WO2021060912A1 - 비면허 대역에서 임의 접속 과정을 수행하는 방법 및 이를 위한 장치 - Google Patents

비면허 대역에서 임의 접속 과정을 수행하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2021060912A1
WO2021060912A1 PCT/KR2020/013070 KR2020013070W WO2021060912A1 WO 2021060912 A1 WO2021060912 A1 WO 2021060912A1 KR 2020013070 W KR2020013070 W KR 2020013070W WO 2021060912 A1 WO2021060912 A1 WO 2021060912A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
message
msg
channel
terminal
Prior art date
Application number
PCT/KR2020/013070
Other languages
English (en)
French (fr)
Inventor
이정수
윤석현
고현수
양석철
김선욱
이영대
신석민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN202080067198.9A priority Critical patent/CN114451060A/zh
Priority to EP20869707.8A priority patent/EP4027740A4/en
Priority to KR1020227013780A priority patent/KR102541189B1/ko
Publication of WO2021060912A1 publication Critical patent/WO2021060912A1/ko
Priority to US17/696,254 priority patent/US11743831B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to a method and apparatus for performing a random access process by a terminal in an unlicensed band, and more particularly, a method for setting a transmission power of a signal for a terminal to perform a random access process, and an apparatus therefor. It is about.
  • next-generation 5G system which is a wireless broadband communication improved than the existing LTE system
  • NewRAT Enhanced Mobile BroadBand
  • URLLC low-latency communication
  • mMTC Massive Machine-Type Communications
  • eMBB is a next-generation mobile communication scenario with features such as High Spectrum Efficiency, High User Experienced Data Rate, and High Peak Data Rate
  • URLLC is a next-generation mobile communication scenario with features such as Ultra Reliable, Ultra Low Latency, and Ultra High Availability.
  • mMTC is a next-generation mobile communication scenario with characteristics of Low Cost, Low Energy, Short Packet, and Massive Connectivity. (e.g., IoT).
  • An object of the present invention is to provide a method and apparatus for performing a random access process in an unlicensed band.
  • a first physical random access channel (PRACH) and a first physical random access channel (PUSCH) Uplink shared channel) to the base station and in response to the message A, comprising receiving a message B related to contention resolution from the base station, and the transmission power of the message A
  • a power ramping counter is used, and the value of the power ramping counter is a transmission space related to transmission of a PRACH prior to the message A in a transmission spatial beam for transmission of the message A. It can be increased based on the same configuration as the beam.
  • the value of the power ramping counter may increase based on the fact that the Listen Before Talk (LBT) for the message A has not failed.
  • transmission of the message A may correspond to retransmission of the message A.
  • LBT Listen Before Talk
  • the value of the power ramping counter may not increase.
  • the power ramping counter may be used to set the transmission power based on the fact that the first PRACH and the first PUSCH are transmitted together through the message A.
  • a terminal performing a random access channel procedure (RACH procedure) in an unlicensed band comprising: at least one transceiver; At least one processor; And at least one memory that is operatively connected to the at least one processor and stores instructions for causing the at least one processor to perform a specific operation when executed.
  • a message A including a PRACH (Physical Random Access Channel) and a first PUSCH (Physical Uplink Shared Channel) is transmitted to the base station, and in response to the message A, a message B related to contention resolution is transmitted to the base station.
  • a power ramping counter is used to set the transmission power of the message A, and the value of the power ramping counter is a transmission spatial beam for transmission of the message A. ) May be increased based on the fact that the transmission spatial beam related to the transmission of the PRACH before the message A is configured identically.
  • the value of the power ramping counter may increase based on the fact that the Listen Before Talk (LBT) for the message A has not failed.
  • transmission of the message A may correspond to retransmission of the message A.
  • LBT Listen Before Talk
  • the value of the power ramping counter may not increase.
  • the power ramping counter may be used to set the transmission power based on the fact that the first PRACH and the first PUSCH are transmitted together through the message A.
  • An apparatus for performing a random access channel procedure (RACH procedure) in an unlicensed band comprising: at least one transceiver; At least one processor; And at least one memory that is operatively connected to the at least one processor and stores instructions for causing the at least one processor to perform a specific operation when executed.
  • RACH procedure random access channel procedure
  • a power ramping counter is used to set the transmission power of the message A, and the value of the power ramping counter is the transmission spatial beam for transmission of the message A is the message A It may increase based on the fact that it is configured in the same manner as the transmission spatial beam related to transmission of the previous PRACH.
  • a first physical random access channel (PRACH) and a first PUSCH Receiving a message A including (Physical Uplink shared Channel) from the terminal, and in response to the message A, comprising transmitting a message B related to contention resolution to the terminal, wherein the message A
  • the transmission power is set based on a power ramping counter, and the value of the power ramping counter is related to the transmission of the PRACH before the message A. It can be increased based on the same configuration as the transmission spatial beam.
  • a computer readable storage medium comprises instructions for causing the at least one processor to perform operations for a user device when executed by at least one processor.
  • One computer program is stored, and the operations are performed by transmitting a message A including a first PRACH (Physical Random Access Channel) and a first PUSCH (Physical Uplink Shared Channel), and in response to the message A, contention resolution Including receiving a message B related to (contention resolution), a power ramping counter is used to set the transmission power of the message A, and the value of the power ramping counter indicates the transmission of the message A.
  • the transmission spatial beam for transmission may be increased based on the same configuration as the transmission spatial beam related to transmission of the PRACH prior to the message A.
  • a terminal can efficiently set the transmission power of a signal for performing a random access process.
  • FIG. 1 is a diagram showing the structure of a control plane and a user plane of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • FIG. 2 is a diagram illustrating physical channels used in a 3GPP system and a general signal transmission method using them.
  • 3 to 5 are diagrams for explaining channel transmission in an unlicensed band.
  • FIG. 6 is a diagram for explaining an embodiment of a procedure for controlling uplink transmission power.
  • FIGS. 7 to 8 are diagrams for explaining an example of implementing operations of a terminal and a base station according to an embodiment of the present invention.
  • FIG. 9 is a diagram showing a basic process of a 2-step RACH.
  • FIG. 10 is a diagram illustrating an embodiment of Msg A transmission according to whether a terminal succeeds or fails an LBT and a transmission beam direction configuration.
  • FIG. 11 is a diagram illustrating an embodiment of the present disclosure in which a power ramping counter is maintained or increased according to a transmission beam direction of a terminal.
  • FIG. 12 is a diagram illustrating an operation flow of a terminal and a base station for performing a 2-step RACH procedure based on embodiments of the present disclosure.
  • FIG. 13 shows an example of a communication system to which embodiments of the present disclosure are applied.
  • the name of the base station may be used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • relay a relay
  • 3GPP-based communication standards include downlink physical channels corresponding to resource elements carrying information originating from higher layers, and downlink corresponding to resource elements used by the physical layer but not carrying information originating from higher layers.
  • Physical signals are defined.
  • PBCH physical broadcast channel
  • PMCH physical multicast channel
  • PHICH physical control format indicator channel
  • PHICH physical hybrid ARQ indicator channel
  • a reference signal also referred to as a pilot, refers to a signal of a predefined special waveform that the gNB and the UE know each other.
  • cell specific RS RS
  • UE-specific RS UE-specific RS
  • UE-RS positioning RS
  • channel state information RS channel state information RS, CSI-RS
  • 3GPP LTE/LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from an upper layer, and resource elements used by the physical layer but not carrying information originating from an upper layer. Uplink physical signals are defined.
  • a physical uplink shared channel PUSCH
  • a physical uplink control channel PUCCH
  • a physical random access channel PRACH
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • PDCCH Physical Downlink Control CHannel
  • PCFICH Physical Control Format Indicator CHannel
  • PHICH Physical Hybrid automatic retransmit request Indicator CHannel
  • PDSCH Physical Downlink Shared CHannel
  • DCI Downlink Control Information
  • CFI Control Format Indicator
  • Downlink ACK / NACK ACKnowlegement / Negative ACK
  • Uplink Shared CHannel/PRACH Physical Random Access CHannel refers to a set of time-frequency resources or a set of resource elements each carrying uplink control information (UCI)/uplink data/random access signals.
  • PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH assigned to or belonging to a time-frequency resource or resource element (RE), respectively, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE or PDCCH It is referred to as /PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH resource.
  • the expression that the user equipment transmits PUCCH/PUSCH/PRACH is, respectively, uplink control information/uplink data on or through PUSCH/PUCCH/PRACH.
  • /It is used in the same meaning as that of transmitting a random access signal.
  • the expression that gNB transmits PDCCH/PCFICH/PHICH/PDSCH is, respectively, on PDCCH/PCFICH/PHICH/PDSCH. It is used in the same meaning as transmitting downlink data/control information through or through.
  • CRS/DMRS/CSI-RS/SRS/UE-RS are allocated or configured OFDM symbols/subcarriers/REs are CRS/DMRS/CSI-RS/SRS/UE-RS symbols/carriers. It is called /subcarrier/RE.
  • an OFDM symbol to which a tracking RS (TRS) is allocated or configured is referred to as a TRS symbol
  • a subcarrier to which a TRS is allocated or configured is referred to as a TRS subcarrier
  • a TRS is allocated.
  • the configured RE is referred to as TRS RE.
  • a subframe configured for TRS transmission is referred to as a TRS subframe.
  • a subframe in which a broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe
  • a subframe in which a synchronization signal (eg, PSS and/or SSS) is transmitted is a synchronization signal subframe or a PSS/SSS subframe. It is called.
  • the OFDM symbols/subcarriers/REs to which PSS/SSS are allocated or configured are referred to as PSS/SSS symbols/subcarriers/REs, respectively.
  • a CRS port, a UE-RS port, a CSI-RS port, and a TRS port respectively refer to an antenna port configured to transmit a CRS, an antenna port configured to transmit a UE-RS, Refers to an antenna port configured to transmit CSI-RS and an antenna port configured to transmit TRS.
  • the antenna ports configured to transmit CRSs can be classified according to the positions of the REs occupied by the CRS according to the CRS ports, and the antenna ports configured to transmit UE-RSs are the UE -According to the RS ports, the positions of the REs occupied by the UE-RS can be distinguished from each other, and the antenna ports configured to transmit CSI-RSs are occupied by the CSI-RS according to the CSI-RS ports. It can be distinguished from each other by the location of the REs. Therefore, the term CRS/UE-RS/CSI-RS/TRS port is also used as a term that refers to a pattern of REs occupied by CRS/UE-RS/CSI-RS/TRS within a certain resource area.
  • Machine learning refers to the field of studying methodologies to define and solve various problems dealt with in the field of artificial intelligence. do.
  • Machine learning is also defined as an algorithm that improves the performance of a task through continuous experience.
  • An artificial neural network is a model used in machine learning, and may refer to an overall model with problem-solving capabilities, which is composed of artificial neurons (nodes) that form a network by combining synapses.
  • the artificial neural network may be defined by a connection pattern between neurons of different layers, a learning process for updating model parameters, and an activation function for generating an output value.
  • the artificial neural network may include an input layer, an output layer, and optionally one or more hidden layers. Each layer includes one or more neurons, and the artificial neural network may include neurons and synapses connecting neurons. In an artificial neural network, each neuron can output a function of an activation function for input signals, weights, and biases input through synapses.
  • Model parameters refer to parameters determined through learning, and include weights of synaptic connections and biases of neurons.
  • the hyperparameter refers to a parameter that must be set before learning in a machine learning algorithm, and includes a learning rate, number of iterations, mini-batch size, and initialization function.
  • the purpose of learning the artificial neural network can be seen as determining the model parameters that minimize the loss function.
  • the loss function can be used as an index to determine an optimal model parameter in the learning process of the artificial neural network.
  • Machine learning can be classified into supervised learning, unsupervised learning, and reinforcement learning according to the learning method.
  • Supervised learning refers to a method of training an artificial neural network when a label for training data is given, and a label indicates the correct answer (or result value) that the artificial neural network must infer when training data is input to the artificial neural network. It can mean.
  • Unsupervised learning may mean a method of training an artificial neural network in a state in which a label for training data is not given.
  • Reinforcement learning may mean a learning method in which an agent defined in a certain environment learns to select an action or action sequence that maximizes the cumulative reward in each state.
  • machine learning implemented as a deep neural network (DNN) including a plurality of hidden layers is sometimes referred to as deep learning (deep learning), and deep learning is a part of machine learning.
  • DNN deep neural network
  • machine learning is used in the sense including deep learning.
  • a robot may refer to a machine that automatically processes or operates a task given by its own capabilities.
  • a robot having a function of recognizing the environment and performing an operation by self-determining may be referred to as an intelligent robot.
  • Robots can be classified into industrial, medical, household, military, etc. depending on the purpose or field of use.
  • the robot may be provided with a driving unit including an actuator or a motor to perform various physical operations such as moving a robot joint.
  • a driving unit including an actuator or a motor to perform various physical operations such as moving a robot joint.
  • the movable robot includes a wheel, a brake, a propeller, and the like in a driving unit, and can travel on the ground or fly in the air through the driving unit.
  • Autonomous driving refers to self-driving technology
  • autonomous driving vehicle refers to a vehicle that is driven without a user's manipulation or with a user's minimal manipulation.
  • a technology that maintains a driving lane a technology that automatically adjusts the speed such as adaptive cruise control, a technology that automatically travels along a specified route, and a technology that automatically sets a route when a destination is set, etc. All of these can be included.
  • the vehicle includes all of a vehicle including only an internal combustion engine, a hybrid vehicle including an internal combustion engine and an electric motor, and an electric vehicle including only an electric motor, and may include not only automobiles, but also trains and motorcycles.
  • the autonomous vehicle can be viewed as a robot having an autonomous driving function.
  • Augmented reality collectively refers to virtual reality (VR), augmented reality (AR), and mixed reality (MR).
  • VR technology provides only CG images of real-world objects or backgrounds
  • AR technology provides virtually created CG images on top of real object images
  • MR technology is a computer that mixes and combines virtual objects in the real world. It's a graphic technology.
  • MR technology is similar to AR technology in that it shows real and virtual objects together.
  • a virtual object is used in a form that complements a real object, whereas in MR technology, there is a difference in that a virtual object and a real object are used with equal characteristics.
  • HMD Head-Mount Display
  • HUD Head-Up Display
  • mobile phones tablet PCs, laptops, desktops, TVs, digital signage, etc. It can be called as.
  • the three main requirements areas of 5G are (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) Ultra-reliability and It includes a low-latency communication (Ultra-reliable and Low Latency Communications, URLLC) area.
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Low Latency Communications
  • KPI key performance indicator
  • eMBB goes far beyond basic mobile Internet access and covers rich interactive work, media and entertainment applications in the cloud or augmented reality.
  • Data is one of the key drivers of 5G, and it may not be possible to see dedicated voice services for the first time in the 5G era.
  • voice is expected to be processed as an application program simply using the data connection provided by the communication system.
  • the main reasons for the increased traffic volume are an increase in content size and an increase in the number of applications requiring high data rates.
  • Streaming services (audio and video), interactive video and mobile Internet connections will become more widely used as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to the user.
  • Cloud storage and applications are increasing rapidly on mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of the uplink data rate.
  • 5G is also used for remote work in the cloud and requires much lower end-to-end latency to maintain a good user experience when tactile interfaces are used.
  • Entertainment For example, cloud gaming and video streaming is another key factor that is increasing the demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including high mobility environments such as trains, cars and airplanes.
  • Another use case is augmented reality and information retrieval for entertainment.
  • augmented reality requires very low latency and an instantaneous amount of data.
  • one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all fields, i.e. mMTC.
  • mMTC massive machine type computer
  • Industrial IoT is one of the areas where 5G plays a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
  • URLLC includes new services that will transform the industry with ultra-reliable/low-latency links such as self-driving vehicles and remote control of critical infrastructure.
  • the level of reliability and delay is essential for smart grid control, industrial automation, robotics, and drone control and coordination.
  • 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of providing streams rated at hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in 4K or higher (6K, 8K and higher) resolutions, as well as virtual and augmented reality.
  • Virtual Reality (VR) and Augmented Reality (AR) applications involve almost immersive sports events.
  • Certain application programs may require special network settings. For example, for VR games, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
  • Automotive is expected to be an important new driving force in 5G, with many use cases for mobile communication to vehicles. For example, entertainment for passengers demands simultaneous high capacity and high mobility mobile broadband. The reason is that future users will continue to expect high-quality connections, regardless of their location and speed.
  • Another use case in the automotive field is an augmented reality dashboard. It identifies an object in the dark on top of what the driver sees through the front window, and displays information that tells the driver about the distance and movement of the object overlaid.
  • wireless modules enable communication between vehicles, exchange of information between the vehicle and the supporting infrastructure, and exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians).
  • the safety system can lower the risk of an accident by guiding the driver through alternative courses of action to make driving safer.
  • the next step will be a remote controlled or self-driven vehicle.
  • This requires very reliable and very fast communication between different self-driving vehicles and between the vehicle and the infrastructure.
  • self-driving vehicles will perform all driving activities, and drivers will be forced to focus only on traffic anomalies that the vehicle itself cannot identify.
  • the technical requirements of self-driving vehicles require ultra-low latency and ultra-fast reliability to increase traffic safety to levels unachievable by humans.
  • Smart cities and smart homes referred to as smart society, will be embedded with high-density wireless sensor networks.
  • a distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of a city or home.
  • a similar setup can be done for each household.
  • Temperature sensors, window and heating controllers, burglar alarms and appliances are all wirelessly connected. Many of these sensors are typically low data rate, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
  • the consumption and distribution of energy including heat or gas is highly decentralized, requiring automated control of distributed sensor networks.
  • the smart grid interconnects these sensors using digital information and communication technologies to gather information and act accordingly. This information can include the behavior of suppliers and consumers, enabling smart grids to improve efficiency, reliability, economics, sustainability of production and the distribution of fuels such as electricity in an automated way.
  • the smart grid can also be viewed as another low-latency sensor network.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system can support telemedicine providing clinical care from remote locations. This can help reduce barriers to distance and improve access to medical services that are not consistently available in remote rural areas. It is also used to save lives in critical care and emergencies.
  • a wireless sensor network based on mobile communication can provide sensors and remote monitoring of parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with reconfigurable wireless links is an attractive opportunity for many industries. However, achieving this requires that the wireless connection operates with a delay, reliability and capacity similar to that of the cable, and its management is simplified. Low latency and very low error probability are new requirements that need to be connected to 5G.
  • Logistics and freight tracking are important use cases for mobile communications that enable tracking of inventory and packages anywhere using location-based information systems. Logistics and freight tracking use cases typically require low data rates, but require a wide range and reliable location information.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated in the application layer, for example, voice data or Internet packet data, is transmitted.
  • the first layer provides an information transfer service to an upper layer using a physical channel.
  • the physical layer is connected to the upper medium access control layer through a transmission channel. Data moves between the medium access control layer and the physical layer through the transmission channel. Data moves between the physical layers of the transmitting side and the receiving side through a physical channel.
  • the physical channel uses time and frequency as radio resources. Specifically, a physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink and a single carrier frequency division multiple access (SC-FDMA) scheme in uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single carrier frequency division multiple access
  • the medium access control (MAC) layer of the second layer provides a service to an upper layer, the Radio Link Control (RLC) layer, through a logical channel.
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function that reduces unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 over a narrow bandwidth wireless interface.
  • the radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is in charge of controlling logical channels, transmission channels, and physical channels in relation to configuration, re-configuration, and release of radio bearers.
  • the radio bearer refers to a service provided by the second layer for data transmission between the terminal and the network.
  • the UE and the RRC layer of the network exchange RRC messages with each other.
  • RRC connection RRC Connected
  • the terminal is in an RRC connected state (Connected Mode), otherwise, it is in an RRC idle state (Idle Mode).
  • the NAS (Non-Access Stratum) layer above the RRC layer performs functions such as session management and mobility management.
  • the downlink transmission channel for transmitting data from the network to the terminal includes a broadcast channel (BCH) that transmits system information, a paging channel (PCH) that transmits paging messages, and a downlink shared channel (SCH) that transmits user traffic or control messages.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH, or may be transmitted through a separate downlink multicast channel (MCH).
  • MCH downlink multicast channel
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast. Traffic Channel
  • FIG. 2 is a diagram illustrating physical channels used in a 3GPP system and a general signal transmission method using them.
  • the terminal When the terminal is powered on or newly enters a cell, the terminal performs an initial cell search operation such as synchronizing with the base station (S201). To this end, the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check a downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE acquires more detailed system information by receiving a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) according to the information carried on the PDCCH. It can be done (S202).
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • the terminal may perform a random access procedure (RACH) with respect to the base station (steps S203 to S206).
  • RACH random access procedure
  • the UE transmits a specific sequence as a preamble through a physical random access channel (PRACH) (S203 and S205), and may receive a response message for the preamble through a PDCCH and a corresponding PDSCH ( S204 and S206).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE receives PDCCH/PDSCH (S207) and physical uplink shared channel (PUSCH)/physical uplink control channel as a general uplink/downlink signal transmission procedure.
  • Control Channel; PUCCH) transmission (S208) may be performed.
  • the UE receives Downlink Control Information (DCI) through the PDCCH.
  • DCI Downlink Control Information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received from the base station by the terminal is a downlink/uplink ACK/NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), a rank indicator (RI). ), etc.
  • CQI channel quality indicator
  • PMI precoding matrix index
  • RI rank indicator
  • the UE may transmit control information such as CQI/PMI/RI described above through PUSCH and/or PUCCH.
  • the NR system is considering a method of using a high ultra-high frequency band, that is, a millimeter frequency band of 6 GHz or higher in order to transmit data while maintaining a high transmission rate to a large number of users using a wide frequency band.
  • a high ultra-high frequency band that is, a millimeter frequency band of 6 GHz or higher
  • this is used under the name NR, and in the present invention, it will be referred to as an NR system in the future.
  • NR supports multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when the SCS is 15 kHz, it supports a wide area in traditional cellular bands, and when the SCS is 30 kHz/60 kHz, it is dense-urban, lower latency. And a wider carrier bandwidth, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 kHz is supported to overcome phase noise.
  • numerology or subcarrier spacing (SCS)
  • the NR frequency band is defined as a frequency range of two types (FR1, FR2).
  • FR1 is a sub 6GHz range
  • FR2 may mean a millimeter wave (mmW) in the above 6GHz range.
  • mmW millimeter wave
  • Table 1 below shows the definition of the NR frequency band.
  • FIG. 3 is a diagram illustrating an example of a wireless communication system supporting an unlicensed band to which various embodiments of the present disclosure are applicable.
  • a cell operating in a licensed band is defined as an L-cell, and a carrier of the L-cell is defined as a (DL/UL) LCC.
  • a cell operating in an unlicensed band (hereinafter, U-band) is defined as a U-cell, and a carrier of the U-cell is defined as (DL/UL) UCC.
  • the carrier/carrier-frequency of the cell may mean the operating frequency (eg, center frequency) of the cell.
  • Cell/carrier eg, CC
  • a cell is collectively referred to as a cell.
  • the LCC may be set to PCC (Primary CC) and the UCC may be set to SCC (Secondary CC).
  • the terminal and the base station may transmit and receive signals through one UCC or a plurality of LCCs and UCCs combined with a carrier. That is, the terminal and the base station can transmit and receive signals through only UCC(s) without an LCC.
  • the signal transmission/reception operation in the unlicensed band described in various embodiments of the present disclosure may be performed based on all of the above-described deployment scenarios (unless otherwise noted).
  • a frame structure type 3 or NR frame structure of LTE may be used for operation in an unlicensed band.
  • the configuration of OFDM symbols occupied for uplink/downlink signal transmission in the frame structure for the unlicensed band may be set by the base station.
  • the OFDM symbol may be replaced with an SC-FDM(A) symbol.
  • the base station may inform the terminal of the configuration of OFDM symbols used in subframe #n through signaling.
  • a subframe may be replaced with a slot or a time unit (TU).
  • the UE subframes through a specific field (e.g., Subframe configuration for LAA field, etc.) received from the base station in subframe #n-1 or subframe #n. It is possible to assume (or identify) the configuration of the OFDM symbol occupied in #n.
  • a specific field e.g., Subframe configuration for LAA field, etc.
  • Table 2 shows the configuration of OFDM symbols used for transmission of a downlink physical channel and/or a physical signal in a current and/or next subframe in a subframe configuration for LAA field in a wireless communication system. Illustrate how to represent.
  • the base station may inform the terminal of information on the uplink transmission period through signaling.
  • the terminal may obtain'UL duration' and'UL offset' information for subframe #n through the'UL duration and offset' field in the detected DCI.
  • Table 3 illustrates how the UL duration and offset field indicates the UL offset and UL duration configuration in a wireless communication system.
  • -A channel may mean a carrier or a part of a carrier composed of a contiguous set of RBs on which a channel access procedure is performed in a shared spectrum.
  • the channel access procedure may be a sensing-based procedure for evaluating the availability of a channel for performing transmission.
  • -Channel occupancy may mean transmission in a channel by a base station/UE after performing a corresponding channel access procedure in this section.
  • -Channel occupancy time means that after the base station/UE performs the corresponding channel access procedure in this section, the base station/UE and any base station/UE(s) sharing channel occupancy transmit transmission on the channel. It can mean the total time performed. In order to determine the channel occupancy time, if the transmission gap is 25 us or less, the gap duration may be counted as the channel occupancy time. The channel occupancy time may be shared for transmission between the base station and the corresponding UE(s).
  • the base station may perform the following downlink channel access procedure (CAP) for the unlicensed band in order to transmit a downlink signal in the unlicensed band.
  • CAP downlink channel access procedure
  • This section describes a channel access procedure performed by a base station in which a time duration spanned by a sensing slot sensed idle before downlink transmission(s) is random. This clause is applicable to the following transmissions:
  • the transmission period may be greater than 1 ms, or the transmission may cause the discovery burst duty cycle to exceed 1/20.
  • the base station senses whether the channel is in an idle state during the sensing slot period of the delay period T d , and after the counter N is 0 in step 4 below, the base station may transmit transmission. At this time, the counter N is adjusted by channel sensing for an additional sensing slot duration according to the following procedure:
  • N init is an arbitrary number of evenly distributed between p is from 0 CW (random number uniformly distributed between 0 and CW p). Then go to step 4.
  • step 3 The channel for the additional sensing slot period is sensed. At this time, if the additional sensing slot period is idle, the process moves to step 4. If not, go to step 5.
  • step 6 If the corresponding channel is sensed as idle during all sensing slot periods of the additional delay period T d, the process moves to step 4. If not, go to step 5.
  • FIG. 4 is a diagram illustrating a DL CAP for unlicensed band transmission to which various embodiments of the present disclosure are applicable.
  • a type 1 downlink channel access procedure for unlicensed band transmission to which various embodiments of the present disclosure are applicable may be summarized as follows.
  • a transmitting node eg, a base station
  • CAP channel access procedure
  • the base station may randomly select the backoff counter N within the contention window (CW) according to step 1.
  • the value of N is set to the initial value Ninit (2020).
  • Ninit is selected as an arbitrary value from 0 to CWp.
  • step 4 if the backoff counter value (N) is 0 (2030; Y), the base station ends the CAP process (2032). Subsequently, the base station may perform Tx burst transmission (2034). On the other hand, if the backoff counter value is not 0 (2030; N), the base station decreases the backoff counter value by 1 according to step 2 (2040).
  • the base station checks whether the channel is in an idle state (2050), and if the channel is in an idle state (2050; Y), it checks whether the backoff counter value is 0 (2030).
  • the base station uses a delay period longer than the sensing slot time (eg, 9usec) according to step 5 (defer duration Td; 25usec). For above), it is checked whether the corresponding channel is in an idle state (2060). If the channel is idle in the delay period (2070; Y), the base station may resume the CAP process again.
  • a delay period longer than the sensing slot time eg, 9usec
  • the base station senses the channel during the delay period to determine whether it is in the idle state. At this time, if the channel is idle during the delay period, the base station does not set the backoff counter value Ninit, but can perform the CAP process again from the backoff counter value 5 (or from 4 after decreasing the backoff counter value by 1). have.
  • the base station performs step 2060 again to check whether the channel is in the idle state during the new delay period.
  • the base station may transmit transmission on the channel if the following conditions are satisfied:
  • the base station When the base station is prepared to transmit transmission and the corresponding channel is sensed as idle during at least the sensing slot period Tsl, and immediately before the transmission, the channel is sensed as idle during all sensing slot periods of the delay period Td. Occation
  • the base station senses the channel after being prepared to transmit transmission, the channel is not sensed as idle during the sensing slot period Tsl, or immediately before the intended transmission (immediately before) any one of the delay period Td. If the channel is not sensed as idle during the sensing slot period, the base station proceeds to step 1 after sensing that the channel is idle during the sensing slot period of the delay period Td (proceed to step 1).
  • each sensing slot period Tsl is 9us
  • Tf includes an idle sensing slot period Tsl at the start point of Tf.
  • Table 4 illustrates that mp applied to the CAP, minimum CW, maximum CW, maximum channel occupancy time (MCOT), and allowed CW sizes vary according to the channel access priority class.
  • Tf includes a sensing slot at the start point of Tf.
  • Tf includes a sensing slot occurring within the last 9 us of Tf.
  • the base station does not sense the channel before transmitting the transmission.
  • the maximum duration corresponding to the transmission is 584us.
  • the base station may access multiple channels on which transmission is performed through one of the following type A or type B procedures.
  • the base station Phase channel connection is performed.
  • C is a set of channels intended to be transmitted by the base station
  • q is the number of channels to be transmitted by the base station.
  • Counter N considered in CAP is for each channel It is determined for each channel, and in this case, the counter for each channel is Mark d.
  • Counter N considered in CAP is for each channel It is determined for each channel, and the counter for each channel is Mark d.
  • any one channel of the base station In the case of cease transmission, if the absence of any other technology sharing the channel can be guaranteed for a long period (e.g., by the level of regulation) (if the absence of any other technology sharing the channel can be guaranteed on a long term basis (eg, by level of regulation)), each channel c i (where c i is different from c j, )for, After waiting for a section of or When an idle sensing slot is detected after reinitializing, the base station Decrease can be resumed.
  • Each channel Star counter N may be determined according to the above-described contents, in which case the counter for each channel is Mark d. here, May mean a channel having the largest CW p value.
  • Base station When ceases transmission for any one channel for which is determined, the base station is used for all channels. Reinitialize.
  • the base station is a multi-channel Prior to transmission of each phase, uniformly randomly from C above Or
  • the base station is more than once every 1 second Do not choose.
  • C is a set of channels intended to be transmitted by the base station
  • q is the number of channels to be transmitted by the base station.
  • the base station 4.2.1. Section or 4.2.2. Channels in accordance with the procedures set out in Section 3.1 together with the indications set out in Section 3.1. Channel access on the server.
  • the base station is a channel Immediately before transmission on the image (sensing interval) at least While channel Is sensed. And, the base station is at least a sensing period While channel Immediately after sensing that the child is a child (immediately after) channel Transfer can be performed on the. Given interval My channel When the channel is sensed as idle during all time periods in which phase idle sensing is performed, the channel Is Can be considered as children for.
  • the base station is a channel (At this time, ), (for a period exceeding T mcot,p) transmission is not performed for a period exceeding T mcot,p in Table 4.
  • T mcot,p is the channel It is determined using the channel access parameters used for.
  • the channel frequency of the channel set C selected by the gNB is one subset of the predefined channel frequency sets.
  • a single CW p value is maintained for channel set C.
  • Step 2 of the procedure described above in Section 3.1 is modified as follows.
  • CW p value for each channel Is maintained independently for the sake of channel To determine the CW p for the channel Any PDSCH that completely or partially overlaps with may be used.
  • channel To determine the N init for the channel The CW p value of is used. here, Is the channel with the largest CW p among all channels in set C.
  • the UE and the base station scheduling or configuring UL transmission for the UE perform the following procedure for access to a channel (performing LAA S cell transmission(s)).
  • a P cell which is a licensed band
  • an S cell which is one or more unlicensed bands
  • an uplink CAP operation applicable to various embodiments of the present disclosure will be described in detail do.
  • the uplink CAP operation may be equally applied even when only an unlicensed band is set for the terminal and the base station.
  • the UE may access a channel on which UL transmission(s) is performed according to a type 1 or type 2 UL channel access procedure.
  • Table 5 illustrates that mp applied to the CAP, minimum CW, maximum CW, maximum channel occupancy time (MCOT), and allowed CW sizes vary according to the channel access priority class.
  • This section describes a channel access procedure performed by a UE in which a time duration spanned by a sensing slot sensed idle before uplink transmission(s) is random. This clause is applicable to the following transmissions:
  • FIG. 5 is a diagram for explaining a UL CAP for unlicensed band transmission to which various embodiments of the present disclosure are applicable.
  • the type 1 UL CAP of the UE for unlicensed band transmission to which various embodiments of the present disclosure are applicable may be summarized as follows.
  • a transmitting node eg, UE may initiate a channel access procedure (CAP) to operate in an unlicensed band (2110).
  • CAP channel access procedure
  • the UE may randomly select the backoff counter N within the contention window (CW) according to step 1.
  • the value of N is set to the initial value Ninit (2120).
  • Ninit is selected as an arbitrary value from 0 to CWp.
  • step 4 if the backoff counter value (N) is 0 (2130; Y), the UE ends the CAP process (2132). Subsequently, the UE may perform Tx burst transmission (2134). On the other hand, if the backoff counter value is not 0 (2130; N), the UE decreases the backoff counter value by 1 according to step 2 (2140).
  • the UE checks whether the channel is in an idle state (2150), and if the channel is in an idle state (2150; Y), it checks whether the backoff counter value is 0 (2130).
  • the UE Conversely, if the channel is not in an idle state in operation 2150, that is, if the channel is busy (2150; N), the UE has a delay period longer than the slot time (e.g., 9usec) according to step 5 (defer duration Td; 25usec or more) ), it is checked whether the corresponding channel is in an idle state (2160). If the channel is idle in the delay period (2170; Y), the UE may resume the CAP process again.
  • the slot time e.g. 9usec
  • the UE senses the channel during the delay period to determine whether it is in the idle state. At this time, if the channel is idle during the delay period, the UE does not set the backoff counter value Ninit, but can perform the CAP process again from the backoff counter value 5 (or from 4 after decreasing the backoff counter value by 1). have.
  • the UE performs operation 2160 again to check whether the channel is in the idle state during the new delay period.
  • the UE when the UE does not transmit UL transmission on a channel on which transmission(s) is performed after step 4 of the above-described procedure, the UE may transmit UL transmission on the channel if the following conditions are satisfied.
  • the channel in the sensing slot period Tsl is not sensed as idle, or any sensing slot period in the delay period Td immediately before the intended transmission. If the corresponding channel is not sensed as idle during the period, the UE proceeds to step 1 after the corresponding channel is sensed as idle during the slot periods of the delay period Td.
  • each slot period Tsl is 9us
  • Tf includes an idle slot period Tsl at the start point of Tf.
  • T short_ul is one sensing slot section Immediately following (immediately followed) section It consists of.
  • T f includes a sensing slot at the start point of T f.
  • the UE uses the type 2B channel access procedure for UL transmission.
  • Tf includes a sensing slot occurring within the last 9 us of Tf.
  • the UE If the UE is instructed to perform the Type 2C UL channel access procedure, the UE does not sense the channel before transmitting the transmission in order to transmit the transmission.
  • the maximum duration corresponding to the transmission is 584us.
  • the UL scheduling grant for UL transmission on the channel set C indicates a type 1 channel access procedure, and UL transmissions are scheduled to start transmission at the same time for all channels in the channel set C, and/or
  • -It is an intention to perform uplink transmission on resources set on channel set C using a type 1 channel access procedure
  • channel frequencies of channel set C are a subset of one of the preset channel frequency sets:
  • the UE uses a type 2 channel access procedure Transfer can be performed on the.
  • a channel prior to performing a type 1 channel access procedure on any (any) channel in channel set C. Is uniformly randomly selected from channel set C by the UE.
  • the UE is a channel within the bandwidth of the carrier of the scheduled or carrier bandwidth set by UL resources. May not be transmitted from.
  • the transmission power control method is a requirement (e.g., Signal-to-Noise Ratio (SNR), Bit Error Ratio (BER)), Block Error Ratio (BLER) from a base station (e.g., gNB, eNB, etc.) Etc.).
  • SNR Signal-to-Noise Ratio
  • BER Bit Error Ratio
  • BLER Block Error Ratio
  • Power control as described above may be performed by an open-loop power control method and a closed-loop power control method.
  • the open-loop power control method is a method of controlling transmission power without feedback from a transmitting device (eg, a base station) to a receiving device (eg, a terminal) and/or feedback from the receiving device to the transmitting device.
  • a transmitting device eg, a base station
  • a receiving device eg, a terminal
  • the terminal may receive a specific channel/signal from the base station and estimate the strength of the received power by using this. Thereafter, the terminal may control the transmission power by using the estimated strength of the received power.
  • the closed loop power control method refers to a method of controlling transmission power based on feedback from a transmitting device to a receiving device and/or feedback from a receiving device to a transmitting device.
  • the base station receives a specific channel/signal from the terminal, and the optimal power level of the terminal based on the power level, SNR, BER, BLER, etc. measured by the received specific channel/signal. To decide.
  • the base station transmits information (ie, feedback) on the determined optimal power level to the terminal through a control channel or the like, and the terminal can control the transmission power by using the feedback provided by the base station.
  • uplink data channel e.g., PUSCH (Physical Uplink Shared Channel)
  • uplink control channel e.g., PUCCH (Physical Uplink Control Channel)
  • SRS Sounding Reference Signal
  • PRACH Physical Random Access Channel
  • transmission occasion for PUSCH, PUCCH, SRS and/or PRACH (ie, transmission Time unit) (i) is the slot index (n_s) in the frame of the system frame number (SFN), the first symbol in the slot (S), the number of consecutive symbols (L), etc.
  • n_s the slot index in the frame of the system frame number (SFN), the first symbol in the slot (S), the number of consecutive symbols (L), etc.
  • the power control method is described below based on the case where the UE performs PUSCH transmission, but the power control method is not limited to PUCSH transmission. It goes without saying that it can be extended and applied to other uplink data channels supported by the wireless communication system.
  • the terminal In the case of PUSCH transmission in the active uplink bandwidth part (UL bandwidth part, UL BWP) of the carrier (f) of the serving cell (c), the terminal is determined by Equation 1 below. A linear power value of the determined transmission power may be calculated. Thereafter, the corresponding terminal may control the transmission power in consideration of the calculated linear power value in consideration of the number of antenna ports and/or the number of SRS ports.
  • the UE uses a parameter set configuration based on index j and a PUSCH power control adjustment state based on index l, when the carrier (f) of the serving cell (c) is activated.
  • the UE transmits PUSCH transmission power at the PUSCH transmission opportunity (i) based on Equation 1 below. (dBm) can be determined.
  • index j is an open-loop power control parameter (e.g., P_o, alpha, ), etc.), and a maximum of 32 parameter sets can be set per cell.
  • Index q_d is the path loss (PL) measurement (e.g. Indicates the index of the DL RS resource for ), and up to 4 measurements per cell can be set.
  • Index l represents an index for a closed loop power control process, and up to two processes may be set per cell.
  • P_o e.g. Is a parameter broadcast as part of system information, and may indicate target reception power at the receiving side.
  • the corresponding P_o value may be set in consideration of UE throughput, cell capacity, noise and/or interference.
  • alpha e.g.
  • Alpha may be set to a value from 0 to 1, and full pathloss compensation or fractional pathloss compensation may be performed according to the set value.
  • the alpha value may be set in consideration of interference and/or data rate between terminals.
  • the set UE transmission power may be interpreted as'configured maximum UE output power' defined in 3GPP TS 38.101-1 and/or TS38.101-2.
  • Is the subcarrier spacing ( ) May indicate a bandwidth of PUSCH resource allocation expressed as the number of resource blocks (RBs) for a PUSCH transmission opportunity.
  • related to the PUSCH power control adjustment state May be set or indicated based on the TPC command field of DCI (eg, DCI format 0_0, DCI format 0_1, DCI format 2_2, DCI format2_3, etc.).
  • a specific Radio Resource Control (RRC) parameter (e.g., SRI-PUSCHPowerControl-Mapping, etc.) is a linkage relationship between the SRI (SRS Resource Indicator) field of downlink control information (DCI) and the aforementioned indices j, q_d, and l. ) Can be represented.
  • the above-described indexes j, l, q_d, etc. may be associated with a beam, a panel, and/or a spatial domain transmission filter, based on specific information.
  • PUSCH transmission power control in units of a beam, a panel, and/or a spatial domain transmission filter may be performed.
  • parameters and/or information for PUSCH power control may be set individually (ie, independently) for each BWP.
  • the corresponding parameters and/or information may be set or indicated through higher layer signaling (eg, RRC signaling, Medium Access Control-Control Element (MAC-CE), etc.) and/or DCI.
  • RRC signaling e.g, RRC signaling, Medium Access Control-Control Element (MAC-CE), etc.
  • MAC-CE Medium Access Control-Control Element
  • parameters and/or information for PUSCH power control may be delivered through RRC signaling PUSCH-ConfigCommon, PUSCH-PowerControl, or the like.
  • the power control method is described below based on the case where the UE performs PUCCH transmission, but the power control method is not limited to PUCCH transmission. It goes without saying that it can be extended and applied to other uplink data channels supported by the wireless communication system.
  • the UE uses the PUCCH power control adjustment state based on index l, the activated UL of the carrier (f) of the primary cell (or secondary cell) (c)
  • the UE transmits PUCCH transmission power at the PUCCH transmission opportunity (i) based on Equation 2 below. (dBm) can be determined.
  • q_u represents an index for an open-loop power control parameter (eg, P_o, etc.), and up to eight parameter values may be set per cell.
  • Index q_d is the path loss (PL) measure (e.g. Indicates the index of the DL RS resource for ), and up to 4 measurements per cell can be set.
  • Index l represents an index for a closed loop power control process, and up to two processes may be set per cell.
  • P_o Is a parameter broadcast as part of system information, and may indicate target reception power at the receiving side.
  • the Po value may be set in consideration of UE throughput, cell capacity, noise and/or interference.
  • the set UE transmission power may be interpreted as'configured maximum UE output power' defined in 3GPP TS 38.101-1 and/or TS38.101-2.
  • Is the subcarrier spacing ( ) May indicate the bandwidth of PUCCH resource allocation expressed as the number of resource blocks (RBs) for the PUCCH transmission opportunity.
  • a delta function e.g.
  • PUCCH format eg, PUCCH formats 0, 1, 2, 3, 4, etc.
  • related to the PUCCH power control adjustment state May be set or indicated based on the TPC command field of DCI (eg, DCI format 1_0, DCI format 1_1, DCI format 2_2, etc.) received or detected by the terminal.
  • a specific RRC parameter eg, PUCCH-SpatialRelationInfo, etc.
  • a specific MAC-CE command eg, PUCCH spatial relation Activation/Deactivation, etc.
  • PUCCH resource and the aforementioned indexes q_u, q_d It can be used to activate or deactivate the connection relationship between, and l.
  • the PUCCH spatial relation Activation/Deactivation command in MAC-CE may activate or deactivate a connection relationship between a PUCCH resource and the aforementioned indices q_u, q_d, and l based on the RRC parameter PUCCH-SpatialRelationInfo.
  • the above-described indexes q_u, q_d, l, etc. may be associated with a beam, a panel, and/or a spatial domain transmission filter based on specific information.
  • PUCCH transmission power control in units of a beam, a panel, and/or a spatial domain transmission filter may be performed.
  • parameters and/or information for PUCCH power control may be set individually (ie, independently) for each BWP.
  • the corresponding parameters and/or information may be set or indicated through higher layer signaling (eg, RRC signaling, MAC-CE, etc.) and/or DCI.
  • parameters and/or information for PUCCH power control may be delivered through RRC signaling PUCCH-ConfigCommon, PUCCH-PowerControl, and the like.
  • the terminal When the terminal performs PRACH transmission in the activated UL BWP (b) of the carrier (f) of the serving cell (c), the terminal is based on Equation 3 below PRACH transmission power at the PRACH transmission opportunity (i) (dBm) can be determined.
  • Equation 4 May represent the set terminal transmission power.
  • the set UE transmission power may be interpreted as'configured maximum UE output power' defined in 3GPP TS 38.101-1 and/or TS38.101-2.
  • PRACH target reception power provided through higher layer signaling (eg, RRC signaling, MAC-CE, etc.) for the activated UL BWP.
  • path loss for the activated UL BWP and may be determined based on the DL RS associated with PRACH transmission in the activated DL BWP of the serving cell c.
  • the UE may determine a path loss related to PRACH transmission based on a synchronization signal (SS)/Physical Broadcast Channel (PBCH) block related to PRACH transmission.
  • SS synchronization signal
  • PBCH Physical Broadcast Channel
  • parameters and/or information for PRACH power control may be set individually (ie, independently) for each BWP.
  • the corresponding parameters and/or information may be set or indicated through higher layer signaling (eg, RRC signaling, MAC-CE, etc.).
  • parameters and/or information for PRACH power control may be delivered through RRC signaling RACH-ConfigGeneric or the like.
  • FIG. 6 is a diagram for explaining an embodiment of a procedure for controlling uplink transmission power.
  • a user equipment may receive a parameter and/or information related to Tx power from a base station (605 ).
  • the UE may receive corresponding parameters and/or information through higher layer signaling (eg, RRC signaling, MAC-CE, etc.).
  • higher layer signaling eg, RRC signaling, MAC-CE, etc.
  • the terminal may receive the above-described parameters and/or information related to transmission power control.
  • the terminal may receive a TPC command related to transmission power from the base station (610).
  • the UE may receive the corresponding TPC command through lower layer signaling (eg, DCI).
  • DCI lower layer signaling
  • the terminal provides information on the TPC command to be used for determining the power control adjustment state, etc., as described above, through a TPC command field of a predefined DCI format. You can receive it.
  • this step may be omitted.
  • the terminal may determine (or calculate) transmission power for uplink transmission based on parameters, information, and/or TPC commands received from the base station (615).
  • the UE may determine PUSCH transmission power, PUCCH transmission power, SRS transmission power, and/or PRACH transmission power based on the above-described scheme (eg, Equation 1, Equation 2, Equation 3, etc.).
  • the terminal performs uplink transmission in consideration of the above-described priority order. It is also possible to determine the transmit power for.
  • the UE can transmit one or more uplink channels and/or signals (eg, PUSCH, PUCCH, SRS, PRACH, etc.) to the base station based on the determined (or calculated) transmission power.
  • uplink channels and/or signals eg, PUSCH, PUCCH, SRS, PRACH, etc.
  • FIGS. 7 to 8 Prior to the detailed description, an example of an operation implementation of a terminal and a base station according to an embodiment of the present disclosure will be described with reference to FIGS. 7 to 8.
  • a message A including a first physical random access channel (PRACH) and a first physical uplink shared channel (PUSCH) may be transmitted (S701).
  • the terminal may receive a message B related to contention resolution in response to the message A (S703).
  • a specific method for the UE of S701 to S703 to transmit the message A and to receive the message B may be based on the embodiments and features described later.
  • the terminal of FIG. 7 may be any one of various wireless devices disclosed in FIGS. 14 to 17.
  • the terminal of FIG. 7 may be the first wireless device 100 of FIG. 14 or the wireless devices 100 and 200 of FIG. 15.
  • the operation process of FIG. 7 may be performed and executed by any one of various wireless devices disclosed in FIGS. 14 to 15.
  • the base station may receive a message A including a first physical random access channel (PRACH) and a first physical uplink shared channel (PUSCH) (S801). Thereafter, the base station may transmit a message B related to contention resolution in response to the message A (S803).
  • PRACH physical random access channel
  • PUSCH physical uplink shared channel
  • the base station may transmit a message B related to contention resolution in response to the message A (S803).
  • a specific method of receiving the message A and transmitting the message B by the base stations of S801 to S803 may be based on embodiments and features described later.
  • the base station of FIG. 8 may be any one of various wireless devices disclosed in FIGS. 14 to 17.
  • the base station of FIG. 8 may be the second wireless device 200 of FIG. 14 or the wireless devices 100 and 200 of FIG. 15.
  • the operation process of FIG. 8 may be performed and executed by any one of various wireless devices disclosed in FIGS. 14 to 17.
  • the UE may perform UL transmission through a random access procedure (RACH Procedure) without being scheduled for direct uplink (UL) transmission from a given base station or cell.
  • RACH Procedure random access procedure
  • the random access process in LTE and/or the system includes: 1) transmission of a random access preamble, 2) reception of a message (Msg) 2 corresponding to a random access response (RAR) , 3) Transmission of Msg 3 including Physical Uplink Shared Channel (PUSCH), 4) 4-step of reception of Msg 4 including information on contention resolution ) Procedure.
  • Msg 2 is a message in which the base station receiving a preamble allocates UL resources to be used when the terminal transmitting the preamble transmits Msg 3.
  • the terminal provides a connection request along with its own identification information such as an International Mobile Subscriber Identity (IMSI) or a Temporary Mobile Subscriber Identity (TMSI). Information can be transmitted.
  • IMSI International Mobile Subscriber Identity
  • TMSI Temporary Mobile Subscriber Identity
  • the base station receiving Msg 3 transmits identification information of the corresponding terminal and information necessary for random access through Msg 4, thereby preventing collisions that may occur between different terminals during the random access process, and performing a random access procedure for the corresponding terminal. You can complete it.
  • the UE transmits a message corresponding to Msg 3 together with a preamble to the base station as Msg A, and in response to Msg A, the base station sends a message corresponding to Msg 4 together with RAR as Msg B. Send it to the terminal.
  • the terminal receiving Msg B completes the random access procedure by decoding Msg B and then performs data transmission/reception.
  • the terminal may receive 2-step RACH related configuration information included in system information broadcasted from the base station (S901).
  • the UE Upon receiving the 2-step RACH-related configuration information, the UE transmits the RACH preamble (or PRACH preamble) and Msg A including the PUSCH based on the configuration information in order to perform a random access procedure for the base station (S903).
  • the RACH preamble and PUSCH may be transmitted at regular intervals or successively transmitted in a time domain, and the corresponding PUSCH includes information about an identifier (ID) of the terminal.
  • ID an identifier
  • the base station is able to predict and receive a PUSCH or a continuous PUSCH having a corresponding gap by detecting a preamble.
  • the base station receives an access request and/or response from an upper layer based on the ID information of the terminal transmitted through the PUSCH, and then sends Msg B including information such as RAR and contention resolution to the terminal as a response to Msg A. It is transmitted (S905). Thereafter, depending on whether the terminal receives Msg B, the terminal can complete access to the base station and transmit and receive data with the base station in the same or similar manner as after the operation of receiving Msg 4 in the existing 4-step RACH procedure.
  • the Listen Before Talk (LBT) process required for signal transmission and reception in the unlicensed band can be applied to signal transmission and reception for the random access procedure. That is, in the NR-Unlicensed spectrum (NR-U) system, LBT is always performed to check the idle or busy state of the transmission/reception channel before the base station and the terminal transmit and receive signals, which is a 2-step RACH procedure in the unlicensed band. The same may be performed in the procedure for transmitting and receiving Msg A and Msg B for.
  • LBT Listen Before Talk
  • the transmission of Msg A in the 2-step RACH procedure includes the transmission of the Msg A PUSCH along with the transmission of the Msg A PRACH preamble, it is performed later depending on the success or failure of the LBT for the Msg A PRACH preamble and Msg A PUSCH.
  • Random access procedure can be changed. For example, if the UE successfully performs LBT before transmission of Msg A PRACH preamble and Msg A PUSCH and transmits to Msg A PUSCH without any problem, the base station correctly receives both Msg A PRACH preamble and Msg A PUSCH to resolve contention.
  • Msg B including information can be transmitted to the terminal and the 2-step RACH procedure can be completed.
  • the UE fails to LBT for Msg A PRACH preamble or Msg A PUSCH, the UE cannot successfully transmit Msg A, and the base station that does not receive Msg A instructs retransmission for Msg A or 4-step RACH procedure You can instruct a fall-back to a low.
  • Msg A is retransmitted due to LBT failure is a time gap between the transmission times of Msg A PRACH preamble and Msg A PUSCH, considering that Msg A includes both Msg A PRACH preamble and Msg A PUSCH.
  • Msg A includes both Msg A PRACH preamble and Msg A PUSCH.
  • the retransmission procedure of Msg A may vary depending on whether it is in a situation.
  • Msg A PRACH preamble and Msg A PUSCH are continuously transmitted, Msg A PRACH preamble and Msg A PUSCH are continuously transmitted in a single slot, or Msg A PRACH preamble and Msg A PUSCH associated therewith are transmitted in a single slot. It may mean the case of being transmitted.
  • the case in which the Msg A PRACH preamble and Msg A PUSCH are continuously transmitted includes the case that there is no time interval as long as the minimum time required for the LBT between the transmission of the Msg A PRACH preamble and Msg A PUSCH, and FIG. 10 A situation like this can be an example.
  • FIG. 10 is a diagram illustrating an embodiment of Msg A transmission according to whether a terminal succeeds or fails an LBT and a transmission beam direction configuration.
  • FIG. 10(A) shows that the UE succeeds in LBT at a specific time and continuously transmits Msg A PRACH preamble and Msg A PUSCH
  • FIG. 10(B) shows that after the UE fails LBT at a specific time, the This indicates that the LBT at the next time point is successful and the Msg A PRACH preamble and the Msg A PUSCH are successively transmitted.
  • the terminal LBT since the time interval equal to the condition time required for the LBT does not exist between the transmission time of the Msg A PRACH preamble and the Msg A PUSCH, the terminal LBT only before transmission of the Msg A PRACH preamble.
  • the Msg A PUSCH is transmitted, continuous transmission is performed as it is without performing the LBT. Therefore, in this case, according to the success or failure of the LBT performed prior to transmission of the Msg A PRACH preamble, the signal transmission operation of the terminal and the base station and power control for signal transmission may be set differently.
  • the UE may perform LBT for Msg A PRACH preamble transmission again for the next RACH Occasion (RO) after the Association period from the time when the LBT fails.
  • RO RACH Occasion
  • the terminal if the terminal fails in LBT for Msg A PRACH preamble transmission at a certain point in time, the terminal starts a random access resource selection procedure anew, and the synchronization signal and physical broadcast channel (SSB; SS/PBCH) or SSB selection is performed based on the Reference Signal Received Power (RSRP) of CSI-RS (Channel State Information-Reference Signal), and the RO associated with SSB and RAPID (Random Access Preamble Index) are selected and the corresponding RO Msg A PRACH preamble can be transmitted, and Msg A PUSCH can also be continuously transmitted.
  • RSRP Reference Signal Received Power
  • CSI-RS Channel State Information-Reference Signal
  • the information (contents) and the modulation order included in the Msg A PUSCH according to the channel environment in which the Msg A PUSCH is transmitted. ) May be set differently from the previous Msg A PUSCH transmission. For example, when the channel state at the time of transmission of the Msg A PUSCH is good, the UE may transmit the Msg A PUSCH with a larger amount of information included, and a high demodulation order may be applied.
  • Msg A since Msg A PUSCH is transmitted after Msg A PRACH preamble is transmitted and before feedback from the base station, the maximum number of transmissions for Msg A retransmission, ramping step size, power ramping counter, etc. Transmission factors need to be set separately, and among them, specific methods to be described later may be considered for setting the power ramping counter and the maximum number of transmissions of Msg A.
  • the power ramping counter since Msg A PRACH preamble and Msg A PUSCH are continuously transmitted, it may be appropriate to use a common power ramping counter for Msg A PRACH preamble and Msg A PUSCH. If the UE fails to transmit the Msg A PRACH preamble in the RO determined according to the LBT, the UE may transmit the Msg A PRACH preamble after LBT success by re-performing the LBT in the next RO as shown in FIG. 10(B).
  • the UE maintains or increases the power value compared to the power ramping counter that was attempted to transmit the Msg A PRACH preamble when the previous LBT fails.
  • the power ramping counter referred to in the present disclosure may mean a power ramping counter used for general retransmission.
  • the terminal may first maintain the value of the power ramping counter as it is. That is, if the terminal performs LBT on the next RO due to LBT failure on the previous RO and transmits Msg A after success, it means that Msg A itself was not transmitted from the previous RO from the terminal point of view. Increasingly increasing the transmission power of the terminal may cause inefficient power waste. Eventually, the terminal may transmit Msg A by maintaining the originally intended transmission power by maintaining the value of the power ramping counter as it is.
  • the terminal may determine the transmission power by increasing the value of the power ramping counter.
  • the power ramping counter can be set by increasing the existing value by +1 to determine the transmission power. Determining the transmission power of Msg A by applying the power ramping counter increased by +1 means that other terminals that have tried the same RACH at the time of the previous RO will ramp the power at the time of the next RO to attempt RACH with the increased transmission power. In consideration of the fact that the transmission power is relatively small, it is possible to prevent the problem that the Msg A PRACH preamble of the terminal may be difficult to detect.
  • the purpose of introducing the 2-step RACH procedure is to further reduce the latency caused by the 4-step RACH procedure, so that the terminal can access the network faster as the latency due to LBT in NR-U is delayed.
  • the terminal may use a method of maintaining or increasing the power ramping counter according to the transmission beam direction.
  • the terminal determines the LBT failure for the previous RO as retransmission, but the terminal This is a method of increasing or maintaining the power ramping counter according to the transmission beam of.
  • FIG. 11 is a diagram illustrating an embodiment of the present disclosure in which a power ramping counter is maintained or increased according to a transmission beam direction of a terminal.
  • the UE Msg A can be transmitted by maintaining the power ramping counter of the same value as before.
  • the terminal increases the power ramping counter than before. So that Msg A can be transmitted.
  • the UE determines whether the transmission or retransmission of the last Msg A and the transmission spatial beam direction are the same. Accordingly, the transmit power is set by maintaining or increasing the power ramping counter. At this time, since the transmission spatial beam direction for transmission or retransmission of Msg A will be associated with the SSB selected by the terminal for transmission or retransmission of Msg A, the terminal may have the SSB selected for transmission or retransmission of Msg A past Msg.
  • the transmission spatial beam direction for transmission or retransmission of the last Msg A includes a transmission spatial beam direction configured for transmission or retransmission of the last PRACH. It can be understood as a concept of doing.
  • Msg A when the UE transmits or retransmits Msg A, if the UE does not receive an indication from the lower layer that the LBT for the transmission or retransmission of the Msg A has failed, the UE transmits or retransmits the PRACH past its SSB. If it is not changed compared to the selected SSB, Msg A can be transmitted by setting the transmission power by increasing the power ramping counter by 1 compared to the previous one.
  • Msg A when the UE transmits or retransmits Msg A, if the UE does not receive an indication from the lower layer that the LBT for the transmission or retransmission of the Msg A has failed, the UE transmits or retransmits the PRACH that the SSB selected by itself has passed. If it is changed compared to the SSB selected for, Msg A can be transmitted by setting the transmission power by maintaining the power ramping counter at the same value as before.
  • the terminal determines the LBT failure as retransmission and performs retransmission. If an indication for LBT failure recovery is configured, the UE may perform a random access resource selection procedure for a 2-step RACH procedure.
  • the UE may increase or maintain the power ramping counter according to the relationship between the RO of the 2-step RACH procedure and the 4-step RACH procedure. That is, the ramping counter may be increased or maintained depending on whether the RO for the 2-step RACH procedure and the RO for the 4-step RACH procedure are shared with each other or are set separately from each other.
  • the RO of the 2-step RACH procedure and the 4-step RACH procedure can be basically shared, and that the RO is shared means that the Msg 1 preamble in the 4-step RACH procedure and the Msg A PRACH preamble in the 2-step RACH procedure are It means that it is transmitted from the same RO.
  • the RO is set separately from each other means that the time/frequency resource for the Msg 1 preamble in the 4-step RACH procedure and the time/frequency resource for the Msg A PRACH preamble in the 2-step RACH procedure are It means to exist independently of each other.
  • the method is used to determine whether the RO is shared or set separately from each other.
  • Another power ramping counter determination method is applied. That is, when the RO for the 2-step RACH procedure and the RO for the 4-step RACH procedure are set separately from each other, the terminal performing the 2-step RACH procedure is The LBT failure at is recognized as a transmission/reception failure, and the value of the power ramping counter is increased for retransmission.
  • the UE can perform the 4-step RACH of the existing NR-U without distinction between the 2-step RACH procedure or the 4-step RACH procedure.
  • the value of the power ramping counter is maintained as in the previous 1) method.
  • the maximum number of transmissions of Msg A in the 2-step RACH procedure can be given separately from the 4-step RACH procedure, and if there is no value given separately, the maximum number of transmissions set for Msg 1 of the 4-step RACH procedure should be followed. can do. If the value of the power ramping counter is set to be greater than the maximum number of transmissions of Msg A by 1, the terminal may proceed with the reestablishment procedure according to Radio Link Failure (RLF). In addition, when the RO for the 2-step RACH procedure and the RO for the 4-step RACH procedure are shared with each other, the maximum number of transmissions of Msg 1 for the 4-step RACH procedure is the maximum number of Msg A in the 2-step RACH procedure.
  • RLF Radio Link Failure
  • the terminal may transmit only Msg 1 from when the power ramping counter is greater than the maximum number of transmissions of Msg A by 1.
  • the value of the ramping step size may determine the transmission power for retransmission by applying the ramping step size for Msg 1 from a time when the power ramping counter becomes larger than the maximum number of transmissions of Msg A by 1.
  • the UE's fall-back and RLF operations for the value and maximum value of each counter may be applicable to NR as well as NR-U.
  • the UE transmits the Msg A PRACH preamble, there is a time interval greater than the minimum time required for the LBT before transmitting the Msg A PUSCH, and the transmission of the Msg A PRACH preamble and Msg A PUSCH is at a constant interval. Since the terminal is performed discontinuously, the UE performs LBT for both transmission of the Msg A PRACH preamble and the transmission of the Msg A PUSCH. Therefore, the operation of the terminal and the base station may differ differently depending on whether the LBT for the transmission time of each signal succeeds or fails.
  • the beam direction determined according to the channel state may also vary, and thus power setting for retransmission may also be complicated.
  • the operation of the terminal and the base station according to the failure time of the LBT for the transmission of the Msg A PRACH preamble and Msg A PUSCH and the transmission power setting will be described.
  • the configuration of the power ramping counter in the above case is that, since Msg A PRACH preamble and Msg A PUSCH are transmitted at regular intervals, the power ramping counter is shared and used in relation to the retransmission power setting of Msg A PRACH preamble and Msg A PUSCH.
  • a single counter, or dual counters used by configuring each power ramping counter for the retransmission power setting of Msg A PRACH preamble and Msg A PUSCH can be considered.
  • the maximum number of transmissions of Msg A is not commonly applied to the Msg A PRACH preamble and Msg A PUSCH, but the maximum number of transmissions for each of the Msg A PRACH preamble and Msg A PUSCH may be set.
  • a condition in which the value of the counter is increased or maintained may be the presence or absence of a change in a transmission space beam direction for Msg A PRACH preamble transmission when Msg A is retransmitted. That is, if the transmission spatial beam direction for Msg A PRACH preamble transmission is the same as the previous transmission, the counter value increases, and if the transmission spatial beam direction for Msg A PRACH preamble transmission is different from the previous transmission, the counter value is maintained. do.
  • the condition that the value of each counter increases or is maintained is in the transmission space beam direction compared to the previous transmission for Msg A PRACH preamble and Msg A PUSCH at the time of Msg A retransmission. It can be with or without change. That is, for Msg A PRACH preamble and Msg A PUSCH, if the transmission spatial beam direction for transmission of each signal is the same as the previous transmission, the value of each counter increases, and the transmission spatial beam direction for transmission of each signal is If it is different from the previous transmission, the value of each counter is maintained.
  • the term'retry' referred to in the present disclosure below means that the original RO cannot transmit the Msg A PRACH preamble due to the LBT failure, and the next RO transmits the Msg A PRACH preamble, or the original RO due to the LBT failure.
  • the case of transmitting another Msg A PRACH preamble from the originally scheduled RO does not mean'retry' mentioned in the present disclosure, and in this case, the value of the counter Again, it does not increase.
  • LBT failure and Msg A PUSCH transmission before Msg A PRACH preamble transmission The case of previous LBT failure can be divided and described.
  • the UE uses a single power ramping counter for Msg A PRACH preamble and Msg A PUSCH, if LBT fails before Msg A PRACH preamble transmission, the UE transmits Msg A PRACH preamble and Msg A PUSCH in succession.
  • a corresponding common power ramping counter value may be increased or maintained.
  • the value of each counter for Msg A PRACH preamble and Msg A PUSCH is It can be independently increased or maintained. In particular, if the transmission spatial beam direction set for transmission of each signal is the same as the previous transmission, the value of each counter increases, and the transmission spatial beam direction set for transmission of each signal If this is different from the previous transmission, the value of each counter is maintained.
  • the UE may continuously transmit Msg A or fall-back in a 4-step transmission of only Msg 1.
  • the operation of the terminal and the base station may vary according to each method.
  • the UE transmits Msg 1 using the preamble index for the 2-step RACH procedure, but the base station waits until the maximum transmission time of the Msg A PUSCH based on the detection time of Msg A (waiting), and the corresponding time In the case of the expiration, Msg 2 is transmitted in response to Msg 1 and a 4-step RACH procedure is performed.
  • the transmission power of Msg 1 may be set based on the setting of Msg 1 used in the 4-step RACH procedure, such as target received power for Msg 1.
  • the operation of the terminal may vary depending on whether the PO is set including a time interval for the LBT or whether the PO is set excluding the time interval for the LBT.
  • the terminal may perform the LBT within the time interval for the LBT and transmit the Msg A PUSCH at the same time when the LBT is successful, or the time for the corresponding LBT.
  • LBT is performed within the interval and LBT is successful
  • an arbitrary signal is transmitted up to the preset Msg A PUSCH start symbol for channel monopoly until the time when the original Msg A PUSCH is intended to be transmitted, and then Msg A PUSCH from the Msg A PUSCH start symbol. It can also be transmitted.
  • the terminal if the PO has been set excluding the time interval for the LBT, if the terminal does not succeed in LBT until the start symbol of the corresponding PO by performing the LBT before the corresponding PO, the terminal is in the next PO as in the embodiments described below.
  • the UE may transmit only the Msg A PUSCH in consideration of the fact that the Msg A PRACH preamble has already been transmitted.
  • the transmission time of the Msg A PUSCH is performed in the resource of the next PO when the Msg A PRACH preamble and the PO have a multiple to one mapping relationship or a one to one mapping relationship.
  • the resource for Msg A PUSCH transmission uses the same Msg A PUSCH resource associated with the RAPID used for the previous transmission.
  • Msg A PUSCH In order to distinguish whether the transmission of Msg A PUSCH is retransmission due to LBT failure at a previous time or an attempt to transmit Msg A PUSCH at the current time, Msg A PUSCH must be able to include information on retransmission, and the base station also corresponds Based on the information, it should be possible to convey through Msg B the number of responses to the previous RAPID.
  • the UE recognizes an attempt to transmit Msg A PUSCH due to LBT failure as retransmission, and according to the above-described embodiments for the case in which Msg A PRACH preamble and Msg A PUSCH are successively transmitted, the UE sets the transmission power of Msg A PUSCH. It is possible to increase or maintain the value of the power ramping counter for.
  • the UE transmits only the Msg A PUSCH by performing LBT before or within the plurality of POs. If channel estimation is possible between a plurality of POs, the value of the power ramping counter for Msg A PUSCH transmission power increases when the transmission space beam direction for Msg A PUSCH is the same as the previous transmission. It is maintained when the transmission spatial beam direction for the Msg A PUSCH is different from the previous transmission. In this case, when a dual power ramping counter is set for each of Msg A PRACH and Msg A PUSCH, the corresponding counter may indicate only a retransmission counter for Msg A PUSCH.
  • the UE may newly select and transmit the Msg A PRACH preamble for LBT failure prior to transmission of the Msg A PUSCH, and may transmit the Msg A PUSCH from a PO associated therewith.
  • information on Msg A PRACH preamble transmission must be delivered through the contents of Msg A PUSCH, through which the base station determines whether or not the current LBT has failed of the terminal, and the current transmission time of the terminal.
  • the terminal can select and transmit the Msg A PRACH preamble from the next RO, and the base station predicts a TA (Timing Advance) value based on the corresponding Msg A PRACH preamble.
  • reception of Msg A PUSCH can be expected.
  • the transmission power for the Msg A PRACH preamble is the value of the power ramping counter for the UE to set the transmission power of the Msg A PUSCH according to the above-described embodiments for the case where the Msg A PRACH preamble and the Msg A PUSCH are continuously transmitted. Can be allocated based on increasing or maintaining. If dual power ramping counters are used, whether the power ramping counter for each signal is increased or maintained may be configured differently depending on whether the transmission spatial beam direction for each of Msg A PRACH preamble and Msg A PUSCH is changed. .
  • the UE can also automatically predict a fallback to the 4-step RACH procedure because it has transmitted only the Msg A PRACH preamble, and expects information necessary for Msg 3 transmission to be received through Msg B. Thereafter, the terminal can receive Msg B and transmit Msg 3 using the information included therein.
  • the base station may use the PDCCH (DCI) of Msg 4 to designate a UE-specific resource for a PUCCH to be transmitted by the UE.
  • DCI PDCCH
  • the PDCCH for scheduling Msg 4 is set to DCI format 1_0 scrambling with TC-RNTI (Temporary Cell-Radio Network Temporary Identifier)
  • the DCI format 1_0 scrambled with RA-RNTI (Random Access-RNTI)
  • the following five DCI field elements excluding 1 bit for indicating the DCI format may be additionally indicated.
  • a PUCCH resource indicator of up to 3 bits and a PDSCH-to-HARQ_feedback timing indicator of 3 bits may be used for the indication of PUCCH resources.
  • the PDSCH-to-HARQ_feedback timing indicator is used to indicate the slot interval between the PDSCH including Msg 4 and the PUCCH including the HARQ-ACK to be transmitted by the UE, ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇
  • One of the values can be indicated. For example, if the last slot in which the PDSCH containing Msg 4 is received is #n, the PDSCH-to-HARQ_feedback timing indicator is one of ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ Is indicated as a slot interval k, and the UE transmits a PUCCH including HARQ-ACK in slot #n+k.
  • a detailed indication method of the PDSCH-to-HARQ_feedback timing indicator is as follows.
  • the PUCCH resource indicator is used to indicate various parameters for setting PUCCH resources, and in dl-DataToUL-ACK SEQUENCE (SIZE (1..8)) OF INTEGER (0..15) of the upper layer parameter PUCCH-Config.
  • the mapped resource is used according to the bit for each bit.
  • the PUCCH resource indicator is 3 bits, and when indicating a specific set through RMSI (Remaining Minimum System Information) for two sets consisting of each of 8 resources, one PUCCH of the corresponding sets is set. Exists to do.
  • the 2-step RACH procedure may require a method of designating the PUCCH resource as a response to Msg B.
  • DCI or MAC Medium Access Control
  • a method of utilizing Msg B may be considered. Since a total of 16 PUCCH resources can be configured from index 0 to 15 for the PUCCH resource at any one point in time, when the base station transmits Msg B, Msg B must be configured and transmitted in consideration of the corresponding PUCCH resource.
  • the initial PUCCH resource index is designated as n and terminals are sequentially allocated from index n, each terminal may be cyclically allocated from index 0 to n if the PUCCH resource index exceeds 15. .
  • This method is a method of specifying a PUCCH resource to be used for HARQ-ACK transmission of the terminal by using only the DCI scheduling Msg B.
  • the base station indicates only the PDSCH-to-HARQ_feedback timing indicator through DCI and allows the terminal to calculate the PUCCH resource implicitly, or through the DCI, the PDSCH-to-HARQ_feedback timing indicator and the initial PUCCH resource index Alternatively, the PUCCH resource indicator may be explicitly indicated.
  • the base station may designate only the slot in which the PUCCH is to be transmitted by indicating the slot interval with the PDSCH-to-HARQ_feedback timing indicator among the DCI fields of Msg B. All UEs related to the corresponding Msg B transmit HARQ-ACK for Msg B reception in the designated slot through this PDSCH-to-HARQ_feedback timing indicator, and at this time, the PUCCH resource index is the index order of the MAC subheader. And can be sequentially mapped one-to-one.
  • a terminal detecting its RAPID and UE-ID in subheader #1 transmits HARQ-ACK through PUCCH resource index #1
  • a terminal detecting its RAPID and UE-ID in subheader #2 Transmits HARQ-ACK through PUCCH resource index #2. Since the UE can implicitly know the PUCCH resource index through its subheader index, the present method has the advantage of greatly reducing the signaling overhead of the base station.
  • the base station indicates the slot to which the PUCCH is to be transmitted by indicating the slot interval with the PDSCH-to-HARQ_feedback timing indicator among the DCI fields of Msg B, and may set the initial PUCCH resource index.
  • the base station directly indicates the PUCCH resource using 4 bits for the PUCCH resource index having a value of 0 to 15, or indirectly indicates the PUCCH resource using the PUCCH resource indicator similar to the 4-step RACH procedure. May be.
  • PUCCH resource indexes #0 to 15 are sequentially allocated unconditionally, but in this method, the base station designates the initial value of the PUCCH resource index, and the terminal is designated. Based on the index of the initial value, the index of the MAC subheader is sequentially mapped one-to-one to receive the PUCCH resource index.
  • the UE detecting its RAPID and UE-ID in #1 subheader of Msg B transmits HARQ-ACK through PUCCH resource index #15,
  • the UE that detects its RAPID and UE-ID in #2 subheader transmits HARQ-ACK through PUCCH resource index #0.
  • the UE that detects its RAPID and UE-ID in #3 subheader transmits HARQ-ACK through PUCCH resource index #1.
  • an unusable PUCCH resource index may be additionally indicated by using bits or bitmaps corresponding to the PUCCH resource index. That is, a PUCCH resource indicator (PRI) is sequentially allocated to the UE in the order of a MAC Protocol Data Unit (PDU), but a portion having a value of '0' among the additionally indicated bitmaps may be omitted and the PRI may be allocated.
  • PRI PUCCH resource indicator
  • the terminal detecting its RAPID and UE-ID in #2 subheader of Msg B has the second bit value of the above bitmap. Because it is '0', PUCCH resource index #2 is omitted and HARQ-ACK is transmitted through PUCCH resource index #3, and the UE detecting its RAPID and UE-ID in subheader #3 is through PUCCH resource index #4. HARQ-ACK is transmitted.
  • This method is for setting a PDSCH-to-HARQ_feedback timing indicator (3 bits) and a PUCCH resource index (4 bits) or a PUCCH resource indicator (3 bits) for each terminal when the base station transmits the MAC Msg B (success RAR).
  • This is a method of explicitly indicating 6-bit or 7-bit information through Msg B (success RAR).
  • a PUCCH transmission resource is indicated by a 4-bit PUCCH resource related indication field in successRAR, and a 3-bit PDSCH in successRAR PUCCH transmission resources may be indicated by the -to-HARQ feedback timing indication field.
  • the size of the MsgB increases as the MsgB (success RAR) contains a plurality of pieces of information, but the base station has the advantage of being able to specify the PUCCH resource of each terminal with full flexibility. have.
  • This method uses both DCI and MAC Msg B (success RAR) in a way that takes advantage of the above-described methods (1) and (2), excluding the extremes.
  • the method may have various embodiments as follows depending on which information of the PDSCH-to-HARQ_feedback timing indicator and parameters such as a PUCCH resource index or a PUCCH resource indicator is transmitted through which information among DCI and MAC Msg B (success RAR).
  • PDSCH-to-HARQ_feedback timing indicator (3 bits) and PUCCH resource index (4 bits) or PUCCH resource indicator (3 bits) are included in DCI, and the PUCCH resource offset value of 1 bit or 2 bits is MAC Msg B You can consider being included in the (success RAR) and delivered.
  • the PDSCH-to-HARQ_feedback timing indicator parameter is basically transmitted by DCI, which increases signaling overhead, but it can be compensated by specifying a PUCCH resource offset value for each terminal in MAC Msg B (success RAR). have.
  • the PUCCH resource index or the PUCCH resource indicator is also transmitted by DCI, so that the initial PUCCH resource index can be designated as in the above-described methods.
  • the offset value indicated by MAC Msg B (success RAR) may be N bits, and the offset may be used in the following ways.
  • the offset indicated by MAC Msg B may be applied and utilized for the original UE's own PRI value. That is, the UE may transmit HARQ-ACK through a PUCCH resource corresponding to a PRI value to which an offset value is applied based on its own PRI index.
  • the UE Based on the initial PUCCH resource index designated through DCI, the UE is sequentially assigned its own PUCCH resource index according to the subheader index of MAC Msg B (success RAR), and the UE receives MAC Msg B (success RAR). If the offset is indicated through the UE transmits the HARQ-ACK in the PUCCH resource of the index increased or decreased by the corresponding offset value.
  • the offset value indicates a value of ⁇ +2, +1, -1, -2 ⁇ , a value of ⁇ +4, +3, +2, +1 ⁇ , or Values of ⁇ -4, -3, -2, -1 ⁇ can be indicated.
  • the UE that detects its RAPID and UE-ID in the K-th subheader is originally assigned the PUCCH resource index #M+K, and if the value of #M+K is greater than 15, the cyclic shift It means that a value according to is allocated, and the UE transmits HARQ-ACK in the PUCCH resource of the #M+K+a or #M+Ka index by applying the offset value a as described above.
  • the offset indicated by MAC Msg B may be applied and utilized based on the location of the previous terminal. That is, in a state in which the accumulated offsets for previous terminals are applied as they are, the PUCCH resource to be used may be determined by additionally applying an offset indicated for the MAC subheader of the terminal itself.
  • the initial PUCCH resource index is #M
  • the first terminal that detects its RAPID and UE-ID through the first subheader receives an offset of 3
  • the corresponding first terminal is #M+3.
  • HARQ-ACK is transmitted in the PUCCH resource of the index.
  • the second terminal which has detected its RAPID and UE-ID through the second subheader, receives an offset of 2
  • the second terminal accumulates and applies the offset value 3 applied to the first terminal.
  • #M+3+2 HARQ-ACK is transmitted in the PUCCH resource.
  • each PRI for indicating the PUCCH resource index (4 bits) or the PUCCH resource indicator (3 bits) is MAC Msg B ( success RAR).
  • a common PUCCH transmission slot is transmitted through DCI, and a PUCCH resource index or a PUCCH resource indicator for each terminal is designated to be terminal-specific (UE specific) through MAC Msg B (success RAR).
  • signaling overhead may be increased compared to the above-described method of indicating an offset in a success RAR (MSg B), but flexibility in indicating a PUCCH resource of a base station may be increased.
  • PUCCH resource index (4 bits) or PUCCH resource indicator (3 bits) is included in DCI, and each PDSCH-to-HARQ_feedback timing indicator (3 bits) is in MAC Msg B (success RAR). You can consider what to include.
  • the time (slot) setting of each PUCCH resource is differently classified. That is, when the base station designates a DCI common PUCCH resource index and uses the PUCCH resource according to the corresponding index, or if the information of the PUCCH resource index is not included in the DCI, all terminals initially use the PUCCH resource according to the PUCCH resource index #0. , Each UE transmits a PUCCH through a corresponding slot with reference to a slot timing determined according to information included in MAC Msg B (success RAR).
  • the UE and the base station transmit and receive RACH configuration information for performing a 2-step RACH procedure, and the information includes a power ramping step size and/or a ramping counter, a transmission beam, or Information related to embodiments of the present disclosure, such as a spatial filter, may also be included (S1201).
  • the base station may transmit RACH configuration information using a synchronization signal block (SSB) such as a master information block (MIB) and a system information block (SIB), and/or RRC signaling.
  • SSB synchronization signal block
  • MIB master information block
  • SIB system information block
  • the step S1201 may be omitted in the case of a terminal that has established a connection state, such as a terminal that has already received the above RACH configuration information or a terminal that reconnects to a base station that has transmitted the RACH configuration information. . Since the UEs have already obtained RACH Configuration information, a corresponding step may be omitted for these UEs to reduce a processing delay due to redundant transmission and reception of previously received RACH Configuration information.
  • the terminal in step S1201 described above may be the first wireless device 100 of FIG. 14 or the wireless devices 100 and 200 of FIG. 15, and the base station is the second wireless device 200 of FIG. 14 or the wireless device of FIG. 15. It may be (100, 200). That is, the step S1501 in which the terminal receives RACH configuration information from the base station may be implemented by various wireless devices of FIGS. 14 to 17 to be described later.
  • the processor 102 of FIG. 14 may control one or more transceivers 106 and/or one or more memories 104 to receive the RACH configuration information.
  • the one or more transceivers 106 may receive the RACH Configuration information from the base station.
  • the UE can acquire information about Msg A based on the RACH configuration received from the base station, and according to the acquired information, RACH Occasion (RO)/Preamble and PUSCH Occasion (PO)/PUSCH resource unit Msg A for performing a 2-step RACH procedure by selecting (PRU) may be transmitted to the base station (S1203).
  • the terminal may transmit Msg A based on a ramping step size for setting the transmission power of Msg A and/or a counter, a transmission beam, or a spatial filter related to the embodiments of the present disclosure.
  • the terminal in step S1203 described above may be the first wireless device 100 of FIG. 14 or the wireless devices 100 and 200 of FIG. 15, and the base station is the second wireless device 200 of FIG. 14 or the wireless device of FIG. 15. It may be (100, 200). That is, the step S1203 in which the terminal transmits Msg A to the base station may be implemented by various wireless devices of FIGS. 14 to 17 to be described later.
  • the processor 102 of FIG. 14 may control one or more transceivers 106 and/or one or more memories 104 to transmit the Msg A
  • the one or more transceivers 106 may transmit the Msg A to the base station.
  • the RO in the 2-step RACH procedure considers the RO allocated for the 4-step RACH procedure, i) the 2-step RACH procedure and the 4-step RACH procedure Independent RO and preamble are set for each, ii) share the same RO for 2-step RACH Procedure and 4-step RACH Procedure, but preamble is set separately, or iii) 2-step RACH Procedure and 4-step It can be configured to share the same RO and preamble for RACH Procedure.
  • a PRU for transmission of Msg A PUSCH may be defined in consideration of PO, DMRS port, and DMRS sequence, and PO is a time-frequency for payload transmission. It can be defined as a resource.
  • the PO for the PUSCH of Msg A may be set separately from the RO, or may be set as a relative time and/or frequency position in consideration of the associated RO, and one or more PO(s) may be set within the setting period of the Msg A PUSCH. I can.
  • the PRACH and PUSCH included in Msg A may be time division multiplexed (TDM) and transmitted in different slots, or PRACH and PUSCH may be transmitted in the same slot. May be.
  • the Msg A PUSCH may be continuously transmitted on the time domain with the Msg A PRACH or may be transmitted with a specific gap.
  • the PRACH and PUSCH included in Msg A are i) transmitted using the same beam or a spatial filter, or ii) according to the decision of the terminal. It may be transmitted using the same or different beam or spatial filter, or iii) transmitted using a beam or spatial filter set by the base station.
  • the terminal may set a random access response (RAR) window for monitoring Msg B after Msg A is transmitted.
  • RAR random access response
  • the terminal in order to record the number of retries of the 2-step RACH procedure, the terminal may set a retransmission counter of Msg A, and the maximum value of the counter may be set by the base station or the network.
  • the base station may detect the preamble of the Msg A PRACH, and decode and process the payload/data of the Msg A PUSCH. If the base station does not detect the preamble of the Msg A PRACH, the base station may not deliver any information to the terminal.
  • step S1203 in which the terminal transmits Msg A to the base station embodiments of the present disclosure may be appropriately applied.
  • the transmission power for the Msg A may be set or indicated based on the method in the embodiments of the present disclosure described above.
  • the terminal that has transmitted Msg A may then receive Msg B (S1205).
  • Msg B may be scheduled through a PDCCH corresponding to the DMRS and transmitted through a PDSCH corresponding to the DMRS.
  • Information (contents) included in Msg B may vary according to a result of decoding and processing of Msg A PUSCH.
  • Msg B is a success RAR and a contention resolution identifier such as a UE identifier transmitted by the UE as a Common Control Channel (CCCH) Service Data Unit (SDU)
  • CCCH Common Control Channel
  • SDU Service Data Unit
  • Msg B is a fallback RAR and includes RAPID and uplink grant (UL grant) information for retransmission of the PUSCH of Msg A.
  • the base station transmits a fallback RAR through Msg B the UE having successfully decoded the RAPID and UL grant included in Msg B may fall-back with a 4-step RACH procedure.
  • the terminal in step S1205 described above may be the first wireless device 100 of FIG. 14 or the wireless devices 100 and 200 of FIG. 15, and the base station is the second wireless device 200 of FIG. 14 or the wireless device of FIG. 15. It may be (100, 200). That is, the step S1205 in which the terminal receives Msg B from the base station may be implemented by various wireless devices of FIGS. 14 to 17 to be described later.
  • the processor 102 of FIG. 14 may control one or more transceivers 106 and/or one or more memories 104 to receive the Msg B, The one or more transceivers 106 may receive the Msg B to the base station.
  • the UE may take the same or similar operation as the operation after the UE performing the existing 4-step RACH procedure receives Msg 4 according to whether Msg B is decoded and received. If the terminal successfully receives Msg B in the RAR window, the terminal may determine that the 2-step RACH procedure has been successful. Or, when the UE receives the fallback RAR, the UE may perform the Msg 3 transmission procedure on the 4-step RACH Procedure based on information included in Msg B such as UL grant.
  • retransmission of Msg A may mean retransmission of Msg A PRACH including reselection of preamble and retransmission of Msg A PUSCH. If the transmission beam or spatial filter for retransmission of the Msg A PRACH is different from the transmission beam or spatial filter of the recently transmitted Msg A PRACH, the power ramping counter of the Msg A PRACH may not increase.
  • the embodiments related to the 2-step RACH procedure of the present disclosure described above may be applied even in the RRC_INACTIVE, RRC_CONNECTED, and RRC_IDLE states, and may be configured as a general Medium Access Control (MAC) procedure.
  • MAC Medium Access Control
  • embodiments related to the 2-step RACH procedure of the above-described disclosure may not be exceptionally applied to the system information (SI) request and/or the beam failure recovery (BFR) procedure.
  • SI system information
  • BFR beam failure recovery
  • an operation for re-performing the existing 4-step RACH procedure in consideration of fall-back in the above-described 2-step RACH procedure may be configured.
  • FIG. 13 illustrates a communication system 1 applied to the present invention.
  • a communication system 1 applied to the present invention includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots 100a, vehicles 100b-1 and 100b-2, eXtended Reality (XR) devices 100c, hand-held devices 100d, and home appliances 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400.
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include Augmented Reality (AR)/Virtual Reality (VR)/Mixed Reality (MR) devices, and include HMD (Head-Mounted Device), HUD (Head-Up Display), TV, smartphone It can be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), computers (eg, notebook computers, etc.).
  • Home appliances may include TVs, refrigerators, washing machines, and the like.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
  • Wireless communication/connections 150a, 150b, and 150c may be established between the wireless devices 100a to 100f/base station 200, and the base station 200/base station 200.
  • wireless communication/connection includes various wireless access such as uplink/downlink communication 150a, sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, Integrated Access Backhaul). This can be achieved through technology (eg 5G NR)
  • the wireless communication/connection 150a, 150b, 150c can transmit/receive radio signals to each other.
  • the wireless communication/connection 150a, 150b, 150c can transmit/receive signals through various physical channels.
  • At least some of a process of setting various configuration information various signal processing processes (eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), resource allocation process, and the like may be performed.
  • various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation process e.g., resource allocation process, and the like.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is the ⁇ wireless device 100x, the base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) of FIG. 13 ⁇ Can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a radio signal including the first information/signal through the transceiver 106.
  • the processor 102 may store information obtained from signal processing of the second information/signal in the memory 104 after receiving a radio signal including the second information/signal through the transceiver 106.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, the memory 104 may perform some or all of the processes controlled by the processor 102, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed herein. It is possible to store software code including:
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled with the processor 102 and may transmit and/or receive radio signals through one or more antennas 108.
  • Transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be mixed with an RF (Radio Frequency) unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • the following operations are described based on the control operation of the processor 102 from the perspective of the processor 102, but may be stored in the memory 104 in software code or the like for performing these operations.
  • the processor 102 may control the transceiver 106 to transmit a message A including a first physical random access channel (PRACH) and a first physical uplink shared channel (PUSCH).
  • the processor 102 may control the transceiver 106 to receive a message B related to contention resolution in response to the message A.
  • a specific method of controlling the transceiver 106 so that the processor 102 transmits the message A and the transceiver 106 to receive the message B may be based on the above-described embodiments.
  • the following operations are described based on the control operation of the processor 202 from the perspective of the processor 202, but may be stored in the memory 204, such as software code for performing these operations.
  • the processor 202 may control the transceiver 206 to receive a message A including a first physical random access channel (PRACH) and a first physical uplink shared channel (PUSCH).
  • the processor 202 may control the transceiver 206 to transmit a message B related to contention resolution in response to the message A.
  • a specific method of controlling the transceiver 206 to receive the message A by the processor 202 and the transceiver 206 to transmit the message B may be based on the above-described embodiments.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102 and 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, and SDAP).
  • One or more processors 102, 202 may be configured to generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, functions, procedures, proposals, methods, and/or operational flow charts disclosed in this document. Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or operational flow chart disclosed herein. At least one processor (102, 202) generates a signal (e.g., a baseband signal) containing PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed in this document. , Can be provided to one or more transceivers (106, 206).
  • a signal e.g., a baseband signal
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein PDUs, SDUs, messages, control information, data, or information may be obtained according to the parameters.
  • signals e.g., baseband signals
  • One or more of the processors 102 and 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more of the processors 102 and 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the description, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the description, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document are configured to perform firmware or software included in one or more processors 102, 202, or stored in one or more memories 104, 204, and It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions, and/or sets of instructions.
  • One or more memories 104, 204 may be connected to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
  • One or more of the memories 104 and 204 may be composed of ROM, RAM, EPROM, flash memory, hard drive, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104 and 204 may be located inside and/or outside of one or more processors 102 and 202.
  • one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies such as wired or wireless connection.
  • One or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like mentioned in the methods and/or operation flow charts of this document to one or more other devices.
  • One or more transceivers (106, 206) may receive user data, control information, radio signals/channels, etc., mentioned in the description, functions, procedures, proposals, methods and/or operational flowcharts disclosed in this document from one or more other devices. have.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or radio signals to one or more other devices.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or radio signals from one or more other devices.
  • one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), one or more transceivers (106, 206) through the one or more antennas (108, 208), the description and functions disclosed in this document.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (102, 202), the received radio signal / channel, etc. in the RF band signal. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • one or more of the transceivers 106 and 206 may include (analog) oscillators and/or filters.
  • the wireless device may be implemented in various forms according to use-examples/services (see FIG. 13).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 14, and various elements, components, units/units, and/or modules ).
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
  • the communication unit may include a communication circuit 112 and a transceiver(s) 114.
  • the communication circuit 112 may include one or more processors 102 and 202 and/or one or more memories 104 and 204 of FIG. 14.
  • the transceiver(s) 114 may include one or more transceivers 106,206 and/or one or more antennas 108,208 of FIG. 14.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device. For example, the control unit 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to an external (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or externally through the communication unit 110 (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130.
  • an external eg, other communication device
  • the specific operation process of the control unit 120 and the program/code/command/information stored in the memory unit 130 according to the present invention are at least one of the processors 102 and 202 of FIG. 14 and the memory 104 and 204. ) May correspond to at least one of the operations.
  • the additional element 140 may be configured in various ways depending on the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an I/O unit, a driving unit, and a computing unit.
  • wireless devices include robots (Figs. 13, 100a), vehicles (Figs. 13, 100b-1, 100b-2), XR devices (Figs. 13, 100c), portable devices (Figs. 13, 100d), and home appliances. (Figs. 13, 100e), IoT devices (Figs.
  • digital broadcasting terminals Digital broadcasting terminals
  • hologram devices public safety devices
  • MTC devices medical devices
  • fintech devices or financial devices
  • security devices climate/environment devices
  • It may be implemented in the form of an AI server/device (Figs. 13 and 400), a base station (Figs. 13 and 200), and a network node.
  • the wireless device can be used in a mobile or fixed place depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least some may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130, 140) are connected through the communication unit 110.
  • the control unit 120 and the first unit eg, 130, 140
  • each element, component, unit/unit, and/or module in the wireless device 100 and 200 may further include one or more elements.
  • the control unit 120 may be configured with one or more processor sets.
  • control unit 120 may be composed of a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, and a memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • FIG. 15 An implementation example of FIG. 15 will be described in more detail with reference to the drawings.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), and portable computers (eg, notebook computers).
  • the portable device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input/output unit 140c. ) Can be included.
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. 15, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 120 may perform various operations by controlling components of the portable device 100.
  • the controller 120 may include an application processor (AP).
  • the memory unit 130 may store data/parameters/programs/codes/commands required for driving the portable device 100.
  • the memory unit 130 may store input/output data/information, and the like.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support connection between the portable device 100 and other external devices.
  • the interface unit 140b may include various ports (eg, audio input/output ports, video input/output ports) for connection with external devices.
  • the input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
  • the input/output unit 140c acquires information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 130. Can be saved.
  • the communication unit 110 may convert the information/signal stored in the memory into a wireless signal, and may directly transmit the converted wireless signal to another wireless device or to a base station.
  • the communication unit 110 may restore the received radio signal to the original information/signal.
  • the restored information/signal is stored in the memory unit 130, it may be output in various forms (eg, text, voice, image, video, heptic) through the input/output unit 140c.
  • the vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, or the like.
  • AV aerial vehicle
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving. It may include a unit (140d).
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110/130/140a to 140d correspond to blocks 110/130/140 of FIG. 15, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, roadside base stations, etc.), and servers.
  • the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
  • the control unit 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c is an IMU (inertial measurement unit) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight detection sensor, a heading sensor, a position module, and a vehicle advancement. /Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illuminance sensor, pedal position sensor, etc. can be included.
  • the autonomous driving unit 140d is a technology that maintains a driving lane, a technology that automatically adjusts the speed such as adaptive cruise control, a technology that automatically travels along a predetermined route, and automatically sets a route when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a so that the vehicle or the autonomous vehicle 100 moves along the autonomous driving path according to the driving plan (eg, speed/direction adjustment).
  • the communication unit 110 asynchronously/periodically acquires the latest traffic information data from an external server, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and the driving plan based on the newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like, based on information collected from the vehicle or autonomously driving vehicles, and may provide the predicted traffic information data to the vehicle or autonomously driving vehicles.
  • the wireless communication technology implemented in the wireless device of the present specification may include LTE, NR, and 6G as well as NB-IoT (Narrowband Internet of Things) for low power communication.
  • the NB-IoT technology may be an example of LPWAN (Low Power Wide Area Network) technology, and may be implemented in standards such as LTE Cat (Category) NB1 and/or LTE Cat NB2, and It is not limited.
  • the wireless communication technology implemented in the wireless device of the present specification may perform communication based on the LTE-M technology.
  • the LTE-M technology may be an example of an LPWAN technology, and may be referred to by various names such as enhanced machine type communication (eMTC).
  • eMTC enhanced machine type communication
  • LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-Bandwidth Limited (BL), 5) LTE-MTC, 6) LTE Machine Type Communication, and/or 7) may be implemented in at least one of various standards such as LTE M, and is not limited to the above-described name.
  • the wireless communication technology implemented in the wireless device of the present specification includes at least one of ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) in consideration of low power communication. It can be, and is not limited to the above-described name.
  • ZigBee technology can create personal area networks (PANs) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and may be referred to by various names.
  • PANs personal area networks
  • a specific operation described as being performed by a base station in this document may be performed by its upper node in some cases. That is, it is apparent that various operations performed for communication with a terminal in a network comprising a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • the base station may be replaced by terms such as a fixed station, gNode B (gNB), Node B, eNode B (eNB), and access point.
  • a method of performing a random access process in an unlicensed band and an apparatus for the same have been described focusing on an example applied to the 5th generation NewRAT system, but can be applied to various wireless communication systems in addition to the 5th generation NewRAT system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 비면허 대역(Unlicensed band)에서 단말이 임의 접속 과정(Random Access Channel Procedure; RACH procedure)를 수행하는 방법을 개시한다. 특히, 상기 방법은, 제1 PRACH(Physical Random Access Channel) 및 제1 PUSCH(Physical Uplink shared Channel)를 포함하는 메시지 A를 기지국으로 송신하고, 상기 메시지 A에 대한 응답으로, 경쟁 해결(contention resolution)에 관련된 메시지 B를 상기 기지국으로부터 수신하는 것을 포함하고, 상기 메시지 A의 전송 전력을 설정하기 위해 전력 램핑 카운터(ramping counter)가 사용되며, 상기 전력 램핑 카운터의 값은, 상기 메시지 A의 전송을 위한 전송 공간 빔(transmission spatial beam)이 상기 메시지 A 이전의 PRACH의 전송에 관련된 전송 공간 빔과 동일하게 구성되는 점에 기반하여 증가할 수 있다.

Description

비면허 대역에서 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
본 발명은 비면허 대역에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치에 관한 것으로서, 더욱 상세하게는, 단말이 임의 접속 과정을 수행하기 위한 신호의 전송 전력을 설정하기 위한 방법 및 이를 위한 장치에 관한 것이다.
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, 기존 LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. NewRAT이라고 명칭되는, 이러한 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC) 등으로 통신 시나리오가 구분된다.
여기서, eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, URLLC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (e.g., V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다. (e.g., IoT).
본 발명은 비면허 대역에서 임의 접속 과정을 수행하는 방법 및 이를 위한 장치를 제공하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따른 비면허 대역(Unlicensed band)에서 단말이 임의 접속 과정(Random Access Channel Procedure; RACH procedure)를 수행하는 방법에 있어서, 제1 PRACH(Physical Random Access Channel) 및 제1 PUSCH(Physical Uplink shared Channel)를 포함하는 메시지 A를 기지국으로 송신하고, 상기 메시지 A에 대한 응답으로, 경쟁 해결(contention resolution)에 관련된 메시지 B를 상기 기지국으로부터 수신하는 것을 포함하고, 상기 메시지 A의 전송 전력을 설정하기 위해 전력 램핑 카운터(ramping counter)가 사용되며, 상기 전력 램핑 카운터의 값은, 상기 메시지 A의 전송을 위한 전송 공간 빔(transmission spatial beam)이 상기 메시지 A 이전의 PRACH의 전송에 관련된 전송 공간 빔과 동일하게 구성되는 점에 기반하여 증가할 수 있다.
이 때, 상기 전력 램핑 카운터의 값은, 상기 메시지 A에 대한 LBT(Listen Before Talk)가 실패하지 않은 점에 기반하여 증가할 수 있다.
또한, 상기 메시지 A의 전송은 상기 메시지 A에 대한 재전송에 해당할 수 있다.
또한, 상기 PRACH와 관련된 LBT(Listen Before Talk)는 실패할 수 있다.
또한, 상기 메시지 A의 전송을 위한 전송 공간 빔이 상기 메시지 A 이전의 PRACH의 전송과 관련된 전송 공간 빔과 다르게 구성되는 점에 기반하여, 상기 전력 램핑 카운터의 값이 증가하지 않을 수 있다.
또한, 상기 전력 램핑 카운터는, 상기 제1 PRACH 및 상기 제1 PUSCH가 상기 메시지 A를 통해 함께 전송되는 점에 기반하여 상기 전송 전력의 설정에 사용될 수 있다.
본 발명에 따른 비면허 대역(Unlicensed band)에서 임의 접속 과정(Random Access Channel Procedure; RACH procedure)를 수행하는 단말에 있어서, 적어도 하나의 트랜시버; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 제1 PRACH(Physical Random Access Channel) 및 제1 PUSCH(Physical Uplink shared Channel)를 포함하는 메시지 A를 기지국으로 송신하고, 상기 메시지 A에 대한 응답으로, 경쟁 해결(contention resolution)에 관련된 메시지 B를 상기 기지국으로부터 수신하는 것을 포함하고, 상기 메시지 A의 전송 전력을 설정하기 위해 전력 램핑 카운터(ramping counter)가 사용되며, 상기 전력 램핑 카운터의 값은, 상기 메시지 A의 전송을 위한 전송 공간 빔(transmission spatial beam)이 상기 메시지 A 이전의 PRACH의 전송에 관련된 전송 공간 빔과 동일하게 구성되는 점에 기반하여 증가할 수 있다.
이 때, 상기 전력 램핑 카운터의 값은, 상기 메시지 A에 대한 LBT(Listen Before Talk)가 실패하지 않은 점에 기반하여 증가할 수 있다.
또한, 상기 메시지 A의 전송은 상기 메시지 A에 대한 재전송에 해당할 수 있다.
또한, 상기 PRACH와 관련된 LBT(Listen Before Talk)는 실패할 수 있다.
또한, 상기 메시지 A의 전송을 위한 전송 공간 빔이 상기 메시지 A 이전의 PRACH의 전송과 관련된 전송 공간 빔과 다르게 구성되는 점에 기반하여, 상기 전력 램핑 카운터의 값이 증가하지 않을 수 있다.
또한, 상기 전력 램핑 카운터는, 상기 제1 PRACH 및 상기 제1 PUSCH가 상기 메시지 A를 통해 함께 전송되는 점에 기반하여 상기 전송 전력의 설정에 사용될 수 있다.
본 발명에 따른 비면허 대역(Unlicensed band)에서 임의 접속 과정(Random Access Channel Procedure; RACH procedure)를 수행하는 장치에 있어서, 적어도 하나의 트랜시버; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 제1 PRACH(Physical Random Access Channel) 및 제1 PUSCH(Physical Uplink shared Channel)를 포함하는 메시지 A를 송신하고, 상기 메시지 A에 대한 응답으로, 경쟁 해결(contention resolution)에 관련된 메시지 B를 수신하는 것을 포함하고, 상기 메시지 A의 전송 전력을 설정하기 위해 전력 램핑 카운터(ramping counter)가 사용되며, 상기 전력 램핑 카운터의 값은, 상기 메시지 A의 전송을 위한 전송 공간 빔(transmission spatial beam)이 상기 메시지 A 이전의 PRACH의 전송에 관련된 전송 공간 빔과 동일하게 구성되는 점에 기반하여 증가할 수 있다.
본 발명의 실시 예에 따른 비면허 대역(Unlicensed band)에서 기지국이 단말의 임의 접속 과정(Random Access Channel Procedure; RACH procedure)을 지원하는 방법에 있어서, 제 1 PRACH(Physical Random Access Channel) 및 제1 PUSCH(Physical Uplink shared Channel)를 포함하는 메시지 A를 상기 단말로부터 수신하고, 상기 메시지 A에 대한 응답으로, 경쟁 해결(contention resolution)에 관련된 메시지 B를 상기 단말로 송신하는 것을 포함하고, 상기 메시지 A의 전송 전력은 전력 램핑 카운터(ramping counter)에 기반하여 설정되며, 상기 전력 램핑 카운터의 값은, 상기 메시지 A의 전송을 위한 전송 공간 빔(transmission spatial beam)이 상기 메시지 A 이전의 PRACH의 전송에 관련된 전송 공간 빔과 동일하게 구성되는 점에 기반하여 증가할 수 있다.
본 발명에 따른 컴퓨터 판독가능한 저장 매체에 있어서, 상기 컴퓨터 판독가능한 저장 매체는, 적어도 하나의 프로세서에 의해 실행될 때, 상기 적어도 하나의 프로세서로 하여금 사용자기기를 위한 동작들을 수행하도록 하는 지시들을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장하며, 상기 동작들은, 제1 PRACH(Physical Random Access Channel) 및 제1 PUSCH(Physical Uplink shared Channel)를 포함하는 메시지 A를 송신하고, 상기 메시지 A에 대한 응답으로, 경쟁 해결(contention resolution)에 관련된 메시지 B를 수신하는 것을 포함하고, 상기 메시지 A의 전송 전력을 설정하기 위해 전력 램핑 카운터(ramping counter)가 사용되며, 상기 전력 램핑 카운터의 값은, 상기 메시지 A의 전송을 위한 전송 공간 빔(transmission spatial beam)이 상기 메시지 A 이전의 PRACH의 전송에 관련된 전송 공간 빔과 동일하게 구성되는 점에 기반하여 증가할 수 있다.
본 발명에 따르면, 단말이 임의 접속 과정을 수행하기 위한 신호의 전송 전력을 효율적으로 설정할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.
도 3 내지 5는 비면허 대역에서의 채널 전송을 설명하기 위한 도면이다.
도 6은 상향링크 전송 전력을 제어하는 절차의 실시 예를 설명하기 위한 도면이다.
도 7 내지 도 8은 본 발명의 실시 예에 따른 단말 및 기지국의 동작 구현 예를 설명하기 위한 도면이다.
도 9는 2-step RACH의 기본적인 프로세스를 나타내는 도면이다.
도 10은 단말의 LBT 성공 또는 실패 여부 및 전송 빔 방향 구성에 따른 Msg A 전송의 실시 예를 나타낸 도면이다.
도 11은 단말의 전송 빔 방향에 따라 전력 램핑 카운터를 유지하거나 증가하는 본 개시의 실시 예를 나타낸 도면이다.
도 12는 본 개시의 실시 예들에 기반한 2-step RACH procedure를 수행하기 위한 단말과 기지국의 동작 흐름을 나타낸 도면이다.
도 13은 본 개시의 실시 예들이 적용되는 통신 시스템의 예시를 나타낸다.
도 14 내지 도 17은 본 개시의 실시 예들이 적용되는 다양한 무선 기기의 예시들을 나타낸다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템, LTE-A 시스템 및 NR 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 gNB와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, gNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-RS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, 트랙킹 RS(tracking RS, TRS)가 할당된 혹은 설정(Configuration)된 OFDM 심볼은 TRS 심볼이라고 칭하며, TRS가 할당된 혹은 설정(Configuration)된 부반송파는 TRS 부반송파라 칭하며, TRS가 할당된 혹은 설정(Configuration)된 RE 는 TRS RE라고 칭한다. 또한, TRS 전송을 위해 설정(Configuration)된(configured) 서브프레임을 TRS 서브프레임이라 칭한다. 또한 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 각각 PSS/SSS 심볼/부반송파/RE라 칭한다.
본 발명에서 CRS 포트, UE-RS 포트, CSI-RS 포트, TRS 포트라 함은 각각 CRS를 전송하도록 설정(Configuration)된(configured) 안테나 포트, UE-RS를 전송하도록 설정(Configuration)된 안테나 포트, CSI-RS를 전송하도록 설정(Configuration)된 안테나 포트, TRS를 전송하도록 설정(Configuration)된 안테나 포트를 의미한다. CRS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CRS 포트들에 따라 CRS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, UE-RS들을 전송하도록 설정(Configuration)된(configured) 안테나 포트들은 UE-RS 포트들에 따라 UE-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, CSI-RS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CSI-RS 포트들에 따라 CSI-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있다. 따라서 CRS/UE-RS/CSI-RS/TRS 포트라는 용어가 일정 자원 영역 내에서 CRS/UE-RS/CSI-RS/TRS가 점유하는 RE들의 패턴을 의미하는 용어로서 사용되기도 한다.
<인공 지능(AI: Artificial Intelligence)>
인공 지능은 인공적인 지능 또는 이를 만들 수 있는 방법론을 연구하는 분야를 의미하며, 머신 러닝(기계 학습, Machine Learning)은 인공 지능 분야에서 다루는 다양한 문제를 정의하고 그것을 해결하는 방법론을 연구하는 분야를 의미한다. 머신 러닝은 어떠한 작업에 대하여 꾸준한 경험을 통해 그 작업에 대한 성능을 높이는 알고리즘으로 정의하기도 한다.
인공 신경망(ANN: Artificial Neural Network)은 머신 러닝에서 사용되는 모델로써, 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)들로 구성되는, 문제 해결 능력을 가지는 모델 전반을 의미할 수 있다. 인공 신경망은 다른 레이어의 뉴런들 사이의 연결 패턴, 모델 파라미터를 갱신하는 학습 과정, 출력값을 생성하는 활성화 함수(Activation Function)에 의해 정의될 수 있다.
인공 신경망은 입력층(Input Layer), 출력층(Output Layer), 그리고 선택적으로 하나 이상의 은닉층(Hidden Layer)를 포함할 수 있다. 각 층은 하나 이상의 뉴런을 포함하고, 인공 신경망은 뉴런과 뉴런을 연결하는 시냅스를 포함할 수 있다. 인공 신경망에서 각 뉴런은 시냅스를 통해 입력되는 입력 신호들, 가중치, 편향에 대한 활성 함수의 함숫값을 출력할 수 있다.
모델 파라미터는 학습을 통해 결정되는 파라미터를 의미하며, 시냅스 연결의 가중치와 뉴런의 편향 등이 포함된다. 그리고, 하이퍼파라미터는 머신 러닝 알고리즘에서 학습 전에 설정되어야 하는 파라미터를 의미하며, 학습률(Learning Rate), 반복 횟수, 미니 배치 크기, 초기화 함수 등이 포함된다.
인공 신경망의 학습의 목적은 손실 함수를 최소화하는 모델 파라미터를 결정하는 것으로 볼 수 있다. 손실 함수는 인공 신경망의 학습 과정에서 최적의 모델 파라미터를 결정하기 위한 지표로 이용될 수 있다.
머신 러닝은 학습 방식에 따라 지도 학습(Supervised Learning), 비지도 학습(Unsupervised Learning), 강화 학습(Reinforcement Learning)으로 분류할 수 있다.
지도 학습은 학습 데이터에 대한 레이블(label)이 주어진 상태에서 인공 신경망을 학습시키는 방법을 의미하며, 레이블이란 학습 데이터가 인공 신경망에 입력되는 경우 인공 신경망이 추론해 내야 하는 정답(또는 결과 값)을 의미할 수 있다. 비지도 학습은 학습 데이터에 대한 레이블이 주어지지 않는 상태에서 인공 신경망을 학습시키는 방법을 의미할 수 있다. 강화 학습은 어떤 환경 안에서 정의된 에이전트가 각 상태에서 누적 보상을 최대화하는 행동 혹은 행동 순서를 선택하도록 학습시키는 학습 방법을 의미할 수 있다.
인공 신경망 중에서 복수의 은닉층을 포함하는 심층 신경망(DNN: Deep Neural Network)으로 구현되는 머신 러닝을 딥 러닝(심층 학습, Deep Learning)이라 부르기도 하며, 딥 러닝은 머신 러닝의 일부이다. 이하에서, 머신 러닝은 딥 러닝을 포함하는 의미로 사용된다.
<로봇(Robot)>
로봇은 스스로 보유한 능력에 의해 주어진 일을 자동으로 처리하거나 작동하는 기계를 의미할 수 있다. 특히, 환경을 인식하고 스스로 판단하여 동작을 수행하는 기능을 갖는 로봇을 지능형 로봇이라 칭할 수 있다.
로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류할 수 있다.
로봇은 액츄에이터 또는 모터를 포함하는 구동부를 구비하여 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 이동 가능한 로봇은 구동부에 휠, 브레이크, 프로펠러 등이 포함되어, 구동부를 통해 지상에서 주행하거나 공중에서 비행할 수 있다.
<자율 주행(Self-Driving, Autonomous-Driving)>
자율 주행은 스스로 주행하는 기술을 의미하며, 자율 주행 차량은 사용자의 조작 없이 또는 사용자의 최소한의 조작으로 주행하는 차량(Vehicle)을 의미한다.
예컨대, 자율 주행에는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등이 모두 포함될 수 있다.
차량은 내연 기관만을 구비하는 차량, 내연 기관과 전기 모터를 함께 구비하는 하이브리드 차량, 그리고 전기 모터만을 구비하는 전기 차량을 모두 포괄하며, 자동차뿐만 아니라 기차, 오토바이 등을 포함할 수 있다.
이때, 자율 주행 차량은 자율 주행 기능을 가진 로봇으로 볼 수 있다.
<확장 현실(XR: eXtended Reality)>
확장 현실은 가상 현실(VR: Virtual Reality), 증강 현실(AR: Augmented Reality), 혼합 현실(MR: Mixed Reality)을 총칭한다. VR 기술은 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하고, AR 기술은 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 제공하며, MR 기술은 현실 세계에 가상 객체들을 섞고 결합시켜서 제공하는 컴퓨터 그래픽 기술이다.
MR 기술은 현실 객체와 가상 객체를 함께 보여준다는 점에서 AR 기술과 유사하다. 그러나, AR 기술에서는 가상 객체가 현실 객체를 보완하는 형태로 사용되는 반면, MR 기술에서는 가상 객체와 현실 객체가 동등한 성격으로 사용된다는 점에서 차이점이 있다.
XR 기술은 HMD(Head-Mount Display), HUD(Head-Up Display), 휴대폰, 태블릿 PC, 랩탑, 데스크탑, TV, 디지털 사이니지 등에 적용될 수 있고, XR 기술이 적용된 장치를 XR 장치(XR Device)라 칭할 수 있다.
이제, NR 시스템을 포함한 5G 통신에 대해서 살펴보도록 한다.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, NR 시스템을 포함한 5G 통신 시스템에서의 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 송신되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 송신되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 송신 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 송신채널(Trans포트 Channel)을 통해 연결되어 있다. 상기 송신채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 송신을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 송신하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다. 무선 베어러는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 송신하는 하향 송신채널은 시스템 정보를 송신하는 BCH(Broadcast Channel), 페이징 메시지를 송신하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 송신하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 송신될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향 송신채널로는 초기 제어 메시지를 송신하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 송신하는 상향 SCH(Shared Channel)가 있다. 송신채널의 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S201). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S208)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
한편, NR 시스템은 넓은 주파수 대역을 이용하여 다수의 사용자에게 높은 전송율을 유지하면서 데이터 전송을 하기 위해 높은 초고주파 대역, 즉, 6GHz 이상의 밀리미터 주파수 대역을 이용하는 방안을 고려하고 있다. 3GPP에서는 이를 NR이라는 이름으로 사용하고 있으며, 본 발명에서는 앞으로 NR 시스템으로 칭한다.
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머놀로지(numerology, 또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25kHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 2가지 type(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1은 sub 6GHz range이며, FR2는 above 6GHz range로 밀리미터 웨이브(millimeter wave, mmW)를 의미할 수 있다.
아래의 표 1은 NR frequency band의 정의를 나타낸다.
Frequency Range Designation Corresponding frequency range Subcarrier Spacing
FR1 410MHz - 7125MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
< 비면허 대역/공유 스펙트럼 (Unlicensed band/Shared spectrum) 시스템 >
도 3은 본 개시의 다양한 실시예들이 적용 가능한 비면허 대역을 지원하는 무선 통신 시스템의 예시를 나타낸 도면이다.
이하 설명에 있어, 면허 대역(이하, L-band)에서 동작하는 셀을 L-cell로 정의하고, L-cell의 캐리어를 (DL/UL) LCC라고 정의한다. 또한, 비면허 대역 (이하, U-band)에서 동작하는 셀을 U-cell로 정의하고, U-cell의 캐리어를 (DL/UL) UCC라고 정의한다. 셀의 캐리어/캐리어-주파수는 셀의 동작 주파수(예, 중심 주파수)를 의미할 수 있다. 셀/캐리어(예, CC)는 셀로 통칭한다.
도 3(a)와 같이 단말과 기지국이 반송파 결합된 LCC 및 UCC를 통해 신호를 송수신하는 경우, LCC는 PCC (Primary CC)로 설정되고 UCC는 SCC (Secondary CC)로 설정될 수 있다.
도 3(b)와 같이, 단말과 기지국은 하나의 UCC 또는 반송파 결합된 복수의LCC 및 UCC를 통해 신호를 송수신할 수 있다. 즉, 단말과 기지국은 LCC 없이 UCC(s)만을 통해 신호를 송수신할 수 있다. 이하, 본 개시의 다양한 실시예들에서 기술하는 비면허 대역에서의 신호 송수신 동작은 (별도의 언급이 없으면) 상술한 모든 배치 시나리오에 기초하여 수행될 수 있다.
1. 비면허 대역을 위한 무선 프레임 구조
비면허 대역에서의 동작을 위해 LTE의 프레임 구조 타입 3 또는 NR 프레임 구조가 사용될 수 있다. 비면허 대역을 위한 프레임 구조 내 상향링크/하향링크 신호 전송을 위해 점유되는 OFDM 심볼들의 구성은 기지국에 의해 설정될 수 있다. 여기서, OFDM 심볼은 SC-FDM(A) 심볼로 대체될 수 있다.
비면허 대역을 통한 하향링크 신호 전송을 위해, 기지국은 시그널링을 통해 서브프레임 #n에서 사용되는 OFDM 심볼들의 구성을 단말에게 알려줄 수 있다. 이하 설명에 있어, 서브프레임은 슬롯 또는 TU(Time Unit)로 대체될 수 있다.
구체적으로, 비면허 대역을 지원하는 무선 통신 시스템의 경우, 단말은 서브프레임 #n-1 또는 서브프레임 #n에서 기지국으로부터 수신된 DCI 내 특정 필드(예, Subframe configuration for LAA 필드 등)를 통해 서브프레임 #n 내 점유된 OFDM 심볼의 구성을 가정 (또는 식별)할 수 있다.
표 2는 무선 통신 시스템에서 Subframe configuration for LAA 필드가 현재 서브프레임 및/또는 다음 서브프레임(current and/or next subframe) 내 하향링크 물리 채널 및/또는 물리 신호의 전송을 위해 사용되는 OFDM 심볼들의 구성을 나타내는 방법을 예시한다.
Figure PCTKR2020013070-appb-img-000001
비면허 대역을 통한 상향링크 신호 전송을 위해, 기지국은 시그널링을 통해 상향링크 전송 구간에 대한 정보를 단말에게 알려줄 수 있다.
구체적으로, 비면허 대역을 지원하는 LTE 시스템의 경우, 단말은 검출된 DCI 내 'UL duration and offset' 필드를 통해 서브프레임 #n에 대한 'UL duration' 및 'UL offset' 정보를 획득할 수 있다.
표 3은 무선 통신 시스템에서 UL duration and offset 필드가 UL offset 및 UL duration 구성을 나타내는 방법을 예시한다.
Figure PCTKR2020013070-appb-img-000002
2. 채널 접속 절차 (Channel access procedure) 일반
이하의 정의들은, 별도의 언급이 없으면 후술되는 본 개시의 다양한 실시예들에 대한 설명에서 사용된 용어들 (terminologies) 에 적용될 수 있다.
- 채널 (channel) 이란, 공유된 스펙트럼 (shared spectrum) 내에서 채널 접속 절차가 수행되는 RBs 의 연속된 집합으로 구성된 캐리어 또는 캐리어의 부분 (a part of a carrier) 을 의미할 수 있다.
- 채널 접속 절차 (channel access procedure) 란, 전송을 수행하기 위한 채널의 가용성 (availability) 을 평가하는 센싱에 기반한 절차일 수 있다. 센싱의 기본 단위는 Tsl = 9 us 의 구간 (duration) 갖는 센싱 슬롯 (sensing slot) 일 수 있다. 기지국 또는 UE 가 센싱 슬롯 구간 동안 채널을 감지하고, 센싱 슬롯 구간 내의 적어도 4us동안 감지된 검출된 전력이 에너지 검출 문턱치 XThresh 보다 작다고 결정하는 경우, 센싱 슬롯 구간 Tsl 은 유휴로 고려될 수 있다. 그렇지 않으면, 센싱 슬롯 구간 Tsl 은 비지로 고려될 수 있다.
- 채널 점유 (channel occupancy) 란, 본 절에서 대응하는 채널 접속 절차 수행 이후 기지국/UE 에 의한 채널에서의 전송을 의미할 수 있다.
- 채널 점유 시간 (channel occupancy time) 이란, 기지국/UE 가 본 절에서 대응하는 채널 접속 절차를 수행한 이후 기지국/UE 및 채널 점유를 공유하는 임의의 기지국/UE(s) 가 채널에서의 송신을 수행한 총 시간을 의미할 수 있다. 채널 점유 시간을 결정하기 위하여, 송신 갭 (transmission gap) 이 25 us 이하이면, 갭 구간 (gap duration) 은 채널 점유 시간으로 카운트 될 수 있다. 채널 점유 시간은 기지국 및 대응하는 UE(s) 간의 전송을 위하여 공유될 수 있다.
3. 하향링크 채널 접속 절차 (Downlink channel access procedure)
기지국은 비면허 대역에서의 하향링크 신호 전송을 위해 상기 비면허 대역에 대해 하기와 같은 하향링크 채널 접속 절차(Channel Access Procedure; CAP)를 수행할 수 있다.
3.1. 타입 1 하향링크 채널 접속 절차 (Type 1 DL channel access procedures)
본 절에서는 하향링크 전송(들) 전에 유휴로 센싱되는 센싱 슬롯에 의하여 차지되는 (spanned) 시간 구간 (time duration) 이 랜덤한, 기지국으로부터 수행되는 채널 접속 절차에 대하여 설명한다. 본 절은 다음의 전송들에 적용될 수 있다:
- PDSCH/PDCCH/EPDCCH 를 포함하는, 기지국에 의하여 시작된 전송(들)(Transmission(s) initiated by a base station including PDSCH/PDCCH/EPDCCH), 또는,
- 사용자 평면 데이터 (user plane data) 를 갖는 유니캐스트 PDSCH (unicast PDSCH), 또는, 사용자 평면 데이터를 갖는 유니캐스트 PDSCH 및 사용자 평면 데이터를 스케쥴링하는 유니캐스트 PDCCH 를 포함하는, 기지국에 의하여 시작된 전송(들)(Transmission(s) initiated by a base station including unicast PDSCH with user plane data, or unicast PDSCH with user plane data and unicast PDCCH scheduling user plane data), 또는,
- 디스커버리 버스트만 갖는, 또는 비-유니캐스트(non-unicast) 정보와 멀티플렉스된 디스커버리 버스트를 갖는, 기지국에 의하여 시작된 전송(들). 여기서, 전송 구간은 1ms 보다 크거나 또는 전송은 디스커버리 버스트 듀티 사이클이 1/20 을 초과하게 할 수 있다.
기지국은 지연 기간 (defer duration) T d의 센싱 슬롯 구간 동안 채널이 아이들(idle) 상태인지를 센싱하고, 하기 스텝 4(step 4)에서 카운터 N이 0된 이후, 전송을 전송할 수 있다. 이때, 카운터 N은 아래의 절차에 따라 추가적인 센싱 슬롯 구간 (additional sensing slot duration)을 위한 채널 센싱에 의해 조정된다:
1) N=N init으로 설정. 여기서, N init은 0 부터 CW p 사이에서 균등하게 분포된 임의의 수(random number uniformly distributed between 0 and CW p) 이다. 이어 스텝 4로 이동한다.
2) N>0 이고 기지국이 상기 카운터를 감소시키기로 선택한 경우, N=N-1로 설정.
3) 추가적인 센싱 슬롯 구간을 위한 채널을 센싱한다. 이때, 상기 추가적인 센싱 슬롯 구간이 아이들인 경우, 스텝 4로 이동한다. 아닌 경우, 스텝 5로 이동한다.
4) N=0이면 해당 절차를 정지(stop)한다. 아니면, 스텝 2로 이동한다.
5) 추가 지연 구간 T d 내 비지(busy) 센싱 슬롯이 검출되거나 상기 추가 지연 구간 T d의 모든 센싱 슬롯들이 아이들로 검출될 때까지 채널을 센싱.
6) 상기 추가 지연 구간 T d 의 모든 센싱 슬롯 구간 동안 해당 채널이 아이들로 센싱되는 경우, 스텝 4로 이동한다. 아닌 경우, 스텝 5로 이동한다.
도 4는 본 개시의 다양한 실시예들이 적용 가능한 비면허 대역 전송을 위한 DL CAP를 설명하기 위한 도면이다.
본 개시의 다양한 실시예들이 적용 가능한 비면허 대역 전송을 위한 타입 1 하향링크 채널 접속 절차는 다음과 같이 정리할 수 있다.
하향링크 전송에 대해서 전송 노드(예를 들어, 기지국)가 채널 접속 과정(CAP)을 개시할 수 있다 (2010).
기지국은 스텝 1에 따라 경쟁 윈도우(CW) 내에서 백오프 카운터 N을 임의로 선택할 수 있다. 이때, N 값은 초기 값 Ninit으로 설정된다 (2020). Ninit 은 0 내지 CWp 사이의 값 중 임의의 값으로 선택된다.
이어서, 스텝 4에 따라 백오프 카운터 값(N)이 0이라면 (2030; Y), 기지국은 CAP 과정을 종료한다 (2032). 이어, 기지국은 Tx 버스트 전송을 수행할 수 있다 (2034). 반면에, 백오프 카운터 값이 0 이 아니라면 (2030; N), 기지국은 스텝 2에 따라 백오프 카운터 값을 1만큼 줄인다 (2040).
이어, 기지국은 채널이 유휴 상태인지 여부를 확인하고 (2050), 채널이 유휴 상태이면 (2050; Y) 백오프 카운터 값이 0 인지 확인한다 (2030).
반대로, 2050 동작에서 채널이 유휴 상태가 아니면 즉, 채널이 비지 상태이면 (2050; N), 기지국은 스텝 5에 따라 센싱 슬롯 시간(예를 들어, 9usec)보다 긴 지연 기간(defer duration Td; 25usec 이상) 동안 해당 채널이 유휴 상태인지 여부를 확인한다 (2060). 지연 기간에 채널이 유휴 상태이면 (2070; Y) 기지국은 다시 CAP 과정을 재개할 수 있다.
일 예로, 백오프 카운터 값 Ninit가 10이고, 백오프 카운터 값이 5까지 감소된 후 채널이 비지 상태로 판단되면 기지국은 지연 기간 동안 채널을 센싱하여 유휴 상태인지 여부를 판단한다. 이때, 지연 기간 동안 채널이 유휴 상태면 기지국은 백오프 카운터 값 Ninit을 설정하는 것이 아니라 백오프 카운터 값 5부터(또는, 백오프 카운터 값을 1 감소시킨 후 4부터) 다시 CAP 과정을 수행할 수 있다.
반면에, 지연 기간 동안 채널이 비지 상태이면 (2070; N), 기지국은 2060 단계를 재수행하여 새로운 지연 기간 동안 채널이 유휴 상태인지 여부를 다시 확인한다.
상기 절차에 있어 스텝 4 이후 기지국이 전송을 전송하지 않는 경우, 상기 기지국은 다음의 조건이 만족하면 상기 채널 상에서 전송을 전송할 수 있다:
상기 기지국이 전송을 전송하도록 준비되고 적어도 센싱 슬롯 구간 Tsl 동안 해당 채널이 아이들로 센싱되는 경우, 및 상기 전송 이전에 바로 (immediately before) 지연 구간 Td의 모든 센싱 슬롯 구간 동안 상기 채널이 아이들로 센싱되는 경우
반대로, 전송을 전송을 하도록 준비된 이후 상기 기지국이 상기 채널을 센싱하였을 때 센싱 슬롯 구간 Tsl 동안 상기 채널이 아이들로 센싱되지 않거나, 상기 의도던 전송 이전에 바로 (immediately before) 지연 구간 Td의 어느 하나의 센싱 슬롯 구간 동안 상기 채널이 아이들로 센싱되지 않은 경우, 상기 기지국은 지연 구간 Td의 센싱 슬롯 구간 동안 채널이 아이들하다고 센싱된 이후 스텝 1를 진행한다 (proceed to step 1).
상기 지연 구간 Td는 mp 연속된 센싱 슬롯 구간들 바로 다음에 이어지는 구간 Tf (=16us)로 구성된다. 여기서, 각 센싱 슬롯 구간 (Tsl)은 9us 이고, Tf는 Tf의 시작 지점에 아이들 센싱 슬롯 구간 (Tsl)을 포함한다.
표 4는 채널 접속 우선 순위 클래스에 따라 CAP에 적용되는 mp, 최소 CW, 최대 CW, 최대 채널 점유 시간(Maximum Channel Occupancy Time, MCOT) 및 허용된 CW 크기(allowed CW sizes)가 달라지는 것을 예시한다.
Figure PCTKR2020013070-appb-img-000003
3.2. 타입 2 하향링크 채널 접속 절차 (Type 2 DL channel access procedures)
3.2.1. 타입 2A DL 채널 접속 절차
기지국은 적어도 센싱 구간 Tshort dl =25 us 동안 해당 채널이 아이들로 센싱된 이후 바로 (immediately after) 전송을 전송할 수 있다. 여기서, Tshort dl 는 하나의 센싱 슬롯 구간 바로 다음에 이어지는 구간 Tf (=16us)로 구성된다. Tf 는 Tf 의 시작 지점에 센싱 슬롯을 포함한다. 상기 Tshort dl 내의 두 센싱 슬롯이 아이들로 센싱된 경우, 상기 채널은 Tshort dl 동안 아이들로 고려된다 (be considered to be idle).
3.2.2. 타입 2B DL 채널 접속 절차
기지국은 Tf =16 us 동안 해당 채널이 아이들로 센싱된 이후 바로 (immediately after) 전송을 전송할 수 있다. Tf 는 Tf 의 마지막 9 us 내에서 발생하는 센싱 슬롯을 포함한다. 채널이 센싱 슬롯에서 발생하는 적어도 4us 의 센싱과 함께 적어도 총 5us 이상 유휴 상태인 것으로 센싱된 경우, 상기 채널은 Tf 동안 아이들로 고려된다.
3.2.3. 타입 2C DL 채널 접속 절차
기지국은 전송을 전송하기 위하여 본 절의 절차를 따르는 경우, 기지국은 전송을 전송하기 전에 채널을 센싱하지 않는다. 해당 전송에 대응하는 지속 기간은 최대 584us 이다.
4. 다중 채널 상 전송(들)을 위한 채널 접속 절차 (channel access procedure for transmission(s) on multiple channels)
기지국은 하기의 타입 A 또는 타입 B 절차 중 하나를 통해 전송이 수행되는 다중 채널들에 접속할 수 있다.
4.1. 타입 A 다중-채널 접속 절차 (Type A multi-carrier access procedures)
본 절에 개시된 절차에 따라 기지국은 각 채널
Figure PCTKR2020013070-appb-img-000004
상 채널 접속을 수행한다. 여기서, C는 상기 기지국이 전송하고자 하는 (intend to transmit) 채널의 세트이고,
Figure PCTKR2020013070-appb-img-000005
이고, q는 상기 기지국이 전송하고자 하는 채널의 개수이다.
CAP에서 고려되는 카운터 N 은 각 채널
Figure PCTKR2020013070-appb-img-000006
별로 결정되고, 이 경우 각 채널 별 카운터는
Figure PCTKR2020013070-appb-img-000007
라 표시한다.
4.1.1. 타입 A1 (Type A1) 다중-채널 접속 절차
CAP에서 고려되는 카운터 N 은 각 채널
Figure PCTKR2020013070-appb-img-000008
별로 결정되고, 각 채널 별 카운터는
Figure PCTKR2020013070-appb-img-000009
라 표시한다.
기지국이 어느 하나의 채널
Figure PCTKR2020013070-appb-img-000010
상 전송을 중지(cease)한 경우, 만약 상기 채널을 공유하는 다른 기술의 부재가 긴 구간 동안 보증될 수 있다면 (예: 규정의 레벨에 의해) (if the absence of any other technology sharing the channel can be guaranteed on a long term basis (e.g., by level of regulation)), 각 채널 c i (이때, c i는 c j와 상이함,
Figure PCTKR2020013070-appb-img-000011
)을 위해,
Figure PCTKR2020013070-appb-img-000012
의 구간을 기다린 이후 또는
Figure PCTKR2020013070-appb-img-000013
를 재 초기화 (reinitialising) 한 이후 아이들 센싱 슬롯이 검출되면 상기 기지국은
Figure PCTKR2020013070-appb-img-000014
감소를 재개(resume)할 수 있다.
4.1.2. 타입 A2 (Type A2) 다중-채널 접속 절차
각 채널
Figure PCTKR2020013070-appb-img-000015
별 카운터 N은 앞서 상술한 내용들에 따라 결정될 수 있고, 이때 각 채널 별 카운터는
Figure PCTKR2020013070-appb-img-000016
라 표시한다. 여기서,
Figure PCTKR2020013070-appb-img-000017
는 가장 큰 CW p 값을 갖는 채널을 의미할 수 있다. 각 채널
Figure PCTKR2020013070-appb-img-000018
를 위해,
Figure PCTKR2020013070-appb-img-000019
로 설정될 수 있다.
기지국이
Figure PCTKR2020013070-appb-img-000020
가 결정된 어느 하나의 채널에 대한 전송을 중단(cease)하는 경우, 상기 기지국은 모든 채널을 위한
Figure PCTKR2020013070-appb-img-000021
를 재 초기화(reinitialise)한다.
4.2. 타입 B 다중-채널 접속 절차 (Type B multi-channel access procedure)
채널
Figure PCTKR2020013070-appb-img-000022
는 기지국에 의해 다음과 같이 선택될 수 있다.
- 상기 기지국은 다중 채널
Figure PCTKR2020013070-appb-img-000023
상 각각의 전송에 앞서 상기 C로부터 균등하게 임의적으로 (uniformly randomly)
Figure PCTKR2020013070-appb-img-000024
를 선택하거나,
- 상기 기지국은 매 1 초마다 1번 이상
Figure PCTKR2020013070-appb-img-000025
를 선택하지 않는다.
여기서, C는 상기 기지국이 전송하고자 하는 (intend to transmit) 채널의 세트이고,
Figure PCTKR2020013070-appb-img-000026
이고, q는 상기 기지국이 전송하고자 하는 채널의 개수이다.
채널
Figure PCTKR2020013070-appb-img-000027
상에서의 전송을 위해, 상기 기지국은 4.2.1. 절 또는 4.2.2. 절에 개시된 수정 사항 (medication)과 함께 3.1 절에 개시된 절차에 따라 채널
Figure PCTKR2020013070-appb-img-000028
상의 채널 접속을 수행한다.
Figure PCTKR2020013070-appb-img-000029
인 채널 중 채널
Figure PCTKR2020013070-appb-img-000030
상에서의 전송을 위해,
각 채널
Figure PCTKR2020013070-appb-img-000031
를 위해, 상기 기지국은 채널
Figure PCTKR2020013070-appb-img-000032
상에서의 전송에 바로 앞서 (immediately before) 적어도 센싱 구간 (sensing interval)
Figure PCTKR2020013070-appb-img-000033
동안 채널
Figure PCTKR2020013070-appb-img-000034
를 센싱한다. 그리고, 상기 기지국은 적어도 센싱 구간
Figure PCTKR2020013070-appb-img-000035
동안 채널
Figure PCTKR2020013070-appb-img-000036
가 아이들임을 센싱한 바로 직후 (immediately after) 채널
Figure PCTKR2020013070-appb-img-000037
상에서 전송을 수행할 수 있다. 주어진 구간
Figure PCTKR2020013070-appb-img-000038
내 채널
Figure PCTKR2020013070-appb-img-000039
상 아이들 센싱이 수행되는 모든 시간 구간 동안 상기 채널이 아이들로 센싱되는 경우, 상기 채널
Figure PCTKR2020013070-appb-img-000040
Figure PCTKR2020013070-appb-img-000041
를 위한 아이들로 고려될 수 있다.
상기 기지국은 채널
Figure PCTKR2020013070-appb-img-000042
(이때,
Figure PCTKR2020013070-appb-img-000043
)상에서 상기 표 4의 T mcot,p를 초과하는 구간을 위해 (for a period exceeding T mcot,p) 전송을 수행하지 않는다. 여기서, T mcot,p는 채널
Figure PCTKR2020013070-appb-img-000044
을 위해 사용되는 채널 접속 파라미터를 사용하여 결정된다.
본 절의 절차에서, gNB 에 의하여 선택된 채널 세트 C 의 채널 주파수는 미리 정의된 채널 주파수 세트 중 하나의 서브 세트이다.
4.2.1. 타입 B1 (Type B1) 다중-채널 접속 절차
단일 CW p 값은 채널 세트 C 를 위해 유지된다.
채널
Figure PCTKR2020013070-appb-img-000045
상 채널 접속을 위한 CW p를 결정하기 위해, 앞서 3.1 절에서 상술한 절차의 스텝 2는 다음과 같이 수정된다.
- 모든 채널
Figure PCTKR2020013070-appb-img-000046
의 참조 서브프레임 k 내 PDSCH 전송(들)에 대응하는 HARQ-ACK 값들의 적어도
Figure PCTKR2020013070-appb-img-000047
가 NACK으로 결정되는 경우, 모든 우선순위 클래스
Figure PCTKR2020013070-appb-img-000048
를 위한 CW p를 다음 높은 허용된 값으로 (next higher allowed value)로 증가한다. 아닌 경우, 스텝 1로 이동한다.
4.2.2. 타입 B2 (Type B2) 다중-채널 접속 절차
CW p 값은 각 채널
Figure PCTKR2020013070-appb-img-000049
을 위해 독립적으로 유지된다. 채널
Figure PCTKR2020013070-appb-img-000050
를 위한 CW p 를 결정하기 위해, 채널
Figure PCTKR2020013070-appb-img-000051
와 완전히 또는 부분적으로 겹치는 임의의 PDSCH 가 사용될 수 있다. 채널
Figure PCTKR2020013070-appb-img-000052
을 위한 N init을 결정하기 위해, 채널
Figure PCTKR2020013070-appb-img-000053
의 CW p 값이 사용된다. 여기서,
Figure PCTKR2020013070-appb-img-000054
는 세트 C 내 모든 채널들 중 가장 큰 CW p를 갖는 채널이다.
5. 상향링크 채널 접속 절차 (Uplink channel access procedures)
UE 및 상기 UE를 위한 UL 전송을 스케줄링 또는 설정 (configuring) 하는 기지국은 (LAA S 셀 전송(들)을 수행하는) 채널로의 접속을 위해 하기의 절차를 수행한다. 이하 설명에 있어, 기본적으로 단말 및 기지국에 대해 면허 대역인 P 셀과 하나 이상의 비면허 대역인 S 셀이 설정되는 경우를 가정하여, 본 개시의 다양한 실시예들이 적용 가능한 상향링크 CAP 동작에 대해 상세히 설명한다. 다만, 상기 상향링크 CAP 동작은 상기 단말 및 기지국에 대해 비면허 대역만이 설정되는 경우에도 동일하게 적용될 수 있다.
UE는 UL 전송(들)이 수행되는 채널 상으로 타입 1 또는 타입 2 UL 채널 접속 절차에 따라 접속할 수 있다.
표 5는 채널 접속 우선 순위 클래스에 따라 CAP에 적용되는 mp, 최소 CW, 최대 CW, 최대 채널 점유 시간(Maximum Channel Occupancy Time, MCOT) 및 허용된 CW 크기(allowed CW sizes)가 달라지는 것을 예시한다.
Figure PCTKR2020013070-appb-img-000055
5.1. 타입 1 UL 채널 접속 절차 (Type 1 UL channel access procedure)
본 절에서는 상향링크 전송(들) 전에 유휴로 센싱되는 센싱 슬롯에 의하여 차지되는 (spanned) 시간 구간 (time duration) 이 랜덤한, UE 로부터 수행되는 채널 접속 절차에 대하여 설명한다. 본 절은 다음의 전송들에 적용될 수 있다:
- 기지국으로부터 스케쥴링 및/또는 설정된 PUSCH/SRS 전송(들)
- 기지국으로부터 스케쥴링 및/또는 설정된 PUCCH 전송(들)
- RAP (random access procedure) 와 관련된 전송(들)
도 5는 본 개시의 다양한 실시예들이 적용 가능한 비면허 대역 전송을 위한 UL CAP를 설명하기 위한 도면이다.
본 개시의 다양한 실시예들이 적용 가능한 비면허 대역 전송을 위한 UE의 타입 1 UL CAP는 다음과 같이 정리할 수 있다.
상향링크 전송에 대해서 전송 노드(예를 들어, UE)가 비면허 대역 에서 동작하기 위해 채널 접속 과정(CAP)을 개시할 수 있다 (2110).
UE는 스텝 1에 따라 경쟁 윈도우(CW) 내에서 백오프 카운터 N을 임의로 선택할 수 있다. 이때, N 값은 초기 값 Ninit으로 설정된다 (2120). Ninit 은 0 내지 CWp 사이의 값 중 임의의 값으로 선택된다.
이어서, 스텝 4에 따라 백오프 카운터 값(N)이 0이라면 (2130; Y), UE는 CAP 과정을 종료한다 (2132). 이어, UE는 Tx 버스트 전송을 수행할 수 있다 (2134). 반면에, 백오프 카운터 값이 0 이 아니라면 (2130; N), UE는 스텝 2에 따라 백오프 카운터 값을 1만큼 줄인다 (2140).
이어, UE는 채널이 유휴 상태인지 여부를 확인하고 (2150), 채널이 유휴 상태이면 (2150; Y) 백오프 카운터 값이 0 인지 확인한다 (2130).
반대로, 2150 동작에서 채널이 유휴 상태가 아니면 즉, 채널이 비지 상태이면 (2150; N), UE는 스텝 5에 따라 슬롯 시간(예를 들어, 9usec)보다 긴 지연 기간(defer duration Td; 25usec 이상) 동안 해당 채널이 유휴 상태인지 여부를 확인한다 (2160). 지연 기간에 채널이 유휴 상태이면 (2170; Y) UE는 다시 CAP 과정을 재개할 수 있다.
일 예로, 백오프 카운터 값 Ninit가 10이고, 백오프 카운터 값이 5까지 감소된 후 채널이 비지 상태로 판단되면 UE는 지연 기간 동안 채널을 센싱하여 유휴 상태인지 여부를 판단한다. 이때, 지연 기간 동안 채널이 유휴 상태면 UE는 백오프 카운터 값 Ninit을 설정하는 것이 아니라 백오프 카운터 값 5부터(또는, 백오프 카운터 값을 1 감소시킨 후 4부터) 다시 CAP 과정을 수행할 수 있다.
반면에, 지연 기간 동안 채널이 비지 상태이면 (2170; N), UE는 2160 동작을 재수행하여 새로운 지연 기간 동안 채널이 유휴 상태인지 여부를 다시 확인한다.
상기 절차에 있어 앞서 상술한 절차의 스텝 4 이후 UE가 전송(들)이 수행되는 채널 상 UL 전송을 전송하지 않는 경우, 상기 UE는 다음의 조건을 만족하면 상기 채널 상 UL 전송을 전송할 수 있다.
- 상기 UE가 전송을 수행할 준비가 되어 있고 적어도 센싱 슬롯 구간 Tsl 내 해당 채널이 아이들로 센싱되는 경우, 및
- 상기 전송 바로 이전에 (immediately before) 지연 구간 Td의 모든 슬롯 구간들 동안 상기 채널이 아이들로 센싱되는 경우
반대로, 만약 상기 UE가 전송을 수행할 준비가 된 이후 상기 채널을 첫번째 센싱하였을 때 센싱 슬롯 구간 Tsl 내 상기 채널이 아이들로 센싱되지 않거나, 또는 의도된 전송 바로 이전에 지연 구간 Td 의 어느 센싱 슬롯 구간 동안 해당 채널이 아이들로 센싱되지 않는 경우, 상기 UE는 지연 구간 Td의 슬롯 구간들 동안 해당 채널이 아이들로 센싱된 이후 스텝 1으로 진행한다.
상기 지연 구간 Td는 mp 연속된 슬롯 구간들 바로 다음에 이어지는 구간 Tf (=16us)로 구성된다. 여기서, 각 슬롯 구간 (Tsl)은 9us 이고, Tf는 Tf의 시작 지점에 아이들 슬롯 구간 (Tsl)을 포함한다.
5.2. 타입 2 UL 채널 접속 절차 (Type 2 UL channel access procedure)
5.2.1 타입 2A UL 채널 접속 절차
만약 UE 가 타입2A UL 채널 접속 절차를 수행할 것으로 지시된 경우, UE 는 UL 전송을 위해 타입 2A 채널 접속 절차를 이용한다. 상기 UE는 적어도 센싱 구간
Figure PCTKR2020013070-appb-img-000056
동안 채널이 아이들임을 센싱한 바로 직후 (immediately after) 전송을 전송할 수 있다. T short_ul은 하나의 센싱 슬롯 구간
Figure PCTKR2020013070-appb-img-000057
바로 다음에 (immediately followed) 구간
Figure PCTKR2020013070-appb-img-000058
로 구성된다. T f는 상기 T f의 시작 지점에 센싱 슬롯을 포함한다. 상기 T short_ul 내 두 센싱 슬롯이 아이들로 센싱된 경우, 상기 채널은 T short_ul 동안 아이들로 고려된다.
5.2.2. 타입 2B UL 채널 접속 절차
만약 UE 가 타입2B UL 채널 접속 절차를 수행할 것으로 지시된 경우, UE 는 UL 전송을 위해 타입 2B 채널 접속 절차를 이용한다. UE 는 Tf =16 us 동안 해당 채널이 아이들로 센싱된 이후 바로 (immediately after) 전송을 전송할 수 있다. Tf 는 Tf 의 마지막 9 us 내에서 발생하는 센싱 슬롯을 포함한다. 채널이 센싱 슬롯에서 발생하는 적어도 4us 의 센싱과 함께 적어도 총 5us 이상 유휴 상태인 것으로 센싱된 경우, 상기 채널은 Tf 동안 아이들로 고려된다.
5.2.3. 타입 2C UL 채널 접속 절차
만약 UE 가 타입2C UL 채널 접속 절차를 수행할 것으로 지시된 경우, UE 는 전송을 전송하기 위하여 단말은 전송을 전송하기 전에 채널을 센싱하지 않는다. 해당 전송에 대응하는 지속 기간은 최대 584us 이다.
6. UL 다중 채널 전송(들)을 위한 채널 접속 절차 (channel access procedure for UL multi-channel transmission(s))
만약 UE가:
- 채널 세트 (set of channels) C 상에서 전송하도록 스케줄링되고, 만약 상기 채널 세트 C 상 UL 전송을 위한 UL 스케쥴링 그랜트가 타입 1 채널 접속 절차를 지시하고, 만약 채널의 세트 C 내 모든 채널들을 위해 동일한 시간에서 전송을 시작하도록 UL 전송들이 스케쥴링되고, 및/또는
- 타입 1 채널 접속 절차를 이용하여 채널 세트 C 상에서 설정된 자원들 상에서 상향링크 전송을 수행할 의도(intends to perform)이고, 및
만약 채널 세트 C의 채널 주파수들이 미리 설정된 채널 주파수 세트 중 하나의 서브 세트인 경우:
- 상기 UE는 타입 2 채널 접속 절차를 이용하여 채널
Figure PCTKR2020013070-appb-img-000059
상에서 전송을 수행할 수 있다.
- - 만약 채널
Figure PCTKR2020013070-appb-img-000060
상 (여기서,
Figure PCTKR2020013070-appb-img-000061
) UE 전송의 바로 직전에 (immediately before) 채널
Figure PCTKR2020013070-appb-img-000062
상에서 타입 2 채널 접속 절차가 수행된 경우, 그리고
- - 만약 상기 UE가 타입 1 채널 접속 절차를 이용하여 채널
Figure PCTKR2020013070-appb-img-000063
에 접속하고 있는 경우 (the UE has accessed channel
Figure PCTKR2020013070-appb-img-000064
using Type 1 channel access procedure),
- - - 채널의 세트 C 내 어느 하나의 (any) 채널 상 타입 1 채널 접속 절차를 수행하기에 앞서 채널
Figure PCTKR2020013070-appb-img-000065
는 UE에 의해 채널 세트 C로부터 균등하게 임의적으로 (uniformly randomly) 선택된다.
- 만약 UE 가 어느 하나의 채널에 접속하지 못하면, UE 는 스케쥴링되거나 UL 자원들에 의해 설정된 캐리어 대역폭 (carrier bandwidth) 의 캐리어의 대역폭 내 채널
Figure PCTKR2020013070-appb-img-000066
에서 전송하지 않을 수 있다.
<상향링크 전력 제어(Uplink Power Control)>
무선 통신 시스템에서는 상황에 따라 단말(예: User Equipment, UE) 및/또는 이동 장치(mobile device)의 전송 전력을 증가 또는 감소시킬 필요가 있을 수 있다. 이와 같이 단말 및/또는 이동 장치의 전송 전력을 제어하는 것은 상향링크 전력 제어(uplink power contorl)로 지칭될 수 있다. 일례로, 전송 전력 제어 방식은 기지국(예: gNB, eNB 등)에서의 요구 사항(requirement)(예: SNR(Signal-to-Noise Ratio), BER(Bit Error Ratio), BLER(Block Error Ratio) 등)을 만족시키기 위해 적용될 수 있다.
상술한 바와 같은 전력 제어는 개루프(open-loop) 전력 제어 방식과 폐루프(closed-loop) 전력 제어 방식으로 수행될 수 있다.
구체적으로, 개루프 전력 제어 방식은 전송 장치(예: 기지국 등)로부터 수신 장치(예: 단말 등)로의 피드백(feedback) 및/또는 수신 장치로부터 전송 장치로의 피드백 없이 전송 전력을 제어하는 방식을 의미한다. 일례로, 단말은 기지국으로부터 특정 채널/신호(pilot channel/signal)를 수신하고, 이를 이용하여 수신 전력의 강도(strength)를 추정할 수 있다. 이후, 단말은 추정된 수신 전력의 강도를 이용하여 전송 전력을 제어할 수 있다.
이와 달리, 폐루프 전력 제어 방식은 전송 장치로부터 수신 장치로의 피드백 및/또는 수신 장치로부터 전송 장치로의 피드백에 기반하여 전송 전력을 제어하는 방식을 의미한다. 일례로, 기지국은 단말로부터 특정 채널/신호를 수신하며, 수신된 특정 채널/신호에 의해 측정된 전력 수준(power level), SNR, BER, BLER 등에 기반하여 단말의 최적 전력 수준(optimum power level)을 결정한다. 기지국은 결정된 최적 전력 수준에 대한 정보(즉, 피드백)를 제어 채널(control channel) 등을 통해 단말에게 전달하며, 해당 단말은 기지국에 의해 제공된 피드백을 이용하여 전송 전력을 제어할 수 있다.
이하, 무선 통신 시스템에서 단말 및/또는 이동 장치가 기지국으로의 상향링크 전송을 수행하는 경우들에 대한 전력 제어 방식에 대해 구체적으로 살펴본다. 구체적으로, 1) 상향링크 데이터 채널(예: PUSCH(Physical Uplink Shared Channel), 2) 상향링크 제어 채널(예: PUCCH(Physical Uplink Control Channel), 3) 사운딩 참조 신호(Sounding Reference Signal, SRS), 4) 랜덤 엑세스 채널(예: PRACH(Physical Random Access Channel) 전송에 대한 전력 제어 방식들이 설명된다. 이 때, PUSCH, PUCCH, SRS 및/또는 PRACH에 대한 전송 기회(transmission occasion)(즉, 전송 시간 단위)(i)는 시스템 프레임 번호(system frame number, SFN)의 프레임 내에서의 슬롯 인덱스(slot index)(n_s), 슬롯 내의 첫 번째 심볼(S), 연속하는 심볼의 수(L) 등에 의해 정의될 수 있다.
(1) 상향링크 데이터 채널의 전력 제어
상향링크 데이터 채널의 전력 제어와 관련하여, 이하에서는 설명의 편의를 위하여 단말이 PUSCH 전송을 수행하는 경우를 기준으로 전력 제어 방식을 설명하나, 해당 전력 제어 방식이 PUCSH 전송에 한정하여 적용되는 것은 아니며 무선 통신 시스템에서 지원되는 다른 상향링크 데이터 채널에도 확장하여 적용될 수 있음은 물론이다.
서빙 셀(serving cell)(c)의 캐리어(carrier)(f)의 활성화된(active) 상향링크 대역폭 부분(UL bandwidth part, UL BWP)에서의 PUSCH 전송의 경우, 단말은 이하 수학식 1에 의해 결정되는 전송 전력의 선형 전력 값(linear power value)을 산출할 수 있다. 이후, 해당 단말은 산출된 선형 전력 값을 안테나 포트(antenna port) 수 및/또는 SRS 포트(SRS port) 수 등을 고려하여 전송 전력을 제어할 수 있다.
특히, 단말이 인덱스 j에 기반한 파라미터 집합 구성(parameter set configuration) 및 인덱스 l에 기반한 PUSCH 전력 제어 조정 상태(PUSCH power control adjustment state)를 이용하여, 서빙 셀(c)의 캐리어(f)의 활성화된 UL BWP(b)에서의 PUSCH 전송을 수행하는 경우, 단말은 아래 수학식 1에 기반하여 PUSCH 전송 기회(i)에서의 PUSCH 전송 전력
Figure PCTKR2020013070-appb-img-000067
(dBm)를 결정할 수 있다.
[수학식 1]
Figure PCTKR2020013070-appb-img-000068
수학식 1에서, 인덱스 j는 개루프 전력 제어 파라미터(예: P_o, 알파(alpha,
Figure PCTKR2020013070-appb-img-000069
) 등)에 대한 인덱스를 나타내며, 셀 당 최대 32개의 파라미터 집합들이 설정될 수 있다. 인덱스 q_d는 경로 손실(PathLoss, PL) 측정(measurement)(예:
Figure PCTKR2020013070-appb-img-000070
)에 대한 DL RS 자원의 인덱스를 나타내며, 셀 당 최대 4개의 측정치들이 설정될 수 있다. 인덱스 l은 폐루프 전력 제어 프로세스(process)에 대한 인덱스를 나타내며, 셀 당 최대 2개의 프로세스들이 설정될 수 있다.
또한, P_o(예:
Figure PCTKR2020013070-appb-img-000071
는 시스템 정보의 일부로 브로드캐스트되는 파라미터로, 수신 측에서의 목표(target) 수신 전력을 나타낼 수 있다. 해당 P_o 값은 단말의 처리량(throughput), 셀의 용량(capacity), 잡음(noise) 및/또는 간섭(interference) 등을 고려하여 설정될 수 있다. 또한, 알파(예:
Figure PCTKR2020013070-appb-img-000072
)는 경로 손실에 대한 보상을 수행하는 비율을 나타낼 수 있다. 알파는 0부터 1까지의 값으로 설정될 수 있으며, 설정되는 값에 따라 완전 경로 손실 보상(full pathloss compensation) 또는 부분 경로 손실 보상(fractional pathloss compensation)이 수행될 수 있다. 이 경우, 상기 알파 값은 단말들 간의 간섭 및/또는 데이터 속도 등을 고려하여 설정될 수 있다. 또한,
Figure PCTKR2020013070-appb-img-000073
는 설정된 단말 전송 전력(UE transmit power)을 나타낼 수 있다. 일례로, 상기 설정된 단말 전송 전력은 3GPP TS 38.101-1 및/또는 TS38.101-2에서 정의된 '설정된 단말의 최대 출력 전력(configured maximum UE output power)'으로 해석될 수 있다. 또한,
Figure PCTKR2020013070-appb-img-000074
는 서브캐리어 간격(subcarrier spacing)(
Figure PCTKR2020013070-appb-img-000075
)에 기반하여 PUSCH 전송 기회에 대한 자원 블록(resource block, RB)의 수로 표현되는 PUSCH 자원 할당의 대역폭(bandwidth)을 나타낼 수 있다. 또한, PUSCH 전력 제어 조정 상태와 관련된
Figure PCTKR2020013070-appb-img-000076
는 DCI(예: DCI format 0_0, DCI format 0_1, DCI format 2_2, DCI format2_3 등)의 TPC 명령 필드(TPC command field)에 기반하여 설정 또는 지시될 수 있다.
이 경우, 특정 RRC(Radio Resource Control) 파라미터(예: SRI-PUSCHPowerControl-Mapping 등)는 DCI(downlink control information)의 SRI(SRS Resource Indicator) 필드와 상술한 인덱스 j, q_d, l간의 연결 관계(linkage)를 나타낼 수 있다. 다시 말해, 상술한 인덱스 j, l, q_d 등은 특정 정보에 기반하여 빔(beam), 패널(panel), 및/또는 공간 영역 전송 필터(spatial domain trnamission filter) 등과 연관될 수 있다. 이를 통해, 빔, 패널, 및/또는 공간 영역 전송 필터 단위의 PUSCH 전송 전력 제어가 수행될 수 있다.
상술한 PUSCH 전력 제어를 위한 파라미터들 및/또는 정보는 BWP 별로 개별적(즉, 독립적)으로 설정될 수 있다. 이 경우, 해당 파라미터들 및/또는 정보는 상위 계층 시그널링(예: RRC 시그널링, MAC-CE(Medium Access Control-Control Element) 등) 및/또는 DCI 등을 통해 설정 또는 지시될 수 있다. 일례로, PUSCH 전력 제어를 위한 파라미터 및/또는 정보는 RRC 시그널링 PUSCH-ConfigCommon, PUSCH-PowerControl 등을 통해 전달될 수 있다.
(2) 상향링크 제어 채널의 전력 제어
상향링크 데이터 채널의 전력 제어와 관련하여, 이하에서는 설명의 편의를 위하여 단말이 PUCCH 전송을 수행하는 경우를 기준으로 전력 제어 방식을 설명하나, 해당 전력 제어 방식이 PUCCH 전송에 한정하여 적용되는 것은 아니며 무선 통신 시스템에서 지원되는 다른 상향링크 데이터 채널에도 확장하여 적용될 수 있음은 물론이다.
단말이 인덱스 l에 기반한 PUCCH 전력 제어 조정 상태(PUCCH power control adjustment state)를 이용하여, 프라이머리 셀(primary cell)(또는 세컨더리 셀(secondary cell))(c)의 캐리어(f)의 활성화된 UL BWP(b)에서의 PUCCH 전송을 수행하는 경우, 단말은 아래 수학식 2에 기반하여 PUCCH 전송 기회(i)에서의 PUCCH 전송 전력
Figure PCTKR2020013070-appb-img-000077
(dBm)를 결정할 수 있다.
[수학식 2]
Figure PCTKR2020013070-appb-img-000078
수학식 2에서, q_u는 개루프 전력 제어 파라미터(예: P_o 등)에 대한 인덱스를 나타내며, 셀 당 최대 8개의 파라미터 값들이 설정될 수 있다. 인덱스 q_d는 경로 손실(PL) 측정(예:
Figure PCTKR2020013070-appb-img-000079
)에 대한 DL RS 자원의 인덱스를 나타내며, 셀 당 최대 4개의 측정치들이 설정될 수 있다. 인덱스 l은 폐루프 전력 제어 프로세스(process)에 대한 인덱스를 나타내며, 셀 당 최대 2개의 프로세스들이 설정될 수 있다.
또한, P_o (예:
Figure PCTKR2020013070-appb-img-000080
)는 시스템 정보의 일부로 브로드캐스트되는 파라미터로, 수신 측에서의 목표(target) 수신 전력을 나타낼 수 있다. 해당 Po 값은 단말의 처리량(throughput), 셀의 용량(capacity), 잡음(noise) 및/또는 간섭(interference) 등을 고려하여 설정될 수 있다. 또한,
Figure PCTKR2020013070-appb-img-000081
는 설정된 단말 전송 전력을 나타낼 수 있다. 일례로, 상기 설정된 단말 전송 전력은 3GPP TS 38.101-1 및/또는 TS38.101-2에서 정의된 '설정된 단말의 최대 출력 전력(configured maximum UE output power)'으로 해석될 수 있다. 또한,
Figure PCTKR2020013070-appb-img-000082
는 서브캐리어 간격(
Figure PCTKR2020013070-appb-img-000083
)에 기반하여 PUCCH 전송 기회에 대한 자원 블록(RB)의 수로 표현되는 PUCCH 자원 할당의 대역폭을 나타낼 수 있다. 또한, 델타 함수(delta function)(예:
Figure PCTKR2020013070-appb-img-000084
,
Figure PCTKR2020013070-appb-img-000085
)는 PUCCH 포맷(예: PUCCH formats 0, 1, 2, 3, 4 등)을 고려하여 설정될 수 있다. 또한, PUCCH 전력 제어 조정 상태와 관련된
Figure PCTKR2020013070-appb-img-000086
는, 단말이 수신한 또는 검출한 DCI(예: DCI format 1_0, DCI format 1_1, DCI format 2_2 등)의 TPC 명령 필드에 기반하여 설정 또는 지시될 수 있다.
이 경우, 특정 RRC 파라미터(예: PUCCH-SpatialRelationInfo 등) 및/또는 특정 MAC-CE 명령(command)(예: PUCCH spatial relation Activation/Deactivation 등)은 PUCCH 자원(PUCCH resource)와 상술한 인덱스 q_u, q_d, l간의 연결 관계를 활성화 또는 비활성화하기 위해 이용될 수 있다. 일례로, MAC-CE에서의 PUCCH spatial relation Activation/Deactivation 명령은 RRC 파라미터 PUCCH-SpatialRelationInfo에 기반하여 PUCCH 자원과 상술한 인덱스 q_u, q_d, l간의 연결 관계를 활성화 또는 비활성화할 수 있다. 다시 말해, 상술한 인덱스 q_u, q_d, l 등은 특정 정보에 기반하여 빔, 패널, 및/또는 공간 영역 전송 필터 등과 연관될 수 있다. 이를 통해, 빔, 패널, 및/또는 공간 영역 전송 필터 단위의 PUCCH 전송 전력 제어가 수행될 수 있다.
상술한 PUCCH 전력 제어를 위한 파라미터들 및/또는 정보는 BWP 별로 개별적(즉, 독립적)으로 설정될 수 있다. 이 경우, 해당 파라미터들 및/또는 정보는 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등) 및/또는 DCI 등을 통해 설정 또는 지시될 수 있다. 일례로, PUCCH 전력 제어를 위한 파라미터 및/또는 정보는 RRC 시그널링 PUCCH-ConfigCommon, PUCCH-PowerControl 등을 통해 전달될 수 있다.
(3) 랜덤 액세스 채널의 전력 제어
단말이 서빙 셀(c)의 캐리어(f)의 활성화된 UL BWP(b)에서의 PRACH 전송을 수행하는 경우, 단말은 아래 수학식 3에 기반하여 PRACH 전송 기회(i)에서의 PRACH 전송 전력
Figure PCTKR2020013070-appb-img-000087
(dBm)를 결정할 수 있다.
[수학식 3]
Figure PCTKR2020013070-appb-img-000088
수학식 4에서,
Figure PCTKR2020013070-appb-img-000089
는 설정된 단말 전송 전력을 나타낼 수 있다. 일례로, 상기 설정된 단말 전송 전력은 3GPP TS 38.101-1 및/또는 TS38.101-2에서 정의된 '설정된 단말의 최대 출력 전력(configured maximum UE output power)'으로 해석될 수 있다. 또한,
Figure PCTKR2020013070-appb-img-000090
는 활성화된 UL BWP에 대해 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등)을 통해 제공되는 PRACH 타겟 수신 전력(PRACH target reception power)을 나타낸다. 또한,
Figure PCTKR2020013070-appb-img-000091
는 활성화된 UL BWP에 대한 경로 손실을 나타내며, 서빙 셀(c)의 활성화된 DL BWP에서의 PRACH 전송과 연관된 DL RS에 기반하여 결정될 수 있다. 일례로, 단말은 PRACH 전송과 연관된 SS(Synchronization Signal)/PBCH(Physical Broadcast Channel) 블록 등에 기반하여 PRACH 전송과 관련된 경로 손실을 결정할 수 있다.
상술한 PRACH 전력 제어를 위한 파라미터들 및/또는 정보는 BWP 별로 개별적(즉, 독립적)으로 설정될 수 있다. 이 경우, 해당 파라미터들 및/또는 정보는 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등) 등을 통해 설정 또는 지시될 수 있다. 일례로, PRACH 전력 제어를 위한 파라미터 및/또는 정보는 RRC 시그널링 RACH-ConfigGeneric 등을 통해 전달될 수 있다.
(4) 전송 전력 제어 절차
도 6은 상향링크 전송 전력을 제어하는 절차의 실시 예를 설명하기 위한 도면이다.
먼저, 단말(User equipment)은 기지국(Base station)으로부터 전송 전력(Tx power)와 관련된 파라미터 및/또는 정보를 수신할 수 있다(605). 이 경우, 단말은 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등) 등을 통해 해당 파라미터 및/또는 정보를 수신할 수 있다. 일례로, PUSCH 전송, PUCCH 전송, SRS 전송, 및/또는 PRACH 전송과 관련하여, 단말은 상술한 전송 전력 제어와 관련된 파라미터 및/또는 정보를 수신할 수 있다.
이후, 단말은 기지국으로부터 전송 전력과 관련된 TPC 명령(TPC command)를 수신할 수 있다(610). 이 경우, 단말은 하위 계층 시그널링(예: DCI) 등을 통해 해당 TPC 명령을 수신할 수 있다. 일례로, PUSCH 전송, PUCCH 전송 및/또는 SRS 전송과 관련하여, 단말은 상술한 바와 같이 전력 제어 조정 상태 등을 결정에 이용될 TPC 명령에 대한 정보를 미리 정의된 DCI 포맷의 TPC 명령 필드를 통해 수신할 수 있다. 다만, PRACH 전송의 경우 해당 단계가 생략될 수도 있다.
이후, 단말은 기지국으로부터 수신한 파라미터, 정보, 및/또는 TPC 명령에 기반하여, 상향링크 전송을 위한 전송 전력을 결정(또는 산출)할 수 있다(615). 일례로, 단말은 상술한 방식(예: 수학식 1, 수학식 2, 수학식 3 등)에 기반하여 PUSCH 전송 전력, PUCCH 전송 전력, SRS 전송 전력, 및/또는 PRACH 전송 전력을 결정할 수 있다. 그리고/또는, 캐리어 병합과 같은 상황과 같이, 두 개 이상의 상향링크 채널 및/또는 신호들이 중첩하여 전송될 필요가 있는 경우, 단말은 상술한 우선 순위 순서(priority) 등을 고려하여 상향링크 전송을 위한 전송 전력을 결정할 수도 있다.
이후, 단말은 결정된(또는 산출된) 전송 전력에 기반하여, 기지국에 대해 하나 또는 그 이상의 상향링크 채널들 및/또는 신호들(예: PUSCH, PUCCH, SRS, PRACH 등)의 전송을 수행할 수 있다(620).
구체적인 설명에 앞서, 도 7 내지 도 8을 참조하여, 본 개시의 실시 예에 따른 단말 및 기지국의 동작 구현 예를 설명하고자 한다.
도 7은 본 개시에 따른 단말의 동작 구현 예를 설명하기 위한 도면이다. 도 7을 참조하면, 제1 PRACH(Physical Random Access Channel) 및 제1 PUSCH(Physical Uplink shared Channel)를 포함하는 메시지 A를 송신할 수 있다(S701). 이후 단말은 상기 메시지 A에 대한 응답으로, 경쟁 해결(contention resolution)에 관련된 메시지 B를 수신할 수 있다(S703). 이 때, S701~S703의 단말이 메시지 A를 송신하고 메시지 B를 수신하는 구체적인 방법은 후술하는 실시 예들 및 특징들에 기반할 수 있다.
한편, 도 7의 단말은 도 14 내지 도 17에 개시된 다양한 무선 장치들 중 어느 하나일 수 있다. 예를 들어, 도 7의 단말은 도 14의 제 1 무선 기기(100) 또는 도 15의 무선 기기(100, 200)일 수 있다. 다시 말해, 도 7의 동작 과정은 도 14 내지 도 15에 개시된 다양한 무선 장치들 중 어느 하나에 의해 수행되고 실행될 수 있다.
도 8은 본 개시에 따른 기지국의 동작 구현 예를 설명하기 위한 도면이다. 도 8을 참조하면, 기지국은 제1 PRACH(Physical Random Access Channel) 및 제1 PUSCH(Physical Uplink shared Channel)를 포함하는 메시지 A를 수신할 수 있다(S801). 이후 기지국은 상기 메시지 A에 대한 응답으로, 경쟁 해결(contention resolution)에 관련된 메시지 B를 송신할 수 있다(S803). 이 때, S801~S803의 기지국이 메시지 A를 수신하고 메시지 B를 송신하는 구체적인 방법은 후술하는 실시 예들 및 특징들에 기반할 수 있다.
한편, 도 8의 기지국은 14 내지 도 17에 개시된 다양한 무선 장치들 중 어느 하나일 수 있다. 예를 들어, 도 8의 기지국은 도 14의 제 2 무선 기기(200) 또는 도 15의 무선 기기(100, 200)일 수 있다. 다시 말해, 도 8의 동작 과정은 도 14 내지 도 17에 개시된 다양한 무선 장치들 중 어느 하나에 의해 수행되고 실행될 수 있다.
이제, 제1 PRACH 및 제1 PUSCH를 포함하는 메시지 A를 송수신하는 단계 (S701, S801)에서, 단말이 전송 빔 방향에 기초하여 메시지 A에 대한 전송 전력을 결정하는 구체적인 실시 예를 살펴보도록 한다.
LTE 및/또는 NR 시스템에서 단말은 주어진 기지국 또는 셀로부터 직접적인 상향링크(uplink; UL) 전송을 스케줄 받지 않고도 임의 접속 과정(Random Access Procedure; RACH Procedure)을 통해 UL 전송을 수행할 수 있다. 단말 관점에서 LTE 및/또는 시스템에서의 임의 접속 과정은, 1) 랜덤 액세스 프리앰블(Random Access preamble)의 전송, 2) 랜덤 액세스 응답(Random Access Response, RAR)에 해당하는 Message(Msg) 2의 수신, 3) 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)을 포함하는 Msg 3의 전송, 4) 경쟁 해결(contention resolution)에 대한 정보를 포함하는 Msg 4의 수신의 4-단계(4-step) 절차로 이루어진다.
여기서, Msg 2는 임의의 preamble을 수신한 기지국이, 해당 preamble을 전송한 단말이 Msg 3를 전송할 때 사용할 UL 자원을 할당하는 메시지이다. 단말은 Msg 3을 통해, 국제 이동 가입자 식별 번호(International Mobile Subscriber Identity; IMSI)나 임시 이동 가입자 식별 번호 (Temporary Mobile Subscriber Identity; TMSI) 등과 같은 자신의 식별 정보와 함께 연결 요청(connection request) 등에 대한 정보를 전송할 수 있다. Msg 3를 수신한 기지국은 Msg 4를 통해 해당 단말의 식별 정보 및 임의 접속에 필요한 정보들을 전송함으로써, 임의 접속 과정에서 서로 다른 단말들 간에 발생할 수 있는 충돌을 방지하고 해당 단말에 대한 임의 접속 절차를 완료할 수 있다.
기존 LTE 및 NR Rel-15에서의 RACH Procedure가 전술한 바처럼 4-step으로 구성되었던 것과 달리 NR Rel-16에서는, 4-step에 의한 절차 지연(processing delay)을 간소화하고 소형 셀(small cell) 또는 비면허 대역폭(unlicensed bandwidth)에서도 RACH Procedure가 활용될 수 있도록 2-단계(2-step)의 RACH Procedure에 대한 연구가 진행 중이다. 2-step RACH에서는, 기존 4-step RACH에서 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)을 포함하는 Message 3(Msg 3)를 전송하는 단계와 경쟁 해결(contention resolution) 메시지 등을 포함하는 Msg 4를 전송하는 단계가 생략되었다. 대신 임의 접속 절차의 첫 단계에서 단말은 preamble과 함께 Msg 3에 해당하는 메시지를 Msg A로서 바로 기지국에 전송하고, Msg A에 대한 응답으로 기지국은 RAR과 함께 Msg 4에 해당하는 메시지를 Msg B로서 단말에 전송한다. Msg B를 수신한 단말은 Msg B를 디코딩(decoding)하여 임의 접속 절차를 완료하고 이후 데이터 송수신을 수행하게 된다.
도 9는 2-step RACH의 기본적인 프로세스를 나타내는 도면이다. 도 9를 참조하면, 단말은 기지국으로부터 브로드캐스팅(broadcasting) 되는 시스템 정보에 포함된 2-step RACH 관련 설정 정보를 수신할 수 있다(S901). 2-step RACH 관련 설정 정보를 수신한 단말은, 기지국에 대한 임의 접속 절차를 수행하기 위해 해당 설정 정보를 바탕으로 RACH preamble(또는 PRACH preamble)과 PUSCH를 포함한 Msg A를 전송한다(S903). 이 때, RACH preamble과 PUSCH는 시간 도메인(time domain)에서 일정한 간격(gap)을 두고 전송되거나 연속되어 전송될 수 있으며, 해당 PUSCH에는 단말의 식별자(identifier; ID) 정보가 포함되어 있다. 기지국은 preamble을 검출하여(detection) 해당 gap을 가진 PUSCH 또는 연속된 PUSCH를 예측하고 수신할 수 있게 된다. 기지국은 PUSCH를 통해 전송된 단말의 ID 정보에 기초하여 상위 계층(layer)로부터 접속 요청 및/또는 응답을 받은 뒤, Msg A에 대한 응답으로서 RAR, contention resolution 등의 정보를 포함한 Msg B를 단말에 전송하게 된다(S905). 이후 단말의 Msg B에 대한 수신 여부에 따라, 단말은 기존 4-step RACH procedure에서 Msg 4를 수신하는 동작 이후와 동일 또는 유사하게 기지국에 대한 접속을 완료하고 기지국과 데이터를 송수신할 수 있게 된다.
이하의 본 개시에서는, 2-step RACH procedure에서 적용 가능한 다양한 실시 예들을 검토하며, 특히 1) 비면허 대역에서 Listen Before Talk (LBT)이 수행됨에 따른 Msg A 전송 전력 설정 방법과, 2) Msg B에 대한 응답으로서의 단말의 HARQ-ACK 전송을 위한 PUCCH 자원 설정 방법에 대하여 구체적으로 살펴볼 수 있도록 한다.
비면허대역에서의 LBT에 따른 2-step RACH procedure
NR에서는 단말이 비면허 대역에서 임의 접속 절차를 수행할 수 있게 됨에 따라, 비면허 대역 상에서의 신호 송수신에 필요한 Listen Before Talk (LBT) 과정이 임의 접속 절차를 위한 신호 송수신에도 적용될 수 있다. 즉, NR-Unlicensed spectrum (NR-U) 시스템에서는 기지국과 단말이 신호를 송수신하기 전 송수신 채널의 idle 또는 busy 상태를 확인하기 위해 LBT를 항상 수행하게 되는데, 이는 비면허 대역 상에서의 2-step RACH procedure를 위한 Msg A와 Msg B를 송수신하는 절차에서도 동일하게 수행될 수 있다.
2-step RACH procedure에서의 Msg A의 전송은 Msg A PRACH preamble의 전송과 함께 Msg A PUSCH의 전송도 포함하므로, Msg A PRACH preamble과 Msg A PUSCH에 대한 LBT의 성공 또는 실패 여부에 따라 이후에 수행되는 임의 접속 절차가 달라질 수 있다. 예를 들어, 단말이 Msg A PRACH preamble 및 Msg A PUSCH 전송 이전에 LBT를 성공적으로 수행하여 별다른 문제 없이 Msg A PUSCH까지 전송한다면, 기지국은 Msg A PRACH preamble 및 Msg A PUSCH 모두를 올바르게 수신하여 경쟁 해결 정보가 포함된 Msg B를 단말에 송신하고 2-step RACH procedure가 완료될 수 있다. 반대로 단말이 Msg A PRACH preamble 또는 Msg A PUSCH를 위한 LBT에 실패한다면 단말은 Msg A를 성공적으로 전송하지 못하게 되고, Msg A를 수신하지 못한 기지국은 Msg A에 대한 재전송을 지시하거나 4-step RACH procedure로의 폴백(fall-back)을 지시할 수 있다.
이 때 LBT 실패에 따른 Msg A 재전송 여부는, Msg A가 Msg A PRACH preamble과 Msg A PUSCH를 모두 포함하는 개념인 점을 고려할 때 Msg A PRACH preamble과 Msg A PUSCH 전송 시간 사이의 시간 간격(time gap)에 따라 달리 취급될 수 있다. 즉, 단말이 Msg A PRACH preamble 전송 이후 Msg A PUSCH를 연속해서 전송하는 상황인지, 또는 단말이 Msg A PRACH preamble 전송한 이후 Msg A PUSCH를 전송 하기 전까지 LBT가 요구되는 최소 시간 보다 큰 시간 간격이 존재하는 상황인지에 따라 Msg A의 재전송 절차가 달라질 수 있다.
(1) Msg A PRACH preamble과 Msg A PUSCH이 연속하여 전송되는 경우
Msg A PRACH preamble과 Msg A PUSCH이 연속하여 전송되는 경우란, 단일 슬롯 내에 Msg A PRACH preamble과 Msg A PUSCH가 연속하여 전송되거나, 연속된 슬롯에 대하여 Msg A PRACH preamble과 그에 연계된 Msg A PUSCH가 전송되는 경우를 의미할 수 있다.
즉, Msg A PRACH preamble과 Msg A PUSCH이 연속하여 전송되는 경우란 Msg A PRACH preamble과 Msg A PUSCH의 전송 사이에 LBT가 요구되는 최소 시간만큼의 시간 간격이 존재하지 않는 경우를 포함하며, 도 10과 같은 상황이 그 일 예가 될 수 있다.
도 10은 단말의 LBT 성공 또는 실패 여부 및 전송 빔 방향 구성에 따른 Msg A 전송의 실시 예를 나타낸 도면이다. 도 10(A)는 단말이 특정 시점에서의 LBT에 성공하여 Msg A PRACH preamble과 Msg A PUSCH를 연속하여 전송하는 것을 나타내며, 도 10(B)는 단말이 특정 시점에서의 LBT에 실패한 뒤, 그 다음 시점에서의 LBT에 성공하여 Msg A PRACH preamble과 Msg A PUSCH를 연속하여 전송하는 것을 나타낸다. 도 10(A)와 도 10(B) 모두 LBT가 요구되는 조건 시간만큼의 시간 간격이 Msg A PRACH preamble과 Msg A PUSCH의 전송 시점 사이에 존재하지 않으므로, 단말은 Msg A PRACH preamble 전송 이전에만 LBT를 수행하게 되고 Msg A PUSCH를 전송함에 있어서는 LBT의 수행 없이 그대로 연속 전송을 수행하게 된다. 따라서 이와 같은 경우에 대하여는, Msg A PRACH preamble 전송 이전에 수행한 LBT의 성공 또는 실패에 따라 단말과 기지국의 신호 전송 동작 및 신호 전송을 위한 전력 제어가 달리 설정될 수 있다.
단말이 일정한 시점에서 Msg A PRACH preamble 전송을 위한 LBT에 실패했다면, 단말은 LBT가 실패한 시점으로부터 Association period 이후 다음 RACH Occasion (RO)에 대해 다시 Msg A PRACH preamble 전송을 위한 LBT를 수행할 수 있다. 또는 단말이 일정한 시점에서 Msg A PRACH preamble 전송을 위한 LBT에 실패했다면 단말은 임의 접속 자원 선택 절차(Random Access Resource Selection Procedure)을 새로 시작하여, SSB(Synchronization Signal and Physical Broadcast Channel; SS/PBCH) 혹은 CSI-RS(Channel State Information-Reference Signal)의 참조 신호 수신 전력(Reference Signal Received Power; RSRP)에 기반해 SSB selection를 수행하고 SSB와 연계된 RO 및 RAPID(Random Access Preamble Index)를 선택하여 해당 RO에서 Msg A PRACH preamble을 전송할 수 있으며, Msg A PUSCH 역시 연속 전송할 수 있다. 또한 이 때 연속하여 전송되는 Msg A PUSCH 역시 전송 채널의 상태가 이전의 전송 환경과 다르기 때문에, Msg A PUSCH가 전송되는 채널 환경에 맞춰서 Msg A PUSCH가 포함하는 정보(contents)와 복조 차수(modulation order)가 이전의 Msg A PUSCH 전송과 다르게 설정될 수 있다. 일 예로, Msg A PUSCH 전송 시점에서의 채널의 상태가 좋은 경우 단말은 Msg A PUSCH에 더 많은 정보량을 포함시켜 전송할 수 있으며, 고 복조 차수를 적용할 수도 있다.
여기에, Msg A의 경우 Msg A PRACH preamble 전송 후 기지국의 피드백 이전에 Msg A PUSCH이 전송되므로, Msg A 재전송을 위한 최대 전송 횟수, 램핑 스텝(ramping step) 크기 및 전력 램핑 카운터(ramping counter) 등 전송 인자들이 별도로 설정되어야 할 필요가 있는데, 이 중 특히 전력 램핑 카운터 및 Msg A의 최대 전송 횟수의 설정을 위해 후술할 구체적인 방법들이 고려될 수 있다.
먼저 전력 램핑 카운터의 경우, Msg A PRACH preamble과 Msg A PUSCH는 연속되어 전송되므로 Msg A PRACH preamble과 Msg A PUSCH에 대한 공통 전력 램핑 카운터를 사용하는 것이 적합할 수 있다. 만약 LBT에 따라 단말이 정해진 RO에서 Msg A PRACH preamble을 전송하지 못하는 경우, 단말은 도 10(B)와 같이 다음 RO에서 LBT를 재수행 하여 LBT 성공 후 Msg A PRACH preamble를 전송할 수 있다. 이 때 LBT의 재수행 및 LBT 성공 시 Msg A PRACH preamble의 전송을 위해 단말은, 이전 LBT 실패 시에 Msg A PRACH preamble를 전송하기 위해 설정하려고 했던 전력 램핑 카운터와 비교하여 유지 또는 증가된 값의 전력 램핑 카운터를 설정할 수 있다. 여기서 본 개시에서 언급하는 전력 램핑 카운터는, 일반적인 재전송에 사용되는 전력 램핑 카운터를 의미할 수 있다.
1) 램핑 카운터를 이전과 동일한 값으로 유지하여 전송 전력을 설정하는 방법
단말은 먼저 전력 램핑 카운터의 값을 그대로 유지할 수 있다. 즉, 단말이 이전의 RO에 대한 LBT 실패를 이유로 다음 RO에 대한 LBT를 수행하여 성공한 뒤 Msg A를 전송하게 되는 경우, 실질적으로 단말 입장에서는 이전의 RO에서 Msg A 자체를 전송하지 않은 셈이기 때문에 무작정 단말의 송신 파워를 올리는 것은 비효율적인 전력 낭비를 야기할 수 있다. 결국 단말은 전력 램핑 카운터의 값을 그대로 유지하여 본래 의도하고자 했던 전송 전력을 유지하여 Msg A를 전송할 수 있다.
2) 램핑 카운터를 이전보다 증가된 값으로 구성하여 전송 전력을 설정하는 방법
단말은 전력 램핑 카운터의 값을 증가시켜 전송 전력을 결정할 수도 있다. 단말은 비록 이전 RO에 대한 LBT 실패를 이유로 다음 RO에 대한 LBT를 수행하여 성공한 뒤 Msg A를 전송하는 것이지만, 전력 램핑 카운터는 기존의 값에 +1만큼 증가시켜 설정하여 전송 전력을 결정할 수 있다. +1만큼 증가된 전력 램핑 카운터를 적용하여 Msg A 전송 전력을 결정하는 것은, 이전 RO의 시점에 동일한 RACH를 시도한 다른 단말들이 다음 RO의 시점에서는 전력을 램핑하여 증가된 전송 전력으로 RACH를 시도할 수 있다는 점을 고려하면, 상대적으로 전송 전력이 작아 단말의 Msg A PRACH preamble이 검출되기 힘들 수 있다는 문제를 방지할 수 있다. 또한 2-step RACH procedure의 도입 목적은 4-step RACH procedure에서 발생하는 절차 지연(latency)를 조금이라도 더 줄이고자 하는 것이므로, NR-U에서 LBT로 인한 latency가 늦어지는 만큼 단말이 빠른 네트워크 접속을 위해 4-step RACH procedure와는 다르게 재전송마다 추가 전력을 소비함으로써 검출 확률을 높여 latency를 조금이나마 줄일 수 있게 된다. 이와 같은 이유들로, 단말은 이전 RO에 대한 LBT 실패로 인해 다음 RO에서 Msg A를 전송하게 되는 경우 이전 RO에 대한 LBT 실패를 Msg A 전송 실패로 간주하고 전력 램핑 카운터를 +1만큼 증가하여 Msg A PRACH preamble 및 Msg A PUSCH의 전송에 적용할 수 있다.
3) 전송 빔 방향에 따라 전력 램핑 카운터를 유지하거나 증가하여 전송 전력을 설정하는 방법
앞선 1)과 2) 방법들의 장단점을 고려하여, 단말은 전송 빔(beam) 방향에 따라 전력 램핑 카운터를 유지하거나 증가하는 방법을 사용할 수도 있다. 즉, 빔 방향에 상관없이 전력을 유지하는 1)의 방식과 빔 방향에 상관없이 전력을 증가시키는 2)의 방식과 달리, 해당 방법은 단말이 이전 RO에 대한 LBT 실패를 재전송으로 판단하되, 단말의 전송 빔에 따라 전력 램핑 카운터를 증가시키거나 또는 유지하는 방식이다.
도 11은 단말의 전송 빔 방향에 따라 전력 램핑 카운터를 유지하거나 증가하는 본 개시의 실시 예를 나타낸 도면이다. 도 11(A)와 같이 이전 RO에 대한 LBT 실패 시에 구성되었던 전송(Transmission; Tx) 공간 빔(spatial beam)과 이후 다음 RO에 대한 LBT 성공 시에 구성된 전송 공간 빔이 서로 다를 경우, 단말은 이전과 동일한 값의 전력 램핑 카운터를 유지하여 Msg A를 전송할 수 있다. 반대로 도 11(B)와 같이 단말은 이전 RO에 대한 LBT 실패 시에 구성되었던 전송 공간 빔과 이후 다음 RO에 대한 LBT 성공 시에 구성된 전송 공간 빔이 동일한 경우, 단말은 전력 램핑 카운터를 이전보다 증가시켜 Msg A를 전송할 수 있다.
정리하면 단말은 Msg A의 전송 또는 재전송에 있어서 해당 Msg A의 전송 또는 재전송에 대한 LBT가 실패하였다는 지시를 받지 않는 경우, 지난 Msg A의 전송 또는 재전송 시와 전송 공간 빔 방향이 동일한 지 여부에 따라 전력 램핑 카운터를 유지하거나 증가하여 전송 전력을 설정하게 된다. 이 때 Msg A의 전송 또는 재전송을 위한 전송 공간 빔 방향은 단말이 Msg A의 전송 또는 재전송을 위해 선택한 SSB와 연계되어 있을 것이므로, 단말은 Msg A의 전송 또는 재전송을 위해 자신이 선택한 SSB가 지난 Msg A의 전송 또는 재전송을 위해 선택했던 SSB와 동일한 지 여부에 따라 전력 램핑 카운터를 유지하거나 증가하여 전송 전력을 설정하는 것으로도 해석될 수 있다. 또한 여기서, Msg A PRACH와 Msg A PUSCH가 연속하여 전송되는 점을 고려할 때, 지난 Msg A의 전송 또는 재전송을 위한 전송 공간 빔 방향은 지난 PRACH의 전송 또는 재전송을 위해 구성되는 전송 공간 빔 방향을 포함하는 개념으로 이해될 수 있다.
예를 들어, 단말이 Msg A를 전송 또는 재전송할 때에 해당 Msg A의 전송 또는 재전송에 대한 LBT가 실패하였다는 지시를 하위 계층으로부터 받지 않았다면, 단말은 자신이 선택한 SSB가 지난 PRACH의 전송 또는 재전송을 위해 선택했던 SSB와 비교하여 변경되지 경우 전력 램핑 카운터를 이전보다 1만큼 증가시켜 전송 전력을 설정해 Msg A를 전송할 수 있다. 또는 예를 들어, 단말이 Msg A를 전송 또는 재전송할 때에 해당 Msg A의 전송 또는 재전송에 대한 LBT가 실패하였다는 지시를 하위 계층으로부터 받지 않았다면, 단말은 자신이 선택한 SSB가 지난 PRACH의 전송 또는 재전송을 위해 선택했던 SSB와 비교하여 변경된 경우 전력 램핑 카운터를 이전과 동일한 값으로 유지하여 전송 전력을 설정해 Msg A를 전송할 수 있다.
만약 단말이 Msg A를 전송 또는 재전송할 때에 해당 Msg A의 전송 또는 재전송에 대한 LBT가 실패하였다는 지시를 받는 경우 단말은 이와 같은 LBT 실패를 재전송으로 판단하여 재전송을 수행하게 되며, 이 때 단말에 LBT 실패 복구를 위한 지시가 설정되었다면 단말은 2-step RACH procedure를 위한 임의 접속 자원 선택 절차(Random Access Resource Selection Procedure)를 수행할 수도 있다.
4) 2-step RACH procedure와 4-step RACH procedure의 RO 간 관계에 따라 전력 램핑 카운터를 유지하거나 증가하여 전송 전력을 설정하는 방법
단말은 2-step RACH procedure와 4-step RACH procedure의 RO 간 관계에 따라 전력 램핑 카운터를 증가 또는 유지할 수도 있다. 즉, 2-step RACH procedure를 위한 RO와 4-step RACH procedure를 위한 RO가 서로 공유되는지(shared), 또는 서로 구분되어 설정되는지(separated)에 따라 램핑 카운터가 증가 또는 유지될 수 있다.
2-step RACH procedure와 4-step RACH procedure의 RO는 기본적으로 공유 될 수 있으며, 여기서 RO가 공유된다는 것은 4-step RACH procedure에서의 Msg 1 preamble과 2-step RACH procedure에서의 Msg A PRACH preamble이 동일한 RO에서 전송되는 것을 의미한다. 또한 RO가 서로 구분되어 설정된다는 것은 4-step RACH procedure에서의 Msg 1 preamble를 위한 시간/주파수 자원(Time/Frequency resource)과 2-step RACH procedure에서의 Msg A PRACH preamble을 위한 시간/주파수 자원이 서로 독립적으로 존재하는 것을 의미한다.
전술한 1)~3)의 방식들이 RO가 공유되는지 또는 서로 구분되어 설정되는지 여부와 관계없이 단말과 기지국에서의 동작을 다룬 것이라면, 해당 방법은 RO가 공유되는지 또는 서로 구분되어 설정되는지에 대해 서로 다른 전력 램핑 카운터 결정 방법이 적용되게 된다. 즉, 2-step RACH procedure를 위한 RO와 4-step RACH procedure를 위한 RO가 서로 구분되어 설정되는 경우, 2-step RACH procedure를 수행하는 단말은 앞서 언급한 2)~3) 방식들과 같이 RO에서의 LBT 실패를 전송/수신 실패로 인지하여 재전송을 위해 전력 램핑 카운터의 값을 증가시키게 된다. 반면 2-step RACH procedure를 위한 RO와 4-step RACH procedure를 위한 RO가 서로 공유되어 있는 경우, 단말은 2-step RACH procedure 또는 4-step RACH procedure 간 구분 없이 기존 NR-U의 4-step RACH procedure에서와 동일하게, 앞선 1) 방식처럼 전력 램핑 카운터의 값을 유지하게 된다.
한편, 2-step RACH procedure에서의 Msg A의 최대 전송 횟수는 4-step RACH procedure와 별도로 주어질 수 있으며, 별도로 주어지는 값이 없는 경우 4-step RACH procedure의 Msg 1을 위해 설정된 최대 전송 횟수를 따르도록 할 수 있다. 만약 Msg A의 최대 전송 횟수 보다 전력 램핑 카운터의 값이 1만큼 크게 설정된다면, 단말은 RLF(Radio Link Failure)에 따라 reestablishment 절차를 진행할 수 있다. 또한 2-step RACH procedure를 위한 RO와 4-step RACH procedure를 위한 RO가 서로 공유되어 있는 경우에 4-step RACH procedure를 위한 Msg 1의 최대 전송 횟수가 2-step RACH procedure에서의 Msg A의 최대 전송 횟수 보다 크게 설정되었다면, 단말은 전력 램핑 카운터가 Msg A의 최대 전송 횟수보다 1만큼 크게 될 때부터 Msg 1만을 전송할 수 있다. 또한 램핑 스텝 크기의 값은, 전력 램핑 카운터가 Msg A의 최대 전송 횟수보다 1만큼 크게 되는 시점부터 Msg 1을 위한 램핑 스텝 크기를 적용하여 재전송을 위한 전송 전력을 결정할 수 있다. 이 때 각 카운터의 값 및 최대 값에 대한 단말의 폴백(fall-back) 및 RLF 동작은 NR-U 뿐 아니라 NR에서도 적용 가능할 것이다.
(2) Msg A PRACH preamble과 Msg A PUSCH의 전송 사이에 시간 간격이 존재하는 경우
해당 경우는 단말이 Msg A PRACH preamble 전송한 이후 Msg A PUSCH를 전송 하기 전까지 LBT가 요구되는 최소 시간 보다 큰 시간 간격이 존재하는 것을 의미하며, Msg A PRACH preamble과 Msg A PUSCH의 전송이 일정한 간격을 두고 불연속적으로 이루어지기 때문에 단말은 Msg A PRACH preamble 전송과 Msg A PUSCH의 전송 모두에 대해 LBT를 수행하게 된다. 따라서 각 신호의 전송 시점에 대한 LBT가 성공 또는 실패하는 지 여부에 따라 단말과 기지국의 동작이 상이하게 달라질 수 있다. 또한, 각 신호의 전송 시점 간 이격이 있으므로 채널 상태에 따라 결정되는 빔 방향 역시 달라질 수 있어, 재전송을 위한 전력 설정 역시 복잡해질 수 있다. 이하에서는 Msg A PRACH preamble과 Msg A PUSCH의 전송에 대한 LBT의 실패 시점에 따른 단말과 기지국의 동작 및 전송 전력 설정에 대해 기술하도록 한다.
상기와 같은 경우 있어서의 전력 램핑 카운터의 구성은, Msg A PRACH preamble과 Msg A PUSCH가 일정한 간격을 두고 전송되므로, Msg A PRACH preamble과 Msg A PUSCH의 재전송 전력 설정과 관련해 전력 램핑 카운터를 공유하여 사용하는 단일한 카운터(single counter)나, 또는 Msg A PRACH preamble과 Msg A PUSCH의 재전송 전력 설정에 대해 각각의 전력 램핑 카운터를 구성하여 사용하는 이중의 카운터(dual counter)를 모두 고려할 수 있다. 또한 Msg A의 최대 전송 횟수 역시 Msg A PRACH preamble과 Msg A PUSCH에 대하여 공통 적용되는 것이 아니라, Msg A PRACH preamble과 Msg A PUSCH 각각에 대한 최대 전송 횟수가 설정될 수 있다.
이 때, 단일한 전력 램핑 카운터가 사용되는 경우에 있어서 카운터의 값이 증가하거나 유지되는 조건은 Msg A 재전송 시에 Msg A PRACH preamble 전송을 위한 전송 공간 빔 방향의 변화 유무가 될 수 있다. 즉, Msg A PRACH preamble 전송을 위한 전송 공간 빔 방향이 이전의 전송과 동일하다면 카운터의 값은 증가하고, Msg A PRACH preamble 전송을 위한 전송 공간 빔 방향이 이전의 전송과 상이하다면 카운터의 값은 유지된다. 또한 이중의 전력 램핑 카운터가 사용되는 경우에 있어서 각 카운터의 값이 증가하거나 유지되는 조건은 Msg A 재전송 시에 Msg A PRACH preamble 및 Msg A PUSCH에 대해 각각 이전의 전송과 비교한 전송 공간 빔 방향의 변화 유무가 될 수 있다. 즉, Msg A PRACH preamble 및 Msg A PUSCH에 대하여, 각 신호의 전송을 위한 전송 공간 빔 방향이 이전의 전송과 동일하다면 각각의 카운터의 값은 증가하고, 각 신호의 전송을 위한 전송 공간 빔 방향이 이전의 전송과 상이하다면 각각의 카운터의 값은 유지된다.
참고로 이하의 본 개시에서 언급하는 '재시도'라 함은, LBT 실패로 인해 본래의 RO에서 Msg A PRACH preamble을 전송하지 못하고 다음 RO에서 Msg A PRACH preamble을 전송하거나, LBT 실패로 인해 본래의 PO에서 Msg A PUSCH를 전송하지 못하고 다음 PO에서 Msg A PUSCH를 전송하는 것을 의미한다. LBT 실패로 인해 본래 전송하고자 하는 Msg A PRACH preamble을 전송하지는 못하지만 본래 예정된 RO에서 다른 Msg A PRACH preamble을 전송하는 경우는 본 개시에서 언급하는 '재시도'의 의미가 아니며, 이러한 경우에는 카운터의 값 역시 증가하지 않는다. Msg A에 포함된 각 신호들의 재전송에 대한 전력 램핑 카운터의 증가와 유지, 재전송 최대 횟수 및 LBT 실패에 따른 단말과 기지국의 동작을, 이하에서 Msg A PRACH preamble 전송 이전의 LBT 실패와 Msg A PUSCH 전송 이전의 LBT 실패로 경우를 나누어 서술할 수 있도록 한다.
1) Msg A PRACH preamble 전송 이전 LBT 실패
단말이 Msg A PRACH preamble 및 Msg A PUSCH에 대해 단일한 전력 램핑 카운터를 사용하는 경우에 있어서 Msg A PRACH preamble 전송 이전 LBT가 실패했다면, 단말은 Msg A PRACH preamble과 Msg A PUSCH이 연속하여 전송되는 경우에 대해 전술되었던 실시 예들에 따라 해당 공통의 전력 램핑 카운터 값을 증가 또는 유지할 수 있다. 또한 단말이 Msg A PRACH preamble 및 Msg A PUSCH에 대해 이중의 전력 램핑 카운터를 사용하는 경우에 있어서 Msg A PRACH preamble 전송 이전 LBT가 실패했다면, Msg A PRACH preamble 및 Msg A PUSCH에 대한 각 카운터의 값이 독립적으로 증가 또는 유지될 수 있으며, 특히 각 신호의 전송을 위해 설정되는 전송 공간 빔 방향이 이전의 전송과 동일하다면 각각의 카운터의 값은 증가하고, 각 신호의 전송을 위해 설정되는 전송 공간 빔 방향이 이전의 전송과 상이하다면 각각의 카운터의 값은 유지된다.
이 때 Msg A PRACH preamble 전송 이전 LBT에 실패한 단말이 Msg A 의 전송을 재시도하고자 하는 경우, 단말은 Msg A를 지속적으로 전송하거나 Msg 1만을 전송하는 4-step으로 폴백(fall-back)할 수도 있으며 각 방법에 따라 단말 및 기지국의 동작은 달라질 수 있다.
(a) 먼저 단말은 특정 RO에 대한 LBT에 실패하여 Msg A PRACH preamble을 전송하지 못하는 경우 다음 RO에서 다시금 Msg A PRACH preamble의 전송을 시도할 수 있다. 이 때 단말은 Msg A PRACH preamble 전송을 위해 측정된 채널에 따라 SSB를 달리 선택하고, 선택된 SSB와 연계된 2-step 용 프리앰블 집합(preamble set)에서 RAPID를 임의로 선택하여 Msg A PRACH preamble의 전송을 시도할 수 있다. 단일한 전력 램핑 카운터가 설정된 경우, 이전의 Msg A PRACH preamble 전송 시에 사용되었던 전송 빔 방향과 동일한 전송 빔 방향에 따라 Msg A PRACH preamble을 재전송한다면 해당 카운터의 값은 증가하고, 이전의 Msg A PRACH preamble 전송 시에 사용되었던 전송 빔 방향과 다른 빔 방향에 따라 Msg A PRACH preamble을 재전송한다면 해당 카운터의 값은 기존과 동일하게 유지된다. 이중의 전력 램핑 카운터가 설정된 경우, Msg A PRACH preamble 및 Msg A PUSCH에 대한 각 카운터의 값이 독립적으로 증가 또는 유지될 수 있으며, 특히 각 신호의 전송을 위해 설정될 전송 공간 빔 방향이 이전의 전송을 위해 설정되었던 전송 송간 빔 방향과 동일하다면 각각의 카운터의 값은 증가하고, 각 신호의 전송을 위해 설정될 전송 공간 빔 방향이 이전의 전송을 위해 설정되었던 전송 송간 빔 방향과 상이하다면 각각의 카운터의 값은 유지된다.
(b) 단말은 특정 RO에 대한 LBT에 실패하여 Msg A PRACH preamble을 전송하지 못하는 경우 다음 RO에서 Msg A PRACH preamble이 아닌 Msg 1만을 전송할 수 있다. 즉, 단말은 4-step RACH procedure로 폴백할 수 있다. 타 단말이나 다른 신호의 전송을 위해 점유된(occupied) 채널의 경우 연속된 다음 LBT가 수행될 수 있는 채널 역시 점유되어 있을 확률이 높으므로, 해당 방식은 Msg A에 대한 PUSCH 자원을 할당하기 위한 시간/주파수 자원을 지정하지(reserved) 않고 Msg 1만을 전송함으로써 효율적인 자원 활용을 도모하는 방법이다. 이 때 단말이 2-step RACH procedure를 위한 preamble index를 사용하여 Msg 1을 전송하지만, 기지국은 Msg A의 검출 시간을 기준으로 Msg A PUSCH의 최대 전송 가능 시간까지 대기하게 되며(waiting), 해당 시간이 지난(expire) 경우 Msg 1에 대한 응답으로 Msg 2를 전송하고 4-step RACH procedure를 수행하게 된다. 여기서 Msg 1의 전송 전력은, 목표 수신 전력(target received power for Msg 1)과 같이 4-step RACH procedure에서 사용되는 Msg 1에 대한 설정에 기반하여 설정될 수 있다.
2) Msg A PUSCH 전송 이전 LBT 실패
단말이 Msg A PUSCH 전송 이전 LBT에 실패한 경우, PO가 LBT를 위한 시간 간격을 포함하여 설정되었는지 또는 PO가 LBT를 위한 시간 간격을 제외하고 설정되었는지에 따라 단말의 동작이 달라질 수 있다.
이 때 PO가 LBT를 위한 시간 간격을 포함하여 설정되었던 경우, 단말은 해당 LBT를 위한 시간 간격 내에서 LBT를 수행하고 LBT 성공 시 성공과 동시에 Msg A PUSCH를 전송할 수 있으며, 또는 해당 LBT를 위한 시간 간격 내에서 LBT를 수행하고 LBT 성공 시 본래 Msg A PUSCH를 전송하고자 했던 시점까지 채널의 독점을 위해 기 설정된 Msg A PUSCH 시작 심볼 전까지 임의의 신호를 전송한 뒤 Msg A PUSCH 시작 심볼부터 Msg A PUSCH를 전송할 수도 있다.
반면 PO가 LBT를 위한 시간 간격을 제외하고 설정되었던 경우, 단말이 해당 PO 이전에 LBT를 수행하여 해당 PO의 시작 심볼 전까지 LBT를 성공하지 못했다면, 단말은 아래에 기술된 실시 예들처럼 다음 PO에서 Msg A PUSCH만을 전송하기 위한 LBT를 수행하고 Msg A PUSCH의 전송을 시도하거나, 다음 RO에서 Msg A PRACH preamble를 전송하기 위해 다시 LBT를 수행하고 Msg A의 전송을 재시도하거나, 또는 Msg 1만을 전송하여 4-step RACH procedure로 폴백(fall-back)할 수도 있다.
(a) 먼저 단말은 Msg A PRACH preamble이 이미 전송된 점을 고려하여 Msg A PUSCH만을 전송할 수 있다. 이 때 Msg A PUSCH의 전송 시점은, Msg A PRACH preamble과 PO가 다 대 일(multiple to one) 맵핑 관계 또는 일 대 일 (one to one) 맵핑 관계인 경우 다음 PO의 자원에서 수행되게 된다. 이 때 단말은 Msg A PRACH를 재전송하지 않기 때문에, Msg A PUSCH 전송을 위한 자원은 이전의 전송에 사용되었던 RAPID와 연계된 동일한 Msg A PUSCH 자원을 사용한다. 다만, Msg A PUSCH의 전송이 이전 시점에서의 LBT 실패로 인한 재전송인지 또는 현재 시점에서의 Msg A PUSCH 전송 시도인지를 구분하기 위해 Msg A PUSCH에는 재전송에 대한 정보가 포함될 수 있어야 하며, 기지국 역시 해당 정보를 바탕으로 몇 번째만큼의 이전 RAPID에 대한 응답인지를 Msg B를 통해 전달할 수 있어야 한다. 또한 단말은 LBT 실패에 따른 Msg A PUSCH 전송 시도는 재전송으로 인지하여, Msg A PRACH preamble과 Msg A PUSCH이 연속하여 전송되는 경우에 대해 전술되었던 실시 예들에 따라 단말은 Msg A PUSCH의 전송 전력 설정을 위한 전력 램핑 카운터의 값을 증가 또는 유지할 수 있다.
반면 Msg A PRACH preamble과 PO가 일 대 다(one to multiple)의 맵핑 관계인 경우, 단말은 복수의 PO 이전에 또는 복수의 PO 내에서 LBT를 수행하여 Msg A PUSCH만을 전송하게 된다. 만약 복수 개로 구성된 PO들 사이에 채널 추정(channel estimation)이 가능하다면 Msg A PUSCH 전송 전력을 위한 전력 램핑 카운터의 값은, Msg A PUSCH를 위한 전송 공간 빔 방향이 이전의 전송과 동일할 경우 증가하고 Msg A PUSCH를 위한 전송 공간 빔 방향이 이전의 전송과 다를 경우 유지된다. 이 때 이중의 전력 램핑 카운터가 Msg A PRACH 및 Msg A PUSCH 각각에 대해 설정되는 경우, 해당 카운터는 Msg A PUSCH에 관한 retransmission counter 만을 지시하게 될 수 있다.
(b) 단말은 Msg A PUSCH 전송 이전의 LBT 실패에 대하여 새롭게 Msg A PRACH preamble을 선택하여 전송하고, 이와 연관되는 PO에서 Msg A PUSCH를 전송할 수도 있다. Msg A PUSCH만을 전송하는 전술한 방식의 경우, Msg A PRACH preamble 전송에 대한 정보를 Msg A PUSCH의 contents를 통해 전달해야 하며, 기지국이 이를 통해 단말의 현재 LBT 실패 유무를 파악하고 단말의 현재 전송 시점과 과거 전송 시점을 구분 지어 응답을 하고 관련 정보를 전달해야 하는 추가 메커니즘이 필요하다. 반면 본 방식의 경우, 단말이 Msg A PUSCH를 전송하지 못했다면 단말은 다음 RO에서 Msg A PRACH preamble을 선택하여 전송할 수 있으며, 기지국은 해당 Msg A PRACH preamble을 바탕으로 TA(Timing Advance) 값을 예상하여 Msg A PUSCH의 수신을 기대할 수 있다. 이 때 Msg A PRACH preamble에 대한 전송 전력은, Msg A PRACH preamble과 Msg A PUSCH이 연속하여 전송되는 경우에 대해 전술되었던 실시 예들에 따라 단말이 Msg A PUSCH의 전송 전력 설정을 위한 전력 램핑 카운터의 값을 증가 또는 유지하는 것에 기반하여 할당될 수 있다. 이중의 전력 램핑 카운터가 사용되는 경우라면, Msg A PRACH preamble 및 Msg A PUSCH 각각에 대한 전송 공간 빔 방향이 변경되는지 여부에 따라 각 신호들을 위한 전력 램핑 카운터의 증가 또는 유지 여부가 달리 구성될 수 있다.
(c) 단말은, 이미 Msg A PRACH preamble을 전송한 상태이므로 기지국이 preamble만을 수신한 것을 판단하여 Msg A PUSCH를 전송하지 않은 채 Msg A PRACH preamble에 대한 응답을 수신하는 것만을 기대할 수 있다. 단말이 2-step RACH procedure를 위한 preamble index를 사용하여 Msg 1을 전송하지만, 기지국은 Msg A의 검출 시간을 기준으로 Msg A PUSCH의 최대 전송 가능 시간까지 대기하게 되며(waiting), 해당 시간이 지난(expire) 경우 LBT로 인한 전송 실패를 판단하여 Msg 3의 전송에 필요한 정보를 Msg B를 통해 단말로 전달하게 된다. 단말 역시 자신이 Msg A PRACH preamble만을 전송했기 때문에 자동적으로 4-step RACH procedure로의 폴백을 예상할 수 있으며, Msg 3 전송에 필요한 정보가 Msg B를 통해 수신되기를 기대한다. 이후 단말은 Msg B를 수신하고 그에 포함된 정보를 이용하여 Msg 3를 전송할 수 있게 된다.
Msg B에 대한 HARQ-ACK 자원의 설정
기지국이 단말에 전송하는 Msg B의 경우 단일한(single) 단말 또는 복수의(multiple) 단말들에 대한 응답이 전송되기 때문에, 단말에서의 HARQ-ACK(Hybrid Automatic Repeat reQuest-Acknowledgement) 전송을 위한 자원을 기지국이 지정해줄 필요가 있다. 이하에서는 단말의 Msg B에 대한 HARQ-ACK의 전송을 위한 PUCCH 자원 설정(configuration)에 대해 기술한다.
NR 시스템 상 4-step RACH procedure에서는, 기지국이 Msg 4의 PDCCH(DCI)를 이용하여 단말이 전송할 PUCCH에 대한 자원을 단말-특정하게(UE-specific) 지정할 수 있다. Msg 4를 스케줄링 하기 위한 PDCCH가 TC-RNTI(Temporary Cell-Radio Network Temporary Identifier)로 스크램블링(scrambling) 되는 DCI format 1_0으로 설정되는 경우, RA-RNTI(Random Access-RNTI)로 스크램블링 되는 DCI format 1_0의 경우와 달리 DCI format을 지시하기 위한 1비트를 제외한 다음과 같은 5개의 DCI 필드 요소들이 추가적으로 지시될 수 있다.
-   TPC command for scheduled PUCCH - 2 bits as defined in Subclause 7.2.1 of TS38.213
-   PUCCH resource indicator - 3 bits as defined in Subclause 9.2.3 of TS38.213
-   PDSCH-to-HARQ_feedback timing indicator - 3 bits a s defined in Subclause 9.2.3 of TS38.213
-   HARQ process number - 4 bits
-   Downlink assignment index - 2 bits, reserved
구체적으로, DCI에 의해 지시되는 위 필드 요소들 중, 최대 3비트의 PUCCH resource indicator와 3비트의 PDSCH-to-HARQ_feedback timing indicator가 PUCCH 자원의 지시를 위해 사용될 수 있다.
여기서 PDSCH-to-HARQ_feedback timing indicator는 Msg 4가 포함된 PDSCH와 단말이 전송할 HARQ-ACK을 포함하는 PUCCH간 슬롯 간격을 나타내는데 사용되며, {0, 1, 2, 3, 4, 5, 6, 7} 중 하나의 값을 지시할 수 있다. 예를 들어, Msg 4가 포함된 PDSCH가 수신되는 마지막 슬롯이 #n일 경우, PDSCH-to-HARQ_feedback timing indicator는 {0, 1, 2, 3, 4, 5, 6, 7} 중 하나의 값을 슬롯 간격 k로서 지시하고, 단말은 슬롯 #n+k에서 HARQ-ACK을 포함하는 PUCCH를 전송하게 된다. PDSCH-to-HARQ_feedback timing indicator의 구체적인 지시 방법은 다음과 같다.
Figure PCTKR2020013070-appb-img-000092
또한 PUCCH resource indicator는 PUCCH 자원 설정을 위한 여러 파라미터를 지시하는 데 사용되며, 상위 계층 파라미터 PUCCH-Configdl-DataToUL-ACK SEQUENCE (SIZE (1..8)) OF INTEGER (0..15)에 대한 비트에 따라 맵핑된 자원을 사용하게 된다. PUCCH resource indicator는 3bit로써, 각각의 8개의 resources로 구성된 2개의 집합(set)에 대하여 RMSI(Remaining Minimum System Information)를 통해 특정 하나의 집합을 지시하게 될 때, 해당 집합들 중 하나의 PUCCH를 설정해주기 위해 존재한다.
Figure PCTKR2020013070-appb-img-000093
2-step RACH procedure 역시 위 4-step RACH procedure와 마찬가지로 Msg B에 대한 응답으로서의 PUCCH 자원을 지정해주는 방법이 필요할 수 있으며, 특히 이하에서는 PUCCH 자원에 대한 지시를 전달해줄 수 있는 방식으로서 DCI 또는 MAC(Medium Access Control) Msg B를 활용하는 방법이 고려될 수 있다. 어느 한 시점에서의 PUCCH 자원은 인덱스 0부터 15까지 총 16개의 PUCCH 자원이 설정될 수 있기 때문에, 기지국이 Msg B를 전송할 경우 해당 PUCCH 자원을 고려하여 Msg B를 구성하고 전송해야 한다. 또한, 이하의 본 개시 내용에서 초기 PUCCH 자원 인덱스가 n으로 지정되어 단말들이 순차적으로 인덱스 n에서부터 할당되는 경우, PUCCH 자원 인덱스가 15를 넘는다면 각 단말들은 인덱스 0부터 n까지로 순환 할당될 수 있다.
(1) DCI 만을 통해 PUCCH 자원을 지시
해당 방법은 Msg B를 스케줄링 하는 DCI만을 활용하여 단말의 HARQ-ACK 전송에 사용될 PUCCH 자원을 지정하는 방식이다. 이 때 기지국은 DCI를 통해 PDSCH-to-HARQ_feedback timing indicator만을 지시하고 PUCCH 자원을 단말이 암묵적으로(implicit) 계산하도록 하거나, DCI를 통해 PDSCH-to-HARQ_feedback timing indicator와 와 초기(initial) PUCCH resource index 또는 PUCCH resource indicator를 명시적으로 지시할 수도 있다.
1) 먼저 기지국은 Msg B의 DCI 필드들 중 PDSCH-to-HARQ_feedback timing indicator로 슬롯 간격을 지시하여 PUCCH가 전송될 슬롯만을 지정할 수 있다. 해당 Msg B와 관련된 모든 단말은 이 PDSCH-to-HARQ_feedback timing indicator를 통해 지정된 슬롯에서 Msg B 수신에 대한 HARQ-ACK을 전송하게 되며, 이 때 PUCCH 자원 인덱스(PUCCH resource index)는 MAC subheader의 인덱스 순서와 순차적으로 일 대 일 맵핑될 수 있다. 예를 들어, #1 subheader에서 자신의 RAPID와 UE-ID를 검출한 단말은 PUCCH 자원 인덱스 #1를 통해 HARQ-ACK을 전송하게 되고, #2 subheader에서 자신의 RAPID와 UE-ID를 검출한 단말은 PUCCH 자원 인덱스 #2를 통해 HARQ-ACK을 전송하게 된다. 단말은 자신의 subheader 인덱스를 통해 PUCCH 자원 인덱스를 암묵적으로(implicit) 알 수 있기 때문에, 본 방법은 기지국의 시그널링 오버헤드(overhead)가 매우 감소하는 장점이 있다.
2) 기지국은 Msg B의 DCI 필드들 중 PDSCH-to-HARQ_feedback timing indicator로 슬롯 간격을 지시하여 PUCCH가 전송될 슬롯을 지시함과 함께, initial PUCCH resource index를 설정해줄 수 있다. 이 때 기지국은 0~15의 값을 가지는 PUCCH resource index에 대해 4비트를 이용해 직접 PUCCH 자원을 지시해주시거나, 4-step RACH procedure에서와 유사하게 PUCCH resource indicator를 이용하여 간접적으로 PUCCH 자원을 지시할 수도 있다.
기지국이 PDSCH-to-HARQ_feedback timing indicator만을 지시하는 전술한 방법의 경우 PUCCH 자원 인덱스 #0~15가 무조건적으로 순차 할당되나, 본 방법의 경우 기지국이 PUCCH 자원 인덱스의 초기 값을 지정하게 되며 단말은 지정된 초기 값의 인덱스를 기준으로 MAC subheader의 인덱스에 대해 순차적으로 일 대 일 맵핑되어 PUCCH 자원 인덱스를 할당받게 된다. 예를 들어, DCI 필드에서 PUCCH resource index #15가 지정된다면, Msg B의 #1 subheader에서 자신의 RAPID와 UE-ID를 검출한 단말은 PUCCH 자원 인덱스 #15를 통해 HARQ-ACK을 전송하게 되고, #2 subheader에서 자신의 RAPID와 UE-ID를 검출한 단말은 PUCCH 자원 인덱스 #0를 통해 HARQ-ACK을 전송하게 된다. 또한 #3 subheader에서 자신의 RAPID와 UE-ID를 검출한 단말은 PUCCH 자원 인덱스 #1를 통해 HARQ-ACK을 전송하게 된다.
3) 전술한 1) 또는 2) 방법들의 경우, 16개의 PUCCH 자원 인덱스를 모두 순차 할당하기 때문에 사용 불가능한 PUCCH 자원 인덱스가 존재한다 하더라도 기지국이 해당 PUCCH 자원 인덱스를 지시해줄 수 없다. 이를 보완하기 위해 PUCCH 자원 인덱스만큼의 비트들 또는 비트맵을 사용하여 사용 불가능한 PUCCH 자원 인덱스를 추가적으로 지시할 수도 있다. 즉, 단말에 MAC PDU(Protocol Data Unit) 순서로 PRI(PUCCH resource Indicator)를 순차적으로 할당하되, 추가 지시된 bitmap 중 '0'의 값을 갖는 부분을 생략하고 PRI를 할당하는 수 있다. 예를 들어, 사용 불가능한 PUCCH 자원 인덱스를 지시하기 위한 비트맵이 '1011111111111111'인 경우, Msg B의 #2 subheader에서 자신의 RAPID와 UE-ID를 검출한 단말은 위 비트맵의 2번째 비트 값이 '0'이므로 PUCCH 자원 인덱스 #2를 생략하고 PUCCH 자원 인덱스 #3를 통해 HARQ-ACK을 전송하게 되며, #3 subheader에서 자신의 RAPID와 UE-ID를 검출한 단말은 PUCCH 자원 인덱스 #4를 통해 HARQ-ACK을 전송하게 된다.
(2) MAC Msg B만을 통해 PUCCH 자원을 지시
해당 방법은 기지국이 MAC Msg B(success RAR)을 전송함에 있어 각 단말에 대해 PDSCH-to-HARQ_feedback timing indicator(3비트)와 PUCCH resource index(4비트) 또는 PUCCH resource indicator(3비트)를 설정해주는 방식으로, 6비트 또는 7비트의 정보를 Msg B(success RAR)를 통해 명시적으로 지시하는 방법이다.
즉 본 방법에 의할 때, 단말이 Msg B를 통해 수신하는 RAR message가 successRAR인 경우에 있어서, successRAR 내 4비트의 PUCCH 자원 관련 지시 필드에 의해 PUCCH 전송 자원이 지시되고, successRAR 내 3비트의 PDSCH-to-HARQ 피드백 타이밍(feedback timing) 지시 필드에 의해 PUCCH 전송 자원이 지시될 수 있다. 본 방법의 경우 MsgB (success RAR)가 복수의 정보들을 포함함에 따라 MsgB (success RAR)의 크기가 커지는 단점이 있으나, 기지국이 완전히 유연하게(full flexibility) 각 단말의 PUCCH resource를 지정할 수 있다는 장점이 있다.
(3) DCI 및 MAC Msg B 모두를 활용하여 PUCCH 자원을 지시
해당 방법은 상기 전술한 (1) 및 (2) 방법들의 극단성은 배제하고 장점을 취하는 방식으로, DCI와 MAC Msg B(success RAR)를 모두 활용하는 것이다. 해당 방법은 PDSCH-to-HARQ_feedback timing indicator와 PUCCH resource index 또는 PUCCH resource indicator 등의 파라미터들이 DCI와 MAC Msg B(success RAR) 중 어느 정보를 통해 전송되는 지에 따라 아래와 같이 다양한 실시 예가 존재할 수 있다.
1) 먼저 PDSCH-to-HARQ_feedback timing indicator(3비트)와 PUCCH resource index(4비트) 또는 PUCCH resource indicator(3비트)가 DCI에 포함되고, 1비트 또는 2비트의 PUCCH 자원 오프셋 값이 MAC Msg B(success RAR)에 포함되어 전달되는 것을 고려해볼 수 있다.
이 경우 기본적으로 PDSCH-to-HARQ_feedback timing indicator 파라미터를 DCI에 의해 전송하게 되어 시그널링 오버헤드가 증가하되 되나, MAC Msg B(success RAR)에서 각 단말에 대한 PUCCH 자원 오프셋 값을 지정하여 이를 보완할 수 있다. PUCCH resource index 또는 PUCCH resource indicator 역시 DCI에 의해 전송되어, 전술한 방법들과 같이 초기 PUCCH 자원 인덱스를 지정해줄 수 있다. 여기서 해당 방법에서 MAC Msg B(success RAR)에 의해 지시되는 오프셋 값은 N 비트가 될 수 있으며, 오프셋은 다음과 같은 방식들로 활용될 수 있다.
(a) MAC Msg B(success RAR)에 의해 지시되는 오프셋은, 본래 단말 자신의 PRI 값에 대하여 적용되어 활용될 수 있다. 즉, 단말은 본래 자신의 PRI 인덱스를 기준으로 오프셋 값만큼을 적용한 PRI 값에 해당하는 PUCCH 자원을 통해 HARQ-ACK을 전송할 수 있다.
단말은 DCI를 통해 지정된 초기 PUCCH 자원 인덱스를 기준으로 하여, 순차적으로 MAC Msg B(success RAR)의 subheader 인덱스에 따라 각자 자신의 PUCCH 자원 인덱스를 할당받게 되는데, 단말이 MAC Msg B(success RAR)를 통해 오프셋을 지시 받는다면 단말은 해당 오프셋 값만큼 인덱스를 증가 또는 감소시킨 인덱스의 PUCCH 자원에서 HARQ-ACK을 전송하게 된다.
예를 들어, 오프셋을 나타내는 비트가 1인 경우 오프셋 값은 +1 또는 =1이 될 수 있다. 오프셋을 나타내는 비트가 2인 경우 오프셋 값은 {+2, +1, -1, -2}의 값을 지시하거나, {+4, +3, +2, +1}의 값을 지시하거나, 또는 {-4, -3, -2, -1}의 값을 지시할 수 있다. 만약 초기 PUCCH 자원 인덱스가 #M이라면 K번째 subheader에서 자신의 RAPID와 UE-ID를 검출한 단말은 본래 PUCCH 자원 인덱스 #M+K를 할당 받게 되고 #M+K의 값이 15보다 클 경우 순환 시프트에 따른 값을 할당 받는 셈이 되는데, 여기에 상기와 같은 오프셋 값 a를 적용하여 #M+K+a 또는 #M+K-a 인덱스의 PUCCH 자원에서 단말이 HARQ-ACK을 전송하게 된다.
(b) MAC Msg B(success RAR)에 의해 지시되는 오프셋은, 이전 단말의 위치를 기준으로 적용되어 활용될 수도 있다. 즉, 이전 단말들에 대해 누적된 오프셋이 그대로 적용된 상태에서 단말 자신의 MAC subheader에 대해 지시된 오프셋을 추가 적용하여 사용할 PUCCH 자원을 판단할 수 있다.
예를 들어 초기 PUCCH 자원 인덱스가 #M인 상황에서 첫 번째 subheader를 통해 자신의 RAPID와 UE-ID를 검출한 제1 단말이 3만큼의 오프셋을 지시 받았다면, 해당 제1 단말은 #M+3 인덱스의 PUCCH 자원에서 HARQ-ACK을 전송하게 된다. 이 때 두 번째 subheader를 통해 자신의 RAPID와 UE-ID를 검출한 제2 단말이 2만큼의 오프셋을 지시 받았다면, 이 제2 단말은 제 1 단말에 적용되었던 오프셋 값 3만큼을 누적하여 적용한 상태로서 #M+3+2의 PUCCH 자원에서 HARQ-ACK을 전송하게 된다.
2) 다른 실시 예로서, PDSCH-to-HARQ_feedback timing indicator(3비트)만이 DCI에 포함되고, PUCCH resource index(4비트) 또는 PUCCH resource indicator(3비트)를 지시하기 위한 각 PRI가 MAC Msg B(success RAR)에 포함되는 것을 고려해볼 수 있다.
즉, 해당 실시 예는 공통된 PUCCH 전송 슬롯을 DCI를 통해 전달하며, MAC Msg B(success RAR)를 통해 각 단말에 대한 PUCCH resource index 또는 PUCCH resource indicator를 단말 특정하게(UE specific) 지정해주게 된다. 본 실시 예에 따르면 Msg B(success RAR)에서 오프셋을 지시하는 전술한 방법에 비해 시그널링 오버헤드는 증가할 수 있으나, 기지국의 PUCCH 자원 지시에 대한 유연성을 증가시킬 수 있다.
3) 또 다른 실시 예로서, PUCCH resource index(4비트) 또는 PUCCH resource indicator(3비트)만이 DCI에 포함되고, 각 PDSCH-to-HARQ_feedback timing indicator(3비트)가 MAC Msg B(success RAR)에 포함되는 것을 고려해볼 수 있다.
해당 실시 예는 각 PUCCH 자원의 시간(슬롯) 설정을 달리하여 구분하는 방식이다. 즉, 기지국에서 DCI 공통된 PUCCH 자원 인덱스를 지정하여 해당 인덱스에 따른 PUCCH 자원을 사용하거나 혹은 DCI에 PUCCH 자원 인덱스의 정보가 포함되지 않는 경우 애초에 모든 단말이 PUCCH 자원 인덱스 #0에 따른 PUCCH 자원을 사용하되, 각 단말은 MAC Msg B(success RAR)에 포함된 정보에 따라 결정되는 슬롯 타이밍을 참조하여 해당 슬롯을 통해 PUCCH를 전송하게 된다.
도 12는 본 개시의 실시 예들에 기반한 2-step RACH procedure를 수행하기 위한 단말과 기지국의 동작 흐름을 나타낸 도면이다. 단말과 기지국은 2-step RACH procedure를 수행하기 위한 RACH configuration 정보를 송수신하며, 해당 정보에는 전송 전력 설정을 위한 램핑 스텝 크기(power ramping step size) 및/또는 램핑 카운터(ramping counter), 전송 빔 또는 공간 필터 등 본 개시의 실시 예들과 관련된 정보 역시 포함될 수 있다(S1201). 구체적으로, 기지국은 MIB(Master Information Block), SIB(System Information Block)와 같은 SSB(Synchronization Signal Block) 및/또는 RRC signaling을 이용하여 RACH Configuration 정보를 전송할 수 있다.
상기 S1201 단계는, 위와 같은 RACH Configuration 정보를 이미 수신한 적이 있는 단말 또는 RACH Configuration 정보를 전송한 적이 있는 기지국에 재접속 하는 단말과 같이 연결(connection) 상태가 성립한 적이 있는 단말의 경우 생략될 수 있다. 해당 단말들은 RACH Configuration 정보를 이미 획득한 상황이므로, 이러한 단말들에 대하여는 기 수신된 RACH Configuration 정보의 중복 송수신으로 인한 절차 지연(processing delay)를 줄이기 위해 해당 단계가 생략될 수 있다.
상술한 S1201 단계의 단말은 도 14의 제 1 무선 기기(100) 또는 도 15의 무선 기기(100, 200)일 수 있으며, 기지국은 도 14의 제 2 무선 기기(200) 또는 도 15의 무선 기기(100, 200)일 수 있다. 즉, 단말이 기지국으로부터 RACH Configuration 정보를 수신하는 상기 S1501 단계는 후술할 도 14 내지 도 17의 다양한 무선 장치들에 의해 구현될 수 있다. 예를 들어 단말이 도 14의 제1 무선 기기(100)에 해당하는 경우, 도 14의 프로세서 102는 상기 RACH Configuration 정보를 수신하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 상기 하나 이상의 트랜시버 106은 기지국으로부터 상기 RACH Configuration 정보를 수신할 수 있다.
이후 단말은 기지국으로부터 수신한 RACH configuration에 기반하여 Msg A에 대한 정보들(contents)를 획득할 수 있으며, 획득한 정보들에 따라 RACH Occasion(RO)/Preamble과 PUSCH Occasion(PO)/PUSCH resource unit(PRU)를 선택하여 2-step RACH procedure를 수행하기 위한 Msg A를 기지국으로 전송할 수 있다(S1203). 여기서 단말은 Msg A의 전송 전력 설정을 위한 램핑 스텝 크기 및/또는 카운터, 전송 빔 또는 공간 필터 등 본 개시의 실시 예들과 관련된 설정에 기반하여 Msg A를 전송할 수 있다.
상술한 S1203 단계의 단말은 도 14의 제 1 무선 기기(100) 또는 도 15의 무선 기기(100, 200)일 수 있으며, 기지국은 도 14의 제 2 무선 기기(200) 또는 도 15의 무선 기기(100, 200)일 수 있다. 즉, 단말이 기지국으로 Msg A를 송신하는 상기 S1203 단계는 후술할 도 14 내지 도 17의 다양한 무선 장치들에 의해 구현될 수 있다. 예를 들어 단말이 도 14의 제1 무선 기기(100)에 해당하는 경우, 도 14의 프로세서 102는 상기 Msg A를 전송하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 상기 하나 이상의 트랜시버 106은 기지국으로 상기 Msg A를 전송할 수 있다.
이 때 상기 S1203 단계의 Msg A 전송에 대한 일 예로, 2-step RACH Procedure에서의 RO는 4-step RACH Procedure를 위해 할당되는 RO를 고려하여, i) 2-step RACH Procedure와 4-step RACH Procedure에 대하여 각각 독립적인 RO 및 preamble을 설정하거나, ii) 2-step RACH Procedure와 4-step RACH Procedure에 대하여 동일한 RO를 공유하되 preamble은 별도로 설정하거나, 또는 iii) 2-step RACH Procedure와 4-step RACH Procedure에 대하여 동일한 RO와 preamble을 공유하도록 설정할 수 있다.
상기 S1203 단계의 Msg A 전송에 대한 다른 일 예로, Msg A PUSCH의 전송을 위한 PRU는 PO와 DMRS port 및 DMRS sequence를 고려하여 정의될 수 있으며, PO은 페이로드(payload) 전송을 위한 시간-주파수 자원으로 정의될 수 있다. 이 때 Msg A의 PUSCH를 위한 PO는 RO와 별개로 설정되거나 또는 연관된 RO를 고려한 상대적인 시간 및/또는 주파수 위치로서 설정될 수 있으며, Msg A PUSCH의 설정 주기 내에 하나 이상의 PO(s)가 설정될 수 있다.
상기 S1203 단계의 Msg A 전송에 대한 다른 일 예로, Msg A에 포함된 PRACH 및 PUSCH는 시분할 다중화(Time Division Multiplexing; TDM)되어 다른 슬롯에서 전송될 수 있거나 또는, PRACH 및 PUSCH가 동일한 슬롯에서 전송될 수도 있다. 다시 말해, Msg A PUSCH는 Msg A PRACH와 시간 영역(time domain) 상에서 연속되어 전송되거나 특정 gap을 두고 전송될 수 있다.
상기 S1203 단계의 Msg A 전송에 대한 다른 일 예로, Msg A에 포함된 PRACH 및 PUSCH는 i) 동일한 빔(beam) 또는 공간 필터(Tx spatial filter)를 사용하여 전송되거나, ii) 단말의 결정에 따라 서로 동일하거나 다른 빔 또는 공간 필터를 사용하여 전송되거나, 또는 iii) 기지국이 설정한 빔 또는 공간 필터를 사용하여 전송될 수 있다.
상기 S1203 단계의 Msg A 전송에 대한 다른 일 예로, 단말은 Msg A가 전송된 이후 Msg B를 모니터링 하기 위한 RAR(Random Access Response) window를 설정할 수 있다. 이 때 2-step RACH Procedure의 재시도 횟수를 기록하기 위하여 단말은 Msg A의 재전송 카운터를 설정할 수 있으며, 상기 카운터의 최대값은 기지국 또는 네트워크에 의해 설정될 수 있다.
상기 S1203 단계의 Msg A 전송에 대한 다른 일 예로, 기지국은 Msg A PRACH의 Preamble을 검출하고(detect), Msg A PUSCH의 페이로드/데이터를 디코딩하여(decoding) 처리할(processing) 수 있다. 만약 기지국이 Msg A PRACH의 Preamble을 검출하지 못한 경우에는 기지국은 단말로 아무 정보도 전달하지 않을 수 있다.
상술한 바와 같이 단말이 기지국으로 Msg A를 전송하는 S1203 단계에 있어서, 본 개시의 실시 예들이 적절히 적용될 수 있다. 구체적으로, 상술한 본 개시의 실시 예들에서의 방법에 기반하여 상기 Msg A에 대한 전송 전력이 설정되거나 지시될 수 있다.
Msg A를 전송한 단말은 이후 Msg B를 수신할 수 있다(S1205). 여기서, Msg B는 DMRS와 대응되는 PDCCH를 통해 스케줄링 되고, DMRS와 대응되는 PDSCH를 통해 전송될 수 있다. Msg B에 포함된 정보들(contents)은 Msg A PUSCH에 대한 디코딩 및 처리 결과에 따라 달라질 수 있다.
구체적으로, 기지국이 Msg A PUSCH를 성공적으로 디코딩 한 경우, Msg B는 success RAR로서 단말이 Common Control Channel(CCCH) Service Data Unit(SDU)로서 전송한 단말 식별자(UE identifier)와 같은 경쟁 해결 식별자(contention resolution ID를 포함할 수 있다. 기지국이 Msg A PUSCH를 디코딩 하지 못한 경우, Msg B는 fallback RAR로서 Msg A의 PUSCH의 재전송을 위한 RAPID 및 상향링크 그랜트(Upinlk grant; UL grant) 정보를 포함할 수 있다. 기지국이 Msg B를 통해 fallback RAR을 전송하는 경우, Msg B에 포함된 RAPID와 UL grant를 성공적으로 디코딩 한 단말은 4-step RACH procedure로 fall-back 할 수 있다.
상술한 S1205 단계의 단말은 도 14의 제 1 무선 기기(100) 또는 도 15의 무선 기기(100, 200)일 수 있으며, 기지국은 도 14의 제 2 무선 기기(200) 또는 도 15의 무선 기기(100, 200)일 수 있다. 즉, 단말이 기지국으로부터 Msg B를 수신하는 상기 S1205 단계는 후술할 도 14 내지 도 17의 다양한 무선 장치들에 의해 구현될 수 있다. 예를 들어 단말이 도 14의 제1 무선 기기(100)에 해당하는 경우, 도 14의 프로세서 102는 상기 Msg B를 수신하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 상기 하나 이상의 트랜시버 106은 기지국으로 상기 Msg B를 수신할 수 있다.
단말은 Msg B의 디코딩 및 수신 여부에 따라 기존 4-step RACH Procedure를 수행하는 단말이 Msg 4를 수신한 이후의 동작과 동일하거나 유사한 동작으로 취할 수 있다. 만약 단말이 RAR window 내에서 Msg B를 성공적으로 수신한 경우, 단말은 2-step RACH Procedure가 성공한 것으로 판단할 수 있다. 또는 단말이 fallback RAR을 수신한 경우, 단말은 UL grant와 같이 Msg B에 포함된 정보를 기반으로 4-step RACH Procedure 상의 Msg 3 전송 절차를 수행할 수 있다.
반면 단말이 RAR window 내에서 Msg B를 수신하지 못한 경우, 단말은 재전송 카운터가 최대값보다 작다면 2-step RACH Procedure를 재시도하기 위해 Msg A를 재전송할 수 있으며, 재전송 카운터가 최대값에 도달했다면 2-step RACH Procedure가 실패한 것으로 판단하여 back-off 동작을 수행할 수 있다. 여기서, Msg A의 재전송은 preamble의 재선택을 포함한 Msg A PRACH의 재전송 및 Msg A PUSCH의 재전송을 의미할 수 있다. 만약 Msg A PRACH의 재전송을 위한 전송 빔 또는 공간 필터가 최근에 전송했던 Msg A PRACH의 전송 빔 또는 공간 필터와 다른 경우, Msg A PRACH의 전력 램핑 카운터는 증가하지 않을 수 있다.
상술한 본 개시의 2-step RACH Procedure와 관련된 실시 예들은, RRC_INACTIVE, RRC_CONNECTED 및 RRC_IDLE 상태에서도 적용될 수 있으며 일반적인 Medium Access Control(MAC) procedure로 구성될 수도 있다. 또한, 상술한 개시의 2-step RACH Procedure와 관련된 실시 예들은 system information(SI) 요청(request) 및/또는 Beam Failure Recovery(BFR) 절차에 대해서는 예외적으로 적용되지 않을 수 있다. 또한, 상술한 2-step RACH procedure에서의 fall-back을 고려하여 기존의 4-step RACH procedure를 재수행 하도록 하는 동작이 설정될 수도 있다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 13은 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 13을 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 14는 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 14를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 13의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
구체적으로 본 발명의 실시 예에 따른 제 1 무선 기기(100)의 프로세서(102)에 의해 제어되고, 메모리(104)에 저장되는 명령 및/또는 동작들에 대해서 살펴보도록 한다.
하기 동작들은 프로세서(102)의 관점에서 프로세서(102)의 제어 동작을 기반으로 설명하지만, 이러한 동작을 수행하기 위한 소프트웨어 코드 등에 메모리(104)에 저장될 수 있다.
프로세서(102)는 제1 PRACH(Physical Random Access Channel) 및 제1 PUSCH(Physical Uplink shared Channel)를 포함하는 메시지 A를 송신하도록 송수신기(106)를 제어할 수 있다. 또한 프로세서(102)는 상기 메시지 A에 대한 응답으로, 경쟁 해결(contention resolution)에 관련된 메시지 B를 수신하도록 송수신기(106)를 제어할 수 있다. 이 때, 프로세서(102)가 메시지 A를 송신하도록 송수신기(106)를 제어하고, 메시지 B를 수신하도록 송수신기(106)를 제어하는 구체적인 방법은 상술한 실시 예들에 기반할 수 있다.
구체적으로 본 발명의 실시 예에 따른 제 2 무선 기기(200)의 프로세서(202)에 의해 제어되고, 메모리(204)에 저장되는 명령 및/또는 동작들에 대해서 살펴보도록 한다.
하기 동작들은 프로세서(202)의 관점에서 프로세서(202)의 제어 동작을 기반으로 설명하지만, 이러한 동작을 수행하기 위한 소프트웨어 코드 등에 메모리(204)에 저장될 수 있다.
프로세서(202)는 제1 PRACH(Physical Random Access Channel) 및 제1 PUSCH(Physical Uplink shared Channel)를 포함하는 메시지 A를 수신하도록 송수신기(206)를 제어할 수 있다. 또한 프로세서(202)는 상기 메시지 A에 대한 응답으로, 경쟁 해결(contention resolution)에 관련된 메시지 B를 송신하도록 송수신기(206)를 제어할 수 있다. 이 때, 프로세서(202)가 메시지 A를 수신하도록 송수신기(206)를 제어하고, 메시지 B를 송신하도록 송수신기(206)를 제어하는 구체적인 방법은 상술한 실시 예들에 기반할 수 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 15는 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 13 참조).
도 15를 참조하면, 무선 기기(100, 200)는 도 14의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 14의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 14의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다. 따라서, 본 발명에 따른 구체적인 제어부(120)의 동작 과정 및 메모리부(130)에 저장된 프로그램/코드/명령/정보들은 도 14의 프로세서 (102, 202) 중 적어도 하나의 동작 및 메모리(104, 204) 중 적어도 하나의 동작과 대응될 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 13, 100a), 차량(도 13, 100b-1, 100b-2), XR 기기(도 13, 100c), 휴대 기기(도 13, 100d), 가전(도 13, 100e), IoT 기기(도 13, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 13, 400), 기지국(도 13, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 15에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 15의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
도 16은 본 발명에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 16을 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 15의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
도 17은 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 17을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 15의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
여기서, 본 명세서의 무선 기기에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 NB-IoT(Narrowband Internet of Things)를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat(Category) NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), gNode B(gNB), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
비면허 대역에서 임의 접속 과정을 수행하는 방법 및 이를 위한 장치는 5세대 NewRAT 시스템에 적용되는 예를 중심으로 설명하였으나, 5세대 NewRAT 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (15)

  1. 비면허 대역(Unlicensed band)에서 단말이 임의 접속 과정(Random Access Channel Procedure; RACH procedure)를 수행하는 방법에 있어서,
    제1 PRACH(Physical Random Access Channel) 및 제1 PUSCH(Physical Uplink shared Channel)를 포함하는 메시지 A를 기지국으로 송신하고,
    상기 메시지 A에 대한 응답으로, 경쟁 해결(contention resolution)에 관련된 메시지 B를 상기 기지국으로부터 수신하는 것을 포함하고,
    상기 메시지 A의 전송 전력을 설정하기 위해 전력 램핑 카운터(ramping counter)가 사용되며,
    상기 전력 램핑 카운터의 값은, 상기 메시지 A의 전송을 위한 전송 공간 빔(transmission spatial beam)이 상기 메시지 A 이전의 PRACH의 전송에 관련된 전송 공간 빔과 동일하게 구성되는 점에 기반하여 증가하는,
    임의 접속 과정 수행 방법.
  2. 제 1 항에 있어서,
    상기 전력 램핑 카운터의 값은, 상기 메시지 A에 대한 LBT(Listen Before Talk)가 실패하지 않은 점에 기반하여 증가하는,
    임의 접속 과정 수행 방법.
  3. 제 1 항에 있어서,
    상기 메시지 A의 전송은 상기 메시지 A에 대한 재전송에 해당하는 것인,
    임의 접속 과정 수행 방법.
  4. 제 1 항에 있어서,
    상기 PRACH와 관련된 LBT(Listen Before Talk)는 실패한,
    임의 접속 과정 수행 방법.
  5. 제 1 항에 있어서,
    상기 메시지 A의 전송을 위한 전송 공간 빔이 상기 메시지 A 이전의 PRACH의 전송과 관련된 전송 공간 빔과 다르게 구성되는 점에 기반하여, 상기 전력 램핑 카운터의 값이 증가하지 않는,
    임의 접속 과정 수행 방법.
  6. 제 1 항에 있어서,
    상기 전력 램핑 카운터는, 상기 제1 PRACH 및 상기 제1 PUSCH가 상기 메시지 A를 통해 함께 전송되는 점에 기반하여 상기 전송 전력의 설정에 사용되는,
    임의 접속 과정 수행 방법.
  7. 비면허 대역(Unlicensed band)에서 임의 접속 과정(Random Access Channel Procedure; RACH procedure)를 수행하는 단말에 있어서,
    적어도 하나의 트랜시버;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    제1 PRACH(Physical Random Access Channel) 및 제1 PUSCH(Physical Uplink shared Channel)를 포함하는 메시지 A를 기지국으로 송신하고,
    상기 메시지 A에 대한 응답으로, 경쟁 해결(contention resolution)에 관련된 메시지 B를 상기 기지국으로부터 수신하는 것을 포함하고,
    상기 메시지 A의 전송 전력을 설정하기 위해 전력 램핑 카운터(ramping counter)가 사용되며,
    상기 전력 램핑 카운터의 값은, 상기 메시지 A의 전송을 위한 전송 공간 빔(transmission spatial beam)이 상기 메시지 A 이전의 PRACH의 전송에 관련된 전송 공간 빔과 동일하게 구성되는 점에 기반하여 증가하는,
    단말.
  8. 제 7 항에 있어서,
    상기 전력 램핑 카운터의 값은, 상기 메시지 A에 대한 LBT(Listen Before Talk)가 실패하지 않은 점에 기반하여 증가하는,
    단말.
  9. 제 7 항에 있어서,
    상기 메시지 A의 전송은 상기 메시지 A에 대한 재전송에 해당하는 것인,
    단말.
  10. 제 7 항에 있어서,
    상기 PRACH와 관련된 LBT(Listen Before Talk)는 실패한,
    단말.
  11. 제 7 항에 있어서,
    상기 메시지 A의 전송을 위한 전송 공간 빔이 상기 메시지 A 이전의 PRACH의 전송과 관련된 전송 공간 빔과 다르게 구성되는 점에 기반하여, 상기 전력 램핑 카운터의 값이 증가하지 않는,
    단말.
  12. 제 7 항에 있어서,
    상기 전력 램핑 카운터는, 상기 제1 PRACH 및 상기 제1 PUSCH가 상기 메시지 A를 통해 함께 전송되는 점에 기반하여 상기 전송 전력의 설정에 사용되는,
    단말.
  13. 비면허 대역(Unlicensed band)에서 임의 접속 과정(Random Access Channel Procedure; RACH procedure)를 수행하는 장치에 있어서,
    적어도 하나의 트랜시버;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    제1 PRACH(Physical Random Access Channel) 및 제1 PUSCH(Physical Uplink shared Channel)를 포함하는 메시지 A를 송신하고,
    상기 메시지 A에 대한 응답으로, 경쟁 해결(contention resolution)에 관련된 메시지 B를 수신하는 것을 포함하고,
    상기 메시지 A의 전송 전력을 설정하기 위해 전력 램핑 카운터(ramping counter)가 사용되며,
    상기 전력 램핑 카운터의 값은, 상기 메시지 A의 전송을 위한 전송 공간 빔(transmission spatial beam)이 상기 메시지 A 이전의 PRACH의 전송에 관련된 전송 공간 빔과 동일하게 구성되는 점에 기반하여 증가하는,
    장치.
  14. 비면허 대역(Unlicensed band)에서 기지국이 단말의 임의 접속 과정(Random Access Channel Procedure; RACH procedure)을 지원하는 방법에 있어서,
    제1 PRACH(Physical Random Access Channel) 및 제1 PUSCH(Physical Uplink shared Channel)를 포함하는 메시지 A를 상기 단말로부터 수신하고,
    상기 메시지 A에 대한 응답으로, 경쟁 해결(contention resolution)에 관련된 메시지 B를 상기 단말로 송신하는 것을 포함하고,
    상기 메시지 A의 전송 전력은 전력 램핑 카운터(ramping counter)에 기반하여 설정되며,
    상기 전력 램핑 카운터의 값은, 상기 메시지 A의 전송을 위한 전송 공간 빔(transmission spatial beam)이 상기 메시지 A 이전의 PRACH의 전송에 관련된 전송 공간 빔과 동일하게 구성되는 점에 기반하여 증가하는,
    임의 접속 과정 지원 방법.
  15. 컴퓨터 판독가능한 저장 매체에 있어서,
    상기 컴퓨터 판독가능한 저장 매체는, 적어도 하나의 프로세서에 의해 실행될 때, 상기 적어도 하나의 프로세서로 하여금 사용자기기를 위한 동작들을 수행하도록 하는 지시들을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장하며,
    상기 동작들은,
    제1 PRACH(Physical Random Access Channel) 및 제1 PUSCH(Physical Uplink shared Channel)를 포함하는 메시지 A를 송신하고,
    상기 메시지 A에 대한 응답으로, 경쟁 해결(contention resolution)에 관련된 메시지 B를 수신하는 것을 포함하고,
    상기 메시지 A의 전송 전력을 설정하기 위해 전력 램핑 카운터(ramping counter)가 사용되며,
    상기 전력 램핑 카운터의 값은, 상기 메시지 A의 전송을 위한 전송 공간 빔(transmission spatial beam)이 상기 메시지 A 이전의 PRACH의 전송에 관련된 전송 공간 빔과 동일하게 구성되는 점에 기반하여 증가하는,
    컴퓨터 판독가능한 저장 매체.
PCT/KR2020/013070 2019-09-25 2020-09-25 비면허 대역에서 임의 접속 과정을 수행하는 방법 및 이를 위한 장치 WO2021060912A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080067198.9A CN114451060A (zh) 2019-09-25 2020-09-25 在免授权频带中执行随机接入信道过程的方法及其装置
EP20869707.8A EP4027740A4 (en) 2019-09-25 2020-09-25 METHOD FOR PERFORMING DIRECT ACCESS CHANNEL METHODS IN AN UNLICENSED BAND AND APPARATUS THEREOF
KR1020227013780A KR102541189B1 (ko) 2019-09-25 2020-09-25 비면허 대역에서 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
US17/696,254 US11743831B2 (en) 2019-09-25 2022-03-16 Method for performing random-access channel procedure in unlicensed band, and device therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0118399 2019-09-25
KR20190118399 2019-09-25
KR20190120135 2019-09-27
KR10-2019-0120135 2019-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/696,254 Continuation US11743831B2 (en) 2019-09-25 2022-03-16 Method for performing random-access channel procedure in unlicensed band, and device therefor

Publications (1)

Publication Number Publication Date
WO2021060912A1 true WO2021060912A1 (ko) 2021-04-01

Family

ID=75165920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013070 WO2021060912A1 (ko) 2019-09-25 2020-09-25 비면허 대역에서 임의 접속 과정을 수행하는 방법 및 이를 위한 장치

Country Status (5)

Country Link
US (1) US11743831B2 (ko)
EP (1) EP4027740A4 (ko)
KR (1) KR102541189B1 (ko)
CN (1) CN114451060A (ko)
WO (1) WO2021060912A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114980144B (zh) * 2022-05-25 2024-04-02 东南大学 低时延下评估多信道免授权重传方案概率的方法
WO2024065249A1 (en) * 2022-09-28 2024-04-04 Qualcomm Incorporated Timing advance with multiple prach transmissions using different spatial filters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190012092A (ko) * 2017-07-26 2019-02-08 삼성전자주식회사 안테나 어레이를 사용하는 무선 통신을 위한 방법 및 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11116006B2 (en) * 2016-12-16 2021-09-07 Qualcomm Incorporated Uplink transmission parameter selection for random access initial message transmission and retransmission
EP3471495B1 (en) * 2017-03-07 2021-09-01 LG Electronics Inc. Method and user equipment for transmitting random access preamble
US20180332625A1 (en) * 2017-05-12 2018-11-15 Mediatek Inc. Apparatuses and methods for beam selection during a physical random access channel (prach) transmission or retransmission
WO2018231553A2 (en) * 2017-06-16 2018-12-20 Intel IP Corporation Power ramping and control in new radio (nr) devices
WO2019119317A1 (zh) * 2017-12-20 2019-06-27 Oppo广东移动通信有限公司 用于传输随机接入前导的方法和终端设备
US11038577B2 (en) * 2018-02-27 2021-06-15 Qualcomm Incorporated Power ramping for random access channel (RACH) preamble transmissions with beam switching
KR20200140311A (ko) * 2018-04-04 2020-12-15 콘비다 와이어리스, 엘엘씨 엔알 비허가 셀들과의 랜덤 액세스
US11013036B2 (en) * 2018-06-14 2021-05-18 Samsung Electronics Co., Ltd. Method and apparatus on enhancements of NR random access for unlicensed operations
US11350463B2 (en) * 2019-01-31 2022-05-31 Qualcomm Incorporated Random access channel (RACH) procedure power control

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190012092A (ko) * 2017-07-26 2019-02-08 삼성전자주식회사 안테나 어레이를 사용하는 무선 통신을 위한 방법 및 장치

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.101
3GPP TS 38.101-1
HUAWEI, HISICION: "timers and counters for two-steps RACH", 3GPP DRAFT; R2-1816604 TIMERS AND COUNTERS FOR TWO-STEP RACH_REVISED, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Spokane, USA ; 20181112 - 20181116, 2 November 2018 (2018-11-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 2, XP051480550 *
INTEL CORPORATION: "Enhancements to initial access and mobility for NR-unlicensed", 3GPP DRAFT; R1-1808686-INTEL-ENHANCEMENTS TO INITIAL ACCESS AND MOBILITY FOR NR-UNLICENSED, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20180820 - 20180824, 11 August 2018 (2018-08-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 4, XP051516061 *
NOKIA, NOKIA SHANGHAI BELL: "On 2-step RACH Procedure", 3GPP DRAFT; R1-1904716 ON 2-STEP RACH PROCEDURE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051699900 *
ZTE, SANECHIPS: "Further discussions on 2-step RACH procedures", 3GPP DRAFT; R1-1905990 FURTHER DISCUSSIONS ON 2-STEP RACH PROCEDURES-FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 13, XP051708032 *

Also Published As

Publication number Publication date
EP4027740A4 (en) 2023-10-04
EP4027740A1 (en) 2022-07-13
KR102541189B1 (ko) 2023-06-13
US11743831B2 (en) 2023-08-29
KR20220072856A (ko) 2022-06-02
CN114451060A (zh) 2022-05-06
US20220217641A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
WO2020032629A1 (ko) 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 상향링크 데이터를 전송하는 방법 및 그 장치
WO2021060916A1 (ko) 비면허 대역에서 임의 접속 과정을 수행하기 위한 신호를 송수신하는 방법 및 이를 위한 장치
WO2021091302A1 (en) Method and apparatus for selecting a sidelink resource for a sidelink csi reporting in a wireless communication system
WO2021071332A1 (ko) 무선통신시스템에서 사이드링크 신호를 송신하는 방법
WO2020032699A1 (ko) 비면허 대역에서 단말의 상향링크 공유 채널 전송 방법 및 상기 방법을 이용하는 장치
WO2020067776A1 (en) Configured grants based on channel quality or repetition level
WO2020032690A1 (ko) 비면허 대역에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 장치
WO2020032724A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 하향링크 신호 수신 방법 및 상기 방법을 이용하는 단말
WO2020027472A1 (ko) 공통 자원 블록 그리드에 관계 없는 기준점을 설정하는 방법 및 이를 위한 장치
WO2020145784A1 (ko) 비면허 대역에서 장치의 채널 접속 절차
WO2020032678A1 (ko) 비면허 대역에서 단말의 데이터 전송 방법 및 상기 방법을 이용하는 장치
WO2020032727A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 rach 전송 방법 및 상기 방법을 이용하는 단말
WO2020032725A1 (ko) 무선 통신 시스템에서 통신 장치에 의해 수행되는 동기화 신호 블록 전송 방법 및 상기 방법을 이용하는 통신 장치
WO2020060361A1 (ko) 비면허 대역에서 단말의 채널 접속 방법 및 상기 방법을 이용하는 장치
WO2020167098A1 (ko) 무선 통신 시스템에서 사전 설정된 자원을 이용한 상향링크 전송을 수행하는 방법 및 이를 위한 장치
WO2021034083A1 (ko) 무선통신시스템에서 사이드링크 신호를 송수신하는 방법
WO2020013623A1 (en) Method and apparatus for reducing user equipment power consumption in wireless communication system
WO2021091295A1 (en) Cancelling sl csi reporting in a wireless communication system
WO2021034075A1 (ko) 무선통신시스템에서 사이드링크 신호를 송수신하는 방법
WO2021206400A1 (ko) 채널 접속 절차를 수행하는 방법 및 이를 위한 장치
WO2021020903A1 (ko) 무선통신시스템에서 사이드링크 신호를 송신하는 방법
WO2021071268A1 (en) Method and apparatus for handling bwp switching based on priority in a wireless communication system
WO2021060912A1 (ko) 비면허 대역에서 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2020145788A1 (ko) 비면허 대역에서 기지국의 채널 접속 절차 수행
WO2022154568A1 (ko) 상향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020869707

Country of ref document: EP

Effective date: 20220406

ENP Entry into the national phase

Ref document number: 20227013780

Country of ref document: KR

Kind code of ref document: A