WO2021060908A1 - Supported hybrid catalyst and method for preparing polyolefin by using same - Google Patents

Supported hybrid catalyst and method for preparing polyolefin by using same Download PDF

Info

Publication number
WO2021060908A1
WO2021060908A1 PCT/KR2020/013052 KR2020013052W WO2021060908A1 WO 2021060908 A1 WO2021060908 A1 WO 2021060908A1 KR 2020013052 W KR2020013052 W KR 2020013052W WO 2021060908 A1 WO2021060908 A1 WO 2021060908A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
transition metal
alkyl
formula
supported catalyst
Prior art date
Application number
PCT/KR2020/013052
Other languages
French (fr)
Korean (ko)
Inventor
김선미
서의령
홍복기
송은경
홍대식
이시정
정철환
엄기주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200124243A external-priority patent/KR102568406B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2021526339A priority Critical patent/JP7118500B2/en
Priority to CN202080006137.1A priority patent/CN113039217B/en
Priority to EP20867639.5A priority patent/EP3865517A4/en
Priority to US17/294,743 priority patent/US20220017657A1/en
Publication of WO2021060908A1 publication Critical patent/WO2021060908A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention relates to a novel hybrid supported catalyst and a method for producing a polyolefin using the same.
  • Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed according to their respective characteristics.
  • Ziegler Natta catalysts have been widely applied to existing commercial processes since their invention in the 50s, but since they are multi-site catalysts with multiple active points, they are characterized by a wide molecular weight distribution of polymers. There is a problem in that there is a limit to securing desired physical properties because the composition distribution of is not uniform. In particular, physical properties may be deteriorated due to polymer chains having a relatively low molecular weight due to a wide molecular weight distribution.
  • the metallocene catalyst is composed of a combination of a main catalyst composed of a metallocene compound and a cocatalyst composed of an organometallic compound composed mainly of aluminum. , It has properties that can change copolymerization properties, molecular weight, crystallinity, etc.
  • U.S. Patent No. 5,032,562 describes a method of preparing a polymerization catalyst by supporting two different transition metal catalysts on one supported catalyst. This is a method of producing a bimodal distribution polymer by supporting a titanium (Ti)-based Ziegler-Natta catalyst producing high molecular weight and a zirconium (Zr)-based metallocene catalyst producing low molecular weight on one support. As a result, the supporting process is complicated, and the morphology of the polymer is deteriorated due to the cocatalyst.
  • U.S. Patent No. 5,525,678 describes a method of using a catalyst system for olefin polymerization in which a high molecular weight polymer and a low molecular weight polymer can be simultaneously polymerized by simultaneously supporting a metallocene compound and a non-metallocene compound on a carrier.
  • This has a disadvantage in that the metallocene compound and the non-metallocene compound must be separately supported, and the carrier must be pretreated with various compounds for the supporting reaction.
  • U.S. Patent No. 5,914,289 describes a method of controlling the molecular weight and molecular weight distribution of a polymer using a metallocene catalyst supported on each carrier, but it takes a lot of time and the amount of solvent used to prepare the supported catalyst. In addition, there was a hassle to support each of the metallocene catalysts used on the carrier.
  • chlorinated polyethylene is a product obtained by substituting a portion of hydrogen in polyethylene with chlorine, and is used as an impact modifier for polyvinyl chloride (PVC) or crosslinked to manufacture wire coverings or hoses. .
  • Chlorinated polyethylene which is used as a material for electric wire coating, is used in a heat-crosslinked structure by a peroxide-based crosslinking agent, which is a crosslinking agent.
  • a peroxide-based crosslinking agent which is a crosslinking agent.
  • it In order to prevent damage to the coating when the wire is bent, it must have excellent tensile strength in a crosslinked compound state.
  • the strength of the compound varies depending on the properties of the chlorinated polyolefin.
  • general-purpose chlorinated polyolefins which are widely known at present, since polyolefins using Ziegler-Natta catalysts are applied, the uniformity of chlorine distribution in the polyolefins is poor according to the wide molecular weight distribution, and the impact strength is insufficient when compounded with PVC.
  • HDPE high-density polyethylene
  • Mooney viscosity (MV) of the chlorinated polyolefin and the higher the Mooney viscosity of the compound the higher the tensile strength of the compound, but there is a problem of lowering the workability during compression.
  • the present invention is to provide a hybrid supported catalyst capable of producing a polyolefin having a molecular structure optimized for improving the tensile strength of a chlorinated polyolefin compound, particularly high density polyethylene.
  • the present invention is also to provide a method for producing a polyolefin capable of improving the tensile strength of a chlorinated polyolefin compound by using the aforementioned hybrid supported catalyst.
  • At least one first transition metal compound represented by the following formula (1) At least one second transition metal compound represented by the following formula (2); And a carrier on which the first and second transition metal compounds are supported.
  • M 1 is a Group 4 transition metal
  • Cp 1 and Cp 2 are the same as or different from each other, and each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals. One, and these may be substituted with C 1-20 hydrocarbons;
  • R 11 and R 12 are the same as or different from each other, and each independently hydrogen, C 1-20 alkyl, C 1-20 alkoxy, C 2-20 alkoxyalkyl, C 6-20 aryl, C 6-20 aryloxy, C 2-20 alkenyl, C 7-40 alkylaryl, C 7-40 arylalkyl, C 8-40 arylalkenyl, C 2-20 alkynyl, or selected from the group consisting of N, O and S C 2-20 heteroaryl containing one or more heteroatoms;
  • Z 1 is halogen, C 1-20 alkyl, C 2-20 alkenyl, C 7-40 alkylaryl, C 7-40 arylalkyl, C 6-20 aryl, substituted or unsubstituted C 1-20 alkylidene, Substituted or unsubstituted amino group, C 2-20 alkylalkoxy, or C 7-40 arylalkoxy;
  • n 1 or 0;
  • A is carbon or silicon
  • M 2 is a Group 4 transition metal
  • R 21 is C 6-20 aryl substituted with C 1-20 alkyl
  • R 22 is C 3-20 branched alkyl
  • R 23 to R 25 are each independently C 1-20 alkyl
  • Z 21 and Z 22 are each independently halogen or C 1-10 alkyl
  • n is an integer from 1 to 10.
  • the present invention provides a method for producing a polyolefin, comprising polymerizing an olefin-based monomer in the presence of a catalyst composition including the hybrid supported catalyst.
  • first and second are used to describe various components, and the terms are used only for the purpose of distinguishing one component from other components.
  • High tensile strength is required for chlorinated polyolefins used for covering rubber hoses or wires.
  • the tensile strength of the chlorinated polyolefin can be improved by increasing the Mooney viscosity of the chlorinated polyolefin or the Mooney viscosity of the compound, but in this case, there is a problem that the extrusion processability is deteriorated.
  • the produced polyolefin has a structure in which a polymer tail is formed in a molecular weight distribution curve with a minimum low molecular content, and thus a chlorinated polyolefin It was confirmed that the tensile strength can be improved by increasing the degree of crosslinking during the manufacture of, and the present invention was completed.
  • a hybrid supported catalyst includes at least one first transition metal compound represented by Formula 1; At least one second transition metal compound represented by Chemical Formula 2; And a carrier on which the first and second transition metal compounds are supported.
  • the C 1-20 alkyl group includes a linear or branched chain or cyclic alkyl group, and specifically, a methyl group (Me, methyl), an ethyl group (Et, Ethyl), a propyl group (Pr, Propyl), isopropyl group, n -Butyl group (n-Bu, n-Butyl), tert-butyl group (t-Bu, tert-Butyl)), pentyl group (Pt, Pentyl), hexyl group (Hx, Hexyl), heptyl group, octyl group, A cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like, but are not limited thereto.
  • the C 1-20 alkylene group includes a linear or branched alkylene group, and specifically, a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, and the like, but are limited thereto. It is not.
  • the C 4-20 cycloalkyl group refers to a cyclic alkyl group among the alkyl groups as described above, and specifically, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, etc. may be mentioned, but is not limited thereto. .
  • the C 2-20 alkenyl group includes a linear or branched alkenyl group, and specifically, an allyl group, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, and the like, but are not limited thereto.
  • the C 6-20 aryl group includes a monocyclic or condensed aryl group, and specifically, a phenyl group, a biphenyl group, a naphthyl group, a phenanthrenyl group, a fluorenyl group, and the like, but are not limited thereto.
  • Examples of the C 1-20 alkoxy group include, but are not limited to, a methoxy group, an ethoxy group, a phenyloxy group, and a cyclohexyloxy group.
  • the C 2-20 alkoxyalkyl group is a functional group in which at least one hydrogen of the alkyl group as described above is substituted with an alkoxy group, and specifically, methoxymethyl group, methoxyethyl group, ethoxymethyl group, iso-propoxymethyl group, iso-propoxy Alkoxyalkyl groups such as ethyl group, iso-propoxyhexyl group, tert-butoxymethyl group, tert-butoxyethyl group, and tert-butoxyhexyl group; Or an aryloxyalkyl group such as a phenoxyhexyl group, but is not limited thereto.
  • the C 1-20 alkylsilyl group or C 1-20 alkoxysilyl group is a functional group in which 1 to 3 hydrogens of -SiH 3 are substituted with 1 to 3 alkyl or alkoxy groups as described above, and specifically methylsilyl group, di Alkylsilyl groups such as methylsilyl group, trimethylsilyl group, dimethylethylsilyl group, dimethylmethylsilyl group, or dimethylpropylsilyl group; Alkoxysilyl groups such as methoxysilyl group, dimethoxysilyl group, trimethoxysilyl group, or dimethoxyethoxysilyl group; Alkoxyalkylsilyl groups, such as a methoxydimethylsilyl group, a diethoxymethylsilyl group, or a dimethoxypropylsilyl group, are mentioned, but are not limited thereto.
  • the C 1-20 silylalkyl group is a functional group in which at least one hydrogen of the alkyl group as described above is substituted with a silyl group, and specifically, -CH 2 -SiH 3 , a methylsilylmethyl group or a dimethylethoxysilylpropyl group, etc. may be mentioned. However, it is not limited to this.
  • the halogen may be fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).
  • the sulfonate group has a structure of -O-SO 2 -R', and R'may be a C 1-20 alkyl group.
  • the C 1-20 sulfonate group may include a methanesulfonate group or a phenylsulfonate group, but is not limited thereto.
  • the heteroaryl is a C 2-20 heteroaryl containing at least one of N, O, and S as a heterogeneous element, and specific examples include xanthene, thioxanthene, thiophene group, furan group, Pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, Quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group, carbazole group, benzoxazole group, benzoimidazole group
  • substituents are optionally a hydroxy group within the range of exhibiting the same or similar effect as the desired effect; halogen; An alkyl group or an alkenyl group, an aryl group, an alkoxy group; An alkyl or alkenyl group, an aryl group, or an alkoxy group including at least one hetero atom among the heteroatoms of groups 14 to 16; Silyl group; An alkylsilyl group or an alkoxysilyl group; Phosphine group; Phosphide group; Sulfonate group; And it may be substituted with one or more substituents selected from the group consisting of a sulfone group.
  • Group 4 transition metal may include titanium (Ti), zirconium (Zr), hafnium (Hf), and the like, but is not limited thereto.
  • the first transition metal compound represented by Formula 1 is easy to prepare a low molecular weight polymer with high polymerization activity, and the second transition metal compound is an ultra-high molecular weight polymer. It is easy to Accordingly, by adjusting the mixing ratio of the first and second transition metal compounds in the hybrid supported catalyst, the low molecular weight content in the prepared polymer is minimized, and the molecular weight distribution may be increased due to the ultra-high molecular weight characteristics of the second transition metal compound. , In addition, it can be easy to adjust the viscosity. In the production of the chlorinated polyolefin using the polymer thus prepared, the crosslinking efficiency is increased, and thus tensile strength may be improved.
  • the first transition metal compound represented by Formula 1 is a non-crosslinked compound including a ligand of Cp 1 and Cp 2.
  • the ligands of Cp 1 and Cp 2 may be the same or different from each other, and each independently a cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radical. It may be any one selected from the group consisting of, and these ligands may be substituted by 1 or more, or 1 to 3 , with C 1-20 hydrocarbons, more specifically C 1-10 alkyl.
  • the ligands of Cp 1 and Cp 2 may exhibit high polymerization activity by having a non-shared electron pair capable of acting as a Lewis base.
  • the ligands of Cp 1 and Cp 2 are cyclopentadienyl with relatively little steric hindrance , It exhibits high polymerization activity and low hydrogen reactivity, so that low molecular weight olefin polymers can be polymerized with high activity.
  • the ligands of Cp 1 and Cp 2 are, for example, the chemical structure, molecular weight, molecular weight distribution, mechanical properties, and transparency of the olefin polymer prepared by controlling the degree of steric hindrance according to the type of substituted functional group. The properties can be easily adjusted.
  • R 11 and R 12 are the same or different, each independently, hydrogen, C 1-20 alkyl, C It may be 2-20 alkoxyalkyl, C 6-20 aryl, C 7-20 arylalkyl, furanyl, or thiophenyl, and more specifically, C 1-10 alkyl such as n-butyl; C 2-10 alkoxyalkyl such as t-butoxyhexyl; C 6-20 aryl such as phenyl; C 7-20 arylalkyl such as phenylbutyl; It may be furanyl or thiophene.
  • R 11 and R 12 may each be a substituent as defined above, but at least one of R 11 and R 12 may be C 2-20 alkoxyalkyl or C 2-10 alkoxyalkyl.
  • M 1 (Z 1 ) 3-m exists between the ligands of Cp 1 and Cp 2 , and M 1 (Z 1 ) 3-m may affect the storage stability of the metal complex.
  • Z 1 may each independently be halogen or C 1-20 alkyl, and more specifically, each independently may be F, Cl, Br or I.
  • M 1 may be Ti, Zr or Hf, more specifically Zr or Hf, and even more specifically Zr.
  • M 1 is Ti, Zr or Hf;
  • Cp 1 and Cp 2 are the same as or different from each other, and each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals.
  • R 11 and R 12 are each independently hydrogen, C 1-20 alkyl, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-20 arylalkyl, furanyl, or thiophenyl, wherein At least one of R 11 and R 12 is C 2-20 alkoxyalkyl; Z 1 may be a halogen; phosphorus compound.
  • the first transition metal compound represented by Formula 1 may be, for example, a compound represented by one of the following structural formulas, but is not limited thereto:
  • M 1 is Zr
  • Cp 1 and Cp 2 are each independently an unsubstituted cyclopentadienyl group or at least one C 1-10 alkyl such as methyl A substituted cyclopentadienyl group
  • R 11 and R 12 are each independently hydrogen, C 1-20 alkyl, C 2-20 alkoxyalkyl, C 7-20 aryl or C 7-20 arylalkyl, wherein At least one or both of R 11 and R 12 are C 2-20 alkoxyalkyl, more specifically C 2-10 alkoxyalkyl, even more specifically t-butoxyhexyl group, and Z 1 is halogen Group
  • m may be a compound of 1.
  • the first transition metal compound represented by Formula 1 may be synthesized by applying known reactions. Specifically, a ligand compound is prepared through various synthesis processes, and then a metal precursor compound is added to perform metallation, but it is not limited thereto, and a more detailed synthesis method may be referred to the Examples. .
  • the second transition metal compound represented by Formula 2 forms a ligand structure in which an indene derivative and an amine derivative are crosslinked by a bridge compound, and a non-shared electron pair capable of acting as a Lewis base in the ligand structure
  • excellent polymerization activity can be exhibited.
  • structurally stable and electronically rich indene structures may exhibit high catalytic activity, and since the bridging group includes a tether group, excellent support stability for a carrier may be exhibited.
  • the second transition metal compound is substituted with a functional group (R 22 ) having a branched structure at position 2 of the indene structure, and by stabilizing beta-hydrogen in the polymer chain in which the nitrogen atom of the amine derivative grows by hydrogen bonding.
  • R 22 a functional group having a branched structure at position 2 of the indene structure
  • R 22 may be a branched alkyl of C 3-12 or C 3-6 such as isopropyl, isobutyl, t-butyl, isopentyl, and the like, and isopropyl, which is more advantageous in terms of steric effects. have.
  • the indene structure is R 21 at the 4 position, specifically, 1 or more, more specifically 1 or 2 C 6-20 aryl substituted with C 1-20 alkyl is bonded to supply sufficient electrons. Higher catalytic activity may be exhibited by a possible inductive effect. More specifically, in Formula 2, R 21 may be phenyl substituted with one or two C 3-6 branched alkyls such as 4-tert-butylphenyl and 3,5-ditert-butyl phenyl.
  • R 23 bonded to N in Formula 2 may be a C 1-20 linear or branched alkyl, and more specifically, a C 3-12 or C 3-6 branched alkyl such as t-butyl I can.
  • the transition metal compound is stericly stabilized, and the catalyst is stabilized by an electron supply effect, thereby exhibiting higher catalytic activity.
  • R 21 is phenyl substituted with one or two C 3-6 branched alkyl
  • R 22 and R 23 are each independently C 3-6 branched alkyl
  • R 22 may be isopropyl.
  • the bridge group includes a tethered group of -(CH 2 )nOR 25 capable of tethering to the carrier together with the functional group of R 24 . Accordingly, it is possible to exhibit excellent support stability, and to maintain excellent catalytic activity to prepare a high molecular weight polymer.
  • R 24 may be C 1-12 or C 1-6 linear or branched alkyl. More specifically, it may be C 1-4 straight-chain alkyl or methyl, and in the case of a straight-chain structure or methyl as described above, solubility may be increased to improve loading efficiency.
  • R 25 in the tether group may be C 1-12 or C 1-6 linear or branched alkyl. More specifically, it may be C 3-6 branched alkyl or t-butyl, and when it has a branched structure such as t-butyl, it can be easily detached and bonded to the carrier, thereby exhibiting excellent support stability.
  • n in the tether group may specifically be 3 to 8, or 4 to 6, and in this case, the tether group may have an appropriate length and thus stably exhibit catalytic activity with superior support stability.
  • A may be more specifically silicon (Si).
  • A is silicon
  • R 25 is C 3-6 branched alkyl
  • n may be an integer of 4 to 6.
  • the second transition metal compound of Formula 2 may include a Group 4 transition metal such as titanium (Ti), zirconium (Zr), and hafnium (Hf) as the central metal (M 2 ).
  • a Group 4 transition metal such as titanium (Ti), zirconium (Zr), and hafnium (Hf) as the central metal (M 2 ).
  • the catalyst increases the structural openness compared to the case where other Group 4 transition metals such as Zr and Hf are included, so that the catalyst provides more excellent polymerization activity. And can exhibit high molecular weight by stabilizing the catalyst through an electron supply effect.
  • Z 21 and Z 22 are each independently a halogen such as chloro; Or it may be C 1-4 alkyl such as methyl. More specifically, both Z 21 and Z 22 may be methyl, and in this case, Z 21 and Z 22 may exhibit better catalytic activity than when they are halogen.
  • M 2 is titanium, and Z 21 and Z 22 may each independently be C 1-4 alkyl.
  • A is silicon
  • M 2 is titanium
  • R 21 is phenyl substituted with one or two C 3-10 branched alkyl such as t-butyl
  • R 22 Is a C 3-6 branched alkyl such as isopropyl
  • R 23 is a C 3-6 branched alkyl such as t-butyl
  • R 24 is a C 1-4 straight chain alkyl such as methyl
  • R 25 is t- C 3-6 branched alkyl such as butyl
  • Z 21 and Z 22 are each independently C 1-4 alkyl such as methyl
  • n may be a compound having an integer of 4 to 6.
  • Representative examples of the second transition metal compound of Formula 2 include compounds having the following structures, but are not limited thereto:
  • the second transition metal compound described above may be prepared by lithiation (or lithium substitution) of the ligand compound of Formula 3 below, and then reacting with a Group 4 transition metal-containing halide:
  • R 21 to R 25 and n are as defined above.
  • Reaction Scheme 1 below shows a process for preparing the second transition metal compound of Formula 2 according to an embodiment of the present invention.
  • Scheme 1 below is only an example for explaining the present invention, but the present invention is not limited thereto.
  • Reaction Scheme 1 A, M 2 , R 21 to R 25 , Z 21 , Z 22 and n are the same as defined above, and X 1 and X 2 are each independently a halogen group.
  • the compound (2) of Formula 2 is lithiumized by reacting the ligand compound (3) of Formula 3 with alkyl lithium such as n-butyllithium (NBL), and then, TiCl 4 or the like. It can be prepared by reacting with the same Group 4 transition metal-containing halide (4).
  • alkyl lithium such as n-butyllithium (NBL)
  • TiCl 4 or the like it can be prepared by reacting with the same Group 4 transition metal-containing halide (4).
  • X 1 and X 2 in the compound (2) of Formula 2 are each C 1-10 alkyl, after lithiation, an alkylating agent for alkylation of metal M such as MMB (Methyl Magnesium Bromide) is additionally added. Can be put in.
  • MMB Metal Magnesium Bromide
  • the ligand compound (3) used in the preparation of the compound (2) of Formula 2 may be prepared through the same manufacturing process as in Scheme 2 below.
  • Scheme 2 below is only an example for explaining the present invention, but the present invention is not limited thereto.
  • R 21 to R 24 , and n are the same as previously defined, and X 3 and X 4 are each independently a halogen group.
  • the ligand compound (3) comprises the steps of reacting an indene-based compound (5) as a Cp unit with an alkyl lithium such as n-butyllithium (NBL) to make lithium; Reacting the resulting reactant with a raw material 6 for providing a tether group to prepare a compound 7 in which a tether group is bonded to an indene structure; And reacting the compound (7) with a primary amine (8) having a substituent of R 3 such as t-BuNH 2.
  • NBL n-butyllithium
  • the reaction in each step may be performed by applying known reactions, and a more detailed synthesis method may refer to the preparation example described later.
  • the hybrid supported catalyst includes the first and second transition metal compounds, and has a wide molecular weight distribution according to the formation of a polymer tail in a molecular weight distribution curve with a minimized low molecular weight, thereby producing chlorinated polyolefins and compounds.
  • Polyolefin, in particular, high-density polyethylene capable of improving tensile strength according to an increase in crosslinking degree can be produced very effectively.
  • the above-described effect may be further enhanced by controlling the mixing ratio of the first and second transition metal compounds in the hybrid supported catalyst.
  • the mixing molar ratio of the first and second transition metal compounds may be 1:3 to 3:1, or 1:1.5 to 2:1.
  • the catalytic activity may be increased, and the physical properties of the polyethylene produced may be further improved.
  • the second transition metal compound is a compound in which R 21 is phenyl substituted with one C 3-10 branched alkyl in Formula 2
  • the first transition metal compound and the second transition metal compound are 1:1.1 to 1 It is preferably included in a weight ratio of :3, or 1:1.2 to 1:1.5, and in the second transition metal compound, R 21 is substituted with two or more or two C 3-10 branched alkyls in Formula 2
  • the first transition metal compound and the second transition metal compound are preferably included in a weight ratio of 1:1 to 3:1, or 1.5:1 to 2:1.
  • the first and second transition metal compounds are included in a supported form.
  • the transition metal compound is used in the form of a supported catalyst as described above, the morphology and physical properties of the polyethylene produced may be further improved, and may be suitably used for slurry polymerization, bulk polymerization, and gas phase polymerization processes.
  • silica, alumina, magnesia, or a mixture thereof may be used as the carrier.
  • silica prepared by calcining silica gel, silica dried at high temperature, silica-alumina, and silica-magnesia may be used.
  • the carrier may contain oxides, carbonates, sulfates, and nitrate components such as Na 2 O, K 2 CO 3 , BaSO 4 , and Mg(NO 3 ) 2.
  • the temperature may be 200 to 600°C, and may be 250 to 600°C.
  • the calcination or drying temperature of the carrier is lower than 200°C, there is a possibility that the moisture on the surface and the cocatalyst may react because there is too much moisture remaining in the carrier. Although the rate may be relatively high, this requires a large amount of cocatalyst.
  • the drying or calcination temperature exceeds 600°C, the surface area decreases as the pores on the surface of the carrier are combined, and a lot of hydroxyl groups or silanol groups disappear on the surface, and only siloxane groups remain, reducing the reaction site with the cocatalyst. There is a fear of doing it.
  • the amount of hydroxy groups on the surface of the carrier can be controlled by a method and conditions for preparing the carrier or drying conditions such as temperature, time, vacuum or spray drying. If the amount of the hydroxy group is too low, the reaction site with the cocatalyst is small, and if it is too large, it may be due to moisture other than the hydroxy group present on the surface of the carrier particles.
  • the amount of hydroxy groups on the surface of the carrier may be 0.1 to 10 mmol/g or 0.5 to 5 mmol/g.
  • silica especially silica prepared by calcining silica gel, is supported by chemical bonding of the transition metal compound to the silica carrier, so that there is hardly any catalyst released from the surface of the carrier in the propylene polymerization process.
  • the polyolefin is produced by slurry polymerization or gas phase polymerization, fouling of the reactor wall or polymer particles entangled with each other can be minimized.
  • the total amount of the first and second transition metal compounds is 10 per weight of the carrier, for example, based on 1 g of silica. ⁇ mol or more, or 30 ⁇ mol or more, or 60 ⁇ mol or more, and may be supported in a content range of 120 ⁇ mol or less or 100 ⁇ mol or less. When supported in the above content range, it may be advantageous in terms of maintaining the activity of the catalyst by exhibiting an appropriate supported catalytic activity.
  • the hybrid supported catalyst having the above configuration exhibits excellent polymerization activity, and can prepare a chlorinated polyolefin or a polyolefin having an optimized structure for improving the tensile strength of the compound.
  • a method for producing a polyolefin including polymerizing an olefin-based monomer in the presence of a catalyst composition including the hybrid supported catalyst may be provided.
  • the catalyst composition includes the aforementioned hybrid supported catalyst.
  • the hybrid supported catalyst may be introduced into the polymerization reaction system by itself, or a C 5-12 aliphatic hydrocarbon solvent such as pentane, hexane, heptane, nonane, decane, and isomers thereof and aromatic hydrocarbons such as toluene and benzene. It may be dissolved or diluted in a solvent, a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane, or chlorobenzene, and then introduced into the reaction system.
  • the solvent used here is preferably used after removing a small amount of water or air acting as a catalyst poison by treating a small amount of alkyl aluminum.
  • the catalyst composition may further include at least one of a cocatalyst and an antistatic agent.
  • the catalyst composition may further include a cocatalyst in terms of improving high activity and process stability.
  • the cocatalyst may include one or more of the compounds represented by the following Chemical Formula 9, Chemical Formula 10, or Chemical Formula 11.
  • R a may be the same as or different from each other, and each independently halogen; Hydrocarbons of C 1-20; Or a halogen-substituted C 1-20 hydrocarbon;
  • n is an integer of 2 or more
  • R b may be the same as or different from each other, and each independently halogen; Hydrocarbons of C 1-20; Or a halogen-substituted C 1-20 hydrocarbon;
  • J is aluminum or boron
  • E is a neutral or cationic Lewis base
  • H is a hydrogen atom
  • Z is a group 13 element
  • Q may be the same as or different from each other, and each independently of one or more hydrogen atoms is substituted or unsubstituted with halogen, C 1-20 hydrocarbon, alkoxy or phenoxy, C 6-20 aryl group or C 1-20 It is an alkyl group.
  • Examples of the compound represented by Formula 9 include C 1-20 alkylaluminoxane-based compounds such as methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, or butylaluminoxane, and any one or two of them Mixtures of the above can be used.
  • examples of the compound represented by Formula 10 include trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethyl chloro aluminum, triisopropyl aluminum, tri-s-butyl aluminum, tricyclo Pentyl aluminum, tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri-p-tolyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide , Trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron, tributyl boron, and the like. More specifically, it may be selected from trimethyl aluminum, triethyl aluminum, and triisobutyl aluminum.
  • examples of the compound represented by Formula 11 include triethyl ammonium tetraphenyl boron, tributyl ammonium tetraphenyl boron, trimethyl ammonium tetraphenyl boron, tripropyl ammonium tetraphenyl boron, trimethyl ammonium tetra (p- Tolyl) boron, trimethylammonium tetra (o,p-dimethylphenyl) boron, tributyl ammonium tetra (p-trifluoromethylphenyl) boron, trimethyl ammonium tetra (p-trifluoromethylphenyl) boron, tributyl ammony Um tetrapentafluorophenyl boron, N,N-diethylanilinium tetraphenyl boron, N,N-diethylanilinium tetrapentafluorophenyl boron,
  • the cocatalyst when considering the fact that it can exhibit more excellent catalytic activity when used with the transition metal compound, is a compound represented by Formula 9, more specifically, C 1 such as methylaluminoxane. It may be an alkylaluminoxane-based compound of -20.
  • the alkylaluminoxane-based compound acts as a scavenger of hydroxyl groups present on the surface of the carrier to improve catalytic activity, and converts the halogen group of the catalyst precursor to a methyl group to promote chain growth during polymerization of polyethylene. .
  • the cocatalyst may be supported in an amount of 0.1 mmol or more, 0.15 mmol or more, or 5 mmol or more, or 8 mmol or more, or 10 mmol or more, 25 mmol or less, or 20 mmol or less per weight of the carrier, for example, based on 1 g of silica. have.
  • 0.1 mmol or more 0.15 mmol or more, or 5 mmol or more, or 8 mmol or more, or 10 mmol or more, 25 mmol or less, or 20 mmol or less per weight of the carrier, for example, based on 1 g of silica. have.
  • the catalyst composition may further include an antistatic agent.
  • an antistatic agent an ethoxylated alkyl amine, specifically, a compound represented by the following Formula 12 may be used.
  • the catalyst composition includes an antistatic agent, generation of static electricity is suppressed in the polyethylene polymerization process, so that the physical properties of the polyethylene produced may be further improved.
  • R may be C 8-30 alkyl, and when R includes an alkyl group having a carbon number in the above range, it may exhibit a fine powder reduction effect through an excellent antistatic action without causing an unpleasant odor.
  • the ethoxylated alkylamine may be a compound in which R in Formula 1 is C 8-22 linear alkyl, C 10-18 linear alkyl, or C 13-15 linear alkyl, , One of these compounds alone or a mixture of two or more may be used. Specific examples include N,N-bis(2-hydroxyethyl)tridecylamine, or N,N-bis(2-hydroxyethyl)pentadecylamine, and the like, commercially available Atmer 163TM (manufactured by CRODA), and the like may be used.
  • the carrier for example, 0.5 parts by weight or more, or 1 part by weight or more, or 2 parts by weight or more, 20 parts by weight or less, or 10 parts by weight or less, or 7 It may be included in an amount less than or equal to parts by weight.
  • the cocatalyst and the antistatic agent may be used in combination with the aforementioned hybrid supported catalyst, respectively, or may be used while being supported on a carrier in the hybrid supported catalyst.
  • the catalyst composition includes the steps of supporting a cocatalyst compound on the carrier, and supporting a transition metal compound on the carrier; And injecting an antistatic agent in a slurry state and heat-treating the carrier on which the cocatalyst and the transition metal compound are supported.
  • the loading of the transition metal compound may be carried out after the loading of the first transition metal compound, or may be carried out vice versa.
  • a supported catalyst having a structure determined according to such a supporting sequence may exhibit higher catalytic activity and excellent process stability in the manufacturing process of polyolefin.
  • the catalyst composition may be used in the form of a slurry or diluted in a solvent depending on the polymerization method, or may be used in the form of a mud catalyst mixed with a mixture of oil and grease.
  • the solvent is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms suitable for the polymerization process of propylene monomers, such as pentane, hexane, heptane, nonane, decane, and these Isomers and aromatic hydrocarbon solvents such as toluene and benzene, or hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene, and any one or a mixture of two or more of them may be used.
  • the catalyst composition may further include the above-described solvent, and a small amount of water or air, which may act as a catalyst poison, may be removed by treating the solvent with a small amount of alkyl aluminum before use.
  • the catalyst composition may be used in the form of a mud catalyst mixed with a mixture of oil and grease.
  • the amount of the volatile organic compound contained in the homopolyethylene to be produced can be further reduced, and as a result, the odor caused by the volatile organic compound can also be reduced. I can.
  • the polymerization reaction for the production of polyolefin may be performed by homopolymerization with one olefinic monomer or by copolymerization of two or more monomers using one continuous slurry polymerization reactor, a loop slurry reactor, a gas phase reactor, or a solution reactor.
  • the polymerization reaction may be carried out in a slurry phase polymerization in a hydrocarbon-based solvent (eg, an aliphatic hydrocarbon-based solvent such as hexane, butane, and pentane).
  • a hydrocarbon-based solvent eg, an aliphatic hydrocarbon-based solvent such as hexane, butane, and pentane.
  • the first and second transition metal compounds according to the present invention exhibit excellent solubility in aliphatic hydrocarbon-based solvents, they are stably dissolved and supplied to the reaction system, so that the polymerization reaction can proceed effectively.
  • the method of manufacturing a polyolefin according to an embodiment of the present invention may be carried out in a single-CSTR reactor (Single-CSTR Reactor).
  • polymerization may proceed in the presence of an inert gas such as nitrogen.
  • the inert gas may play a role of prolonging the reaction activity of the metallocene compound contained in the catalyst by suppressing the rapid reaction of the metallocene catalyst at the beginning of the polymerization reaction.
  • hydrogen gas may be used for the purpose of controlling the molecular weight and molecular weight distribution of the polyolefin.
  • Hydrogen gas activates the inert site of the metallocene catalyst and plays a role of controlling the molecular weight by causing a chain transfer reaction.
  • hydrogen gas When hydrogen gas is added during the polymerization reaction, 0.1% by volume or more with respect to the total volume of the olefin monomer, Alternatively, it may be added in an amount corresponding to 0.12% by volume or more, 0.2% by volume or less, and 0.18% by volume or less.
  • processability can be improved by reducing the molecular weight of the polymer to be produced.
  • the temperature during the polymerization reaction may be 70 to 100 °C, or 80 to 90 °C. If the polymerization reaction temperature is too low, it is not appropriate in terms of the polymerization rate and productivity. Conversely, if the polymerization reaction temperature is higher than necessary, fouling in the reactor may be caused.
  • the pressure during the polymerization reaction is 6.8 to 9 kg/cm 2 , more specifically 6.8 kg/cm 2 or more, or 7.0 kg/cm 2 Or more, or 8.0 kg/cm 2 Or more, and may be 9 kg/cm 2 or less or 8.7 kg/cm 2 or less.
  • the polymerization reaction pressure may be 6.8 kg/cm 2 or more in terms of preventing blocking due to excessive generation of high molecular weight and optimizing productivity , and 9 kg/cm 2 or less in consideration of prevention of side reactions under high-pressure polymerization conditions. Can be.
  • an organic solvent may be further used as a reaction medium or diluent in the polymerization reaction.
  • Such an organic solvent may be used in an amount such that slurry polymerization or the like can be properly performed in consideration of the content of the olefinic monomer.
  • trialkyl aluminum such as triethyl aluminum may be optionally further added during the polymerization reaction.
  • alkyl is as defined above, specifically C 1-20 alkyl, and more specifically C 1-6 straight or branched chain alkyl, such as methyl, ethyl, isobutyl, etc. I can.
  • the trialkyl aluminum (based on 1M) may be added in an amount of 300 ppm or more, or 400 ppm or more, 1500 ppm or less, or 1350 ppm or less based on the total weight of the ethylene monomer, and the presence of trialkyl aluminum in this content range Under the polymerization reaction, it is possible to more easily prepare a homopolyethylene having excellent strength properties.
  • the olefinic monomer may be ethylene, alpha-olefin, cyclic olefin, diene olefin or triene olefin having two or more double bonds.
  • olefinic monomer ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-itocene, norbornene, nobornadiene, ethylidene nobornene, phenyl norbornene, vinyl norbornene, dicyclopentadiene, 1,4-butadiene , 1,5-pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, and the like, and two or more of these monomers may be mixed and copolymerized.
  • the polyolefin prepared by the above-described manufacturing method exhibits a multimodal molecular weight distribution when analyzed by gel permeation chromatography (GPC), and has a broad molecular weight distribution with a minimized low molecular weight.
  • GPC gel permeation chromatography
  • the polyolefin has an area ratio occupied by an area of log Mw of 3.5 or less relative to the total area of the distribution curve of 1.4% or less and a molecular weight distribution of 6 to 15.
  • the polyolefin draws a molecular weight distribution curve with the log value (log Mw) of the weight average molecular weight (Mw) as the x-axis, and the molecular weight distribution (dwt/dlog Mw) with the log value as the y-axis
  • log Mw log value of the weight average molecular weight
  • dwt/dlog Mw molecular weight distribution with the log value as the y-axis
  • the area ratio occupied by an area having a log Mw of 3.5 or less means a low molecular weight content of 10 3.5 g/mol or less of the weight average molecular weight (Mw) of the polyolefin. As described above, by minimizing the low molecular weight, excellent crosslinking properties can be displayed.
  • the polyolefin has a wide molecular weight distribution (PDI) according to the formation of a polymer tail in the molecular weight distribution curve.
  • PDI wide molecular weight distribution
  • the PDI of the polyolefin is 6 or more, or 6.1 or more, and 15 or less, or 12 or less.
  • the molecular weight distribution (PDI, polydispersity index) of the polyolefin can be calculated by measuring the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polyolefin, and dividing the weight average molecular weight by the number average molecular weight.
  • the low molecular weight, weight average molecular weight, and number average molecular weight in the polyolefin can be measured through gel permeation chromatography (GPC, gel permeation chromatography, manufactured by Water Corporation), and a specific measurement method is as described in the following test examples. same.
  • polyolefin may further satisfy the conditions of one or more of the following (i) to (viii), or two or more, or both, along with the low molecular weight content and molecular weight distribution characteristics described above:
  • the polyolefin has a fractional ratio at log Mw of 3.5 to 4.0 or less (3.5 ⁇ log Mw ⁇ 4.0) to reduce crosslinking efficiency, that is, the weight average molecular weight (Mw) is greater than 10 3.5 g/mol, and 10 4.0 g/
  • the content of the low molecular weight less than or equal to mol may be 5% or less, or 4.8% or less, or 4.5% or less, and may be 1% or more, or 3% or more, and thus the fraction ratio at log Mw 4.0 or less in the polyolefin, that is, the weight average molecular weight (Mw) 10
  • the content of the low molecular weight of 4.0 g/mol or less may be 6% or less, more specifically 5.5% or less.
  • the low molecular weight content in the polyolefin in particular, the low molecular weight content of Mw 10 4. 0 g/mol or less is high, the low molecular weight component melts and the fluidity increases, which may block the pores of the polyolefin particles, thereby lowering the chlorination productivity.
  • the polyolefin may exhibit an excellent crosslinking degree improvement effect without fear of a decrease in chlorination productivity.
  • the polyolefin has a high weight average molecular weight (Mw), specifically, Mw is 185,000 g/mol or more, or 190,000 g/mol or more, and 500,000 g/mol or less, or 350,000 g/mol or less.
  • Mw weight average molecular weight
  • PDI weight average molecular weight
  • the polyolefin has a complex viscosity ( ⁇ *( ⁇ 500), complex viscosity) of 790 Pa ⁇ s or more and 810 Pa ⁇ s or less, measured at a frequency of 500 rad/s. It is suitable for manufacturing.
  • the complex viscosity of the polyolefin can be measured at a temperature of 190°C and a frequency ( ⁇ ) of 0.05 rad/s using ARES (Advanced Rheometric Expansion System). As described.
  • the polyolefin has a melt flow rate ratio (MFRR, Melt flow rate ratio, MI 21.6 / MI 5 ) of 25 or less, or 20 or less, or 18 or less, 10 or more, or 10.3 or more, and a melt index (MI 5.0 , condition E, 190°C, 5.0 kg load) may be 0.5 g/10min or more, or 0.8 g/10min or more, or 1 g/10min or more, and 3 g/10min or less, or 2.5 g/10min or less.
  • MI 5.0 , condition E, 190°C, 5.0 kg load may be 0.5 g/10min or more, or 0.8 g/10min or more, or 1 g/10min or more, and 3 g/10min or less, or 2.5 g/10min or less.
  • the melt index (Melt Index, MI 5.0 ) of the polyolefin can be measured according to ASTM D1238 (condition E, 190°C, 5.0 kg load).
  • the Melt Flow Rate Ratio (MFRR, 21.6/5) can be calculated by dividing MFR 21.6 by MFR 5 , and the MFR 21.6 is measured under a temperature of 190°C and a load of 21.6 kg according to ASTM D 1238.
  • MFR 5 can be measured under a temperature of 190°C and a load of 5 kg according to ASTM D 1238.
  • the polyolefin is 0.94 g/cm 3 or more, or 0.945 g/cm 3 or more, and 0.96 g/cm 3 or less, or 0.955 g/cm 3 It shows the following high density. This means that the content of the crystal structure of the polyolefin is high and dense, and this has a characteristic that it is difficult to change the crystal structure during the chlorination process.
  • the density of the polyolefin can be measured by a method based on ASTM D-1505.
  • the polyolefin may have an MDR torque (M H -M L ) of 7.5 Nm or more, or 8 Nm or more or 8.5 Nm or more, or 12 Nm or less, or 11.5 Nm or less.
  • MDR torque M H -M L
  • the MDR torque (M H -M L ) of the polyolefin refers to the degree of crosslinking, and the higher the degree of crosslinking, the higher the M H -M L , and it means that the crosslinking efficiency is excellent when the same crosslinking agent is applied.
  • the MDR torque of the polyolefin can be measured using a moving die rheometer (MDR) as an example, by measuring the M H value and the M L value under conditions of 180°C and 10 min, and subtracting the M L value from the M H value. Can be calculated.
  • M H is the maximum vulcanizing torque measured in full cure
  • M L is the stored minimum vulcanizing torque.
  • the specific measurement method is as described in the test examples below.
  • the polyolefin may be a homopolymer of an olefin that does not contain a separate comonomer, such as an ethylene homopolymer.
  • a separate comonomer such as an ethylene homopolymer.
  • the polyolefin is, for example, an ethylene homopolymer, preferably a high-density polyethylene (HDPE) that satisfies the above-described density condition, the above-described physical properties may be more appropriately satisfied.
  • the high-density polyethylene has excellent softening point, hardness, strength, and electrical insulation, and can be used in various containers, packaging films, fibers, pipes, packings, insulating materials, and the like.
  • the polyolefin prepared using the hybrid supported catalyst according to the present invention has an optimized molecular structure such as a wide molecular weight distribution with a minimized low molecular content, so that the degree of crosslinking can be increased when preparing a chlorinated polyolefin, As a result, the tensile strength can be greatly improved. This may be particularly useful in the production of chlorinated polyolefins for wires or cables.
  • a method for producing a chlorinated polyolefin comprising the step of chlorinating the polyolefin prepared by the above-described method with chlorine.
  • the hybrid supported catalyst according to the present invention includes two or more kinds of transition metal compounds having a specific chemical structure, so that a polyolefin having a molecular structure optimized for improving the tensile strength of a chlorinated polyolefin compound, in particular, a high-density polyethylene can be prepared.
  • tert-Butyl-O-(CH 2 ) 6 -Cl was prepared by the method suggested in the literature (Tetrahedron Lett. 2951 (1988)), and NaCp was reacted thereto.
  • tert-Butyl-O-(CH 2 ) 6 -C 5 H 5 was obtained (yield 60%, bp 80°C / 0.1mmHg).
  • t-Butyl-O-(CH 2 ) 6 -C 5 H 5 was dissolved in THF at -78°C, and normal butyllithium (n-BuLi) was slowly added, the temperature was raised to room temperature, and then reacted for 8 hours. .
  • the previously synthesized lithium salt solution was slowly added to the suspension solution of ZrCl 4 (THF) 2 (1.70 g, 4.50 mmol)/THF (30 mL) at -78°C again at room temperature. It was further reacted for 6 hours at.
  • the ligand compound (2a) (4.81 g, 8.6 mmol) prepared in step 1 was added to a 100 ml shrink flask, and toluene (43 ml) was added, followed by cooling to -20°C or less. After sufficiently cooling through stirring for 5 minutes, lithiation was performed by adding NBL (7.2ml, 2.5M in Hexane) to the resulting mixed solution. It was confirmed that the color of the mixed solution changed from light yellow to dark yellow after lithiation.
  • the ligand compound 1-(6-(tert-butoxy)hexyl)-N-(tert-butyl)-1-(4-(3,5-di-tert-butylphenyl) prepared in step 1 -2-isopropyl-1H-inden-1-yl)-1-methylsilanamine (2.4g, 3.9mmol) was added, toluene (13ml) was added, and then cooled to -20°C or less. After sufficiently cooling through stirring for 5 minutes, NBL (5.1ml, 2.5M in Hexane) was added to the resulting mixed solution to perform lithiation. It was confirmed that the color of the mixed solution turned brown after lithiation.
  • the ligand compound prepared in step 1 1-(6-(tert-butoxy)hexyl)-N-(tert-butyl)-1-(4-(4-(tert-butyl)phenyl)- Toluene (43ml) was added to 2-methyl-1H-inden-1-yl)-1-methylsilanamine (4.6g, 8.6mmol), and then cooled to -20°C or less. After sufficiently cooling through stirring for 5 minutes, NBL (7.2ml, 2.5M in Hexane) was added to the resulting mixed solution to perform lithiation. It was confirmed that the color of the mixed solution changed from light yellow to dark yellow after lithiation.
  • the resulting reaction solution was cooled to 0°C, MMB (8.6ml, 3M in ether) was added, and then the temperature was immediately lowered to -20°C, and TiCl 4 (8.6ml, 1M in toluene) Was put in.
  • smoke was generated and the reaction solution immediately turned brown.
  • o/n stirring was performed, and after completion, the salt was removed through a filter to obtain a transition metal compound (A) having the following structure as a brown oil (brown oil, 3.9 g, yield 74% (molar basis)).
  • the ligand compound 1-(6-(tert-butoxy)hexyl)-N-(tert-butyl)-1-(4-(3,5-di-tert-butylphenyl) prepared in step 1 -2-isopropyl-1H-inden-1-yl)-1-methylsilanamine (1.98g, 3.9mmol) was added, toluene (13ml) was added, and then cooled to -20°C or less. After sufficiently cooling through stirring for 5 minutes, NBL (5.1ml, 2.5M in Hexane) was added to the resulting mixed solution to perform lithiation. After lithiation, it was confirmed that the color of the mixed solution turned yellow.
  • a transition metal compound (C) having the following structure prepared by a known method was used.
  • a transition metal compound (D) having the following structure prepared by a known method was used.
  • Silica (SYLOPOL 948TM, manufactured by Grace Davision) was dehydrated and dried under vacuum at 600° C. for 12 hours.
  • a hybrid supported catalyst was prepared in the same manner as in Preparation Example 2, except that the first and second transition metal compounds in Preparation Example 2 were used in the amounts shown in Table 1 below.
  • a hybrid supported catalyst was carried out in the same manner as in Preparation Example 1, except that the transition metal compound (A) prepared in Comparative Synthesis Example 2-1 was used instead of the second transition metal compound in Preparation Example 1 was prepared.
  • the transition metal compound (B) prepared in Comparative Synthesis Example 2-2 was used, and the first and second transition metal compounds were added in the amounts shown in Table 1 below. Except for using, it was carried out in the same manner as in Preparation Example 1, to prepare a hybrid supported catalyst.
  • the transition metal compound (C) prepared in Comparative Synthesis Example 2-3 was used, and the first and second transition metal compounds were added in the amounts shown in Table 1 below. Except for using, it was carried out in the same manner as in Preparation Example 1, to prepare a hybrid supported catalyst.
  • the transition metal compound (D) prepared in Comparative Synthesis Example 2-4 was used, and the first and second transition metal compounds were added in the amounts shown in Table 1 below. Except for using, it was carried out in the same manner as in Preparation Example 1, to prepare a hybrid supported catalyst.
  • a 2L metal alloy reactor was prepared, which was equipped with a mechanical stirrer, controlled temperature, and used for high-pressure reaction. After vacuum drying the reactor at 120° C., cooling, 0.9 kg of purified n-hexane was added, and 1350 ppm of triethyl aluminum (1M solution in Hexane) was added at room temperature, and the metallocene supported catalyst prepared in Preparation Example 1 above. 15 mg was added to the reactor. Thereafter, the temperature of the reactor was gradually increased to 80° C. and a polymerization process was performed for 2 hours.
  • polyethylene was prepared in the same manner as in Example 1, except that the catalyst and polymerization conditions were changed.
  • High-density polyethylene (CE2080TM, manufactured by LG Chem.) prepared using a Ziegler-Natta catalyst was used.
  • polyethylene was prepared in the same manner as in Example 1, except that the catalyst and polymerization conditions were changed.
  • the activity of the transition metal compound used in the preparation of the hybrid supported catalyst of the present invention as a sole catalyst was evaluated. Specifically, homopolyethylene was prepared by using the transition metal compound prepared in Synthesis Example and Comparative Synthesis Example as a single catalyst, respectively, and the polymerization activity and the weight average molecular weight (Mw) and molecular weight distribution (PDI) of the prepared polymer were respectively It was measured. The results are shown in Table 2 below.
  • Silica gel (SYLOPOL 952XTM, calcinated under 250°C, 7g) was placed in a glass reactor under argon (Ar), and 53.1 mL of a 10 wt% methylaluminoxane (MAO) toluene solution (corresponding to 10 mmol per 1 g of silica) was added at room temperature It was slowly injected and stirred at 95°C for 12 hours. After completion of the reaction, it was cooled to room temperature and left for 15 minutes to decant the solvent using a cannula. 50 mL of toluene was added, stirred for 1 minute, and allowed to stand for 15 minutes, and the solvent was decanted using a cannula.
  • MAO methylaluminoxane
  • a 600ml metal alloy reactor was prepared that was equipped with a mechanical stirrer, the temperature can be controlled, and can be used for high-pressure reaction.
  • the reactor was vacuum-dried at 120°C, cooled, and 450 ppm of triethylaluminum (1M solution in Hexane) was added at room temperature, and 15 mg of the transition metal compound supported catalyst of Synthesis Example or Comparative Synthesis Example prepared above was added to the reactor. I did. Thereafter, the temperature of the reactor was gradually increased to 80° C. and the polymerization process was performed for 1 hour. At this time, ethylene gas was continuously injected so that the pressure of the reactor was maintained at about 9kgf/cm 2. After completion of the reaction, unreacted ethylene was vented.
  • Polymerization activity (Activity, kg PE/g cat . hr): It was calculated as the ratio of the weight of the produced polymer (kg PE) per mass (g) of the supported catalyst used based on the unit time (h).
  • Weight average molecular weight (Mw, g/mol) and molecular weight distribution (PDI, polydispersity index) The weight average molecular weight (Mw) and number average molecular weight (Mn) were measured using gel permeation chromatography (GPC), respectively. Then, the molecular weight distribution was calculated with the ratio of Mw/Mn. Specifically, it was measured using a Waters PL-GPC220 instrument using a Polymer Laboratories PLgel MIX-B 300 mm length column. At this time, the evaluation temperature was 160°C, 1,2,4-trichlorobenzene was used as a solvent, and the flow rate was 1 mL/min.
  • the sample was prepared at a concentration of 10 mg/10 mL, and then supplied in an amount of 200 ⁇ L.
  • the values of Mw and Mn were derived using a calibration curve formed using polystyrene standards.
  • the molecular weight (g/mol) of the polystyrene standard was 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000.
  • the first and second transition metal compounds used in the preparation of the hybrid supported catalyst according to the present invention exhibited excellent polymerization activity even when used as a single catalyst.
  • the polymerization activity was 0.9 kg PE/g cat . It is very low as hr, and it can be expected that the effect of improving the catalytic activity and the polymer properties accordingly is deteriorated even when used as a hybrid supported catalyst.
  • Catalyst activity (Activity, kg PE/g cat . hr): During polymerization of polyethylene according to Examples and Comparative Examples, the activity of the catalyst was evaluated. It was calculated as the ratio of the weight of the produced polymer (kg PE) per mass (g) of the supported catalyst used based on the unit time (h).
  • Weight average molecular weight (Mw, g/mol) and molecular weight distribution (PDI, polydispersity index) Using gel permeation chromatography (GPC) for the polyethylene prepared in the above Examples and Comparative Examples, the weight average molecular weight (Mw) ) And the number average molecular weight (Mn) were measured, respectively, and the molecular weight distribution (PDI) was calculated from the ratio of Mw/Mn.
  • GPC gel permeation chromatography
  • MI 5.0 and MFRR (21.6 / 5) Melt Index of the polyethylene prepared in Examples and Comparative Examples (MI 5. 0) is according to ASTM D1238 (condition E, 190 °C, 5.0 kg load) Standards It was measured. In addition, the melt flow rate ratio (MFRR, 21.6/5) to polyethylene was calculated by dividing MFR 21.6 by MFR 5 , and MFR 21.6 was measured under a temperature of 190°C and a load of 21.6 kg according to ASTM D 1238. And, MFR 5 was measured under a temperature of 190 °C and a load of 5.0 kg according to ASTM D 1238.
  • the complex viscosity of polyethylene was measured at a frequency ( ⁇ ) of 0.05 rad/s with ARES (Advanced Rheometric Expansion System, ARES G2) of TA instruments. Samples were made to have a gap of 2.0 mm using parallel plates with a diameter of 25.0 mm at 190°C. The measurement was performed in a dynamic strain frequency sweep mode, where the strain was 5%, the frequency was from 0.05 rad/s to 500 rad/s, and a total of 41 points were measured with 10 points in each decade.
  • ARES Advanced Rheometric Expansion System
  • Density The density (g/cm 3 ) of polyethylene was measured by the method of ASTM D-1505.
  • the GPC analysis was specifically performed under the following conditions.
  • a Waters PL-GPC220 instrument was used as the GPC device, and a Polymer Laboratories PLgel MIX-B 300 mm long column was used. At this time, the measurement temperature was 160°C, 1,2,4-trichlorobenzene was used as a solvent, and the flow rate was 1 mL/min. Polyethylene samples according to Examples and Comparative Examples were pretreated by dissolving in trichlorobenzene (1,2,4-Trichlorobenzene) containing 0.0125% BHT for 10 hours at 160° C. using a GPC analyzer PL-GP220, respectively, and 10 mg After preparing to a concentration of /10 mL, it was supplied in an amount of 200 ⁇ L.
  • Mw and Mn were derived using a calibration curve formed using a polystyrene standard specimen.
  • the weight average molecular weight of the polystyrene standard specimen is 2000 g/mol, 10000 g/mol, 30000 g/mol, 70000 g/mol, 200000 g/mol, 700000 g/mol, 2000000 g/mol, 4000000 g/mol, 10000000 g 9 types of /mol were used.
  • the MDR torque value of each polyethylene sample was measured using Alpha Technologies Production MDR (Moving Die Rheometer).
  • M H is the maximum vulcanizing torque measured in full cure
  • M L is the stored minimum vulcanizing torque.
  • the hybrid supported catalysts used in Examples 1 to 3 exhibited superior catalytic activity at an equivalent level or higher compared to the catalysts used in Comparative Examples, and in particular, the hybrid supported catalysts in Examples 1 and 2 were It showed a higher catalytic activity than that.
  • the polyethylenes of Examples 1 to 3 prepared using the hybrid supported catalyst had a fraction ratio of less than or equal to 3.5 in log Mw of 3.5 or less, and a fractional ratio of more than 3.5 to less than or equal to 4.0 of log Mw was also 4.65% or less, compared Compared to the examples, it exhibited a significantly reduced low molecular weight, and at the same time exhibited a broad molecular weight distribution of 6.1 or more. In addition, it can be seen that the MDR torque is 7.7 or more, which has a higher degree of crosslinking than the comparative example.
  • Example 3 it was superior to the comparative example, but exhibited the effect of reducing the low molecular weight and improving the crosslinking degree slightly lower than in Examples 1 and 2. This result is due to the difference in the catalyst used in the production of polyethylene, and Example 3 contains the same combination of transition metal compounds as in Example 2, but the mixing ratio is different, and the first and second examples are different from those of Example 1. 2 The conditions for the mixing ratio of the transition metal compound are the same, but the structure of the second transition metal compound is different.
  • the hybrid supported catalyst comprising a combination of the first and second transition metal compounds according to the present invention exhibits more excellent effects in terms of improving catalytic activity and polyethylene properties compared to the conventional catalyst, and the first and second transition metal compounds It can be seen that when the mixing ratio is optimized according to the combination of, the catalytic activity and physical properties of the polyethylene to be produced can be further improved.

Abstract

The present invention provides a supported hybrid catalyst, and a method for preparing a polyolefin by using same, the supported hybrid catalyst comprising two or more types of transition metal compounds having a specific chemical structure, and thus a polyolefin, particularly, a high-density polyethylene, having a molecular structure optimized to improve the tensile strength of a chlorinated polyolefin compound can be prepared.

Description

혼성 담지 촉매 및 이용한 폴리올레핀의 제조 방법Hybrid supported catalyst and method for producing polyolefin using
관련 출원(들)과의 상호 인용Cross-reference with related application(s)
본 출원은 2019년 9월 27일자 한국 특허 출원 제10-2019-0120102호 및 제10-2019-0120103호, 그리고 2020년 9월 24일자 한국 특허 출원 제10-2020-0124243호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application is the benefit of priority based on Korean Patent Application Nos. 10-2019-0120102 and 10-2019-0120103 filed September 27, 2019, and Korean Patent Application No. 10-2020-0124243 filed September 24, 2020. All the contents disclosed in the document of the Korean patent application are included as part of this specification.
본 발명은 신규한 혼성 담지 촉매 및 이를 이용한 폴리올레핀의 제조 방법에 관한 것이다.The present invention relates to a novel hybrid supported catalyst and a method for producing a polyolefin using the same.
올레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 혼재하는 다활성점 촉매(multi-site catalyst)이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다. 특히, 넓은 분자량 분포로 인해 상대적으로 낮은 분자량을 갖는 중합체 쇄들로 인해 물성 저하가 야기될 수 있다. Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed according to their respective characteristics. Ziegler Natta catalysts have been widely applied to existing commercial processes since their invention in the 50s, but since they are multi-site catalysts with multiple active points, they are characterized by a wide molecular weight distribution of polymers. There is a problem in that there is a limit to securing desired physical properties because the composition distribution of is not uniform. In particular, physical properties may be deteriorated due to polymer chains having a relatively low molecular weight due to a wide molecular weight distribution.
한편, 메탈로센 촉매는 메탈로센 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다.On the other hand, the metallocene catalyst is composed of a combination of a main catalyst composed of a metallocene compound and a cocatalyst composed of an organometallic compound composed mainly of aluminum. , It has properties that can change copolymerization properties, molecular weight, crystallinity, etc.
미국 특허 제5,032,562호에는 두 개의 상이한 전이금속 촉매를 한 개의 담지 촉매 상에 지지시켜 중합 촉매를 제조하는 방법이 기재되어 있다. 이는 고분자량을 생성하는 티타늄(Ti) 계열의 지글러-나타 촉매와 저분자량을 생성하는 지르코늄(Zr) 계열의 메탈로센 촉매를 하나의 지지체에 담지시켜 이정 분산(bimodal distribution) 고분자를 생성하는 방법으로써, 담지 과정이 복잡하고, 조촉매로 인해 중합체의 형상(morphology)이 나빠지는 단점이 있다.U.S. Patent No. 5,032,562 describes a method of preparing a polymerization catalyst by supporting two different transition metal catalysts on one supported catalyst. This is a method of producing a bimodal distribution polymer by supporting a titanium (Ti)-based Ziegler-Natta catalyst producing high molecular weight and a zirconium (Zr)-based metallocene catalyst producing low molecular weight on one support. As a result, the supporting process is complicated, and the morphology of the polymer is deteriorated due to the cocatalyst.
미국 특허 제5,525,678호에는 메탈로센 화합물과 비메탈로센 화합물을 담체 위에 동시에 담지시켜 고분자량의 중합체와 저분자량의 중합체가 동시에 중합될 수 있는 올레핀 중합용 촉매계를 사용하는 방법을 기재하고 있다. 이는 메탈로센 화합물과 비메탈로센 화합물들을 각각 따로 담지시켜야 하고, 담지 반응을 위해 담체를 여러 가지 화합물로 전처리해야 하는 단점이 있다.U.S. Patent No. 5,525,678 describes a method of using a catalyst system for olefin polymerization in which a high molecular weight polymer and a low molecular weight polymer can be simultaneously polymerized by simultaneously supporting a metallocene compound and a non-metallocene compound on a carrier. This has a disadvantage in that the metallocene compound and the non-metallocene compound must be separately supported, and the carrier must be pretreated with various compounds for the supporting reaction.
미국 특허 제5,914,289호에는 각각의 담체에 담지된 메탈로센 촉매를 이용하여 고분자의 분자량 및 분자량 분포를 제어하는 방법이 기재되어 있으나, 담지 촉매 제조시 사용된 용매의 양 및 제조시간이 많이 소요되고, 사용되는 메탈로센 촉매를 담체에 각각 담지시켜야 하는 번거로움이 따랐다.U.S. Patent No. 5,914,289 describes a method of controlling the molecular weight and molecular weight distribution of a polymer using a metallocene catalyst supported on each carrier, but it takes a lot of time and the amount of solvent used to prepare the supported catalyst. In addition, there was a hassle to support each of the metallocene catalysts used on the carrier.
더욱이, 이러한 종래 기술에 따르면, 원하는 수준의 밀도 및 좁은 분자량 분포를 동시에 만족시키는 폴리올레핀, 특히, 에틸렌 (공)중합체의 효과적으로 제조하기 어렵다는 단점이 있다. Moreover, according to this prior art, there is a disadvantage in that it is difficult to effectively prepare a polyolefin, in particular, an ethylene (co)polymer that satisfies a desired level of density and a narrow molecular weight distribution at the same time.
한편, 염소화 폴리에틸렌(CPE, Chlorinated Polyethylene)은 폴리에틸렌의 수소 일부를 염소로 치환한 제품으로, 폴리비닐클로라이드(PVC, Polyvinyl chloride)의 충격 보강제로 사용되거나 가교하여 전선 피복 또는 호스를 제조하는 데 사용된다.On the other hand, chlorinated polyethylene (CPE) is a product obtained by substituting a portion of hydrogen in polyethylene with chlorine, and is used as an impact modifier for polyvinyl chloride (PVC) or crosslinked to manufacture wire coverings or hoses. .
전선 피복의 소재로 사용되는 염소화 폴리에틸렌은 가교제인 과산화물계 가교제에 의해 열가교된 구조로 사용되는데, 전선 굴곡 시 피복의 손상을 막기 위해 가교된 컴파운드 상태에서의 인장강도가 우수해야 한다. Chlorinated polyethylene, which is used as a material for electric wire coating, is used in a heat-crosslinked structure by a peroxide-based crosslinking agent, which is a crosslinking agent. In order to prevent damage to the coating when the wire is bent, it must have excellent tensile strength in a crosslinked compound state.
PVC 컴파운드 제품의 경우, 염소화 폴리올레핀의 물성에 따라 컴파운드의 강도가 달라진다. 현재 많이 알려져 있는 범용 염소화 폴리올레핀의 경우, 지글러-나타 촉매를 사용한 폴리올레핀을 적용하기 때문에 넓은 분자량 분포에 따라 폴리올레핀내에서 염소 분포 균일성이 떨어지며, PVC와 컴파운딩 했을 때 충격강도가 부족한 단점이 있다.In the case of PVC compound products, the strength of the compound varies depending on the properties of the chlorinated polyolefin. In the case of general-purpose chlorinated polyolefins, which are widely known at present, since polyolefins using Ziegler-Natta catalysts are applied, the uniformity of chlorine distribution in the polyolefins is poor according to the wide molecular weight distribution, and the impact strength is insufficient when compounded with PVC.
최근에는 전선용 염소화 폴리올레핀 컴파운드의 인장강도 향상을 위해 메탈로센계 촉매를 이용하여 제조한 고밀도 폴리에틸렌(HDPE, High Density Polyethylene) 수지를 염소화시켜 염소화 폴리에틸렌 제조 후, 가교제를 첨가해 컴파운드를 제조하고 있다.Recently, in order to improve the tensile strength of chlorinated polyolefin compounds for electric wires, high-density polyethylene (HDPE) resin prepared using a metallocene catalyst is chlorinated to produce chlorinated polyethylene, and then a crosslinking agent is added to prepare a compound.
통상 염소화 폴리올레핀의 무니점도(Mooney viscosity; MV) 및 컴파운드의 무니점도가 높을수록 컴파운드의 인장강도가 향상되지만, 압축시 가공성이 저하되는 문제가 있다. In general, the higher the Mooney viscosity (MV) of the chlorinated polyolefin and the higher the Mooney viscosity of the compound, the higher the tensile strength of the compound, but there is a problem of lowering the workability during compression.
이에, 동등 수준의 무니 점도에서 가공성의 저하 없이 컴파운드의 인장강도를 개선시킬 수 있는 고밀도 폴리에틸렌의 제조 및 이를 위한 촉매의 개발이 요구된다.Accordingly, there is a need for production of high-density polyethylene capable of improving the tensile strength of a compound without deteriorating processability at the same level of Mooney viscosity, and development of a catalyst therefor.
본 발명은 염소화 폴리올레핀 컴파운드의 인장강도 향상을 위해 최적화된 분자 구조를 갖는 폴리올레핀, 특히 고밀도 폴리에틸렌을 제조할 수 있는 혼성 담지 촉매를 제공하는 것이다.The present invention is to provide a hybrid supported catalyst capable of producing a polyolefin having a molecular structure optimized for improving the tensile strength of a chlorinated polyolefin compound, particularly high density polyethylene.
본 발명은 또한 상기한 혼성 담지 촉매를 이용하여, 염소화 폴리올레핀 컴파운드의 인장강도를 향상시킬 수 있는 폴리올레핀의 제조방법을 제공하기 위한 것이다.The present invention is also to provide a method for producing a polyolefin capable of improving the tensile strength of a chlorinated polyolefin compound by using the aforementioned hybrid supported catalyst.
발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 1종 이상의 제1 전이금속 화합물; 하기 화학식 2로 표시되는 1종 이상의 제2 전이금속 화합물; 및 상기 제1 및 제2 전이금속 화합물이 담지된 담체;를 포함하는, 혼성 담지 촉매를 제공한다.According to an embodiment of the present invention, at least one first transition metal compound represented by the following formula (1); At least one second transition metal compound represented by the following formula (2); And a carrier on which the first and second transition metal compounds are supported.
[화학식 1][Formula 1]
(Cp 1R 11) m(Cp 2R 12)M 1(Z 1) 3-m (Cp 1 R 11 ) m (Cp 2 R 12 ) M 1 (Z 1 ) 3-m
상기 화학식 1에서,In Formula 1,
M 1은 4족 전이금속이고;M 1 is a Group 4 transition metal;
Cp 1 및 Cp 2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로-1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 C 1-20 탄화수소로 치환될 수 있으며;Cp 1 and Cp 2 are the same as or different from each other, and each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals. One, and these may be substituted with C 1-20 hydrocarbons;
R 11 및 R 12는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C 1-20 알킬, C 1-20 알콕시, C 2-20 알콕시알킬, C 6-20 아릴, C 6-20 아릴옥시, C 2-20 알케닐, C 7-40의 알킬아릴, C 7-40의 아릴알킬, C 8-40의 아릴알케닐, C 2-20 알키닐, 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로원자를 포함하는 C 2-20 헤테로아릴이고; R 11 and R 12 are the same as or different from each other, and each independently hydrogen, C 1-20 alkyl, C 1-20 alkoxy, C 2-20 alkoxyalkyl, C 6-20 aryl, C 6-20 aryloxy, C 2-20 alkenyl, C 7-40 alkylaryl, C 7-40 arylalkyl, C 8-40 arylalkenyl, C 2-20 alkynyl, or selected from the group consisting of N, O and S C 2-20 heteroaryl containing one or more heteroatoms;
Z 1은 할로겐, C 1-20 알킬, C 2-20 알케닐, C 7-40 알킬아릴, C 7-40 아릴알킬, C 6-20 아릴, 치환되거나 치환되지 않은 C 1-20 알킬리덴, 치환되거나 치환되지 않은 아미노기, C 2-20 알킬알콕시, 또는 C 7-40 아릴알콕시이고;Z 1 is halogen, C 1-20 alkyl, C 2-20 alkenyl, C 7-40 alkylaryl, C 7-40 arylalkyl, C 6-20 aryl, substituted or unsubstituted C 1-20 alkylidene, Substituted or unsubstituted amino group, C 2-20 alkylalkoxy, or C 7-40 arylalkoxy;
m은 1 또는 0 이고;m is 1 or 0;
[화학식 2][Formula 2]
Figure PCTKR2020013052-appb-img-000001
Figure PCTKR2020013052-appb-img-000001
상기 화학식 2에서,In Chemical Formula 2,
A는 탄소 또는 실리콘이고,A is carbon or silicon,
M 2은 4족 전이금속이고,M 2 is a Group 4 transition metal,
R 21은 C 1-20 알킬로 치환된 C 6-20 아릴이고,R 21 is C 6-20 aryl substituted with C 1-20 alkyl,
R 22는 C 3-20 의 분지상 알킬이며, R 22 is C 3-20 branched alkyl,
R 23 내지 R 25는 각각 독립적으로 C 1-20 알킬이고,R 23 to R 25 are each independently C 1-20 alkyl,
Z 21 및 Z 22는 각각 독립적으로 할로겐 또는 C 1-10 알킬이며,Z 21 and Z 22 are each independently halogen or C 1-10 alkyl,
n은 1 내지 10의 정수다.n is an integer from 1 to 10.
본 발명은, 상기 혼성 담지 촉매를 포함하는 촉매 조성물의 존재 하에, 올레핀계 단량체를 중합하는 단계를 포함하는, 폴리올레핀의 제조방법을 제공한다. The present invention provides a method for producing a polyolefin, comprising polymerizing an olefin-based monomer in the presence of a catalyst composition including the hybrid supported catalyst.
본 발명에서, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는 데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. In the present invention, terms such as first and second are used to describe various components, and the terms are used only for the purpose of distinguishing one component from other components.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In addition, terms used in the present specification are only used to describe exemplary embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present specification, terms such as "comprise", "include", or "have" are intended to designate the existence of a feature, number, step, element, or combination of the implemented features, but one or more other features or It is to be understood that the possibility of the presence or addition of numbers, steps, elements, or combinations thereof is not preliminarily excluded.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The present invention will be described in detail below and exemplify specific embodiments, as various modifications can be made and various forms can be obtained. However, this is not intended to limit the present invention to a specific form disclosed, it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention.
이하 발명의 구체적인 구현예에 따른 혼성 담지 촉매, 그리고 이를 이용한 폴리올레핀의 제조방법에 관하여 보다 상세하게 설명하기로 한다.Hereinafter, a hybrid supported catalyst according to a specific embodiment of the present invention, and a method for producing a polyolefin using the same will be described in more detail.
혼성 담지 촉매Hybrid supported catalyst
고무 호스 또는 전선 피복용으로 사용되는 염소화 폴리올레핀에 대해 높은 인장강도가 요구된다. 염소화 폴리올레핀의 인장강도는 염소화 폴리올레핀의 무니점도 또는 컴파운드의 무니점도의 증가를 통해 개선시킬 수 있지만, 이 경우 압출 가공성이 저하되는 문제가 있다. 이 같은 문제를 해결하기 위해서는 염소화 폴리올레핀에 적용되는 폴리올레핀, 구체적으로는 고밀도 폴리에틸렌의 분자 구조를 최적화할 필요가 있다. High tensile strength is required for chlorinated polyolefins used for covering rubber hoses or wires. The tensile strength of the chlorinated polyolefin can be improved by increasing the Mooney viscosity of the chlorinated polyolefin or the Mooney viscosity of the compound, but in this case, there is a problem that the extrusion processability is deteriorated. In order to solve such a problem, it is necessary to optimize the molecular structure of the polyolefin applied to the chlorinated polyolefin, specifically, high-density polyethylene.
본 발명에서는 특정 구조를 갖는 2종의 전이금속 화합물을 조합하여 사용할 경우, 제조되는 폴리올레핀이 최소화된 저분자 함량과 함께, 분자량 분포 곡선에서 고분자 꼬리(tail)가 형성되는 구조를 가지며, 이로 인해 염소화 폴리올레핀의 제조시 가교도를 증가시켜 인장강도를 향상시킬 수 있음을 확인하고, 본 발명을 완성하였다.In the present invention, when two kinds of transition metal compounds having a specific structure are used in combination, the produced polyolefin has a structure in which a polymer tail is formed in a molecular weight distribution curve with a minimum low molecular content, and thus a chlorinated polyolefin It was confirmed that the tensile strength can be improved by increasing the degree of crosslinking during the manufacture of, and the present invention was completed.
구체적으로 발명의 일 구현예에 따른 혼성 담지 촉매는, 상기 화학식 1로 표시되는 1종 이상의 제1 전이금속 화합물; 상기 화학식 2로 표시되는 1종 이상의 제2 전이금속 화합물; 및 상기 제1 및 제2 전이금속 화합물이 담지된 담체를 포함한다.Specifically, a hybrid supported catalyst according to an embodiment of the present invention includes at least one first transition metal compound represented by Formula 1; At least one second transition metal compound represented by Chemical Formula 2; And a carrier on which the first and second transition metal compounds are supported.
상기 혼성 담지 촉매에 있어서, 상기 화학식 1 및 2의 치환기들을 보다 구체적으로 설명하면 하기와 같다.In the hybrid supported catalyst, the substituents of Formulas 1 and 2 will be described in more detail as follows.
상기 C 1-20 알킬기로는 직쇄 또는 분지쇄, 고리형의 알킬기를 포함하고, 구체적으로 메틸기(Me, methyl), 에틸기(Et, Ethyl), 프로필기(Pr, Propyl), 이소프로필기, n-부틸기(n-Bu, n-Butyl), tert-부틸기(t-Bu, tert-Butyl)), 펜틸기(Pt, Pentyl), 헥실기(Hx, Hexyl), 헵틸기, 옥틸기, 시클로부틸기, 시클로펜틸기, 시클로헥실기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.The C 1-20 alkyl group includes a linear or branched chain or cyclic alkyl group, and specifically, a methyl group (Me, methyl), an ethyl group (Et, Ethyl), a propyl group (Pr, Propyl), isopropyl group, n -Butyl group (n-Bu, n-Butyl), tert-butyl group (t-Bu, tert-Butyl)), pentyl group (Pt, Pentyl), hexyl group (Hx, Hexyl), heptyl group, octyl group, A cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like, but are not limited thereto.
상기 C 1-20 알킬렌기로는 직쇄 또는 분지쇄의 알킬렌기를 포함하고, 구체적으로 메틸렌기, 에틸렌기, 프로필렌기, 부틸렌기, 펜틸렌기, 헥실렌기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.The C 1-20 alkylene group includes a linear or branched alkylene group, and specifically, a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, and the like, but are limited thereto. It is not.
상기 C 4-20의 시클로알킬기로는 상술한 바와 같은 알킬기 중에서 고리형의 알킬기를 지칭하는 것으로, 구체적으로 시클로부틸기, 시클로펜틸기, 시클로헥실기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.The C 4-20 cycloalkyl group refers to a cyclic alkyl group among the alkyl groups as described above, and specifically, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, etc. may be mentioned, but is not limited thereto. .
상기 C 2-20 알케닐기로는 직쇄 또는 분지쇄의 알케닐기를 포함하고, 구체적으로 알릴기, 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.The C 2-20 alkenyl group includes a linear or branched alkenyl group, and specifically, an allyl group, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, and the like, but are not limited thereto.
상기 C 6-20 아릴기로는 단환 또는 축합환의 아릴기를 포함하고, 구체적으로 페닐기, 비페닐기, 나프틸기, 페난트레닐기, 플루오레닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.The C 6-20 aryl group includes a monocyclic or condensed aryl group, and specifically, a phenyl group, a biphenyl group, a naphthyl group, a phenanthrenyl group, a fluorenyl group, and the like, but are not limited thereto.
상기 C 1-20 알콕시기로는 메톡시기, 에톡시기, 페닐옥시기, 시클로헥실옥시기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.Examples of the C 1-20 alkoxy group include, but are not limited to, a methoxy group, an ethoxy group, a phenyloxy group, and a cyclohexyloxy group.
상기 C 2-20 알콕시알킬기는 상술한 바와 같은 알킬기의 1개 이상의 수소가 알콕시기로 치환된 작용기이며, 구체적으로 메톡시메틸기, 메톡시에틸기, 에톡시메틸기, iso-프로폭시메틸기, iso-프로폭시에틸기, iso-프로폭시헥실기, tert-부톡시메틸기, tert-부톡시에틸기, tert-부톡시헥실기 등의 알콕시알킬기; 또는 페녹시헥실기 등의 아릴옥시알킬기를 들 수 있으나, 이에만 한정되는 것은 아니다.The C 2-20 alkoxyalkyl group is a functional group in which at least one hydrogen of the alkyl group as described above is substituted with an alkoxy group, and specifically, methoxymethyl group, methoxyethyl group, ethoxymethyl group, iso-propoxymethyl group, iso-propoxy Alkoxyalkyl groups such as ethyl group, iso-propoxyhexyl group, tert-butoxymethyl group, tert-butoxyethyl group, and tert-butoxyhexyl group; Or an aryloxyalkyl group such as a phenoxyhexyl group, but is not limited thereto.
상기 C 1-20 알킬실릴기 또는 C 1-20 알콕시실릴기는 -SiH 3의 1 내지 3개의 수소가 1 내지 3개의 상술한 바와 같은 알킬기 또는 알콕시기로 치환된 작용기이며, 구체적으로 메틸실릴기, 다이메틸실릴기, 트라이메틸실릴기, 다이메틸에틸실릴기, 다이에틸메틸실릴기 또는 다이메틸프로필실릴기 등의 알킬실릴기; 메톡시실릴기, 다이메톡시실릴기, 트라이메톡시실릴기 또는 다이메톡시에톡시실릴기 등의 알콕시실릴기; 메톡시다이메틸실릴기, 다이에톡시메틸실릴기 또는 다이메톡시프로필실릴기 등의 알콕시알킬실릴기를 들 수 있으나, 이에만 한정되는 것은 아니다.The C 1-20 alkylsilyl group or C 1-20 alkoxysilyl group is a functional group in which 1 to 3 hydrogens of -SiH 3 are substituted with 1 to 3 alkyl or alkoxy groups as described above, and specifically methylsilyl group, di Alkylsilyl groups such as methylsilyl group, trimethylsilyl group, dimethylethylsilyl group, dimethylmethylsilyl group, or dimethylpropylsilyl group; Alkoxysilyl groups such as methoxysilyl group, dimethoxysilyl group, trimethoxysilyl group, or dimethoxyethoxysilyl group; Alkoxyalkylsilyl groups, such as a methoxydimethylsilyl group, a diethoxymethylsilyl group, or a dimethoxypropylsilyl group, are mentioned, but are not limited thereto.
상기 C 1-20 실릴알킬기는 상술한 바와 같은 알킬기의 1 이상의 수소가 실릴기로 치환된 작용기이며, 구체적으로 -CH 2-SiH 3, 메틸실릴메틸기 또는 다이메틸에톡시실릴프로필기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.The C 1-20 silylalkyl group is a functional group in which at least one hydrogen of the alkyl group as described above is substituted with a silyl group, and specifically, -CH 2 -SiH 3 , a methylsilylmethyl group or a dimethylethoxysilylpropyl group, etc. may be mentioned. However, it is not limited to this.
상기 할로겐(halogen)은 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)일 수 있다.The halogen may be fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).
상기 술포네이트기는 -O-SO 2-R'의 구조로 R'는 C 1-20 알킬기일 수 있다. 구체적으로, C 1-20 술포네이트기는 메탄설포네이트기 또는 페닐설포네이트기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.The sulfonate group has a structure of -O-SO 2 -R', and R'may be a C 1-20 alkyl group. Specifically, the C 1-20 sulfonate group may include a methanesulfonate group or a phenylsulfonate group, but is not limited thereto.
상기 헤테로아릴은 이종 원소로 N, O, 및 S 중 1개 이상을 포함하는 C 2-20 헤테로아릴로서, 구체적인 예로는, 잔텐(xanthene), 티오잔텐(thioxanthen), 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에 한정되는 것은 아니다. The heteroaryl is a C 2-20 heteroaryl containing at least one of N, O, and S as a heterogeneous element, and specific examples include xanthene, thioxanthene, thiophene group, furan group, Pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, Quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group, carbazole group, benzoxazole group, benzoimidazole group, Benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadiazolyl group, phenothiazinyl group and dibenzofuranyl group, etc. However, it is not limited to these.
상술한 치환기들은 목적하는 효과와 동일 내지 유사한 효과를 발휘하는 범위 내에서 임의적으로 하이드록시기; 할로겐; 알킬기 또는 알케닐기, 아릴기, 알콕시기; 14족 내지 16족의 헤테로 원자들 중 하나 이상의 헤테로 원자를 포함하는 알킬기 또는 알케닐기, 아릴기, 알콕시기; 실릴기; 알킬실릴기 또는 알콕시실릴기; 포스파인기; 포스파이드기; 술포네이트기; 및 술폰기로 이루어진 군에서 선택된 1 이상의 치환기로 치환될 수 있다.The above-described substituents are optionally a hydroxy group within the range of exhibiting the same or similar effect as the desired effect; halogen; An alkyl group or an alkenyl group, an aryl group, an alkoxy group; An alkyl or alkenyl group, an aryl group, or an alkoxy group including at least one hetero atom among the heteroatoms of groups 14 to 16; Silyl group; An alkylsilyl group or an alkoxysilyl group; Phosphine group; Phosphide group; Sulfonate group; And it may be substituted with one or more substituents selected from the group consisting of a sulfone group.
또, 4족 전이금속으로는 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf) 등을 들 수 있으나, 이에만 한정되는 것은 아니다.In addition, the Group 4 transition metal may include titanium (Ti), zirconium (Zr), hafnium (Hf), and the like, but is not limited thereto.
발명의 일 구현예에 따른 혼성 담지 촉매에 있어서, 상기 화학식 1로 표시되는 제1 전이금속 화합물은 높은 중합 활성과 함께 저분자량의 중합체 제조에 용이하고, 제2 전이금속 화합물은 초고분자량의 중합체 제조에 용이하다. 이에 따라 혼성 담지 촉매 내 제1 및 제2 전이금속 화합물의 혼합 비율을 조절함으로써, 제조되는 중합체에서 저분자 함량이 최소화되고, 또 제2전이금속 화합물에 의한 초고분자량 특성으로 분자량 분포가 증가될 수 있으며, 또 점도 조절이 용이할 수 있다. 이에 따라 제조된 중합체를 이용한 염소화 폴리올레핀의 제조시, 가교 효율이 증대되고, 이로 인해 인장 강도가 개선될 수 있다.In the hybrid supported catalyst according to an embodiment of the present invention, the first transition metal compound represented by Formula 1 is easy to prepare a low molecular weight polymer with high polymerization activity, and the second transition metal compound is an ultra-high molecular weight polymer. It is easy to Accordingly, by adjusting the mixing ratio of the first and second transition metal compounds in the hybrid supported catalyst, the low molecular weight content in the prepared polymer is minimized, and the molecular weight distribution may be increased due to the ultra-high molecular weight characteristics of the second transition metal compound. , In addition, it can be easy to adjust the viscosity. In the production of the chlorinated polyolefin using the polymer thus prepared, the crosslinking efficiency is increased, and thus tensile strength may be improved.
구체적으로, 상기 화학식 1로 표시되는 제1 전이금속 화합물은 Cp 1 및 Cp 2의 리간드를 포함하는 비가교 화합물이다. 상기 Cp 1 및 Cp 2의 리간드는 서로 동일하거나 상이할 수 있으며, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로-1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나일 수 있으며, 이들 리간드는 C 1-20 탄화수소, 보다 구체적으로는 C 1-10 알킬로 1개 이상, 또는 1개 내지 3개 치환될 수 있다. 이와 같이 상기 Cp 1 및 Cp 2의 리간드가 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 높은 중합 활성을 나타낼 수 있으며, 특히 상기 Cp 1 및 Cp 2의 리간드가 상대적으로 입체 장애가 적은 시클로펜타디에닐일 경우, 높은 중합 활성과 낮은 수소 반응성을 나타내어 저분자량의 올레핀 중합체를 고활성으로 중합할 수 있다.Specifically, the first transition metal compound represented by Formula 1 is a non-crosslinked compound including a ligand of Cp 1 and Cp 2. The ligands of Cp 1 and Cp 2 may be the same or different from each other, and each independently a cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radical. It may be any one selected from the group consisting of, and these ligands may be substituted by 1 or more, or 1 to 3 , with C 1-20 hydrocarbons, more specifically C 1-10 alkyl. As described above, the ligands of Cp 1 and Cp 2 may exhibit high polymerization activity by having a non-shared electron pair capable of acting as a Lewis base.In particular, when the ligands of Cp 1 and Cp 2 are cyclopentadienyl with relatively little steric hindrance , It exhibits high polymerization activity and low hydrogen reactivity, so that low molecular weight olefin polymers can be polymerized with high activity.
또, 상기 Cp 1 및 Cp 2의 리간드는, 예를 들면, 치환된 작용기의 종류에 따라 입체 장애 효과의 정도를 조절하여 제조되는 올레핀 중합체의 화학적 구조, 분자량, 분자량 분포, 기계적 물성, 투명도 등의 특성을 용이하게 조절할 수 있다. 구체적으로, 상기 Cp 1 및 Cp 2의 리간드는 각각 R 11 및 R 12로 치환되며, 이때, 상기 R 11 및 R 12는 서로 동일하거나 상이하며, 각각 독립적으로, 수소, C 1-20 알킬, C 2-20 알콕시알킬, C 6-20의 아릴, C 7-20의 아릴알킬, 퓨라닐, 또는 티오펜일일 수 있고, 보다 구체적으로는 n-부틸 등의 C 1-10 알킬; t-부톡시헥실 등의 C 2-10 알콕시알킬; 페닐 등의 C 6-20의 아릴; 페닐부틸 등의 C 7-20의 아릴알킬; 퓨라닐 또는 티오펜일일 수 있다. 우수한 촉매 활성 면에서 R 11 및 R 12는 각각 앞서 정의한 바와 같은 치환기이되, R 11 및 R 12 중 적어도 하나가 C 2-20의 알콕시알킬, 또는 C 2-10의 알콕시알킬일 수 있다. In addition, the ligands of Cp 1 and Cp 2 are, for example, the chemical structure, molecular weight, molecular weight distribution, mechanical properties, and transparency of the olefin polymer prepared by controlling the degree of steric hindrance according to the type of substituted functional group. The properties can be easily adjusted. Specifically, the ligand of said Cp 1 and Cp 2 are substituted by R 11 and R 12, respectively, at this time, the R 11 and R 12 are the same or different, each independently, hydrogen, C 1-20 alkyl, C It may be 2-20 alkoxyalkyl, C 6-20 aryl, C 7-20 arylalkyl, furanyl, or thiophenyl, and more specifically, C 1-10 alkyl such as n-butyl; C 2-10 alkoxyalkyl such as t-butoxyhexyl; C 6-20 aryl such as phenyl; C 7-20 arylalkyl such as phenylbutyl; It may be furanyl or thiophene. In terms of excellent catalytic activity, R 11 and R 12 may each be a substituent as defined above, but at least one of R 11 and R 12 may be C 2-20 alkoxyalkyl or C 2-10 alkoxyalkyl.
상기 Cp 1 및 Cp 2는 의 리간드 사이에는 M 1(Z 1) 3-m 이 존재하는데, M 1(Z 1) 3-m 는 금속 착물의 보관 안정성에 영향을 미칠 수 있다. 이러한 효과를 더욱 효과적으로 담보하기 위하여 Z 1은 각각 독립적으로 할로겐 또는 C 1-20 알킬일 수 있으며, 보다 구체적으로는 각각 독립적으로 F, Cl, Br 또는 I일 수 있다. 또 상기 M 1은 Ti, Zr 또는 Hf일 수 있으며, 보다 구체적으로는 Zr 또는 Hf, 보다 더 구체적으로는 Zr일 수 있다. M 1 (Z 1 ) 3-m exists between the ligands of Cp 1 and Cp 2 , and M 1 (Z 1 ) 3-m may affect the storage stability of the metal complex. In order to more effectively secure this effect, Z 1 may each independently be halogen or C 1-20 alkyl, and more specifically, each independently may be F, Cl, Br or I. In addition, M 1 may be Ti, Zr or Hf, more specifically Zr or Hf, and even more specifically Zr.
보다 구체적으로, 상기 제1 전이금속 화합물은, M 1은 Ti, Zr 또는 Hf이고; Cp 1 및 Cp 2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로-1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 C 1-10 알킬로 치환되거나 또는 비치환되고; R 11 및 R 12는 각각 독립적으로 수소, C 1-20 알킬, C 2-20 알콕시알킬, C 6-20의 아릴, C 7-20의 아릴알킬, 퓨라닐, 또는 티오펜일이되, 상기 R 11 및 R 12 중 적어도 하나는 C 2-20 알콕시알킬이고; Z 1은 할로겐;인 화합물일 수 있다.More specifically, in the first transition metal compound, M 1 is Ti, Zr or Hf; Cp 1 and Cp 2 are the same as or different from each other, and each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals. One, and these are unsubstituted or substituted with C 1-10 alkyl; R 11 and R 12 are each independently hydrogen, C 1-20 alkyl, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-20 arylalkyl, furanyl, or thiophenyl, wherein At least one of R 11 and R 12 is C 2-20 alkoxyalkyl; Z 1 may be a halogen; phosphorus compound.
상기 화학식 1로 표시되는 제1 전이금속 화합물로는 예를 들어 하기 구조식들 중 하나로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다:The first transition metal compound represented by Formula 1 may be, for example, a compound represented by one of the following structural formulas, but is not limited thereto:
Figure PCTKR2020013052-appb-img-000002
.
Figure PCTKR2020013052-appb-img-000002
.
상기 제1 전이 금속 화합물들 중에서도, 상기 화학식 1에 있어서, M 1은 Zr이고, Cp 1 및 Cp 2는 각각 독립적으로 비치환된 시클로펜타디에닐기이거나 또는 메틸 등과 같은 C 1-10 알킬로 1 이상 치환된 시클로펜타디에닐기이며, R 11 및 R 12는 각각 독립적으로 수소, C 1-20 알킬, C 2-20 알콕시알킬, C 7-20의 아릴 또는 C 7-20의 아릴알킬이되, 상기 R 11 및 R 12 중 적어도 하나, 또는 둘 모두가 C 2-20의 알콕시알킬, 보다 구체적으로는 C 2-10의 알콕시알킬, 보다 더 구체적으로는 t-부톡시헥실기이며, Z 1은 할로겐기이고, m은 1인 화합물일 수 있다. Among the first transition metal compounds, in Formula 1, M 1 is Zr, and Cp 1 and Cp 2 are each independently an unsubstituted cyclopentadienyl group or at least one C 1-10 alkyl such as methyl A substituted cyclopentadienyl group, and R 11 and R 12 are each independently hydrogen, C 1-20 alkyl, C 2-20 alkoxyalkyl, C 7-20 aryl or C 7-20 arylalkyl, wherein At least one or both of R 11 and R 12 are C 2-20 alkoxyalkyl, more specifically C 2-10 alkoxyalkyl, even more specifically t-butoxyhexyl group, and Z 1 is halogen Group, and m may be a compound of 1.
상기 화학식 1로 표시되는 제1 전이금속 화합물은 공지의 반응들을 응용하여 합성될 수 있다. 구체적으로는, 다양한 합성 공정을 통해 리간드 화합물을 제조한 후에 금속 전구체 화합물을 투입하여 메탈레이션(metallation)을 수행함으로써 제조될 수 있으나 이에 한정되는 것은 아니며, 보다 상세한 합성 방법은 실시예를 참고할 수 있다.The first transition metal compound represented by Formula 1 may be synthesized by applying known reactions. Specifically, a ligand compound is prepared through various synthesis processes, and then a metal precursor compound is added to perform metallation, but it is not limited thereto, and a more detailed synthesis method may be referred to the Examples. .
한편, 상기 혼성 담지 촉매에 있어서, 상기 화학식 2로 표시되는 제2 전이금속 화합물은 인덴 유도체와 아민 유도체가 브릿지 화합물에 의해 가교된 리간드 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써, 우수한 중합 활성을 나타낼 수 있다. 특히 구조적으로 안정하고 전자적으로 풍부한 인덴 구조를 포함함에 따라 높은 촉매 활성을 나타낼 수 있고, 또 브릿지기가 테더기를 포함함에 따라 담체에 대해 우수한 담지 안정성을 나타낼 수 있다.Meanwhile, in the hybrid supported catalyst, the second transition metal compound represented by Formula 2 forms a ligand structure in which an indene derivative and an amine derivative are crosslinked by a bridge compound, and a non-shared electron pair capable of acting as a Lewis base in the ligand structure By having, excellent polymerization activity can be exhibited. Particularly, structurally stable and electronically rich indene structures may exhibit high catalytic activity, and since the bridging group includes a tether group, excellent support stability for a carrier may be exhibited.
또, 상기 제2 전이금속 화합물은 인덴 구조의 2번 위치가 분지상 구조를 갖는 작용기(R 22)로 치환되고, 또 아민 유도체의 질소 원자가 자라나는 중합체 사슬의 베타-수소를 수소결합에 의해 안정화 함으로써, 중분자량 및 고분자량 영역의 중합체 제조가 가능하며, 제조되는 중합체가 좁은 분자량 분포를 가져 우수한 기계적 특성을 나타낼 수 있다. 상기 R 22은 구체적으로, 이소프로필, 이소부틸, t-부틸, 이소펜틸 등과 같은 C 3-12 또는 C 3-6의 분지상 알킬일 수 있으며, 이중에서도 입체적인 효과 면에서 보다 유리한 이소프로필일 수 있다. In addition, the second transition metal compound is substituted with a functional group (R 22 ) having a branched structure at position 2 of the indene structure, and by stabilizing beta-hydrogen in the polymer chain in which the nitrogen atom of the amine derivative grows by hydrogen bonding. , It is possible to prepare a polymer of a medium molecular weight and a high molecular weight region, and the resulting polymer has a narrow molecular weight distribution, so that excellent mechanical properties can be exhibited. Specifically, R 22 may be a branched alkyl of C 3-12 or C 3-6 such as isopropyl, isobutyl, t-butyl, isopentyl, and the like, and isopropyl, which is more advantageous in terms of steric effects. have.
또, 상기 인덴 구조는 4번 위치에 R 21, 구체적으로는 C 1-20 알킬로 1개 이상, 보다 구체적으로는 1개 또는 2개 치환된 C 6-20 아릴이 결합함으로써, 충분한 전자를 공급할 수 있는 유도 효과(Inductive effect)에 의해 보다 높은 촉매 활성을 나타낼 수 있다. 보다 구체적으로 상기 화학식 2에서 R 21은 4-tert-부틸페닐, 3,5-디tert-부틸 페닐과 같은 C 3-6 분지상 알킬로 1개 또는 2개 치환된 페닐일 수 있다. In addition, the indene structure is R 21 at the 4 position, specifically, 1 or more, more specifically 1 or 2 C 6-20 aryl substituted with C 1-20 alkyl is bonded to supply sufficient electrons. Higher catalytic activity may be exhibited by a possible inductive effect. More specifically, in Formula 2, R 21 may be phenyl substituted with one or two C 3-6 branched alkyls such as 4-tert-butylphenyl and 3,5-ditert-butyl phenyl.
또 상기 화학식 2에서의 N에 결합되는 R 23은 C 1-20의 직쇄 또는 분지상 알킬일 수 있으며, 보다 구체적으로는 t-부틸과 같은 C 3-12 또는 C 3-6의 분지상 알킬일 수 있다. 이와 같이 R 23이 분지상의 구조를 가질 경우, 전이금속 화합물이 입체구조적으로 안정화되고, 전자 공급 효과로 촉매를 안정화 시켜 보다 높은 촉매 활성을 나타낼 수 있다. In addition, R 23 bonded to N in Formula 2 may be a C 1-20 linear or branched alkyl, and more specifically, a C 3-12 or C 3-6 branched alkyl such as t-butyl I can. As described above, when R 23 has a branched structure, the transition metal compound is stericly stabilized, and the catalyst is stabilized by an electron supply effect, thereby exhibiting higher catalytic activity.
보다 구체적으로, 상기 화학식 2에서, R 21은 C 3-6 분지상 알킬로 1개 또는 2개 치환된 페닐이고, R 22 및 R 23은 각각 독립적으로, C 3-6 분지상 알킬일 수 있으며, 보다 더 구체적으로는 상기 R 22가 이소프로필일 수 있다.More specifically, in Formula 2, R 21 is phenyl substituted with one or two C 3-6 branched alkyl, and R 22 and R 23 are each independently C 3-6 branched alkyl, and , More specifically, R 22 may be isopropyl.
또, 상기 화학식 2에서 브릿지 그룹은 R 24의 작용기와 함께, 담체에 대해 테더가 가능한 -(CH 2)n-O-R 25의 테더기를 포함한다. 이에 따라 우수한 담지 안정성을 나타낼 수 있고, 또 우수한 촉매 활성을 유지하여 고분자량의 중합체를 제조가 가능하다. In addition, in Formula 2, the bridge group includes a tethered group of -(CH 2 )nOR 25 capable of tethering to the carrier together with the functional group of R 24 . Accordingly, it is possible to exhibit excellent support stability, and to maintain excellent catalytic activity to prepare a high molecular weight polymer.
구체적으로, 상기 R 24는 C 1-12 또는 C 1-6 직쇄 또는 분지상 알킬일 수 있다. 보다 구체적으로는 C 1-4 직쇄 알킬 또는 메틸일 수 있으며 이와 같이 직쇄 구조 또는 메틸일 경우 용해도를 증대시켜 담지 효율을 개선할 수 있다.Specifically, R 24 may be C 1-12 or C 1-6 linear or branched alkyl. More specifically, it may be C 1-4 straight-chain alkyl or methyl, and in the case of a straight-chain structure or methyl as described above, solubility may be increased to improve loading efficiency.
또, 상기 테더기에서의 R 25는 C 1-12 또는 C 1-6 직쇄 또는 분지상 알킬일 수 있다. 보다 구체적으로는 C 3-6 분지상 알킬 또는 t-부틸일 수 있으며, t-부틸과 같이 분지 구조를 가질 경우, 용이하게 이탈하여 담체에 결합할 수 있기 때문에 우수한 담지 안정성을 나타낼 수 있다. In addition, R 25 in the tether group may be C 1-12 or C 1-6 linear or branched alkyl. More specifically, it may be C 3-6 branched alkyl or t-butyl, and when it has a branched structure such as t-butyl, it can be easily detached and bonded to the carrier, thereby exhibiting excellent support stability.
또 상기 테더기에서의 n은 구체적으로 3 내지 8, 또는 4 내지 6일 수 있으며, 이 경우 테더기가 적절한 길이를 가져 보다 우수한 담지 안정성과 함께 촉매 활성을 안정적으로 나타낼 수 있다.In addition, n in the tether group may specifically be 3 to 8, or 4 to 6, and in this case, the tether group may have an appropriate length and thus stably exhibit catalytic activity with superior support stability.
또, 상기 브릿지 그룹에서 A는 보다 구체적으로 실리콘(Si)일 수 있다.In addition, in the bridge group, A may be more specifically silicon (Si).
보다 구체적으로, 상기 화학식 2에서, A는 실리콘이고, R 25는 C 3-6 분지상 알킬이며, n은 4 내지 6의 정수일 수 있다.More specifically, in Formula 2, A is silicon, R 25 is C 3-6 branched alkyl, and n may be an integer of 4 to 6.
또, 상기 화학식 2의 제2 전이금속 화합물은 중심 금속(M 2)으로서 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf) 등의 4족 전이금속을 포함할 수 있다. 이중에서도 상기 전이금속 화합물이 중심 금속으로서 Ti을 포함할 경우, Zr 및 Hf와 같은 다른 4족 전이금속을 포함하는 경우와 비교하여, 구조적인 개방성(openness)을 키워주어 촉매가 보다 우수한 중합 활성을 나타내며, 전자 공급 효과로 촉매를 안정화시켜 높은 분자량을 나타낼 수 있다.In addition, the second transition metal compound of Formula 2 may include a Group 4 transition metal such as titanium (Ti), zirconium (Zr), and hafnium (Hf) as the central metal (M 2 ). Among these, when the transition metal compound contains Ti as the central metal, the catalyst increases the structural openness compared to the case where other Group 4 transition metals such as Zr and Hf are included, so that the catalyst provides more excellent polymerization activity. And can exhibit high molecular weight by stabilizing the catalyst through an electron supply effect.
또, 상기 화학식 2에서, Z 21 및 Z 22는 각각 독립적으로 클로로 등의 할로겐이거나; 또는 메틸 등의 C 1-4 알킬일 수 있다. 보다 구체적으로는 Z 21 및 Z 22 둘 모두 메틸일 수 있으며, 이 경우 Z 21 및 Z 22가 할로겐일 때에 비해 보다 우수한 촉매 활성을 나타낼 수 있다. In addition, in Formula 2, Z 21 and Z 22 are each independently a halogen such as chloro; Or it may be C 1-4 alkyl such as methyl. More specifically, both Z 21 and Z 22 may be methyl, and in this case, Z 21 and Z 22 may exhibit better catalytic activity than when they are halogen.
보다 구체적으로 상기 화학식 2에서, M 2는 티타늄이고, Z 21 및 Z 22는 각각 독립적으로 C 1-4 알킬일 수 있다.More specifically, in Formula 2, M 2 is titanium, and Z 21 and Z 22 may each independently be C 1-4 alkyl.
보다 구체적으로, 상기 화학식 2의 화합물은, A는 실리콘이고, M 2는 티타늄이며, R 21은 t-부틸과 같은 C 3-10 분지상 알킬로 1개 또는 2개 치환된 페닐이고, R 22는 이소프로필과 같은 C 3-6 분지상 알킬이며, R 23은 t-부틸과 같은 C 3-6 분지상 알킬이고, R 24는 메틸 등과 같은 C 1-4 직쇄 알킬이며, R 25는 t-부틸과 같은 C 3-6 분지상 알킬이고, Z 21 및 Z 22는 각각 독립적으로 메틸 등과 같은 C 1-4 알킬이며, n은 4 내지 6의 정수인 화합물일 수 있다. More specifically, in the compound of Formula 2, A is silicon, M 2 is titanium, R 21 is phenyl substituted with one or two C 3-10 branched alkyl such as t-butyl , and R 22 Is a C 3-6 branched alkyl such as isopropyl, R 23 is a C 3-6 branched alkyl such as t-butyl, R 24 is a C 1-4 straight chain alkyl such as methyl, and R 25 is t- C 3-6 branched alkyl such as butyl , Z 21 and Z 22 are each independently C 1-4 alkyl such as methyl, and n may be a compound having an integer of 4 to 6.
상기 화학식 2의 제2 전이금속 화합물의 대표적인 예로는 하기 구조의 화합물들을 들 수 있으나, 이에 한정되는 것은 아니다:Representative examples of the second transition metal compound of Formula 2 include compounds having the following structures, but are not limited thereto:
Figure PCTKR2020013052-appb-img-000003
.
Figure PCTKR2020013052-appb-img-000003
.
상기한 제2 전이금속 화합물은, 하기 화학식 3의 리간드 화합물을 리튬화(또는 리튬치환(lithiation))한 후, 4족 전이금속 함유 할로겐화물과 반응시킴으로써 제조될 수 있다:The second transition metal compound described above may be prepared by lithiation (or lithium substitution) of the ligand compound of Formula 3 below, and then reacting with a Group 4 transition metal-containing halide:
[화학식 3][Formula 3]
Figure PCTKR2020013052-appb-img-000004
Figure PCTKR2020013052-appb-img-000004
상기 화학식 3에서, A, R 21 내지 R 25 및 n은 앞서 정의한 바와 같다.In Formula 3, A, R 21 to R 25 and n are as defined above.
하기 반응식 1은 본 발명의 일 구현예에 따른 상기 화학식 2의 제2전이금속 화합물의 제조 공정을 나타낸 것이다. 하기 반응식 1은 본 발명을 설명하기 위한 일 예일 뿐, 본 발명이 이에 한정되는 것은 아니다.Reaction Scheme 1 below shows a process for preparing the second transition metal compound of Formula 2 according to an embodiment of the present invention. Scheme 1 below is only an example for explaining the present invention, but the present invention is not limited thereto.
[반응식 1][Scheme 1]
Figure PCTKR2020013052-appb-img-000005
Figure PCTKR2020013052-appb-img-000005
상기 반응식 1에서의 A, M 2, R 21 내지 R 25, Z 21, Z 22 및 n은 앞서 정의한 바와 동일하고, X 1 및 X 2는 각각 독립적으로 할로겐기이다.In Reaction Scheme 1, A, M 2 , R 21 to R 25 , Z 21 , Z 22 and n are the same as defined above, and X 1 and X 2 are each independently a halogen group.
상기 반응식 1에서와 같이, 상기 화학식 2의 화합물(2)은 화학식 3의 리간드 화합물(3)을 n-부틸리튬(NBL)과 같은 알킬리튬과 반응시켜 리튬화 한 후, TiCl 4 등과 같은 4족 전이금속 함유 할로겐화물(4)과 반응시킴으로써 제조될 수 있다. 또, 상기 화학식 2의 화합물(2)에서 X 1 및 X 2가 각각 C 1-10 알킬인 경우, 리튬화 후, MMB (Methyl Magnesium Bromide)와 같은, 금속 M에 대한 알킬화를 위한 알킬화제가 추가로 투입될 수 있다. As in Reaction Scheme 1, the compound (2) of Formula 2 is lithiumized by reacting the ligand compound (3) of Formula 3 with alkyl lithium such as n-butyllithium (NBL), and then, TiCl 4 or the like. It can be prepared by reacting with the same Group 4 transition metal-containing halide (4). In addition, when X 1 and X 2 in the compound (2) of Formula 2 are each C 1-10 alkyl, after lithiation, an alkylating agent for alkylation of metal M such as MMB (Methyl Magnesium Bromide) is additionally added. Can be put in.
또, 상기 화학식 2의 화합물(2)의 제조에 사용되는 리간드 화합물(3)은 하기 반응식 2에서와 같은 제조 공정을 통해 제조될 수 있다. 하기 반응식 2는 본 발명을 설명하기 위한 일 예일뿐 본 발명이 이에 한정되는 것은 아니다.In addition, the ligand compound (3) used in the preparation of the compound (2) of Formula 2 may be prepared through the same manufacturing process as in Scheme 2 below. Scheme 2 below is only an example for explaining the present invention, but the present invention is not limited thereto.
[반응식 2][Scheme 2]
Figure PCTKR2020013052-appb-img-000006
Figure PCTKR2020013052-appb-img-000006
상기 반응식 2에서의, A, R 21 내지 R 24, 및 n은 앞서 정의한 바와 동일하고, X 3 및 X 4는 각각 독립적으로 할로겐기이다.In Reaction Scheme 2, A, R 21 to R 24 , and n are the same as previously defined, and X 3 and X 4 are each independently a halogen group.
상기 반응식 2를 참조하여 설명하면, 상기 리간드 화합물(3)은, Cp unit 으로서 인덴계 화합물(5)를 n-부틸리튬(NBL)과 같은 알킬리튬과 반응시켜 리튬화 하는 단계; 결과의 반응물을, 테더기 제공 원료물질(6)과 반응시켜 인덴 구조에 테더기가 결합된 화합물(7)을 제조하는 단계; 및 상기 화합물(7)을 t-BuNH 2 과 같은 R 3의 치환기를 갖는 1차 아민(8)과 반응시키는 단계를 통해 제조될 수 있다.Referring to Reaction Scheme 2, the ligand compound (3) comprises the steps of reacting an indene-based compound (5) as a Cp unit with an alkyl lithium such as n-butyllithium (NBL) to make lithium; Reacting the resulting reactant with a raw material 6 for providing a tether group to prepare a compound 7 in which a tether group is bonded to an indene structure; And reacting the compound (7) with a primary amine (8) having a substituent of R 3 such as t-BuNH 2.
상기 각 단계에서의 반응은 공지의 반응들을 응용하여 수행될 수 있으며, 보다 상세한 합성 방법은 후술하는 제조예를 참고할 수 있다.The reaction in each step may be performed by applying known reactions, and a more detailed synthesis method may refer to the preparation example described later.
이와 같이, 상기 혼성 담지 촉매는 상기 제1 및 제2 전이금속 화합물을 포함하여, 최소화된 저분자 함량과 함께, 분자량 분포 곡선에서 고분자 꼬리(tail) 형성에 따른 넓은 분자량 분포를 가져 염소화 폴리올레핀 및 컴파운드 제조시 가교도 증가에 따른 인장 강도를 개선시킬 수 있는 폴리올레핀, 특히 고밀도 폴리에틸렌을 매우 효과적으로 제조할 수 있다. 또, 상기 혼성 담지 촉매는 상기 제1 및 제2 전이금속 화합물의 혼합비를 제어함으로써 상기한 효과가 더욱 증진될 수 있다. 구체적으로 상기 제1 및 제2 전이금속 화합물의 혼합 몰비는 1:3 내지 3:1, 또는 1:1.5 내지 2:1일 수 있다. As described above, the hybrid supported catalyst includes the first and second transition metal compounds, and has a wide molecular weight distribution according to the formation of a polymer tail in a molecular weight distribution curve with a minimized low molecular weight, thereby producing chlorinated polyolefins and compounds. Polyolefin, in particular, high-density polyethylene capable of improving tensile strength according to an increase in crosslinking degree can be produced very effectively. In addition, the above-described effect may be further enhanced by controlling the mixing ratio of the first and second transition metal compounds in the hybrid supported catalyst. Specifically, the mixing molar ratio of the first and second transition metal compounds may be 1:3 to 3:1, or 1:1.5 to 2:1.
또, 제1 및 제2 전이금속 화합물의 조합에 따라 혼합비를 최적화함으로써 촉매 활성을 높이고, 제조되는 폴리에틸렌의 물성을 더욱 개선시킬 수 있다. 일례로 상기 제2 전이금속 화합물이 화학식 2에서 R 21가 C 3-10 분지상 알킬로 1개 치환된 페닐인 화합물일 경우, 제1 전이금속 화합물과 제2 전이금속 화합물은 1:1.1 내지 1:3, 혹은 1:1.2 내지 1:1.5의 중량비로 포함되는 것이 바람직하고, 상기 제2 전이금속 화합물이 화학식 2에서 R 21가 C 3-10 분지상 알킬로 2개 이상, 혹은 2개 치환된 페닐인 화합물일 경우, 제1 전이금속 화합물과 제2 전이금속 화합물은 1:1 내지 3:1, 혹은 1.5:1 내지 2:1의 중량비로 포함되는 것이 바람직하다.In addition, by optimizing the mixing ratio according to the combination of the first and second transition metal compounds, the catalytic activity may be increased, and the physical properties of the polyethylene produced may be further improved. For example, when the second transition metal compound is a compound in which R 21 is phenyl substituted with one C 3-10 branched alkyl in Formula 2, the first transition metal compound and the second transition metal compound are 1:1.1 to 1 It is preferably included in a weight ratio of :3, or 1:1.2 to 1:1.5, and in the second transition metal compound, R 21 is substituted with two or more or two C 3-10 branched alkyls in Formula 2 In the case of a phenyl compound, the first transition metal compound and the second transition metal compound are preferably included in a weight ratio of 1:1 to 3:1, or 1.5:1 to 2:1.
또, 상기 혼성 담지 촉매에 있어서, 상기 제1 및 제2 전이금속 화합물은 담지체 담지된 형태로 포함된다. 이와 같이 전이금속 화합물이 담지 촉매의 형태로 사용될 경우, 제조되는 폴리에틸렌의 모폴로지 및 물성을 더욱 개선시킬 수 있고, 또 슬러리 중합, 벌크 중합, 및 기상 중합 공정에 적합하게 사용될 수 있다.In addition, in the hybrid supported catalyst, the first and second transition metal compounds are included in a supported form. When the transition metal compound is used in the form of a supported catalyst as described above, the morphology and physical properties of the polyethylene produced may be further improved, and may be suitably used for slurry polymerization, bulk polymerization, and gas phase polymerization processes.
구체적으로 상기 담체로는 실리카, 알루미나, 마그네시아, 또는 이들의 혼합물을 사용할 수 있다. 또 표면에 반응성이 큰 히드록시기, 실라놀기 또는 실록산기를 갖는 것이 바람직하며, 이를 위해 하소(calcination)에 의해 표면 개질되거나, 또는 건조에 의해 표면에 수분이 제거된 것이 사용될 수 있다. 예컨대, 실리카겔을 하소하여 제조한 실리카, 고온에서 건조한 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 사용될 수 있다. 또 상기 담체는 Na 2O, K 2CO 3, BaSO 4, 및 Mg(NO 3) 2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수도 있다. Specifically, silica, alumina, magnesia, or a mixture thereof may be used as the carrier. In addition, it is preferable to have a highly reactive hydroxy group, silanol group, or siloxane group on the surface, and for this purpose, a surface modified by calcination or a surface of which moisture has been removed by drying may be used. For example, silica prepared by calcining silica gel, silica dried at high temperature, silica-alumina, and silica-magnesia may be used. In addition, the carrier may contain oxides, carbonates, sulfates, and nitrate components such as Na 2 O, K 2 CO 3 , BaSO 4 , and Mg(NO 3 ) 2.
상기 담체에 대한 하소 또는 건조시 온도는 200 내지 600℃일 수 있으며, 250 내지 600℃일 수 있다. 상기 담체에 대한 하소 또는 건조 온도가 200℃ 미만으로 낮을 경우에는 담체에 잔류하는 수분이 너무 많아서 표면의 수분과 조촉매가 반응할 우려가 있고, 또 과량으로 존재하는 하이드록실기로 인해 조촉매 담지율이 상대적으로 높아질 수 있으나, 이로 인해 많은 양의 조촉매가 요구되게 된다. 또 건조 또는 하소 온도가 600℃를 초과하여 지나치게 높을 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 감소하고, 표면에 히드록시기 또는 실라놀기가 많이 없어지고, 실록산기만 남게 되어 조촉매와의 반응자리가 감소할 우려가 있다. When calcining or drying the carrier, the temperature may be 200 to 600°C, and may be 250 to 600°C. When the calcination or drying temperature of the carrier is lower than 200°C, there is a possibility that the moisture on the surface and the cocatalyst may react because there is too much moisture remaining in the carrier. Although the rate may be relatively high, this requires a large amount of cocatalyst. In addition, if the drying or calcination temperature exceeds 600℃, the surface area decreases as the pores on the surface of the carrier are combined, and a lot of hydroxyl groups or silanol groups disappear on the surface, and only siloxane groups remain, reducing the reaction site with the cocatalyst. There is a fear of doing it.
상기 담체 표면에 있는 히드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다. 상기 히드록시기의 양이 지나치게 낮으면 조촉매와의 반응자리가 적고, 지나치게 많으면 담체 입자 표면에 존재하는 히드록시기 이외에 수분에서 기인한 것일 가능성이 있다. 일례로 담체 표면의 히드록시기 양은 0.1 내지 10mmol/g 또는 0.5 내지 5 mmol/g일 수 있다.The amount of hydroxy groups on the surface of the carrier can be controlled by a method and conditions for preparing the carrier or drying conditions such as temperature, time, vacuum or spray drying. If the amount of the hydroxy group is too low, the reaction site with the cocatalyst is small, and if it is too large, it may be due to moisture other than the hydroxy group present on the surface of the carrier particles. For example, the amount of hydroxy groups on the surface of the carrier may be 0.1 to 10 mmol/g or 0.5 to 5 mmol/g.
상기한 담체들 중에서도 실리카, 특히 실리카겔을 하소하여 제조한 실리카의 경우, 실리카 담체에 대해 상기 전이금속 화합물이 화학적으로 결합하여 담지되기 때문에, 프로필렌 중합 공정에서 담체 표면으로부터 유리되어 나오는 촉매가 거의 없다. 그 결과 슬러리 중합 또는 기상 중합으로 폴리올레핀을 제조할 경우, 반응기 벽면이나 중합체 입자끼리 엉겨 붙는 파울링을 최소화할 수 있다.Among the above-described carriers, silica, especially silica prepared by calcining silica gel, is supported by chemical bonding of the transition metal compound to the silica carrier, so that there is hardly any catalyst released from the surface of the carrier in the propylene polymerization process. As a result, when the polyolefin is produced by slurry polymerization or gas phase polymerization, fouling of the reactor wall or polymer particles entangled with each other can be minimized.
또한, 상기 전이금속 화합물이 담지 촉매의 형태로 포함되는 경우, 상기 제1 및 제2 전이금속 화합물은 담체 중량당, 예컨대, 실리카 1g을 기준으로 제1 및 제2전이금속 화합물의 총 합계량이 10 μmol 이상, 또는 30 μmol 이상, 또는 60 μmol 이상이고, 120 μmol 이하 또는 100 μmol 이하의 함량 범위로 담지될 수 있다. 상기 함량 범위로 담지될 때, 적절한 담지 촉매 활성을 나타내어 촉매의 활성 유지 측면에서 유리할 수 있다.In addition, when the transition metal compound is included in the form of a supported catalyst, the total amount of the first and second transition metal compounds is 10 per weight of the carrier, for example, based on 1 g of silica. µmol or more, or 30 µmol or more, or 60 µmol or more, and may be supported in a content range of 120 μmol or less or 100 µmol or less. When supported in the above content range, it may be advantageous in terms of maintaining the activity of the catalyst by exhibiting an appropriate supported catalytic activity.
상기한 구성의 혼성 담지 촉매는 우수한 중합 활성을 나타내며, 염소화 폴리올레핀 또는 컴파운드의 인장강도 개선을 위해 최적화된 구조를 갖는 폴리올레핀을 제조할 수 있다.The hybrid supported catalyst having the above configuration exhibits excellent polymerization activity, and can prepare a chlorinated polyolefin or a polyolefin having an optimized structure for improving the tensile strength of the compound.
폴리올레핀의 제조 Preparation of polyolefin
발명의 다른 일 구현예에 따르면, 상기한 혼성 담지 촉매를 포함하는 촉매 조성물의 존재 하에, 올레핀계 단량체를 중합하는 단계를 포함하는 폴리올레핀의 제조 방법이 제공될 수 있다. According to another embodiment of the present invention, a method for producing a polyolefin including polymerizing an olefin-based monomer in the presence of a catalyst composition including the hybrid supported catalyst may be provided.
상기 제조 방법에 있어서, 촉매 조성물은 상술한 혼성 담지 촉매를 포함한다.In the above production method, the catalyst composition includes the aforementioned hybrid supported catalyst.
상기 혼성 담지 촉매는 자체로 중합 반응계에 투입될 수도 있고, 또는 C 5-12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 반응계에 투입될 수도 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하다.The hybrid supported catalyst may be introduced into the polymerization reaction system by itself, or a C 5-12 aliphatic hydrocarbon solvent such as pentane, hexane, heptane, nonane, decane, and isomers thereof and aromatic hydrocarbons such as toluene and benzene. It may be dissolved or diluted in a solvent, a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane, or chlorobenzene, and then introduced into the reaction system. The solvent used here is preferably used after removing a small amount of water or air acting as a catalyst poison by treating a small amount of alkyl aluminum.
또 상기 촉매 조성물은 조촉매 및 대전방지제 중 1종 이상을 더 포함할 수 있다.In addition, the catalyst composition may further include at least one of a cocatalyst and an antistatic agent.
구체적으로, 상기 촉매 조성물은 높은 활성과 공정 안정성을 향상시키는 측면에서 조촉매를 추가로 포함할 수 있다. 상기 조촉매는 하기 화학식 9, 화학식 10 또는 화학식 11으로 표시되는 화합물 중 1종 이상을 포함할 수 있다.Specifically, the catalyst composition may further include a cocatalyst in terms of improving high activity and process stability. The cocatalyst may include one or more of the compounds represented by the following Chemical Formula 9, Chemical Formula 10, or Chemical Formula 11.
[화학식 9][Formula 9]
-[Al(R a)-O] m--[Al(R a )-O] m-
상기 화학식 9에서, In Chemical Formula 9,
R a은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; C 1-20의 탄화수소; 또는 할로겐으로 치환된 C 1-20의 탄화수소이고;R a may be the same as or different from each other, and each independently halogen; Hydrocarbons of C 1-20; Or a halogen-substituted C 1-20 hydrocarbon;
m은 2 이상의 정수이며;m is an integer of 2 or more;
[화학식 10][Formula 10]
J(R b) 3 J(R b ) 3
상기 화학식 10에서,In Chemical Formula 10,
R b는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; C 1-20의 탄화수소; 또는 할로겐으로 치환된 C 1-20의 탄화수소이고;R b may be the same as or different from each other, and each independently halogen; Hydrocarbons of C 1-20; Or a halogen-substituted C 1-20 hydrocarbon;
J는 알루미늄 또는 보론이며;J is aluminum or boron;
[화학식 11][Formula 11]
[E-H] +[ZQ 4] - 또는 [E] +[ZQ 4] - [EH] + [ZQ 4] - or [E] + [ZQ 4] -
상기 화학식 11에서,In Formula 11,
E는 중성 또는 양이온성 루이스 염기이고;E is a neutral or cationic Lewis base;
H는 수소 원자이며;H is a hydrogen atom;
Z는 13족 원소이고;Z is a group 13 element;
Q는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, C 1-20의 탄화수소, 알콕시 또는 페녹시로 치환되거나 또는 비치환된, C 6-20의 아릴기 또는 C 1-20의 알킬기이다.Q may be the same as or different from each other, and each independently of one or more hydrogen atoms is substituted or unsubstituted with halogen, C 1-20 hydrocarbon, alkoxy or phenoxy, C 6-20 aryl group or C 1-20 It is an alkyl group.
상기 화학식 9로 표시되는 화합물의 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 또는 부틸알루미녹산 등의 C 1-20의 알킬알루미녹산계 화합물을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. Examples of the compound represented by Formula 9 include C 1-20 alkylaluminoxane-based compounds such as methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, or butylaluminoxane, and any one or two of them Mixtures of the above can be used.
또, 상기 화학식 10로 표시되는 화합물의 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리시클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 포함되며, 보다 구체적으로는 트리메틸알루미늄, 트리에틸알루미늄, 및 트리이소부틸알루미늄 중에서 선택되는 것일 수 있다. In addition, examples of the compound represented by Formula 10 include trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethyl chloro aluminum, triisopropyl aluminum, tri-s-butyl aluminum, tricyclo Pentyl aluminum, tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri-p-tolyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide , Trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron, tributyl boron, and the like. More specifically, it may be selected from trimethyl aluminum, triethyl aluminum, and triisobutyl aluminum.
또, 상기 화학식 11로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플로로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플로로페닐보론, 디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라(p-톨릴)알루미늄, 트리프로필암모니움테트라(p-톨릴)알루미늄, 트리에틸암모니움테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모니움테트라(p-트리플로로메틸페닐)알루미늄, 트리메틸암모니움테트라(p-트리플로로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플로로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타테트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라(p-톨릴)보론, 트리에틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라(p-트리플로로메틸페닐)보론, 또는 트리페닐카보니움테트라펜타플로로페닐보론 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.In addition, examples of the compound represented by Formula 11 include triethyl ammonium tetraphenyl boron, tributyl ammonium tetraphenyl boron, trimethyl ammonium tetraphenyl boron, tripropyl ammonium tetraphenyl boron, trimethyl ammonium tetra (p- Tolyl) boron, trimethylammonium tetra (o,p-dimethylphenyl) boron, tributyl ammonium tetra (p-trifluoromethylphenyl) boron, trimethyl ammonium tetra (p-trifluoromethylphenyl) boron, tributyl ammony Um tetrapentafluorophenyl boron, N,N-diethylanilinium tetraphenyl boron, N,N-diethylanilinium tetrapentafluorophenyl boron, diethyl ammonium tetrapentafluorophenyl boron, triphenyl Phosphonium tetraphenyl boron, trimethylphosphonium tetraphenyl boron, triethyl ammonium tetraphenyl aluminum, tributyl ammonium tetraphenyl aluminum, trimethyl ammonium tetraphenyl aluminum, tripropyl ammonium tetraphenyl aluminum, trimethyl ammonium tetra (p -Tolyl) aluminum, tripropyl ammonium tetra (p-tolyl) aluminum, triethyl ammonium tetra (o,p-dimethylphenyl) aluminum, tributyl ammonium tetra (p-trifluoromethylphenyl) aluminum, trimethyl ammonium Tetra (p-trifluoromethylphenyl) aluminum, tributylammonium tetrapentafluorophenyl aluminum, N,N-diethylanilinium tetraphenyl aluminum, N,N-diethylanilinium tetrapentafluorophenyl aluminum , Diethylammonium tetrapenta tetraphenylaluminum, triphenylphosphonium tetraphenylaluminum, trimethylphosphonium tetraphenylaluminum, tripropylammonium tetra(p-tolyl) boron, triethylammonium tetra(o,p-dimethylphenyl) ) Boron, tributylammonium tetra (p-trifluoromethylphenyl) boron, triphenylcarbonium tetra (p-trifluoromethylphenyl) boron, or triphenylcarbonium tetrapentafluorophenyl boron, etc. And any one or a mixture of two or more of them may be used.
상기한 조촉매 중에서도, 상기 전이금속 화합물과의 사용시 보다 우수한 촉매 활성을 나타낼 수 있는 점을 고려할 때, 상기 조촉매로는 상기 화학식 9로 표시되는 화합물, 보다 구체적으로는 메틸알루미녹산 등의 C 1-20의 알킬알루미녹산계 화합물일 수 있다. 상기 알킬알루미녹산계 화합물은 담체 표면에 존재하는 히드록실기의 스캐빈저(scavenger)로 작용하여 촉매 활성을 향상시키고, 촉매 전구체의 할로겐기를 메틸기로 전환시켜 폴리에틸렌의 중합시, 사슬 성장을 촉진시킨다.Among the above-described cocatalysts, when considering the fact that it can exhibit more excellent catalytic activity when used with the transition metal compound, the cocatalyst is a compound represented by Formula 9, more specifically, C 1 such as methylaluminoxane. It may be an alkylaluminoxane-based compound of -20. The alkylaluminoxane-based compound acts as a scavenger of hydroxyl groups present on the surface of the carrier to improve catalytic activity, and converts the halogen group of the catalyst precursor to a methyl group to promote chain growth during polymerization of polyethylene. .
상기 조촉매는 담체 중량당, 예컨대, 실리카 1g을 기준으로 0.1mmol 이상, 0.15mmol 이상, 또는 5mmol 이상, 또는 8mmol 이상, 또는 10mmol 이상이고, 25 mmol 이하, 또는 20 mmol 이하의 함량으로 담지될 수 있다. 상기한 함량 범위로 포함시 조촉매 사용에 따른 촉매 활성 개선 효과와 함께 미분 발생 저감 효과를 충분히 얻을 수 있다. The cocatalyst may be supported in an amount of 0.1 mmol or more, 0.15 mmol or more, or 5 mmol or more, or 8 mmol or more, or 10 mmol or more, 25 mmol or less, or 20 mmol or less per weight of the carrier, for example, based on 1 g of silica. have. When included in the above content range, it is possible to sufficiently obtain the effect of improving the catalytic activity according to the use of the cocatalyst and the effect of reducing the generation of fine particles.
또, 상기 촉매 조성물은 대전 방지제를 더 포함할 수 있다. 이러한 대전 방지제로는 에톡시화된 알킬아민(ethoxylated alkyl amine), 구체적으로 하기 화학식 12로 표시되는 화합물이 사용될 수 있다. 촉매 조성물이 대전 방지제를 포함하는 경우, 폴리에틸렌 중합 과정에서 정전기 발생이 억제되어, 제조되는 폴리에틸렌의 물성이 더욱 개선될 수 있다.In addition, the catalyst composition may further include an antistatic agent. As such an antistatic agent, an ethoxylated alkyl amine, specifically, a compound represented by the following Formula 12 may be used. When the catalyst composition includes an antistatic agent, generation of static electricity is suppressed in the polyethylene polymerization process, so that the physical properties of the polyethylene produced may be further improved.
[화학식 12][Formula 12]
RN-(CH 2CH 2OH) 2 RN-(CH 2 CH 2 OH) 2
상기 화학식 12에서, R은 C 8-30의 알킬일 수 있으며, R이 상기한 범위의 탄소수를 갖는 알킬기를 포함할 때, 불쾌한 냄새 유발 없이 우수한 대전 방지 작용을 통한 미분 감소 효과를 나타낼 수 있다.In Formula 12, R may be C 8-30 alkyl, and when R includes an alkyl group having a carbon number in the above range, it may exhibit a fine powder reduction effect through an excellent antistatic action without causing an unpleasant odor.
보다 구체적으로 상기 에톡시화된 알킬아민은 상기 화학식 1에서 R이 C 8-22의 직쇄상 알킬이거나, 혹은 C 10-18의 직쇄상 알킬, 혹은 C 13-15의 직쇄상 알킬인 화합물일 수 있으며, 이들 화합물 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 구체적인 예로는 N,N-bis(2-hydroxyethyl)tridecylamine, 또는 N,N-bis(2-hydroxyethyl)pentadecylamine 등을 들 수 있으며, 상업적으로 입수 가능한 Atmer 163™(CRODA사제) 등이 사용될 수도 있다.More specifically, the ethoxylated alkylamine may be a compound in which R in Formula 1 is C 8-22 linear alkyl, C 10-18 linear alkyl, or C 13-15 linear alkyl, , One of these compounds alone or a mixture of two or more may be used. Specific examples include N,N-bis(2-hydroxyethyl)tridecylamine, or N,N-bis(2-hydroxyethyl)pentadecylamine, and the like, commercially available Atmer 163™ (manufactured by CRODA), and the like may be used.
또, 대전 방지제가 더 포함될 경우, 상기 담체, 일례로 실리카 100 중량부 당 0.5 중량부 이상, 또는 1 중량부 이상, 또는 2중량부 이상이고, 20 중량부 이하, 또는 10 중량부 이하, 또는 7중량부 이하의 양으로 포함될 수 있다.In addition, when an antistatic agent is further included, the carrier, for example, 0.5 parts by weight or more, or 1 part by weight or more, or 2 parts by weight or more, 20 parts by weight or less, or 10 parts by weight or less, or 7 It may be included in an amount less than or equal to parts by weight.
상기한 조촉매와 대전방지제는 각각 상술한 혼성 담지 촉매와 혼합되어 사용될 수도 있고, 또는 혼성 담지 촉매에서의 담체에 담지된 상태로 사용될 수도 있다. 만약 혼성 담지 촉매에서의 담체에 담지된 상태로 사용되는 경우에는, 상기 촉매 조성물은 담체에 조촉매 화합물을 담지시키는 단계, 및 상기 담체에 전이금속 화합물을 담지시키는 단계; 및 상기 조촉매와 전이금속 화합물이 담지된 담체에 대해 대전 방지제를 슬러리 상태로 주입하고 열처리하는 단계;를 포함하는 제조방법에 의해 제조될 수 있다. 이떄 상기 전이금속 화합물의 담지는 제1 전이금속 화합물의 담지 후 제2전이금속 화합물의 담지가 수행될 수도 있고, 또는 반대로 수행될 수도 있다. 이와 같은 담지 순서에 따라 결정된 구조를 갖는 담지 촉매는 폴리올레핀의 제조 공정에서 보다 높은 촉매 활성과 함께, 우수한 공정 안정성을 나타낼 수 있다. The cocatalyst and the antistatic agent may be used in combination with the aforementioned hybrid supported catalyst, respectively, or may be used while being supported on a carrier in the hybrid supported catalyst. If used in a state supported by a carrier in a hybrid supported catalyst, the catalyst composition includes the steps of supporting a cocatalyst compound on the carrier, and supporting a transition metal compound on the carrier; And injecting an antistatic agent in a slurry state and heat-treating the carrier on which the cocatalyst and the transition metal compound are supported. At this time, the loading of the transition metal compound may be carried out after the loading of the first transition metal compound, or may be carried out vice versa. A supported catalyst having a structure determined according to such a supporting sequence may exhibit higher catalytic activity and excellent process stability in the manufacturing process of polyolefin.
상기 촉매 조성물은, 중합 방법에 따라 용매에 슬러리(slurry) 상태로 사용되거나, 희석한 상태로 사용될 수도 있고, 또는 오일 및 그리스의 혼합물에 혼합한 머드 촉매의 형태로 사용될 수 있다.The catalyst composition may be used in the form of a slurry or diluted in a solvent depending on the polymerization method, or may be used in the form of a mud catalyst mixed with a mixture of oil and grease.
용매에 슬러리 상태로 사용되거나 희석한 상태로 사용되는 경우, 상기 용매로는 프로필렌 단량체의 중합 공정에 적합한 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 또는 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이 경우 상기 촉매 조성물은 상기한 용매를 더 포함할 수 있으며, 또 사용 전 상기 용매에 대해 소량의 알킬알루미늄 처리함으로써 촉매 독으로 작용할 수 있는 소량의 물 또는 공기 등을 제거할 수도 있다.When used as a slurry or diluted in a solvent, the solvent is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms suitable for the polymerization process of propylene monomers, such as pentane, hexane, heptane, nonane, decane, and these Isomers and aromatic hydrocarbon solvents such as toluene and benzene, or hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene, and any one or a mixture of two or more of them may be used. In this case, the catalyst composition may further include the above-described solvent, and a small amount of water or air, which may act as a catalyst poison, may be removed by treating the solvent with a small amount of alkyl aluminum before use.
또, 연속 벌크 중합과 같은 중합 방법이 사용되는 경우 상기 촉매 조성물은 오일 및 그리스의 혼합물에 혼합한 머드 촉매의 형태로 사용될 수 있다. 이 경우, 용매에 용해 또는 희석한 상태로 사용하는 경우와 비교하여, 제조되는 호모 폴리에틸렌에 함유되는 휘발성 유기 화합물의 양을 더욱 감소시킬 수 있고, 그 결과로서 휘발성 유기 화합물에 기인하는 냄새 또한 감소시킬 수 있다.In addition, when a polymerization method such as continuous bulk polymerization is used, the catalyst composition may be used in the form of a mud catalyst mixed with a mixture of oil and grease. In this case, compared to the case of using in a dissolved or diluted state in a solvent, the amount of the volatile organic compound contained in the homopolyethylene to be produced can be further reduced, and as a result, the odor caused by the volatile organic compound can also be reduced. I can.
한편, 폴리올레핀 제조를 위한 중합 반응은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반응기, 기상 반응기 또는 용액 반응기를 이용하여 하나의 올레핀계 단량체로 호모중합하거나 또는 2종 이상의 단량체로 공중합여 진행할 수 있다. 다만, 일 구현예의 방법에 따라, 보다 효과적으로 분자량 분포를 조절하기 위하여 슬러리 중합 또는 기상 중합으로 올레핀계 단량체를 중합하는 것이 좀더 적절하다. On the other hand, the polymerization reaction for the production of polyolefin may be performed by homopolymerization with one olefinic monomer or by copolymerization of two or more monomers using one continuous slurry polymerization reactor, a loop slurry reactor, a gas phase reactor, or a solution reactor. However, according to the method of one embodiment, it is more appropriate to polymerize the olefin-based monomer by slurry polymerization or gas phase polymerization in order to more effectively control the molecular weight distribution.
특히, 상기 중합 반응은 탄화수소계 용매(예를 들어, 헥산, 부탄, 펜탄 등의 지방족 탄화수소계 용매) 내에서 슬러리상 중합으로 진행될 수 있다. 본 발명에 따른 상기 제1 및 제2 전이금속 화합물은 지방족 탄화수소계 용매에 대해서도 우수한 용해도를 나타냄에 따라, 이들이 안정적으로 용해 및 반응계에 공급되어, 상기 중합 반응이 효과적으로 진행될 수 있다. In particular, the polymerization reaction may be carried out in a slurry phase polymerization in a hydrocarbon-based solvent (eg, an aliphatic hydrocarbon-based solvent such as hexane, butane, and pentane). As the first and second transition metal compounds according to the present invention exhibit excellent solubility in aliphatic hydrocarbon-based solvents, they are stably dissolved and supplied to the reaction system, so that the polymerization reaction can proceed effectively.
그리고, 발명의 일 구현 예에 따른 폴리올레핀의 제조 방법은 단일-CSTR 반응기(Single-CSTR Reactor)에서 진행될 수 있다.And, the method of manufacturing a polyolefin according to an embodiment of the present invention may be carried out in a single-CSTR reactor (Single-CSTR Reactor).
상기 중합 반응기에서는, 예를 들어, 질소와 같은 불활성 기체의 존재 하에 중합이 진행될 수 있다. 상기 불활성 기체는 중합 반응 초기에 메탈로센 촉매의 급격한 반응을 억제함으로써 촉매내에 포함된 메탈로센 화합물의 반응 활성을 길게 지속시키는 역할을 할 수 있다. In the polymerization reactor, for example, polymerization may proceed in the presence of an inert gas such as nitrogen. The inert gas may play a role of prolonging the reaction activity of the metallocene compound contained in the catalyst by suppressing the rapid reaction of the metallocene catalyst at the beginning of the polymerization reaction.
또, 상기 중합 반응시, 폴리올레핀의 분자량 및 분자량 분포를 조절하기 위한 목적으로 수소 기체가 사용될 수 있다. 수소 기체는 메탈로센 촉매의 비활성 사이트를 활성화 시키고, 체인 이동 반응을 일으켜 분자량을 조절하는 역할을 하는 것으로, 중합 반응시 수소 기체가 더 투입될 경우, 올레핀 단량체 총 부피에 대하여 0.1 부피% 이상, 또는 0.12 부피% 이상이고, 0.2 부피% 이하, 0.18 부피% 이하에 해당하는 양으로 투입될 수 있다. 상기한 범위 내의 함량으로 수소 기체를 투입할 경우, 제조되는 중합체의 분자량이 감소함으로써 가공성을 증진 시킬 수 있다.Further, during the polymerization reaction, hydrogen gas may be used for the purpose of controlling the molecular weight and molecular weight distribution of the polyolefin. Hydrogen gas activates the inert site of the metallocene catalyst and plays a role of controlling the molecular weight by causing a chain transfer reaction.When hydrogen gas is added during the polymerization reaction, 0.1% by volume or more with respect to the total volume of the olefin monomer, Alternatively, it may be added in an amount corresponding to 0.12% by volume or more, 0.2% by volume or less, and 0.18% by volume or less. When hydrogen gas is added in an amount within the above range, processability can be improved by reducing the molecular weight of the polymer to be produced.
또, 상기 중합 반응시 온도는 70 내지 100℃, 또는 80 내지 90℃가 될 수 있다. 이러한 중합 반응 온도가 지나치게 낮아지면 중합 속도 및 생산성 측면에서 적절하지 않고, 반대로 중합 반응 온도가 필요 이상으로 높아지면 반응기 내 파울링 현상이 유발될 수 있다.In addition, the temperature during the polymerization reaction may be 70 to 100 ℃, or 80 to 90 ℃. If the polymerization reaction temperature is too low, it is not appropriate in terms of the polymerization rate and productivity. Conversely, if the polymerization reaction temperature is higher than necessary, fouling in the reactor may be caused.
또한, 상기 중합 반응시 압력은 6.8 내지 9 kg/cm 2, 보다 구체적으로는 6.8 kg/cm 2 이상, 또는 7.0 kg/cm 2 이상, 또는 8.0 kg/cm 2 이상이고, 9 kg/cm 2 이하 또는 8.7 kg/cm 2 이하로 될 수 있다. 상기 중합 반응 압력은 고분자량 과다 생성에 의한 블록킹(blocking) 예방 및 생산성 최적화 측면에서 6.8 kg/cm 2 이상이 될 수 있고, 고압 중합 조건하에서 부반응 발생 방지 등을 고려하여 9 kg/cm 2 이하가 될 수 있다. In addition, the pressure during the polymerization reaction is 6.8 to 9 kg/cm 2 , more specifically 6.8 kg/cm 2 or more, or 7.0 kg/cm 2 Or more, or 8.0 kg/cm 2 Or more, and may be 9 kg/cm 2 or less or 8.7 kg/cm 2 or less. The polymerization reaction pressure may be 6.8 kg/cm 2 or more in terms of preventing blocking due to excessive generation of high molecular weight and optimizing productivity , and 9 kg/cm 2 or less in consideration of prevention of side reactions under high-pressure polymerization conditions. Can be.
그리고, 상기 중합 반응에는 반응 매질 또는 희석제로서 유기 용매가 더 사용될 수 있다. 이러한 유기 용매는 올레핀계 단량체의 함량을 고려하여 슬러리상 중합 등이 적절히 수행될 수 있는 정도의 함량으로 사용될 수 있다.In addition, an organic solvent may be further used as a reaction medium or diluent in the polymerization reaction. Such an organic solvent may be used in an amount such that slurry polymerization or the like can be properly performed in consideration of the content of the olefinic monomer.
또, 상기 중합 반응시 트리에틸알루미늄과 같은 트리알킬알루미늄이 선택적으로 더 투입될 수 있다. In addition, trialkyl aluminum such as triethyl aluminum may be optionally further added during the polymerization reaction.
중합 반응기내에 수분이나 불순물이 존재하면 촉매의 일부가 분해(decomposition)되게 되는데, 상기한 트리알킬알루미늄은 반응기 내에 존재하는 수분이나 불순물 또는 단량체에 포함된 수분을 사전에 잡아내는 scavenger 역할을 하기 때문에, 제조에 사용되는 촉매의 활성을 극대화할 수 있으며, 그 결과로서 우수한 물성, 특히 좁은 분자량 분포를 갖는 호모 폴리에틸렌을 보다 효율 좋게 제조할 수 있다. 구체적으로 상기 트리알킬알루미늄에 있어서, 알킬은 앞서 정의한 바와 같으며, 구체적으로는 C 1-20의 알킬이고, 보다 구체적으로 메틸, 에틸, 이소부틸 등과 같은 C 1-6의 직쇄 또는 분지쇄 알킬일 수 있다.When moisture or impurities are present in the polymerization reactor, a part of the catalyst is decomposed. The trialkyl aluminum acts as a scavenger to capture moisture or impurities in the reactor or moisture contained in the monomer in advance. The activity of the catalyst used in the preparation can be maximized, and as a result, a homopolyethylene having excellent physical properties, particularly a narrow molecular weight distribution, can be produced more efficiently. Specifically, in the trialkylaluminum, alkyl is as defined above, specifically C 1-20 alkyl, and more specifically C 1-6 straight or branched chain alkyl, such as methyl, ethyl, isobutyl, etc. I can.
또, 상기 트리알킬알루미늄(1M 기준)은 상기 에틸렌 단량체 총 중량에 대해 300ppm 이상, 또는 400ppm 이상이고, 1500ppm 이하, 또는 1350 ppm 이하의 함량으로 투입될 수 있으며, 이러한 함량 범위의 트리알킬알루미늄의 존재 하에 중합 반응시, 우수한 강도 특성을 갖는 호모 폴리에틸렌을 보다 용이하게 제조할 수 있다.In addition, the trialkyl aluminum (based on 1M) may be added in an amount of 300 ppm or more, or 400 ppm or more, 1500 ppm or less, or 1350 ppm or less based on the total weight of the ethylene monomer, and the presence of trialkyl aluminum in this content range Under the polymerization reaction, it is possible to more easily prepare a homopolyethylene having excellent strength properties.
그리고, 상기 올레핀계 단량체는 에틸렌, 알파-올레핀, 사이클릭 올레핀, 이중 결합을 2개 이상 가지고 있는 디엔 올레핀 또는 트리엔 올레핀일 수 있다.In addition, the olefinic monomer may be ethylene, alpha-olefin, cyclic olefin, diene olefin or triene olefin having two or more double bonds.
상기 올레핀계 단량체의 구체적인 예로서, 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디시클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등을 들 수 있으며, 이들 단량체를 2종 이상 혼합하여 공중합할 수도 있다.As a specific example of the olefinic monomer, ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-itocene, norbornene, nobornadiene, ethylidene nobornene, phenyl norbornene, vinyl norbornene, dicyclopentadiene, 1,4-butadiene , 1,5-pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, and the like, and two or more of these monomers may be mixed and copolymerized.
상기한 제조방법에 의해 제조되는 폴리올레핀은, 겔 투과 크로마토그래피(GPC) 분석시 멀티모달형 분자량 분포를 나타내며, 최소화된 저분자 함량과 함께 넓은 분자량 분포를 갖는다. 상기 폴리올레핀은, 겔 투과 크로마토그래피 분석에 의한 분자량 분포 곡선에서, 분포 곡선의 전체 면적 대비 log Mw 3.5 이하의 영역이 차지하는 면적비가 1.4 % 이하이고, 분자량 분포가 6 내지 15이다.The polyolefin prepared by the above-described manufacturing method exhibits a multimodal molecular weight distribution when analyzed by gel permeation chromatography (GPC), and has a broad molecular weight distribution with a minimized low molecular weight. In the molecular weight distribution curve obtained by gel permeation chromatography analysis, the polyolefin has an area ratio occupied by an area of log Mw of 3.5 or less relative to the total area of the distribution curve of 1.4% or less and a molecular weight distribution of 6 to 15.
구체적으로, 상기 폴리올레핀은 중량평균분자량(Mw)의 로그값(log Mw)을 x축으로 하고, 상기 로그값에 대한 분자량 분포(dwt/dlog Mw)를 y축으로 하여 분자량 분포 곡선을 그렸을 때, log Mw가 3.5 이하 (log Mw ≤ 3.5)의 영역이 전체 면적 대비 차지하는 면적비, 즉 분획비(fraction)가 1.4% 이하, 또는 1.2% 이하, 또는 1.05% 이하, 또는 1% 이하이다. 상기 log Mw가 3.5 이하의 영역이 차지하는 면적비는, 폴리올레핀 중 중량평균 분자량(Mw) 10 3.5 g/mol 이하의 저분자 함량을 의미하는 것으로, 본 발명에 따른 혼성 담지 촉매를 이용하여 제조한 폴리올레핀은 상기한 바와 같이 저분자 함량이 최소화됨으로써, 우수한 가교 특성을 나타낼 수 있다. Specifically, when the polyolefin draws a molecular weight distribution curve with the log value (log Mw) of the weight average molecular weight (Mw) as the x-axis, and the molecular weight distribution (dwt/dlog Mw) with the log value as the y-axis, The area ratio occupied by the area of log Mw of 3.5 or less (log Mw ≤ 3.5) to the total area, that is, the fraction is 1.4% or less, or 1.2% or less, or 1.05% or less, or 1% or less. The area ratio occupied by an area having a log Mw of 3.5 or less means a low molecular weight content of 10 3.5 g/mol or less of the weight average molecular weight (Mw) of the polyolefin. As described above, by minimizing the low molecular weight, excellent crosslinking properties can be displayed.
다만, 폴리올레핀 내 저분자 함량이 적을수록 가교도 개선 면에서는 유리하지만, 저분자 함량이 지나치게 낮고 상대적으로 고분자 함량이 지나치게 높을 경우, 염소화 폴리에틸렌 컴파운드의 제조시 무니 점도 증가를 초래하여 가공성이 저하될 우려가 있다. 이에 따라 적절한 무니점도를 갖고, 또 염소화 폴리에틸렌을 이용한 전선 등의 제조시 가공성 개선의 효과를 고려할 때 log Mw가 3.5 이하 영역에서의 분획비가 0.1% 이상, 또는 0.5% 이상, 또는 0.8% 이상이 될 수 있다. However, the smaller the low molecular weight content in the polyolefin is, the better the crosslinking degree is.However, when the low molecular weight content is too low and the high molecular weight content is relatively high, there is a concern that processability may decrease due to an increase in Mooney viscosity during manufacture of the chlorinated polyethylene compound. . Accordingly, it has an appropriate Mooney viscosity, and when considering the effect of improving processability in the manufacture of electric wires using chlorinated polyethylene, the fractional ratio in the region of less than 3.5 log Mw should be 0.1% or more, or 0.5% or more, or 0.8% or more. I can.
상기와 같은 최소화된 저분자량 함량과 더불어, 상기 폴리올레핀은 분자량 분포 곡선에서 고분자 꼬리(tail) 형성에 따른 넓은 분자량 분포(PDI)를 갖는다. 구체적으로, 상기 폴리올레핀의 PDI는 6 이상, 또는 6.1 이상이고, 15 이하, 또는 12 이하이다. In addition to the minimized low molecular weight content as described above, the polyolefin has a wide molecular weight distribution (PDI) according to the formation of a polymer tail in the molecular weight distribution curve. Specifically, the PDI of the polyolefin is 6 or more, or 6.1 or more, and 15 or less, or 12 or less.
한편, 본 발명에 있어서 폴리올레핀의 분자량 분포(PDI, polydispersity index)는 폴리올레핀의 중량평균 분자량(Mw)과 수평균 분자량(Mn)을 측정하고, 중량평균 분자량을 수평균 분자량으로 나누어 산출할 수 있다. Meanwhile, in the present invention, the molecular weight distribution (PDI, polydispersity index) of the polyolefin can be calculated by measuring the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polyolefin, and dividing the weight average molecular weight by the number average molecular weight.
또, 폴리올레핀 내 저분자 함량, 중량평균 분자량 및 수평균 분자량은, 겔 투과 크로마토그래피(GPC, gel permeation chromatography, Water사 제조) 분석을 통해 측정될 수 있으며, 구체적인 측정 방법은 이하 시험예에서 설명하는 바와 같다.In addition, the low molecular weight, weight average molecular weight, and number average molecular weight in the polyolefin can be measured through gel permeation chromatography (GPC, gel permeation chromatography, manufactured by Water Corporation), and a specific measurement method is as described in the following test examples. same.
또 상기 폴리올레핀은 상기한 저분자량 함량 및 분자량 분포 특성과 함께, 하기 (i) 내지 (viii) 중 1 이상, 또는 2 이상, 또는 모두의 조건을 더욱 충족하는 것일 수 있다:In addition, the polyolefin may further satisfy the conditions of one or more of the following (i) to (viii), or two or more, or both, along with the low molecular weight content and molecular weight distribution characteristics described above:
(i) GPC 분석에 따른 분자량 분포 곡선에서, log Mw 3.5 초과 4.0 이하(3.5 < log Mw ≤ 4.0)에서의 분획비: 1 내지 5%(i) In the molecular weight distribution curve according to GPC analysis, the fraction ratio in log Mw greater than 3.5 and less than or equal to 4.0 (3.5 <log Mw ≤ 4.0): 1 to 5%
(ii) GPC 분석에 따른 분자량 분포 곡선에서, log Mw 4.0 이하에서의 분획비: 6% 이하(ii) In the molecular weight distribution curve according to GPC analysis, the fraction ratio at log Mw 4.0 or less: 6% or less
(iii) 중량평균 분자량: 185,000 내지 500,000 g/mol (iii) Weight average molecular weight: 185,000 to 500,000 g/mol
(iv) 주파수 500 rad/s에서 측정한 복소 점도: 790 내지 810 Pa·s(iv) Complex viscosity measured at a frequency of 500 rad/s: 790 to 810 Pa·s
(v) 용융 유동율비(MFRR, MI 21.6/MI 5): 10 내지 25(v) Melt flow rate ratio (MFRR, MI 21.6 /MI 5 ): 10 to 25
(vi) 용융지수(MI 5.0, 조건 E, 190℃, 5.0 kg 하중)가 0.5 내지 3 g/10min(vi) Melt index (MI 5.0 , condition E, 190°C, 5.0 kg load) is 0.5 to 3 g/10min
(vii) ASTM D-1505에 따라 측정한 밀도: 0.94 내지 0.96 g/cm 3 (vii) Density measured according to ASTM D-1505: 0.94 to 0.96 g/cm 3
(viii) MDR 토크(M H-M L): 7.5 내지 12 Nm.(viii) MDR torque (M H -M L ): 7.5 to 12 Nm.
구체적으로, 상기 폴리올레핀은 가교 효율을 감소시키는 log Mw 3.5 초과 4.0 이하(3.5 < log Mw ≤ 4.0)에서의 분획비, 즉 중량평균 분자량(Mw)이 10 3.5 g/mol 초과이고, 10 4.0 g/mol 이하인 저분자의 함량이, 5% 이하, 또는 4.8% 이하, 또는 4.5% 이하이고, 1% 이상, 또는 3% 이상일 수 있으며, 이에 따라 폴리올레핀 내 log Mw 4.0 이하에서의 분획비, 즉 중량평균 분자량(Mw) 10 4.0 g/mol 이하의 저분자의 함량이 6% 이하, 보다 구체적으로는 5.5% 이하일 수 있다. Specifically, the polyolefin has a fractional ratio at log Mw of 3.5 to 4.0 or less (3.5 <log Mw ≤ 4.0) to reduce crosslinking efficiency, that is, the weight average molecular weight (Mw) is greater than 10 3.5 g/mol, and 10 4.0 g/ The content of the low molecular weight less than or equal to mol may be 5% or less, or 4.8% or less, or 4.5% or less, and may be 1% or more, or 3% or more, and thus the fraction ratio at log Mw 4.0 or less in the polyolefin, that is, the weight average molecular weight (Mw) 10 The content of the low molecular weight of 4.0 g/mol or less may be 6% or less, more specifically 5.5% or less.
폴리올레핀 내 저분자 함량, 특히 Mw 10 4. 0 g/mol 이하의 저분자 함량이 높을 경우에는 저분자 성분이 용융되면서 유동성이 증가하게 되고, 이는 폴리올레핀 입자의 기공을 막아 염소화 생산성을 저하시킬 수 있다. 이에 대해 상기 폴리올레핀은 염소화 생산성 저하에 대한 우려 없이 우수한 가교도 개선 효과를 나타낼 수 있다.When the low molecular weight content in the polyolefin, in particular, the low molecular weight content of Mw 10 4. 0 g/mol or less is high, the low molecular weight component melts and the fluidity increases, which may block the pores of the polyolefin particles, thereby lowering the chlorination productivity. On the other hand, the polyolefin may exhibit an excellent crosslinking degree improvement effect without fear of a decrease in chlorination productivity.
또, 상기 폴리올레핀은 높은 중량평균 분자량(Mw)을 가지며, 구체적으로 Mw는 185,000 g/mol 이상, 또는 190,000 g/mol 이상이고, 500,000 g/mol 이하, 또는 350,000 g/mol 이하이다. 상기한 범위의 Mw 및 PDI를 가짐으로써 우수한 기계적 특성과 함께 가공성 개선의 효과를 발란스 좋게 나타낼 수 있으며, 특히 염소화 반응 후 폴리올레핀 간의 분자량 차이가 크지 않아 염소가 균일하게 치환될 수 있다.Further, the polyolefin has a high weight average molecular weight (Mw), specifically, Mw is 185,000 g/mol or more, or 190,000 g/mol or more, and 500,000 g/mol or less, or 350,000 g/mol or less. By having the Mw and PDI in the above range, excellent mechanical properties and the effect of improving processability can be exhibited in a good balance. In particular, the difference in molecular weight between the polyolefins after the chlorination reaction is not large, so that chlorine can be uniformly substituted.
또, 상기 폴리올레핀은 주파수(frequency, ω) 500 rad/s에서 측정한 복소 점도(η*(ω500), complex viscosity)가 790 Pa·s 이상 810 Pa·s 이하로, 와이어 또는 케이블용 염소화 폴리올레핀의 제조에 적합하다.In addition, the polyolefin has a complex viscosity (η*(ω500), complex viscosity) of 790 Pa·s or more and 810 Pa·s or less, measured at a frequency of 500 rad/s. It is suitable for manufacturing.
본 발명에 있어서, 폴리올레핀의 복소 점도는 ARES(Advanced Rheometric Expansion System)을 이용하여 190℃의 온도 및 주파수(frequency, ω) 0.05 rad/s에서 측정할 수 있으며, 그 구체적인 측정 방법은 이하 시험예에서 설명하는 바와 같다.In the present invention, the complex viscosity of the polyolefin can be measured at a temperature of 190°C and a frequency (ω) of 0.05 rad/s using ARES (Advanced Rheometric Expansion System). As described.
또, 상기 폴리올레핀은 용융 유동율비(MFRR, Melt flow rate ratio, MI 21.6/MI 5)가 25 이하, 또는 20 이하, 또는 18 이하이고, 10 이상, 또는 10.3 이상이며, 용융지수(MI 5.0, 조건 E, 190℃, 5.0 kg 하중)가 0.5 g/10min 이상, 또는 0.8 g/10min 이상, 또는 1 g/10min 이상이고, 3 g/10min 이하, 또는 2.5 g/10min 이하일 수 있다. 상기한 범위이 용융 유동율비 및 용융지수를 가짐에 따라, 염소화 폴리올레핀의 제조시 물성 저하 없이 무니 점도를 적절히 제어할 수 있고, 이에 따라 가공성을 개선시킬 수 있다. In addition, the polyolefin has a melt flow rate ratio (MFRR, Melt flow rate ratio, MI 21.6 / MI 5 ) of 25 or less, or 20 or less, or 18 or less, 10 or more, or 10.3 or more, and a melt index (MI 5.0 , condition E, 190°C, 5.0 kg load) may be 0.5 g/10min or more, or 0.8 g/10min or more, or 1 g/10min or more, and 3 g/10min or less, or 2.5 g/10min or less. As the above range has a melt flow rate and a melt index, it is possible to appropriately control the Mooney viscosity without deteriorating physical properties when producing a chlorinated polyolefin, thereby improving processability.
본 발명에 있어서 폴리올레핀의 용융 지수(Melt Index, MI 5.0)는 ASTM D1238 (조건 E, 190℃, 5.0 kg 하중)에 따라 측정할 수 있다. 또한, 상기 용융 유동율비(Melt Flow Rate Ratio, MFRR, 21.6/5)는 MFR 21.6을 MFR 5으로 나누어 계산할 수 있으며, 상기 MFR 21.6은 ASTM D 1238에 따라 190℃의 온도 및 21.6 kg의 하중 하에서 측정할 수 있고, MFR 5은 ASTM D 1238에 따라 190℃의 온도 및 5 kg의 하중 하에서 측정할 수 있다.In the present invention, the melt index (Melt Index, MI 5.0 ) of the polyolefin can be measured according to ASTM D1238 (condition E, 190°C, 5.0 kg load). In addition, the Melt Flow Rate Ratio (MFRR, 21.6/5) can be calculated by dividing MFR 21.6 by MFR 5 , and the MFR 21.6 is measured under a temperature of 190°C and a load of 21.6 kg according to ASTM D 1238. MFR 5 can be measured under a temperature of 190°C and a load of 5 kg according to ASTM D 1238.
또, 상기 폴리올레핀은, 0.94 g/cm 3 이상, 또는 0.945 g/cm 3 이상이고, 0.96 g/cm 3 이하, 또는 0.955 g/cm 3 이하의 고밀도를 나타낸다. 이는 폴리올레핀의 결정 구조의 함량이 높고 치밀하다는 것을 의미하며, 이는 염소화 공정 중 결정 구조의 변화가 일어나기 어려운 특징을 갖는다. 본 발명에 있어서 폴리올레핀의 밀도는 ASTM D-1505에 의거한 방법으로 측정할 수 있다. In addition, the polyolefin is 0.94 g/cm 3 or more, or 0.945 g/cm 3 or more, and 0.96 g/cm 3 or less, or 0.955 g/cm 3 It shows the following high density. This means that the content of the crystal structure of the polyolefin is high and dense, and this has a characteristic that it is difficult to change the crystal structure during the chlorination process. In the present invention, the density of the polyolefin can be measured by a method based on ASTM D-1505.
또, 상기 폴리올레핀은 MDR 토크(M H-M L)가 7.5 Nm 이상, 또는 8 Nm 이상 또는 8.5 Nm 이상이고, 또는 12 Nm 이하, 또는 11.5 Nm 이하일 수 있다. 상기한 범위 내의 MDR 토크를 가짐으로써 높은 가교도 및 우수한 기계적 물성을 나타낼 수 있다.In addition, the polyolefin may have an MDR torque (M H -M L ) of 7.5 Nm or more, or 8 Nm or more or 8.5 Nm or more, or 12 Nm or less, or 11.5 Nm or less. By having the MDR torque within the above range, a high degree of crosslinking and excellent mechanical properties can be exhibited.
상기 폴리올레핀의 MDR 토크(M H-M L)는 가교도를 지칭하는 것으로, 가교도가 높을수록 M H-M L이 높고, 동일 가교제 적용 시 가교 효율이 우수하다는 의미를 갖는다. 상기 폴리올레핀의 MDR 토크는 일예로 MDR(Moving die rheometer)를 이용하여 측정할 수 있으며, 180℃ 및 10min 조건 하에서 M H 값 및 M L 값을 측정하고, 상기 M H 값에서 M L 값을 빼기 함으로써 산출할 수 있다. 여기서, M H는 풀 큐어(full cure)에서 측정된 최대 토크(Maximum vulcanizing torque)이며, M L은 저장된 최소 토크(Minimum vulcanizing torque)이다. 구체적인 측정 방법은 이하 시험예에서 설명하는 바와 같다.The MDR torque (M H -M L ) of the polyolefin refers to the degree of crosslinking, and the higher the degree of crosslinking, the higher the M H -M L , and it means that the crosslinking efficiency is excellent when the same crosslinking agent is applied. The MDR torque of the polyolefin can be measured using a moving die rheometer (MDR) as an example, by measuring the M H value and the M L value under conditions of 180°C and 10 min, and subtracting the M L value from the M H value. Can be calculated. Here, M H is the maximum vulcanizing torque measured in full cure, and M L is the stored minimum vulcanizing torque. The specific measurement method is as described in the test examples below.
상기 폴리올레핀은, 별도의 공단량체를 포함하지 않는 올레핀의 호모 중합체, 예컨대, 에틸렌 호모 중합체일 수 있다. 일예로, 상기 폴리올레핀이, 예를 들어 에틸렌 호모 중합체, 바람직하게는 상술한 밀도 조건을 충족하는 고밀도 폴리에틸렌(HDPE)인 경우, 상기한 물성적 특징을 보다 적절히 충족할 수 있다. 상기 고밀도 폴리에틸렌은 연화점, 굳기, 강도 및 전기절연성이 뛰어나, 각종 용기, 포장용 필름, 섬유, 파이프, 패킹, 절연재료 등에 사용될 수 있다.The polyolefin may be a homopolymer of an olefin that does not contain a separate comonomer, such as an ethylene homopolymer. For example, when the polyolefin is, for example, an ethylene homopolymer, preferably a high-density polyethylene (HDPE) that satisfies the above-described density condition, the above-described physical properties may be more appropriately satisfied. The high-density polyethylene has excellent softening point, hardness, strength, and electrical insulation, and can be used in various containers, packaging films, fibers, pipes, packings, insulating materials, and the like.
상기한 바와 같이 본 발명에 따른 혼성 담지 촉매를 이용하여 제조한 폴리올레핀은, 최소화된 저분자 함량과 함께 넓은 분자량 분포 등의 최적화된 분자 구조를 가짐으로써, 염소화 폴리올레핀의 제조시 가교도를 증가시킬 수 있으며, 결과로서 인장강도를 크게 개선시킬 수 있다. 이에 따라 와이어 또는 케이블용 염소화 폴리올레핀의 제조에 특히 유용할 수 있다.As described above, the polyolefin prepared using the hybrid supported catalyst according to the present invention has an optimized molecular structure such as a wide molecular weight distribution with a minimized low molecular content, so that the degree of crosslinking can be increased when preparing a chlorinated polyolefin, As a result, the tensile strength can be greatly improved. This may be particularly useful in the production of chlorinated polyolefins for wires or cables.
이에, 발명의 또 다른 일 구현예에 따르면, 상술한 바와 같은 방법으로 제조된 폴리올레핀을 클로린(chlorine)으로 처리하여 염소화하는 단계를 포함하는 염소화 폴리올레핀의 제조 방법이 제공된다. Accordingly, according to another embodiment of the present invention, there is provided a method for producing a chlorinated polyolefin comprising the step of chlorinating the polyolefin prepared by the above-described method with chlorine.
본 발명에 따른 혼성 담지 촉매는, 특정의 화학 구조를 갖는 전이금속 화합물 2종 이상을 포함함으로써, 염소화 폴리올레핀 컴파운드의 인장강도 향상에 최적화된 분자 구조를 갖는 폴리올레핀, 특히 고밀도 폴리에틸렌을 제조할 수 있다.The hybrid supported catalyst according to the present invention includes two or more kinds of transition metal compounds having a specific chemical structure, so that a polyolefin having a molecular structure optimized for improving the tensile strength of a chlorinated polyolefin compound, in particular, a high-density polyethylene can be prepared.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. The invention will be described in more detail in the following examples. However, the following examples are merely illustrative of the present invention, and the contents of the present invention are not limited by the following examples.
<제1 전이금속 화합물의 제조><Preparation of the first transition metal compound>
합성예 1: [tert-Bu-O-(CH 2) 6-C 5H 4] 2ZrCl 2 의 제조 Synthesis Example 1: [tert-Bu-O-(CH 2 ) 6 -C 5 H 4 ] 2 Preparation of ZrCl 2
6-클로로헥사놀(6-chlorohexanol)을 사용하여 문헌(Tetrahedron Lett. 2951 (1988))에 제시된 방법으로 tert-Butyl-O-(CH 2) 6-Cl을 제조하고, 여기에 NaCp를 반응시켜 tert-Butyl-O-(CH 2) 6-C 5H 5를 얻었다(수율 60%, b.p. 80℃ / 0.1mmHg). Using 6-chlorohexanol, tert-Butyl-O-(CH 2 ) 6 -Cl was prepared by the method suggested in the literature (Tetrahedron Lett. 2951 (1988)), and NaCp was reacted thereto. tert-Butyl-O-(CH 2 ) 6 -C 5 H 5 was obtained (yield 60%, bp 80°C / 0.1mmHg).
또한, -78℃에서 t-Butyl-O-(CH 2) 6-C 5H 5를 THF에 녹이고, 노르말 부틸리튬(n-BuLi)을 천천히 가한 후, 실온으로 승온시킨 후, 8시간 반응시켰다. 그 용액을 다시 -78℃에서 ZrCl 4(THF) 2 (1.70g, 4.50mmol)/THF(30 mL)의 서스펜젼(suspension) 용액에 기 합성된 리튬염(lithium salt) 용액을 천천히 가하고 실온에서 6 시간 동안 더 반응시켰다.In addition, t-Butyl-O-(CH 2 ) 6 -C 5 H 5 was dissolved in THF at -78°C, and normal butyllithium (n-BuLi) was slowly added, the temperature was raised to room temperature, and then reacted for 8 hours. . The previously synthesized lithium salt solution was slowly added to the suspension solution of ZrCl 4 (THF) 2 (1.70 g, 4.50 mmol)/THF (30 mL) at -78°C again at room temperature. It was further reacted for 6 hours at.
모든 휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 헥산(hexane) 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 후, 헥산을 가해 저온(-20℃)에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 [tert-Bu-O-(CH 2) 6-C 5H 4] 2ZrCl 2 화합물을 얻었다(수율 92%).All volatile substances were vacuum-dried, and a hexane solvent was added to the obtained oily liquid substance to filter it out. After vacuum drying the filtered solution, hexane was added to induce a precipitate at low temperature (-20°C). The obtained precipitate was filtered at low temperature to obtain a white solid [tert-Bu-O-(CH 2 ) 6 -C 5 H 4 ] 2 ZrCl 2 compound (yield 92%).
1H NMR (300 MHz, CDCl 3): 6.28 (t, J = 2.6 Hz, 2 H), 6.19 (t, J = 2.6 Hz, 2 H), 3.31 (t, 6.6 Hz, 2 H), 2.62 (t, J = 8 Hz), 1.7 - 1.3 (m, 8 H), 1.17 (s, 9 H). 1 H NMR (300 MHz, CDCl 3 ): 6.28 (t, J = 2.6 Hz, 2 H), 6.19 (t, J = 2.6 Hz, 2 H), 3.31 (t, 6.6 Hz, 2 H), 2.62 ( t, J = 8 Hz), 1.7-1.3 (m, 8H), 1.17 (s, 9H).
13C NMR (CDCl 3): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00. 13 C NMR (CDCl 3 ): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00.
<제2 전이금속 화합물의 제조><Preparation of the second transition metal compound>
합성예 2-1Synthesis Example 2-1
단계 1: 리간드 화합물의 제조Step 1: Preparation of Ligand Compound
Figure PCTKR2020013052-appb-img-000007
Figure PCTKR2020013052-appb-img-000007
100ml 쉬링크 플라스크(schlenk flask)에 Cp unit으로서 4-(4-(tert-butyl)phenyl)-2-isopropyl-1H-indene (i) (2.9g, 10mmol)을 넣고 테트라하이드로퓨란(THF; 35ml)을 투입한 후 -20℃ 이하로 냉각하였다. 냉각한 혼합 용액을 5분간 교반(stirring)한 후, N-부틸리튬(NBL; 4.2ml, 2.5M in hexane)를 투입하고, 하룻밤(Overnight) 동안 반응시켜 리튬화된 Cp (lithiated Cp)를 제조하였다. 상기 n-부틸리튬의 투입 시 혼합 용액은 갈색을 나타내었다. Add 4-(4-(tert-butyl)phenyl)-2-isopropyl-1H-indene (i) (2.9g, 10mmol) as Cp unit to a 100ml Schlenk flask and tetrahydrofuran (THF; 35ml) ) Was added and then cooled to -20°C or less. After stirring the cooled mixed solution for 5 minutes, N-butyllithium (NBL; 4.2ml, 2.5M in hexane) was added and reacted overnight to prepare lithiated Cp (lithiated Cp). I did. When the n-butyllithium was added, the mixed solution had a brown color.
별도의 100ml 쉬링크 플라스크에 Tether silane으로서 Dichloro(tert-butoxy)hexyl)methylsilane (ii) (2.84g)을 넣고 MTBE(methyl tert-butyl ether) (35ml)을 투입하였다. 상기 쉬링크 플라스크를 -20℃ 이하로 냉각한 뒤, 상기에서 제조한, 리튬화된 Cp를 적가 하여 반응시켰다. 반응이 종결되면 진공 하 감압증류에 의해 반응물 내 용매를 제거하고, 헥산(Hex)을 이용하여 생성된 염을 여과하여 제거하였다. 결과로 수득한 반응물(iii)에 대해 t-BuNH 2 (4.5ml)를 투입하여 반응시킨 후, 결과의 침전물을 헥산을 이용하여 여과 제거하고, 1-(6-(tert-butoxy)hexyl)-N-(tert-butyl)-1-(4-(4-(tert-butyl)phenyl)-2-isopropyl-1H-inden-1-yl)-1-methylsilanamine (2a)의 리간드 화합물을 얻었다 (yellow oil, 5.50g, 수율 98%(몰 기준)). Dichloro(tert-butoxy)hexyl)methylsilane (ii) (2.84g) as tether silane was added to a separate 100ml shrink flask, and MTBE (methyl tert-butyl ether) (35ml) was added. After cooling the shrink flask to -20°C or less, the lithiumated Cp prepared above was added dropwise to react. When the reaction was completed, the solvent in the reaction product was removed by distillation under reduced pressure under vacuum, and the resulting salt was filtered off using hexane (Hex). After t-BuNH 2 (4.5ml) was added to the resulting reactant (iii) to react, the resulting precipitate was filtered off using hexane, and 1-(6-(tert-butoxy)hexyl)- A ligand compound of N-(tert-butyl)-1-(4-(4-(tert-butyl)phenyl)-2-isopropyl-1H-inden-1-yl)-1-methylsilanamine (2a) was obtained (yellow oil, 5.50 g, yield 98% (molar basis)).
NMR(400MHz, C6D6) 7.72-7.65 (m, 2H), 7.59-7.21 (m, 5H), 7.05(s, 1H) 3.73-3.65 (m, 1H), 3.33-3.21 (m, 3H), 3.11-2.85 (m, 1H), 1.66-1.51 (m, 3H), 1.51-1.34 (m, 4H), 1.26 (s, 9H), 1.12(s, 9H), 1.24-1.18 (m, 6H), 1.06 (s, 9H), 1.04-0.99 (m, 1H), 0.64-0.58 (m, 1H), 0.54-0.49 (m, 1H), 0.30 (s, 1.5H), 0.19 (s, 1.5H)NMR (400MHz, C6D6) 7.72-7.65 (m, 2H), 7.59-7.21 (m, 5H), 7.05 (s, 1H) 3.73-3.65 (m, 1H), 3.33-3.21 (m, 3H), 3.11- 2.85 (m, 1H), 1.66-1.51 (m, 3H), 1.51-1.34 (m, 4H), 1.26 (s, 9H), 1.12 (s, 9H), 1.24-1.18 (m, 6H), 1.06 ( s, 9H), 1.04-0.99 (m, 1H), 0.64-0.58 (m, 1H), 0.54-0.49 (m, 1H), 0.30 (s, 1.5H), 0.19 (s, 1.5H)
단계 2: 전이금속 화합물의 제조Step 2: Preparation of transition metal compound
Figure PCTKR2020013052-appb-img-000008
Figure PCTKR2020013052-appb-img-000008
100ml 쉬링크 플라스크에 상기 단계 1에서 제조한 리간드 화합물 (2a) (4.81g, 8.6mmol)을 넣고 톨루엔 (43ml)을 투입한 뒤, -20℃ 이하로 냉각하였다. 5분간 교반을 통해 충분히 냉각시킨 뒤, 결과의 혼합 용액에 NBL(7.2ml, 2.5M in Hexane)을 투입하여 리튬화(lithiation)를 수행하였다. 상기 혼합 용액의 색깔이 연노랑에서 리튬화 후 진한 노란색으로 변한 것을 확인하였다. 리튬화 반응 완료 후, 결과의 반응액을 0℃로 냉각하고, MMB (Methyl Magnesium Bromide)(8.6ml, 3M in ether)를 투입 한 뒤, 곧바로 온도를 -20℃로 낮추고 TiCl 4(8.6ml, 1M in toluene)를 투입하였다. 투입 시 연기가 발생하였으며 반응액이 곧바로 갈색으로 변하였다. 투입 후 o/n 교반을 진행하고, 완료 후 필터를 통해 염(salt)을 제거하여 갈색 오일상의 전이금속 화합물(1a)을 수득하였다 (brown oil, 4.5g, 수율 82%(몰 기준)).The ligand compound (2a) (4.81 g, 8.6 mmol) prepared in step 1 was added to a 100 ml shrink flask, and toluene (43 ml) was added, followed by cooling to -20°C or less. After sufficiently cooling through stirring for 5 minutes, lithiation was performed by adding NBL (7.2ml, 2.5M in Hexane) to the resulting mixed solution. It was confirmed that the color of the mixed solution changed from light yellow to dark yellow after lithiation. After the lithiation reaction was completed, the resulting reaction solution was cooled to 0°C, MMB (Methyl Magnesium Bromide) (8.6ml, 3M in ether) was added, and the temperature was immediately lowered to -20°C and TiCl 4 (8.6ml, 1M in toluene) was added. When added, smoke was generated and the reaction solution immediately turned brown. After the addition, o/n stirring was performed, and after completion, salt was removed through a filter to obtain a brown oil-like transition metal compound (1a) (brown oil, 4.5g, yield 82% (molar basis)).
NMR(400MHz, C6D6), 7.25-7.75 (m, 8H), 3.20-3.36 (m, 2H), 3.20-2.64 (m, 4H) 2.64-2.74 (m,1H), 1.59-1.71 (m, 4H), 1.53 (s, 9H), 1.40-1.35 (m, 2H), 1.25 (s, 9H), 1.14 (s, 9H) 1.12 (s, 6H), 0.97 (s, 3H) 0.58 (s, 3H), 0.12 (s, 3H)NMR (400MHz, C6D6), 7.25-7.75 (m, 8H), 3.20-3.36 (m, 2H), 3.20-2.64 (m, 4H) 2.64-2.74 (m,1H), 1.59-1.71 (m, 4H) , 1.53 (s, 9H), 1.40-1.35 (m, 2H), 1.25 (s, 9H), 1.14 (s, 9H) 1.12 (s, 6H), 0.97 (s, 3H) 0.58 (s, 3H), 0.12 (s, 3H)
합성예 2-2Synthesis Example 2-2
단계 1: 리간드 화합물의 제조Step 1: Preparation of Ligand Compound
50ml 쉬링크 플라스크에 Cp unit으로서 4-(3,5-di-tert-butylphenyl)-2-isopropyl-1H-indene (1.39g, 4mmol)을 넣고 THF (13ml)을 투입한 후 -20℃ 이하로 냉각하였다. 냉각한 혼합 용액을 5분간 교반한 후, NBL(1.7ml, 2.5M in hexane)를 투입하고, Overnight동안 반응시켜 리튬화된 Cp 를 제조하였다. 상기 NBL 투입 시 혼합 용액은 붉은 갈색으로 변했다. In a 50ml shrink flask, add 4-(3,5-di-tert-butylphenyl)-2-isopropyl-1H-indene (1.39g, 4mmol) as a Cp unit, and add THF (13ml) to -20℃ or less. Cooled. After stirring the cooled mixed solution for 5 minutes, NBL (1.7ml, 2.5M in hexane) was added and reacted for overnight to prepare lithiated Cp. When the NBL was added, the mixed solution turned reddish brown.
별도의 100ml 쉬링크 플라스크에 Dichloro(tert-butoxy)hexyl)methylsilane (1.14g)을 넣고 THF(13ml)을 투입하였다. 상기 쉬링크 플라스크를 -20℃ 이하로 냉각한 뒤, 상기에서 제조한, 리튬화된 Cp를 적가 하여 반응시켰다. 반응이 종결되면 진공 하 감압증류에 의해 반응물 내 용매를 제거하고, 헥산(Hex)을 이용하여 생성된 염을 여과하여 제거하였다. 결과로 수득한 반응물에 대해 t-BuNH 2 (1.7ml)를 투입하여 반응시킨 후, 결과의 침전물을 헥산을 이용하여 여과 제거하고, 1-(6-(tert-butoxy)hexyl)-N-(tert-butyl)-1-(4-(3,5-di-tert-butylphenyl)-2-isopropyl-1H-inden-1-yl)-1-methylsilanamine의 리간드 화합물을 얻었다 (yellow oil, 2.41g, 수율 97%(몰 기준)). Dichloro(tert-butoxy)hexyl)methylsilane (1.14g) was added to a separate 100ml shrink flask, and THF (13ml) was added. After cooling the shrink flask to -20°C or less, the lithiumated Cp prepared above was added dropwise to react. When the reaction was completed, the solvent in the reaction product was removed by distillation under reduced pressure under vacuum, and the resulting salt was filtered off using hexane (Hex). After reacting by adding t-BuNH 2 (1.7 ml) to the resulting reactant, the resulting precipitate was filtered off using hexane, and 1-(6-(tert-butoxy)hexyl)-N-( A ligand compound of tert-butyl)-1-(4-(3,5-di-tert-butylphenyl)-2-isopropyl-1H-inden-1-yl)-1-methylsilanamine was obtained (yellow oil, 2.41g, Yield 97% (molar basis)).
NMR(400MHz, C6D6), 7.70-7.68 (m, 1H), 7.60-7.47 (m, 4H), 7.34-7.19 (m, 2H), 7.07 (s, 0.5H), 6.89 (s, 0.5H), 3.36-3.21 (m, 4H), 3.12 (s, 1H), 2.52-2.44 (m, 0.5H), 2.00-1.92 (m, 0.5H), 1.72-1.39 (m, 8H), 1.39 (s, 9H), 1.31 (s, 9H), 1.23 (s, 3H) 1.19 (s, 3H), 1.13 (s, 9H) 0.98 (s, 9H) 0.32 (s, 1H), 0.25 (s, 0.5H), 0.2 0(s, 1H), 0.12 (s, 0.5H)NMR (400MHz, C6D6), 7.70-7.68 (m, 1H), 7.60-7.47 (m, 4H), 7.34-7.19 (m, 2H), 7.07 (s, 0.5H), 6.89 (s, 0.5H), 3.36-3.21 (m, 4H), 3.12 (s, 1H), 2.52-2.44 (m, 0.5H), 2.00-1.92 (m, 0.5H), 1.72-1.39 (m, 8H), 1.39 (s, 9H) ), 1.31 (s, 9H), 1.23 (s, 3H) 1.19 (s, 3H), 1.13 (s, 9H) 0.98 (s, 9H) 0.32 (s, 1H), 0.25 (s, 0.5H), 0.2 0(s, 1H), 0.12 (s, 0.5H)
단계 2: 전이금속 화합물의 제조Step 2: Preparation of transition metal compound
100ml 쉬링크 플라스크에 상기 단계 1에서 제조한 리간드 화합물 1-(6-(tert-butoxy)hexyl)-N-(tert-butyl)-1-(4-(3,5-di-tert-butylphenyl)-2-isopropyl-1H-inden-1-yl)-1-methylsilanamine (2.4g, 3.9mmol)를 넣고, 톨루엔 (13ml)를 투입한 뒤, -20℃ 이하로 냉각하였다. 5분간 교반을 통해 충분히 냉각시킨 뒤, 결과의 혼합 용액에 NBL(5.1ml, 2.5M in Hexane)을 투입하여 리튬화를 수행하였다. 상기 혼합 용액의 색깔이 리튬화 후 갈색으로 변한 것을 확인하였다. 리튬화 반응 완료 후, 결과의 반응액을 0℃로 냉각하고, MMB(13ml, 3M in ether)를 투입 한 뒤, 곧바로 온도를 -20℃로 낮추고 TiCl 4(3.9ml, 1M in toluene)를 투입하였다. 투입 시 연기가 발생하였으며 반응액이 곧바로 갈색으로 변하였다. 투입 후 o/n 교반을 진행하고, 완료 후 필터를 통해 염을 제거하여 갈색 오일상의 전이금속 화합물(1b)를 수득하였다(brown oil, 2.16g, 수율 80%(몰 기준)).In a 100 ml shrink flask, the ligand compound 1-(6-(tert-butoxy)hexyl)-N-(tert-butyl)-1-(4-(3,5-di-tert-butylphenyl) prepared in step 1 -2-isopropyl-1H-inden-1-yl)-1-methylsilanamine (2.4g, 3.9mmol) was added, toluene (13ml) was added, and then cooled to -20°C or less. After sufficiently cooling through stirring for 5 minutes, NBL (5.1ml, 2.5M in Hexane) was added to the resulting mixed solution to perform lithiation. It was confirmed that the color of the mixed solution turned brown after lithiation. After completion of the lithiation reaction, the resulting reaction solution was cooled to 0℃, MMB (13ml, 3M in ether) was added, then the temperature was immediately lowered to -20℃ and TiCl 4 (3.9ml, 1M in toluene) was added. I did. When added, smoke was generated and the reaction solution immediately turned brown. After the addition, o/n stirring was performed, and after completion, the salt was removed through a filter to obtain a brown oil-like transition metal compound (1b) (brown oil, 2.16 g, yield 80% (molar basis)).
Figure PCTKR2020013052-appb-img-000009
(1b)
Figure PCTKR2020013052-appb-img-000009
(1b)
NMR(400MHz, C6D6), 7.79-7.76 (m, 2H), 7.64-7.47 (m, 5H), 3.35-3.21 (m, 2H), 2.76-2.49 (s, 2H), 1.99-1.91 (m, 4H), 1.70-1.60 (m, 4H), 1.53(s, 9H), 1.51-1.44 (m, 4H), 1.36 (s, 9H), 1.30 (s, 9H), 1.20 (s, 6H), 1.13 (s, 9H), 0.59 (s, 3H), 0.12 (s, 3H)NMR (400MHz, C6D6), 7.79-7.76 (m, 2H), 7.64-7.47 (m, 5H), 3.35-3.21 (m, 2H), 2.76-2.49 (s, 2H), 1.99-1.91 (m, 4H) ), 1.70-1.60 (m, 4H), 1.53 (s, 9H), 1.51-1.44 (m, 4H), 1.36 (s, 9H), 1.30 (s, 9H), 1.20 (s, 6H), 1.13 ( s, 9H), 0.59 (s, 3H), 0.12 (s, 3H)
비교합성예 2-1 Comparative Synthesis Example 2-1
단계 1: 리간드 화합물의 제조Step 1: Preparation of Ligand Compound
100ml 쉬링크 플라스크(schlenk flask)에 Cp unit 으로서 4-(4-(tert-butyl)phenyl)-2-methyl-1H-indene (2.6g, 10mmol)을 넣고 THF (35ml)을 투입한 후 -20℃ 이하로 냉각하였다. 냉각한 혼합 용액을 5분간 교반한 후 NBL(4.2ml, 2.5M in hexane)를 투입하고, Overnight동안 반응시켜 리튬화된 Cp를 제조하였다. 상기 NBL 투입시 혼합 용액은 갈색을 나타내었다.In a 100ml Schlenk flask, 4-(4-(tert-butyl)phenyl)-2-methyl-1H-indene (2.6g, 10mmol) was added as a Cp unit, and THF (35ml) was added. It cooled to below °C. After stirring the cooled mixed solution for 5 minutes, NBL (4.2ml, 2.5M in hexane) was added and reacted for overnight to prepare lithiated Cp. When the NBL was added, the mixed solution had a brown color.
별도의 100ml 쉬링크 플라스크에 Tether silane으로서 Dichloro(tert-butoxy)hexyl)methylsilane (2.84g)을 넣고 MTBE (35ml)을 투입하였다. 상기 쉬링크 플라스크를 -20℃ 이하로 냉각한 뒤, 상기에서 제조한, 리튬화된 Cp를 적가 하여 반응시켰다. 반응이 종결되면 진공 하 감압증류에 의해 반응물 내 용매를 제거하고, 헥산(Hex)을 이용하여 생성된 염을 여과하여 제거하였다. 결과로 수득한 반응물에 대해 t-BuNH 2 (4.5ml)를 투입하여 반응시킨 후, 결과의 침전물을 헥산을 이용하여 여과 제거하고, 1-(6-(tert-butoxy)hexyl)-N-(tert-butyl)-1-(4-(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)-1-methylsilanamine의 리간드 화합물을 얻었다 (yellow oil, 5.2g, 수율 98%(몰 기준)).Dichloro(tert-butoxy)hexyl)methylsilane as Tether silane in a separate 100ml shrink flask (2.84g) was added and MTBE (35ml) was added. After cooling the shrink flask to -20°C or less, the lithiumated Cp prepared above was added dropwise to react. When the reaction was completed, the solvent in the reaction product was removed by distillation under reduced pressure under vacuum, and the resulting salt was filtered off using hexane (Hex). After t-BuNH 2 (4.5ml) was added to the resulting reactant to react, the resulting precipitate was filtered off using hexane, and 1-(6-(tert-butoxy)hexyl)-N-( A ligand compound of tert-butyl)-1-(4-(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)-1-methylsilanamine was obtained (yellow oil, 5.2g, yield 98% (molar basis)).
NMR(400MHz, C6D6) 7.78-7.67 (m, 2H), 7.60-7.7.19 (m, 5H), 7.05(s, 1H) 3.68 (s, 1H), 3.27-3.06 (m, 3H), 2.92-2.86 (m, 1H), 1.26-1.12 (m, 4H), 1.11(s, 9H), 1.09 (s, 9H), 1.08 (s, 3H), 1.06 (s, 9H), 1.04-0.99 (m, 4H), 0.54-0.49 (m, 1H), 0.18 (s, 1.5H), 0.05 (s, 1.5H)NMR (400MHz, C6D6) 7.78-7.67 (m, 2H), 7.60-7.7.19 (m, 5H), 7.05 (s, 1H) 3.68 (s, 1H), 3.27-3.06 (m, 3H), 2.92- 2.86 (m, 1H), 1.26-1.12 (m, 4H), 1.11 (s, 9H), 1.09 (s, 9H), 1.08 (s, 3H), 1.06 (s, 9H), 1.04-0.99 (m, 4H), 0.54-0.49 (m, 1H), 0.18 (s, 1.5H), 0.05 (s, 1.5H)
단계 2: 전이금속 화합물의 제조Step 2: Preparation of transition metal compound
100ml 쉬링크 플라스크에 상기 단계 1에서 제조한 리간드 화합물 1-(6-(tert-butoxy)hexyl)-N-(tert-butyl)-1-(4-(4-(tert-butyl)phenyl)-2-methyl-1H-inden-1-yl)-1-methylsilanamine (4.6g, 8.6mmol)에 toluene(43ml)을 투입한 뒤, -20℃ 이하로 냉각하였다. 5분간 교반을 통해 충분히 냉각시킨 뒤, 결과의 혼합 용액에 NBL(7.2ml, 2.5M in Hexane) 투입하여 리튬화를 수행하였다. 상기 혼합 용액의 색깔이 연노랑에서 리튬화 후 진한 노란색으로 변하는 것을 확인하였다. 리튬화 반응 완료 후, 결과의 반응액을 0℃로 냉각하고, MMB(8.6ml, 3M in ether)를 투입 한 뒤, 곧바로 온도를 -20℃로 낮추고, TiCl 4(8.6ml, 1M in toluene)를 투입하였다. 투입 시 연기가 발생하였으며 반응액이 곧바로 갈색으로 변하였다. 투입 후 o/n 교반을 진행하고, 완료 후 필터를 통해 salt를 제거하여 갈색 오일상의 하기 구조의 전이금속 화합물(A)을 수득하였다 (brown oil, 3.9g, 수율 74%(몰 기준)).In a 100 ml shrink flask, the ligand compound prepared in step 1 1-(6-(tert-butoxy)hexyl)-N-(tert-butyl)-1-(4-(4-(tert-butyl)phenyl)- Toluene (43ml) was added to 2-methyl-1H-inden-1-yl)-1-methylsilanamine (4.6g, 8.6mmol), and then cooled to -20°C or less. After sufficiently cooling through stirring for 5 minutes, NBL (7.2ml, 2.5M in Hexane) was added to the resulting mixed solution to perform lithiation. It was confirmed that the color of the mixed solution changed from light yellow to dark yellow after lithiation. After completion of the lithiation reaction, the resulting reaction solution was cooled to 0℃, MMB (8.6ml, 3M in ether) was added, and then the temperature was immediately lowered to -20℃, and TiCl 4 (8.6ml, 1M in toluene) Was put in. When added, smoke was generated and the reaction solution immediately turned brown. After the addition, o/n stirring was performed, and after completion, the salt was removed through a filter to obtain a transition metal compound (A) having the following structure as a brown oil (brown oil, 3.9 g, yield 74% (molar basis)).
Figure PCTKR2020013052-appb-img-000010
(A)
Figure PCTKR2020013052-appb-img-000010
(A)
NMR(400MHz, C6D6), 7.75-7.12 (m, 8H), 3.30-3.26 (m, 2H), 2.68-2.45 (m, 1H), 1.76-1.52 (m, 6H), 1.50-1.13 (m, 4H), 1.25 (s, 9H), 1.20-1.15 (m, 2H), 1.14 (s, 9H), 1.10 (s, 9H) 0.96 (s, 3H), 0.58 (s, 3H), 0.11 (s, 3H)NMR (400MHz, C6D6), 7.75-7.12 (m, 8H), 3.30-3.26 (m, 2H), 2.68-2.45 (m, 1H), 1.76-1.52 (m, 6H), 1.50-1.13 (m, 4H) ), 1.25 (s, 9H), 1.20-1.15 (m, 2H), 1.14 (s, 9H), 1.10 (s, 9H) 0.96 (s, 3H), 0.58 (s, 3H), 0.11 (s, 3H )
비교합성예 2-2 Comparative Synthesis Example 2-2
단계 1: 리간드 화합물의 제조Step 1: Preparation of Ligand Compound
50ml 쉬링크 플라스크에 Cp unit으로서 2-isopropyl-4-phenyl-1H-indene (0.94g, 4mmol)을 넣고 THF (13ml)을 투입한 후 -20℃ 이하로 냉각하였다. 냉각한 혼합 용액을 5분간 교반(stirring)한 후, NBL(1.7ml, 2.5M in hexane)를 투입하고, Overnight동안 리튬화된 Cp 를 제조하였다. 상기 NBL 투입시 혼합 용액은 붉은 갈색으로 변했다. In a 50ml shrink flask, 2-isopropyl-4-phenyl-1H-indene (0.94g, 4mmol) was added as a Cp unit, and THF (13ml) was added, followed by cooling to -20°C or less. After stirring the cooled mixed solution for 5 minutes, NBL (1.7ml, 2.5M in hexane) was added, and lithiated Cp was prepared during overnight. When the NBL was added, the mixed solution turned reddish brown.
별도의 100ml 쉬링크 플라스크에 tether silane으로서 Dichloro(tert-butoxy)hexyl)methylsilane (1.16g)을 넣고 THF(13ml)을 투입하였다. 상기 쉬링크 플라스크를 -20℃ 이하로 냉각한 뒤, 상기에서 제조한, 리튬화된 Cp를 적가 하여 반응시켰다. 반응이 종결되면 진공 하 감압증류에 의해 반응물 내 용매를 제거하고, 헥산(Hex)을 이용하여 생성된 염을 여과하여 제거하였다. 결과로 수득한 반응물에 대해 t-BuNH 2 (1.7ml)를 투입하여 반응시킨 후, 결과의 침전물을 헥산을 이용하여 여과 제거하고, 1-(6-(tert-butoxy)hexyl)-N-(tert-butyl)-1-(2-isopropyl-4-phenyl-1H-inden-1-yl)-1-methylsilanamine의 리간드 화합물을 얻었다 (yellow oil, 1.98g, 수율 98%(몰 기준)).Dichloro(tert-butoxy)hexyl)methylsilane as tether silane in a separate 100ml shrink flask (1.16g) was added and THF (13ml) was added. After cooling the shrink flask to -20°C or less, the lithiumated Cp prepared above was added dropwise to react. When the reaction was completed, the solvent in the reaction product was removed by distillation under reduced pressure under vacuum, and the resulting salt was filtered off using hexane (Hex). After reacting by adding t-BuNH 2 (1.7 ml) to the resulting reactant, the resulting precipitate was filtered off using hexane, and 1-(6-(tert-butoxy)hexyl)-N-( A ligand compound of tert-butyl)-1-(2-isopropyl-4-phenyl-1H-inden-1-yl)-1-methylsilanamine was obtained (yellow oil, 1.98 g, yield 98% (molar basis)).
NMR(400MHz, C6D6), 7.68-7.63(m, 2H), 7.57-7.41 (m, 2H), 7.41-7.16 (m, 4H), 6.98 (s, 1H), 3.67 (s, 1H), 3.30-3.19 (m, 4H), 3.06-2.99 (m, 0.5H), 2.94-2.87 (m, 0.5H), 2.52-2.42 (m, 0.5H), 2.02-1.92 (m, 0.5H), 1.69-1.38 (m, 8H), 1.13 (s, 9H), 1.05 (s, 6H), 0.98 (s, 9H), 0.27 (s, 1.5H), 0.16 (s, 1.5H)NMR(400MHz, C6D6), 7.68-7.63(m, 2H), 7.57-7.41 (m, 2H), 7.41-7.16 (m, 4H), 6.98 (s, 1H), 3.67 (s, 1H), 3.30- 3.19 (m, 4H), 3.06-2.99 (m, 0.5H), 2.94-2.87 (m, 0.5H), 2.52-2.42 (m, 0.5H), 2.02-1.92 (m, 0.5H), 1.69-1.38 (m, 8H), 1.13 (s, 9H), 1.05 (s, 6H), 0.98 (s, 9H), 0.27 (s, 1.5H), 0.16 (s, 1.5H)
단계 2: 전이금속 화합물의 제조Step 2: Preparation of transition metal compound
100ml 쉬링크 플라스크에 상기 단계 1에서 제조한 리간드 화합물 1-(6-(tert-butoxy)hexyl)-N-(tert-butyl)-1-(4-(3,5-di-tert-butylphenyl)-2-isopropyl-1H-inden-1-yl)-1-methylsilanamine (1.98g, 3.9mmol)를 넣고, toluene(13ml)을 투입한 뒤, -20℃ 이하로 냉각하였다. 5분간 교반을 통해 충분히 냉각시킨 뒤, 결과의 혼합 용액에, NBL(5.1ml, 2.5M in Hexane)을 투입하여 투입하여 리튬화를 수행하였다. 리튬화 후 상기 혼합 용액의 색깔이 노란색으로 변한 것을 확인하였다. 리튬화 반응 완료 후, 결과의 반응액을 0℃로 냉각하고, MMB(13 ml, 3M in ether)를 투입 한 뒤, 곧바로 온도를 -20℃로 낮추고 TiCl 4 (3.9ml, 1M in toluene)를 투입하였다. 투입 시 연기가 발생하였으며 반응액이 곧바로 갈색으로 변하였다. 투입 후 o/n 교반을 진행하고, 완료 후 필터를 통해 salt을 제거하여 갈색 오일상의 전이금속 화합물(B)를 수득하였다 (brown oil, 1.79g, 수율 79%(몰 기준)).In a 100 ml shrink flask, the ligand compound 1-(6-(tert-butoxy)hexyl)-N-(tert-butyl)-1-(4-(3,5-di-tert-butylphenyl) prepared in step 1 -2-isopropyl-1H-inden-1-yl)-1-methylsilanamine (1.98g, 3.9mmol) was added, toluene (13ml) was added, and then cooled to -20°C or less. After sufficiently cooling through stirring for 5 minutes, NBL (5.1ml, 2.5M in Hexane) was added to the resulting mixed solution to perform lithiation. After lithiation, it was confirmed that the color of the mixed solution turned yellow. After the lithiation reaction was completed, the resulting reaction solution was cooled to 0°C, MMB (13 ml, 3M in ether) was added, and then the temperature was immediately lowered to -20°C and TiCl 4 (3.9ml, 1M in toluene) was added. Was put in. When added, smoke was generated and the reaction solution immediately turned brown. After the addition, o/n stirring was performed, and after completion, the salt was removed through a filter to obtain a brown oil-like transition metal compound (B) (brown oil, 1.79 g, yield 79% (molar basis)).
Figure PCTKR2020013052-appb-img-000011
(B)
Figure PCTKR2020013052-appb-img-000011
(B)
NMR(400MHz, C6D6), 7.71-7.69 (m, 2H), 7.52-7.44 (m, 2H), 7.29-7.22 (m, 1H), 7.29-7.17 (s, 4H), 3.38-3.24 (m, 2H), 2.88-2.41 (m, 2H), 1.68-1.60 (m, 7H), 1.50 (s, 9H), 1.30- 1.20 (m, 5H), 1.19 (s, 6H), 1.14 (s, 9H), 0.58 (s, 3H), 0.07 (s, 3H) NMR (400MHz, C6D6), 7.71-7.69 (m, 2H), 7.52-7.44 (m, 2H), 7.29-7.22 (m, 1H), 7.29-7.17 (s, 4H), 3.38-3.24 (m, 2H) ), 2.88-2.41 (m, 2H), 1.68-1.60 (m, 7H), 1.50 (s, 9H), 1.30-1.20 (m, 5H), 1.19 (s, 6H), 1.14 (s, 9H), 0.58 (s, 3H), 0.07 (s, 3H)
비교합성예 2-3 Comparative Synthesis Example 2-3
공지의 방법으로 제조된 하기 구조의 전이금속 화합물(C)을 사용하였다. A transition metal compound (C) having the following structure prepared by a known method was used.
Figure PCTKR2020013052-appb-img-000012
(C)
Figure PCTKR2020013052-appb-img-000012
(C)
비교합성예 2-4Comparative Synthesis Example 2-4
공지의 방법으로 제조된 하기 구조의 전이금속 화합물(D)을 사용하였다.A transition metal compound (D) having the following structure prepared by a known method was used.
Figure PCTKR2020013052-appb-img-000013
(D)
Figure PCTKR2020013052-appb-img-000013
(D)
<혼성 담지 촉매의 제조><Preparation of hybrid supported catalyst>
제조예 1Manufacturing Example 1
(1) 담체 준비 (1) preparation of carrier
실리카(SYLOPOL 948™, Grace Davision사 제조)를 600℃ 온도에서 12시간 동안 진공을 가한 상태에서 탈수 및 건조하였다.Silica (SYLOPOL 948™, manufactured by Grace Davision) was dehydrated and dried under vacuum at 600° C. for 12 hours.
(2) 혼성 담지 촉매의 제조(2) Preparation of hybrid supported catalyst
건조된 실리카 10 g를 실온의 유리 반응기에 넣고, 톨루엔 100 mL을 추가로 넣고 교반하였다. 실리카를 충분히 분산시킨 후, 10 wt% 메틸알루미녹산(MAO)/톨루엔 용액을 106ml 가하고 40℃에서 200rpm으로 14시간 교반하며 천천히 반응시켰다. 반응 후 교반을 중지하고 30분간 settling 하여 여액을 decantation 하였다. 톨루엔을 100ml 투입하고 10분간 교반 후 30분간 settling 하여 여액을 decantation 하였다. 다시 톨루엔 50ml를 투입한 후, 상기 합성예 1에 따른 제1 전이금속 화합물 0.15 mmol/gSiO 2을 톨루엔에 녹여 같이 투입하여 1 시간 동안 반응을 시켰다. 반응이 끝난 후, 상기 합성예 2-1에 따른 제2 전이금속 화합물 0.18 mmol/gSiO 2을 톨루엔에 녹여 투입한 후 반응을 2 시간 동안 추가로 교반하며 반응시켰다. 반응이 끝난 후, 교반을 멈추고 톨루엔층을 분리 제거한 후, 노말 헥산 100ml를 투입하고 10분 교반하였다. 교반 완료 후, 30분간 settiling하여 여액을 제거하고 감압하여 남아있는 헥산을 제거하여, 혼성 담지 촉매를 수득하였다.10 g of dried silica was put into a glass reactor at room temperature, and 100 mL of toluene was additionally added thereto, followed by stirring. After sufficiently dispersing the silica, 106 ml of a 10 wt% methylaluminoxane (MAO)/toluene solution was added, and the mixture was slowly reacted with stirring at 40° C. at 200 rpm for 14 hours. After the reaction, the stirring was stopped, and the filtrate was decanted by settling for 30 minutes. 100 ml of toluene was added, stirred for 10 minutes, settling for 30 minutes, and decantation of the filtrate. After 50 ml of toluene was added again, 0.15 mmol/gSiO 2 of the first transition metal compound according to Synthesis Example 1 was dissolved in toluene and added together to react for 1 hour. After the reaction was over, 0.18 mmol/gSiO 2 of the second transition metal compound according to Synthesis Example 2-1 was dissolved in toluene and added thereto, and the reaction was further stirred for 2 hours to react. After the reaction was completed, the stirring was stopped, the toluene layer was separated and removed, and then 100 ml of normal hexane was added and the mixture was stirred for 10 minutes. After completion of the stirring, the filtrate was removed by settiling for 30 minutes, and the remaining hexane was removed under reduced pressure to obtain a mixed supported catalyst.
제조예 2Manufacturing Example 2
상기 제조예 1에서의 제2 전이금속 화합물 대신에 합성예 2-2에서 제조한 화합물을 사용하고, 또 제1 및 제2 전이금속 화합물을 하기 표 1에 기재된 함량으로 사용하는 것을 제외하고는, 상기 제조예 1에서와 동일한 방법으로 수행하여, 혼성 담지 촉매를 제조하였다.Except for using the compound prepared in Synthesis Example 2-2 instead of the second transition metal compound in Preparation Example 1, and using the first and second transition metal compounds in the amounts shown in Table 1 below, In the same manner as in Preparation Example 1, a hybrid supported catalyst was prepared.
제조예 3Manufacturing Example 3
상기 제조예 2에서 제1 및 제2 전이금속 화합물을 하기 표 1에 기재된 함량으로 사용하는 것을 제외하고는, 상기 제조예 2에서와 동일한 방법으로 수행하여 혼성 담지 촉매를 제조하였다.A hybrid supported catalyst was prepared in the same manner as in Preparation Example 2, except that the first and second transition metal compounds in Preparation Example 2 were used in the amounts shown in Table 1 below.
비교제조예 1Comparative Production Example 1
상기 제조예 1에서의 제2 전이금속 화합물 대신에 비교합성예 2-1에서 제조한 전이금속 화합물(A)을 사용하는 것을 제외하고는 상기 제조예 1에서와 동일한 방법으로 수행하여, 혼성 담지 촉매를 제조하였다.A hybrid supported catalyst was carried out in the same manner as in Preparation Example 1, except that the transition metal compound (A) prepared in Comparative Synthesis Example 2-1 was used instead of the second transition metal compound in Preparation Example 1 Was prepared.
비교제조예 2Comparative Production Example 2
상기 제조예 1에서의 제2 전이금속 화합물 대신에, 비교합성예 2-2에서 제조한 전이금속 화합물(B)을 사용하고, 또 제1 및 제2 전이금속 화합물을 하기 표 1에 기재된 함량으로 사용하는 것을 제외하고는, 상기 제조예 1에서와 동일한 방법으로 수행하여, 혼성 담지 촉매를 제조하였다.Instead of the second transition metal compound in Preparation Example 1, the transition metal compound (B) prepared in Comparative Synthesis Example 2-2 was used, and the first and second transition metal compounds were added in the amounts shown in Table 1 below. Except for using, it was carried out in the same manner as in Preparation Example 1, to prepare a hybrid supported catalyst.
비교제조예 3Comparative Production Example 3
상기 제조예 1에서의 제2 전이금속 화합물 대신에, 비교합성예 2-3에서 제조한 전이금속 화합물(C)을 사용하고, 또 제1 및 제2 전이금속 화합물을 하기 표 1에 기재된 함량으로 사용하는 것을 제외하고는, 상기 제조예 1에서와 동일한 방법으로 수행하여, 혼성 담지 촉매를 제조하였다.Instead of the second transition metal compound in Preparation Example 1, the transition metal compound (C) prepared in Comparative Synthesis Example 2-3 was used, and the first and second transition metal compounds were added in the amounts shown in Table 1 below. Except for using, it was carried out in the same manner as in Preparation Example 1, to prepare a hybrid supported catalyst.
비교제조예 4Comparative Production Example 4
상기 제조예 1에서의 제2 전이금속 화합물 대신에, 비교합성예 2-4에서 제조한 전이금속 화합물(D)을 사용하고, 또 제1 및 제2 전이금속 화합물을 하기 표 1에 기재된 함량으로 사용하는 것을 제외하고는, 상기 제조예 1에서와 동일한 방법으로 수행하여, 혼성 담지 촉매를 제조하였다.Instead of the second transition metal compound in Preparation Example 1, the transition metal compound (D) prepared in Comparative Synthesis Example 2-4 was used, and the first and second transition metal compounds were added in the amounts shown in Table 1 below. Except for using, it was carried out in the same manner as in Preparation Example 1, to prepare a hybrid supported catalyst.
<폴리올레핀의 제조><Production of polyolefin>
실시예 1Example 1
하기 표 1에 나타낸 바와 같은 조건 하에서, 제조예 1의 혼성 담지 촉매(합성예 1 및 2-1의 화합물)를 사용하여 에틸렌 호모 중합 반응을 수행하였다.Under the conditions as shown in Table 1 below, an ethylene homopolymerization reaction was performed using the hybrid supported catalyst of Preparation Example 1 (compounds of Synthesis Examples 1 and 2-1).
올레핀 중합체의 제조를 위하여 기계식 교반기가 장착되어 있으며, 온도 조절이 가능하고, 고압의 반응에 사용될 수 있는 2L 금속 합금 반응기를 준비하였다. 반응기를 120℃에서 진공 건조한 후 냉각하고, 정제된 n-hexane을 0.9kg 투입하고 실온에서 트리에틸알루미늄(1M solution in Hexane) 1350 ppm을 넣은 뒤, 상기 제조예 1에서 제조한 메탈로센 담지 촉매 15 mg을 반응기에 투입하였다. 이후 반응기 온도를 80℃까지 서서히 승온한 후 2 시간 동안 중합 공정을 수행하였다. 이때, 에틸렌 가스는 반응기의 압력이 약 9kgf/cm 2 유지되도록 계속 주입하였으며, 수소 투입량을 상기 에틸렌 대비 0.16 부피%로 투입하였다. 반응 종료 후 미반응된 에틸렌 및 수소는 벤트하였다. In order to prepare an olefin polymer, a 2L metal alloy reactor was prepared, which was equipped with a mechanical stirrer, controlled temperature, and used for high-pressure reaction. After vacuum drying the reactor at 120° C., cooling, 0.9 kg of purified n-hexane was added, and 1350 ppm of triethyl aluminum (1M solution in Hexane) was added at room temperature, and the metallocene supported catalyst prepared in Preparation Example 1 above. 15 mg was added to the reactor. Thereafter, the temperature of the reactor was gradually increased to 80° C. and a polymerization process was performed for 2 hours. At this time, ethylene gas was continuously injected so that the pressure of the reactor was maintained at about 9kgf/cm 2 , and the amount of hydrogen was added at 0.16% by volume compared to the ethylene. After completion of the reaction, unreacted ethylene and hydrogen were vented.
실시예 2 및 3Examples 2 and 3
하기 표 1에 나타낸 바와 같이, 촉매 및 중합 조건을 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 폴리에틸렌을 제조하였다.As shown in Table 1 below, polyethylene was prepared in the same manner as in Example 1, except that the catalyst and polymerization conditions were changed.
비교예 1Comparative Example 1
지글러-나타 촉매를 이용하여 제조한 고밀도 폴리에틸렌(CE2080™, LG Chem.사제)를 사용하였다. High-density polyethylene (CE2080™, manufactured by LG Chem.) prepared using a Ziegler-Natta catalyst was used.
비교예 2 내지 4Comparative Examples 2 to 4
하기 표 1에 나타낸 바와 같이, 촉매 및 중합 조건을 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 폴리에틸렌을 제조하였다.As shown in Table 1 below, polyethylene was prepared in the same manner as in Example 1, except that the catalyst and polymerization conditions were changed.
촉매catalyst 중합 조건Polymerization conditions
촉매 종류Catalyst type 제1 전이금속 화합물 / 함량 (mmol/gSiO 2)First transition metal compound / content (mmol/gSiO 2 ) 제2 전이금속 화합물/ 함량 (mmol/gSiO 2)Second transition metal compound/content (mmol/gSiO 2 ) 온도
(℃)
Temperature
(℃)
압력
(bar)
pressure
(bar)
촉매 투입량
(mg)
Catalyst input
(mg)
H 2 투입량
(에틸렌대비 부피%)
H 2 input
(Volume% relative to ethylene)
HDPE
수득량
(g)
HDPE
Yield
(g)
실시예 1Example 1 제조예 1Manufacturing Example 1 합성예 1/
0.15
Synthesis Example 1/
0.15
합성예 2-1/
0.18
Synthesis Example 2-1/
0.18
8080 99 1515 0.160.16 207207
실시예 2Example 2 제조예 2Manufacturing Example 2 합성예 1/0.24Synthesis Example 1/0.24 합성예 2-2/
0.12
Synthesis Example 2-2/
0.12
8080 99 11.111.1 0.120.12 204204
실시예 3Example 3 제조예 3Manufacturing Example 3 합성예 1/0.15Synthesis Example 1/0.15 합성예 2-2/
0.18
Synthesis Example 2-2/
0.18
8080 99 14.014.0 0.190.19 212212
비교예 1Comparative Example 1 -- 지글러 나타 촉매Ziegler Natta Catalyst -- -- -- -- -- --
비교예 2Comparative Example 2 비교제조예 2Comparative Production Example 2 합성예 1/
0.10
Synthesis Example 1/
0.10
비교합성예 2-2/
0.25
Comparative Synthesis Example 2-2/
0.25
8080 99 17.317.3 0.250.25 210210
비교예 3Comparative Example 3 비교제조예 3Comparative Production Example 3 합성예 1/
0.10
Synthesis Example 1/
0.10
비교합성예 2-3/
0.10
Comparative Synthesis Example 2-3/
0.10
8080 99 19.919.9 0.230.23 206206
비교예 4*Comparative Example 4* 비교제조예4Comparative Production Example 4 합성예 1/
0.15
Synthesis Example 1/
0.15
비교합성예 2-4/
0.18
Comparative Synthesis Example 2-4/
0.18
8080 99 1515 0.160.16 8686
*비교예 4의 경우, 폴리에틸렌 제조시 사용된 제2전이금속 화합물에서의 테더기 부재로 인해, 중합시 활성이 낮았고, 리칭으로 인해 반응기내 파울링이 발생하였다.* In the case of Comparative Example 4, due to the absence of a tether in the second transition metal compound used in the production of polyethylene, the activity during polymerization was low, and fouling occurred in the reactor due to leaching.
시험예 1Test Example 1
본 발명의 혼성 담지 촉매 제조에 사용되는 전이금속 화합물의 단독 촉매로서의 활성을 평가하였다. 구체적으로는 상기 합성예 및 비교합성예에서 제조한 전이금속 화합물을 각각 단독 촉매로서 이용하여 호모 폴리에틸렌을 제조하고, 중합 활성 및 제조된 중합체의 중량평균 분자량(Mw) 및 분자량 분포(PDI)를 각각 측정하였다. 그 결과를 하기 표 2에 나타내었다. The activity of the transition metal compound used in the preparation of the hybrid supported catalyst of the present invention as a sole catalyst was evaluated. Specifically, homopolyethylene was prepared by using the transition metal compound prepared in Synthesis Example and Comparative Synthesis Example as a single catalyst, respectively, and the polymerization activity and the weight average molecular weight (Mw) and molecular weight distribution (PDI) of the prepared polymer were respectively It was measured. The results are shown in Table 2 below.
<메탈로센 담지 촉매의 제조><Preparation of metallocene supported catalyst>
실리카겔(SYLOPOL 952X™, calcinated under 250℃, 7g)을 아르곤(Ar) 하에 유리 반응기에 넣고, 10중량%의 메틸알루미녹산(MAO) 톨루엔 용액 53.1 mL (Silica 1g당 10 mmol에 해당)를 상온에서 천천히 주입하여 95℃에서 12시간 동안 교반하였다. 반응 종결 후, 상온으로 식히고 15분 동안 방치하여 cannula를 이용하여 용매를 decant하였다. 톨루엔 50 mL을 넣고 1분 동안 교반하고 15분 동안 방치하여 cannula를 이용해 용매를 decant하였다. 다시 톨루엔을 50ml 투입 한 뒤, 상기 합성예 또는 비교합성예에서 제조한 전이금속 화합물 각각 60 μmol(Silica 1g당 60μmol에 해당)을 톨루엔 10 mL에 녹인 후, 반응기에 cannula를 이용해 transfer하였다. 80℃에서 2시간 동안 교반한 후, 상온으로 식히고 15분 동안 방치하여 cannula를 이용해 용매를 decant하였다. 톨루엔 50 mL를 넣고 1분 동안 교반하고 15분 동안 방치하여 cannula를 이용해 용매를 decant하는 것을 2회 진행하였다. 동일한 방법으로 헥산 50 mL을 넣고 1분 동안 교반하고 15분 동안 방치하여 cannula를 이용해 용매를 decant하고, 핵산에 용해시킨 대전 방지제 용액 (Atmer 163™, CRODA사제) 용액 3.1ml(대전방지제 함량=실리카 100중량부 대비 2중량부)를 cannula를 이용해 transfer하였다. 상온에서 20분간 교반하고 유리필터로 transfer 하여 용매를 제거하였다. 상온에서 진공 하에 5시간 건조하여 담지 촉매를 수득하였다.Silica gel (SYLOPOL 952X™, calcinated under 250°C, 7g) was placed in a glass reactor under argon (Ar), and 53.1 mL of a 10 wt% methylaluminoxane (MAO) toluene solution (corresponding to 10 mmol per 1 g of silica) was added at room temperature It was slowly injected and stirred at 95°C for 12 hours. After completion of the reaction, it was cooled to room temperature and left for 15 minutes to decant the solvent using a cannula. 50 mL of toluene was added, stirred for 1 minute, and allowed to stand for 15 minutes, and the solvent was decanted using a cannula. After 50 ml of toluene was added again, 60 μmol of each transition metal compound prepared in Synthesis Example or Comparative Synthesis Example (corresponding to 60 μmol per 1 g of Silica) was dissolved in 10 ml of toluene, and then transferred to the reactor using a cannula. After stirring at 80° C. for 2 hours, it was cooled to room temperature and left for 15 minutes to decant the solvent using a cannula. 50 mL of toluene was added, stirred for 1 minute, left for 15 minutes, and decanted the solvent using a cannula twice. In the same way, 50 mL of hexane was added, stirred for 1 minute, allowed to stand for 15 minutes, decant the solvent using a cannula, and dissolved in nucleic acid (Atmer 163™, manufactured by CRODA) 3.1 ml of solution (antistatic agent content = silica 2 parts by weight relative to 100 parts by weight) was transferred using a cannula. The mixture was stirred at room temperature for 20 minutes and transferred to a glass filter to remove the solvent. It was dried under vacuum at room temperature for 5 hours to obtain a supported catalyst.
<호모 폴리에틸렌의 제조><Production of homopolyethylene>
기계식 교반기가 장착되어 있으며, 온도 조절이 가능하고, 고압의 반응에 사용될 수 있는 600ml 금속 합금 반응기를 준비하였다. 반응기를 120℃에서 진공 건조한 후 냉각하고, 실온에서 트리에틸알루미늄(1M solution in Hexane) 450 ppm을 넣고, 상기에서 제조한, 합성예 또는 비교합성예의 전이금속 화합물 담지 촉매 15 mg을 각각 반응기에 투입하였다. 이후 반응기 온도를 80℃까지 서서히 승온한 후 1 시간 동안 중합 공정을 수행하였다. 이때, 에틸렌 가스는 반응기의 압력이 약 9kgf/cm 2 유지되도록 계속 주입하였다. 반응 종료 후 미반응된 에틸렌은 벤트하였다. A 600ml metal alloy reactor was prepared that was equipped with a mechanical stirrer, the temperature can be controlled, and can be used for high-pressure reaction. The reactor was vacuum-dried at 120°C, cooled, and 450 ppm of triethylaluminum (1M solution in Hexane) was added at room temperature, and 15 mg of the transition metal compound supported catalyst of Synthesis Example or Comparative Synthesis Example prepared above was added to the reactor. I did. Thereafter, the temperature of the reactor was gradually increased to 80° C. and the polymerization process was performed for 1 hour. At this time, ethylene gas was continuously injected so that the pressure of the reactor was maintained at about 9kgf/cm 2. After completion of the reaction, unreacted ethylene was vented.
<평가><Evaluation>
(1) 중합 활성 (Activity, kg PE/g cat .hr): 단위 시간(h)을 기준으로 사용된 담지 촉매 질량(g)당 생성된 중합체의 무게(kg PE)의 비로 계산하였다.(1) Polymerization activity (Activity, kg PE/g cat . hr): It was calculated as the ratio of the weight of the produced polymer (kg PE) per mass (g) of the supported catalyst used based on the unit time (h).
(2) 중량평균 분자량(Mw, g/mol) 및 분자량 분포(PDI, polydispersity index): 겔투과 크로마토그래피 (GPC) 를 이용하여 중량평균 분자량(Mw) 및 수평균 분자량(Mn)을 각각 측정하고 후, Mw/Mn의 비로 분자량 분포를 계산하였다. 구체적으로는 Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 이용하여 Waters PL-GPC220 기기를 이용하여 측정하였다. 이때, 평가 온도는 160℃이며, 1,2,4-트리클로로벤젠을 용매로서 사용하였으며, 유속은 1mL/min이었다. 샘플은 10mg/10mL의 농도로 조제한 다음, 200 μL의 양으로 공급하였다. 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn 의 값을 유도하였다. 폴리스티렌 표준품의 분자량(g/mol)은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000의 9종을 사용하였다.(2) Weight average molecular weight (Mw, g/mol) and molecular weight distribution (PDI, polydispersity index): The weight average molecular weight (Mw) and number average molecular weight (Mn) were measured using gel permeation chromatography (GPC), respectively. Then, the molecular weight distribution was calculated with the ratio of Mw/Mn. Specifically, it was measured using a Waters PL-GPC220 instrument using a Polymer Laboratories PLgel MIX-B 300 mm length column. At this time, the evaluation temperature was 160°C, 1,2,4-trichlorobenzene was used as a solvent, and the flow rate was 1 mL/min. The sample was prepared at a concentration of 10 mg/10 mL, and then supplied in an amount of 200 μL. The values of Mw and Mn were derived using a calibration curve formed using polystyrene standards. The molecular weight (g/mol) of the polystyrene standard was 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000.
전이금속 화합물 종류Type of transition metal compound 중합 활성
(kg PE/g cat .hr)
Polymerization activity
(kg PE / g cat. hr )
Mw
(g/mol)
Mw
(g/mol)
PDIPDI
합성예 1Synthesis Example 1 7.47.4 87,00087,000 2.42.4
합성예 2-1Synthesis Example 2-1 3.13.1 1,230,0001,230,000 2.32.3
합성예 2-2Synthesis Example 2-2 2.62.6 1,506,0001,506,000 2.42.4
비교합성예 2-1Comparative Synthesis Example 2-1 0.90.9 1,650,0001,650,000 2.72.7
비교합성예 2-2Comparative Synthesis Example 2-2 1.11.1 984,000984,000 2.82.8
비교합성예 2-3Comparative Synthesis Example 2-3 3.03.0 940,000940,000 2.92.9
실험결과, 본 발명에 따른 혼성 담지 촉매의 제조에 사용된 제1 및 제2 전이금속 화합물은 단독 촉매로서 사용시에도 우수한 중합 활성을 나타내었다. 한편, 비교 합성예 2-1에서 제조한 전이금속 화합물의 경우 단독 촉매로서 사용시 중합 활성이 0.9 kg PE/g cat .hr로 크게 낮아, 혼성 담지 촉매로 사용시에도 촉매 활성 및 이에 따른 중합체 물성의 개선 효과가 열화됨을 예상할 수 있다. As a result of the experiment, the first and second transition metal compounds used in the preparation of the hybrid supported catalyst according to the present invention exhibited excellent polymerization activity even when used as a single catalyst. On the other hand, in the case of the transition metal compound prepared in Comparative Synthesis Example 2-1, when used as a sole catalyst, the polymerization activity was 0.9 kg PE/g cat . It is very low as hr, and it can be expected that the effect of improving the catalytic activity and the polymer properties accordingly is deteriorated even when used as a hybrid supported catalyst.
시험예 2Test Example 2
상기 실시예 및 비교예에서 사용된 혼성 담지 촉매, 및 이를 이용하여 제조한 폴리에틸렌에 대해 하기와 같은 방법으로 물성을 측정하고, 그 결과를 표 3에 나타내었다. Physical properties of the hybrid supported catalyst used in Examples and Comparative Examples, and polyethylene prepared using the same were measured in the following manner, and the results are shown in Table 3.
(1) 촉매 활성 (Activity, kg PE/g cat .hr): 상기 실시예 및 비교예에 따른 폴리에틸렌의 중합시, 촉매의 활성을 평가하였다. 단위 시간(h)을 기준으로 사용된 담지 촉매 질량(g)당 생성된 중합체의 무게(kg PE)의 비로 계산하였다.(1) Catalyst activity (Activity, kg PE/g cat . hr): During polymerization of polyethylene according to Examples and Comparative Examples, the activity of the catalyst was evaluated. It was calculated as the ratio of the weight of the produced polymer (kg PE) per mass (g) of the supported catalyst used based on the unit time (h).
(2) 중량평균 분자량(Mw, g/mol) 및 분자량 분포(PDI, polydispersity index): 상기 실시예 및 비교예에서 제조한 폴리에틸렌에 대해 겔 투과 크로마토그래피 (GPC) 를 이용하여 중량평균 분자량(Mw) 및 수평균 분자량(Mn)을 각각 측정하고, Mw/Mn의 비로부터 분자량 분포(PDI)를 계산하였다. (2) Weight average molecular weight (Mw, g/mol) and molecular weight distribution (PDI, polydispersity index): Using gel permeation chromatography (GPC) for the polyethylene prepared in the above Examples and Comparative Examples, the weight average molecular weight (Mw) ) And the number average molecular weight (Mn) were measured, respectively, and the molecular weight distribution (PDI) was calculated from the ratio of Mw/Mn.
구체적으로는 Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 이용하여 Waters PL-GPC220 기기를 이용하여 측정하였다. 이때, 평가 온도는 160℃이며, 1,2,4-트리클로로벤젠을 용매로서 사용하였으며, 유속은 1mL/min이었다. 샘플은 10mg/10mL의 농도로 조제한 다음, 200 μL의 양으로 공급하였다. 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn 의 값을 유도하였다. 폴리스티렌 표준품의 분자량(g/mol)은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000의 9종을 사용하였다.Specifically, it was measured using a Waters PL-GPC220 instrument using a Polymer Laboratories PLgel MIX-B 300 mm length column. At this time, the evaluation temperature was 160°C, 1,2,4-trichlorobenzene was used as a solvent, and the flow rate was 1 mL/min. The sample was prepared at a concentration of 10 mg/10 mL, and then supplied in an amount of 200 μL. The values of Mw and Mn were derived using a calibration curve formed using polystyrene standards. The molecular weight (g/mol) of the polystyrene standard was 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000.
(3) MI 5.0 및 MFRR(21.6/5): 상기 실시예 및 비교예에서 제조한 폴리에틸렌에 대한 Melt Index (MI 5. 0)는 ASTM D1238 (조건 E, 190℃, 5.0 kg 하중) 규격에 따라 측정하였다. 또한, 폴리에틸렌에 대한 용융 유동율비(Melt Flow Rate Ratio, MFRR, 21.6/5)는 MFR 21.6을 MFR 5으로 나누어 계산하였으며, MFR 21.6은 ASTM D 1238에 따라 190℃의 온도 및 21.6 kg의 하중 하에서 측정하고, MFR 5은 ASTM D 1238에 따라 190 ℃의 온도 및 5.0 kg의 하중 하에서 측정하였다.(3) MI 5.0 and MFRR (21.6 / 5): Melt Index of the polyethylene prepared in Examples and Comparative Examples (MI 5. 0) is according to ASTM D1238 (condition E, 190 ℃, 5.0 kg load) Standards It was measured. In addition, the melt flow rate ratio (MFRR, 21.6/5) to polyethylene was calculated by dividing MFR 21.6 by MFR 5 , and MFR 21.6 was measured under a temperature of 190°C and a load of 21.6 kg according to ASTM D 1238. And, MFR 5 was measured under a temperature of 190 °C and a load of 5.0 kg according to ASTM D 1238.
(4) 복소 점도(η*(ω500)): 와이어 및 케이블용 CPE로 사용하기 위해서는 무니 점도를 맞추어야 한다. 이에, 주파수(ω) 500 rad/s에서 측정한 복소 점도(complex viscosity, η*(ω500)) 가 800 Pa·s 수준이면 무니점도가 일치할 것으로 예상하고, 동등 수준으로 맞추었다.(4) Complex viscosity (η*(ω500)): In order to be used as a CPE for wire and cable, the Mooney viscosity must be adjusted. Accordingly, if the complex viscosity (η*(ω500)) measured at a frequency (ω) of 500 rad/s is at the level of 800 Pa·s, the Mooney viscosity is expected to coincide and was set to the same level.
구체적으로 폴리에틸렌의 복소 점도는 TA instruments의 ARES(Advanced Rheometric Expansion System, ARES G2)으로 주파수(frequency, ω) 0.05 rad/s에서 측정하였다. 샘플은 190℃에서 직경 25.0 mm의 parallel plates를 이용하여 gap이 2.0 mm가 되도록 하였다. 측정은 dynamic strain frequency sweep 모드로 strain은 5%, 주파수(frequency)는 0.05 rad/s에서 500 rad/s까지, 각 decade에 10 point씩 총 41 point를 측정하였다.Specifically, the complex viscosity of polyethylene was measured at a frequency (ω) of 0.05 rad/s with ARES (Advanced Rheometric Expansion System, ARES G2) of TA instruments. Samples were made to have a gap of 2.0 mm using parallel plates with a diameter of 25.0 mm at 190°C. The measurement was performed in a dynamic strain frequency sweep mode, where the strain was 5%, the frequency was from 0.05 rad/s to 500 rad/s, and a total of 41 points were measured with 10 points in each decade.
(5) 밀도: ASTM D-1505의 방법으로 폴리에틸렌의 밀도(g/cm 3)를 측정하였다.(5) Density: The density (g/cm 3 ) of polyethylene was measured by the method of ASTM D-1505.
(6) Fraction (%) : GPC 분석을 수행하고, 결과로 수득한 분자량 분포 곡선에서 전체 면적 대비 log Mw 구간 별 차지하는 면적(%)으로 Fraction 을 계산하였다. Fraction 총합은 100±1로, 정확히 100은 아니다. (6) Fraction (%): GPC analysis was performed, and the fraction was calculated as the area (%) occupied by log Mw section relative to the total area in the resulting molecular weight distribution curve. The sum of the fractions is 100±1, not exactly 100.
GPC 분석은 구체적으로 다음과 같은 조건에서 수행하였다. The GPC analysis was specifically performed under the following conditions.
GPC 장치로는 Waters PL-GPC220 기기를 이용하고, Polymer Laboratories PLgel MIX-B 300 mm 길이 칼럼을 사용하였다. 이때 측정 온도는 160℃이며, 1,2,4-트리클로로벤젠(1,2,4-Trichlorobenzene)을 용매로서 사용하였으며, 유속은 1 mL/min로 하였다. 실시예 및 비교예에 따른 폴리에틸렌 시료는 각각 GPC 분석 기기 PL-GP220을 이용하여 BHT 0.0125% 포함된 트리클로로벤젠(1,2,4-Trichlorobenzene)에서 160℃, 10시간 동안 녹여 전처리하고, 10 mg/10mL의 농도로 조제한 다음, 200 μL의 양으로 공급하였다. 폴리스티렌 표준 시편을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn의 값을 유도하였다. 폴리스티렌 표준 시편의 중량평균 분자량은 2000 g/mol, 10000 g/mol, 30000 g/mol, 70000 g/mol, 200000 g/mol, 700000 g/mol, 2000000 g/mol, 4000000 g/mol, 10000000 g/mol의 9종을 사용하였다.A Waters PL-GPC220 instrument was used as the GPC device, and a Polymer Laboratories PLgel MIX-B 300 mm long column was used. At this time, the measurement temperature was 160°C, 1,2,4-trichlorobenzene was used as a solvent, and the flow rate was 1 mL/min. Polyethylene samples according to Examples and Comparative Examples were pretreated by dissolving in trichlorobenzene (1,2,4-Trichlorobenzene) containing 0.0125% BHT for 10 hours at 160° C. using a GPC analyzer PL-GP220, respectively, and 10 mg After preparing to a concentration of /10 mL, it was supplied in an amount of 200 μL. Values of Mw and Mn were derived using a calibration curve formed using a polystyrene standard specimen. The weight average molecular weight of the polystyrene standard specimen is 2000 g/mol, 10000 g/mol, 30000 g/mol, 70000 g/mol, 200000 g/mol, 700000 g/mol, 2000000 g/mol, 4000000 g/mol, 10000000 g 9 types of /mol were used.
(7) MDR 토크 (M H-M L): (7) MDR torque (M H -M L ):
폴리에틸렌의 가교도 평가를 위하여, Alpha Technologies Production MDR (Moving Die Rheometer)를 이용하여 폴리에틸렌 각 시료의 MDR 토크 값을 측정하였다. In order to evaluate the degree of crosslinking of polyethylene, the MDR torque value of each polyethylene sample was measured using Alpha Technologies Production MDR (Moving Die Rheometer).
구체적으로는, 상기 실시예 및 비교예에서 제조한 폴리에틸렌 각 시료 100 g, 페놀계 산화방지제(AO) 0.4 g, 및 가교제(DCP, Dicumyl Peroxide) 1.2 g을 80℃에서 혼합 후, 140 ℃에서 10 min 동안 샘플 시트(sheet)를 제조하고, 제조한 샘플 시트에 대해 MDR(Moving die rheometer)를 이용하여, 180℃, 10 min 조건 하에서 M H 값 및 M L 값을 측정하였다. 측정한 M H 값에서 M L 값을 빼기함으로써 MDR 토크(M H-M L)를 계산하였다. 여기서, M H는 풀 큐어(full cure)에서 측정된 최대 토크(Maximum vulcanizing torque)이며, M L은 저장된 최소 토크(Minimum vulcanizing torque)이다. Specifically, 100 g of each sample of polyethylene prepared in Examples and Comparative Examples, 0.4 g of a phenolic antioxidant (AO), and 1.2 g of a crosslinking agent (DCP, Dicumyl Peroxide) were mixed at 80° C. and then at 140° C. A sample sheet was prepared for min, and M H values and M L values were measured under conditions of 180° C. and 10 min using a moving die rheometer (MDR) for the prepared sample sheet. MDR torque (M H -M L ) was calculated by subtracting the M L value from the measured M H value. Here, M H is the maximum vulcanizing torque measured in full cure, and M L is the stored minimum vulcanizing torque.
촉매 활성
(kg PE/g cat·2hr)
Catalytic activity
(kg PE/g cat 2hr)
PEPE
Mw
(g/mol)
Mw
(g/mol)
PDIPDI MI 5.0
(g/10min)
MI 5.0
(g/10min)
MFRR
(21.6/5)
MFRR
(21.6/5)
η*(ω500)
(Pa·s)
η*(ω500)
(Pa·s)
밀도
(g/cm 3)
density
(g/cm 3 )
Fraction(%)Fraction(%) MDR 토크
(M H-M L)
(Nm)
MDR torque
(M H -M L )
(Nm)
log Mw 3.5 이하log Mw 3.5 or less log Mw 3.5 초과~4.0 이하log Mw more than 3.5 ~ less than 4.0
실시예 1Example 1 13.813.8 245,000245,000 8.98.9 1.341.34 15.215.2 796796 0.9500.950 0.960.96 4.324.32 8.78.7
실시예 2Example 2 18.418.4 196,000196,000 6.16.1 2.412.41 10.310.3 800800 0.9490.949 0.800.80 3.933.93 11.511.5
실시예 3Example 3 11.211.2 277,000277,000 10.310.3 0.810.81 18.618.6 810810 0.9530.953 1.201.20 4.654.65 7.77.7
비교예 1Comparative Example 1 -- 177,000177,000 9.19.1 1.301.30 15.215.2 800800 -- 2.642.64 8.898.89 5.65.6
비교예 2Comparative Example 2 12.112.1 148,000148,000 5.85.8 0.690.69 19.019.0 794794 -- 2.192.19 8.438.43 6.56.5
비교예 3Comparative Example 3 10.410.4 155,000155,000 5.75.7 0.770.77 18.418.4 804804 0.9550.955 1.551.55 5.775.77 7.37.3
실험결과, 실시예 1 내지 3에서 사용한 혼성 담지 촉매는 비교예들에서 사용된 촉매와 비교하여 동등 수준 이상의 우수한 촉매 활성을 나타내었으며, 특히 실시예 1 및 2에서의 혼성 담지 촉매는 비교예들에 비해 높은 촉매 활성을 나타내었다. As a result of the experiment, the hybrid supported catalysts used in Examples 1 to 3 exhibited superior catalytic activity at an equivalent level or higher compared to the catalysts used in Comparative Examples, and in particular, the hybrid supported catalysts in Examples 1 and 2 were It showed a higher catalytic activity than that.
또, 상기 혼성 담지 촉매를 이용하여 제조한 실시예 1 내지 3의 폴리에틸렌은, log Mw 3.5 이하 영역의 분획비가 1.2% 이하이고, log Mw 3.5 초과~4.0 이하의 분획비 또한 4.65% 이하로, 비교예들에 비해 크게 감소된 저분자 함량을 나타내었으며, 동시에 6.1 이상의 넓은 분자량 분포를 나타내었다. 또한 MDR 토크가 7.7 이상으로 비교예 대비 높은 가교도를 가짐을 알 수 있다. In addition, the polyethylenes of Examples 1 to 3 prepared using the hybrid supported catalyst had a fraction ratio of less than or equal to 3.5 in log Mw of 3.5 or less, and a fractional ratio of more than 3.5 to less than or equal to 4.0 of log Mw was also 4.65% or less, compared Compared to the examples, it exhibited a significantly reduced low molecular weight, and at the same time exhibited a broad molecular weight distribution of 6.1 or more. In addition, it can be seen that the MDR torque is 7.7 or more, which has a higher degree of crosslinking than the comparative example.
한편, 실시예 3의 경우, 비교예 보다는 우수하지만, 실시예 1 및 2에 비해서는 다소 저하된 저분자 함량 감소 및 가교도 개선 효과를 나타내었다. 이 같은 결과는 폴리에틸렌의 제조시 사용된 촉매의 차이에 따른 것으로, 실시예 3은 실시예 2와 동일한 조합의 전이금속 화합물을 각각 포함하지만 혼합비가 상이하고, 또 실시예 1과는 제1 및 제2 전이금속 화합물의 혼합비 조건은 동일하지만 제2 전이금속 화합물의 구조가 다르다. 이에, 본 발명에 따른 제1 및 제2 전이금속 화합물의 조합을 포함하는 혼성 담지 촉매는 종래 촉매에 비해 촉매 활성 및 폴리에틸렌 물성 개선 면에서 보다 우수한 효과를 나타내며, 상기 제1 및 제2전이금속 화합물의 조합에 따라 혼합비를 최적화할 경우, 촉매 활성 및 제조되는 폴리에틸렌의 물성을 더욱 개선시킬 수 있음을 알 수 있다.On the other hand, in the case of Example 3, it was superior to the comparative example, but exhibited the effect of reducing the low molecular weight and improving the crosslinking degree slightly lower than in Examples 1 and 2. This result is due to the difference in the catalyst used in the production of polyethylene, and Example 3 contains the same combination of transition metal compounds as in Example 2, but the mixing ratio is different, and the first and second examples are different from those of Example 1. 2 The conditions for the mixing ratio of the transition metal compound are the same, but the structure of the second transition metal compound is different. Accordingly, the hybrid supported catalyst comprising a combination of the first and second transition metal compounds according to the present invention exhibits more excellent effects in terms of improving catalytic activity and polyethylene properties compared to the conventional catalyst, and the first and second transition metal compounds It can be seen that when the mixing ratio is optimized according to the combination of, the catalytic activity and physical properties of the polyethylene to be produced can be further improved.

Claims (17)

  1. 하기 화학식 1로 표시되는 1종 이상의 제1 전이금속 화합물; At least one first transition metal compound represented by the following formula (1);
    하기 화학식 2로 표시되는 1종 이상의 제2 전이금속 화합물; 및 At least one second transition metal compound represented by the following formula (2); And
    상기 제1 및 제2 전이금속 화합물이 담지된 담체;를 포함하는, Containing; a carrier on which the first and second transition metal compounds are supported
    혼성 담지 촉매:Hybrid supported catalyst:
    [화학식 1][Formula 1]
    (Cp 1R 11) m(Cp 2R 12)M 1(Z 1) 3-m (Cp 1 R 11 ) m (Cp 2 R 12 ) M 1 (Z 1 ) 3-m
    상기 화학식 1에서,In Formula 1,
    M 1은 4족 전이금속이고;M 1 is a Group 4 transition metal;
    Cp 1 및 Cp 2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로-1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 C 1-20 탄화수소로 치환되거나, 또는 비치환되고;Cp 1 and Cp 2 are the same as or different from each other, and each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals. One, and they are unsubstituted or substituted with C 1-20 hydrocarbons;
    R 11 및 R 12는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C 1-20 알킬, C 1-20 알콕시, C 2-20 알콕시알킬, C 6-20 아릴, C 6-20 아릴옥시, C 2-20 알케닐, C 7-40의 알킬아릴, C 7-40의 아릴알킬, C 8-40의 아릴알케닐, C 2-20 알키닐, 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로원자를 포함하는 C 2-20 헤테로아릴이고;R 11 and R 12 are the same as or different from each other, and each independently hydrogen, C 1-20 alkyl, C 1-20 alkoxy, C 2-20 alkoxyalkyl, C 6-20 aryl, C 6-20 aryloxy, C 2-20 alkenyl, C 7-40 alkylaryl, C 7-40 arylalkyl, C 8-40 arylalkenyl, C 2-20 alkynyl, or selected from the group consisting of N, O and S C 2-20 heteroaryl containing one or more heteroatoms;
    Z 1은 할로겐, C 1-20 알킬, C 2-20 알케닐, C 7-40 알킬아릴, C 7-40 아릴알킬, C 6-20 아릴, C 1-20 알킬리덴, 아미노기, C 2-20 알킬알콕시, 또는 C 7-40 아릴알콕시이고;Z 1 is halogen, C 1-20 alkyl, C 2-20 alkenyl, C 7-40 alkylaryl, C 7-40 arylalkyl, C 6-20 aryl, C 1-20 alkylidene, amino group, C 2- 20 alkylalkoxy, or C 7-40 arylalkoxy;
    m은 1 또는 0 이고;m is 1 or 0;
    [화학식 2][Formula 2]
    Figure PCTKR2020013052-appb-img-000014
    Figure PCTKR2020013052-appb-img-000014
    상기 화학식 2에서,In Chemical Formula 2,
    A는 탄소 또는 실리콘이고,A is carbon or silicon,
    M 2은 4족 전이금속이고,M 2 is a Group 4 transition metal,
    R 21은 C 1-20 알킬로 치환된 C 6-20 아릴이고,R 21 is C 6-20 aryl substituted with C 1-20 alkyl,
    R 22는 C 3-20의 분지상 알킬이며, R 22 is C 3-20 branched alkyl,
    R 23 내지 R 25는 각각 독립적으로 C 1-20 알킬이고,R 23 to R 25 are each independently C 1-20 alkyl,
    Z 21 및 Z 22는 각각 독립적으로 할로겐 또는 C 1-10 알킬이며,Z 21 and Z 22 are each independently halogen or C 1-10 alkyl,
    n은 1 내지 10의 정수다.n is an integer from 1 to 10.
  2. 제1항에 있어서, The method of claim 1,
    M 1은 Ti, Zr 또는 Hf이고;M 1 is Ti, Zr or Hf;
    Cp 1 및 Cp 2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로-1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 C 1-10 알킬로 치환되거나 또는 비치환되고; Cp 1 and Cp 2 are the same as or different from each other, and each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals. One, and these are unsubstituted or substituted with C 1-10 alkyl;
    R 11 및 R 12는 각각 독립적으로 수소, C 1-20 알킬, C 2-20 알콕시알킬, C 6-20의 아릴, C 7-20의 아릴알킬, 퓨라닐, 또는 티오펜일이되, R 11 및 R 12 중 적어도 하나는 C 2-20 알콕시알킬이고;R 11 and R 12 are each independently hydrogen, C 1-20 alkyl, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-20 arylalkyl, furanyl, or thiophenyl, R At least one of 11 and R 12 is C 2-20 alkoxyalkyl;
    Z 1은 할로겐;인, Z 1 is halogen; phosphorus,
    혼성 담지 촉매. Hybrid supported catalyst.
  3. 제1항에 있어서, The method of claim 1,
    상기 제1 전이금속 화합물은 화합물은 하기 구조의 화합물들로 이루어진 군에서 선택되는,The first transition metal compound is a compound selected from the group consisting of compounds of the following structure,
    혼성 담지 촉매:Hybrid supported catalyst:
    Figure PCTKR2020013052-appb-img-000015
    .
    Figure PCTKR2020013052-appb-img-000015
    .
  4. 제1항에 있어서, The method of claim 1,
    M 2는 티타늄이고, M 2 is titanium,
    Z 21 및 Z 22는 각각 독립적으로 C 1-4 알킬인,Z 21 and Z 22 are each independently C 1-4 alkyl,
    혼성 담지 촉매.Hybrid supported catalyst.
  5. 제1항에 있어서, The method of claim 1,
    R 21은 C 3-6 분지상 알킬로 1개 또는 2개 치환된 페닐이며,R 21 is phenyl substituted with 1 or 2 C 3-6 branched alkyl,
    R 22 및 R 23은 각각 독립적으로, C 3-6 분지상 알킬인,R 22 and R 23 are each independently, C 3-6 branched alkyl,
    혼성 담지 촉매.Hybrid supported catalyst.
  6. 제1항에 있어서, The method of claim 1,
    A는 실리콘이고,A is silicon,
    R 25는 C 3-6 분지상 알킬이며,R 25 is C 3-6 branched alkyl,
    n은 4 내지 6의 정수인,n is an integer of 4 to 6,
    혼성 담지 촉매.Hybrid supported catalyst.
  7. 제1항에 있어서, The method of claim 1,
    R 22는 이소프로필인, 전이금속 화합물.R 22 is isopropyl, a transition metal compound.
  8. 제1항에 있어서, The method of claim 1,
    상기 제2 전이금속 화합물은 하기 구조의 화합물들로 이루어진 군에서 선택되는, The second transition metal compound is selected from the group consisting of compounds of the following structure,
    혼성 담지 촉매:Hybrid supported catalyst:
    Figure PCTKR2020013052-appb-img-000016
    .
    Figure PCTKR2020013052-appb-img-000016
    .
  9. 제1항에 있어서,The method of claim 1,
    상기 제1 및 제2 전이금속 화합물은 1:3 내지 3:1의 몰비로 포함되는,The first and second transition metal compounds are included in a molar ratio of 1:3 to 3:1,
    혼성 담지 촉매.Hybrid supported catalyst.
  10. 제1항에 있어서,The method of claim 1,
    상기 담체는 실리카, 알루미나 및 마그네시아로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는, The carrier comprises any one or a mixture of two or more selected from the group consisting of silica, alumina and magnesia,
    혼성 담지 촉매.Hybrid supported catalyst.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 혼성 담지 촉매를 포함하는 촉매 조성물의 존재 하에, 올레핀계 단량체를 중합하는 단계를 포함하는, In the presence of a catalyst composition comprising the hybrid supported catalyst according to any one of claims 1 to 10, comprising the step of polymerizing an olefinic monomer,
    폴리올레핀의 제조방법.Method for producing polyolefin.
  12. 제11항에 있어서, The method of claim 11,
    상기 촉매 조성물은, 조촉매 및 대전방지제 중 1종 이상을 더 포함하는,The catalyst composition further comprises at least one of a cocatalyst and an antistatic agent,
    제조방법.Manufacturing method.
  13. 제12항에 있어서, The method of claim 12,
    상기 조촉매는 하기 하기 화학식 9 내지 11의 화합물로 이루어진 군에서 선택되는 화합물을 포함하는, The cocatalyst includes a compound selected from the group consisting of compounds of the following formulas 9 to 11,
    제조방법:Manufacturing method:
    [화학식 9][Formula 9]
    -[Al(R a)-O] m--[Al(R a )-O] m-
    상기 화학식 9에서,In Chemical Formula 9,
    R a는 서로 동일하거나 상이하며, 각각 독립적으로 할로겐; C 1-20의 탄화수소; 또는 할로겐으로 치환된 C 1-20의 탄화수소이고;R a are the same as or different from each other, and each independently halogen; Hydrocarbons of C 1-20; Or a halogen-substituted C 1-20 hydrocarbon;
    m은 2 이상의 정수이며;m is an integer of 2 or more;
    [화학식 10][Formula 10]
    J(R b) 3 J(R b ) 3
    상기 화학식 10에서,In Chemical Formula 10,
    R b는 서로 동일하거나 상이하며, 각각 독립적으로 할로겐; C 1-20의 탄화수소; 또는 할로겐으로 치환된 C 1-20의 탄화수소이고;R b is the same as or different from each other, and each independently halogen; Hydrocarbons of C 1-20; Or a halogen-substituted C 1-20 hydrocarbon;
    J는 알루미늄 또는 보론이며;J is aluminum or boron;
    [화학식 11][Formula 11]
    [E-H] +[ZQ 4] - 또는 [E] +[ZQ 4] - [EH] + [ZQ 4] - or [E] + [ZQ 4] -
    상기 화학식 11에서,In Formula 11,
    E는 중성 또는 양이온성 루이스 염기이고;E is a neutral or cationic Lewis base;
    H는 수소 원자이며;H is a hydrogen atom;
    Z는 13족 원소이고;Z is a group 13 element;
    Q는 서로 동일하거나 상이하며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, C 1-20의 탄화수소, 알콕시 또는 페녹시로 치환되거나 또는 비치환된, C 6-20의 아릴기 또는 C 1-20의 알킬기이다.Q is the same as or different from each other, and each independently one or more hydrogen atoms is substituted or unsubstituted with halogen, C 1-20 hydrocarbon, alkoxy or phenoxy, C 6-20 aryl group or C 1-20 alkyl group to be.
  14. 제12항에 있어서, The method of claim 12,
    상기 대전방지제는 에톡시화된 알킬아민인,The antistatic agent is an ethoxylated alkylamine,
    제조방법.Manufacturing method.
  15. 제11항에 있어서, The method of claim 11,
    상기 중합은, 올레핀 단량체 총 부피에 대하여 0.1 내지 0.2부피%의 수소 기체 투입 하에 수행되는, The polymerization is carried out under the introduction of 0.1 to 0.2% by volume of hydrogen gas based on the total volume of the olefin monomer,
    제조방법.Manufacturing method.
  16. 제11항에 있어서, The method of claim 11,
    상기 올레핀 단량체는 에틸렌인,The olefin monomer is ethylene,
    제조방법.Manufacturing method.
  17. 제11항에 있어서, The method of claim 11,
    상기 폴리올레핀은, 겔 투과 크로마토그래피 분석에 의한 분자량 분포 곡선에서, 분포 곡선의 전체 면적 대비 log Mw 3.5 이하의 영역이 차지하는 면적비가 1.4 % 이하이고, 분자량 분포가 6 내지 15인, The polyolefin, in the molecular weight distribution curve by gel permeation chromatography analysis, has an area ratio occupied by an area of log Mw of 3.5 or less relative to the total area of the distribution curve of 1.4% or less, and a molecular weight distribution of 6 to 15,
    제조방법.Manufacturing method.
PCT/KR2020/013052 2019-09-27 2020-09-25 Supported hybrid catalyst and method for preparing polyolefin by using same WO2021060908A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021526339A JP7118500B2 (en) 2019-09-27 2020-09-25 Hybrid supported catalyst and method for producing polyolefin using the same
CN202080006137.1A CN113039217B (en) 2019-09-27 2020-09-25 Hybrid supported catalyst and method for preparing polyolefin using the same
EP20867639.5A EP3865517A4 (en) 2019-09-27 2020-09-25 Supported hybrid catalyst and method for preparing polyolefin by using same
US17/294,743 US20220017657A1 (en) 2019-09-27 2020-09-25 Hybrid Supported Catalyst and Method of Preparing Polyolefin Using the Same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20190120103 2019-09-27
KR20190120102 2019-09-27
KR10-2019-0120102 2019-09-27
KR10-2019-0120103 2019-09-27
KR10-2020-0124243 2020-09-24
KR1020200124243A KR102568406B1 (en) 2019-09-27 2020-09-24 Supported hybrid catalyst and method for preparing polyolefin using the same

Publications (1)

Publication Number Publication Date
WO2021060908A1 true WO2021060908A1 (en) 2021-04-01

Family

ID=75165907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013052 WO2021060908A1 (en) 2019-09-27 2020-09-25 Supported hybrid catalyst and method for preparing polyolefin by using same

Country Status (1)

Country Link
WO (1) WO2021060908A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032562A (en) 1989-12-27 1991-07-16 Mobil Oil Corporation Catalyst composition and process for polymerizing polymers having multimodal molecular weight distribution
US5525678A (en) 1994-09-22 1996-06-11 Mobil Oil Corporation Process for controlling the MWD of a broad/bimodal resin produced in a single reactor
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
US20010020072A1 (en) * 1998-05-29 2001-09-06 Exxon Chemical Patents, Inc. Catalyst delivery method, a catalyst feeder and their use in a polymerization process
KR20150063823A (en) * 2013-12-02 2015-06-10 주식회사 엘지화학 The catalysts consist of inden derivatives and cyclopentadiene derivatives, and their applications to olefine polymerization
KR20160112424A (en) * 2015-03-19 2016-09-28 주식회사 엘지화학 Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
KR20170076550A (en) * 2015-12-24 2017-07-04 주식회사 엘지화학 Method for preparing of supported hybrid metallocene catalyst, the supported hybrid metallocene catalyst prepared by the same method, and method for preparing polyolefin using the same
KR20170106110A (en) * 2016-03-11 2017-09-20 주식회사 엘지화학 Method for preparing of supported hybrid metallocene catalyst, the supported hybrid metallocene catalyst prepared by the same method, and method for preparing polyolefin using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032562A (en) 1989-12-27 1991-07-16 Mobil Oil Corporation Catalyst composition and process for polymerizing polymers having multimodal molecular weight distribution
US5525678A (en) 1994-09-22 1996-06-11 Mobil Oil Corporation Process for controlling the MWD of a broad/bimodal resin produced in a single reactor
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
US20010020072A1 (en) * 1998-05-29 2001-09-06 Exxon Chemical Patents, Inc. Catalyst delivery method, a catalyst feeder and their use in a polymerization process
KR20150063823A (en) * 2013-12-02 2015-06-10 주식회사 엘지화학 The catalysts consist of inden derivatives and cyclopentadiene derivatives, and their applications to olefine polymerization
KR20160112424A (en) * 2015-03-19 2016-09-28 주식회사 엘지화학 Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
KR20170076550A (en) * 2015-12-24 2017-07-04 주식회사 엘지화학 Method for preparing of supported hybrid metallocene catalyst, the supported hybrid metallocene catalyst prepared by the same method, and method for preparing polyolefin using the same
KR20170106110A (en) * 2016-03-11 2017-09-20 주식회사 엘지화학 Method for preparing of supported hybrid metallocene catalyst, the supported hybrid metallocene catalyst prepared by the same method, and method for preparing polyolefin using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TETRAHEDRON LETT., vol. 2951, 1988

Similar Documents

Publication Publication Date Title
WO2017188602A1 (en) Hybrid supported metallocene catalyst, and polyolefin resin having excellent processability and using same
WO2015046932A1 (en) Olefin-based polymer
WO2016072783A1 (en) Ligand compound, transition metal compound, and catalyst composition containing same
WO2019125050A1 (en) Olefin-based polymer
EP2545083A2 (en) Method for preparing supported metallocene catalyst and method for preparing polyolefin using the same
WO2017099491A1 (en) Olefin-based polymer
WO2019212303A1 (en) ETHYLENE/α-OLEFIN COPOLYMER AND PREPARATION METHOD THEREFOR
WO2020171631A1 (en) Olefin-based polymer
WO2019212307A1 (en) Ethylene/alpha-olefin copolymer and method for preparing same
WO2019132471A1 (en) Olefin-based polymer
WO2020101373A1 (en) Supported catalyst for propylene polymerization and method for producing polypropylene resin using same
WO2020130718A1 (en) Polyolefin
WO2020130719A1 (en) Polyolefin
WO2020130720A1 (en) Polyolefin
WO2020171624A1 (en) Polyethylene having high degree of cross-linking, and cross-linked polyethylene pipe comprising same
WO2021060907A1 (en) Polyethylene, and chlorinated polyethylene thereof
WO2020218874A1 (en) Ligand compound, transition metal compound, and catalyst composition comprising same
WO2020122563A1 (en) Polyethylene and chlorinated polyethylene thereof
WO2021060908A1 (en) Supported hybrid catalyst and method for preparing polyolefin by using same
WO2020122561A1 (en) Polyethylene and chlorinated polyethylene thereof
WO2020122562A1 (en) Polyethylene and chlorinated polyethylene thereof
WO2020046051A1 (en) Polyethylene and chlorinated polyethylene thereof
WO2019132477A1 (en) Olefin-based polymer
WO2019212302A1 (en) Olefin-based copolymer, and preparation method therefor
WO2024063415A1 (en) Polyethylene composition and biaxially stretched film comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526339

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020867639

Country of ref document: EP

Effective date: 20210512

NENP Non-entry into the national phase

Ref country code: DE