영역을 가지는 단백질이며, N- 및 C-말단이 세포 내측에 존재하고 두 개의 루프(loop)가 세포 외부로 노출된 구조를 가지고 있다. 세포 외측의 두 루프 중 클라우딘-3 전체 단백질 서열에서 보다 N-말단에 가까운 아미노산 영역의 루프를 세포 외 첫 번째 루프(본 발명에서 ECL-1 또는 EL1으로 표기)로 칭하며, 다른 하나의 루프를 본 발명에서 세포 외 두 번째 루프(본 발명에서 ECL-2 또는 EL2로 표기)로 칭한다. 바람직하게 상기 클라우딘-3는 인간 유래의, 서열번호 1에 따른 것일 수 있으며, 이때 상기 세포 외 첫 번째 루프는 서열번호 1에 따른 클라우딘-3 단백질 아미노산 서열의 27 내지 80번째 아미노산을 포함하는 영역이며, 세포 외 두 번째 루프는 클라우딘-3 단백질 아미노산 서열의 144 내지 159번째 아미노산을 포함하는 영역(서열번호 2 참조)을 의미한다. 본원에서 클라우딘-3 결합 도메인은 클라우딘-3의 세포 외 두번째 루프 영역에 특이적으로 결합하는 것일 수 있으며, 상기 클라우딘-3의 세포 외 두번째 루프 영역은 서열번호 2로 표시되는 아미노산 서열을 포함하는 것일 수 있다.The term “claudin-3 (also referred to as CLDN3)” as used herein is a protein belonging to the claudin family, and exists in a portion where tight junctions occur, and is unique to remove spaces between cells in tight junctions. Plays the role of. Tight junctions are rigid structures that connect adjacent cell membranes in tissues of organisms such as animals. Claudin-3 is a structural protein that regulates the intercellular permeability of small solutes such as ions. Claudin-3 is a protein having four transmembrane regions, and has a structure in which the N- and C-terminals are present inside the cell and two loops are exposed to the outside of the cell. Among the two loops outside the cell, the loop of the amino acid region closer to the N-terminus than in the entire protein sequence of claudin-3 is referred to as the first extracellular loop (represented as ECL-1 or EL1 in the present invention), and the other loop is seen. In the present invention, it is referred to as an extracellular second loop (denoted as ECL-2 or EL2 in the present invention). Preferably, the claudin-3 may be human-derived, according to SEQ ID NO: 1, wherein the extracellular first loop is a region containing the 27 to 80 amino acids of the claudin-3 protein amino acid sequence according to SEQ ID NO: 1. , The extracellular second loop refers to a region containing amino acids 144 to 159 of the claudin-3 protein amino acid sequence (see SEQ ID NO: 2). Herein, the claudin-3 binding domain may specifically bind to the extracellular second loop region of claudin-3, and the extracellular second loop region of claudin-3 includes the amino acid sequence represented by SEQ ID NO: 2. I can.
클라우딘-3(Claudin-3 또는 CLDN-3)는 Clostridium perfringens enterotoxin(CPE)에 대한 독소 수용체로서 기능하는 것으로 알려져 있다. CPE는 클라우딘-3와 클라우딘-4에 결합한 다음 세포 괴사를 일으키는 큰 복합체를 형성하여 세포막에 공극을 생성한다.Claudin-3 (Claudin-3 or CLDN-3) is known to function as a toxin receptor for Clostridium perfringens enterotoxin (CPE). CPE binds to claudin-3 and claudin-4 and then forms a large complex that causes cell necrosis, creating voids in the cell membrane.
한편, 클라우딘 단백질들의 세포 외 도메인은 밀착 연접(tight junction, 이하 TJ)의 형성에 관여하는데, 정상적인 상피 세포 단일층(normal confluent epithelial cell monolayer)에서 클라우딘-3는 측면 막의 정단 위치(apical site of the lateral membrane)의 TJ 가닥 내에 존재하는 것으로 여겨지는데, 상피 종양 형성 및 종양 세포에서의 평면외(out-of-plane) 분화 동안의 유사분열 방추체의 조절장애가 세포 표면에 TJ 성분의 비정상적인 위치를 유도하는 것으로 추측된다(Saeki R, et al., Potency of claudin-targeting as antitumor therapy, Mol Cell Pharmacol. 2010; 2:47-51.). 이와 관련하여, 클라우딘-3 단백질은 난소 암, 전립선 암, 유방암, 자궁암, 간암, 폐암, 췌장암, 위암, 방광암 및 결장암과 같은 많은 암 조직에서 노출 정도가 증가하는 것으로 보고되었다. Swedish Human Protein Atlas (HPA) 웹 사이트 (http://www.proteinatlas.org/)를 질병에 대한 클라우딘-3 발현 프로파일의 참고 자료로 사용 가능하다. 클라우딘-3와 클라우딘-4의 발현은 화학 요법 내성 및/ 또는 재발성 자궁암에서 특히 높아지는데, 이는 미국에서 부인과 암 중 가장 치사율이 높은 것으로 알려져 있다. 그러나, 아직까지 종양 상태에서 노출되는 클라우딘-3를 특이적으로 표적화하는 항암 약물의 개발에는 한계를 나타내고 있는 실정이다.On the other hand, the extracellular domains of claudin proteins are involved in the formation of tight junctions (TJ). In a normal confluent epithelial cell monolayer, claudin-3 is the apical site of the lateral membrane. lateral membrane), and dysregulation of the mitotic spindle during epithelial tumor formation and out-of-plane differentiation in tumor cells induces an abnormal location of the TJ component on the cell surface. (Saeki R, et al ., Potency of claudin-targeting as antitumor therapy, Mol Cell Pharmacol. 2010; 2:47-51.). In this regard, claudin-3 protein has been reported to increase the degree of exposure in many cancerous tissues such as ovarian cancer, prostate cancer, breast cancer, uterine cancer, liver cancer, lung cancer, pancreatic cancer, gastric cancer, bladder cancer and colon cancer. The Swedish Human Protein Atlas (HPA) website (http://www.proteinatlas.org/) is available as a reference for the claudin-3 expression profile for disease. The expression of claudin-3 and claudin-4 is particularly elevated in chemotherapy-resistant and/or recurrent uterine cancer, which is known to have the highest mortality rate among gynecological cancers in the United States. However, the development of anticancer drugs specifically targeting claudin-3 exposed in a tumor state is still showing limitations.
본원 발명에서 클라우딘-3는, 당업계에 클라우딘-3로 알려진 것이라면 구체적 생물 기원 및 서열이 특별히 제한되지 않을 수 있다. 일례로 본발명의 클라우딘-3는 마우스(Mus musculus) 유래의 것으로서 NCBI(Genbank) Accession No. Q9Z0G9 등으로 공지된 것, 랫(Rattus norvegicus) 유래의 것으로서 NCBI(Genbank) Accession No. Q63400 등으로 공지된 것, 닭 (Gallus gallus) 유래의 것으로서 NCBI(Genbank) Accession No. Q98SR2 등으로 공지된 것, 개 (Canis lupus familiaris) 유래의 것으로서 NCBI(Genbank) Accession No. Q95KM5 등으로 공지된 것, 원숭이(Macaca mulatta) 유래의 것으로서 UniProtKB Entry. F6RQF6 등으로 공지된 것, 인간(homo sapiens) 유래의 것으로서 NCBI(Genbank) Accession No. O15551(서열번호 1 참조)등으로 공지된 것을 포함할 수 있다.In the present invention, if the claudin-3 is known as claudin-3 in the art, a specific biological origin and sequence may not be particularly limited. For example, claudin-3 of the present invention is derived from a mouse (Mus musculus), and NCBI (Genbank) Accession No. Known as Q9Z0G9, etc., as derived from rats (Rattus norvegicus), NCBI (Genbank) Accession No. Known as Q63400, etc., as derived from chicken (Gallus gallus), NCBI (Genbank) Accession No. Known as Q98SR2, etc., as derived from dog (Canis lupus familiaris), NCBI (Genbank) Accession No. Known as Q95KM5, etc., a monkey (Macaca mulatta) derived from UniProtKB Entry. Known as F6RQF6, etc., as derived from human (homo sapiens), NCBI (Genbank) Accession No. It may include those known as O15551 (see SEQ ID NO: 1).
본 발명에서 제공하는 특유의 클라우딘-3 결합 도메인을 갖는 키메라 항원 수용체는 클라우딘-3 발현 세포에 대하여 다른 클라우딘 패밀리와 교차 반응성 없이 클라우딘-3만을 특이적으로 표적하는 능력이 뛰어나고 매우 우수한 결합력(친화도)를 나타내어, 클라우딘-3를 노출하는 암세포에 대한 사멸 능력이 매우 우수할 것으로 예상된다. 특히 본원 발명의 클라우딘-3 결합 도메인은 클라우딘-3의 ECL-2 영역에 특이적으로 부착하는데, 이에 따라 클라우딘-3가 표면에 노출되지 않은 보통의 정상 조직과 달리 불완전한 연접(junction)을 형성하여 클라우딘-3가 노출된 종양 조직에 본원 발명의 항체(또는 이의 기능적 단편이) 선택적으로 접근 가능하게 되며, 이러한 능력은 특히 정상세포에 대한 항암 약물의 독성 문제를 현저히 저감시킬 수 있다는 점에서 기술적 의의가 크다.The chimeric antigen receptor having a unique claudin-3 binding domain provided by the present invention has excellent ability to specifically target only claudin-3 without cross-reactivity with other claudin family against claudin-3 expressing cells, and has a very good avidity (affinity ), it is expected that the ability to kill cancer cells exposed to claudin-3 will be very good. In particular, the claudin-3 binding domain of the present invention specifically attaches to the ECL-2 region of claudin-3, and accordingly, the claudin-3 forms an incomplete junction unlike normal tissues that are not exposed to the surface. The antibody (or functional fragment thereof) of the present invention can be selectively accessible to the tumor tissue exposed to claudin-3, and this ability is particularly significant in that it can significantly reduce the toxicity problem of anticancer drugs against normal cells. Is big.
본 발명의 키메라 항원 수용체가 갖는 클라우딘-3 결합 도메인은 항체 또는 이의 기능적 단편인 것일 수 있다. The claudin-3 binding domain of the chimeric antigen receptor of the present invention may be an antibody or a functional fragment thereof.
본 발명에서 용어 ‘항체(antibody)’는 면역 글로불린(immunoglobulin, Ig)이라고도 불리며, 항원에 선택적으로 작용하여 생체 면역에 관여하는 단백질의 총칭이다. 자연에서 발견되는 전체 항체(whole antibody)는 일반적으로 여러 도메인으로 이루어진 폴리펩티드인 경쇄(light chain, LC) 및 중쇄(heavy chain, HC)의 2개 쌍으로 이루어지거나, 이들 HC/LC의 2개의 쌍으로 된 구조를 기본 단위로 한다. 포유류의 항체를 구성하는 중쇄의 종류는 그리스 문자 α, δ, ε, γ 및 μ로 표시되는 5가지 유형이 있으며, 중쇄의 종류에 따라 각각 IgA, IgD, IgE, IgG 및 IgM 등 다른 종류의 항체를 구성하게 된다. 포유류의 항체를 구성하는 경쇄의 종류는λ 및 κ로 표시되는 2가지 종류가 존재한다.In the present invention, the term “antibody” is also called immunoglobulin (Ig), and is a generic term for proteins that selectively act on antigens and are involved in immunity in vivo. Whole antibodies found in nature are generally composed of two pairs of light chain (LC) and heavy chain (HC), which are polypeptides consisting of several domains, or two pairs of these HC/LCs. The basic unit is the structure of There are 5 types of heavy chains that make up mammalian antibodies, and there are 5 types, denoted by the Greek letters α, δ, ε, γ, and μ, and different types of antibodies, such as IgA, IgD, IgE, IgG, and IgM, respectively, depending on the type of heavy chain. Will constitute. There are two types of light chains constituting mammalian antibodies, represented by λ and κ.
항체의 중쇄와 경쇄는 구조적으로 아미노산 서열의 가변성에 따라 가변영역과 불변영역으로 구분된다. 중쇄의 불변영역은 항체의 종류에 따라 CH1, CH2 및 CH3(IgA, IgD 및 IgG 항체) 및 CH4(IgE 및 IgM 항체) 등 3 또는 4개의 중쇄불변영역으로 구성되어 있으며, 경쇄는 1개의 불변영역인 CL으로 구성되어 있다. 중쇄와 경쇄의 가변영역은 각각 중쇄가변영역(VH) 또는 경쇄가변영역(VL)의 하나의 도메인으로 이루어져 있다. 경쇄와 중쇄는 각각의 가변영역과 불변영역이 나란히 정렬되어 1개의 공유 이황결합(disulfide bond)에 의해 연결되고, 경쇄와 결합한 두 분자의 중쇄는 2개의 공유 이황결합을 통해 연결되어 전체 항체의 형태를 형성한다. 전체 항체는 중쇄 및 경쇄의 가변영역을 통해 항원에 특이적으로 결합하며, 전체 항체는 2개의 중쇄 및 경쇄의 쌍(HC/LC)으로 구성되어 있으므로, 한 분자의 전체 항체는 두 개의 가변영역을 통해 동일한 두 개의 항원에 결합하는 2가의 단일 특이성을 갖게 된다.The heavy and light chains of an antibody are structurally divided into a variable region and a constant region according to the variability of the amino acid sequence. The constant region of the heavy chain is composed of 3 or 4 heavy chain constant regions such as CH1, CH2 and CH3 (IgA, IgD and IgG antibodies) and CH4 (IgE and IgM antibodies) depending on the type of antibody, and the light chain is one constant region. It is composed of phosphorus CL. The variable regions of the heavy and light chains each consist of one domain of the heavy chain variable region (VH) or the light chain variable region (VL). The light chain and the heavy chain are connected by one covalent disulfide bond as each variable region and the constant region are aligned side by side, and the heavy chain of the two molecules bonded to the light chain is connected through two covalent disulfide bonds. To form. The whole antibody specifically binds to the antigen through the variable regions of the heavy and light chains, and the whole antibody consists of two pairs of heavy and light chains (HC/LC), so that the entire antibody of one molecule has two variable regions. It has a bivalent single specificity that binds to the same two antigens.
항체가 항원에 결합하는 부위를 포함하는 가변영역은 서열 가변성이 적은 골격부위(framework region, FR)와 서열 가변성이 높은 과가변성 부위(hypervariable region)인 상보성 결정부위(complementary determining region, CDR)로 세분된다. VH와 VL은 각각 3개의 CDR 및 4개의 FR이 N-말단부터 C-말단의 방향으로 FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4의 순서로 배열되어 있다. 항체의가변영역 안에서도 서열 가변성이 가장 높은 CDR이 항원과 직접 결합하는 부위로, 항체의 항원 특이성에 가장 중요하다. 본 발명에 따른 항체는 상기한 CDR의 조합을 갖는 것이라면 그 종류에 제한이 없다. 구체적으로는 IgG, IgA, IgM, IgE 및 IgD로 이루어진 군에서 선택되는 것일 수 있으며, 특히 IgG 항체인 것이 바람직하다. 상기 IgG는 이의 아형으로서 IgG1, IgG2, IgG3, IgG4 등을 포함하나 이에 제한되지 않는다. 또한 1개의 B 세포에서 유래하는 단일클론(monoclonal)항체일 수도 있고, 복수의 B 세포에서 유래하는 다클론(polyclonal) 항체일 수도 있지만, 항체의 중쇄와 경쇄의 아미노산 서열이 실질적으로 동일한 항체의 집단인 단일클론 항체인 것이 바람직하다. The variable region including the region where the antibody binds to the antigen is subdivided into a framework region (FR) with low sequence variability and a complementary determining region (CDR), a hypervariable region with high sequence variability. do. In the VH and VL, three CDRs and four FRs are arranged in the order of FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4 in the direction from the N-terminus to the C-terminus, respectively. Even within the variable region of an antibody, the CDR with the highest sequence variability directly binds to the antigen, and is most important for antigen specificity of the antibody. The type of antibody according to the present invention is not limited as long as it has a combination of the aforementioned CDRs. Specifically, it may be selected from the group consisting of IgG, IgA, IgM, IgE and IgD, and particularly preferably an IgG antibody. The IgG as its subtype includes, but is not limited to, IgG1, IgG2, IgG3, IgG4, and the like. In addition, it may be a monoclonal antibody derived from one B cell, or a polyclonal antibody derived from multiple B cells, but a group of antibodies having substantially the same amino acid sequence of the heavy and light chains of the antibody. It is preferably a phosphorus monoclonal antibody.
본 발명에서 항체의 기능적 단편은 전체 항체의 항원 특이적 결합력을 유지하고 있는 단편을 의미하며, 구체적으로는 Fab, F(ab'), F(ab')2, Fv, scFv, 디아바디(diabody) 또는 dsFv 등의 형태일 수 있다. Fab(fragment antigen-binding)는 항체의 항원 결합 단편으로, 중쇄와 경쇄 각각의 하나의 가변 도메인과 불변도메인으로 구성되어 있다. F(ab')2는 항체를 펩신으로 가수분해시켜서 생성되는 단편으로, 두 개의 Fab가 중쇄 경첩(hinge)에서 이황결합(disulfide bond)으로 연결된 형태를 하고 있다. F(ab')는 F(ab')2 단편의 이황결합을 환원하여 분리시킨 Fab에 중쇄 경첩이 부가된 형태의 단량체 항체 단편이다. Fv(variable fragment)는 중쇄와 경쇄 각각의 가변영역으로만 구성된 항체 단편이다. scFv(single chain variable fragment)는 중쇄가변영역(VH)과 경쇄가변영역(VL)이 유연한 펩티드 링커로 연결되어 있는 재조합 항체 단편이다. 디아바디(diabody)는 scFv의 VH와 VL가 매우 짧은 링커로 연결되어 서로 결합하지 못하고, 동일한 형태의 다른 scFv의 VL와 VH와 각각 결합하여 이량체를 형성하고 있는 형태의 단편을 의미한다. dsFv는 VH 및 VL 중 각각 하나의 아미노산 잔기를 시스테인 잔기로 치환한 폴리펩타이드를 당해 시스테인 잔기 간의 S-S 결합을 개재하여 결합시킨 것을 말한다. 시스테인 잔기로 치환되는 아미노산 잔기는 Reiter 등에 의해 기재된 방법[참조: Protein Engineering, 7, 697(1994)]에 따라서 항체의 입체구조 예측에 근거하여 선택할 수 있다.In the present invention, the functional fragment of an antibody refers to a fragment that maintains the antigen-specific binding ability of the entire antibody, and specifically, Fab, F(ab'), F(ab')2, Fv, scFv, diabody ) Or dsFv. Fab (fragment antigen-binding) is an antigen-binding fragment of an antibody, and consists of one variable domain and a constant domain of each of the heavy and light chains. F(ab')2 is a fragment produced by hydrolyzing an antibody with pepsin. Two Fabs are linked by a disulfide bond at a heavy chain hinge. F(ab') is a monomeric antibody fragment in which a heavy chain hinge is added to a Fab separated by reducing the disulfide bond of the F(ab')2 fragment. Fv (variable fragment) is an antibody fragment consisting only of the variable regions of each of the heavy and light chains. A single chain variable fragment (scFv) is a recombinant antibody fragment in which a heavy chain variable region (VH) and a light chain variable region (VL) are connected by a flexible peptide linker. A diabody refers to a fragment in which the VH and VL of an scFv are connected by a very short linker, so that they cannot be bonded to each other, and form a dimer by bonding with the VL and VH of other scFvs of the same type, respectively. dsFv refers to a polypeptide obtained by substituting a cysteine residue for one of the amino acid residues of VH and VL through an S-S bond between the cysteine residues. Amino acid residues substituted with cysteine residues can be selected based on prediction of the conformational structure of an antibody according to the method described by Reiter et al. (Protein Engineering, 7, 697 (1994)).
본 발명의 클라우딘-3결합 도메인은 서열번호 3으로 표시되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 1(VH-CDR1), 서열번호 4로 표시되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 2(VH-CDR2), 및 서열번호 5로 표시 되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 3(VH-CDR3)을 포함하는 중쇄 가변영역; 및 서열번호 6으로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 1(VL-CDR1), 서열번호 7로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 2(VL-CDR2), 및 서열번호 8로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 3(VL-CDR3)을 포함하는 경쇄 가변영역을 포함하는 것이거나 상기 중쇄 가변영역 및 상기 경쇄 가변영역을 포함하는 클라우딘-3 결합 도메인이 인식하는 에피토프에 경쟁적으로 결합하는 것일 수 있다. The claudin-3 binding domain of the present invention comprises a heavy chain complementarity determining region 1 (VH-CDR1) comprising an amino acid sequence represented by SEQ ID NO: 3, and a heavy chain complementarity determining region 2 (VH-) comprising an amino acid sequence represented by SEQ ID NO: 4 CDR2), and a heavy chain variable region comprising a heavy chain complementarity determining region 3 (VH-CDR3) comprising an amino acid sequence represented by SEQ ID NO: 5; And light chain complementarity determining region 1 (VL-CDR1) comprising the amino acid sequence represented by SEQ ID NO: 6, light chain complementarity determining region 2 (VL-CDR2) comprising the amino acid sequence represented by SEQ ID NO: 7, and SEQ ID NO: 8. The epitope that includes the light chain variable region including the light chain complementarity determining region 3 (VL-CDR3) containing the indicated amino acid sequence or recognized by the claudin-3 binding domain including the heavy chain variable region and the light chain variable region It could be a competitive combination.
또한, 본 발명의 클라우딘-3 결합 도메인은 서열번호 9으로 표시되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 1(VH-CDR1), 서열번호 10으로 표시되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 2(VH-CDR2), 및 서열번호 11로 표시 되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 3(VH-CDR3)을 포함하는 중쇄 가변영역; 및 서열번호 12로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 1(VL-CDR1), 서열번호 13으로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 2(VL-CDR2), 및 서열번호 14로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 3(VL-CDR3)을 포함하는 경쇄 가변영역을 포함하는 것이거나 상기 중쇄 가변영역 및 상기 경쇄 가변영역을 포함하는 클라우딘-3 결합 도메인이 인식하는 에피토프에 경쟁적으로 결합하는 것일 수 있다.In addition, the claudin-3 binding domain of the present invention is a heavy chain complementarity determining region 1 (VH-CDR1) comprising an amino acid sequence represented by SEQ ID NO: 9, and a heavy chain complementarity determining region 2 comprising an amino acid sequence represented by SEQ ID NO: 10 ( VH-CDR2), and a heavy chain variable region comprising a heavy chain complementarity determining region 3 (VH-CDR3) comprising an amino acid sequence represented by SEQ ID NO: 11; And light chain complementarity determining region 1 (VL-CDR1) comprising the amino acid sequence represented by SEQ ID NO: 12, light chain complementarity determining region 2 (VL-CDR2) comprising the amino acid sequence represented by SEQ ID NO: 13, and SEQ ID NO: 14. The epitope that includes the light chain variable region including the light chain complementarity determining region 3 (VL-CDR3) containing the indicated amino acid sequence or recognized by the claudin-3 binding domain including the heavy chain variable region and the light chain variable region It could be a competitive combination.
일 실시형태에서 상기 중쇄 가변부(VH) 및 상응하는 경쇄 가변부(VL)는 펩티드 링커를 통해 연결되고, 바람직하게는 아미노산 서열 (GGGGS)3을 포함하는 펩티드 링커를 통해 연결될 수 있다.In one embodiment, the heavy chain variable portion (VH) and the corresponding light chain variable portion (VL) may be linked through a peptide linker, preferably through a peptide linker comprising an amino acid sequence (GGGGS)3.
상기 클라우딘-3 결합 도메인은 서열번호 15 또는 16의 아미노산 또는 상기 아미노산 서열과 80%, 85%, 90%, 95%, 97%, 98% 또는 99% 이상의 상보성을 갖는 아미노산을 포함하는 scFv 인 것일 수 있다.The claudin-3 binding domain is a scFv comprising an amino acid of SEQ ID NO: 15 or 16 or an amino acid having at least 80%, 85%, 90%, 95%, 97%, 98% or 99% complementarity with the amino acid sequence. I can.
본 발명의 키메라 항원 수용체는 막통과 도메인을 포함한다. 상기 막통과 도메인은 당해 분야에서 공지된 천연 공급원으로부터 또는 합성 공급원으로부터 유래될 수 있다. 상기 막통과 도메인은 예를 들어 막통과 도메인은 TCR 알파 체인, TCR 베타 체인, TCR 제타 체인, CD28, CD3 엡실론, CD45, CD4, CD5, CDS, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154 및 CD8으로 이루어지는 군에서 선택된 단백질 유래의 막통과 도메인일 수 있으나, 이에 한정되는 것은 아니다. 본원의 일 구현예에 따르면, 상기 막통과 도메인은 NKG2D 또는 CD8 유래일 수 있으며, 서열번호 19, 서열번호 20 및 서열번호 21 중에서 선택된 서열을 포함하는 것일 수 있다.The chimeric antigen receptor of the present invention comprises a transmembrane domain. The transmembrane domain can be derived from natural or synthetic sources known in the art. The transmembrane domain is, for example, the transmembrane domain is TCR alpha chain, TCR beta chain, TCR zeta chain, CD28, CD3 epsilon, CD45, CD4, CD5, CDS, CD9, CD16, CD22, CD33, CD37, CD64, CD80 , CD86, CD134, CD137, CD154, and CD8 may be a transmembrane domain derived from a protein selected from the group consisting of, but is not limited thereto. According to one embodiment of the present application, the transmembrane domain may be derived from NKG2D or CD8, and may include a sequence selected from SEQ ID NO: 19, SEQ ID NO: 20, and SEQ ID NO: 21.
본원의 일 구현예에 따르면, 본 발명의 키메라 항원 수용체는 세포 내 신호전달 도메인을 포함할 수 있다. 본원에서 사용되는 용어 “세포 내 신호전달 도메인”은 이차전령(2nd messenger)를 생성하거나 또는 상기 이차전령에 반응하여 이펙터로서 기능함으로써 연관된 신호전달 경로를 통한 세포 활성화를 유도하기 위한 정보를 세포 내로 전달함으로써 작용하는 단백질의 기능성 부분을 의미한다. 상기 “세포 활성화(cell activation)”란, 해당 세포가 가지고 있는 활성(activity)이 증가되는 것을 의미하는 것으로서, 이러한 활성화의 종류는 특별히 제한되지 않으나, 일례로 세포의 면역반응 촉진일 수 있다. 특히, 상기 세포가 면역세포인 경우, 상기 활성화란 세포 자체의 면역반응 촉진뿐만 아니라 면역세포의 수가 증가되는 것을 모두 포함하는 의미로 이해될 수 있다.According to one embodiment of the present application, the chimeric antigen receptor of the present invention may include an intracellular signaling domain. The term “intracellular signaling domain” as used herein transmits information for inducing cell activation through an associated signaling pathway by generating a second messenger or functioning as an effector in response to the secondary messenger. It refers to a functional part of a protein that acts by doing so. The “cell activation” means that the activity of the corresponding cell is increased, and the type of such activation is not particularly limited, but may be, for example, promoting an immune response of a cell. In particular, when the cell is an immune cell, the activation may be understood as including both promoting an immune response of the cell itself and increasing the number of immune cells.
상기 세포 내 신호전달 도메인은 세포 외에 위치하는 항원 결합 부위(본원 발명의 항체 또는 이의 기능적 단편)에 항원이 결합하였을 때, 세포(특히, 면역 세포) 활성화를 가져올 수 있는 신호를 전달할 수 있는 것이라면 특별히 그 종류에 제한되지 않는다. 다양한 종류의 세포 내 신호전달도메인이 사용될 수 있으며, 그 예로 면역수용체 티로신-기초한 활성화 모티프(tyrosine-based activation motif) 또는 ITAM일 수 있으며, 상기 ITAM은 CD3 제타(ξzeta), TCR 제타, FcR 감마, FcR 베타, CD3 감마, CD3 델타, CD3 엡실론, CDS, CD22, CD79a, CD79b, CD278, CD66d, DAP10, DAP12, Fcε특히, γ) 및 이들의 조합(1개 또는 2개 이상)에서 유래한 것을 포함할 수 있으나, 이에 제한되는 것은 아니다. 본원에서 제한되지 않는 실시예에 따르면, 본 발명의 키메라 항원 수용체는 CD3ζ 세포 내 신호전달 도메인을 포함할 수 있다. 구체적으로, 본 발명의 키메라 항원 수용체는 서열번호 17의 서열을 포함하는 것일 수 있다.The intracellular signal transduction domain is specially provided as long as it can transmit a signal capable of activating cells (especially immune cells) when the antigen is bound to an antigen-binding site (antibody of the present invention or a functional fragment thereof) located outside the cell. It is not limited to its kind. Various types of intracellular signaling domains can be used, such as immunoreceptor tyrosine-based activation motif or ITAM, and the ITAM is CD3 zeta, TCR zeta, FcR gamma, Includes those derived from FcR beta, CD3 gamma, CD3 delta, CD3 epsilon, CDS, CD22, CD79a, CD79b, CD278, CD66d, DAP10, DAP12, Fcε, in particular, γ) and combinations thereof (one or two or more). It can be, but is not limited thereto. According to an embodiment not limited herein, the chimeric antigen receptor of the present invention may include a signaling domain within a CD3ζ cell. Specifically, the chimeric antigen receptor of the present invention may include the sequence of SEQ ID NO: 17.
또한, 본 발명의 키메라 항원 수용체는 세포 종류에 따라서, 세포 내 신호전달 도메인과 함께 공자극 도메인(costimultatory domain)을 추가로 포함할 수 있다.In addition, the chimeric antigen receptor of the present invention may further include a costimulatory domain together with an intracellular signaling domain, depending on the cell type.
상기 공자극 도메인은, 본 발명의 키메라 항원 수용체에 포함되어 세포 내 신호전달 도메인에 의한 1차 신호에 더하여, 해당 세포(특히, 면역세포)에 최대 활성화 신호를 전달하는 역할을 수행하는 부분으로서, 공자극 분자의 세포 내 도메인을 포함하는, 키메라 항원 수용체의 세포 내 부분을 의미한다. 즉, 일부 면역 세포, 예를 들어 T 림프구 및 NK 세포는 최대 활성화를 위해 2개의 신호, 즉 1차 활성화 신호 및 공자극 신호가 필요하고, 키메라 항원 수용체는 또한 세포 외 도메인에 대한 항원의 결합이 1차 활성화 신호 및 공자극 신호 둘 다의 전송을 일으키도록, 임의로 공자극 도메인을 포함할 수 있다.The co-stimulatory domain is included in the chimeric antigen receptor of the present invention, and in addition to the primary signal by the intracellular signaling domain, the co-stimulatory domain plays a role of transmitting a maximum activation signal to the corresponding cell (especially, an immune cell), It refers to the intracellular portion of a chimeric antigen receptor, which contains the intracellular domain of a costimulatory molecule. That is, some immune cells, such as T lymphocytes and NK cells, require two signals for maximum activation, namely a primary activation signal and a costimulatory signal, and chimeric antigen receptors also require antigen binding to the extracellular domain. It may optionally include a co-stimulation domain to cause transmission of both a primary activation signal and a co-stimulation signal.
상기 공자극 분자는 세포 표면 분자로서, 항원에 대한 면역세포의 충분한 반응을 가져오는데 필요한 분자를 의미하며, 당업계에 알려진 것이라면 그 종류가 특별히 제한되지 않으나, 예를 들어 MHC 클래스 I 분자(MHC class I molecules), TNF 수용체 단백질(TNF receptor proteins), 면역글로불린-유사 단백질(Immunoglobulin-like proteins), 사이토카인 수용체(cytokine receptors), 인테그린(integrins), SLAM 단백질(signaling lymphocytic activation molecules), NK 세포 활성화 수용체(NK cell activating receptors), BTLA, Toll 리간드 수용체(Toll ligand receptor), OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1(CD11a/CD18, lymphocyte function-associated antigen-1), 4-1BB(CD137), B7-H3, CDS, ICAM-1, ICOS(CD278), GITR, BAFFR, LIGHT, HVEM(LIGHTR), KIRDS2, SLAMF7, NKp80(KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1(CD226), SLAMF4(CD244, 2B4), CD84, CD96(Tactile), CEACAM1, CRTAM, Ly9(CD229), CD160(BY55), PSGL1, CD100(SEMA4D), CD69, SLAMF6(NTB-A, Ly108), SLAM(SLAMF1, CD150, IPO-3), BLAME(SLAMF8), SELPLG(CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, CD83과 특이적으로 결합하는 리간드, PD-1 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다. 상기 공자극 도메인은 이러한 공자극 분자 및 이의 조합(1개 또는 2개 이상)으로 이루어진 군으로부터 선택된 분자의 세포 내 부분일 수 있다. 본원에서 제한되지 않는 실시예에 따르면, 본 발명의 키메라 항원 수용체는 공자극 도메인으로서 SLAMF4 (CD244, 2B4)를 포함할 수 있다. 구체적으로, 본 발명의 공자극 도메인은 서열번호 18의 아미노산 서열을 포함하는 것일 수 있다. The co-stimulatory molecule is a cell surface molecule, which means a molecule necessary to bring about a sufficient response of an immune cell to an antigen, and its kind is not particularly limited as long as it is known in the art. For example, MHC class I molecules (MHC class I molecules), TNF receptor proteins, immunoglobulin-like proteins, cytokine receptors, integrins, SLAM proteins (signaling lymphocytic activation molecules), NK cell activation Receptors (NK cell activating receptors), BTLA, Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1 (CD11a/CD18, lymphocyte function- associated antigen-1), 4-1BB(CD137), B7-H3, CDS, ICAM-1, ICOS(CD278), GITR, BAFFR, LIGHT, HVEM(LIGHTR), KIRDS2, SLAMF7, NKp80(KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL , CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1(CD226), SLAMF4(CD244, 2B4) , CD84, CD96(Tactile), CEACAM1, CR TAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162) , LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, a ligand that specifically binds to CD83, PD-1, and a combination thereof. The co-stimulatory domain may be an intracellular portion of a molecule selected from the group consisting of such co-stimulatory molecules and combinations thereof (one or two or more). According to an embodiment not limited herein, the chimeric antigen receptor of the present invention may include SLAMF4 (CD244, 2B4) as a costimulatory domain. Specifically, the costimulatory domain of the present invention may include the amino acid sequence of SEQ ID NO: 18.
상기 공자극 도메인은 신호전달 도메인의 N-말단 또는 C-말단에 연결될 수 있으며, 또한 복수개로 이루어진 신호전달 도메인의 사이에 포함될 수도 있다.The costimulatory domain may be connected to the N-terminus or C-terminus of the signaling domain, and may also be included between a plurality of signal transduction domains.
본 발명의 키메라 항원 수용체는 이러한 힌지(hinge)를 추가로 포함할 수 있다. 일반적으로 힌지는 항원 결합 도메인이 키메라 항원 수용체가 도입된 세포의 세포막과 일정 거리를 두고 보다 유연하게 표적 항원을 인식할 수 있도록 항원 결합 도메인과 막통과 도메인 사이에 도입되는 연결 부위이다. 상기 힌지는 CD8, CD28, CD3ζ, CD40, 4-1BB, OX40, CD84, CD166, CD8a, CD8b, ICOS, ICAM-1, CTLA-4, CD27, CD40/My88, NKGD2 및 그 조합으로 구성된 군으로부터 선택된 단백질로부터 유래된 것을 포함할 수 있다. 본원의 일 구현예에 따르면, 상기 힌지는 CD8a 유래의 힌지일 수 있으며, 서열번호 22를 포함하는 것일 수 있다.The chimeric antigen receptor of the present invention may further comprise such a hinge. In general, the hinge is a linking site in which the antigen-binding domain is introduced between the antigen-binding domain and the transmembrane domain so that the target antigen can be more flexibly recognized at a certain distance from the cell membrane of the cell into which the chimeric antigen receptor has been introduced. The hinge is selected from the group consisting of CD8, CD28, CD3ζ, CD40, 4-1BB, OX40, CD84, CD166, CD8a, CD8b, ICOS, ICAM-1, CTLA-4, CD27, CD40/My88, NKGD2, and combinations thereof. It may include those derived from proteins. According to one embodiment of the present application, the hinge may be a hinge derived from CD8a, and may include SEQ ID NO: 22.
본 발명의 키메라 항원 수용체는 N말단에 이러한 리더 서열을 추가로 포함하는 것일 수 있다. 리더 서열(leader sequence)은 시그널 펩타이드(signal peptide)로 불리기도 하며, 단백질의 N말단에 존재하여 해당 단백질이 분비 경로로 이동하도록 하며, 일반적으로 키메라 항원 수용체가 세포막에 발현되도록 하기 위해 N말단에 포함시킨다. 상기 리더 서열은 CD8, Megf10, FcRγ, Bai1, MerTK, TIM4, Stabilin-1, Stabilin-2, RAGE, CD300f, Integrin subunit αv, Integrin subunit β5, CD36, LRP1, SCARF1, C1Qa 및 Axl 및 그 조합으로 구성된 군에서 선택된 것을 포함할 수 있다. 본원의 일 구현예에 따르면, 상기 리더 서열은 CD8 유래의 것일 수 있으며, 서열번호 23을 포함하는 것일 수 있다.The chimeric antigen receptor of the present invention may further include such a leader sequence at the N-terminus. The leader sequence is also called a signal peptide, and exists at the N-terminus of the protein to allow the protein to move to the secretory pathway. In general, it is at the N-terminus to allow the chimeric antigen receptor to be expressed on the cell membrane. Include. The leader sequence consists of CD8, Megf10, FcRγ, Bai1, MerTK, TIM4, Stabilin-1, Stabilin-2, RAGE, CD300f, Integrin subunit αv, Integrin subunit β5, CD36, LRP1, SCARF1, C1Qa and Axl, and combinations thereof. It may include those selected from the group. According to one embodiment of the present application, the leader sequence may be derived from CD8, and may include SEQ ID NO: 23.
상기 키메라 항원 수용체를 이루는 각 도메인들은 직접 연결될 수 있으며, 또한 선택적으로, 짧은 올리고펩타이드 또는 폴리펩타이드 링커에 의해 연결될 수 있다. 상기 링커는 세포 외에 위치한 항체에 항원이 결합하였을 때 세포 내 도메인을 통한 세포 활성화를 유도할 수 있는 링커라면, 특별히 그 길이나 종류에 제한되지 않으며, 그 예로, (G4S)3 링커 즉, GGGGSGGGGSGGGGS 등을 사용할 수 있다.Each domain constituting the chimeric antigen receptor may be directly connected, and optionally, may be connected by a short oligopeptide or polypeptide linker. The linker is not particularly limited to its length or type, as long as it is a linker capable of inducing cell activation through an intracellular domain when the antigen is bound to an antibody located outside the cell, such as (G4S)3 linker, that is, GGGGSGGGGSGGGGS, etc. Can be used.
본 발명의 키메라 항원 수용체는 서열번호 24, 서열번호 25 및 서열번호 26으로 이루어진 군에서 선택된 서열을 포함하는 것일 수 있다.The chimeric antigen receptor of the present invention may include a sequence selected from the group consisting of SEQ ID NO: 24, SEQ ID NO: 25, and SEQ ID NO: 26.
본원의 일 구현예에 따르면, 본 발명의 키메라 항원 수용체는 NK 세포 또는 T세포에서 발현되어 존재하는 것일 수 있다. 상기 키메라 항원 수용체가 발현된 NK세포 또는 T세포는 암세포 상에 존재하는 클라우딘-3 영역에 결합하여 상기 NK세포 또는 T세포의 활성화를 유도하고, 활성화된 NK세포 또는 T세포는 세포독성 인자를 방출하고 암세포의 세포 용해 및/또는 세포 예정사를 유도한다.According to one embodiment of the present application, the chimeric antigen receptor of the present invention may be present by being expressed in NK cells or T cells. The NK cells or T cells expressing the chimeric antigen receptor bind to the claudin-3 region present on the cancer cells to induce activation of the NK cells or T cells, and the activated NK cells or T cells release cytotoxic factors. And induces cell lysis and/or cell death of cancer cells.
상기 기술적 과제를 달성하기 위한 다른 하나의 양태로서, 본 발명은 전술한 키메라 항원 수용체를 암호화하는 폴리뉴클레오타이드를 제공한다. 상기 폴리뉴클레오티드는 본원 발명의 키메라 항원 수용체 단백질을 암호화하는 한 이의 염기 조합이 특별히 제한되지 않으며, 당업계에 공지된 폴리뉴클레오티드 합성 기술에 의해 제작될 수 있다. 여기에서 키메라 항원 수용체에 대한 설명은 전술한 바와 같다.As another aspect for achieving the above technical problem, the present invention provides a polynucleotide encoding the above-described chimeric antigen receptor. The polynucleotide is not particularly limited in its base combination as long as it encodes the chimeric antigen receptor protein of the present invention, and may be prepared by a polynucleotide synthesis technique known in the art. Here, the description of the chimeric antigen receptor is as described above.
본원에서 제한되지 않는 일 실시예에 따르면, 본 발명의 폴리뉴클레오타이드는 클라우딘-3에 대해 특이적으로 결합하는 scFv를 코딩하는 서열번호 34 또는 서열번호 35의 염기서열을 포함할 수 있다. 또한, 본 발명의 폴리뉴클레오타이드는 CD8 유래 힌지를 코딩하는 서열번호 36의 염기서열을 포함할 수 있다. 또한, 본 발명의 폴리뉴클레오타이드는 막통과 도메인을 코딩하는 서열번호 37(NKG2D 유래), 서열번호 38(NKG2D 유래 변형) 및 서열번호 39(CD8 유래)의 염기서열 중 하나를 포함할 수 있다. 또한, 본 발명의 폴리뉴클레오타이드는 CD3ζ 유래 세포 내 신호전달 도메인을 코딩하는 서열번호 40의 염기서열을 포함할 수 있다. 또한, 본 발명의 폴리뉴클레오타이드는 SLAMF4 (CD244, 2B4) 유래 공자극 도메인을 코딩하는 서열번호 41의 염기서열을 포함할 수 있다. 또한, 본 발명의 폴리뉴클레오타이드는 CD8 리더를 코딩하는 서열번호 42의 염기서열을 포함할 수 있다.According to an embodiment not limited herein, the polynucleotide of the present invention may include the nucleotide sequence of SEQ ID NO: 34 or SEQ ID NO: 35 encoding scFv that specifically binds to claudin-3. In addition, the polynucleotide of the present invention may include the nucleotide sequence of SEQ ID NO: 36 encoding the hinge derived from CD8. In addition, the polynucleotide of the present invention may include one of the nucleotide sequences of SEQ ID NO: 37 (from NKG2D), SEQ ID NO: 38 (modification from NKG2D) and SEQ ID NO: 39 (from CD8) encoding the transmembrane domain. In addition, the polynucleotide of the present invention may include the nucleotide sequence of SEQ ID NO: 40 encoding the intracellular signaling domain derived from CD3ζ. In addition, the polynucleotide of the present invention may include the nucleotide sequence of SEQ ID NO: 41 encoding the costimulatory domain derived from SLAMF4 (CD244, 2B4). In addition, the polynucleotide of the present invention may include the nucleotide sequence of SEQ ID NO: 42 encoding the CD8 leader.
상기 기술적 과제를 달성하기 위한 또 다른 하나의 양태로서, 본 발명은 전술한 폴리뉴클레오타이드를 포함하는 재조합 벡터를 제공한다. 여기에서 폴리뉴클레오타이드에 대한 설명은 전술한 바와 같다. As another aspect for achieving the above technical problem, the present invention provides a recombinant vector comprising the polynucleotide described above. Here, the description of the polynucleotide is as described above.
본원에서 사용되는 용어 “벡터”는 숙주 세포가 본 발명의 키메라 항원 수용체를 발현하도록 형질전환시키기 위해 본 발명의 폴리뉴클레오타이드를 숙주 세포로 전달하는 전달체를 의미한다. 본 발명의 벡터는 임의의 상업적으로 입수가능한 발현 벡터로부터 선택될 수 있으며, ‘재조합’은 이러한 벡터가 원하는 구성을 가지도록 제조되었음을 의미한다. 벡터는 DNA, RNA, 또는 플라스미드일 수 있으며, 렌티바이러스 벡터, 아데노바이러스 벡터 또는 레트로바이러스 벡터와 같은 바이러스 벡터일 수 있다. 본 발명의 재조합 벡터는 키메라 항원 수용체를 발현시키기 위한 프로모터를 상기 키메라 항원 수용체를 암호화하는 폴리뉴클레오타이드와 작동가능하게 연결된 상태로 포함할 수 있다. 본 발명의 재조합 벡터는 키메라 항원 수용체 이외에 형질전환된 세포의 분화 및 성장을 위해 필요한 분화 인자 및 성장 인자가 발현될 수 있는 컨스트럭트를 추가로 포함할 수 있다.As used herein, the term “vector” refers to a carrier that delivers the polynucleotide of the present invention to a host cell in order to transform the host cell to express the chimeric antigen receptor of the present invention. The vector of the present invention may be selected from any commercially available expression vector, and “recombinant” means that such vector has been prepared to have the desired configuration. The vector may be DNA, RNA, or plasmid, and may be a viral vector such as a lentiviral vector, adenovirus vector or retroviral vector. The recombinant vector of the present invention may include a promoter for expressing a chimeric antigen receptor in a state operably linked to a polynucleotide encoding the chimeric antigen receptor. The recombinant vector of the present invention may further include a construct capable of expressing differentiation factors and growth factors necessary for differentiation and growth of transformed cells in addition to the chimeric antigen receptor.
본 발명의 벡터는 숙주 세포 게놈의 안전 하버에 전달될 수 있다. 제한되지 않는 일실시예로서 본 발명의 벡터는 attB, attP, attL 또는 attR을 포함할 수 있으며, 이에 따라 박테리오 파지 인테그레이즈(integrase)에 의해 숙주 세포 유전자 내 인식되는 삽입 부위에 도입될 수 있다.The vector of the present invention can be delivered to the safe harbor of the host cell genome. As a non-limiting example, the vector of the present invention may include attB, attP, attL or attR, and thus may be introduced into an insertion site recognized in the host cell gene by bacteriophage integrase. .
상기 기술적 과제를 달성하기 위한 또 다른 하나의 양태로서, 본 발명은 상기 키메라 항원 수용체를 포함하는 단리된 숙주 세포를 제공한다. 여기에서 사용되는 용어는 전술한 바와 같다.As another aspect for achieving the above technical problem, the present invention provides an isolated host cell comprising the chimeric antigen receptor. The terms used herein are as described above.
상기 숙주 세포는 이후 이를 필요로 하는 대상에 투여될 수 있다. 예컨대, 본 발명의 숙주 세포는 클라우딘-3에 특이적으로 결합하는 키메라 항원 수용체를 포함하므로, 클라우딘-3를 노출하는 신생물(neoplasm), 특히 악성종양(malignant tumor)을 보유한 환자에게 투여될 경우 이러한 신생물을 선택적으로 제거할 수 있게 된다. 이때, 상기 숙주 세포는 상기 숙주 세포가 투여될 대상으로부터 수득된, 즉 자가유래(autologous) 세포이거나, 상기 숙주 세포가 투여될 대상이 아닌 동종이계(allogeneic)의 개체로부터 수득된 것일 수 있다. The host cell can then be administered to a subject in need thereof. For example, since the host cell of the present invention contains a chimeric antigen receptor that specifically binds to claudin-3, when administered to a patient with a neoplasm that exposes claudin-3, in particular, a malignant tumor These neoplasms can be selectively removed. At this time, the host cell may be obtained from a subject to which the host cell is to be administered, that is, an autologous cell, or may be obtained from an allogeneic subject other than the subject to which the host cell is to be administered.
본원에서 숙주 세포는 면역세포일 수 있으며, 덜 분화된 세포일 수 있다. 본 발명에서 덜 분화된 세포에 게놈 조작을 한 이후에 형질전환된 덜 분화된 세포를 분화시키는 과정을 통해 게놈 조작된 분화된 면역세포를 수득할 수 있다. 구체적으로, 상기 숙주 세포는 중간엽줄기세포(MSCs), 역분화유도줄기세포(iPSCs), CD34 세포, 조혈 내피 세포, 조혈모세포(HSCs), 조혈 다능성 전구 세포, 배아 줄기 세포(ESCs), 또는 면역 세포일 수 있다. 상기 면역세포는 T세포 전구체, NK세포 전구체, T 세포, NK(Natural Killer) 세포, NKT(Natural Killer T) 세포, B세포, 단핵구, 대식세포 및 수지상세포로 이루어지는 군에서 선택되는 것일 수 있다.The host cell herein may be an immune cell or a less differentiated cell. In the present invention, the genome-engineered differentiated immune cells can be obtained through the process of differentiating the transformed less differentiated cells after the genome manipulation of the less differentiated cells. Specifically, the host cells include mesenchymal stem cells (MSCs), dedifferentiation inducing stem cells (iPSCs), CD34 cells, hematopoietic endothelial cells, hematopoietic stem cells (HSCs), hematopoietic pluripotent progenitor cells, embryonic stem cells (ESCs), Or it may be an immune cell. The immune cells may be selected from the group consisting of T cell precursors, NK cell precursors, T cells, NK (Natural Killer) cells, NKT (Natural Killer T) cells, B cells, monocytes, macrophages and dendritic cells.
본 발명에서 사용되는 용어 “NK 세포”는 골수에서 림프성 전구 세포로부터 발생되는 단핵 세포로서, 형태학적 특색 및 생물학적 특성은 전형적으로 클러스터 결정기 (CD) CD16, CD56, 및/또는 CD57의 발현; 세포 표면 상의 알파/베타 또는 감마/델타 TCR 복합체의 부재; "자기" 주요 조직적합성 복합체 (MHC)/인간 백혈구 항원 (HLA) 단백질을 발현하는데 실패한 표적 세포에 결합하여 사멸시키는 능력; 및 활성화 NK 수용체에 대한 리간드를 발현하는 종양 세포 또는 다른 이환 세포를 사멸시키는 능력을 포함한다. NK 세포는 선행 면역화 또는 활성화에 대한 필요없이 여러 유형의 종양 세포주에 결합하여 사멸시키는 능력을 특징으로 한다. NK 세포는 또한 면역계에 대해 조절 효과를 발휘하는 가용성 단백질 및 시토카인을 방출할 수 있고; 다중 라운드의 세포 분열을 거쳐 모 세포와 유사한 생물학적 특성을 갖는 딸 세포를 생산할 수 있다. 인터페론 및/또는 시토카인에 의한 활성화 시, NK 세포는 NK 세포와 표적 세포 사이의 직접적, 물리적 접촉을 필요로 하는 메카니즘에 의해 종양 세포 및 세포 내 병원체에 의해 감염된 세포의 용해를 매개한다. 표적 세포의 용해는 NK 세포로부터 결합된 표적의 표면으로의 세포독성 과립, 및 표적 형질 막을 통과하여 아폽토시스 또는 프로그램화된 세포 사멸을 유도하는 이펙터 단백질, 예컨대 퍼포린 및 그랜자임 B의 방출을 수반한다. 정상의, 건강한 세포는 NK 세포에 의한 용해로부터 보호된다. NK 세포 활성은 자극 및 억제 신호 둘 다를 수반하는 복합 메카니즘에 의해 조절된다.The term “NK cells” as used herein refers to mononuclear cells arising from lymphoid progenitor cells in the bone marrow, and the morphological and biological properties typically include the expression of cluster determinant (CD) CD16, CD56, and/or CD57; Absence of alpha/beta or gamma/delta TCR complexes on the cell surface; The ability to bind and kill target cells that fail to express the “self” major histocompatibility complex (MHC)/human leukocyte antigen (HLA) protein; And the ability to kill tumor cells or other diseased cells that express a ligand for the activating NK receptor. NK cells are characterized by their ability to bind and kill several types of tumor cell lines without the need for prior immunization or activation. NK cells can also release soluble proteins and cytokines that exert a modulating effect on the immune system; Multiple rounds of cell division can produce daughter cells with similar biological properties to the parent cell. Upon activation by interferons and/or cytokines, NK cells mediate the lysis of tumor cells and cells infected by intracellular pathogens by mechanisms that require direct, physical contact between NK cells and target cells. Lysis of target cells involves the release of cytotoxic granules from NK cells to the surface of the bound target, and effector proteins such as Perforin and Granzyme B that pass through the target plasma membrane and induce apoptosis or programmed cell death. . Normal, healthy cells are protected from lysis by NK cells. NK cell activity is regulated by a complex mechanism involving both stimulating and inhibitory signals.
본 발명에서 용어 “T 세포”는 흉선에서 유래하는 림프구로서, 세포의 면역에 주된 역할을 하는 림프구를 의미한다. 상기 T 세포는 CD4+ T세포(도움 T 세포, TH 세포), CD8+ T세포(세포독성 T 세포, CTL), 기억 T 세포, 조절 T 세포(Treg 세포) 자연살해 T 세포 등 있으며, 본 발명에서 키메라 항원 수용체가 도입되는 T 세포는 바람직하게는 CD8+T세포일 수 있으나, 이에 제한되지 않는다.In the present invention, the term “T cell” refers to a lymphocyte derived from the thymus gland and refers to a lymphocyte that plays a major role in the immunity of cells. The T cells include CD4+ T cells (helper T cells, TH cells), CD8+ T cells (cytotoxic T cells, CTL), memory T cells, regulatory T cells (Treg cells) natural killer T cells, and the like. The T cell into which the antigen receptor is introduced may preferably be a CD8 + T cell, but is not limited thereto.
일례로, 항원 특이적 CD8+T 세포는 암의 면역치료에 가장 효과적인 면역 세포로 평가되고 있다. 그러나 암의 면역치료에 사용할 항원 특이적 CD8+T 세포를 분리하기 위해서는 복잡한 과정과 오랜 기간이 필요하다. 이에, 항원 특이적 CD8+T 세포를 빠른 시간 내에 대량 생산하기 위한 방법 중 하나로 키메라 항원 수용체(chimeric antigen receptor, CAR)-변형된 T 세포가 고안되었다(Porter DL et al., N Engl J Med. 2011;365:725-33.). 이에 제한되지 않으나, 일반적인 일례로, 키메라 항원 수용체는, 특정 항원을 인식하는 항체의 scFv를 T 세포 활성화를 가져오는 신호전달 도메인, 바람직하게는 공자극분자 및 CD3ξ의 신호전달도메인과 결합시킨 형태의 단백질로, 키메라 항원 수용체를 구성하는 항체 부분이 특정 항원을 인식할 경우, 강력한 T 세포 증식 신호전달을 유도하여 CD8+T 세포를 선택적으로 증식시키는 원리를 가지고 있다. 이렇게 증식된 세포는 암의 면역치료 작용에 기여한다.For example, antigen-specific CD8 + T cells are evaluated as the most effective immune cells for immunotherapy of cancer. However, a complicated process and a long period are required to isolate antigen-specific CD8 + T cells for use in cancer immunotherapy. Accordingly, a chimeric antigen receptor (CAR)-modified T cell was designed as one of the methods for mass-producing antigen-specific CD8 + T cells in a short time (Porter DL et al ., N Engl J Med. 2011;365:725-33.). Although not limited thereto, as a general example, the chimeric antigen receptor is a form in which the scFv of an antibody that recognizes a specific antigen is combined with a signaling domain that causes T cell activation, preferably a co-stimulatory molecule and a signaling domain of CD3ξ. As a protein, when the antibody portion constituting the chimeric antigen receptor recognizes a specific antigen, it induces strong T cell proliferation signaling to selectively proliferate CD8 + T cells. These proliferated cells contribute to the immunotherapy of cancer.
상기 기술적 과제를 달성하기 위한 또 다른 하나의 양태로서, 본 발명은 상기 숙주 세포를 유효성분으로 포함하는 암의 예방 또는 치료용 약제학적 조성물을 제공한다. 여기에서 사용되는 용어는 전술한 바와 같다.As another aspect for achieving the above technical problem, the present invention provides a pharmaceutical composition for preventing or treating cancer comprising the host cell as an active ingredient. The terms used herein are as described above.
본 발명에서 키메라 항원 수용체가 발현되는 숙주 세포는 그 자체로 또는 분화되어 면역세포로서 개체에 투여되어 항암 활성을 나타낼 수 있다. 구체적으로, 본 발명의 키메라 항원 수용체가 발현되도록 변형된 면역세포는 정상세포 대비 암세포에 특이적으로 노출된 클라우딘-3(특히, ECL-2 영역)을 특이적으로 인지하여 결합하고, 이에 따른 면역세포 활성화에 따라 암세포 치료효과를 가질 수 있음을 알 수 있다. 기존에는 혈액암 위주의 키메라 항원 수용체-발현 면역세포 치료제 기술이 다수를 이루고, 또한 기존의 키메라 항원 수용체 기술들이 정상세포를 표적화할 가능성이 높은 것을 고려하면, 본원 발명은 정상세포 대비 고형암세포만을 특이적으로 표적화할 수 있어 부작용이 적으면서도(특히, 정상세포에 대한 독성) 고형암에 대한 우수한 치료 효과를 가질 수 있다. 따라서 본원 발명은 상기 본원 발명의 키메라 항원 수용체-발현 세포를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물을 제공할 수 있다. 본 발명의 약제학적 조성물이 치료하고자 하는 고형암은 난소암, 결장암, 방광암, 폐암, 간암, 위암, 식도암, 유방암, 전립선암, 췌장암, 자궁암, 자궁경부암, 흑색종, 대장암, 신장암 및 전이성 흉막 종양으로 이루어진 군으로부터 선택되는 것일 수 있으나, 이에 제한되지 않는다.In the present invention, the host cell expressing the chimeric antigen receptor may be administered to an individual as an immune cell by itself or differentiated to exhibit anticancer activity. Specifically, immune cells modified to express the chimeric antigen receptor of the present invention specifically recognize and bind to claudin-3 (particularly, ECL-2 region) exposed to cancer cells compared to normal cells, and thus immunity It can be seen that it can have a cancer cell therapeutic effect according to cell activation. In the past, many technologies for treating hematologic cancer-oriented chimeric antigen receptor-expressing immune cells have been made, and considering that the existing chimeric antigen receptor technologies have a high possibility of targeting normal cells, the present invention is specific to only solid cancer cells compared to normal cells. Since it can be targeted specifically, it can have an excellent therapeutic effect against solid cancer while having few side effects (especially, toxicity to normal cells). Accordingly, the present invention can provide a pharmaceutical composition for preventing or treating cancer comprising the chimeric antigen receptor-expressing cells of the present invention as an active ingredient. Solid cancer to be treated by the pharmaceutical composition of the present invention is ovarian cancer, colon cancer, bladder cancer, lung cancer, liver cancer, gastric cancer, esophageal cancer, breast cancer, prostate cancer, pancreatic cancer, uterine cancer, cervical cancer, melanoma, colon cancer, kidney cancer and metastatic pleura It may be selected from the group consisting of tumors, but is not limited thereto.
본 발명의 약제학적 조성물은 전술한 키메라 항원 수용체를 발현하는 숙주 세포를 하나 이상의 제약상 또는 생리학상 허용되는 담체, 희석제 또는 부형제와 조합으로 포함할 수 있다. 상기 조성물은 완충제, 예컨대 중성 완충 염수, 포스페이트 완충 염수 등; 탄수화물, 예컨대 글루코스, 만노스, 수크로스 또는 덱스트란, 만니톨; 단백질; 폴리펩타이드 또는 아미노산, 예컨대 글리신; 항산화제; 킬레이팅제, 예컨대 EDTA 또는 글루타티온; 아주반트 (예를 들어, 수산화알루미늄); 및 방부제를 포함할 수 있다. 본 발명의 약제학적 조성물은 한 측면에서 정맥내 투여를 위해 제제화된다.The pharmaceutical compositions of the present invention may comprise host cells expressing the aforementioned chimeric antigen receptor in combination with one or more pharmaceutically or physiologically acceptable carriers, diluents or excipients. The composition may include buffering agents such as neutral buffered saline, phosphate buffered saline, and the like; Carbohydrates such as glucose, mannose, sucrose or dextran, mannitol; protein; Polypeptides or amino acids such as glycine; Antioxidants; Chelating agents such as EDTA or glutathione; Adjuvant (eg, aluminum hydroxide); And preservatives. The pharmaceutical composition of the present invention is formulated for intravenous administration in one aspect.
본 발명의 약제학적 조성물은 치료할 (또는 예방할) 질환에 적절한 방식으로 투여될 수 있다. 투여의 양 및 빈도는 환자의 상태, 환자의 질환의 종류 및 중증도와 같은 인자에 의해 결정될 것이지만, 적절한 투여량은 임상 시험에 의해 결정될 것이다.The pharmaceutical composition of the present invention can be administered in a manner suitable for the disease to be treated (or prevented). The amount and frequency of administration will be determined by factors such as the patient's condition, the type and severity of the patient's disease, but the appropriate dosage will be determined by clinical trials.
한 실시양태에서, 약제학적 조성물은 예를 들어 내독소, 미코플라스마, 복제 적격 렌티바이러스 (RCL), p24, VSV-G 핵산, HIV gag, 잔류 항-CD3/항-CD28 코팅된 비드, 마우스 항체, 모여진 인간 혈청, 소 혈청 알부민, 소 혈청, 배양 배지 성분, 벡터 패키징 세포 또는 플라스미드 성분, 박테리아 및 진균으로 이루어진 군으로부터 선택된 오염물이 실질적으로 없고, 예를 들어 검출가능한 수준의 오염물이 없다. In one embodiment, the pharmaceutical composition is for example endotoxin, mycoplasma, replication competent lentivirus (RCL), p24, VSV-G nucleic acid, HIV gag, residual anti-CD3/anti-CD28 coated beads, mouse antibody , Contaminants selected from the group consisting of aggregated human serum, bovine serum albumin, bovine serum, culture medium components, vector packaging cells or plasmid components, bacteria and fungi, for example, free of detectable levels of contaminants.
상기 '개체'란 동물, 바람직하게는 포유동물, 특히 인간을 포함하는 동물일 수 있으며, 동물에서 유래한 세포, 조직, 기관 등일 수도 있다. 상기 개체는 상기 효과가 필요한 환자(patient) 일 수 있다.The'individual' may be an animal, preferably an animal including a mammal, particularly a human, and may be a cell, tissue, organ, etc. derived from an animal. The individual may be a patient in need of the effect.
본 발명의 상기 '치료'는 암 또는 암의 증상을 개선시키는 것을 포괄적으로 지칭하고, 이는 이러한 질환을 치유하거나, 실질적으로 예방하거나, 또는 상태를 개선시키는 것을 포함할 수 있으며, 암으로부터 비롯된 한 가지 증상 또는 대부분의 증상을 완화시키거나, 치유하거나 예방하는 것을 포함하나, 이에 제한되는 것은 아니다.The'treatment' of the present invention refers generically to improving the symptoms of cancer or cancer, which may include curing, substantially preventing, or improving the condition, and one originating from cancer. It includes, but is not limited to, alleviating, curing, or preventing symptoms or most of the symptoms.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
실시예 1: 클라우딘-3(CLDN3)에 특이적으로 결합하는 ScFv 스크리닝Example 1: ScFv screening specifically binding to claudin-3 (CLDN3)
1-1 항원의 준비1-1 Preparation of antigen
본 발명의 클라우딘-3 결합 도메인을 스크리닝 하는 과정에서, 클라우딘-3는 발현 세포주 및 클라우딘-3 리포파티클(lipoparticle)의 형태로 제공되었다. 클라우딘-3(NCBI reference number_O15551(서열번호 1 참조)) 발현 세포주를 만들기 위하여CHO-K1 세포주를 이용하였다. 클라우딘-3 발현 벡터를 제작하기 위하여 pcDNA3.1(invitrogen)에 제한효소 HindIII, BamH1를 이용하여 클라우딘-3 유전자를 삽입하였다. 제작한 클라우딘-3 발현 벡터를 트랜스펙션(transfection) 후 400 ㎍/㎖ 의 제네티신(geneticin, g418)을 처리하여 형질전환체들을 선별하였다. 상기 클라우딘-3를 표면에 노출하고 있는 리포파티클(이하, 클라우딘-3 리포파티클로 칭함)은 인테그랄 몰레큘러(integralmolecular, Cat. No. RR-0733A)에서 주문하여 사용하였다.In the process of screening the claudin-3 binding domain of the present invention, claudin-3 was provided in the form of an expression cell line and claudin-3 lipoparticles. CHO-K1 cell line was used to make a cell line expressing claudin-3 (NCBI reference number_O15551 (see SEQ ID NO: 1)). To construct a claudin-3 expression vector, the claudin-3 gene was inserted into pcDNA3.1 (invitrogen) using restriction enzymes HindIII and BamH1. The prepared claudin-3 expression vector was transfected and treated with 400 µg/ml geneticin (g418) to select transformants. The lipoparticles exposing the claudin-3 to the surface (hereinafter referred to as claudin-3 lipoparticles) were ordered and used by Integralmolecular (Cat. No. RR-0733A).
1-2. scFv phage 선별1-2. scFv phage screening
클라우딘-3에 특이적으로 결합하는 항체를 스크리닝하기 위하여 파지디스플레이법(phage library display)을 이용하였다. 라이브러리는 합성한 인간 scFv 라이브러리를 사용하였으며, 라이브러리에 대한 구체적인 정보는 A Novel Human scFv Library with Non-Combinatorial Synthetic CDR Diversity (Bai X. et al., PLoS ONE., 10(10):e0141045 (2015))에 명시되어 있다. scFv 라이브러리에서 발현하는 scFv에는 HA tag을 태깅(tagging)하여 anti-HA FITC 항체(Genscript, A01621)에 의해 검출이 될 수 있도록 하였다. 상기 scFv 라이브러리를 사용하여 다음과 같이 바이오패닝(Biopanning)을 진행하였다.In order to screen for antibodies that specifically bind to claudin-3, a phage library display was used. The library was a synthesized human scFv library, and for specific information on the library, see A Novel Human scFv Library with Non-Combinatorial Synthetic CDR Diversity (Bai X. et al ., PLoS ONE., 10(10):e0141045 (2015) ). The scFv expressed in the scFv library was tagged with an HA tag so that it could be detected by an anti-HA FITC antibody (Genscript, A01621). Biopanning was performed as follows using the scFv library.
먼저 상기 실시예 1-1에서 제조한 클라우딘-3 발현 CHO-K1 세포주(이하, CHO-CLDN3로 칭함)를 이용하여 바이오패닝을 진행하였다. scFv 라이브러리 스톡을 3% FBS/PBS로 상온에서 블로킹(blocking)을 진행하였다. Trypsin을 이용하여 각각 1×10 7 개씩 CHO-CLDN3 세포와 CHO-K1세포(negative cell line)를 준비한다. CHO-K1세포(negative cell line)을 상기 블로킹 중인 라이브러리 스톡과 혼합하여, 상온에서 1시간 동안 디플리션(depletion)을 진행한다. 디플리션이 끝난 후, 원심분리하여 수득한 상등액을 항원인 CHO-CLDN3 세포와 혼합하여 상온에서 1시간 반응시킨다. 원심분리하여 수득한 세포 펠렛을 3% FBS/PBS로 세척한 다음, 특이적으로 결합한 scFv-파지만 용리될 수 있도록 100 mM TEA(triethylamine)로 상온에서 5분 동안 반응시키고, pH 8.5 Tris로 중화반응을 거쳐 scFv-항원 컨쥬게이트(conjugate)형태로 준비하였다. 준비된 scFv-항원 컨쥬게이트(conugate)를 E.coli TG1 세포에 첨가하여 감염시킨 다음, LB/앰피실린(ampicillin)/글루코스(glucose) 아가 배지에서 37℃로 하룻밤 배양하였다. 상기 E.coli TG1 세포를 SB/앰피실린 배지로 옮겨 OD600 값이 0.5가 될 때까지 배양한 다음, 1×10 11 ~ 1×10 12의 헬퍼 파지(helper phage)를 첨가하고 다시 1시간 동안 37℃에서 배양한 후, 카나마이신(kanamycin)을 첨가하여 다시 하룻밤 배양하였다. 상기 하룻밤 배양한 배양액을 원심분리한 다음, 상층액을 PEG 용액과 4℃에서 반응시킨 후, 다시 원심분리하여 펠렛을 분리하였다. 펠렛을 PBS에 녹인 다음, 이를 원심분리하여 수득한 상층액을 scFv 라이브러리 용액으로 확보하였다. 이와 같은 과정을 4차례 반복하여 클라우딘-3의 항원과 특이적 결합을 하는 scFv 후보군을 확보하였다.First, biopanning was performed using the claudin-3 expressing CHO-K1 cell line (hereinafter referred to as CHO-CLDN3) prepared in Example 1-1. The scFv library stock was blocked with 3% FBS/PBS at room temperature. Prepare 1×10 7 CHO-CLDN3 cells and CHO-K1 cells (negative cell line) each using trypsin. CHO-K1 cells (negative cell line) are mixed with the blocking library stock, and depletion is performed at room temperature for 1 hour. After the depletion is over, the supernatant obtained by centrifugation is mixed with the antigen CHO-CLDN3 cells and reacted at room temperature for 1 hour. The cell pellet obtained by centrifugation was washed with 3% FBS/PBS, and then reacted with 100 mM TEA (triethylamine) for 5 minutes at room temperature so that only specifically bound scFv-phages could be eluted, and neutralized with pH 8.5 Tris. After the reaction, it was prepared in the form of an scFv-antigen conjugate. The prepared scFv-antigen conjugate (conugate) was added to E. coli TG1 cells for infection, and then incubated overnight at 37°C in LB/ampicillin/glucose agar medium. The E. coli TG1 cells were transferred to SB/Ampicillin medium and cultured until the OD600 value reached 0.5, and then 1×10 11 to 1×10 12 helper phage was added, followed by 37 for 1 hour. After incubation at °C, kanamycin was added and cultured again overnight. After the overnight culture was centrifuged, the supernatant was reacted with the PEG solution at 4°C, and then centrifuged again to separate the pellet. After dissolving the pellet in PBS, the supernatant obtained by centrifugation was obtained as a scFv library solution. This process was repeated 4 times to obtain a scFv candidate group that specifically binds to the claudin-3 antigen.
다음으로 리포파티클을 이용하여 바이오패닝을 진행하였다. scFv라이브러리 스톡을 리포파티클 null(클라우딘-3을 함유하지 않는 리포파티클)과 혼합하여 4% 탈지유(skim milk)로 상온에서 1시간 동안 블로킹(blocking) 및 디플리션(depletion)을 동시에 진행하였다. 면역튜브(immunotube)에 클라우딘-3 리포파티클을 포함한 PBS 1 ml을 넣고 4℃에서 16시간 반응시켜 튜브 안쪽 표면에 코팅하였다. 항원 용액을 따라내고 1회 세척하여 코팅되지 않은 항원을 제거하였다. 상기 면역튜브에 코팅해 놓은 항원(클라우딘-3 리포파티클)을 4% 탈지유(skim milk)로 상온에서 1시간 동안 블로킹을 진행하였다. 블로킹이 끝난 후 탈지유를 제거하고, scFv 라이브러리 스톡과 혼합하여 상온에서 1시간 동안 반응시켰다. PBS로 세척한 다음, 특이적으로 결합한 scFv-파지만 용리될 수 있도록 100 mM TEA로 상온에서 5분 동안 반응시키고 pH 8.5 Tris로 중화반응을 거쳐 scFv-항원 컨쥬게이트(conjugate)형태로 준비하였다. 준비된 scFv-항원 컨쥬게이트(conugate)를 E.coli TG1 세포에 첨가하여 감염시킨 다음, LB/앰피실린(ampicillin)/글루코스(glucose) 아가 배지에서 37℃로 하룻밤 배양하였다. 상기 E.coli TG1 세포를 SB/앰피실린 배지로 옮겨 OD600 값이 0.5가 될 때까지 배양한 다음, 1×10 11 ~ 1×10 12의 헬퍼 파지(helper phage)를 첨가하고 다시 1시간 동안 37℃에서 배양한 후, 카나마이신(kanamycin)을 첨가하여 다시 하룻밤 배양하였다. 상기 하룻밤 배양한 배양액을 원심분리한 다음, 상층액을 PEG 용액과 4℃에서 반응시킨 후, 다시 원심분리하여 펠렛을 분리하였다. 펠렛을 PBS에 녹인 다음, 이를 원심분리하여 상층액을 scFv 라이브러리 용액으로 확보하였다. 이와 같은 과정을 4차례 반복하여 클라우딘-3의 항원과 특이적 결합을 하는 scFv 후보군을 확보하였다.Next, biopanning was performed using lipoparticles. The scFv library stock was mixed with lipoparticle null (lipoparticle not containing claudin-3), and blocking and depletion were simultaneously performed for 1 hour at room temperature with 4% skim milk. 1 ml of PBS containing claudin-3 lipoparticles was added to an immunotube and reacted at 4° C. for 16 hours to coat the inner surface of the tube. The antigen solution was decanted and washed once to remove uncoated antigen. The antigen (Cludin-3 lipoparticle) coated on the immune tube was blocked with 4% skim milk for 1 hour at room temperature. After blocking was completed, the skim milk was removed, mixed with scFv library stock, and reacted at room temperature for 1 hour. After washing with PBS, reacted with 100 mM TEA for 5 minutes at room temperature so that only specifically bound scFv-phages could be eluted, and neutralized with pH 8.5 Tris to prepare a scFv-antigen conjugate form. The prepared scFv-antigen conjugate (conugate) was added to E. coli TG1 cells for infection, and then incubated overnight at 37°C in LB/ampicillin/glucose agar medium. The E. coli TG1 cells were transferred to SB/Ampicillin medium and cultured until the OD600 value reached 0.5, and then 1×10 11 to 1×10 12 helper phage was added, followed by 37 for 1 hour. After incubation at °C, kanamycin was added and cultured again overnight. After the overnight culture was centrifuged, the supernatant was reacted with the PEG solution at 4°C, and then centrifuged again to separate the pellet. The pellet was dissolved in PBS, and then centrifuged to obtain the supernatant as an scFv library solution. This process was repeated 4 times to obtain a scFv candidate group that specifically binds to the antigen of claudin-3.
1-3. 클라우딘-3(CLDN3)에 특이적으로 결합하는 scFv 항체 선별1-3. Screening for scFv antibodies that specifically bind to claudin-3 (CLDN3)
실시예 1-2에서 확보된 scFv 후보군에서 결합력이 우수한 scFv를 선별하기 위하여, 클라우딘-3 발현 세포주에 대하여 ELISA 분석을 수행하였다. 클라우딘-3 발현 세포주(이하, L-클라우딘-3 세포로 칭함)는 L cell 에 상기 실시예 1-1에서 제작한 클라우딘-3 발현 벡터를 트랜스펙션 후, 600 ㎍/㎖의 제네티신(geneticin, g418)을 처리하여 형질전환체들을 선별하여 이용하였다. 상기 실시예 1-2에서 각 단계의 패닝이 끝난 라이브러리 스톡 각각(클라우딘-3 발현 세포주 또는 클라우딘-3 리포파티클을 이용한 스크리닝 결과물들 따로 이용)을 SB/앰피실린(ampicillin)/글루코스(glucose) 아가 배지에서 하룻밤 배양한 다음, 각각의 단일 콜로니(single colony)를 SB/앰피실린 배지 200 ㎕ 에 접종하여 37℃에서 3시간 동안 배양한 다음, IPTG 농도가 1 mM이 되도록 섞어준 후 다시 30℃에서 하룻밤 배양하였다. 배양이 완료되면 배양액을 원심분리하여 세포만을 분리한 다음, TES 버퍼를 이용하여 세포를 용해시켜서 scFv를 확보하였다. 확보한 scFv를 L-클라우딘-3 세포가 1×10 5씩 분주된 플레이트에 처리하여 상온에서 1시간 동안 반응시킨 다음, 이차 항체(anti-HA HRP, santacruz, Cat. No.sc-7392)를 첨가하여 40분 동안 반응시켰다. 이차 항체반응이 완료되면 TMB를 첨가하여 발색반응을 시키고 ELISA 리더기(450 nm)를 이용하여 분석하였다. ELISA 분석값을 상대적으로 비교하여 상위 23개의 우수한 scFv를 1차적으로 선별하였다(1C4, 1F11, 2A12, 2B4, 2E5, 2E12, 2F8, 3A2, 3H8, 4A2, 4A3, 4B7, 4B10, 4D7, 3D2, 3D7, 3F11, 4A8, 4A9, 4A12, 4E4, 4G3, 4G7).In order to select the scFv having excellent binding ability from the scFv candidate group obtained in Example 1-2, ELISA analysis was performed on the claudin-3 expressing cell line. The claudin-3 expressing cell line (hereinafter referred to as L-claudin-3 cells) was transfected with the claudin-3 expression vector prepared in Example 1-1 to L cells, and then 600 μg/ml of geneticin ( geneticin, g418) was used to select transformants. Each of the panned library stocks in each step in Example 1-2 (screening results using a claudin-3 expressing cell line or claudin-3 lipoparticles separately) was used as SB/ampicillin/glucose agar. After overnight incubation in the medium, each single colony was inoculated in 200 µl of SB/Ampicillin medium, incubated at 37°C for 3 hours, and then mixed so that the IPTG concentration became 1 mM, and then again at 30°C. Incubate overnight. When the culture was completed, the culture medium was centrifuged to separate only the cells, and then the cells were lysed using a TES buffer to obtain scFv. The obtained scFv was treated on a plate in which L-cladin-3 cells were dispensed at 1×10 5 each, reacted at room temperature for 1 hour, and then a secondary antibody (anti-HA HRP, santacruz, Cat. No. sc-7392) was added. It was added and reacted for 40 minutes. When the secondary antibody reaction was completed, TMB was added to perform a color reaction and analyzed using an ELISA reader (450 nm). By comparing the ELISA analysis values, the top 23 excellent scFvs were primarily selected (1C4, 1F11, 2A12, 2B4, 2E5, 2E12, 2F8, 3A2, 3H8, 4A2, 4A3, 4B7, 4B10, 4D7, 3D2, 3D7, 3F11, 4A8, 4A9, 4A12, 4E4, 4G3, 4G7).
상기 ELISA를 통하여 선별한 scFv 후보들에 대하여, 유세포 분석기(Flow cytometry)를 이용해 CHO-CLDN3 세포와의 결합여부를 확인하였다. 대조군으로 본연의 CHO-K1세포를 이용하였다. 계대배양 중인 세포를 trypsin을 이용하여 단일 세포단위로 분리하여 3% FBS/PBS에 준비하였다. 상기 선별된 scFv 후보들을 SB/앰피실린 배지 5ml에 접종하여 37℃에서 3시간 동안 배양한 다음, IPTG 농도가 1 mM이 되도록 섞어준 후 다시 30℃에서 하룻밤 배양하였다. 배양이 완료되면 배양액을 원심분리하여 세포만을 분리한 다음, TES 버퍼를 이용하여 세포를 용해시켜서 scFv를 확보하였다. CHO-K1세포(negative cell line, 대조군)와 CHO-CLDN3 세포(실험군)를 각 그룹마다 각각 2×10 5 세포씩 들어가도록 3% FBS/PBS에 준비한 다음, 상기 확보된 scFv를 처리하여 상온에서 1시간 반응하였다. 반응이 완료되면 3% FBS/PBS로 세척 후, anti-HA taq FITC 항체를 1:100으로 희석(3% FBS/PBS 100 ㎕ 으로 희석)하여 100 ul를 처리하고 상온에서 1시간 동안 반응하였다. 반응 완료 후 세척하고, BD FACS Calibur로 분석하였다. 이때 상업적으로 판매되고 있는 anti-CLDN3 (FAB4620F, R&D systems) 항체를 비교군으로 사용하였다. 대조군(도 1 참조)에 비하여 실험군(도 2 참조)에서만 피크의 이동이 일어나는 scFv 후보군들을 선별하였다(2B4, 4A2, 4B7, 4B10, 4D7, 4A8, 4A9, 4A12, 4E4, 4G3, 4G7).With respect to the scFv candidates selected through the ELISA, binding to CHO-CLDN3 cells was confirmed using flow cytometry. As a control, native CHO-K1 cells were used. Cells being subcultured were separated into single cell units using trypsin and prepared in 3% FBS/PBS. The selected scFv candidates were inoculated into 5 ml of SB/Ampicillin medium, incubated at 37°C for 3 hours, mixed so that the IPTG concentration was 1 mM, and cultured again at 30°C overnight. When the culture was completed, the culture medium was centrifuged to separate only the cells, and then the cells were lysed using a TES buffer to obtain scFv. CHO-K1 cells (negative cell line, control) and CHO-CLDN3 cells (experimental group) were prepared in 3% FBS/PBS to enter 2×10 5 cells for each group, and then treated with the obtained scFv at room temperature. It reacted for 1 hour. Upon completion of the reaction, after washing with 3% FBS/PBS, the anti-HA taq FITC antibody was diluted 1:100 (diluted with 100 μl of 3% FBS/PBS), treated with 100 ul, and reacted at room temperature for 1 hour. After completion of the reaction, it was washed and analyzed with BD FACS Calibur. At this time, commercially available anti-CLDN3 (FAB4620F, R&D systems) antibody was used as a control group. Compared to the control group (see FIG. 1), scFv candidate groups in which peak shift occurred only in the experimental group (see FIG. 2) were selected (2B4, 4A2, 4B7, 4B10, 4D7, 4A8, 4A9, 4A12, 4E4, 4G3, 4G7).
다음으로, 클라우딘-3 리포파티클을 이용한 최종 바이오패닝 결과(데이터 미도시)와 상기 실험 단계들에서 선별된 scFv 후보군의 결과를 비교하였다. 선별된 scFv에 대하여 시퀀싱(sequencing)을 수행하였고, 클라우딘-3 리포파티클 및 클라우딘-3 발현 세포주들(CHO-CLDN3 세포주 또는/및 L-클라우딘-3 세포주)에 대한 실험에서 2개의 2B4와 4G3 클론을 확보하였다. 2B4 및 4G3 scFv의 전체 서열은 각각 서열번호 16 및 서열번호 15와 같았다. 2B4 및 4G3 scFv의 아미노산 서열을 분석한 결과는 하기 표 1과 같다.Next, the final biopanning results (data not shown) using claudin-3 lipoparticles were compared with the results of the scFv candidate group selected in the experimental steps. Sequencing was performed on the selected scFv, and two 2B4 and 4G3 clones in experiments on claudin-3 lipoparticles and claudin-3 expressing cell lines (CHO-CLDN3 cell line or/and L- claudin-3 cell line) Was secured. The entire sequence of 2B4 and 4G3 scFv was the same as SEQ ID NO: 16 and SEQ ID NO: 15, respectively. The results of analyzing the amino acid sequence of 2B4 and 4G3 scFv are shown in Table 1 below.
AntibodyAntibody 중쇄가변영역Heavy chain variable region
CDRH1CDRH1 CDRH2CDRH2 CDRH3CDRH3
2B42B4 GYYWS(서열번호 9)GYYWS (SEQ ID NO: 9) TIHPGDSDTRYNPSLQTIHPGDSDTRYNPSLQ
G(서열번호 10)G (SEQ ID NO: 10)
RQGYSLFDI(서열번 호 11)RQGYSLFDI (SEQ ID NO: 11)
4G34G3 SYAMS (서열번호 3)SYAMS (SEQ ID NO: 3) IINPSGASTSHAQRFQG(서열번호 4)IINPSGASTSHAQRFQG (SEQ ID NO: 4) RYGRYGSFDI(서열RYGRYGSFDI (SEQ ID NO:
번호 5)Number 5)
AntibodyAntibody 경쇄가변영역Light chain variable region
CDRL1CDRL1 CDRL2CDRL2 CDRL3CDRL3
2B42B4 RASQSVASDLA(RASQSVASDLA(
서열번호 12)SEQ ID NO: 12)
AASRLQS(서열번호 13)AASRLQS (SEQ ID NO: 13) QQYNSYPPT(서열번 호 14)QQYNSYPPT (SEQ ID NO: 14)
4G34G3 SGSTSNIGRNYVS(서열번호 6)SGSTSNIGRNYVS (SEQ ID NO: 6) DTSNKHF(서열번호 7)DTSNKHF (SEQ ID NO: 7) QSYDSSKVV(서열번QSYDSSKVV (SEQ ID NO:
호 8)Issue 8)
실시예 2: 4G3 scFv를 포함하는 항체 IgG의 제조Example 2: Preparation of antibody IgG containing 4G3 scFv 2-1. 4G3 IgG 클로닝2-1. 4G3 IgG cloning
앞서 선별된 4G3 scFv를 보다 통상적으로 사용되는 항체인 IgG의 형태로 변환시켰다. 상기 scFv의 CDR 부위를 기반으로 전체 IgG 형태를 발현할 수 있는 발현벡터를 제작하였다. 먼저, scFv의 경쇄가변영역(light chain variable region)과 중쇄가변영역(heavy chain variable region)을 각각 PCR을 통해 수득하였으며, 이때 4G3에 대해서는 하기 표 2에 도시된 프라이머를 사용하였다. 상기 경쇄가변영역 서열은 경쇄불변영역(light chain constant region) 서열이 삽입되어있는 발현벡터인 pOptiVec(Invitrogen)에 클로닝하고, 상기 중쇄가변영역 서열은 중쇄불변영역(heavy chain constant region)이 삽입되어 있는 발현벡터인 pcDNA 3.3(Invitrogen)에 각각 클로닝하였다. 벡터로부터 클로닝한 scFv의 경쇄가변영역 및 중쇄가변영역과 함께 경쇄 및 중쇄 불변영역이 발현되면, 결과적으로 상기 scFv의 CDR 영역을 포함하는 전체 IgG 항체가 만들어지게 된다.The previously selected 4G3 scFv was converted to the form of IgG, which is a more commonly used antibody. An expression vector capable of expressing the entire IgG form was constructed based on the CDR regions of the scFv. First, a light chain variable region and a heavy chain variable region of scFv were obtained through PCR, respectively, and the primers shown in Table 2 below were used for 4G3. The light chain variable region sequence is cloned into pOptiVec (Invitrogen), an expression vector into which a light chain constant region sequence is inserted, and the heavy chain variable region sequence is inserted into a heavy chain constant region. Each was cloned into the expression vector pcDNA 3.3 (Invitrogen). When the light and heavy chain constant regions of the scFv cloned from the vector are expressed together with the light and heavy chain variable regions, a whole IgG antibody including the CDR regions of the scFv is produced.
가변부위Variable area 프라이머 서열Primer sequence 서열번호Sequence number
경쇄 FLight chain F 5'-ATTCGATCGATATGGAGACAGACACACTCCTG CTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCA CGTGGCAGAGCGTGCTGACCCAGCCT-3'5'-ATTCGATCGATATGGAGACAGACACACTCCTG CTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCA CGTGGCAGAGCGTGCTGACCCAGCCT-3' 3030
경쇄 RLight chain R 5'-AGCCACCGTACGCAGCACGGTCAGCTTGGTACC-3'5'-AGCCACCGTACGCAGCACGGTCAGCTTGGTACC-3' 3131
중쇄 FHeavy chain F 5'-ATTCGATCGATATGGAGACAGACACACTCCTG CTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACGTGGGAAGTGCAGCTGCTGGAAAGT-3'5'-ATTCGATCGATATGGAGACAGACACACTCCTG CTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACGTGGGAAGTGCAGCTGCTGGAAAGT-3' 3232
중쇄 RHeavy chain R 5'-CTTGGTGCTAGCGCTGCTCACGGTCACCAGAGT-3'5'-CTTGGTGCTAGCGCTGCTCACGGTCACCAGAGT-3' 3333
2-2. 전체 IgG 항체 발현 CHO-S 세포주 제작(pool)CHO-S 세포(Life Technologies Inc.)를 이용하여, 각각 4G3 IgG 항체 발현 세포주를 제작하였다. 상기 실시예 2-1에서 수득된 중쇄 및 경쇄를 코딩하는 유전자 서열에 대하여 Cricetulus griseus 종으로 코돈 최적화(codon optimization)를 하고, 이들 서열을 Freedom pCHO1.0Vector에 클로닝한 후, 트랜스펙션 시약(FreeStyle™MAX Reagent; Life Technologies Inc.)으로 CHO-S 세포에 형질도입하였다. 형질도입 후 항체 발현 세포주를 선별하기 위해, 퓨로마이신(puromycin)과 MTX(methotrexate)를 이용하여 2단계를 거쳐 선별하였다. 구체적으로, 1차 선별에서는 puromycin 10 ug/ml, MTX 100 nM 또는 puromycin 20 ug/ml, MTX 200 nM으로 진행하여 세포 생존율이 기준 내에 들어오면 2차 과정을 진행하였다. 2차 선별에서는 puromycin 30 ug/ml, MTX 500 nM 또는 puromycin 50 ug/ml, MTX 1000 nM으로 진행하여 최종 세포 생존율 기준에 들어왔을 때 2차 선별을 종료하고 SFB(Simple Fed Batch)를 통해서 발현량이 높은 군을 선택하였다. 2-2. Total IgG antibody-expressing CHO-S cell line production (pool) Using CHO-S cells (Life Technologies Inc.), each 4G3 IgG antibody-expressing cell line was prepared. Codon optimization was performed with Cricetulus griseus species for the gene sequences encoding the heavy and light chains obtained in Example 2-1, and these sequences were cloned into Freedom ® pCHO1.0Vector, and then a transfection reagent ( CHO-S cells were transduced with FreeStyle™ MAX Reagent; Life Technologies Inc.). In order to select the antibody-expressing cell line after transduction, puromycin and MTX (methotrexate) were used to select through two steps. Specifically, in the first screening, puromycin 10 ug/ml, MTX 100 nM or puromycin 20 ug/ml, MTX 200 nM was performed, and the second process was performed when the cell viability was within the standard. In the second screening, proceed with puromycin 30 ug/ml, MTX 500 nM or puromycin 50 ug/ml, MTX 1000 nM, and when the final cell viability criterion is reached, the second screening is terminated and the expression level through SFB (Simple Fed Batch). The higher group was selected.
2-3. 전체 IgG 항체 생산 및 정제2-3. Total IgG antibody production and purification
상기 2-2에서 제조된 각각의 항체 생산 세포주를 CD FortiCHO™배지에서 CO2 8%, 37℃, 100~120 rpm 조건으로, glucose를 3일, 5일, 7일째에 각각 4 g/L, 4 g/L, 6 g/L 씩 넣어주면서 총 14일 배양하였다. 배양완료 후 배양액을 ultra-centrifuge 6000g로 원심분리하고, 이의 상층액을 0.2 um filter를 이용하여 여과하였다. 정제를 위해 Protein A 레진(Mabselect SuRe, 11-0026-01 AD, GE Healthcare Life Sciences)을 사용하였고 평형버퍼(20 mM Sodium Phosphate, 150 mM NaCl, pH 7.2), 세척버퍼(35 mM Sodium Phosphate, 500 mM NaCl, pH 7.2), 용출버퍼(0.1 M Sodium Citrate, pH 3.6)를 사용하였다. AKTA™avant를 이용하여 평형버퍼는 컬럼부피의 2배, 세척버퍼는 컬럼부피의 5배, 용출버퍼는 컬럼부피의 5배로하여 정제하였고, 용출 시 중화반응을 위해 pH 8.0 Tris-HCl 용액을 1/5씩 넣어주었다. 여과 멤브레인(CelluSep, 1430-45)을 사용하여 PBS로 2회 버퍼전환 후 원심분리 필터(Amicon Ultra-15, UFC905024, Merck)로 농축하였다.Each antibody-producing cell line prepared in 2-2 was subjected to CO2 8%, 37°C, 100-120 rpm conditions in CD FortiCHO™ medium, and glucose was 4 g/L, 4 g/L, respectively on the 3rd, 5th, and 7th days. It was cultured for a total of 14 days while adding g/L and 6 g/L each. After completion of the culture, the culture solution was centrifuged with an ultra-centrifuge 6000g, and the supernatant was filtered using a 0.2 um filter. Protein A resin (Mabselect SuRe, 11-0026-01 AD, GE Healthcare Life Sciences) was used for purification, and an equilibrium buffer (20 mM Sodium Phosphate, 150 mM NaCl, pH 7.2), washing buffer (35 mM Sodium Phosphate, 500 mM NaCl, pH 7.2), elution buffer (0.1 M Sodium Citrate, pH 3.6) was used. Using AKTA™avant, the equilibrium buffer was 2 times the column volume, the washing buffer was 5 times the column volume, and the elution buffer was 5 times the column volume. I put /5 in each. After converting the buffer twice to PBS using a filtration membrane (CelluSep, 1430-45), it was concentrated with a centrifugal filter (Amicon Ultra-15, UFC905024, Merck).
각각 환원(reducing) 조건 및 비환원(nonreducing) 조건에서 생산된 IgG 항체 단백질을 통상의 SDS-PAGE 기법으로 확인하여, 각 항체의 경쇄와 중쇄가 예상되는 분자량으로 모두 잘 발현되고 있는 것을 확인하였다. 도 3은 4G3 IgG 항체에 대한 SDS-PAGE 확인 결과를 나타낸다.IgG antibody proteins produced under reducing and non-reducing conditions, respectively, were confirmed by a conventional SDS-PAGE technique, and it was confirmed that both the light and heavy chains of each antibody were well expressed at the expected molecular weight. 3 shows the results of SDS-PAGE confirmation for 4G3 IgG antibody.
실시예 3: 항-클라우딘-3 CAR 컨스트럭트의 제조 및 세포 형질전환Example 3: Preparation of Anti-Claudin-3 CAR Construct and Cell Transformation
3-1.3-1. 발현 벡터의 제작Construction of expression vector
puC vector에 scFv 포함한 chimeric antigen receptor (CAR)의 컨스트럭트를 (CAR 컨스트럭트 1: 서열번호 24; CAR 컨스트럭트 2: 서열번호 25) IDT에 합성주문하여 발현 벡터(순서대로 벡터 컨스트럭트 1: 서열번호 27; 벡터 컨스트럭트 2: 서열번호 28; 모두 도12와 같이 도식화할 수 있음)를 완성하였다. 발현을 확인할 수 있게 translational insulator인 T2A와 P2A를 이용해 CAR 유전자 후에 RFP635와 luciferase gene을 포함하였다. A construct of chimeric antigen receptor (CAR) including scFv in a puC vector (CAR construct 1: SEQ ID NO: 24; CAR construct 2: SEQ ID NO: 25) is synthesized and ordered to IDT, and an expression vector (vector construct in sequence Tree 1: SEQ ID NO: 27; Vector construct 2: SEQ ID NO: 28; all can be schematically illustrated as in Figure 12) was completed. RFP635 and luciferase gene were included after CAR gene using translational insulators T2A and P2A so that expression could be confirmed.
3-2.3-2. 세포 형질전환Cell transformation
완성된 벡터는 발현 및 활성 확인을 위해 T cell leukemia 유래 세포주인 Jurkat 세포 및 NK세포 각각에 형질전환을 하였다. 형질전환은 Thermo Fisher 사의 Neon transfection system kit를 이용하고 electroporation을 하여 이루어졌다. Thermo 사에서 제공하는 각 세포주 형질전환 조건을 최적화 후 사용하여 (1500 V, 10 ms/3 pulses) 실험 후 37 ℃, 5% CO 2 조건에서 하루 동안 안정화를 하였다. The completed vector was transformed into each of Jurkat cells and NK cells, which are cell lines derived from T cell leukemia, to confirm expression and activity. Transformation was performed by electroporation using Thermo Fisher's Neon transfection system kit. Transformation conditions for each cell line provided by Thermo were optimized and used (1500 V, 10 ms/3 pulses), followed by stabilization at 37° C. and 5% CO 2 for one day.
실험예 1: 항- 클라우딘-3항체의 결합 특이성(binding specificity) 및 결합력 평가Experimental Example 1: Evaluation of binding specificity and binding ability of anti- claudin-3 antibody
1-1. 여러 가지 클라우딘에 대한 CLDN/HEK293 세포주 제작1-1. Construction of CLDN/HEK293 cell lines for various claudins
상기 실시예 2-3에서 제작된 항체의 항원 특이성을 확인하기 위하여, 인간 CLDN3과 계통분석적으로 가까이 위치한 클라우딘들, 특히 인간 CLDN4 (NCBI accession number : O14493), CLDN5 (O00501), CLDN6 (P56747), CLDN8 (P56748), CLDN9 (O95484), CLDN17 (P56750)에 대한 결합 유무를 비교평가하였다(도 4a 및 도 4b 참조). 또한 상기한 클라우딘 종류들 보다는 계통분석적으로 거리가 있지만 전형적인 클라우딘인 CLDN1 (O95832)이 본 실험의 비교군으로 사용되었다. 또한 개발된 항체가 마우스 CLDN3(Q9Z0G9)에도 결합하는지 알아보았다(4b 참조). 전술한 클라우딘들을 코딩하는 유전자 각각을 pcDNA3.1(+)(Invitrogen)에 클로닝하였다. 이렇게 제작된 각각의 클라우딘 발현 벡터를, Fugene HD (E231A, Promega) 트렌스펙션 시약을 이용하여 HEK293(KCLB)에 형질도입시킨 후, G418로 내성 세포주를 선별하였다. 이렇게 제작된 인간 클라우딘을 지속 발현하는 세포주(hCLDN/HEK293)들에 대하여, 각 클라우딘들이 잘 발현되고 있는지의 확인은 상업적으로 판매되고 있는 anti-CLDN1 (FAB4618G, R&D systems), anti-CLDN3 (FAB4620F, R&D systems), anti-CLDN4 (FAB4219F, R&D systems), anti-CLDN5 (ab131259, Abcam), anti-CLDN6 (ABIN1720916, Antibodies-online), anti-CLDN8 (MAB5275, R&D systems), anti-CLDN9 (ab187116, Abcam), anti-CLDN17 (MAB4619, R&D systems) 항체들을 이용하여 확인하였다.In order to confirm the antigen specificity of the antibody produced in Example 2-3, claudins located phylogenetic close to human CLDN3, in particular human CLDN4 (NCBI accession number: O14493), CLDN5 (O00501), CLDN6 (P56747), The presence or absence of binding to CLDN8 (P56748), CLDN9 (O95484), and CLDN17 (P56750) was compared and evaluated (see FIGS. 4A and 4B). In addition, although the distance is systematically analyzed than the above-described claudin types, CLDN1 (O95832), a typical claudin, was used as a comparative group for this experiment. In addition, it was examined whether the developed antibody also binds to mouse CLDN3 (Q9Z0G9) (see 4b). Each of the genes encoding the aforementioned claudins was cloned into pcDNA3.1(+) (Invitrogen). Each of the claudin expression vectors thus prepared was transduced into HEK293 (KCLB) using Fugene HD (E231A, Promega) transfection reagent, and then resistant cell lines were selected with G418. For the cell lines (hCLDN/HEK293) that sustained expression of human claudin thus produced, confirmation of whether each claudin is well expressed was commercially available anti-CLDN1 (FAB4618G, R&D systems), anti-CLDN3 (FAB4620F, R&D systems), anti-CLDN4 (FAB4219F, R&D systems), anti-CLDN5 (ab131259, Abcam), anti-CLDN6 (ABIN1720916, Antibodies-online), anti-CLDN8 (MAB5275, R&D systems), anti-CLDN9 (ab187116, Abcam), anti-CLDN17 (MAB4619, R&D systems) antibodies.
1-2. CLDN/HEK293 세포주들에 대한 본 발명 항체의 교차반응성 평가1-2. Evaluation of cross-reactivity of antibodies of the present invention against CLDN/HEK293 cell lines
상기 실험예 1-1에서 제작된 여러 가지 클라우딘에 대한 hCLDNs/HEK293 세포주 및 mCLDN3/HEK293들에 대하여, 상기 실시예 2-3에서 제조된 항체의 교차 반응성을 확인하였다. 음성대조군으로는 본연의 HEK293 세포를 사용하였다. 먼저 세포 분리버퍼(cell dissociation buffer, Gibco, 13151-014)를 이용하여 단일 세포로 분리한 후 2.5×10 5개씩 분주(seeding)하고, 여기에 각각의 항체 5 ug/ml을 넣고 1시간동안 얼음 위에서 반응시켰다. 반응 후 1% BSA/PBS로 세척하고 이차 항체인 goat anti-human IgG-FITC(109-095-098, Jackson Immunoresearch)를 1:100으로 처리하여, 1시간 동안 얼음 위에서 반응시켰다. 반응 후 1% BSA/PBS로 세척하고, 유세포 분석기로서 BD FACS Calibur를 사용하여 분석하였다.For the hCLDNs/HEK293 cell lines and mCLDN3/HEK293s for various claudins prepared in Experimental Example 1-1, cross reactivity of the antibodies prepared in Example 2-3 was confirmed. Native HEK293 cells were used as a negative control. First, the cells were separated into single cells using a cell dissociation buffer (Gibco, 13151-014), and then 2.5×10 5 were seeded, and 5 ug/ml of each antibody was added thereto and iced for 1 hour. It was reacted above. After the reaction, it was washed with 1% BSA/PBS and treated with a secondary antibody, goat anti-human IgG-FITC (109-095-098, Jackson Immunoresearch), 1:100, and reacted on ice for 1 hour. After the reaction, it was washed with 1% BSA/PBS, and analyzed using BD FACS Calibur as a flow cytometer.
도 5a 및 도 5b는 상기 유세포분석 결과로서, 4G3 항체의 클라우딘-3에 대한 결합특이성을 비교적으로 보여준다. CLDN3과 계통분석학적으로 가까운 CLDN4, CLDN5, CLDN6, CLDN8, CLDN9 및 CLDN17을 이용한 어느 실험군에서도 피크이동이 나타나지 않았다. 마우스 CLDN3을 이용한 실험 결과를 도 5c에서 보여주며, 본 발명의 항체는 마우스 인간 CLDN3와 상동성이 높은 마우스 CLDN3와도 결합함을 확인하였다.5A and 5B are the results of the flow cytometry, comparatively showing the binding specificity of the 4G3 antibody to claudin-3. There was no peak shift in any experimental group using CLDN4, CLDN5, CLDN6, CLDN8, CLDN9 and CLDN17, which were phylogenetic close to CLDN3. The experimental results using mouse CLDN3 are shown in Fig. 5c, and it was confirmed that the antibody of the present invention also binds to mouse CLDN3, which has high homology with mouse human CLDN3.
이로써 본 발명의 각 항체는 인간 CLDN3 및 마우스 CLDN3 이외에 다른 클라우딘 패밀리와는 결합하지 않음을 확인하였다. 즉, 본 발명의 각 항체는 상동성이 높은 다른 클라우딘 종류와의 교차반응 없이, CLDN3에만 특이적으로 결합한다는 것을 확인할 수 있었다.Accordingly, it was confirmed that each antibody of the present invention did not bind to other claudin families other than human CLDN3 and mouse CLDN3. That is, it was confirmed that each antibody of the present invention specifically binds only CLDN3 without cross-reaction with other claudin types having high homology.
1-3. 1-3. in vitro in vitro 암세포 검출 능력 확인: 유세포분석Confirmation of cancer cell detection ability: flow cytometry
상기 실시예 2-3에서 제조된 항체들의 암 세포에 대한 결합력을 확인하였다. 난소암으로서 클라우딘-3를 과발현하는 세포주인 OVCAR-3 (ATCC) 및 Caov-3 (ATCC)과, 클라우딘-3 발현이 매우 낮은 세포주인 TOV-112D(ATCC), 여기에 CLDN3를 과발현하도록 형질전환시킨 hCLDN3/TOV-112D 세포를 이용하였다. hCLDN3/TOV-112D 세포의 제작은 상기 실험예 1-1에 기재된 것과 동일한 방법으로 수행되었다. 상기 세포들에 대한 항체 처리 및 유세포 분석은 실험예 1-2와 동일한 방법으로 수행되었다.The binding power of the antibodies prepared in Example 2-3 to cancer cells was confirmed. OVCAR-3 (ATCC) and Caov-3 (ATCC), cell lines overexpressing claudin-3 as ovarian cancer, and TOV-112D (ATCC), cell lines with very low claudin-3 expression, transformed to overexpress CLDN3. The prepared hCLDN3/TOV-112D cells were used. The production of hCLDN3/TOV-112D cells was performed in the same manner as described in Experimental Example 1-1. Antibody treatment and flow cytometry for the cells were performed in the same manner as in Experimental Example 1-2.
실험결과, 클라우딘-3발현 세포인 OVCAR-3, Caov-3, hCLDN3/TOV-112D에서는 피크이동이 확인되었고 음성세포주인 TOV-112D에서는 피크이동이 보이지 않았다. 대표적으로 도 6은, 상기 암세포들에 대한 4G3 항체의 결합특이성을 비교적으로 보여준다.As a result of the experiment, a peak shift was observed in the claudin-3 expressing cells OVCAR-3, Caov-3, and hCLDN3/TOV-112D, and no peak shift was observed in the negative cell line, TOV-112D. Representatively, FIG. 6 comparatively shows the binding specificity of the 4G3 antibody to the cancer cells.
1-4. 클라우딘-3 특이적 결합 재확인: 면역침강(Immumnoprecipitation)1-4. Reconfirmation of claudin-3 specific binding: Immunoprecipitation
면역침강법을 통해 본 발명의 항체가 상기 암세포에서 클라우딘-3에 결합함을 재확인하였다. 항체 음성대조군(control IgG)으로는 상업적으로 파는 인간 전체 항체(009-000-003, Jackson Immunoresearch)를 사용하였다. OVCAR-3 (ATCC), Caov-3 (ATCC), TOV-112D (ATCC), hCLDN3/TOV-112D의 각 세포를 protease inhibitor(11697498001, Roche)가 첨가된 PBS로 풀어준 뒤, 초음파 분쇄기로 2초 on/5초 off를 10회 실시한 후, 15000 rpm로 4℃에서 15분 동안 원심분리하여 상등액을 취했다. BCA 정량법으로 각 세포 용해물(상등액)의 단백질 농도를 측정한 다음, 1 mg씩 단백질을 취하여 각각의 항체 1 ug을 넣고 4℃에서 1시간동안 회전하면서 반응시켰다. Protein A bead (11719408001, Roche)를 PBS로 평형화시키고, 5% BSA/PBS로 상기 비드(bead)를 4℃에서 1시간 동안 회전하면서 블로킹하였다. 상기 항체 반응이 끝난 샘플에 비드를 50 ul 넣고, 다시 4℃에서 1시간동안 회전하면서 반응시켰다. 항체와 비드의 반응이 끝나면, PBS로 3번 세척 후, 2X SDS loading 버퍼 30 ul을 넣고 100℃에서 10분간 끓이고, 12000 rpm으로 3분 동안 원심분리하여 이의 상등액을 15% SDS gel 전기영동하였다. 통상적인 방법으로 웨스턴 블롯팅(western blotting)을 진행하였고, 이때 일차 항체로는 anti-CLDN3 (341700, Invitrogen)을 사용하였다.It was reconfirmed that the antibody of the present invention binds to claudin-3 in the cancer cells through immunoprecipitation. As an antibody negative control (control IgG), a commercially available whole human antibody (009-000-003, Jackson Immunoresearch) was used. Each cell of OVCAR-3 (ATCC), Caov-3 (ATCC), TOV-112D (ATCC), hCLDN3/TOV-112D was released with PBS added with protease inhibitor (11697498001, Roche), and then 2 with an ultrasonic grinder. After performing the second on/5 second off 10 times, the supernatant was taken by centrifugation at 15000 rpm for 15 minutes at 4°C. After measuring the protein concentration of each cell lysate (supernatant) by the BCA quantification method, 1 mg of protein was taken, 1 ug of each antibody was added and reacted while rotating at 4° C. for 1 hour. Protein A bead (11719408001, Roche) was equilibrated with PBS, and the beads were blocked with 5% BSA/PBS while rotating at 4° C. for 1 hour. 50 ul of beads were added to the sample after the antibody reaction was completed, and the reaction was performed while rotating at 4° C. for 1 hour. When the reaction between the antibody and the beads was complete, after washing with PBS 3 times, 30 ul of 2X SDS loading buffer was added, boiled at 100° C. for 10 minutes, centrifuged at 12000 rpm for 3 minutes, and the supernatant was subjected to 15% SDS gel electrophoresis. Western blotting was performed by a conventional method, and at this time, anti-CLDN3 (341700, Invitrogen) was used as the primary antibody.
분석결과, control IgG 처리군에서는 밴드가 나타나지 않았고, 본 발명의 항체는 OVCAR-3, Caov-3 및 hCLDN3/TOV-112D 세포를 이용한 실험군에서만 밴드가 관찰되었다. 도 7은 4G3 항체의 상기 세포들이 발현하는 클라우딘-3에 대한 결합정도를 보여준다. 이로서 본 발명의 각 항체가 암세포의 클라우딘-3 단백질에 결합함을 재확인하였다.As a result of the analysis, no band was observed in the control IgG-treated group, and the band was observed only in the experimental group using OVCAR-3, Caov-3, and hCLDN3/TOV-112D cells of the antibody of the present invention. 7 shows the degree of binding of the 4G3 antibody to claudin-3 expressed by the cells. This confirmed that each antibody of the present invention binds to the claudin-3 protein of cancer cells.
1-5. 클라우딘-3 특이적 결합 재확인: 면역형광(Immunofluorescence)1-5. Reconfirmation of claudin-3 specific binding: Immunofluorescence
면역형광법을 통해 본 발명의 항체가 상기 암세포에서 클라우딘-3를 특이적으로 표적함을 재확인하였다. OVCAR-3(ATCC), Caov-3(ATCC), TOV-112D(ATCC), hCLDN3/TOV-112D의 각 세포를 4 well cell culture slide에 2×10 5 개씩 넣어주고 24시간 배양하였다. 배양액에 대조군 항체(ChromePure Human IgG, 009-000-003, Jackson ImmonoResearch) 또는 본 발명의 항체를 5 ug/ul가 되도록 넣고 4℃에서 1시간 동안 교반하여 반응시켰다. PBS로 세척 후 4% 세포를 포름알데히드로 상온에서 15분간 고정하였다. PBS 세척 후 5% BSA/PBS로 상온에서 1시간 블로킹하였다. PBS로 세척하고 이차 항체로서 goat anti-human IgG-FITC(109-095-098, Jackson Immunoresearch)를 1:100이 되도록 넣고 상온에서 1시간 반응하였다. PBS로 세척 후, 핵 염색을 위하여 Hoechst 33342(H3570, Invitrogen)을 1:5000이 되도록 넣고 10분간 상온에서 반응시켰으며, 그 후 PBS로 2회 더 세척하였다. Fluoromount TM Aqueous Mounting Medium(F4680, SIGMA)로 마운팅 후, 커버슬라이드를 덮고 공초점 현미경(LSM700, Carl Zeiss, Inc.)으로 형광을 관찰하였다.Through immunofluorescence, it was reconfirmed that the antibody of the present invention specifically targets claudin-3 in the cancer cells. Each of the cells of OVCAR-3 (ATCC), Caov-3 (ATCC), TOV-112D (ATCC), and hCLDN3/TOV-112D was added to a 4 well cell culture slide by 2×10 5 cells and cultured for 24 hours. A control antibody (ChromePure Human IgG, 009-000-003, Jackson ImmonoResearch) or the antibody of the present invention was added to the culture medium at a concentration of 5 ug/ul, followed by stirring at 4° C. for 1 hour to react. After washing with PBS, 4% cells were fixed with formaldehyde for 15 minutes at room temperature. After washing with PBS, blocking was performed for 1 hour at room temperature with 5% BSA/PBS. After washing with PBS, goat anti-human IgG-FITC (109-095-098, Jackson Immunoresearch) as a secondary antibody was added to a ratio of 1:100 and reacted at room temperature for 1 hour. After washing with PBS, Hoechst 33342 (H3570, Invitrogen) was added to 1:5000 for nuclear staining and reacted at room temperature for 10 minutes, and then washed twice with PBS. After mounting with Fluoromount TM Aqueous Mounting Medium (F4680, SIGMA), the cover slide was covered and fluorescence was observed with a confocal microscope (LSM700, Carl Zeiss, Inc.).
분석결과, 대조군 항체(control IgG) 처리군에서는 모든 세포주에서 형광이 관찰되지 않은 반면(도 8a 참조), 본 발명의 항체 처리군에서는 CLDN3 발현 세포주인 hCLDN3/TOV-112D, OVCAR-3, Caov-3의 세포표면에서 형광이 모두 관찰되었고 CLDN3 발현이 없는 TOV-112D 세포주에서는 형광이 관찰되지 않았다. 도 8b는 대표적으로 4G3 항체에 대한 상기 실험결과를 나타낸다.As a result of the analysis, fluorescence was not observed in all cell lines in the control antibody (control IgG) treatment group (see Fig. 8A), whereas in the antibody treatment group of the present invention, the CLDN3 expressing cell lines hCLDN3/TOV-112D, OVCAR-3, Caov- All fluorescence was observed on the cell surface of 3, and no fluorescence was observed in the TOV-112D cell line without CLDN3 expression. Figure 8b shows the experimental results representatively for the 4G3 antibody.
1-6. 클라우딘-3에 대한 결합력 비교 및 결합 친화성(binding kinetics) 확인1-6. Comparison of binding force to claudin-3 and confirmation of binding kinetics
상기 실시예 2-3에 따라 제조된 4G3 IgG 항체에 대하여 이들의 클라우딘-3에 대한 결합력을 확인하였다. CHO-CLDN3 세포를 이용하여 유세포분석을 실시하였으며, 구체적인 실험은 상기 실험예 1-3과 동일하게 수행되었다. 대조군으로는 본연의 CHO-K1세포를 이용하였으며, 상업적으로 판매되고 있는 anti-CLDN3 (FAB4620F, R&D systems) 항체를 비교군으로 사용하였다.For the 4G3 IgG antibodies prepared according to Example 2-3, their binding ability to claudin-3 was confirmed. Flow cytometry was performed using CHO-CLDN3 cells, and specific experiments were performed in the same manner as in Experimental Examples 1-3. As a control, native CHO-K1 cells were used, and commercially available anti-CLDN3 (FAB4620F, R&D systems) antibody was used as a control group.
또한 클라우딘-3에 대한 항체의 결합 친화성을 확인하기 위해 LigandTracer Green (ridgeview)를 사용하여 측정하였다. LignadTrcer Green (ridgeview)은 항원을 발현하는 세포 상에서 FITC가 접합된 항체의 항원에 대한 결합 여부를 실시간으로 측정할 수 있는 세포 기반 측정 장비이다. 개발한 항체에 FITC Antibody Labeling Kit (53027, Pierce)를 이용하여 FITC를 접합하였다. 하루 전 blank로서 5% milk/PBS 500 ul, 클라우딘-3 발현이 매우 낮은 레퍼런스 세포주, CLDN3 과발현시킨 세포주를 3×10 5 cells/ml의 농도로 500ul를 100mm 배양접시 (172931, Thermo scientific) 4분면에 동전크기로 넣고 5% CO2, 37℃ 6시간 배양 후 배지를 제거하고 PBS로 세척 후 다시 배지 10 ml을 넣어 하룻밤 배양하였다. 레퍼런스 세포주로서 HEK293(KCLB) 및 TOV-112D(ATCC)를 사용하였고, CLDN3 과발현 세포주로서 hCLDN3/HEK293 및 hCLDN3/TOV-112D를 사용하였다. 실험 당일 배지를 모두 제거하고 3 ml 배지로 교체 후 배양 접시를 장비에 장착하고 안정화 후 FITC 접합된 항체를 최종 농도로 3 nM, 9 nM이 되도록 순차적으로 넣고 각각 형광값이 평형상태에 도달할 때까지 반응시키고 마지막에 3 ml 새 배지로 교체 후 해리정도를 확인하였다. 형광 측정 시간은 15초, 측정 지연시간은 4초, 측정 간격은 72초로 하였고, 3번 반복 실험하여 HEK293 세포 대비 hCLDN3/HEK293 세포에서의 형광값과, TOV-112D 세포 대비 hCLDN3/TOV-112D 세포에서의 형광값을 one to one two state fitting model 모델로 분석하였다. 결과 값을 도 9c 및 표 3에 나타낸다.In addition, in order to confirm the binding affinity of the antibody to claudin-3, it was measured using LigandTracer Green (ridgeview). LignadTrcer Green (ridgeview) is a cell-based measurement device that can measure in real time whether an antibody conjugated with FITC binds to an antigen on antigen-expressing cells. FITC was conjugated to the developed antibody using the FITC Antibody Labeling Kit (53027, Pierce). 500 ul of 5% milk/PBS as a blank the day before, reference cell line with very low expression of claudin-3, and cell line overexpressing CLDN3 at a concentration of 3×10 5 cells/ml in a 100 mm culture dish (172931, Thermo scientific) 4 quadrants After incubation for 6 hours at 5% CO2 and 37°C, the medium was removed, washed with PBS, and then cultured overnight by adding 10 ml of the medium again. HEK293 (KCLB) and TOV-112D (ATCC) were used as reference cell lines, and hCLDN3/HEK293 and hCLDN3/TOV-112D were used as CLDN3 overexpressing cell lines. On the day of the experiment, all the medium was removed, replaced with 3 ml medium, and the culture dish was mounted on the equipment. After stabilization, FITC-conjugated antibodies were sequentially added to the final concentration of 3 nM and 9 nM, respectively, when the fluorescence values reached equilibrium And finally, after replacing with 3 ml new medium, the degree of dissociation was checked. The fluorescence measurement time was 15 seconds, the measurement delay time was 4 seconds, and the measurement interval was 72 seconds, and the fluorescence values in hCLDN3/HEK293 cells compared to HEK293 cells and hCLDN3/TOV-112D cells compared to TOV-112D cells were repeated three times. The fluorescence value at was analyzed with a one to one two state fitting model model. The resulting values are shown in Fig. 9C and Table 3.
CLDN3 cell linesCLDN3 cell lines Fitting modelFitting model k a1
(M -1s -1)
k a 1
(M -1 s -1 )
k d1
(s -1)
k d 1
(s -1 )
k a2
(s -1)
k a 2
(s -1 )
k d1
(s -1)
k d 1
(s -1 )
KD
(nM)
KD
(nM)
Chi2
(%)
Chi2
(%)
hCLDN3/HEK293 hCLDN3/HEK293 1:1, 2 state1:1, 2 state 4.66X10 4 4.66X10 4 6.71X10 -4 6.71X10 -4 1.56X10 -4 1.56X10 -4 4.35X10 -5 4.35X10 -5 4.034.03 34.2734.27
hCLDN3/TOV-112DhCLDN3/TOV-112D 1:1, 2 state1:1, 2 state 4.74X10 4 4.74X10 4 3.37X10 -4 3.37X10 -4 7.77X10 -4 7.77X10 -4 2.57X10 -5 2.57X10 -5 2.352.35 10.1510.15
도 9a 및 도 9b에서 보는 바와 같이, 4G3 IgG 항체에서 모두 피크 이동이 나타나 클라우딘-3에 결합한 것을 확인하였다. 이때 4G3 IgG 항체 처리군에서 피크 이동의 차이가 더 크게 나타났으며, 이로서 4G3 IgG 항체는 기존에 상업적으로 판매되고 있는 항체보다 클라우딘-3 특이적인 결합력이 더 우수한 것으로 확인되었다.또한 결합 친화성 분석 결과 도 9c 및 표 3에서 보는 바와 같이, 4G3의 클라우딘-3 발현 세포에 대한 kinetic value(KD)는 2가지 세포주에서 각각 4.03 nM (hCLDN3/HEK293), 2.35 nM (hCLDN3/TOV-112D)으로 나타났으며, 이로써 4G3의 클라우딘-3에 대한 높은 친화력을 확인하였다. 이러한 결과는 본원 발명의 4G3 IgG 항체가 기존 항-클라우딘-3 항체들보다도 현저히 우수한 친화력을 보유함을 보여주는 것으로, 예를 들어 기존 'Chiara Romani et al. Oncotarget. 2015'의 IgGH6 항체보다도 친화도가 5배 이상 우수한 것이다.As shown in FIGS. 9A and 9B, it was confirmed that peak shifts appeared in all of the 4G3 IgG antibodies and bound to claudin-3. At this time, the difference in peak shift was greater in the 4G3 IgG antibody-treated group, and as a result, it was confirmed that the 4G3 IgG antibody had better claudin-3 specific binding power than the conventional commercially available antibody. In addition, binding affinity analysis Results As shown in Figure 9c and Table 3, the kinetic value (KD) for the claudin-3 expressing cells of 4G3 is represented by 4.03 nM (hCLDN3/HEK293) and 2.35 nM (hCLDN3/TOV-112D) in two cell lines, respectively. This confirmed the high affinity of 4G3 for claudin-3. These results show that the 4G3 IgG antibody of the present invention has significantly better affinity than the existing anti-cladin-3 antibodies, for example, the existing'Chiara Romani et al . Oncotarget. The affinity is more than 5 times better than the 2015' IgGH6 antibody.
실험예 2: 항-클라우딘-3 항체의 항원 결합부위 확인Experimental Example 2: Identification of antigen binding site of anti-cladin-3 antibody
세포에서 자연적으로 발현된 CLDN3이 세포 외부로 드러나는 영역 중에서, 구체적으로 본 발명의 항체가 결합하는 항원 결합부위가 어디인지 확인하고자 하였다. 이에, CLDN3의 세포 외 첫 번째 루프(extracellular 1st loop)와 세포 외 두 번째 루프(extracellular 2nd loop)에 해당하는 영역 각각을 CLDN1에서 대응되는 영역과 치환한 융합단백질을 만들어 확인하였다. CLDN1의 아미노산 1~104번과 CLDN3 아미노산 104~220번을 발현하는 유전자 (hCLDN1-3) 또는 CLDN1 아미노산 105~211번과 CLDN3 아미노산 1~103번을 발현하는 유전자(hCLDN3-1)를 각각 pcDNA 3.1(+) (Invitrogen)에 클로닝하였다. 각 유전자를 HEK293 (KCLB)에 형질 도입시킨 후 G418로 내성 세포주를 선별하여, hCLDN1-3 또는 hCLDN3-1의 융합단백질을 지속적으로 발현하는 세포주를 제작하였다. 이를 각각 hCLDN1-3/HEK293, hCLDN3- 1/HEK293라 명명하였다(도 10a 참조). 각 세포주에서 목적하는 융합단백질이 발현되었는지는 anti-CLDN3 (341700, Invitrogen), anti-CLDN1 (sc-137121, Santa Cruz Biotechnology, Inc.)를 이용하여 통상의 웨스턴 블로팅 방법으로 확인하였다(도 10b의 하단 참조). hCLDN1-3/HEK293 또는 hCLDN3-1/HEK293 세포에 대하여 4G3 항체의 처리 및 유세포 분석은 실험예 1-2와 동일한 방법으로 수행되었다. Among the regions in which CLDN3 naturally expressed in cells is exposed to the outside of the cell, specifically, it was attempted to determine where the antigen-binding site to which the antibody of the present invention binds. Thus, each of the regions corresponding to the extracellular 1st loop and the extracellular 2nd loop of CLDN3 was made and confirmed by substituting the corresponding region in CLDN1. Genes expressing amino acids 1 to 104 and CLDN3 amino acids 104 to 220 of CLDN1 (hCLDN1-3) or genes expressing CLDN1 amino acids 105 to 211 and CLDN3 amino acids 1 to 103 (hCLDN3-1) are respectively pcDNA 3.1 It was cloned into (+) (Invitrogen). Each gene was transduced into HEK293 (KCLB), and then a resistant cell line was selected with G418 to produce a cell line continuously expressing the fusion protein of hCLDN1-3 or hCLDN3-1. These were designated as hCLDN1-3/HEK293 and hCLDN3- 1/HEK293, respectively (see FIG. 10A). Whether the desired fusion protein was expressed in each cell line was confirmed by a conventional Western blotting method using anti-CLDN3 (341700, Invitrogen), anti-CLDN1 (sc-137121, Santa Cruz Biotechnology, Inc.) (FIG. 10B) See the bottom of). Treatment of the 4G3 antibody and flow cytometry for hCLDN1-3/HEK293 or hCLDN3-1/HEK293 cells were performed in the same manner as in Experimental Example 1-2.
분석결과 도 10b에서 보는 바와 같이, hCLDN1-3/HEK293에대한 실험에서는 피크의 이동이 보였고 hCL DN3-1/HEK293에대한 실험에서는 피크의 이동이 보이지 않았다. 이로써 4G3 항체는 hCLDN3의 세포 외 두 번째 루프(extracellular 2 nd loop) 부분 에 결합하는 것을 확인하였다.As a result of the analysis, as shown in FIG. 10B, a shift of the peak was observed in the experiment for hCLDN1-3/HEK293, and no shift of the peak was observed in the experiment for hCL DN3-1/HEK293. As a result, it was confirmed that the 4G3 antibody binds to the extracellular 2 nd loop portion of hCLDN3.
실험예 3: 항-클라우딘-3 항체의 Experimental Example 3: Anti-Claudin-3 Antibody in vivo in vivo 종양 표적능 확인 Confirmation of tumor targeting ability
종양 이종이식(xenograft) 동물모델은 인간 난소암 세포 OVCAR-3(ATCC)와 인간 유방암 세포 T47D(ATCC) 5× 10 6 개를 100 ul PBS에 부유시키고, 이를 6주령의 Athymic nude 암컷 마우스의 하부 옆구리에 피하주사하는 방법으로 제작하였다. T47D의 경우 17β-estradiol pellet(SE-121, Innovative Research of America)을 피하에 함께 심어주었다.The tumor xenograft animal model is a human ovarian cancer cell OVCAR-3 (ATCC) and human breast cancer cell T47D (ATCC) 5 × 10 6 were suspended in 100 ul PBS, and this was the lower part of a 6-week-old Athymic nude female mouse. It was produced by subcutaneous injection on the side. In the case of T47D, 17β-estradiol pellet (SE-121, Innovative Research of America) was planted subcutaneously.
본 발명 항체의 in vivo 종양 표적능을 확인하기 위하여, 대조군 항 체(ChromePure Human IgG, 009-000-003, Jackson ImmonoResearch) 및 4G3 항체에 CF750 형광단을 VivoBriteTM Rapid Antibody Labeling Kit(92161, Biotium)를 이용하여 접합하였다. 형광/항체 몰랄 비율(degree of labeling, DOL)은 키트에서 제공하는 공식에 따라 권장하는 예상 비율에 맞게 각각 2.29와 2.82로 측정되었다. In order to confirm the in vivo tumor targeting ability of the antibody of the present invention, a control antibody (ChromePure Human IgG, 009-000-003, Jackson ImmonoResearch) and a CF750 fluorophore to the 4G3 antibody were used in VivoBriteTM Rapid Antibody Labeling Kit (92161, Biotium). It was joined by using. The fluorescence/antibody molar ratio (degree of labeling, DOL) was measured to be 2.29 and 2.82, respectively, according to the recommended expected ratio according to the formula provided in the kit.
상기 동물모델에 종양 이식 후 60일째에, CF750 형광이 표지된 대조군 항체 또는 4G3 항체를 100 ug/100 ul의 용량으로 정맥 주사하였다. 6시간, 24시간, 48시간 , 72시간, 96시간이 경과된 시점에 소동물 생체 이미징 시스템 (In Vivo Imaging System, IVIS SpectrumCT, PerkinElmer)을 이용하여 마우스로부터 방출되는 형광 신호를 검출하였으며, 마지막 시점에서 간, 신장, 폐, 비장, 소장 및 종양을 적출 하여 조직별 항체 분포의 형광 신호를 확인하였다. 제작사로부터 공급된 Living Imaging Software를 이용하여 형광 신호를 분석하였다.On the 60th day after tumor implantation in the animal model, a control antibody or 4G3 antibody labeled with CF750 fluorescence was intravenously injected at a dose of 100 ug/100 ul. Fluorescent signals emitted from mice were detected using a small animal in vivo imaging system (In Vivo Imaging System, IVIS SpectrumCT, PerkinElmer) at 6 hours, 24 hours, 48 hours, 72 hours, and 96 hours, and the last time point Liver, kidney, lung, spleen, small intestine, and tumor were excised and the fluorescence signal of antibody distribution by tissue was confirmed. Fluorescence signals were analyzed using Living Imaging Software supplied by the manufacturer.
실험 결과 도 11a 및 도 11b와 같이, 대조군 항체(control IgG)에 비해 본원 발명의 4G3 항체는 시간이 경과함에 따라 이식종양을 특이적으로 표적하는 것을 확인하였고, 다른 조직과 대비해 종양에 축적되어 있음을 확인하였다.As shown in FIGS. 11A and 11B, it was confirmed that the 4G3 antibody of the present invention specifically targets the transplanted tumor over time compared to the control antibody (control IgG), and is accumulated in the tumor compared to other tissues. Was confirmed.
실험예 4: 항-클라우딘-3 CAR의 Experimental Example 4: Anti-Claudin-3 CAR in vitro in vitro 발현 및 활성 확인 Expression and activity confirmation
4-1. 항-클라우딘-3 CAR 벡터의 활성 확인4-1. Confirmation of the activity of anti-Claudin-3 CAR vector
실시예 3-2에 따라 제조된 형질전환 Jurkat 세포주에서 도입된 벡터(벡터 컨스트럭트 1 및 2)의 활성을 확인하기 위해, 형질전환 후 안정화 이후에 Incucyte를 이용해 벡터 내 RFP635의 발현을 확인하였다. 그 결과 도 13과 같이, 두 벡터 컨스트럭트 모두 Jurkat 세포주에 성공적으로 도입되어 RFP635를 발현할 수 있는 것으로 나타났다. In order to confirm the activity of the vector (vector constructs 1 and 2) introduced in the transformed Jurkat cell line prepared according to Example 3-2, the expression of RFP635 in the vector was confirmed using Incucyte after stabilization after transformation. . As a result, as shown in FIG. 13, both vector constructs were successfully introduced into the Jurkat cell line, and it was found that RFP635 could be expressed.
4-2. 유세포 분석을 통한 활성 마커의 발현 증가 확인4-2. Confirmation of increased expression of active markers through flow cytometry
실험예 4-1에서 형질도입 및 벡터 내 컨스트럭트의 발현 활성이 확인된 세포들을 이용하여 CAR의 효과를 실험하였다. 이때, 클라우딘-3를 발현하는 세포주와 발현하지 않는 세포주로 세포 활성화 실험을 진행하였으며, 상기 세포주로 각각 실험예 1-3에서 사용한 hCLDN3/TOV-112D 및 TOV-112D(공배양 음성 대조군)를 이용하였다. In Experimental Example 4-1, the effect of CAR was tested using cells in which the transduction and the expression activity of the construct in the vector were confirmed. At this time, a cell activation experiment was performed with a cell line expressing claudin-3 and a cell line not expressing, and hCLDN3/TOV-112D and TOV-112D (co-culture negative control) used in Experimental Example 1-3 were used as the cell lines, respectively. I did.
유세포 분석을 통해 각 CAR를 발현하는 세포를 클라우딘-3를 발현하는 세포와 공배양하였을 때 활성화가 되는지 확인하기 위해 활성 마커인 CD69와 CD25의 발현 증가를 확인하였다. hCLDN3/TOV-112D를 시딩(seeding)하여 하루 안정화한 후, 이를 1:3 비율로 각 CAR를 발현하는 Jurkat 세포와 공배양하였다. 이때, CAR를 발현하지 않는 Jurkat 세포를 음성대조군으로 하여 실험을 진행하였다. 6 시간 후 공배양했던 Jurkat 세포들을 회수(harvest)하여 각각 CD69와 CD25를 인식하는 항체(Biolegend)로 표지 후 BD FACS Calibur로 분석하였다. 그 결과 도 14(CAR 컨스트럭트 1 발현 Jurkat 세포 데이터) 및 15(CAR 컨스트럭트 2 발현 Jurkat 세포 데이터)와 같이, 항-클라우딘-3 CAR가 발현된 세포에서만 세포 활성화를 나타내는 상기 두 마커의 발현이 클라우딘-3를 발현하는 세포에 특이적으로 반응하여 증가한 것을 확인할 수 있었다.Through flow cytometry, when co-cultured with cells expressing claudin-3, the expression of the active markers CD69 and CD25 was increased to confirm that the cells expressing each CAR were activated when co-cultured with the cells expressing claudin-3. hCLDN3/TOV-112D was seeded and stabilized for one day, and then co-cultured with Jurkat cells expressing each CAR at a ratio of 1:3. At this time, the experiment was conducted using Jurkat cells not expressing CAR as a negative control. After 6 hours, the co-cultured Jurkat cells were harvested, labeled with antibodies that recognize CD69 and CD25 (Biolegend), respectively, and analyzed with BD FACS Calibur. As a result, as shown in Figs. 14 (data from Jurkat cells expressing CAR construct 1) and 15 (data from Jurkat cells expressing CAR construct 2), the two markers showing cell activation only in cells expressing anti-claudin-3 CAR. It was confirmed that the expression increased in response to a specific response to cells expressing claudin-3.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다. The above description of the present invention is for illustrative purposes only, and those of ordinary skill in the technical field to which the present invention pertains will be able to understand that other specific forms can be easily modified without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative and non-limiting in all respects. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as being distributed may also be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특 허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the claims to be described later, and all changes or modified forms derived from the meaning and scope of the patent claims and their equivalent concepts should be construed as being included in the scope of the present invention.

Claims (23)

  1. i) 클라우딘-3 결합 도메인(Claudin-3 binding domain);i) Claudin-3 binding domain;
    ii) 막통과 도메인(transmembrane domain); 및ii) transmembrane domain; And
    iii) 세포 내 신호전달 도메인(intracellular signaling domain)을 포함하는 것을 특징으로 하는 키메라 항원 수용체.iii) a chimeric antigen receptor comprising an intracellular signaling domain.
  2. 제1항에 있어서, The method of claim 1,
    상기 결합 도메인은 클라우딘-3의 세포 외 두번째 루프(second extracellular loop, ECL-2) 영역에 특이적으로 결합하는 것인, 키메라 항원 수용체.The binding domain specifically binds to the region of the second extracellular loop (ECL-2) of claudin-3, a chimeric antigen receptor.
  3. 제2항에 있어서, The method of claim 2,
    상기 클라우딘-3의 세포 외 두번째 루프 영역은 서열번호 2 로 표시되는 아미노산 서열을 포함하는 것인, 키메라 항원 수용체.The extracellular second loop region of the claudin-3 will contain the amino acid sequence represented by SEQ ID NO: 2, chimeric antigen receptor.
  4. 제1항에 있어서, The method of claim 1,
    상기 클라우딘-3 결합 도메인은 항체 또는 이의 기능적 단편인 것인, 키메라 항원 수용체.The claudin-3 binding domain is an antibody or a functional fragment thereof, chimeric antigen receptor.
  5. 제4항에 있어서, The method of claim 4,
    상기 항체는 IgG, IgA, IgM, IgE 및 IgD로 이루어진 군에서 선택되며, 상기 기능적 단편은 디아바디(diabody), Fab, F(ab'), F(ab')2, Fv, dsFv 및 scFv로 이루어진 군에서 선택되는 것인, 키메라 항원 수용체.The antibody is selected from the group consisting of IgG, IgA, IgM, IgE and IgD, and the functional fragment is a diabody, Fab, F(ab'), F(ab')2, Fv, dsFv, and scFv. Which is selected from the group consisting of, chimeric antigen receptor.
  6. 제1항에 있어서, The method of claim 1,
    상기 클라우딘-3 결합 도메인은 서열번호 3으로 표시되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 1(VH-CDR1), 서열번호 4로 표시되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 2(VH-CDR2), 및 서열번호 5로 표시 되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 3(VH-CDR3)을 포함하는 중쇄 가변영역; 및The claudin-3 binding domain is a heavy chain complementarity determining region 1 (VH-CDR1) comprising an amino acid sequence represented by SEQ ID NO: 3, a heavy chain complementarity determining region 2 (VH-CDR2) comprising an amino acid sequence represented by SEQ ID NO: 4 , And a heavy chain variable region comprising a heavy chain complementarity determining region 3 (VH-CDR3) comprising an amino acid sequence represented by SEQ ID NO: 5; And
    서열번호 6으로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 1(VL-CDR1), 서열번호 7로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 2(VL-CDR2), 및 서열번호 8로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 3(VL-CDR3)을 포함하는 경쇄 가변영역Light chain complementarity determining region 1 (VL-CDR1) comprising the amino acid sequence represented by SEQ ID NO: 6, light chain complementarity determining region 2 (VL-CDR2) comprising the amino acid sequence represented by SEQ ID NO: 7, and SEQ ID NO: 8 Light chain variable region including light chain complementarity determining region 3 (VL-CDR3) including the amino acid sequence
    을 포함하는 것이거나, Or
    상기 중쇄 가변영역 및 상기 경쇄 가변영역을 포함하는 클라우딘-3 결합 도메인이 인식하는 에피토프에 경쟁적으로 결합하는 것인, 키메라 항원 수용체.The chimeric antigen receptor that competitively binds to an epitope recognized by the claudin-3 binding domain including the heavy chain variable region and the light chain variable region.
  7. 제1항에 있어서, The method of claim 1,
    상기 클라우딘-3 결합 도메인은 서열번호 9으로 표시되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 1(VH-CDR1), 서열번호 10으로 표시되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 2(VH-CDR2), 및 서열번호 11로 표시 되는 아미노산 서열을 포함하는 중쇄 상보성 결정부위 3(VH-CDR3)을 포함하는 중쇄 가변영역; 및The claudin-3 binding domain is a heavy chain complementarity determining region 1 (VH-CDR1) comprising an amino acid sequence represented by SEQ ID NO: 9, a heavy chain complementarity determining region 2 (VH-CDR2) comprising an amino acid sequence represented by SEQ ID NO: 10. , And a heavy chain variable region comprising a heavy chain complementarity determining region 3 (VH-CDR3) comprising the amino acid sequence represented by SEQ ID NO: 11; And
    서열번호 12로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 1(VL-CDR1), 서열번호 13으로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 2(VL-CDR2), 및 서열번호 14로 표시되는 아미노산 서열을 포함하는 경쇄 상보성 결정부위 3(VL-CDR3)을 포함하는 경쇄 가변영역Light chain complementarity determining region 1 (VL-CDR1) comprising the amino acid sequence represented by SEQ ID NO: 12, light chain complementarity determining region 2 (VL-CDR2) comprising the amino acid sequence represented by SEQ ID NO: 13, and SEQ ID NO: 14 Light chain variable region including light chain complementarity determining region 3 (VL-CDR3) including the amino acid sequence
    을 포함하는 것이거나, Or
    상기 중쇄 가변영역 및 상기 경쇄 가변영역을 포함하는 클라우딘-3 결합 도메인이 인식하는 에피토프에 경쟁적으로 결합하는 것인, 키메라 항원 수용체.The chimeric antigen receptor that competitively binds to an epitope recognized by the claudin-3 binding domain including the heavy chain variable region and the light chain variable region.
  8. 제1항에 있어서, The method of claim 1,
    상기 클라우딘-3 결합 도메인은 서열번호 15 또는 16의 아미노산 또는 상기 아미노산 서열과 80%, 85%, 90%, 95%, 97%, 98% 또는 99% 이상의 상보성을 갖는 아미노산을 포함하는 scFv 인 것인, 키메라 항원 수용체.The claudin-3 binding domain is a scFv comprising an amino acid of SEQ ID NO: 15 or 16 or an amino acid having at least 80%, 85%, 90%, 95%, 97%, 98% or 99% complementarity with the amino acid sequence Phosphorus, chimeric antigen receptor.
  9. 제1항에 있어서,The method of claim 1,
    상기 세포 내 신호전달 도메인은 CD3 제타(ξ, zeta), TCR 제타, FcR 감마, FcR 베타, CD3 감마, CD3 델타, CD3 엡실론, CDS, CD22, CD79a, CD79b, CD278, CD66d, DAP10, DAP12, FcεRI 및 이들의 조합The intracellular signaling domain is CD3 zeta (ξ, zeta), TCR zeta, FcR gamma, FcR beta, CD3 gamma, CD3 delta, CD3 epsilon, CDS, CD22, CD79a, CD79b, CD278, CD66d, DAP10, DAP12, FcεRI And combinations thereof
    으로 이루어지는 군에서 선택된 단백질로부터 유래된 것을 특징으로 하는 키메라 항원 수용체.Chimeric antigen receptor, characterized in that derived from a protein selected from the group consisting of.
  10. 제1항에 있어서,The method of claim 1,
    상기 키메라 항원 수용체는 공자극 도메인(costimulatory domain)을 추가로 포함하는 것을 특징으로 하는 키메라 항원 수용체.The chimeric antigen receptor further comprises a costimulatory domain.
  11. 제10항에 있어서,The method of claim 10,
    상기 공자극 도메인은 MHC 클래스 I 분자(MHC class I molecules), TNF 수용체 단백질(TNF receptor proteins), 면역글로불린-유사 단백질(Immunoglobulin-like proteins), 사이토카인 수용체(cytokine receptors), 인테그린(integrins), SLAM 단백질(signaling lymphocytic activation molecules), NK 세포 활성화 수용체(NK cell activating receptors), BTLA, Toll 리간드 수용체(Toll ligand receptor), OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1(CD11a/CD18, lymphocyte function-associated antigen-1), 4-1BB(CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, CD83과 특이적으로 결합하는 리간드, PD-1 및 이들의 조합으로 이루어지는 군에서 선택된 공자극 분자로부터 유래된 것을 특징으로 하는 키메라 항원 수용체.The costimulatory domains are MHC class I molecules, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, SLAM proteins (signaling lymphocytic activation molecules), NK cell activating receptors, BTLA, Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1 , LFA-1(CD11a/CD18, lymphocyte function-associated antigen-1), 4-1BB(CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR) , KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6 , CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL , DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108 ), S LAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, a ligand that specifically binds to CD83, PD-1 and Chimeric antigen receptor, characterized in that it is derived from a costimulatory molecule selected from the group consisting of a combination thereof.
  12. 제1항에 있어서, The method of claim 1,
    상기 막통과 도메인은 TCR 알파 체인, TCR 베타 체인, TCR 제타 체인, CD28, CD3 엡실론, CD45, CD4, CD5, CDS, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154 및 CD8으로 이루어지는 군에서 선택된 단백질로부터 유래된 것을 특징으로 하는 키메라 항원 수용체.The transmembrane domain is TCR alpha chain, TCR beta chain, TCR zeta chain, CD28, CD3 epsilon, CD45, CD4, CD5, CDS, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, Chimeric antigen receptor, characterized in that derived from a protein selected from the group consisting of CD154 and CD8.
  13. 제1항에 있어서, The method of claim 1,
    상기 키메라 항원 수용체는 힌지(hinge)를 추가로 포함하는 것인, 키메라 항원 수용체.The chimeric antigen receptor further comprises a hinge (hinge), chimeric antigen receptor.
  14. 제1항에 있어서, The method of claim 1,
    상기 키메라 항원 수용체는 N말단에 리더(leader) 서열을 추가로 포함하는 것인, 키메라 항원 수용체.The chimeric antigen receptor further comprises a leader sequence at the N-terminus, chimeric antigen receptor.
  15. 제1항에 있어서, The method of claim 1,
    상기 키메라 항원 수용체는 서열번호 24, 서열번호 25 및 서열번호 26으로 이루어진 군에서 선택된 서열을 포함하는 것을 특징으로 하는 키메라 항원 수용체.The chimeric antigen receptor is a chimeric antigen receptor comprising a sequence selected from the group consisting of SEQ ID NO: 24, SEQ ID NO: 25, and SEQ ID NO: 26.
  16. 제1항의 키메라 항원 수용체를 암호화하는 폴리뉴클레오타이드. A polynucleotide encoding the chimeric antigen receptor of claim 1.
  17. 제16항의 폴리뉴클레오타이드를 포함하는 재조합 벡터.A recombinant vector comprising the polynucleotide of claim 16.
  18. 제1항의 키메라 항원 수용체를 포함하는 단리된 숙주 세포.An isolated host cell comprising the chimeric antigen receptor of claim 1.
  19. 제18항에 있어서, 상기 숙주 세포는 상기 숙주 세포가 투여될 대상으로부터 수득되거나, 상기 숙주 세포가 투여될 대상이 아닌 동종이계(allogeneic) 개체로부터 수득된 것인, 단리된 숙주 세포. 19. The isolated host cell of claim 18, wherein the host cell is obtained from a subject to which the host cell is to be administered, or from an allogeneic subject to which the host cell is not to be administered.
  20. 제18항에 있어서, 상기 숙주 세포는 중간엽줄기세포(MSCs), 역분화유도줄기 세포(iPSCs), CD34 세포, 조혈 내피 세포, 조혈모세포(HSCs), 조혈 다능성 전구 세포, 배아 줄기 세포(ESCs), 또는 면역 세포인 것인, 단리된 숙주 세포. The method of claim 18, wherein the host cells are mesenchymal stem cells (MSCs), dedifferentiation inducing stem cells (iPSCs), CD34 cells, hematopoietic endothelial cells, hematopoietic stem cells (HSCs), hematopoietic pluripotent progenitor cells, and embryonic stem cells ( ESCs), or immune cells.
  21. 제20항에 있어서, 상기 면역 세포는 T세포 전구체 , NK세포 전구체, T 세포, NK(Natural Killer) 세포, NKT(Natural K iller T) 세포, B세포, 단핵구, 대식세포 및 수지상세포로 이루어지는 군에서 선택되는 것인, 단리된 숙주 세포.The group consisting of T cell precursors, NK cell precursors, T cells, NK (Natural Killer) cells, NKT (Natural K iller T) cells, B cells, monocytes, macrophages and dendritic cells. The isolated host cell is selected from.
  22. 제18항의 숙주 세포를 유효성분으로 포함하는 암의 예방 또는 치료용 약제학적 조성물. A pharmaceutical composition for preventing or treating cancer comprising the host cell of claim 18 as an active ingredient.
  23. 제22항에 있어서,The method of claim 22,
    상기 암은 난소암, 결장암, 방광암, 폐암, 간암, 위암, 식도암, 유방암, 전립선암, 췌장암, 자궁암, 자궁경부암, 흑색종, 대장암, 신장암 및 전이성 흉막 종양으로 이루어진 군으로부터 선택되는 것인, 약제학적 조성물.The cancer is selected from the group consisting of ovarian cancer, colon cancer, bladder cancer, lung cancer, liver cancer, gastric cancer, esophageal cancer, breast cancer, prostate cancer, pancreatic cancer, uterine cancer, cervical cancer, melanoma, colon cancer, kidney cancer, and metastatic pleural tumor. , Pharmaceutical composition.
PCT/KR2020/013072 2019-09-26 2020-09-25 Anti-claudin-3 chimeric antigen receptor WO2021060914A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190118962 2019-09-26
KR10-2019-0118962 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021060914A1 true WO2021060914A1 (en) 2021-04-01

Family

ID=75165906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013072 WO2021060914A1 (en) 2019-09-26 2020-09-25 Anti-claudin-3 chimeric antigen receptor

Country Status (2)

Country Link
KR (1) KR20210037581A (en)
WO (1) WO2021060914A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114478802A (en) * 2022-01-28 2022-05-13 郑州大学 Chimeric antigen receptor and application thereof
WO2022195535A1 (en) * 2021-03-19 2022-09-22 Glaxosmithkline Intellectual Property Development Limited Chimeric antigen receptors targeting claudin-3 and methods for treating cancer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334207B1 (en) * 2011-02-09 2013-11-29 (주)레퍼런스바이오랩 Antigen Derived from Extracellular Domain of Multi-transmembrane Protein and Uses Thereof
US20140377781A1 (en) * 2006-12-14 2014-12-25 Chugai Seiyaku Kabushiki Kaisha Anti-Claudin 3 Monoclonal Antibody and Treatment and Diagnosis of Cancer Using the Same
KR20160070191A (en) * 2013-11-06 2016-06-17 스템센트알엑스 인코포레이티드 Novel anti-claudin antibodies and methods of use
KR20170118633A (en) * 2017-09-20 2017-10-25 서울대학교산학협력단 Monoclonal Antibodies Specific to Claudin 3 and 4, and The Use Thereof
KR20190113465A (en) * 2018-03-28 2019-10-08 서울대학교산학협력단 Antibody specifically binding to extracellular second loop of claudin 3, its fragment, and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140377781A1 (en) * 2006-12-14 2014-12-25 Chugai Seiyaku Kabushiki Kaisha Anti-Claudin 3 Monoclonal Antibody and Treatment and Diagnosis of Cancer Using the Same
KR101334207B1 (en) * 2011-02-09 2013-11-29 (주)레퍼런스바이오랩 Antigen Derived from Extracellular Domain of Multi-transmembrane Protein and Uses Thereof
KR20160070191A (en) * 2013-11-06 2016-06-17 스템센트알엑스 인코포레이티드 Novel anti-claudin antibodies and methods of use
KR20170118633A (en) * 2017-09-20 2017-10-25 서울대학교산학협력단 Monoclonal Antibodies Specific to Claudin 3 and 4, and The Use Thereof
KR20190113465A (en) * 2018-03-28 2019-10-08 서울대학교산학협력단 Antibody specifically binding to extracellular second loop of claudin 3, its fragment, and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHIARA ROMANI, EMILIANO COCCO, ELIANA BIGNOTTI, DANIELE MORATTO, ANTONELLA BUGATTI, PAOLA TODESCHINI, ELISABETTA BANDIERA, RENATA : "Evaluation of a novel human IgG1 anti-claudin3 antibody that specifically recognizes its aberrantly localized antigen in ovarian cancer cells and that is suitable for selective drug delivery", ONCOTARGET, vol. 6, no. 33, 21 September 2015 (2015-09-21), pages 34617 - 34628, XP055639826, DOI: 10.18632/oncotarget.5315 *
YANG HOBIN, PARK HAYEON, LEE YONG JIN, CHOI JUN YOUNG, KIM TAEEUN, RAJASEKARAN NIRMAL, LEE SAEHYUNG, SONG KYOUNG, HONG SUNGYOUL, C: "Development of Human Monoclonal Antibody for Claudin-3 Overexpressing Carcinoma Targeting", BIOMOLECULES, vol. 10, no. 1, 51, 28 December 2019 (2019-12-28), pages 1 - 21, XP055794736, ISSN: 2218-273X, DOI: 10.3390/biom10010051 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195535A1 (en) * 2021-03-19 2022-09-22 Glaxosmithkline Intellectual Property Development Limited Chimeric antigen receptors targeting claudin-3 and methods for treating cancer
CN114478802A (en) * 2022-01-28 2022-05-13 郑州大学 Chimeric antigen receptor and application thereof
CN114478802B (en) * 2022-01-28 2023-05-26 郑州大学 Chimeric antigen receptor and application thereof

Also Published As

Publication number Publication date
KR20210037581A (en) 2021-04-06

Similar Documents

Publication Publication Date Title
US20230279142A1 (en) Humanized anti-muc1* antibodies
US11382963B2 (en) Engineered T cells and uses therefor
WO2019098682A1 (en) Anti-her2 antibody or antigen-binding fragment thereof, and chimeric antigen receptor comprising same
US20160208018A1 (en) Antibodies and chimeric antigen receptors specific for ror1
JP2021514930A (en) New scFv amino acid sequence, chimeric antigen receptor containing it, and its use
KR20200037791A (en) Binding molecule that modulates biological activity expressed by cells
WO2021006619A1 (en) Antibody binding specifically to b7-h3 and use thereof
WO2020005003A1 (en) Monoclonal antibody specifically binding to lag-3 and use thereof
WO2021060914A1 (en) Anti-claudin-3 chimeric antigen receptor
WO2021235696A1 (en) Cd22-specific antibody and use thereof
WO2019203600A1 (en) Switch molecule and switchable chimeric antigen receptor
CN116615440A (en) Polypeptides comprising modified IL-2 polypeptides and uses thereof
JP2021518758A (en) Antibodies that specifically bind to ECL-2 of Claudin 3, fragments thereof and their use
WO2024049161A1 (en) Novel anti-pd-l1 chimeric antigen receptor, and immune cells expressing same
WO2021182929A1 (en) Bcma-specific antibody and chimeric antigen receptor
WO2023003404A1 (en) Novel chimeric antigen receptor and immune cells expressing same
WO2021210939A1 (en) Anti-her2 affibody, and switchable chimeric antigen receptor using same as switch molecule
WO2023277361A1 (en) Mesothelin-specific antibodies and use thereof
WO2021235697A1 (en) Cd22-specific antibody and use thereof
WO2022216079A1 (en) Gucy2c binding polypeptide and uses thereof
WO2021235894A1 (en) Anti-HER2 Antibody or Antigen-binding Fragment thereof, and Chimeric Antigen Receptor Comprising Same
WO2022139537A2 (en) Polypeptide specific for mucin 1 and use thereof
WO2021246637A1 (en) Antibody specific to cd22, and use thereof
WO2024053929A1 (en) Anti-vista monoclonal antibody and use thereof
WO2022124764A1 (en) Antibody specific for cd47 and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868632

Country of ref document: EP

Kind code of ref document: A1