WO2021060766A1 - 무선 통신 시스템에서 단말의 빔 변경 방법 및 장치 - Google Patents

무선 통신 시스템에서 단말의 빔 변경 방법 및 장치 Download PDF

Info

Publication number
WO2021060766A1
WO2021060766A1 PCT/KR2020/012485 KR2020012485W WO2021060766A1 WO 2021060766 A1 WO2021060766 A1 WO 2021060766A1 KR 2020012485 W KR2020012485 W KR 2020012485W WO 2021060766 A1 WO2021060766 A1 WO 2021060766A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
srs
uplink signal
pusch
beam switching
Prior art date
Application number
PCT/KR2020/012485
Other languages
English (en)
French (fr)
Inventor
장영록
노훈동
박진현
지형주
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US17/762,979 priority Critical patent/US11716133B2/en
Priority to EP20869242.6A priority patent/EP4020831A4/en
Publication of WO2021060766A1 publication Critical patent/WO2021060766A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present disclosure relates to a wireless communication system, and more particularly, to a method and apparatus for changing a beam of a terminal.
  • the 5G communication system or the pre-5G communication system is called a communication system after a 4G network (Beyond 4G Network) or a system after an LTE system (Post LTE).
  • the 5G communication system is being considered for implementation in the ultra-high frequency (mmWave) band (eg, the 60 gigabyte (60 GHz) band).
  • ACM advanced coding modulation
  • FQAM Hybrid FSK and QAM Modulation
  • SWSC Small Cell Superposition Coding
  • FBMC Fan Bank Multi Carrier
  • NOMA non orthogonal multiple access
  • SCMA sparse code multiple access
  • IoT Internet of Things
  • IoE Internet of Everything
  • M2M Machine Type Communication
  • MTC Machine Type Communication
  • IoT intelligent IT services that create new value in human life by collecting and analyzing data generated from connected objects can be provided.
  • IoT is the field of smart home, smart building, smart city, smart car or connected car, smart grid, healthcare, smart home appliance, advanced medical service, etc. through the convergence and combination of existing IT (information technology) technology and various industries. Can be applied to.
  • the disclosed embodiment can provide a method and apparatus for a beam changing operation of a terminal in a wireless communication system.
  • the present disclosure it is possible to improve uplink transmission performance of the terminal by defining a time required for a beam changing operation of a terminal in a wireless communication system and setting a beam changing operation of the terminal accordingly.
  • 1 is a diagram showing a time-frequency domain transmission structure of an LTE, LTE-A, NR or similar wireless communication system.
  • FIGS. 2 to 4 illustrate an expandable frame structure according to some embodiments.
  • 5 is a diagram illustrating an example of setting a bandwidth portion in a 5G communication system according to some embodiments.
  • FIG. 6 is a diagram illustrating a method of indicating and changing a portion of a bandwidth according to some embodiments.
  • FIG. 7 is a diagram illustrating an example of PDSCH frequency axis resource allocation according to some embodiments.
  • FIG. 8 is a diagram illustrating an example of PDSCH time axis resource allocation according to some embodiments.
  • FIG. 9 is a diagram illustrating an example of a flowchart of a process of determining a TCI state referred to to obtain QCL relationship information of a transmitted PDSCH when a base station schedules a PDSCH through DCI according to some embodiments.
  • FIG. 10 is a diagram illustrating an example of allocation of PUCCH resources for HARQ-ACK feedback according to some embodiments.
  • 11 is a flowchart illustrating a process of determining a TCI state referred to to obtain QCL relationship information of a transmitted NZP CSI-RS resource when a base station triggers aperiodic CSI-RS transmission and reception through DCI according to some embodiments. It is a diagram showing an example.
  • FIG. 12 is a diagram illustrating an example of a flowchart of a method of determining an operation in consideration of a beam switching time of a terminal when a base station triggers aperiodic SRS transmission through DCI according to some embodiments.
  • FIG. 13 is a diagram illustrating an example of a time offset of a PDCCH including a DCI for triggering SRS transmission and aperiodic SRS(s) transmitted by a terminal when a base station triggers aperiodic SRS transmission through DCI according to some embodiments It is a drawing.
  • FIG. 14 is a diagram illustrating an example of a PDCCH including a DCI indicating PUSCH transmission and a time offset of a PUSCH transmitted by a terminal when a base station instructs PUSCH transmission through DCI according to some embodiments.
  • 15 is a frequency-time axis resource of a PDCCH including a PDCCH including a DCI scheduling a PDSCH, a scheduled PDSCH, and HARQ-ACK information for a PDSCH when a base station schedules a PDSCH through DCI according to some embodiments It is a diagram showing an example of allocation.
  • 16 is a block diagram illustrating a terminal structure according to some embodiments.
  • 17 is a block diagram illustrating a structure of a base station according to some embodiments.
  • a method of operating a base station in a wireless communication system includes receiving information related to a first beam switching time for transmission of an uplink signal from a terminal, the uplink signal Determining a second beam switching time for transmission of the uplink signal, based on the setting information related to and the first beam switching time, setting information related to the uplink signal and the second beam switching time to the terminal Transmitting to, and receiving the uplink signal from the terminal, wherein the uplink signal is at least one of a sounding reference signal (SRS), a physical uplink shared channel (PUSCH), or a physical uplink control channel (PUCCH). It can contain one.
  • SRS sounding reference signal
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • a method of operating a terminal in a wireless communication system includes transmitting information related to a first beam switching time for transmission of an uplink signal to a base station. Receives related configuration information and information related to a second beam switching time for transmission of the uplink signal, and the second beam switching time is determined based on the first beam switching time and configuration information related to the uplink signal And transmitting the uplink signal to the base station based on configuration information related to the uplink signal and the second beam switching time, wherein the uplink signal is a sounding reference signal (SRS), It may include at least one of a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH).
  • SRS sounding reference signal
  • a method of operating a terminal in a wireless communication system includes determining a beam switching time for transmission of the uplink signal based on configuration information related to an uplink signal. , Receiving information instructing transmission of the uplink signal from a base station, and transmitting the uplink signal to the base station based on the beam switching time and information instructing transmission of the uplink signal.
  • the uplink signal may include at least one of a sounding reference signal (SRS), a physical uplink shared channel (PUSCH), or a physical uplink control channel (PUCCH).
  • each block of the flowchart diagrams and combinations of the flowchart diagrams may be executed by computer program instructions. Since these computer program instructions can be mounted on the processor of a general purpose computer, special purpose computer or other programmable data processing equipment, the instructions executed by the processor of the computer or other programmable data processing equipment are described in the flowchart block(s). It creates a means to perform functions. These computer program instructions can also be stored in computer-usable or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement a function in a particular way, so that the computer-usable or computer-readable memory It may also be possible to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block(s).
  • each block may represent a module, segment, or part of code that contains one or more executable instructions for executing the specified logical function(s).
  • the functions mentioned in the blocks may occur out of order. For example, two blocks shown in succession may in fact be executed substantially simultaneously, or the blocks may sometimes be executed in the reverse order depending on the corresponding function.
  • the term' ⁇ unit' used in this embodiment refers to software or hardware components such as field programmable gate array (FPGA) or application specific integrated circuit (ASIC), and' ⁇ unit' performs certain roles. do.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the term' ⁇ unit' refers to software or hardware components such as field programmable gate array (FPGA) or application specific integrated circuit (ASIC), and' ⁇ unit' performs certain roles. do.
  • ' ⁇ part' is not limited to software or hardware.
  • The' ⁇ unit' may be configured to be in an addressable storage medium, or may be configured to reproduce one or more processors. Therefore, according to some embodiments,' ⁇ unit' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and pros. Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • components and functions provided in the' ⁇ units' may be combined into a smaller number of elements and' ⁇ units', or may be further separated into additional elements and' ⁇ units'.
  • components and' ⁇ units' may be implemented to play one or more CPUs in a device or a security multimedia card.
  • the' ⁇ unit' may include one or more processors.
  • the base station is a subject that performs resource allocation of the terminal, and may be at least one of a gNode B, an eNode B, a Node B, a base station (BS), a radio access unit, a base station controller, or a node on a network.
  • the terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function.
  • UE user equipment
  • MS mobile station
  • cellular phone a smart phone
  • computer or a multimedia system capable of performing a communication function.
  • multimedia system capable of performing a communication function.
  • the present disclosure describes a technique for a terminal to receive broadcast information from a base station in a wireless communication system.
  • the present disclosure relates to a communication technique and a system for fusing a 5G communication system with IoT technology to support a higher data rate after a 4G system.
  • This disclosure is based on 5G communication technology and IoT-related technologies, and intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety related services, etc. ) Can be applied.
  • a term referring to broadcast information a term referring to control information, a term related to communication coverage, a term referring to a state change (e.g., event), and network entities
  • a term referring to, a term referring to messages, a term referring to a component of a device, and the like are illustrated for convenience of description. Accordingly, the present disclosure is not limited to terms to be described later, and other terms having an equivalent technical meaning may be used.
  • 3GPP 3rd generation partnership project
  • LTE long term evolution
  • NR 3rd generation partnership project
  • the present disclosure is not limited by the terms and names, and may be equally applied to systems conforming to other standards.
  • the wireless communication system deviated from the initial voice-oriented service, for example, 3GPP HSPA (High Speed Packet Access), LTE (Long Term Evolution or E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced. (LTE-A), LTE-Pro, 3GPP2's High Rate Packet Data (HRPD), UMB (Ultra Mobile Broadband), and IEEE's 802.16e. It is evolving into a communication system.
  • 3GPP HSPA High Speed Packet Access
  • LTE-A LTE-Advanced.
  • LTE-Pro LTE-Pro
  • HRPD High Rate Packet Data
  • UMB UserMB
  • the LTE system employs an Orthogonal Frequency Division Multiplexing (OFDM) scheme in downlink (DL), and Single Carrier Frequency Division Multiple Access (SC-FDMA) in uplink (UL).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • Uplink refers to a radio link through which a terminal (UE (User Equipment) or MS (Mobile Station)) transmits data or control signals to a base station (eNode B or base station (BS)), and downlink refers to a base station It means a wireless link that transmits data or control signals.
  • the multiple access method as described above divides the data or control information of each user by assigning and operating time-frequency resources to carry data or control information for each user so that they do not overlap with each other, that is, orthogonality is established. .
  • Enhanced Mobile BroadBand eMBB
  • massive Machine Type Communication mMTC
  • Ultra Reliability Low Latency Communciation URLLC
  • eMBB aims to provide a data transmission speed that is more improved than the data transmission speed supported by the existing LTE, LTE-A, or LTE-Pro.
  • eMBB in a 5G communication system, eMBB must be able to provide a maximum transmission rate of 20 Gbps in downlink and 10 Gbps in uplink from the viewpoint of one base station. At the same time, an increased user perceived data rate must be provided.
  • MIMO multi-input multi-output
  • the data transmission speed required by the 5G communication system can be satisfied.
  • mMTC is being considered to support application services such as Internet of Things (IoT) in 5G communication systems.
  • IoT Internet of Things
  • mMTC may require large-scale terminal access support within a cell, improved terminal coverage, improved battery time, and reduced terminal cost.
  • IoT is attached to various sensors and various devices to provide communication functions, so it must be able to support a large number of terminals (for example, 1,000,000 terminals/km2) within a cell.
  • the terminal supporting mMTC is highly likely to be located in a shaded area not covered by the cell, such as the basement of a building due to the nature of the service, it may require wider coverage compared to other services provided by the 5G communication system.
  • a terminal supporting mMTC must be configured as a low-cost terminal, and since it is difficult to frequently exchange the battery of the terminal, a very long battery life time may be required.
  • a service supporting URLLC must satisfy an air interface latency of less than 0.5 milliseconds, and at the same time have a requirement of a packet error rate of 10-5 or less. Therefore, for a service supporting URLLC, a 5G system must provide a smaller Transmit Time Interval (TTI) than other services, and at the same time, a design requirement to allocate a wide resource in a frequency band is required.
  • TTI Transmit Time Interval
  • Services considered in the 5G communication system described above should be provided by fusion with each other based on one framework. That is, for efficient resource management and control, it is preferable that each service is integrated into one system, controlled, and transmitted rather than independently operated.
  • an embodiment of the present disclosure will be described below using an LTE, LTE-A, LTE Pro, or NR system as an example, but an embodiment of the present disclosure may be applied to other communication systems having a similar technical background or channel type.
  • the embodiments of the present disclosure may be applied to other communication systems through some modifications without significantly departing from the scope of the present disclosure, as determined by a person with skilled technical knowledge.
  • frame structures of LTE, LTE-A, and 5G systems will be described with reference to the drawings, and a design direction of the 5G system will be described.
  • 1 is a diagram showing a time-frequency domain transmission structure of an LTE, LTE-A, NR or similar wireless communication system.
  • CP Cyclic Prefix
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • Uplink may mean a radio link through which the terminal transmits data or control signals to the base station
  • downlink refers to a radio link through which the base station transmits data or control signals to the terminal. can do.
  • the minimum transmission unit in the time domain of LTE, LTE-A, and NR systems is an OFDM symbol or an SC-FDMA symbol, and N symb (1-05) symbols can be collected to form one slot (1-15).
  • N symb (1-05) symbols can be collected to form one slot (1-15).
  • two slots consisting of N symb 7 symbols may be gathered to form one subframe (1-40).
  • two types of slot structures of a slot and a mini-slot may be supported.
  • Nsymb may have a value of 7 or 14, and in the case of a 5G minislot, N symb may be set to one of 1, 2, 3, 4, 5, 6, or 7.
  • the length of the slot is 0.5 ms and the length of the subframe is fixed at 1.0 ms, but in the case of the NR system, the length of the slot or minislot may be changed flexibly according to the subcarrier interval.
  • a radio frame (1-35) is a time domain unit consisting of 10 subframes.
  • the flexible expandable frame structure of the NR system will be described later.
  • a basic unit of a resource is a resource element (RE) 1-30 and may be represented by an OFDM symbol or an SC-FDMA symbol index and a subcarrier index.
  • Resource blocks (1-20, Resource Block; RB or Physical Resource Block; PRB) are N symb (1-05) consecutive OFDM symbols or SC-FDMA symbols in the time domain and NRB (1-25) numbers in the frequency domain. It can be defined as a contiguous subcarrier.
  • one RB(1-20) is N symb It consists of NRB REs (1-30).
  • N symb 7
  • CP cyclic prefix
  • subcarrier spacing, CP length, etc. are essential information for OFDM transmission/reception, and smooth transmission/reception may be possible only when the base station and the terminal recognize each other as a common value.
  • the frame structures of the LTE and LTE-A systems as described above are designed in consideration of conventional voice/data communication, and are subject to scalability constraints to satisfy various services and requirements like an NR system. Therefore, in the NR system, it is necessary to flexibly define and operate the frame structure in consideration of various services and requirements.
  • FIGS. 2 to 4 are diagrams illustrating an expandable frame structure according to some embodiments.
  • FIGS. 2 to 4 are a set of essential parameters defining an extended frame structure, and may include a subcarrier spacing, a CP length, a slot length, and the like.
  • the extended frame structure of the 5G system needs to include at least the frame structure of LTE/LTE-A or an essential parameter set.
  • a 5G frame structure such as the frame structure of LTE/LTE-A or an essential parameter set is shown.
  • the subcarrier interval is 15 kHz
  • 14 symbols constitute a 1 ms slot
  • 12 subcarriers represents the configuration of a PRB (Physical Resource Block).
  • a subcarrier interval, a CP length, and a slot length which are essential parameter sets, have a relationship of an integer multiple to each other for each frame structure type, thereby providing high scalability.
  • a subframe having a fixed length of 1 ms may be defined to indicate a reference time unit irrelevant to the frame structure type. Therefore, in frame structure type A, one subframe is composed of one slot, frame structure type B is composed of one subframe into two slots, and in frame structure type C, one subframe is composed of four slots. It is composed.
  • the expandable frame structure is not limited to the above-described frame structure types A, B, or C, and may be applied to other subcarrier intervals such as 120 kHz and 240 kHz, and may have different structures.
  • the above-described frame structure type may be applied to correspond to various scenarios.
  • a frame structure type A can support a relatively large cell compared to the frame structure types B and C.
  • the larger the subcarrier interval is, the more advantageous it is to recover phase noise in the high frequency band, so that the frame structure type C can support a relatively higher operating frequency than the frame structure types A and B.
  • the frame structure type C is relatively suitable for the URLLC service compared to the frame structure types A and B.
  • multiple frame structure types can be multiplexed into one system for integrated operation.
  • one component carrier (CC) or serving cell may consist of up to 250 or more RBs. Therefore, when the terminal always receives the entire serving cell bandwidth like LTE, the power consumption of the terminal can be extreme.
  • the base station sets one or more bandwidth parts (BWP, bandwidth part) to the terminal so that the terminal It is possible to support changing the receiving area.
  • BWP bandwidth part
  • the base station may set the'initial BWP', which is the bandwidth of CORESET #0 (or common search space, CSS), to the terminal through the MIB.
  • the base station sets the initial BWP (first BWP) of the terminal through radio resource control (RRC) signaling, and sets at least one or more BWP configuration information that may be indicated through future DCI (downlink control information, downlink control information). You can notify. Thereafter, the base station can indicate which band the terminal will use by notifying the BWP ID through DCI. If the terminal does not receive DCI in the currently allocated BWP for more than a specific time, the terminal returns to the'default BWP' and attempts DCI reception.
  • RRC radio resource control
  • FIG. 5 is a diagram illustrating an example of setting a bandwidth portion in an NR communication system according to some embodiments.
  • a terminal bandwidth 5-00 may be set to two bandwidth portions, that is, a bandwidth portion #1 (5-05) and a bandwidth portion #2 (5-10).
  • the base station may set one or a plurality of bandwidth portions to the terminal, and may set the following information for each bandwidth portion.
  • various parameters related to the bandwidth portion may be set to the terminal.
  • the configuration information may be transmitted from the base station to the terminal through higher layer signaling, for example, RRC signaling.
  • At least one bandwidth portion among the set one or a plurality of bandwidth portions may be activated. Whether or not to activate the configured bandwidth portion may be transmitted from the base station to the terminal in a semi-static manner through RRC signaling, or may be dynamically transmitted through a medium access control (MAC) control element (CE) or DCI.
  • MAC medium access control
  • CE control element
  • the setting of the bandwidth part supported by the 5G communication system can be used for various purposes.
  • the base station may support data transmission/reception with the terminal through partial bandwidth setting. For example, by setting the frequency position (configuration information 1) of the bandwidth portion in [Table 1] to the terminal, the terminal can transmit and receive data at a specific frequency position within the system bandwidth.
  • the base station may set a plurality of bandwidth portions to the terminal. For example, in order to support both transmission and reception of data using a subcarrier spacing of 15 kHz and a subcarrier spacing of 30 kHz to a terminal, two bandwidth portions may be set to use subcarrier spacings of 15 kHz and 30 kHz, respectively. Different bandwidth portions may be frequency division multiplexed (FDM), and when data is transmitted/received at a specific subcarrier interval, the bandwidth portion set at the corresponding subcarrier interval may be activated.
  • FDM frequency division multiplexed
  • the base station may set a bandwidth portion having a different size of bandwidth to the terminal. For example, if the terminal supports a very large bandwidth, such as 100 MHz, and always transmits/receives data through the corresponding bandwidth, it may cause very large power consumption. In particular, it is very inefficient in terms of power consumption for the UE to monitor an unnecessary downlink control channel for a large bandwidth of 100 MHz in a situation where there is no traffic. Therefore, for the purpose of reducing the power consumption of the terminal, the base station may set a bandwidth portion of a relatively small bandwidth to the terminal, for example, a bandwidth portion of 20 MHz. In a situation where there is no traffic, the UE can perform a monitoring operation in the 20 MHz bandwidth portion, and when data is generated, it can transmit and receive data using the 100 MHz bandwidth portion according to the instruction of the base station.
  • FIG. 6 is a diagram illustrating a method of instructing and changing a dynamic setting for a bandwidth portion according to some embodiments.
  • the base station can set one or more bandwidth portions to the terminal, and the settings for each bandwidth portion include the bandwidth of the bandwidth portion, the frequency position of the bandwidth portion, and the numerol of the bandwidth portion. It can give you information about knowledge, etc. 6, two bandwidth portions, bandwidth portion #1 (BPW#1, 6-05) and bandwidth portion #2 (BWP#2, 6-10) within the terminal bandwidth (6-00) to one terminal Can be set. One or a plurality of bandwidth portions among the set bandwidths may be activated, and FIG. 6 shows an example in which one bandwidth portion is activated. In FIG. 6, out of the bandwidth portions set in slot #0 (6-25), bandwidth portion #1 (6-02) is active, and the terminal is in a control area # set in bandwidth portion #1 (6-05).
  • a physical downlink control channel (PDCCH) can be monitored, and data (6-55) can be transmitted and received in a bandwidth part #1 (6-05).
  • the control region in which the UE receives the PDCCH may be different depending on which of the set bandwidth parts is activated, and accordingly, the bandwidth at which the UE monitors the PDCCH may vary.
  • the base station may additionally transmit an indicator for changing the configuration of the bandwidth portion to the terminal.
  • changing the setting for the bandwidth portion may be considered the same as the operation of activating a specific bandwidth portion (eg, changing the activation from the bandwidth portion A to the bandwidth portion B).
  • the base station can transmit a configuration switching indicator to the terminal in a specific slot, and the terminal determines the part of the bandwidth to be activated by applying the changed configuration according to the configuration change indicator from a specific point after receiving the configuration change indicator from the base station.
  • the PDCCH can be monitored in the control region set in the activated bandwidth part.
  • the base station provides a configuration change indicator (Configuration Switching Indication, 6-15) instructing the UE to change the active bandwidth part from the existing bandwidth part #1 (6-05) to the bandwidth part #2 (6-10). It can be transmitted in slot #1 (6-30).
  • the terminal may activate the bandwidth part #2 (6-10) according to the content of the indicator.
  • a transition time (6-20) for changing the bandwidth portion may be required, and accordingly, a time point in which the activated bandwidth portion is changed and applied may be determined.
  • 6 illustrates a case in which a transition time (6-20) of one slot is required after receiving the setting change indicator (6-15). Data transmission/reception may not be performed during the transition time (6-20) (6-60). Accordingly, the bandwidth portion #2 (6-10) is activated in the slot #2 (6-35), and an operation of transmitting and receiving a control channel and data through the corresponding bandwidth portion can be performed.
  • the base station may pre-set one or more bandwidth parts to the UE as higher layer signaling (e.g., RRC signaling), and the setting change indicator 6-15 is mapped to one of the bandwidth part settings preset by the base station. Activation can be indicated with. for example
  • the bit indicator may select and indicate one of the N preset bandwidth portions. [Table 2] below shows an example of indicating configuration information for a bandwidth portion using a 2-bit indicator.
  • the configuration change indicator 6-15 for the above-described bandwidth part is in the form of medium access control (MAC) control element (CE) signaling or L1 signaling (e.g., common DCI, group-common DCI, terminal-specific DCI). It can be transmitted from the base station to the terminal.
  • MAC medium access control
  • CE control element
  • L1 signaling e.g., common DCI, group-common DCI, terminal-specific DCI
  • a predefined value e.g., after receiving the setting change indicator, N ( 1) according to the application from the back of the slot
  • the base station sets the upper layer signaling (for example, RRC signaling) to the terminal, or may be partially included in the contents of the configuration change indicator 6-15 and transmitted. Or it may be determined by a combination of the above methods.
  • the terminal After receiving the setting change indicator 6-15 for the bandwidth portion, the terminal may apply the changed setting from the time point obtained by the above method.
  • FD-RA frequency domain resource allocation
  • FIG. 7 is a diagram illustrating an example of allocation of a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH) frequency axis resource according to some embodiments.
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • FIG. 7 three frequency axis resource allocation methods of type 0 (7-00), type 1 (7-05), and dynamic switch (7-10) that can be set through an upper layer in NR are illustrated.
  • NRBG means the number of resource block groups (RBGs) determined as shown in [Table 3] below according to the BWP size allocated by the BWP indicator and the upper layer parameter rbg-Size, and the RBG represented by 1 by the bitmap. Data is transmitted to
  • the base station can set the starting VRB 7-20 and the length of the frequency axis resources continuously allocated therefrom (7-25).
  • some DCI downlink control information
  • Frequency axis resource allocation information consisting of bits of the larger value (7-35) of the payload (7-15) for setting resource type 0 and the payload (7-20, 7-25) for setting resource type 1 Have. The conditions for this will be described later.
  • one bit is added to the first part (MSB) of the frequency axis resource allocation information in the DCI, and if the corresponding bit is 0, it indicates that resource type 0 is used, and if the corresponding bit is 1, it indicates that resource type 1 is used. can do.
  • the base station is a data channel (data channel) and a subcarrier interval of a control channel (control channel) set through higher layer signaling, scheduling offset (scheduling offset) ( or ) Value and it is possible to indicate the time axis position of the PDSCH resource according to the OFDM symbol start position (8-00) and the length (8-05) in one slot, which are dynamically indicated through DCI.
  • Slots 8-10 may be indicated.
  • the UE performs blind decoding in a specific time and frequency domain in order to receive a PDCCH including DCI (downlink control information).
  • the base station may set a control resource space (Control Resource SET, CORESET) and a search space to the terminal through higher layer signaling in order to provide a time for the terminal to perform blind decoding, a frequency domain, and a mapping method.
  • the base station can set up to 3 CORESETs and up to 10 search spaces for each BWP set in the terminal.
  • the base station and the terminal may exchange signaling information as shown in [Table 4] in order to transmit information on CORESET.
  • the signaling information ControlResourceSet in [Table 4] includes information on each CORESET.
  • Information included in the signaling information ControlResourceSet may have the following meanings.
  • -controlResourceSetId represents the CORESET index.
  • -frequencyDomainResources Represents frequency resource information of CORESET. For all PRBs included in the BWP, 6 RBs are grouped to indicate whether the CORESET frequency resource for each RB bundle is included in 1 bit. (1: included in CORESET, 0: not included in CORESET)
  • CCE control channel elements mapped to CORESET are interleaved. If CCE is interleaving, additional information on interleaving (reg-BundleSize, interleaverSize, shiftIndex) is provided.
  • -precoderGranularity Represents information on frequency resource precoding of CORESET.
  • the size of a precoder may be the same as the size of a REG (resource element group) bundle or the size of the total frequency resource of CORESET.
  • tci-StatePDCCH-ToAddList represents a set of TCI (Transmission Configuration Indication) states that can be activated of CORESET.
  • TCI Transmission Configuration Indication
  • One of the set of TCI states that can be activated of CORESET can be activated through higher layer signaling (eg, MAC CE). If the CORESET is a CORESET set during the initial access process, the TCI state set may not be set. A description of the TCI state will be described later.
  • -tci-PresentInDCI Indicates whether an indicator indicating the TCI state of the PDSCH is included in the DCI transmitted from the PDCCH included in the CORESET.
  • -Pdcch-DMRS-ScramblingID Sequence scrambling index of DMRS transmitted from PDCCH included in CORESET
  • the UE may perform blind decoding for receiving the PDCCH with reference to the above-described CORESET information.
  • the base station transmits the downlink channel to the terminal in order to smoothly receive the downlink channel (for example, PDCCH or PDSCH) to the terminal and decode it (for example, the DMRS port of the PDSCH or the PDSCH DMRS port or It is possible to deliver information on a QCL (quasi co-location) relationship between CSI-RS ports (CSI-RS ports of CSI-RS).
  • the QCL relationship between antenna ports may have one of a total of four QCL types.
  • the terminal is a parameter supported by the QCL type shared or referenced by the two antenna ports. We can assume that they have the same value by sharing.
  • the base station may set the TCI state to transmit information on the QCL relationship between antenna ports to the terminal.
  • the TCI state includes information on one or two downlink RSs and supported QCL types.
  • the base station and the terminal may exchange signaling information as shown in [Table 5] in order to transmit information on the TCI state.
  • the signaling information TCI-state in [Table 5] includes information on each TCI state.
  • each TCI state includes information on a TCI state index and one or two QCL-Info (qcl-Type1, qcl-Type2).
  • qcl-Type1 or qcl-Type2 is a cell index in which RS is set, a BWP index including RS, an RS that provides information on parameters supported by the QCL type according to the QCL type, and information on one of a total of four QCL types. Provides.
  • the UE may receive and decode a downlink channel based on an RS referenced in the activated TCI state and a supported QCL type with reference to the activated TCI state in the antenna port transmitting the downlink channel.
  • NR provides various types of DCI formats as shown in [Table 6] below according to the purpose for efficient control channel reception by the terminal.
  • the base station may use DCI format 1_0 or DCI format 1_1 to allocate PDSCH to one cell.
  • DCI format 1_0 may include at least the following information when transmitted with a CRC scrambled by C-RNTI (Cell Radio Network Temporary Identifier) or CS-RNTI (Configured Scheduling RNTI) or MCS-C-RNTI:
  • C-RNTI Cell Radio Network Temporary Identifier
  • CS-RNTI Configured Scheduling RNTI
  • MCS-C-RNTI MCS-C-RNTI
  • DCI format indicator always set to 1
  • Frequency domain resource assignment indicates frequency axis resource allocation, and when DCI format 1_0 is monitored in UE specific search space Is the size of the active DL BWP, otherwise Is the size of the initial DL BWP.
  • DCI format 1_0 is monitored in UE specific search space Is the size of the active DL BWP, otherwise Is the size of the initial DL BWP.
  • Modulation and coding scheme indicates the modulation order and coding rate used for PDSCH transmission.
  • PUCCH resource indicator (3 bits): This is a PUCCH resource indicator, indicating one of 8 resources set as a higher layer.
  • PDSCH-to-HARQ_feedback timing indicator 3 bits: As a HARQ feedback timing indicator, it indicates one of eight feedback timing offsets set as an upper layer.
  • DCI format 1_1 may include at least the following information when transmitted with CRC scrambled by C-RNTI or CS-RNTI or MCS-C-RNTI:
  • DCI format indicator always set to 1
  • Carrier indicator (0 or 3 bits): indicates the CC (or cell) in which the PDSCH allocated by the DCI is transmitted.
  • Bandwidth part indicator (0 or 1 or 2 bits): indicates the BWP through which the PDSCH allocated by the corresponding DCI is transmitted.
  • Frequency domain resource assignment (payload is determined according to the frequency axis resource assignment): Instructs frequency axis resource assignment, Is the size of the active DL BWP. For a detailed method, refer to the frequency axis resource allocation.
  • VRB-to-PRB mapping (0 or 1 bit): 0 indicates non-interleaved, 1 indicates interleaved VRP-to-PRB mapping. If the frequency axis resource allocation is set to resource type 0, it is 0 bit.
  • PRB bundling size indicator (0 or 1 bit): If the upper layer parameter prb-BundlingType is not set or is set to'static', it is 0 bit, and if it is set to'dynamic', it is 1 bit.
  • Rate matching indicator (0 or 1 or 2 bits): indicates a rate matching pattern.
  • ZP CSI-RS trigger (0 or 1 or 2 bits): indicator to trigger aperiodic ZP CSI-RS.
  • -Modulation and coding scheme indicates the modulation order and coding rate used for PDSCH transmission.
  • -New data indicator (1 bit): indicates whether the PDSCH is initial transmission or retransmission according to whether toggle.
  • -Modulation and coding scheme indicates the modulation order and coding rate used for PDSCH transmission.
  • -New data indicator (1 bit): indicates whether the PDSCH is initial transmission or retransmission according to whether toggle.
  • PUCCH resource indicator (3 bits): This is a PUCCH resource indicator, indicating one of 8 resources set as a higher layer.
  • PDSCH-to-HARQ_feedback timing indicator 3 bits: As a HARQ feedback timing indicator, it indicates one of eight feedback timing offsets set as an upper layer.
  • Antenna port (4 or 5 or 6 bits): indicates DMRS port and CDM group without data.
  • TCI indicator Transmission configuration indication (0 or 3 bits): TCI indicator.
  • CBG transmission information (0 or 2 or 4 or 6 or 8 bits): an indicator indicating whether the code block groups in the allocated PDSCH are transmitted. 0 means that the corresponding CBG is not transmitted, and 1 means that the corresponding CBG is transmitted.
  • CBG flushing out information (0 or 1 bit): An indicator indicating whether previous CBGs have been contaminated. 0 means that they may have been contaminated, and 1 means that they can be used when receiving retransmissions (combinable).
  • the base station may use DCI format 0_0 or DCI format 0_1 to allocate PUSCH to one cell.
  • DCI format 0_0 may include at least the following information when transmitted with CRC scrambled by at least one of C-RNTI, CS-RNTI, or MCS-C-RNTI:
  • DCI format indicator always set to 0
  • Frequency domain resource assignment (payload is determined according to frequency axis resource allocation): Instructs frequency axis resource assignment, Is the size of the active DL BWP. The detailed method may be described with reference to the above-described method for allocating resources on the frequency axis.
  • Frequency hopping flag (0 or 1 bit): Indicates whether the PUSCH allocated by the DCI is hopping on the frequency axis.
  • Modulation and coding scheme indicates the modulation order and coding rate used for PUSCH transmission.
  • TPC command for scheduled PUSCH (2 bits): This is an indicator for adjusting the transmission strength of the PUSCH allocated by the corresponding DCI.
  • DCI format 0_1 is scrambled by at least one of C-RNTI (Cell Radio Network Temporary Identifier), CS-RNTI (Configured Scheduling RNTI), SP-CSI-RNTI (Semi Persistent Channel State Information RNTI), or MCS-C-RNTI.
  • C-RNTI Cell Radio Network Temporary Identifier
  • CS-RNTI Configured Scheduling RNTI
  • SP-CSI-RNTI Semi Persistent Channel State Information RNTI
  • MCS-C-RNTI Mobility Management Entity
  • DCI format indicator always set to 0
  • Carrier indicator (0 or 3 bits): indicates the CC (or cell) in which the PUSCH allocated by the DCI is transmitted.
  • Bandwidth part indicator (0 or 1 or 2 bits): indicates the BWP through which the PUSCH allocated by the corresponding DCI is transmitted.
  • Frequency domain resource assignment (payload is determined according to frequency axis resource allocation): Instructs frequency axis resource assignment, Is the size of the active DL BWP. The detailed method may be described with reference to the above-described method for allocating resources on the frequency axis.
  • Frequency hopping flag (0 or 1 bit): Indicates whether the PUSCH allocated by the DCI is hopping on the frequency axis.
  • Modulation and coding scheme indicates the modulation order and coding rate used for PUSCH transmission.
  • TPC command for scheduled PUSCH (2 bits): This is an indicator for adjusting the transmission strength of the PUSCH allocated by the corresponding DCI.
  • SRS resource indicator (depending on the usage setting of the SRS): Indicates the transmission precoding configuration of the PUSCH allocated by the DCI through the SRS resource.
  • Precoding information and number of layers (0 or 1 or 2 or 3 or 4 or 5 or 6 bits): Indicates transmission precoding information and the number of transmission layers of the PUSCH allocated by the DCI.
  • Antenna port (2 or 3 or 4 or 5 bits): Indicates the transmission DMRS port and CDM group without data of the PUSCH allocated by the DCI.
  • CBG transmission information (0 or 2 or 4 or 6 or 8 bits): This is an indicator indicating whether code block groups in the PUSCH allocated through the corresponding DCI are transmitted.
  • Beta_offset indicator (0 or 2 bits): indicates an offset value used when multiplexing HARQ-ACK or CSI report to PUSCH.
  • DMRS sequence initialization (0 or 1 bit): This is a DMRS scrambling ID selection indicator.
  • the maximum number of DCIs of different sizes that the UE can receive per slot in the corresponding cell is 4.
  • the maximum number of DCIs of different sizes scrambled with C-RNTIs that the UE can receive per slot in the corresponding cell is 3.
  • the base station can schedule the PDSCH to the terminal using DCI format 1_0 or DCI format 1_1.
  • the QCL relationship information of the transmitted PDSCH may refer to the TCI state indicated through the DCI.
  • the base station may set a plurality of TCI states through RRC signaling to the terminal, and some of them may be selected through MAC CE signaling.
  • QCL relationship information of the PDSCH may be determined by referring to one TCI state selected through a TCI field of DCI among TCI states selected through MAC CE signaling.
  • the DCI format for scheduling the PDSCH, the CORESET setting value for determining whether the TCI field is included in the DCI, and the beam switching time for the terminal to receive the PDSCH are reported as the terminal capability (e.g., timeDurationForQCL). It is possible not to follow one TCI state selected through the TCI field of the DCI in consideration of whether or not, the beam switching time for receiving the PDSCH reported by the UE, and the like. In this case, the activated TCI state of the CORESET in which the PDCCH including the DCI is transmitted may be followed or the activated TCI state of a specific CORESET.
  • FIG. 9 is a diagram illustrating an example of a flowchart of a process of determining a TCI state referred to to obtain QCL relationship information of a transmitted PDSCH when a base station schedules a PDSCH through DCI according to some embodiments.
  • a TCI state referred to to obtain QCL relationship information of a transmitted PDSCH may be determined according to flowchart 9-00.
  • the base station schedules the PDSCH through DCI.
  • the QCL relationship information of the transmitted PDSCH is the TCI state activated in the CORESET with the lowest CORESET index including the monitoring search space of the most recent slot monitoring at least one CORESET within the activated BWP of the serving cell. See.
  • the scheduling offset is greater than or equal to timeDurationForQCL (9-10)
  • the QCL relationship information of the transmitted PDSCH is used to schedule the PDSCH. Refer to the activated TCI state of CORESET in which the PDCCH including DCI is transmitted. (9-30)
  • the process of determining the TCI state for obtaining the QCL relationship information of the PDSCH with reference to Flowchart 9-00 can be applied only when the UE reports beamSwitchTiming as UE capability. Alternatively, it may be applied only when the frequency range (FR) in which the PDSCH is transmitted is FR2. Alternatively, at least one of the TCI states selected by RRC signaling or MAC CE signaling may be limited to a case in which at least one TCI state includes'QCL-typeD' including beam information.
  • the terminal transmits HARQ-ACK feedback information for the PDSCH to the base station through a physical uplink control channel (PUCCH).
  • the base station indicates to the terminal a slot to which a PUCCH transmitting HARQ-ACK feedback information is mapped through a DCI scheduling a PDSCH, and a type of a PUCCH resource.
  • the base station may indicate a slot offset between the PDSCH and the PUCCH transmitting HARQ-ACK feedback information through the PDSCH-to-HARQ_feedback timing indicator field of the DCI scheduling the PDSCH.
  • the base station may indicate the type of PUCCH resource for transmitting HARQ-ACK feedback information through the PUCCH resource indicator of the DCI scheduling the PDSCH.
  • FIG. 10 is a diagram illustrating an example of allocation of PUCCH resources for HARQ-ACK feedback according to some embodiments.
  • the PDSCH (10-05) is scheduled based on the DCI information of the PDCCH (10-00)
  • the PDSCH is transmitted and slot information to which the PUCCH (10-10) including HARQ-ACK feedback corresponding thereto is mapped, and In-slot symbol mapping information of the PUCCH 10-10 including HARQ-ACK feedback is transmitted.
  • the slot interval (K2) between the PDSCH and the corresponding HARQ-ACK feedback is indicated through the PDSCH-to-HARQ_feedback timing indicator, and is set through higher layer signaling as a candidate value of the slot interval, or from 1 to 8. Indicate one of eight predetermined feedback timing offsets.
  • a location of a start symbol, and a number of mapping symbols one of eight resources set as a higher layer is indicated through the PUCCH resource indicator. do.
  • the UE determines the time axis mapping position of the PUCCH including the HARQ-ACK feedback by referring to the slot interval between the PDSCH and the corresponding HARQ-ACK feedback, the position of the start symbol set in the PUCCH resource, and the number of mapping symbols.
  • HARQ-ACK feedback information is mapped according to the PUCCH-format set in the PUCCH resource.
  • the spatial domain transmission filter of the UE transmitting the PUCCH follows spatial relation information of the PUCCH activated through higher layer signaling including MAC CE in the PUCCH resource.
  • the activated spatial relation info of the PUCCH resource refers to a CSI-reference signal (RS) resource or an index of a synchronization/broadcast channel block (SS/PBCH block, SSB)
  • the UE refers to the CSI-RS resource.
  • the PUCCH may be transmitted using a spatial domain transmission filter such as a spatial domain receive filter used when receiving the SSB.
  • the activated spatial relation info of the PUCCH resource refers to a sounding reference signal (SRS) resource index
  • the UE may transmit the PUCCH using a spatial domain transmission filter used when transmitting the referenced SRS resource.
  • SRS sounding reference signal
  • the base station can schedule to transmit the PUSCH to the terminal using DCI format 0_0 or DCI format 0_1.
  • the time-axis and frequency-axis resource mapping information of the PUSCH transmitted by the UE is obtained by referring to values of the DCI time domain resource assignment and frequency domain resource assignment fields, and the detailed mapping method is the above-described time-axis resource assignment method and frequency-axis resource assignment method.
  • transmission precoding information, rank, and number of transport layers of the PUSCH transmitted by the UE refer to the configuration information of the SRS resource indicated through the SRS resource indicator (SRI) field of the DCI or the precoding information and number of DCI.
  • SRI SRS resource indicator
  • the terminal may transmit the PUSCH in a single layer without applying precoding.
  • the terminal sets information of the SRS resource indicated through the SRI field of the DCI and the precoding information and number of layers field of the DCI.
  • PUSCH may be transmitted by determining the number of transmission precoding and transmission layers according to the indicated information.
  • the terminal transmits precoding applied when transmitting the SRS resource(s) indicated through the SRI field of the DCI
  • the PUSCH may be transmitted by determining the number of transport precoding and transport layers to be applied to the PUSCH according to the number of transport layers and the number of transport layers.
  • the spatial domain transmission filter of the UE applied to the PUSCH transmitted by the UE may follow a value set in the SRS resource indicated through the SRI field of DCI or may apply a predetermined spatial domain transmission filter.
  • the terminal follows the activated spatial relation info of the PUCCH resource having the lowest index in the activated uplink BWP of the serving cell. If the spatial relation info refers to a CSI-RS resource or an index of an SSB, the UE may use a spatial domain transmission filter such as a spatial domain receive filter used when receiving the referenced CSI-RS resource or SSB.
  • the UE may use the spatial domain transmission filter used when transmitting the referenced SRS resource.
  • the terminal follows spatial relation info or associated CSI-RS information set as higher layer signaling in the SRS resource indicated through the SRI field of DCI. If spatial relation info is set in the SRS resource, the terminal may use a spatial domain transmission filter according to the above-described spatial relation info reference method. If spatial relation info is not set in the SRS resource and csi-RS or associatedCSI-RS configuration information is included in the SRS resource set including the SRS resource, the UE transmits precoding information calculated according to the associated CSI-RS information.
  • the spatial domain transmission filter can be determined by referring to.
  • the terminal uses the transmission method indicated through DCI (transmission precoding method for SRS resource, number of transmission layers, spatial domain transmission filter).
  • DCI transmission precoding method for SRS resource, number of transmission layers, spatial domain transmission filter.
  • UE processing capability 1 or 2 and neurology according to the capability of the UE The number of symbols determined according to.
  • terminal processing capability 1 according to the capability report of the terminal, it has the value in [Table 7], and it is reported as terminal processing capability 2 and it is set through higher layer signaling that the terminal processing capability 2 can be used [Table 8] It can have a value of ].
  • the number of symbols determined as 0 when the first symbol of the PUSCH is configured to consist of only DM-RS, and 1 when not.
  • the base station and the terminal When the base station and the terminal consider the time axis resource mapping information of the PUSCH scheduled through the DCI and the timing advance (TA) effect between the uplink and the downlink, from the last symbol of the PDCCH including the DCI scheduling the PUSCH Later, when the first symbol of the PUSCH starts earlier than the first uplink symbol that the CP starts, it is determined that the PUSCH preparation procedure time is insufficient. If not, the base station and the terminal determine that the PUSCH preparation procedure time is sufficient. The UE transmits the PUSCH only when the PUSCH preparation procedure time is sufficient, and may ignore the DCI scheduling the PUSCH when the PUSCH preparation procedure time is insufficient.
  • TA timing advance
  • the base station has a CSI framework for indicating measurement and reporting of channel state information (CSI) of the terminal.
  • CSI channel state information
  • NR's CSI framework may consist of at least two elements: resource setting and report setting, and the report setting may have a connection relationship with each other by referring to at least one ID of the resource setting. have.
  • the resource setting may include RS-related information for the UE to measure channel state information.
  • the base station may set at least one or more resource settings to the terminal.
  • the base station and the terminal may exchange signaling information as shown in [Table 9] in order to transmit information on resource setting.
  • Signaling information CSI-ResourceConfig in [Table 9] includes information on each resource setting.
  • each resource setting includes a resource setting index (csi-ResourceConfigId) or a BWP index (bwp-ID) or a time axis transmission setting of a resource (resourceType) or at least one resource set. It may include a resource set list (csi-RS-ResourceSetList).
  • the time axis transmission setting of the resource may be set to aperiodic transmission, semi-persistent transmission, or periodic transmission.
  • the resource set list may be a set including a resource set for channel measurement or a set including a resource set for interference measurement.
  • each resource set may include at least one resource, which may be a CSI-RS resource or an index of SSB.
  • each resource set may include at least one interference measurement resource (CSI interference measurement, CSI-IM).
  • CSI interference measurement CSI-IM
  • the base station and the terminal may exchange signaling information as shown in [Table 10] in order to transmit information on the resource set.
  • the signaling information NZP-CSI-RS-ResourceSet in [Table 10] includes information on each resource set.
  • each resource set includes information on at least a resource set index (nzp-CSI-ResourceSetId) or an index set of the included CSI-RS (nzp-CSI-RS-Resources), and includes CSI -It may include a part of information (repetition) about the spatial domain transmission filter of the RS resource or whether the tracking use of the included CSI-RS resource (trs-Info).
  • CSI-RS may be the most representative reference signal included in the resource set.
  • the base station and the terminal may exchange signaling information as shown in [Table 11] in order to deliver information on the CSI-RS resource.
  • the signaling information NZP-CSI-RS-Resource in [Table 11] includes information on each CSI-RS.
  • Information included in the signaling information NZP-CSI-RS-Resource may have the following meanings.
  • -powerControlOffsetSS Ratio between SS/PBCH block EPRE and CSI-RS EPRE
  • -scramblingID scrambling index of CSI-RS sequence
  • CSI-RS is a periodic CSI-RS, TCI-state information
  • ResourceMapping included in the signaling information NZP-CSI-RS-Resource represents resource mapping information of CSI-RS resource, frequency resource resource element (RE) mapping, number of ports, symbol mapping, CDM type, frequency resource density, frequency It may include band mapping information.
  • the number of ports, frequency resource density, CDM type, and time-frequency axis RE mapping that can be set through this may have a value determined in one of the rows of [Table 12] below.
  • [Table 12] shows the frequency resource density that can be set according to the number of CSI-RS ports (X), CDM type, CSI-RS component, frequency axis of RE pattern, and time axis start position ( )
  • CSI-RS component RE indicates the number of REs on the frequency axis (k') and the number of REs on the time axis (l') of the RE pattern.
  • the aforementioned CSI-RS component RE pattern may be a basic unit constituting a CSI-RS resource. Frequency axis REs and time axis Through the number of REs, the CSI-RS component RE pattern may be composed of YZ number of REs.
  • the CSI-RS RE location can be designated without limitation of subcarriers in the PRB (Physical Resource Block), and the CSI-RS RE location is designated by a 12-bit bitmap. Can be.
  • the CSI-RS RE location may be designated for each of two subcarriers in the PRB, and 6
  • the CSI-RS RE location may be designated by a bitmap of bits.
  • the CSI-RS RE location may be designated for every four subcarriers in the PRB, and the CSI-RS RE location may be designated by a 3-bit bitmap. I can.
  • the time axis RE position may be designated by a total 14-bit bitmap.
  • the length of the bitmap may be changed, such as designating the frequency location, but the principle is similar to the above description, and thus, a redundant description will be omitted below.
  • the base station may activate, deactivate, or trigger CSI-RS transmission and reception to the terminal through higher layer signaling including RRC signaling or MAC CE signaling, or L1 signaling (eg, DCI). .
  • the base station may activate or deactivate periodic CSI-RS transmission and reception through higher layer signaling to the terminal.
  • the base station may instruct to activate the CSI-ResourceConfig whose resourceType is set to periodic through higher layer signaling, and may transmit the NZP CSI-RS resource included in the NZP CSI-RS resource set referenced by the activated CSI-ResourceConfig. .
  • the time-frequency axis resource mapping in the slot of the transmitted NZP CSI-RS resource follows the resource mapping information set in the CSI-RS resource, and the slot mapping including the transmission period and the slot offset follows the periodicityAndOffset set in the CSI-RS resource.
  • the QCL relationship information of the transmitted NZP CSI-RS resource may refer to the TCI state set in the CSI-RS resource.
  • the terminal may receive a CSI-RS transmitted within an activated BWP for a periodic CSI-RS resource activated through higher layer signaling.
  • the base station may activate or deactivate semi-persistent CSI-RS transmission and reception through higher layer signaling to the terminal.
  • the base station may instruct to activate a single or multiple NZP CSI-RS resource set through MAC CE signaling, and may transmit the NZP CSI-RS resource included in the activated NZP CSI-RS resource set.
  • the NZP CSI-RS resource set activated through MAC CE signaling can be limited to an NZP CSI-RS resource set including only a semi-persistent NZP CSI-RS resource, and the semi-persistent NZP CSI-RS resource is a transmission period and It may be limited to an NZP CSI-RS resource that includes periodicityAndOffset for configuring slot mapping including slot offset and does not include QCL relationship information.
  • the time-frequency axis resource mapping in the slot of the transmitted NZP CSI-RS resource follows the resource mapping information set in the CSI-RS resource, and the slot mapping including the transmission period and the slot offset follows the periodicityAndOffset set in the CSI-RS resource.
  • the QCL relationship information of the transmitted NZP CSI-RS resource may refer to the TCI state indicating the individual NZP CSI-RS resource in MAC CE signaling to activate the NZP CSI-RS resource set.
  • the UE may receive a CSI-RS transmitted within an activated BWP for a semi-persistent CSI-RS resource activated through MAC CE signaling.
  • the base station may trigger aperiodic CSI-RS transmission and reception to the terminal through higher layer signaling or DCI.
  • the base station may set a number of aperiodic trigger states to the terminal through RRC signaling, and some of them may be selected through MAC CE signaling.
  • the base station may trigger transmission and reception of the aperiodic CSI-RS(s) referred to in the aperiodic trigger state by selecting one of the aperiodic trigger states selected through MAC CE signaling through DCI.
  • the aperiodic trigger state selected by the base station through DCI may refer to a single or multiple CSI-AssociatedReportConfigInfo
  • CSI-AssociatedReportConfigInfo is a CSI-ReportConfig for CSI reporting configuration and a CSI-RS resource set referred to for CSI reporting.
  • the CSI-RS resource set referenced for CSI reporting is an NZP CSI-RS resource set that includes only an aperiodic NZP CSI-RS resource, transmission for an aperiodic NZP CSI-RS resource included in the NZP CSI-RS resource set and Reception is triggered.
  • the aperiodic NZP CSI-RS resource may be limited to an NZP CSI-RS resource that does not include periodicityAndOffset to set the slot mapping including the transmission period and slot offset of the periodic CSI-RS or semi-persistent CSI-RS.
  • the time-frequency axis resource mapping in the slot of the transmitted NZP CSI-RS resource follows the resource mapping information set in the CSI-RS resource.
  • the slot mapping of the transmitted NZP CSI-RS resource may be determined through a slot offset between the PDCCH including the DCI and the NZP CSI-RS resource, which may follow the triggering offset set in the NZP CSI-RS resource set.
  • the slot offset between the PDCCH including DCI and the NZP CSI-RS resource is NZP It can be determined as 0 without following the triggering offset set in the CSI-RS resource set.
  • the terminal may receive a CSI-RS transmitted within a BWP activated for aperiodic CSI-RS resource triggered through DCI.
  • the QCL relationship information of the transmitted NZP CSI-RS resource is CSI-AssociatedReportConfigInfo referenced in the aperiodic trigger state selected through DCI ( s) can refer to the TCI state set for an individual NZP CSI-RS resource.
  • the terminal reports the beam switching time for receiving the aperiodic CSI-RS as the terminal capability (e.g., beamSwitchTiming), it does not follow the TCI state set for the NZP CSI-RS resource in consideration of this
  • the TCI state referenced by another downlink channel or RS transmitted in the same symbol may be followed, or the activated TCI state of a specific CORESET may be followed.
  • 11 is a flowchart illustrating a process of determining a TCI state referred to to obtain QCL relationship information of a transmitted NZP CSI-RS resource when a base station triggers aperiodic CSI-RS transmission and reception through DCI according to some embodiments. It is a diagram showing an example.
  • a TCI state referred to to obtain QCL relationship information of a transmitted NZP CSI-RS resource may be determined according to flowchart 11-00. have.
  • the base station triggers transmission and reception of aperiodic CSI-RS resource(s) included in the NZP CSI-RS resource set through DCI.
  • the symbol unit scheduling offset from the last symbol of the PDCCH including DCI to the first symbol of the triggered aperiodic CSI-RS resource(s) is at the beam switching time for the UE to receive the aperiodic CSI-RS If it is not less than the beamSwitchTiming reported by the UE capability (11-10), the QCL relationship information of the transmitted NZP CSI-RS resource is referred to in the aperiodic trigger state selected through DCI, and the individual NZP CSI- Refer to the TCI state set for RS resource.
  • the scheduling offset is less than beamSwitchTiming (11-10)
  • The'downlink signal satisfying a special condition' is greater than or equal to the timeDurationForQCL reported by the terminal capability for the beam switching time for receiving the PDSCH and is greater than the scheduled PDSCH or beamSwitchTiming with an offset between the PDCCH and the PDSCH.
  • it may be limited to aperiodic CSI-RS or periodic CSI-RS or semi-persistent CSI-RS scheduled with the same offset between the PDDCCH and CSI-RS.
  • the QCL relationship information of the transmitted NZP CSI-RS resource is at least one within the activated BWP of the serving cell. Refers to the activated TCI state in the CORESET with the lowest CORESET index including the monitoring search space of the most recent slot that monitors the CORESET of.
  • the QCL relationship information of the transmitted NZP CSI-RS resource is NZP CSI-RS resource Refer to the TCI state set for the'downlink signal that satisfies a special condition' transmitted in the same symbol as. (11-30)
  • the process of determining the TCI sate for obtaining the QCL relationship information of the NZP CSI-RS resource with reference to flowchart 11-00 is the NZP CSI-RS resource set including the NZP CSI-RS resource according to the usage of the NZP CSI-RS resource. It can be applied only when the'trs-info' or'repetition' setting information is not included. Alternatively, it can be applied limitedly to the case where the terminal reports the beamSwitchTiming as terminal capability. Alternatively, the beamSwitchTiming reported by the terminal may be limited to 14, 28, or 48 symbols.
  • the base station may set at least one SRS configuration for each uplink BWP in order to transmit configuration information for SRS transmission to the UE, and may also set at least one SRS resource set for each SRS configuration.
  • the base station and the terminal may exchange signaling information as follows in order to transmit information on the SRS resource set.
  • a time axis transmission setting of the SRS resource referenced in the SRS resource set can have one of'periodic','semi-persistent', and'aperiodic'. If it is set to'periodic' or'semi-persistent', associated CSI-RS information may be provided according to the usage of the SRS resource set. If set to'aperiodic', aperiodic SRS resource trigger list and slot offset information may be provided, and associated CSI-RS information may be provided according to the usage of the SRS resource set.
  • -usage As a setting for the usage of the SRS resource referenced in the SRS resource set, it can have one of'beamManagement','codebook','nonCodebook', and'antennaSwitching'.
  • the UE can understand that the SRS resource included in the set of the SRS resource index referenced in the SRS resource set follows the information set in the SRS resource set.
  • the base station and the terminal may exchange higher layer signaling information in order to deliver individual configuration information for the SRS resource.
  • the individual configuration information for the SRS resource may include the time-frequency axis mapping information in the slot of the SRS resource, which may include information on the frequency hopping within the slot or between the slots of the SRS resource.
  • the individual configuration information for the SRS resource may include the time axis transmission configuration of the SRS resource, and may have one of'periodic','semi-persistent', and'aperiodic'. This can be limited to have the same time axis transmission setting as the SRS resource set including the SRS resource.
  • the time axis transmission setting of the SRS resource may additionally include an SRS resource transmission period and a slot offset (eg, periodicityAndOffset).
  • the individual configuration information for the SRS resource may include the configuration for the spatial domain transmission filter of the terminal transmitting the SRS resource, which may be provided through spatial relation info for the SRS.
  • the spatial relation info included in the individual configuration information for the SRS resource refers to the index of the CSI-RS resource or SSB
  • the terminal uses the spatial domain used when receiving the referenced CSI-RS resource or SSB, the same spatial domain as the receive filter. It can be understood as using a transmission filter.
  • the spatial relation info refers to another SRS resource index
  • the terminal may be understood as using the spatial domain transmission filter used when transmitting the referenced SRS resource.
  • the base station may activate, deactivate, or trigger SRS transmission to the terminal through higher layer signaling including RRC signaling or MAC CE signaling, or L1 signaling (eg, DCI).
  • higher layer signaling including RRC signaling or MAC CE signaling, or L1 signaling (eg, DCI).
  • the base station may activate or deactivate periodic SRS transmission through higher layer signaling to the terminal.
  • the base station may instruct to activate the SRS resource set in which the resourceType is set to periodic through higher layer signaling, and the terminal may transmit the SRS resource referred to in the activated SRS resource set.
  • the time-frequency axis resource mapping in the slot of the transmitted SRS resource follows the resource mapping information set in the SRS resource, and the slot mapping including the transmission period and the slot offset follows the periodicityAndOffset set in the SRS resource.
  • the spatial domain transmission filter applied to the transmitted SRS resource may refer to spatial relation info set in the SRS resource, or may refer to associated CSI-RS information set in the SRS resource set including the SRS resource.
  • the terminal may transmit the SRS resource in the uplink BWP activated for the periodic SRS resource activated through higher layer signaling.
  • the base station may activate or deactivate semi-persistent SRS transmission through higher layer signaling to the terminal.
  • the base station may instruct to activate the SRS resource set through MAC CE signaling, and the terminal may transmit the SRS resource referred to in the activated SRS resource set.
  • the SRS resource set activated through MAC CE signaling may be limited to an SRS resource set in which the resourceType is set to semi-persistent.
  • the time-frequency axis resource mapping in the slot of the transmitted SRS resource follows the resource mapping information set in the SRS resource, and the slot mapping including the transmission period and the slot offset follows the periodicityAndOffset set in the SRS resource.
  • the spatial domain transmission filter applied to the transmitted SRS resource may refer to spatial relation info set in the SRS resource, or may refer to associated CSI-RS information set in the SRS resource set including the SRS resource. If spatial relation info is set in the SRS resource, the spatial domain transmission filter can be determined by referring to configuration information about spatial relation info transmitted through MAC CE signaling that does not follow this and activates semi-persistent SRS transmission. .
  • the terminal may transmit the SRS resource in the uplink BWP activated for the semi-persistent SRS resource activated through higher layer signaling.
  • the base station may trigger aperiodic SRS transmission to the terminal through DCI.
  • the base station may indicate one of the aperiodic SRS resource triggers through the SRS request field of the DCI.
  • the UE may understand that the SRS resource set including the aperiodic SRS resource trigger indicated through DCI in the aperiodic SRS resource trigger list among the configuration information of the SRS resource set is triggered.
  • the terminal may transmit the SRS resource referenced in the triggered SRS resource set.
  • the time-frequency axis resource mapping in the slot of the transmitted SRS resource follows the resource mapping information set in the SRS resource.
  • the slot mapping of the transmitted SRS resource may be determined through a slot offset between the PDCCH including the DCI and the SRS resource, which may refer to the value(s) included in the slot offset set set in the SRS resource set.
  • the slot offset between the PDCCH including the DCI and the SRS resource may apply a value indicated in the time domain resource assignment field of DCI among the offset value(s) included in the slot offset set set in the SRS resource set.
  • the spatial domain transmission filter applied to the transmitted SRS resource may refer to spatial relation info set in the SRS resource, or may refer to associated CSI-RS information set in the SRS resource set including the SRS resource.
  • the terminal may transmit the SRS resource in the uplink BWP activated for the aperiodic SRS resource triggered through DCI.
  • the terminal applies the configuration information on the SRS resource to transmit the SRS, the minimum between the PDCCH including the DCI that triggers the aperiodic SRS transmission and the transmitted SRS.
  • a minimum time interval of may be required.
  • the time interval for SRS transmission of the UE is defined as the number of symbols between the first symbol to which the SRS resource transmitted first is mapped among the SRS resource(s) transmitted from the last symbol of the PDCCH including the DCI that triggers the aperiodic SRS transmission. I can.
  • the minimum time interval may be determined with reference to the PUSCH preparation procedure time required for the UE to prepare for PUSCH transmission.
  • the minimum time interval may have a different value depending on the usage of the SRS resource set including the transmitted SRS resource.
  • the minimum time interval is defined in consideration of the terminal processing capability according to the capability of the terminal with reference to the PUSCH preparation procedure time of the terminal. It can be determined as a symbol.
  • the minimum time interval is set. If the symbol is set and the usage of the SRS resource set is set to'nonCodebook'or'beamManagement', the minimum time interval is set. It can be set as a symbol.
  • the UE When the time interval for SRS transmission is greater than or equal to the minimum time interval, the UE transmits an aperiodic SRS, and when the time interval for SRS transmission is less than the minimum time interval, the DCI triggering the aperiodic SRS may be ignored.
  • a method of determining a beam switching time required for a UE to transmit an uplink signal to an uplink beam indicated through higher layer signaling or L1 signaling, and various uplink signals (e.g., SRS or PUSCH or A method of determining an uplink beam in consideration of a beam switching time during PUCCH) transmission is provided.
  • the base station may instruct the UE to transmit an uplink signal through higher layer signaling or L1 signaling, and may transmit configuration information on an uplink beam used by the UE when transmitting an uplink signal.
  • the base station can directly inform the uplink beam to inform the terminal of the configuration information for the uplink beam, or indirectly through the configuration information for the uplink signal transmission (eg, SRS resource or PUCCH resource configuration information) It is possible to indicate an uplink beam.
  • the terminal After decoding the upper layer signaling or L1 signaling of the base station instructing transmission of the uplink signal, the terminal performs uplink signal transmission using the uplink beam indicated by the base station. In this case, the terminal has sufficient time to prepare an uplink beam between signaling of the base station and transmission of an uplink signal in order to use an uplink beam indicated by the base station after decoding the higher layer signaling or L1 signaling of the base station. This may have to be guaranteed.
  • this is defined as a beam switching time for transmitting an uplink signal of a terminal.
  • the beam switching time for uplink signal transmission of the terminal is the time required by the terminal between signaling including an indication of the transmission of the uplink signal from the base station to the terminal and the uplink signal transmission of the terminal. It may vary depending on the nature of the uplink signal transmitted by the terminal.
  • the uplink signal considered in this disclosure includes at least some or all of the SRS or PUSCH or PUCCH, and the signaling for the uplink signal transmission of the base station is higher layer signaling including RRC or MAC CE, or L1 signal including DCI. Includes part or all of the ring.
  • the UE may perform uplink signal transmission in consideration of the beam switching time for uplink signal transmission and indication or configuration information for uplink signal transmission of the base station.
  • the base station Uplink signal transmission can be performed using the indicated uplink beam. If the signaling for uplink transmission of the base station does not sufficiently satisfy the beam switching time for uplink signal transmission, the terminal may follow one of the following uplink signal transmission methods.
  • the UE may perform uplink signal transmission using an uplink beam according to a predetermined rule without following the uplink beam indicated by the base station.
  • configuration for uplink signal transmission except for the uplink beam follows the instruction of the base station.
  • UE does not follow configuration information for uplink signal transmission indicated by the base station, and uplink according to configuration information for uplink signal transmission according to a predetermined rule (eg, SRS resource or PUCCH resource) Signal transmission can be performed.
  • a predetermined rule eg, SRS resource or PUCCH resource
  • the uplink beam follows configuration information for uplink signal transmission according to a predetermined rule.
  • the terminal may not perform uplink signal transmission indicated by the base station.
  • aperiodic SRS transmission by determining a minimum time interval in consideration of the beam switching time, when the terminal does not satisfy the beam switching time for aperiodic SRS transmission, it may be indicated not to perform aperiodic SRS transmission. Alternatively, it may be indicated not to perform aperiodic SRS transmission when at least one of the two is not satisfied by individually considering the beam switching time and the minimum time interval.
  • PUSCH transmission by determining the PUSCH preparation procedure time in consideration of the beam switching time, it is possible to instruct not to perform the PUSCH transmission when the terminal does not satisfy the beam switching time for PUSCH transmission. Alternatively, it may be indicated not to perform PUSCH transmission when at least one of the two is not satisfied by individually considering the beam switching time and the PUSCH preparation procedure time.
  • the specific operation of the uplink signal transmission of the terminal in consideration of the beam switching time for uplink signal transmission may vary according to the signaling method of the base station and the nature of the uplink signal transmitted by the terminal.
  • the uplink signal transmission operation of the terminal in consideration of the beam switching time for uplink signal transmission for the number of various cases will be described in detail in the following embodiments.
  • the preparation time required for using the uplink beam indicated by the base station is sufficiently guaranteed.
  • the beam switching time for uplink signal transmission of the terminal may report this to the base station as the capability of the terminal, and may vary according to the signaling method of the base station and the nature of the uplink signal transmitted by the terminal.
  • the base station and the terminal recognize the preparation time for using the uplink beam indicated by the base station in common, so that the base station can instruct the terminal to transmit an uplink signal taking this into account.
  • the base station can expect to use the indicated uplink beam when the terminal satisfies the beam switching time for uplink signal transmission.
  • the uplink channel can be efficiently operated by suppressing inefficient uplink signal transmission of the terminal.
  • the preparation time for using the uplink beam indicated by the base station is guaranteed, so that decoding of the signaling of the base station and using the uplink beam at a time within the beam switching time for uplink signal transmission You can flexibly carry out the preparation for it.
  • the terminal can operate autonomously within a limit that satisfies the beam switching time for uplink signal transmission.
  • the beam switching time is determined in consideration of the UE's ability to transmit uplink signals, such as the number of beams the UE can use for UL signal transmission, the number of panels the UE has, and the number of panels activated by the UE It is possible to do. Through this, the difference in implementation of the terminal can be reflected in the configuration for uplink signal transmission and the indication of the base station.
  • a method of determining a beam switching time according to a signaling method of a base station and a property of an uplink signal is provided through various embodiments to be described below.
  • the base station instructs the terminal to transmit an uplink signal, it provides a method of determining the operation of the terminal in consideration of the beam switching time.
  • the terminal may report the capability for the beam switching time for uplink signal transmission to the base station. Additionally, the beam switching time for uplink signal transmission of the terminal may be determined differently according to the condition or configuration information in consideration of at least one of the following conditions or configuration information.
  • -Type of uplink signal eg, SRS or PUSCH or PUCCH
  • the number of terminal panels e.g., the number of panels on which the terminal performs uplink signal transmission, or the number of panels that the terminal can simultaneously activate for uplink signal transmission, or the terminal can use for uplink signal transmission. Number of panels
  • the base station and the terminal individually beam switching time according to various types of uplink signals, neurology, and the number of terminal panels in consideration of the beam switching time for uplink signal transmission reported by the terminal and the above-described condition or configuration information. It is possible to determine. As an example, if the beam switching time for uplink transmission reported by the terminal to the base station is an X symbol, the beam switching time for uplink transmission that is actually applied may be determined as X + Y symbols, and the determination of the Y value is It may vary depending on the type of uplink signal, neurology, and the number of terminal panels. Alternatively, the terminal may report a beam switching time for a plurality of uplink transmissions as terminal capability in consideration of the type of uplink signal, neurology, and the number of terminal panels.
  • the terminal sets the beam switching time for SRS transmission. It is reported as a symbol, and the beam switching time for PUSCH transmission is It is reported as a symbol, and the beam switching time for PUCCH transmission is It can be reported as a symbol.
  • the method of determining the beam switching time according to the type of the uplink signal is described in Embodiment 1-1, Embodiment 1-2, and Embodiment 1-3. Be specific.
  • the terminal has uplink neurology Beam switching time when Report it as a symbol Beam switching time when It can be reported as a symbol. In this case, it is possible for the UE to apply different beam switching times according to the neurology of the uplink BWP through which the uplink signal is transmitted.
  • the base station calculates the time interval between the signaling instructing the uplink signal transmission to the terminal and the uplink signal transmitted by the terminal. Should be compared.
  • the time interval between the signaling instructing the base station to transmit the uplink signal to the terminal and the uplink signal transmitted by the terminal is expressed as'time offset', which is'scheduling interval' or'scheduling offset' or It can also be expressed by replacing it with'time interval'.
  • the time offset may be calculated as follows according to the signaling method of the base station indicating uplink signal transmission.
  • the time offset is'the uplink signal (e.g., aperiodic/semi-persistent SRS) from the end of the last symbol in which the PDCCH including DCI is transmitted.
  • the uplink signal e.g., aperiodic/semi-persistent SRS
  • it may be calculated as'until the first symbol in which the PUSCH or PUCCH including HARQ-ACK for the PDSCH) is transmitted starts. This can be converted to an absolute time unit or a symbol unit.
  • the time offset is'from the end of the DCI decoding time of the terminal at the end of the last symbol in which the PDCCH including DCI is transmitted until the first symbol in which the uplink signal is transmitted starts. It can also be calculated as'.
  • the time offset can be calculated by the following method.
  • Method 1 From the end of the last symbol in which the PDSCH including MAC CE signaling is transmitted, until the first symbol in which the uplink signal (eg, aperiodic/semi-persistent SRS) is transmitted starts.
  • the uplink signal eg, aperiodic/semi-persistent SRS
  • Method 3 MAC CE application delay time at the end of the last symbol in which the PUCCH/PUSCH including HARQ-ACK for the PDSCH including MAC CE signaling is transmitted (for example, a slot that starts first after 3 ms has elapsed Until the first symbol through which an uplink signal is transmitted starts
  • the time offset defined above may be converted into an absolute time unit or a symbol unit.
  • the base station and the terminal may determine that the beam switching time for transmission of the uplink signal of the terminal is not satisfied. . Or, if the time offset calculated according to the above-described method is greater than or equal to the beam switching time for uplink signal transmission of the terminal, the base station and the terminal determine that the beam switching time for uplink signal transmission of the terminal is satisfied. I can. A specific embodiment of the operation of the terminal depending on whether the beam switching time for transmission of the uplink signal of the terminal is satisfied will be described in detail through the second, third, and fourth embodiments.
  • the terminal may report the capability for the beam switching time for SRS transmission to the base station. Additionally, the beam switching time for SRS transmission of the terminal may be determined differently according to the condition or configuration information in consideration of at least one of the following conditions or configuration information.
  • Signaling method in which the base station triggers or activates SRS transmission to the terminal e.g., L1 signaling including DCI or MAC CE signaling
  • -Time axis transmission information of the SRS instructed by the base station to transmit to the terminal eg, aperiodic SRS or semi-persistent SRS or periodic SRS
  • the base station and the terminal consider the beam switching time for SRS transmission reported by the terminal and the signaling method of various base stations, the time axis transmission information of the SRS, the usage of the SRS resource set, the SRS resource set, or It is possible to individually determine the beam switching time according to the number of SRS resources. As an example, if the beam switching time for SRS transmission reported by the UE to the base station is an X symbol, the beam switching time for SRS transmission that is actually applied may be determined as X + Y symbols, and the determination of the Y value is performed by the base station. It may vary according to the signaling method, the time axis transmission information of the SRS, the usage of the SRS resource set, the number of the SRS resource set or the SRS resource.
  • the Y value may be limited to an integer including positive, 0, and negative numbers.
  • the terminal may report the beam switching time for a plurality of SRS transmissions as the terminal capability in consideration of the signaling method of the base station, the time axis transmission information of the SRS, the usage of the SRS resource set, the number of the SRS resource set or the SRS resource. .
  • the terminal sets the beam switching time for SRS transmission when the usage of the SRS resource set is'beam management'. It is reported as a symbol, and the beam switching time for SRS transmission when the usage of the SRS resource set is'antennaSwitching' It can be reported as a symbol. In this case, it is possible to apply different beam switching times according to usage of the SRS resource set instructed by the base station to transmit to the terminal.
  • the terminal may report the capability for the beam switching time for PUSCH transmission to the base station. Additionally, the beam switching time for PUSCH transmission of the UE may be determined differently according to the condition or configuration information in consideration of at least one of the following conditions or configuration information.
  • -PUSCH precoding method instructed by the base station to transmit to the terminal eg, codebook-based PUSCH transmission or non-codebook-based PUSCH transmission
  • the number of SRS resource sets or the number of SRS resources according to the PUSCH precoding method instructed by the base station to transmit to the terminal e.g., the number of SRS resource sets whose usage setting information of the SRS resource set is'codebook' or SRS The number of SRS resources included in the resource set, or the number of SRS resource sets in which the usage setting information of the SRS resource set is'nonCodebook' or the number of SRS resources included in the SRS resource set
  • the base station and the terminal consider the beam switching time for PUSCH transmission reported by the terminal and the above-described condition or configuration information in consideration of the various DCI formats, the PUSCH precoding method, and the number of SRS resource sets or SRS resources according to the PUSCH precoding method. , It is possible to individually determine the beam switching time according to the relationship between the PUSCH and the antenna port number of the SRS. As an example, if the beam switching time for PUSCH transmission reported by the UE to the base station is an X symbol, the beam switching time for PUSCH transmission that is actually applied may be determined as X + Y symbols, and the Y value is determined by DCI.
  • the Y value may be limited to an integer including positive, 0, and negative numbers.
  • the UE capability Can be reported as.
  • the beam switching time for codebook-based PUSCH transmission It is reported as a symbol
  • the beam switching time for non-codebook-based PUSCH transmission is It can be reported as a symbol.
  • the beam switching time may be determined to be 0 or the beam switching time may not be considered in consideration of the format of the DCI, the PUSCH precoding method, the SRS resource set according to the PUSCH precoding method, or the number of SRS resources.
  • the base station instructs the terminal to transmit PUSCH through DCI format 0_0
  • the base station and the terminal can understand that the beam switching time is determined as 0 symbols or that the beam switching time is not considered.
  • the UE may report the capability for the beam switching time for PUCCH transmission to the base station. Additionally, the beam switching time for PUCCH transmission of the terminal may be determined differently according to the condition or configuration information in consideration of at least one of the following conditions or configuration information.
  • the base station and the terminal are the number of PUCCH resources for the PUCCH including the HARQ-ACK for the PDSCH scheduled in consideration of the beam switching time for PUCCH transmission reported by the terminal and the above-described condition or configuration information, and spatial for PUCCH transmission. It is possible to individually determine the beam switching time according to the number of relation info and the number of activated spatial relation info of the PUCCH resource. As an example, if the beam switching time for PUCCH transmission reported by the UE to the base station is an X symbol, the beam switching time for PUCCH transmission that is actually applied may be determined as X + Y symbols, and the determination of the Y value is scheduled.
  • the Y value may be limited to an integer including positive, 0, and negative numbers.
  • a beam for multiple PUCCH transmission in consideration of the number of PUCCH resources for PUCCH including HARQ-ACK for the scheduled PDSCH, the number of spatial relation info for PUCCH transmission, and the number of activated spatial relation info for PUCCH resources
  • the switching time can be reported as the terminal capability.
  • different beam switching times are set according to the number of PUCCH resources for PUCCH including HARQ-ACK for the scheduled PDSCH, the number of spatial relation info for PUCCH transmission, and the number of activated spatial relation info for PUCCH resources. It is possible to apply.
  • the spatial relation info of the PUCCH resource may be replaced by the UL TCI state in later NR Release.
  • the base station and the terminal may determine the beam switching time for SRS transmission by the method described in the first embodiment or the first embodiment, and taking this into account, the base station instructs the terminal to transmit the SRS or the base station's SRS. It is possible to determine the operation of the terminal for the transmission instruction. As an example, the base station may force the terminal to instruct the SRS transmission within a limit that satisfies the beam switching time. Alternatively, if the SRS transmission indication of the base station does not satisfy the beam switching time for SRS transmission of the UE, the UE may determine to perform the following operation.
  • the UE may perform SRS signal transmission using an uplink beam according to a predetermined rule without following an uplink beam for SRS transmission indicated by the base station.
  • the terminal does not follow the configuration information for SRS transmission indicated by the base station, and may perform uplink signal transmission according to the configuration information (eg, SRS resource) for SRS transmission according to a predetermined rule. .
  • the terminal may not perform SRS transmission indicated by the base station.
  • the operation of the UE for the SRS transmission indication of the base station is to set the time axis operation of the SRS (e.g., aperiodic SRS or semi-persistent SRS or periodic SRS) or the use of the SRS resource set instructed by the base station to trigger or activate (e.g. For example, it may be determined differently according to'beamManagement' or'codebook' or'nonCodebook' or'antennaSwitching').
  • a method of determining the operation of the terminal in response to the SRS transmission instruction of the base station will be described in detail through the 2-1 embodiment or the 2-2 embodiment.
  • a minimum time interval for aperiodic SRS transmission of a terminal may be newly defined in consideration of a beam switching time for SRS transmission.
  • the UE may not perform SRS transmission indicated by the base station if the aperiodic SRS transmission indication of the base station does not satisfy the minimum time interval.
  • a method of newly defining a minimum time interval in consideration of the beam switching time for SRS transmission of the UE may follow one of the following methods.
  • a large value among the previously defined minimum time interval and the beam switching time for SRS transmission can be newly defined as the minimum time interval.
  • the previously defined minimum time interval If it is a symbol, the newly defined minimum time interval may follow [Equation 2] below.
  • a minimum time interval can be newly defined by adding this.
  • the previously defined minimum time interval If it is a symbol, the newly defined minimum time interval may follow [Equation 3] below.
  • the newly defined minimum time interval may reflect this and be defined differently according to the usage of the SRS resource set.
  • the minimum time interval is If defined as [Equation 2] or [Equation 3] for a newly defined minimum time interval instead The minimum time interval can be calculated by substituting.
  • ⁇ Embodiment 2-2 Method for indicating a spatial domain transmission filter for SRS transmission>
  • the terminal when considering the beam switching time for SRS transmission of the terminal, if the SRS transmission indication of the base station does not satisfy the beam switching time, the terminal is sufficient to transmit the SRS using the uplink beam indicated by the base station. It is determined that the time is not guaranteed, so that the SRS signal transmission may be performed using the uplink beam according to a predetermined rule without following the uplink beam indicated by the base station.
  • the UE sets the SRS resource set (s) or SRS resource (s) excluding the configuration information for the uplink beam among the configuration information of the SRS resource set (s) or SRS resource (s) instructed by the base station to transmit to the terminal The information may follow the instruction of the base station.
  • the minimum time interval for the aperiodic SRS transmission of the terminal may be applied separately from the beam switching time.
  • the terminal may not perform the SRS transmission indicated by the base station, and the aperiodic SRS transmission indication of the base station satisfies the minimum time interval but satisfies the beam switching time. Otherwise, the UE may perform SRS signal transmission using an uplink beam according to a predetermined rule without following the uplink beam indicated by the base station.
  • a rule for determining an uplink beam through which the UE transmits the SRS signal may follow one of the following methods.
  • the terminal may determine an uplink beam by referring to the most recently transmitted SRS resource set or spatial domain transmission filter configuration information of the SRS resource before transmitting the SRS indicated by the base station.
  • the terminal uplinks by referring to the most recently transmitted SRS resource set or spatial domain transmission filter configuration information of the SRS resource before upper layer signaling indicating SRS transmission by the base station or L1 signaling including DCI is transmitted.
  • Link beam can be set.
  • the terminal may determine an uplink beam by referring to a preset default SRS resource set or spatial domain transmission filter configuration information of the SRS resource.
  • the terminal may determine an uplink beam by referring to preset default spatial domain transmission filter configuration information among spatial domain transmission filter configuration information that can be configured for an SRS resource.
  • the UE may determine an uplink beam by referring to arbitrary spatial domain transmission filter configuration information from a set of spatial domain transmission filters set in advance among spatial domain transmission filter configuration information that can be configured for an SRS resource.
  • the UE determines to use a predetermined uplink beam, thereby reducing the complexity of UL beam transmission of the UE when the beam switching time is not satisfied.
  • the above-described Methods 1 to 4 can improve the uplink signal decoding performance of the base station by allowing the base station to have an understanding of the uplink beam of the terminal when the beam switching time is not satisfied.
  • the degree of freedom for the uplink beam operation of the UE can be increased, and the understanding of the uplink beam of the UE of the base station is improved. It is also possible.
  • FIG. 12 is a diagram illustrating an example of a flowchart of a method of determining an operation in consideration of a beam switching time of a terminal when a base station triggers aperiodic SRS transmission through DCI according to some embodiments.
  • the operation of the terminal in consideration of the beam switching time may be determined according to flowchart 12-00.
  • the base station triggers the transmission of the SRS resource (s) included in the SRS resource set (s) indicated through the DCI to the terminal.
  • the terminal is a time offset between the aperiodic SRS transmitted by the terminal PDCCH including the DCI that triggers the transmission of the aperiodic SRS to the terminal by the base station (e.g., aperiodic from the end of the last symbol in which the PDCCH including the DCI is transmitted)
  • the size of the minimum time interval for the UE to transmit the aperiodic SRS is compared with (until the first symbol in which the SRS is transmitted starts). (12-10) If the time offset is less than the minimum time interval, the terminal may not perform SRS transmission indicated by the base station.
  • the UE compares the time offset and the size of the beam switching time for transmitting the SRS. (12-20) If the time offset is less than the beam switching time for transmitting the SRS, the UE does not follow the uplink beam indicated by the base station and performs SRS signal transmission using the uplink beam according to a predetermined rule. I can. (12-25) If the time offset is greater than or equal to the minimum time interval, the terminal performs SRS transmission indicated by the base station according to the configuration information. (12-30)
  • the usage setting information of the SRS resource set is not set to'beamManagement' according to the usage of the SRS resource set that triggered the SRS transmission to the terminal by the base station. It can be applied only if not. If the base station has set the usage setting information of the SRS resource set triggering the SRS transmission to the terminal as'beamManagement', the terminal does not follow the 2-2 embodiment but follows the operation method described in the 2-1 embodiment. I can understand.
  • FIG. 13 is a diagram illustrating an example of a time offset of a PDCCH including a DCI for triggering SRS transmission and aperiodic SRS(s) transmitted by a terminal when a base station triggers aperiodic SRS transmission through DCI according to some embodiments It is a drawing.
  • PDCCH (13-00) transmitted by a base station to trigger aperiodic SRS transmission to a terminal through DCI, SRS-ResourceSet#0 (13-05) triggered through DCI, SRS-ResourceSet#1 (13-10), SRS-ResourceSet#2 (13-15) shows an example of resource allocation on the time-frequency axis.
  • the time offset between the PDCCH including the DCI that triggers the transmission of the aperiodic SRS from the base station to the UE and the aperiodic SRS transmitted by the UE is from the end of the last symbol in which the PDCCH including DCI is transmitted, the first symbol in which the aperiodic SRS is transmitted starts. Until it can be decided.
  • the time offset for SRS-ResourceSet#0 (13-05), SRS-ResourceSet#1 (13-10), and SRS-ResourceSet#2 (13-15) is Time offset#0 (13-20), Time It can be calculated as offset#1 (13-25) and Time offset#2 (13-30).
  • the time offset #0 (13-20) is smaller than the minimum time interval (13-35)
  • the UE uses SRS-ResourceSet#0 (13 -05) may not be transmitted.
  • SRS-ResourceSet #1 (13-10) may be transmitted using an uplink beam according to a predetermined rule without following an uplink beam for SRS transmission indicated by a base station.
  • the configuration information other than the configuration information for the uplink beam is the configuration information of SRS-ResourceSet#1 (13-10) or the configuration information of SRS resource(s) included in SRS-ResourceSet#1 (13-10).
  • SRS-ResourceSet#2 since the time offset #2 (13-30) is greater than or equal to the minimum time interval (13-35) and the beam switching time (13-40), the UE According to an embodiment, SRS-ResourceSet#2 (13-15) may be transmitted with reference to configuration information indicated by the base station.
  • the base station and the terminal may determine the beam switching time for PUSCH transmission by the method described in the first embodiment or the 1-2 embodiment, and taking this into account, a method for the base station to instruct the terminal to transmit a PUSCH or a PUSCH of the base station. It is possible to determine the operation of the terminal for the transmission instruction. For example, the base station may force the terminal to instruct the PUSCH transmission within a limit that satisfies the beam switching time. Alternatively, if the PUSCH transmission indication of the base station does not satisfy the beam switching time for PUSCH transmission of the terminal, the terminal may determine to perform the following operation.
  • the UE may perform PUSCH signal transmission using an uplink beam according to a predetermined rule without following an uplink beam for PUSCH transmission indicated by the base station.
  • other configuration information other than the configuration information for the uplink beam may follow a command instructed by the base station.
  • the UE does not follow configuration information for PUSCH transmission indicated by the base station, and performs PUSCH signal transmission according to configuration information for PUSCH transmission according to a predetermined rule (eg, SRS resource or PUCCH resource).
  • a predetermined rule eg, SRS resource or PUCCH resource.
  • the terminal may not perform PUSCH transmission indicated by the base station.
  • the operation of the terminal in response to the PUSCH transmission indication of the base station is the format of the DCI scheduling the PUSCH (e.g., DCI format 0_0 or DCI format 0_1), the precoding method of the PUSCH (e.g., codebook-based PUSCH or non-codebook-based PUSCH), it may be determined differently according to the relationship between the antenna port number of the PUSCH and the SRS.
  • a method of determining the operation of the terminal in response to the PUSCH transmission instruction of the base station will be described in detail through the 3-1 embodiment or the 3-2 embodiment.
  • a preparation procedure time for PUSCH transmission of a terminal may be newly defined in consideration of a beam switching time for PUSCH transmission.
  • the UE may not perform PUSCH transmission indicated by the base station.
  • a method of newly defining the PUSCH preparation procedure time in consideration of the beam switching time for PUSCH transmission of the UE may follow one of the following methods.
  • PUSCH preparation procedure time a large value may be newly defined as the PUSCH preparation procedure time.
  • the newly defined PUSCH preparation procedure time may follow [Equation 4] below.
  • a PUSCH preparation procedure time can be newly defined by adding this.
  • BWP switching time May be considered separately from the beam switching time.
  • the newly defined PUSCH preparation procedure time may follow [Equation 5] below.
  • the beam switching time for PUSCH transmission is defined in units of symbols, in order to match the unit with the previously defined PUSCH preparation procedure time, it is converted to an absolute time unit and is for newly defined PUSCH preparation procedure time [Equation 4] Or it can be applied to [Equation 5].
  • the newly defined PUSCH preparation procedure time may also reflect this and be defined differently according to the capability report information of the UE for the PUSCH preparation procedure time.
  • the terminal when considering the beam switching time for PUSCH transmission of the terminal, if the PUSCH transmission indication of the base station does not satisfy the beam switching time, the terminal is sufficient to transmit the PUSCH using the uplink beam indicated by the base station. It is determined that the time is not guaranteed, and thus PUSCH signal transmission may be performed using the uplink beam according to a predetermined rule without following the uplink beam indicated by the base station.
  • the terminal may follow the instruction of the base station for configuration information other than the configuration information for the uplink beam among the configuration information for the PUSCH instructed by the base station to transmit to the terminal.
  • the UE does not follow the SRS resource (s) instructed to refer to the base station for PUSCH transmission, and refers to the SRS resource (s) or the PUCCH resource according to a predetermined rule.
  • PUSCH signal transmission can be performed.
  • the terminal may follow the instruction of the base station except for the configuration information for the referenced SRS resource(s) or the PUCCH resource.
  • the UE operation when the PUSCH transmission indication of the base station does not satisfy the beam switching time may vary according to the relationship between the PUSCH and the antenna port number for transmitting the SRS.
  • the terminal when the antenna port number for transmitting the PUSCH and the SRS are shared with each other (for example, the antenna port number of the SRS and the antenna port number of the PUSCH may be the same), the terminal allows the base station to refer to the PUSCH transmission.
  • PUSCH signal transmission may be performed with reference to SRS resource (s) or PUCCH resource according to a predetermined rule without following the indicated SRS resource (s) or PUCCH resource. If the antenna port numbers for transmitting the PUSCH and the SRS are not shared with each other (e.g., the antenna port number of the SRS and the antenna port number of the PUSCH are different), the terminal does not follow the uplink beam indicated by the base station in advance.
  • PUSCH signal transmission may be performed using an uplink beam according to a predetermined rule.
  • the preparation procedure time for PUSCH transmission of the UE may be applied separately from the beam switching time.
  • the UE may not perform the PUSCH transmission indicated by the base station, and the PUSCH transmission instruction of the base station satisfies the PUSCH preparation procedure time but satisfies the beam switching time.
  • the UE does not follow the uplink beam indicated by the base station and performs PUSCH signal transmission using the uplink beam according to a predetermined rule, or SRS resource(s) or PUCCH resource instructed by the base station to refer for PUSCH transmission.
  • the PUSCH signal transmission may be performed by referring to the SRS resource(s) or the PUCCH resource according to a predetermined rule without following.
  • the rule for transmitting the PUSCH signal by the terminal may follow one of the following methods.
  • the UE may perform PUSCH signal transmission with reference to the most recently transmitted SRS resource set or SRS resource before transmitting the PUSCH indicated by the base station.
  • the UE may perform PUSCH signal transmission with reference to the most recently transmitted SRS resource set or SRS resource before upper layer signaling indicating PUSCH transmission by the base station or L1 signaling including DCI is transmitted. .
  • the UE may perform PUSCH signal transmission with reference to a preset default SRS resource set or SRS resource.
  • the terminal may determine an uplink beam for transmitting the PUSCH by referring to the most recently transmitted SRS resource set or spatial domain transmission filter configuration information of the SRS resource before transmitting the PUSCH indicated by the base station.
  • the UE refers to the most recently transmitted SRS resource set or spatial domain transmission filter configuration information of the SRS resource before upper layer signaling indicating PUSCH transmission or L1 signaling including DCI is transmitted, and PUSCH It is possible to determine the uplink beam for transmitting.
  • the terminal may determine an uplink beam for transmitting the PUSCH with reference to a preset default SRS resource set or spatial domain transmission filter configuration information of the SRS resource.
  • the UE transmits the PUSCH by referring to the spatial domain transmission filter configuration information of the preset default PUCCH resource (eg, the PUCCH resource having the lowest ID set in the active uplink BWP of the serving cell) uplink You can set the beam.
  • the preset default PUCCH resource eg, the PUCCH resource having the lowest ID set in the active uplink BWP of the serving cell
  • the above-described methods 1 to 3 are the antenna port number for transmitting the PUSCH and the SRS as a method of determining to refer to the most recently transmitted or default SRS resource without following the SRS resource instructed by the base station to refer for PUSCH transmission. It is possible to apply in the case of sharing with each other.
  • the spatial domain transmission filter configuration information used for PUSCH signal transmission may refer to the referenced SRS resource set or spatial domain transmission filter configuration information of the SRS resource.
  • the above-described methods 4 to 7 do not follow the spatial domain transmission filter configuration information of the SRS resource instructed by the base station to refer for PUSCH transmission, and the spatial domain transmission filter of the SRS resource or the PUCCH resource that is most recently transmitted or set as a default.
  • As a method of determining the reference it is possible to apply when the antenna port numbers for transmitting the PUSCH and the SRS are not shared with each other.
  • the terminal follows the instruction of the base station for the configuration information except for the configuration information for the uplink beam.
  • the uplink of the UE determines to use a predetermined uplink beam, thereby reducing the complexity of the uplink beam transmission of the UE when the beam switching time is not satisfied.
  • the above-described Methods 1 to 7 can improve the uplink signal decoding performance of the base station by allowing the base station to have an understanding of the uplink beam of the terminal when the beam switching time is not satisfied.
  • FIG. 14 is a diagram illustrating an example of a PDCCH including a DCI indicating PUSCH transmission and a time offset of a PUSCH transmitted by a terminal when a base station instructs PUSCH transmission through DCI according to some embodiments.
  • the UE may not perform transmission of the PUSCH #0 (14-20) indicated by the base station according to the above-described embodiment.
  • Time offset #1 (14-) between PDCCH#1 (14-30), which instructs the base station to transmit PUSCH to the UE through DCI, and PUSCH#1 (14-35), which the UE transmits. 40) is greater than or equal to the PUSCH preparation procedure time but less than the beam switching time.
  • the terminal does not follow the uplink beam for PUSCH transmission indicated by the base station according to the above-described embodiment, but uses the uplink beam according to a predetermined rule.
  • Time offset #2 (14-) between PDCCH#2 (14-45), which instructs the base station to transmit PUSCH to the UE through DCI
  • PUSCH#2 (14-50), which the UE transmits. 55) shows a case that is greater than or equal to the PUSCH preparation procedure time and the beam switching time.
  • the UE refers to the configuration information indicated by the base station according to the above-described embodiment, and the PUSCH #2 (14-50) Transfer can be performed.
  • the base station and the terminal can determine the beam switching time for PUCCH transmission by the method described in the first embodiment or the 1-3 embodiments, and taking this into account, a method for the base station to instruct the terminal to transmit a PUCCH or a PUCCH of the base station. It is possible to determine the operation of the terminal for the transmission instruction. For example, the base station may force the terminal to instruct the PUCCH transmission within a limit that satisfies the beam switching time. Or, if the PUCCH transmission indication of the base station does not satisfy the beam switching time for PUCCH transmission of the terminal, the terminal may determine to perform the following operation.
  • the UE may perform PUCCH signal transmission using an uplink beam according to a predetermined rule without following the uplink beam for PUCCH transmission indicated by the base station.
  • other configuration information other than the configuration information for the uplink beam may follow the instruction of the base station.
  • the terminal may not perform PUCCH transmission indicated by the base station.
  • the operation of the terminal in consideration of the beam switching time for PUCCH transmission with respect to the PUCCH transmission indication of the base station can be applied only when transmitting the PUCCH including HARQ-ACK information for the PDSCH scheduled by the base station.
  • the time offset is from the end of the last symbol in which the PDCCH including the DCI scheduling the PDSCH is transmitted, the PUCCH including the HARQ-ACK for the PDSCH is transmitted. It can be defined until the first symbol to be started.
  • the operation for PUCCH transmission of the terminal in consideration of the beam switching time for PUCCH transmission of the terminal can be extended and applied even when the base station changes the activated spatial relation info of the PUCCH resource through higher layer signaling.
  • the terminal should have indicated that the base station has indicated PUCCH transmission.
  • a method of determining an operation considering the beam switching time can be applied in the same manner. A method of determining the operation of the terminal for the PUCCH transmission indication of the base station will be described in detail through the 4-2 embodiment.
  • a slot offset between the PDSCH and the PUCCH that is set for time axis resource allocation of the PUCCH may be newly defined.
  • the slot offset between the PDSCH and the PUCCH may be indicated to be long enough to satisfy the beam switching time.
  • the base station may indicate a slot offset between the PDSCH and the PUCCH transmitting HARQ-ACK feedback information through the PDSCH-to-HARQ_feedback timing indicator field of the DCI scheduling the PDSCH.
  • a method of newly defining a slot offset between a PDSCH and a PUCCH transmitting HARQ-ACK feedback information may follow one of the following methods.
  • a slot offset between the PDSCH and the PUCCH transmitting HARQ-ACK feedback information may be calculated in consideration of the neurology of the activated BWP in downlink or uplink. For example, a slot offset between the PDSCH indicated through the PDSCH-to-HARQ_feedback timing indicator field of DCI and the PUCCH transmitting HARQ-ACK feedback information is Speaking of a slot, the neurology of the activated BWP of the uplink is Slot offset when Is It can be counted as a slot.
  • a slot offset set that can be indicated as a slot offset between a PDSCH and a PUCCH transmitting HARQ-ACK feedback information can be individually defined for each neuronology of an activated BWP in a possible downlink or uplink.
  • the interpretation of the value of the PDSCH-to-HARQ_feedback timing indicator field of DCI may be changed according to the neurology of the activated BWP in downlink or uplink.
  • the neurology of the activated BWP of the uplink is When the slot offset is And the neurology of the activated BWP of the uplink is When the slot offset is Can be calculated as
  • 15 is a frequency-time axis resource of a PDCCH including a PDCCH including a DCI scheduling a PDSCH, a scheduled PDSCH, and HARQ-ACK information for a PDSCH when a base station schedules a PDSCH through DCI according to some embodiments It is a diagram showing an example of allocation.
  • a PDCCH including a DCI for scheduling a PDSCH, a scheduled PDSCH, and a PUCCH including HARQ-ACK information for the PDSCH are frequency-time axis resource allocation. Two examples for (15-00, 15-05) are shown.
  • HARQ-ACK for PDCCH#0 15-10) for scheduling a PDSCH by a base station through DCI and for scheduled PDSCH#0 (15-15) and PDSCH#0 (15-15)
  • the frequency-time axis resource allocation of PUCCH#0 15-20) including information is shown.
  • the time offset#0 (15-25) between PDCCH#0 (15-10) and PUCCH#0 (15-20) is greater than or equal to the beam switching time#0 (15-30) for PUCCH transmission. This indicated PUCCH#0 (15-20) transmission may be performed.
  • PDCCH#1 15-40 in which a base station schedules a PDSCH through DCI for a case in which the neurology of the activated BWP in the downlink and the uplink is twice as compared to that of FIG. 15-00.
  • the frequency-time axis resource allocation of PUCCH#1 15-50) including HARQ-ACK information for the scheduled PDSCH#1 (15-45) and PDSCH#1 (15-45).
  • the slot offset K2 between the PDSCH and the PUCCH transmitting HARQ-ACK feedback information was calculated as twice, considering that the neurology of the activated BWP of the uplink is twice as compared to FIG. 15-00. .
  • the time offset #1 (15-55) between PDCCH#1 (15-40) and PUCCH#1 (15-50) is greater than or equal to the beam switching time #2 (15-60) for PUCCH transmission.
  • the UE may perform PUCCH#1 (15-40) transmission indicated by the base station.
  • the terminal when considering the beam switching time for PUCCH transmission of the terminal, if the PUCCH transmission indication of the base station does not satisfy the beam switching time, the terminal transmits the PUCCH using the uplink beam indicated by the base station. It is determined that a sufficient time has not been guaranteed, and thus PUCCH signal transmission may be performed using an uplink beam according to a predetermined rule without following the uplink beam indicated by the base station.
  • the terminal may follow the instruction of the base station for other configuration information of the PUCCH resource other than the configuration information for the uplink beam among configuration information of the PUCCH resource instructed by the base station to transmit to the terminal. For example, when the PUCCH transmission indication of the base station does not satisfy the beam switching time, a rule for determining an uplink beam through which the UE transmits PUCCH may follow one of the following methods.
  • the UE transmits the PUCCH by referring to the spatial domain transmission filter configuration information of the preset default PUCCH resource (e.g., the PUCCH resource having the lowest ID set in the activated uplink BWP of the serving cell) uplink You can set the beam.
  • the preset default PUCCH resource e.g., the PUCCH resource having the lowest ID set in the activated uplink BWP of the serving cell
  • the terminal can be configured for PUCCH resources (e.g., one of the preset PUCCH-spatialRelationInfo) or available (e.g., the spatial domain transmission used when receiving the SS/PBCH block during initial access) filter)
  • PUCCH resources e.g., one of the preset PUCCH-spatialRelationInfo
  • available e.g., the spatial domain transmission used when receiving the SS/PBCH block during initial access
  • an uplink beam may be determined by referring to preset default spatial domain transmission filter configuration information.
  • the above-described Method 1 or Method 2 by determining to use a predetermined uplink beam, it is possible to reduce the complexity of the uplink beam transmission of the terminal when the beam switching time is not satisfied.
  • the above-described Method 1 or Method 2 enables the base station to have an understanding of the uplink beam of the terminal when the beam switching time is not satisfied, thereby improving the uplink signal decoding performance of the base station.
  • the UE Since the time offset #0 (15-25) between PDCCH#0 (15-10) and PUCCH#0 (15-20) is less than or equal to the beam switching time #1 (15-35) for PUCCH transmission, the UE Is the spatial domain of the PUCCH #0 (15-20) transmission indicated by the base station, or a preset default PUCCH resource (e.g., a PUCCH resource having the lowest ID set in the activated uplink BWP of the serving cell) Set uplink beam for PUCCH#0 (15-20) transmission with reference to transmission filter configuration information, or refer to preset default spatial domain transmission filter configuration information among spatial domain transmission filter configuration information that can be configured for PUCCH resource. Thus, an uplink beam can be determined.
  • a preset default PUCCH resource e.g., a PUCCH resource having the lowest ID set in the activated uplink BWP of the serving cell
  • 16 is a block diagram illustrating a structure of a terminal according to some embodiments.
  • the terminal may be composed of a transmitting/receiving unit 16-00 and 16-10, a processing unit 16-05 including a memory and a processor.
  • the transmission/reception units 16-00 and 16-10 and the processing unit 16-05 of the terminal may operate.
  • the components of the terminal are not limited to the above-described example.
  • the terminal may include more or fewer components than the above-described components.
  • the transmission/reception units 16-00 and 16-10, and the processing unit 16-05 may be implemented in the form of a single chip.
  • the transceivers 16-00 and 16-10 may transmit and receive signals with the base station.
  • the signal may include control information and data.
  • the transmitting and receiving units 16-00 and 16-10 may include an RF transmitter that up-converts and amplifies a frequency of a transmitted signal, and an RF receiver that amplifies a received signal with low noise and down-converts the frequency. have.
  • this is only an embodiment of the transmitting and receiving units 16-00 and 16-10, and components of the transmitting and receiving units 16-00 and 16-10 are not limited to the RF transmitter and the RF receiver.
  • the transmission/reception units 16-00 and 16-10 may receive signals through a wireless channel, output them to the processing unit 16-05, and transmit a signal output from the processing unit 16-05 through the wireless channel. .
  • the processing unit 16-05 may store programs and data necessary for the operation of the terminal. In addition, the processing unit 16-05 may store control information or data included in a signal obtained from the terminal.
  • the processing unit 16-05 may include a storage medium such as ROM, RAM, a hard disk, a CD-ROM, and a DVD, or a memory formed of a combination of storage media.
  • processing unit 16-05 may control a series of processes so that the terminal can operate according to the above-described embodiment.
  • the processing units 16-05 may control components of the terminal to receive a DCI composed of two layers and simultaneously receive a plurality of PDSCHs.
  • 17 is a block diagram illustrating a structure of a base station according to some embodiments.
  • the base station may be composed of a transmission/reception unit 17-00 and 17-10 and a processing unit 17-05 including a memory and a processor.
  • the transmission/reception units 17-00 and 17-10 and the processing unit 17-05 of the base station may operate.
  • the components of the base station are not limited to the above-described example.
  • the base station may include more or fewer components than the above-described components.
  • the transmission/reception units 17-00 and 17-10 and the processing units 17-05 may be implemented in the form of a single chip.
  • the transceivers 17-00 and 17-10 may transmit and receive signals to and from the terminal.
  • the signal may include control information and data.
  • the transmission/reception units 17-00 and 17-10 may include an RF transmitter that up-converts and amplifies a frequency of a transmitted signal, and an RF receiver that amplifies a received signal with low noise and down-converts a frequency. have.
  • this is only an embodiment of the transmission/reception units 17-00 and 17-10, and components of the transmission/reception units 17-00 and 17-10 are not limited to the RF transmitter and the RF receiver.
  • the transmission/reception units 17-00 and 17-10 may receive signals through a wireless channel, output them to the processing unit 17-05, and transmit a signal output from the processing unit 17-05 through the wireless channel. .
  • the processing units 17-05 may store programs and data necessary for the operation of the base station. In addition, the processing unit 17-05 may store control information or data included in a signal obtained from the base station.
  • the processing units 17-05 may include a storage medium such as a ROM, a RAM, a hard disk, a CD-ROM, and a DVD, or a memory formed of a combination of storage media.
  • the processing units 17-05 may control a series of processes so that the base station can operate according to the above-described embodiment of the present disclosure. According to some embodiments, the processing units 17-05 may control each component of the base station to configure and transmit the DCI including allocation information for the PDSCH.
  • the terminal transmits the capability information related to the beam switching time for uplink signal transmission to the base station, and the capability information, the type of the uplink signal, and the uplink bandwidth part (BWP) from the base station Information on the beam switching time determined based on at least one of the neurology of is received, and uplink signal transmission may be performed based on the information on the beam switching time.
  • BWP uplink bandwidth part
  • a method of operating a base station in a wireless communication system includes receiving information related to a first beam switching time for transmission of an uplink signal from a terminal, the uplink signal Determining a second beam switching time for transmission of the uplink signal, based on the setting information related to and the first beam switching time, setting information related to the uplink signal and the second beam switching time to the terminal Transmitting to, and receiving the uplink signal from the terminal, wherein the uplink signal is at least one of a sounding reference signal (SRS), a physical uplink shared channel (PUSCH), or a physical uplink control channel (PUCCH). It can contain one.
  • SRS sounding reference signal
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the configuration information related to the uplink signal includes at least one of time axis transmission information of the SRS or information related to a resource set of the SRS
  • the uplink The step of determining the second beam switching time for transmission of the uplink signal based on the setting information related to the link signal and the first beam switching time may include: time axis transmission information of the SRS or resource set of the SRS And determining the second beam switching time based on at least one of the information related to the first beam switching time and the first beam switching time.
  • the configuration information related to the uplink signal includes information on a downlink control information (DCI) format indicating transmission of the PUSCH, and a precoding method of the PUSCH.
  • DCI downlink control information
  • the determining of the second beam switching time for transmission of the uplink signal based on the configuration information related to the uplink signal and the first beam switching time includes information on a DCI format indicating transmission of the PUSCH , Information on the precoding method of the PUSCH, information related to the resource set of the SRS corresponding to the precoding method of the PUSCH, or the relationship between an antenna port number related to transmission of the PUSCH and an antenna port number related to transmission of the SRS It may include determining the second beam switching time based on at least one of the information indicating and the first beam switching time.
  • the configuration information related to the uplink signal is information related to the resource of the PUCCH including HARQ-ACK for the PDSCH or spatially related to the transmission of the PUCCH. It includes at least one of (spatial relation) information,
  • a method of operating a terminal in a wireless communication system a method of operating a terminal in a wireless communication system
  • the uplink signal is at least one of a sounding reference signal (SRS), a physical uplink shared channel (PUSCH), or a physical uplink control channel (PUCCH).
  • SRS sounding reference signal
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • a method of operating a terminal in a wireless communication system includes determining a beam switching time for transmission of the uplink signal based on configuration information related to an uplink signal. , Receiving information instructing transmission of the uplink signal from a base station, and transmitting the uplink signal to the base station based on the beam switching time and information instructing transmission of the uplink signal.
  • the uplink signal may include at least one of a sounding reference signal (SRS), a physical uplink shared channel (PUSCH), or a physical uplink control channel (PUCCH).
  • the configuration information related to the uplink signal includes at least one of time axis transmission information of the SRS or information related to a resource set of the SRS,
  • the determining of the beam switching time for transmission of the uplink signal based on the configuration information related to the uplink signal may include at least one of time axis transmission information of the SRS or information related to the resource set of the SRS. It may include the step of determining the beam switching time based on.
  • the configuration information related to the uplink signal includes information on a downlink control information (DCI) format indicating transmission of the PUSCH, and a precoding method of the PUSCH.
  • DCI downlink control information
  • Information on the DCI format indicating transmission of the PUSCH information on the precoding method of the PUSCH, information related to the resource set of the SRS corresponding to the precoding method of the PUSCH, or an antenna port number related to transmission of the PUSCH And determining the beam switching time based on at least one of information indicating a relationship between an antenna port number related to transmission of the SRS.
  • the configuration information related to the uplink signal is information related to the resource of the PUCCH including HARQ-ACK for the PDSCH or spatially related to the transmission of the PUCCH. It includes at least one of (spatial relation) information,
  • It may include determining the beam switching time based on at least one of information related to resources of the PUCCH including HARQ-ACK for the PDSCH or spatial information related to transmission of the PUCCH.
  • information indicating transmission of the uplink signal includes information indicating transmission of the SRS
  • the method may further include determining a minimum time interval between a time point at which information indicating transmission of the SRS is received and a time point at which the SRS is transmitted based on the beam switching time.
  • a time offset between at least one of the minimum time interval or the beam switching time, a resource to which information indicating transmission of the SRS is allocated, and at least one resource set for an SRS allocated by information indicating transmission of the SRS may be further included.
  • information indicating transmission of the uplink signal includes information indicating transmission of the PUSCH
  • the It may further include determining whether to transmit the PUSCH based on information indicating transmission of the PUSCH.
  • information indicating transmission of the uplink signal includes information indicating transmission of the PUCCH
  • Determining a time interval between a time when a PDCCH including information for scheduling a physical downlink shared channel (PDSCH) is received and a time when the PUCCH including HARQ-ACK for the PDSCH is transmitted. have.
  • the step of determining whether to transmit the PUCCH based on information indicating transmission of the PUCCH by comparing the beam switching time with a time interval between the time when the PDCCH is received and the time when the PUCCH is transmitted may be further included. have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 기지국의 동작 방법은, 단말로부터 상향링크 신호의 전송을 위한 제1 빔 스위칭 시간(beam switching time)과 관련된 정보를 수신하는 단계, 상기 상향링크 신호와 관련된 설정 정보 및 제1 빔 스위칭 시간에 기초하여, 상기 상향링크 신호의 전송을 위한 제2 빔 스위칭 시간을 결정하는 단계, 상기 상향링크 신호와 관련된 설정 정보 및 상기 제2 빔 스위칭 시간을 상기 단말에게 전송하는 단계, 및 상기 단말로부터 상기 상향링크 신호를 수신하는 단계를 포함하고, 상기 상향링크 신호는 SRS(sounding reference signal), PUSCH(physical uplink shared channel) 또는 PUCCH(physical uplink control channel) 중 적어도 하나를 포함할 수 있다.

Description

무선 통신 시스템에서 단말의 빔 변경 방법 및 장치
본 개시는 무선통신 시스템에 대한 것으로서, 보다 구체적으로 단말의 빔 변경 방법 및 장치에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파 (mmWave) 대역 (예를 들어, 60기가 (60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍 (beamforming), 거대 배열 다중 입출력 (massive MIMO), 전차원 다중입출력 (full dimensional MIMO, FD-MIMO), 어레이 안테나 (array antenna), 아날로그 빔형성 (analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC (Filter Bank Multi Carrier), NOMA (non orthogonal multiple access), 및 SCMA (sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT (Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터 (Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크 (sensor network), 사물 통신 (Machine to Machine, M2M), MTC (Machine Type Communication) 등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT (Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT (information technology) 기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크 (sensor network), 사물 통신 (Machine to Machine, M2M), MTC (Machine Type Communication) 등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크 (cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
상술한 것과 이동통신 시스템의 발전에 따라 다양한 서비스를 제공할 수 있게 됨으로써, 이러한 서비스들을 효과적으로 제공하기 위한 방안이 요구되고 있다.
개시된 실시예는 무선 통신 시스템에서 단말의 빔 변경 동작을 위한 방법 및 장치를 제공할 수 있다.
본 개시에 따르면, 무선통신 시스템에서 단말의 빔 변경 동작에 필요한 시간을 정의하고 이에 따른 단말의 빔 변경 동작을 설정하여 단말의 상향링크 송신 성능을 향상시킬 수 있다.
도 1은 LTE, LTE-A, NR 또는 이와 유사한 무선 통신 시스템의 시간-주파수영역 전송 구조를 나타낸 도면이다.
도 2 내지 도4는 일부 실시예에 따른 확장형 프레임 구조를 도시한다.
도 5는 일부 실시예에 따른 5G 통신 시스템에서 대역폭 부분에 대한 설정의 예시를 도시한 도면이다.
도 6은 일부 실시예에 따른 대역폭 부분 지시 및 변경 방법을 도시한 도면이다.
도 7은 일부 실시예에 따른 PDSCH 주파수 축 자원 할당 예시를 도시한 도면이다.
도 8은 일부 실시예에 따른 PDSCH 시간 축 자원 할당 예시를 도시한 도면이다.
도 9는 일부 실시예에 따른 기지국이 DCI를 통해 PDSCH를 스케줄링 할 때, 전송하는 PDSCH의 QCL 관계 정보를 얻기 위해 참조하는 TCI state의 결정 과정에 대한 순서도의 예시를 도시한 도면이다.
도 10은 일부 실시예에 따른 HARQ-ACK 피드백에 대한 PUCCH 자원 할당 예시를 도시한 도면이다.
도 11은 일부 실시예에 따른 기지국이 DCI를 통해 aperiodic CSI-RS 전송 및 수신을 트리거할 때, 전송하는 NZP CSI-RS resource의 QCL 관계 정보를 얻기 위해 참조하는 TCI state의 결정 과정에 대한 순서도의 예시를 도시한 도면이다.
도 12는 일부 실시예에 따른 기지국이 DCI를 통해 aperiodic SRS 전송을 트리거할 때, 단말의 beam switching time을 고려한 동작 결정 방법에 대한 순서도의 예시를 도시한 도면이다.
도 13은 일부 실시예에 따른 기지국이 DCI를 통해 aperiodic SRS 전송을 트리거할 때, SRS 전송을 트리거하는 DCI를 포함하는 PDCCH와 단말이 전송하는 aperiodic SRS(s)의 time offset에 대한 예시를 도시한 도면이다.
도 14는 일부 실시예에 따른 기지국이 DCI를 통해 PUSCH 전송을 지시할 때, PUSCH 전송을 지시하는 DCI를 포함하는 PDCCH와 단말이 전송하는 PUSCH의 time offset에 대한 예시를 도시한 도면이다.
도 15는 일부 실시예에 따른 기지국이 DCI를 통해 PDSCH를 스케줄링할 때, PDSCH를 스케줄링하는 DCI를 포함하는 PDCCH, 스케줄링된 PDSCH, PDSCH에 대한 HARQ-ACK 정보를 포함하는 PUCCH의 주파수-시간 축 자원 할당에 대한 예시를 도시한 도면이다.
도 16은 일부 실시예에 따른 단말 구조를 도시하는 블록도이다.
도 17은 일부 실시예에 따른 기지국 구조를 도시하는 블록도이다.
본 개시의 일 실시예에 따르면, 무선 통신 시스템에서 기지국의 동작 방법은, 단말로부터 상향링크 신호의 전송을 위한 제1 빔 스위칭 시간(beam switching time)과 관련된 정보를 수신하는 단계, 상기 상향링크 신호와 관련된 설정 정보 및 제1 빔 스위칭 시간에 기초하여, 상기 상향링크 신호의 전송을 위한 제2 빔 스위칭 시간을 결정하는 단계, 상기 상향링크 신호와 관련된 설정 정보 및 상기 제2 빔 스위칭 시간을 상기 단말에게 전송하는 단계, 및 상기 단말로부터 상기 상향링크 신호를 수신하는 단계를 포함하고, 상기 상향링크 신호는 SRS(sounding reference signal), PUSCH(physical uplink shared channel) 또는 PUCCH(physical uplink control channel) 중 적어도 하나를 포함할 수 있다.
본 개시의 일 실시예에 따르면, 무선 통신 시스템에서 단말의 동작 방법은, 상향링크 신호의 전송을 위한 제1 빔 스위칭 시간과 관련된 정보를 기지국에게 전송하는 단계, 상기 기지국으로부터, 상기 상향링크 신호와 관련된 설정 정보 및 상기 상향링크 신호의 전송을 위한 제2 빔 스위칭 시간과 관련된 정보를 수신하고, 상기 제2 빔 스위칭 시간은 상기 제1 빔 스위칭 시간 및 상기 상향링크 신호와 관련된 설정 정보에 기초하여 결정되는 단계, 및 상기 상향링크 신호와 관련된 설정 정보 및 상기 제2 빔 스위칭 시간에 기초하여, 상기 기지국에게 상기 상향링크 신호를 전송하는 단계를 포함하고, 상기 상향링크 신호는 SRS(sounding reference signal), PUSCH(physical uplink shared channel) 또는 PUCCH(physical uplink control channel) 중 적어도 하나를 포함할 수 있다.
본 개시의 일 실시예에 따르면, 무선 통신 시스템에서 단말의 동작 방법은, 상향링크 신호와 관련된 설정 정보에 기초하여, 상기 상향링크 신호의 전송을 위한 빔 스위칭 시간(beam switching time)을 결정하는 단계, 기지국으로부터 상기 상향링크 신호의 전송을 지시하는 정보를 수신하는 단계, 및 상기 빔 스위칭 시간과 상기 상향링크 신호의 전송을 지시하는 정보에 기초하여, 상기 기지국에게 상기 상향링크 신호를 전송하는 단계를 포함하고, 상기 상향링크 신호는 SRS(sounding reference signal), PUSCH(physical uplink shared channel) 또는 PUCCH(physical uplink control channel) 중 적어도 하나를 포함할 수 있다.
이하, 본 개시의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
실시예를 설명함에 있어서 본 개시가 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부된 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 개시의 실시예들은 본 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 개시의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능할 수 있다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능할 수 있다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능할 수 있다.
이때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일부 실시예에 따르면 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 일부 실시예에 따르면, '~부'는 하나 이상의 프로세서를 포함할 수 있다.
이하 첨부된 도면을 참조하여 본 개시의 동작 원리를 상세히 설명한다. 하기에서 본 개시를 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B, eNode B, Node B, BS (Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (User Equipment), MS (Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 물론 상기 예시에 제한되는 것은 아니다.
이하 본 개시는 무선 통신 시스템에서 단말이 기지국으로부터 방송 정보를 수신하기 위한 기술에 대해 설명한다. 본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다.
이하 설명에서 사용되는 방송 정보를 지칭하는 용어, 제어 정보를 지칭하는 용어, 통신 커버리지(coverage)에 관련된 용어, 상태 변화를 지칭하는 용어(예: 이벤트(event)), 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 장치의 구성 요소를 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 개시가 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 다른 용어가 사용될 수 있다.
이하 설명의 편의를 위하여, 3GPP (3rd generation partnership project) LTE (long term evolution) 또는 3GPP NR (new radio) 규격에서 정의하고 있는 용어 및 명칭들이 일부 사용될 수 있다. 하지만, 본 개시가 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 또는 E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2의 HRPD(High Rate Packet Data), UMB(Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다.
광대역 무선 통신 시스템의 대표적인 예로, LTE 시스템에서는 하향링크(Downlink; DL)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(Uplink; UL)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말(UE(User Equipment) 또는 MS(Mobile Station))이 기지국(eNode B, 또는 base station(BS))으로 데이터 또는 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 또는 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 각 사용자 별로 데이터 또는 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성 (Orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 또는 제어정보를 구분한다.
LTE 이후의 향후 통신 시스템으로서, 즉, 5G 통신시스템은 사용자 및 서비스 제공자 등의 다양한 요구 사항을 자유롭게 반영할 수 있어야 하기 때문에 다양한 요구사항을 만족하는 서비스가 지원되어야 한다. 5G 통신시스템을 위해 고려되는 서비스로는 증가된 모바일 광대역 통신(Enhanced Mobile BroadBand: eMBB), 대규모 기계형 통신(massive Machine Type Communication: mMTC), 초신뢰 저지연 통신(Ultra Reliability Low Latency Communciation: URLLC) 등이 있다.
일부 실시예에 따르면, eMBB는 기존의 LTE, LTE-A 또는 LTE-Pro가 지원하는 데이터 전송 속도보다 더욱 향상된 데이터 전송 속도를 제공하는 것을 목표로 한다. 예를 들어, 5G 통신시스템에서 eMBB는 하나의 기지국 관점에서 하향링크에서는 20Gbps 최대 전송 속도(peak data rate), 상향링크에서는 10Gbps의 최대 전송 속도를 제공할 수 있어야 한다. 동시에, 증가된 단말의 실제 체감 전송 속도(User perceived data rate)를 제공해야 한다. 이와 같은 요구 사항을 만족시키기 위해, 더욱 향상된 다중 입력 다중 출력 (Multi Input Multi Output: MIMO) 전송 기술을 포함하여 송수신 기술의 향상을 요구한다. 또한 현재의 LTE가 사용하는 2GHz 대역 대신에 3~6GHz 또는 6GHz 이상의 주파수 대역에서 20MHz 보다 넓은 주파수 대역폭을 사용함으로써 5G 통신시스템에서 요구하는 데이터 전송 속도를 만족시킬 수 있다.
동시에, 5G 통신시스템에서 사물 인터넷(Internet of Thing: IoT)와 같은 응용 서비스를 지원하기 위해 mMTC가 고려되고 있다. mMTC는 효율적으로 사물 인터넷을 제공하기 위해 셀 내에서 대규모 단말의 접속 지원, 단말의 커버리지 향상, 향상된 배터리 시간, 단말의 비용 감소 등이 요구될 수 있다. 사물 인터넷은 여러 가지 센서 및 다양한 기기에 부착되어 통신 기능을 제공하므로 셀 내에서 많은 수의 단말(예를 들어, 1,000,000 단말/km2)을 지원할 수 있어야 한다. 또한 mMTC를 지원하는 단말은 서비스의 특성상 건물의 지하와 같이 셀이 커버하지 못하는 음영지역에 위치할 가능성이 높으므로 5G 통신시스템에서 제공하는 다른 서비스 대비 더욱 넓은 커버리지를 요구할 수 있다. mMTC를 지원하는 단말은 저가의 단말로 구성되어야 하며, 단말의 배터리를 자주 교환하기 힘들기 때문에 매우 긴 배터리 생명시간(battery life time)이 요구될 수 있다.
마지막으로, URLLC의 경우, 특정한 목적(mission-critical)으로 사용되는 셀룰러 기반 무선 통신 서비스로서, 로봇(Robot) 또는 기계 장치(Machinery)에 대한 원격 제어(remote control), 산업 자동화(industrial automation), 무인 비행장치(Unmaned Aerial Vehicle), 원격 건강 제어(Remote health care), 비상 상황 알림(emergency alert) 등에 사용되는 서비스로서, 초 저지연 및 초 신뢰도를 제공하는 통신을 제공해야 한다. 예를 들어, URLLC을 지원하는 서비스는 0.5 밀리초보다 작은 무선 접속 지연시간(Air interface latency)를 만족해야 하며, 동시에 10-5 이하의 패킷 오류율(Packet Error Rate)의 요구사항을 갖는다. 따라서, URLLC을 지원하는 서비스를 위해 5G 시스템은 다른 서비스보다 작은 전송 시간 구간(Transmit Time Interval: TTI)를 제공해야 하며, 동시에 주파수 대역에서 넓은 리소스를 할당해야 하는 설계사항이 요구된다. 다만, 전술한 mMTC, URLLC, eMBB는 서로 다른 서비스 유형의 일 예일 뿐, 본 개시의 적용 대상이 되는 서비스 유형이 전술한 예에 한정되는 것은 아니다.
상기에서 전술한 5G 통신시스템에서 고려되는 서비스들은 하나의 프레임워크 (Framework) 기반으로 서로 융합되어 제공되어야 한다. 즉, 효율적인 리소스 관리 및 제어를 위해 각 서비스들이 독립적으로 운영되기 보다는 하나의 시스템으로 통합되어 제어되고 전송되는 것이 바람직하다.
또한, 이하에서 LTE, LTE-A, LTE Pro 또는 NR 시스템을 일례로서 본 개시의 실시예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 개시의 실시예가 적용될 수 있다. 또한, 본 개시의 실시 예는 숙련된 기술적 지식을 가진 자의 판단으로써 본 개시의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다. 이하 LTE, LTE-A 및 5G 시스템의 프레임 구조를 도면을 참조하여 설명하고, 5G 시스템의 설계 방향을 설명하고자 한다.
도 1은 LTE, LTE-A, NR 또는 이와 유사한 무선 통신 시스템의 시간-주파수영역 전송 구조를 나타낸 도면이다.
도 1은 순환 프리픽스(CP; Cyclic Prefix) OFDM (Orthogonal Frequency Division Multiplexing) (CP-OFDM) 또는 SC-FDMA (Single Carrier-Frequency Division Multiple Access) waveform에 기반하는 LTE, LTE-A, 그리고 NR 시스템의 데이터 또는 제어채널이 전송되는 무선자원영역인 시간-주파수 자원 영역의 기본 구조를 나타낸다.
도 1에서 가로축은 시간 영역을, 세로축은 주파수 영역을 나타낸다. 상향링크(UL: uplink)는 단말이 기지국으로 데이터 또는 제어 신호를 전송하는 무선링크를 의미할 수 있고, 하향링크(DL: downlink)는 기지국이 단말로 데이터 또는 제어 신호를 전송하는 무선링크를 의미할 수 있다.
LTE, LTE-A 및 NR 시스템의 시간영역에서의 최소 전송단위는 OFDM 심볼 또는 SC-FDMA 심볼로서, N symb (1-05)개의 심볼이 모여 하나의 슬롯(1-15)을 구성할 수 있다. LTE 및 LTE-A의 경우 N symb=7개의 심볼로 구성된 2개의 슬롯이 모여 하나의 서브프레임(1-40)을 구성할 수 있다. 또한 일부 실시예에 따르면, 5G의 경우 슬롯과 미니슬롯(mini-slot 또는 non-slot)의 두 가지 타입의 슬롯 구조를 지원할 수 있다. 5G 슬롯의 경우 Nsymb은 7 또는 14 중 하나의 값을 가질 수 있으며, 5G 미니슬롯의 경우 N symb은 1, 2, 3, 4, 5, 6 또는 7 중 하나의 값으로 설정될 수 있다. LTE 및 LTE-A에서 상기 슬롯의 길이는 0.5ms 이고, 서브프레임의 길이는 1.0ms으로 고정되지만, NR 시스템의 경우 상기 슬롯 또는 미니슬롯의 길이는 서브캐리어 간격에 따라 유동적으로 바뀔 수 있다. LTE 및 LTE-A에서 라디오 프레임(1-35)은 10개의 서브프레임으로 구성되는 시간영역 단위이다. LTE 및 LTE-A에서 주파수영역에서의 최소 전송단위는 15kHz 단위의 서브캐리어로서 (subcarrier spacing = 15kHz), 전체 시스템 전송 대역 (Transmission bandwidth)의 대역폭은 총 NBW (1-10)개의 서브캐리어로 구성된다. NR 시스템의 유동적 확장형 프레임 구조는 향후 설명된다.
시간-주파수 영역에서 자원의 기본 단위는 리소스 엘리먼트(1-30, Resource Element; RE)로서 OFDM 심볼 또는 SC-FDMA 심볼 인덱스 및 서브캐리어 인덱스로 나타낼 수 있다. 리소스 블록(1-20, Resource Block; RB 또는 Physical Resource Block; PRB)은 시간영역에서 N symb (1-05)개의 연속된 OFDM 심볼 또는 SC-FDMA 심볼과 주파수 영역에서 NRB (1-25)개의 연속된 서브캐리어로 정의될 수 있다. 따라서, 하나의 RB(1-20)는 N symb
Figure PCTKR2020012485-appb-img-000001
NRB 개의 RE(1-30)로 구성된다. LTE 및 LTE-A 시스템에서 데이터는 RB 단위로 맵핑(mapping)되고, 기지국은 소정의 단말에 대해 한 서브프레임을 구성하는 RB-pair 단위로 스케쥴링을 수행한다. SC-FDMA 심볼개수 또는 OFDM 심볼개수 N symb은 심볼간 간섭 방지를 위해 심볼마다 추가되는 순환 프리픽스(CP; Cyclic Prefix)의 길이에 따라 정해지는데, 예를 들어 일반형 CP가 적용되면 N symb = 7, 확장형 CP가 적용되면 N symb = 6 이 된다. 확장형 CP 는 일반형 CP 보다 전파 전송 거리가 상대적으로 큰 시스템에 적용해서 심벌간 직교성을 유지할 수 있게 된다.
일부 실시예에 따르면, 서브케리어 간격(subcarrier spacing), CP 길이 등은 OFDM 송수신에 필수적인 정보로서 기지국과 단말이 서로 공통의 값으로 인지해야 원활한 송수신이 가능할 수 있다.
전술한 바와 같은 LTE 및 LTE-A 시스템의 프레임 구조는 통상적인 음성/데이터 통신을 고려한 설계로서, NR 시스템과 같이 다양한 서비스와 요구사항을 만족하기에는 확장성의 제약이 따르게 된다. 따라서 NR 시스템에서는 다양한 서비스와 요구사항을 고려해서, 프레임구조를 유연하게(flexible) 정의하여 운용할 필요가 있다.
도 2 내지 도 4는 일부 실시예에 따른 확장형 프레임 구조를 도시한 도면이다.
도시된 도 2 내지 도 4의 예는 확장형 프레임 구조를 정의하는 필수 파라메터 세트로서 서브케리어 간격, CP 길이, 슬롯 길이 등을 포함할 수 있다.
향후 5G 시스템이 도입되는 초기에는, 적어도 기존 LTE/LTE-A 시스템과의 공존 또는 듀얼 모드 운영이 예상된다. 이를 통해 기존 LTE/LTE-A 는 안정적인 시스템 동작을 제공하고, 5G 시스템은 향상된 서비스를 제공하는 역할을 수행할 수 있다. 따라서 5G 시스템의 확장형 프레임 구조는 적어도 LTE/LTE-A 의 프레임 구조 또는 필수 파라메터 세트를 포함할 필요가 있다. 도 2 를 참조하면, LTE/LTE-A 의 프레임 구조와 같은 5G 프레임 구조 또는 필수 파라메터 세트를 나타낸다. 도 2에 도시된 프레임 구조 타입 A 는 서브케리어 간격은 15kHz 이고, 14 심볼이 1ms 슬롯을 구성하고, 12 서브케리어 (=180kHz = 12
Figure PCTKR2020012485-appb-img-000002
15kHz)로 PRB(Physical Resource Block)를 구성하는 것을 나타낸다.
도 3을 참조하면, 도 3에 도시된 프레임 구조 타입 B는 서브케리어 간격은 30kHz 이고, 14 심볼이 0.5ms 슬롯을 구성하고, 12 서브케리어 (=360kHz = 12
Figure PCTKR2020012485-appb-img-000003
30kHz)로 PRB를 구성하는 것을 나타낸다. 즉, 프레임 구조 타입 A 대비 서브케리어 간격과 PRB 크기는 2배 커지고, 슬롯 길이와 심벌 길이는 2배 작아진 것을 나타낸다.
도 4를 참조하면, 도 4에 도시된 프레임 구조 타입 C는 서브케리어 간격은 60kHz 이고, 14 심볼이 0.25ms 서브프레임을 구성하고, 12 서브케리어 (=720kHz = 12
Figure PCTKR2020012485-appb-img-000004
60kHz)로 PRB를 구성하는 것을 나타낸다. 즉, 프레임 구조 타입 A 대비 서브케리어 간격과 PRB 크기는 4배 커지고, 슬롯 길이와 심벌 길이는 4배 작아진 것을 나타낸다.
즉, 상기 프레임 구조 타입을 일반화하면, 필수 파라메터 세트인 서브케리어 간격, CP 길이, 슬롯 길이 등이 프레임 구조 타입별로 서로 정수배의 관계를 갖도록 함으로서, 높은 확장성을 제공할 수 있다. 그리고 상기 프레임 구조 타입과 무관한 기준 시간 단위를 나타내기 위해 1ms 의 고정된 길이의 서브프레임을 정의할 수 있다. 따라서, 프레임 구조 타입 A 는 하나의 서브프레임이 하나의 슬롯으로 구성되고, 프레임 구조 타입 B 는 하나의 서브프레임이 두 개의 슬롯으로 구성되고, 프레임 구조 타입 C 는 하나의 서브프레임이 네 개의 슬롯으로 구성된다. 물론 확장 가능한 프레임 구조는 앞서 설명한 프레임 구조 타입 A, B, 또는 C에 국한되는 것은 아니며, 120kHz, 240kHz와 같은 다른 서브케리어 간격에도 적용될 수 있고 상이한 구조를 가질 수 있다.
일부 실시예에 따르면, 앞서 설명한 프레임 구조 타입을 다양한 시나리오에 대응시켜 적용할 수 있다. 셀 크기 관점에서는, CP 길이가 길수록 큰 셀을 지원 가능하므로 프레임 구조 타입 A 가 프레임 구조 타입 B, C 대비 상대적으로 큰 셀을 지원할 수 있다. 동작 주파수 대역 관점에서는, 서브케리어 간격이 클수록 고주파 대역의 phase noise 복구에 유리하므로 프레임 구조 타입 C가 프레임 구조 타입 A, B 대비 상대적으로 높은 동작 주파수를 지원할 수 있다. 서비스 관점에서는, URLLC 와 같이 초저지연 서비스를 지원하기에는 서브프레임 길이가 짧을수록 유리하므로, 프레임 구조 타입 C 가 프레임 구조 타입 A, B 대비 상대적으로 URLLC 서비스에 적합하다.
또한 여러 개의 프레임 구조 타입을 하나의 시스템 내에 다중화해서 통합 운영할 수도 있다.
NR에서 한 개의 component carrier (CC) 혹은 serving cell은 최대 250개 이상의 RB로 구성되는 것이 가능하다. 따라서 단말이 LTE와 같이 항상 전체 serving cell bandwidth를 수신하는 경우 단말의 파워 소모가 극심할 수 있고, 이를 해결하기 위하여 기지국은 단말에게 하나 이상의 bandwidth part(BWP, 대역폭 부분)을 설정하여 단말이 cell 내 수신 영역을 변경할 수 있도록 지원하는 것이 가능하다. NR에서 기지국은 CORESET #0 (혹은 common search space, CSS)의 대역폭인 'initial BWP'를 MIB를 통하여 단말에게 설정할 수 있다. 이후 기지국은 RRC (radio resource control) 시그날링을 통하여 단말의 초기 BWP(first BWP)를 설정하고, 향후 DCI (하향링크 제어 정보, downlink control information)를 통하여 지시될 수 있는 적어도 하나 이상의 BWP 설정 정보들을 통지할 수 있다. 이후 기지국은 DCI를 통하여 BWP ID를 공지함으로써 단말이 어떠한 대역을 사용할 지 지시할 수 있다. 만약 단말이 특정 시간 이상 동안 현재 할당된 BWP에서 DCI를 수신하지 못할 경우 단말은 'default BWP'로 회귀하여 DCI 수신을 시도한다.
도 5는 일부 실시예에 따른 NR 통신 시스템에서 대역폭 부분에 대한 설정의 일 예를 도시한 도면이다.
도 5를 참조하면, 단말 대역폭(5-00)이 두 개의 대역폭 부분, 즉 대역폭 부분 #1(5-05)과 대역폭 부분 #2(5-10)로 설정될 수 있다. 기지국은 단말에게 하나 또는 다수 개의 대역폭 부분을 설정해줄 수 있으며, 각 대역폭 부분에 대하여 하기의 정보들을 설정해 줄 수 있다.
Figure PCTKR2020012485-appb-img-000005
[표 1]의 설정 정보 외에도 대역폭 부분과 관련된 다양한 파라미터들이 단말에게 설정될 수 있다. 설정 정보들은 상위레이어 시그날링, 예컨대 RRC 시그날링을 통해 기지국이 단말에게 전달할 수 있다. 설정된 하나 또는 다수 개의 대역폭 부분들 중에서 적어도 하나의 대역폭 부분이 활성화(Activation)될 수 있다. 설정된 대역폭부분에 대한 활성화 여부는 기지국으로부터 단말에게 RRC 시그날링을 통해 준정적(semi-static)으로 전달되거나, MAC (medium access control) CE(control element) 또는 DCI를 통해 동적으로 전달될 수 있다.
5G 통신 시스템에서 지원하는 대역폭부분에 대한 설정은 다양한 목적으로 사용될 수 있다.
일 예로 시스템 대역폭보다 단말이 지원하는 대역폭이 작을 경우에 기지국은 대역폭 부분 설정을 통해 단말과의 데이터 송수신을 지원할 수 있다. 예컨대 [표 1]에서 대역폭 부분의 주파수 위치(설정정보 1)를 단말에게 설정함으로써 시스템 대역폭 내의 특정 주파수 위치에서 단말이 데이터를 송수신할 수 있다.
또 다른 일 예로 서로 다른 뉴머롤로지를 지원하기 위한 목적으로 기지국이 단말에게 다수 개의 대역폭 부분을 설정할 수 있다. 예컨대, 어떤 단말에게 15kHz의 부반송파 간격과 30kHz의 부반송파 간격을 이용한 데이터 송수신을 모두 지원하기 위해서, 두 개의 대역폭 부분을 각각 15kHz와 30kHz의 부반송파 간격을 이용하도록 설정할 수 있다. 서로 다른 대역폭 부분은 주파수분할 다중화(Frequency Division Multiplexing, FDM)될 수 있고, 특정 부반송파 간격으로 데이터를 송수신하고자 할 경우 해당 부반송파 간격으로 설정되어 있는 대역폭 부분이 활성화 될 수 있다.
또 다른 일 예로 단말의 전력 소모 감소를 위한 목적으로 기지국이 단말에게 서로 다른 크기의 대역폭을 갖는 대역폭 부분을 설정할 수 있다. 예컨대, 단말이 매우 큰 대역폭, 예컨대 100MHz의 대역폭을 지원하고 해당 대역폭으로 항상 데이터를 송수신할 경우, 매우 큰 전력 소모를 야기할 수 있다. 특히 트래픽(Traffic)이 없는 상황에서 단말이 100MHz의 큰 대역폭에 대한 불필요한 하향링크 제어채널에 대한 모니터링을 수행하는 것은 전력 소모 관점에서 매우 비효율적이다. 그러므로 단말의 전력 소모를 줄이기 위한 목적으로 기지국은 단말에게 상대적으로 작은 대역폭의 대역폭 부분, 예컨대 20MHz의 대역폭부분을 설정할 수 있다. 트래픽이 없는 상황에서 단말은 20MHz 대역폭 부분에서 모니터링 동작을 수행할 수 있고, 데이터가 발생하였을 경우 기지국의 지시에 따라 100MHz의 대역폭 부분을 이용하여 데이터를 송수신할 수 있다.
도 6은 일부 실시예에 따른 대역폭 부분에 대한 동적 설정 지시 및 변경 방법을 도시한 도면이다.
전술한 [표 1]에 대한 설명에서와 같이 기지국은 단말에게 하나 또는 다수 개의 대역폭 부분을 설정할 수 있으며, 각 대역폭 부분에 대한 설정으로 대역폭 부분의 대역폭, 대역폭 부분의 주파수 위치, 대역폭 부분의 뉴머롤로지 등에 대한 정보를 알려줄 수 있다. 도 6을 참조하면, 한 단말에게 단말 대역폭(6-00) 내에 두 개의 대역폭 부분, 대역폭 부분#1(BPW#1, 6-05)과 대역폭 부분#2(BWP#2, 6-10)가 설정될 수 있다. 설정된 대역폭 중에서 하나 또는 다수 개의 대역폭 부분이 활성화 될 수 있으며 도 6에서는 하나의 대역폭부분이 활성화되는 일 예를 도시한다. 도 6에서는 슬롯#0(6-25)에서 설정된 대역폭 부분들 중에서 대역폭 부분#1(6-02)이 활성화되어 있는 상태이고 단말은 대역폭 부분#1(6-05)에 설정되어 있는 제어 영역#1(6-45)에서 하향링크 제어 채널(physical downlink control channel, PDCCH)를 모니터링할 수 있고, 대역폭 부분 #1(6-05)에서 데이터(6-55)를 송수신할 수 있다. 설정된 대역폭 부분 중에서 어떤 대역폭 부분이 활성화되는지에 따라서 단말이 PDCCH를 수신하는 제어 영역이 다를 수 있고, 이에 따라 단말이 PDCCH를 모니터링하는 대역폭이 달라질 수 있다.
기지국은 단말에게 대역폭 부분에 대한 설정을 변경하는 지시자를 추가로 전송할 수 있다. 여기서 대역폭 부분에 대한 설정을 변경하는 것은 특정 대역폭 부분을 활성화하는 동작(예컨대 대역폭 부분 A에서 대역폭 부분 B로의 활성화 변경)과 동일하게 여겨질 수 있다. 기지국은 단말에게 설정 변경 지시자(Configuration Switching Indicator)를 특정 슬롯에서 전송할 수 있고, 단말은 기지국으로부터 설정 변경 지시자를 수신한 후 특정 시점에서부터 설정 변경 지시자에 따른 변경된 설정을 적용하여 활성화할 대역폭 부분을 결정하고 활성화된 대역폭 부분에 설정되어 있는 제어 영역에서 PDCCH에 대한 모니터링을 수행할 수 있다.
도 6에서 기지국은 단말에게 활성화된 대역폭 부분을 기존 대역폭 부분#1(6-05)에서 대역폭 부분#2(6-10)로 변경을 지시하는 설정 변경 지시자(Configuration Switching Indication, 6-15)를 슬롯#1(6-30)에서 전송할 수 있다. 단말은 해당 지시자를 수신한 후, 지시자의 내용에 따라 대역폭 부분#2(6-10)를 활성화 할 수 있다. 이 때 대역폭 부분의 변경을 위한 전이 시간(Transistion Time, 6-20)이 요구될 수 있고, 이에 따라 활성화하는 대역폭 부분을 변경하여 적용하는 시점이 결정될 수 있다. 도 6에서는 설정 변경 지시자(6-15)를 수신한 후 1 슬롯의 전이 시간(6-20)이 소요되는 경우를 도시하였다. 해당 전이 시간(6-20)에는 데이터 송수신이 수행되지 않을 수 있다(6-60). 이에 따라 슬롯#2(6-35)에서 대역폭 부분#2(6-10)이 활성화되어 해당 대역폭부분으로 제어채널 및 데이터를 송수신하는 동작이 수행될 수 있다.
기지국은 단말에게 하나 또는 다수 개의 대역폭 부분을 상위레이어 시그날링(예컨대 RRC 시그날링)으로 미리 설정할 수 있으며, 설정 변경 지시자(6-15)가 기지국이 미리 설정한 대역폭 부분 설정 중 하나와 맵핑되는 방법으로 활성화를 지시할 수 있다. 예컨대
Figure PCTKR2020012485-appb-img-000006
비트의 지시자는 N개의 기 설정된 대역폭 부분들 중 한 가지를 선택하여 지시할 수 있다. 하기 [표 2]는 2비트 지시자를 이용하여 대역폭 부분에 대한 설정 정보를 지시하는 일 예를 보여준다.
Figure PCTKR2020012485-appb-img-000007
전술한 대역폭 부분에 대한 설정 변경 지시자(6-15)는 MAC(Medium Access Control) CE(Control Element) 시그날링 또는 L1 시그날링(예컨대 공통 DCI, 그룹-공통 DCI, 단말-특정 DCI)의 형태로 기지국으로부터 단말에게 전달될 수 있다.
전술한 대역폭 부분에 대한 설정 변경 지시자(6-15)에 따라 대역폭 부분 활성화를 어느 시점에서부터 적용할지는 다음에 따른다. 설정 변경이 어느 시점부터 적용될지는 기 정의되어 있는 값(예컨대 설정 변경 지시자 수신 후 N(
Figure PCTKR2020012485-appb-img-000008
1) 슬롯 뒤부터 적용)에 따르거나, 또는 기지국이 단말에게 상위레이어 시그날링(예컨대 RRC 시그날링)으로 설정하거나, 또는 설정 변경 지시자(6-15)의 내용에 일부 포함되어 전송될 수 있다. 또는 상기 방법의 조합으로 결정될 수 있다. 단말은 대역폭 부분에 대한 설정 변경 지시자(6-15)를 수신한 후 상기 방법으로 획득한 시점에서부터 변경된 설정을 적용할 수 있다.
NR에서는 BWP indication을 통한 주파수 축 자원 후보 할당에 더하여 다음과 같은 세부적인 주파수 축 자원 할당 방법(frequency domain resource allocation, FD-RA)들을 제공할 수 있다.
도 7은 일부 실시예에 따른 PDSCH (physical downlink shared channel) 또는 PUSCH (physical uplink shared channel) 주파수 축 자원 할당 예시를 도시한 도면이다. 도 7을 참조하면, NR에서 상위레이어를 통하여 설정 가능한 type 0 (7-00), type 1 (7-05), 그리고 dynamic switch (7-10)의 세 가지 주파수 축 자원 할당 방법들이 도시된다.
만약 상위레이어 시그날링을 통하여 단말이 resource type 0 만을 사용하도록 설정된 경우(7-00), 해당 단말에게 PDSCH 또는 PUSCH를 할당하는 일부 DCI는 NRBG개의 비트로 구성되는 비트맵을 가진다. 이를 위한 조건은 추후 다시 설명하도록 한다. 이때 NRBG는 BWP indicator가 할당하는 BWP size 및 상위레이어 파라미터 rbg-Size에 따라 아래 [표 3]과 같이 결정되는 RBG (resource block group)의 수를 의미하며, 상기 비트맵에 의하여 1로 표시되는 RBG에 데이터가 전송되게 된다.
Figure PCTKR2020012485-appb-img-000009
만약 상위레이어 시그날링을 통하여 단말이 resource type 1 만을 사용하도록 설정된 경우(7-05), 해당 단말에게 PDSCH 또는 PUSCH를 할당하는 일부 DCI(하향링크 제어 정보, downlink control information)는
Figure PCTKR2020012485-appb-img-000010
개의 비트들로 구성되는 주파수 축 자원 할당 정보를 가진다. 이를 위한 조건은 추후 다시 설명하도록 한다. 기지국은 이를 통하여 starting VRB(7-20)와 이로부터 연속적으로 할당되는 주파수 축 자원의 길이(7-25)를 설정하는 것이 가능하다.
만약 상위레이어 시그날링을 통하여 단말이 resource type 0과 resource type 1를 모두 사용하도록 설정된 경우(7-10), 해당 단말에게 PDSCH 또는 PUSCH를 할당하는 일부 DCI(하향링크 제어 정보, downlink control information)는 resource type 0을 설정하기 위한 payload(7-15)와 resource type 1을 설정하기 위한 payload(7-20, 7-25)중 큰 값(7-35)의 비트들로 구성되는 주파수 축 자원 할당 정보를 가진다. 이를 위한 조건은 추후 다시 설명하도록 한다. 이때 DCI내 주파수 축 자원 할당 정보의 제일 앞 부분(MSB)에 한 비트가 추가되고, 해당 비트가 0일 경우 resource type 0이 사용됨을 지시하고, 해당 비트가 1일 경우 resource type 1이 사용됨을 지시할 수 있다.
도 8은 일부 실시예에 따른 PDSCH 또는 PUSCH 시간 축 자원 할당 예시를 도시한 도면이다. 도 8을 참조하면 기지국은 상위레이어 시그날링을 통해 설정되는 데이터 채널(data channel) 및 제어 채널(control channel)의 서브캐리어 간격, 스케줄링 오프셋(scheduling offset) (
Figure PCTKR2020012485-appb-img-000011
또는
Figure PCTKR2020012485-appb-img-000012
) 값 그리고 DCI를 통하여 동적으로 지시되는 한 슬롯 내 OFDM 심볼 시작 위치(8-00)와 길이(8-05)에 따라 PDSCH 자원의 시간 축 위치를 지시하는 것이 가능하다. 일 실시예에 따르면, 도 8에서,
Figure PCTKR2020012485-appb-img-000013
슬롯(8-10)이 지시될 수 있다.
NR에서는 단말이 DCI (하향링크 제어 정보, downlink control information)를 포함한 PDCCH를 수신하기 위해 특정 시간, 주파수 영역에서 블라인드 디코딩 (blind decoding)을 수행한다. 기지국은 단말이 blind decoding을 수행할 시간, 주파수 영역과 맵핑 방법 등을 제공하기 위해 상위레이어 시그날링을 통해 단말에 제어 자원 공간(Control Resource SET, CORESET)과 탐색 공간(search space)을 설정할 수 있다. 기지국은 단말에 설정된 BWP마다 최대 3개의 CORESET과 최대 10개의 search space를 설정할 수 있다. 일례로, 기지국과 단말은 CORESET에 관한 정보를 전달하기 위해 [표 4]와 같은 시그날링 정보를 주고 받을 수 있다.
Figure PCTKR2020012485-appb-img-000014
[표 4]의 시그날링 정보 ControlResourceSet은 각 CORESET에 대한 정보를 포함하고 있다. 상기 시그날링 정보 ControlResourceSet에 포함된 정보는 하기와 같은 의미를 가질 수 있다.
- controlResourceSetId: CORESET 인덱스를 나타낸다.
- frequencyDomainResources: CORESET의 주파수 자원 정보를 나타낸다. BWP에 포함된 전체 PRB에 대해, 6개씩 RB를 묶어 각 RB 묶음에 대한 CORESET 주파수 자원 포함 여부를 1비트로 알려준다. (1: CORESET에 포함, 0: CORESET에 포함되지 않음)
- duration: CORESET의 심볼 레벨 시간 자원 정보. 1, 2, 또는 3 중 하나의 값을 가진다.
- cce-REG-MappingType: CORESET에 맵핑되는 제어 채널 원소(control channel elements, CCE)의 인터리빙(interleaving) 여부를 나타낸다. 만일 CCE가 interleaving 되는 경우, interleaving에 대한 추가 정보(reg-BundleSize, interleaverSize, shiftIndex)를 제공한다.
- precoderGranularity: CORESET의 주파수 자원 프리코딩(precoding)에 대한 정보를 나타낸다. 프리코더(precoder)의 크기는 REG (resource element group) 번들 사이즈와 같거나 CORESET의 전체 주파수 자원의 크기와 같을 수 있다.
- tci-StatePDCCH-ToAddList, tci-StatePDCCH-ToReleaseList: CORESET의 활성화 될 수 있는 TCI (Transmission Configuration Indication) 상태(state) 집합을 나타낸다. CORESET의 활성화 될 수 있는 TCI state 집합 중 하나가 상위레이어 시그날링(예를 들어, MAC CE)을 통해 활성화 될 수 있다. 만일 CORESET이 초기 접속 과정에서 설정된 CORESET일 경우 TCI state 집합을 설정하지 않을 수 있다. TCI state에 대한 설명은 후술하기로 한다.
- tci-PresentInDCI: CORESET에 포함된 PDCCH에서 전송하는 DCI에 PDSCH의 TCI state를 지시하는 지시자가 포함되었는지 여부를 나타낸다.
- Pdcch-DMRS-ScramblingID: CORESET에 포함된 PDCCH에서 전송하는 DMRS의 시퀀스 스크램블링 인덱스
단말은 상기 전술한 CORESET에 대한 정보를 참조하여 PDCCH를 수신하기 위한 blind decoding을 수행할 수 있다.
NR에서는 기지국이 단말에 단말이 하향링크 채널(예를 들어, PDCCH 또는 PDSCH)을 원활히 수신하여 이를 디코딩하기 위해 하향링크 채널을 전송하는 안테나 포트(예를 들어, PDSCH의 DMRS 포트 또는 PDSCH DMRS 포트 또는 CSI-RS의 CSI-RS 포트) 간의 QCL (quasi co-location) 관계에 대한 정보를 전달할 수 있다. 안테나 포트 간의 QCL 관계는 총 4 가지의 QCL 타입(type) 중 하나를 가질 수 있다.
- 'QCL-typeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-typeB': {Doppler shift, Doppler spread}
- 'QCL-typeC': {Doppler shift, average delay}
- 'QCL-typeD': {Spatial RX parameter}
만일 서로 다른 두 안테나 포트 간에 상기 전술한 QCL 타입 중 일부를 공유하거나 하나의 안테나 포트가 다른 안테나 포트의 QCL 타입 중 일부를 참조하면, 단말은 두 안테나 포트가 공유하거나 참조하는 QCL 타입에서 지원하는 파라미터를 공유하여 서로 같은 값을 가진다고 가정할 수 있다.
기지국은 단말에 안테나 포트 간의 QCL 관계에 대한 정보를 전달하기 위해 TCI state를 설정할 수 있다. TCI state는 하나 혹은 두 개의 하향링크 RS와 지원하는 QCL 타입에 대한 정보를 포함한다. 일례로, 기지국과 단말은 TCI state에 관한 정보를 전달하기 위해 [표 5]와 같은 시그날링 정보를 주고 받을 수 있다.
Figure PCTKR2020012485-appb-img-000015
[표 5]의 시그날링 정보 TCI-state는 각 TCI state에 대한 정보를 포함하고 있다. 상기 시그날링 정보에 따르면, 각 TCI state는 TCI state 인덱스와 하나 또는 두 가지의 QCL-Info (qcl-Type1, qcl-Type2)에 대한 정보를 포함하고 있다. qcl-Type1 또는 qcl-Type2는 RS가 설정된 셀 인덱스, RS가 포함된 BWP 인덱스, QCL 타입에 따른 QCL 타입에서 지원하는 파라미터에 대한 정보를 제공하는 RS, 총 4 가지의 QCL 타입 중 하나에 대한 정보를 제공한다. qcl-Type1의 경우 총 4 가지의 QCL 타입 중 'QCL-typeA', 'QCL-typeB', 또는 'QCL-typeC' 중 하나의 QCL 타입을 가질 수 있고, qcl-Type2의 경우 'QCL-typeD'를 가질 수 있다. 단말은 하향링크 채널을 전송하는 안테나 포트에 활성화된 TCI state를 참고하여 활성화된 TCI state에서 참조하는 RS와 지원하는 QCL 타입을 근거로 하여 하향링크 채널에 대한 수신과 디코딩을 수행할 수 있다.
NR에서는 단말의 효율적인 제어채널 수신을 위하여 목적에 따라 아래 [표 6]과 같이 다양한 형태의 DCI format을 제공한다.
Figure PCTKR2020012485-appb-img-000016
예를 들어 기지국은 하나의 cell에 PDSCH를 할당(scheduling)하기 위하여 DCI format 1_0 혹은 DCI format 1_1을 사용할 수 있다.
DCI format 1_0은 C-RNTI (Cell Radio Network Temporary Identifier) 또는 CS-RNTI (Configured Scheduling RNTI) 또는 MCS-C-RNTI에 의하여 스크램블링 된 CRC와 함께 전송되는 경우 적어도 다음과 같은 정보들을 포함할 수 있다:
* Identifier for DCI formats (1 bits): DCI format 지시자로 항상 1로 설정
* Frequency domain resource assignment (
Figure PCTKR2020012485-appb-img-000017
bits): 주파수 축 자원 할당을 지시하며, DCI format 1_0이 UE specific search space에서 모니터 되는 경우
Figure PCTKR2020012485-appb-img-000018
는 active DL BWP의 크기이며, 이외의 경우
Figure PCTKR2020012485-appb-img-000019
는 initial DL BWP의 크기이다. 상세 방법은 상기 주파수 축 자원 할당을 참조한다.
* Time domain resource assignment (4 bits): 상기 설명에 따라 시간 축 자원 할당을 지시한다.
* VRB-to-PRB mapping (1 bit): 0인 경우 Non-interleaved, 1인 경우 interleaved VRP-to-PRB mapping을 지시한다.
* Modulation and coding scheme (5 bits): PDSCH 전송에 사용되는 modulation order 및 coding rate를 지시한다.
* New data indicator (1 bit): Toggle 여부에 따라 PDSCH가 초기 전송인지, 재전송 인지를 지시한다.
* Redundancy version (2 bits): PDSCH 전송에 사용된 redundancy version을 지시한다.
* HARQ process number (4 bits): PDSCH 전송에 사용된 HARQ process number를 지시한다.
* Downlink assignment index (2 bits): DAI 지시자
* TPC command for scheduled PUCCH (2 bits): PUCCH power control 지시자
* PUCCH resource indicator (3 bits): PUCCH 자원 지시자로, 상위레이어로 설정된 8가지 자원 중 하나를 지시한다.
* PDSCH-to-HARQ_feedback timing indicator (3 bits): HARQ feedback timing 지시자로, 상위레이어로 설정된 8가지 feedback timing offset 중 하나를 지시한다.
DCI format 1_1은 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의하여 스크램블링 된 CRC와 함께 전송되는 경우 적어도 다음과 같은 정보들을 포함할 수 있다:
* Identifier for DCI formats (1 bit): DCI format 지시자로 항상 1로 설정
* Carrier indicator (0 또는 3 bits): 해당 DCI가 할당하는 PDSCH가 전송되는 CC(혹은 cell)을 지시한다.
* Bandwidth part indicator (0 또는 1 또는 2 bits): 해당 DCI가 할당하는 PDSCH가 전송되는 BWP을 지시한다.
* Frequency domain resource assignment (상기 주파수 축 자원 할당에 따라 payload 결정): 주파수 축 자원 할당을 지시하며,
Figure PCTKR2020012485-appb-img-000020
는 active DL BWP의 크기이다. 상세 방법은 상기 주파수 축 자원 할당을 참조한다.
* Time domain resource assignment (4 bits): 상기 설명에 따라 시간 축 자원 할당을 지시한다.
* VRB-to-PRB mapping (0 또는 1 bit): 0인 경우 Non-interleaved, 1인 경우 interleaved VRP-to-PRB mapping을 지시한다. 주파수 축 자원 할당이 resource type 0으로 설정된 경우 0 bit 이다.
* PRB bundling size indicator (0 또는 1 bit): 상위레이어 파라미터 prb-BundlingType이 설정되지 않거나 혹은 'static'으로 설정된 경우 0 bit 이며, 'dynamic'으로 설정된 경우 1 bit 이다.
* Rate matching indicator (0 또는 1 또는 2 bits): rate matching pattern을 지시한다.
* ZP CSI-RS trigger (0 또는 1 또는 2 bits): aperiodic ZP CSI-RS를 트리거하는 지시자.
* For transport block 1:
- Modulation and coding scheme (5 bits): PDSCH 전송에 사용되는 modulation order 및 coding rate를 지시한다.
- New data indicator (1 bit): Toggle 여부에 따라 PDSCH가 초기 전송인지, 재전송 인지를 지시한다.
- Redundancy version (2 bits): PDSCH 전송에 사용된 redundancy version을 지시한다.
* For transport block 2:
- Modulation and coding scheme (5 bits): PDSCH 전송에 사용되는 modulation order 및 coding rate를 지시한다.
- New data indicator (1 bit): Toggle 여부에 따라 PDSCH가 초기 전송인지, 재전송 인지를 지시한다.
- Redundancy version (2 bits): PDSCH 전송에 사용된 redundancy version을 지시한다.
* HARQ process number (4 bits): PDSCH 전송에 사용된 HARQ process number를 지시한다.
* Downlink assignment index (0 또는 2 또는 4 bits): DAI 지시자
* TPC command for scheduled PUCCH (2 bits): PUCCH power control 지시자
* PUCCH resource indicator (3 bits): PUCCH 자원 지시자로, 상위레이어로 설정된 8가지 자원 중 하나를 지시한다.
* PDSCH-to-HARQ_feedback timing indicator (3 bits): HARQ feedback timing 지시자로, 상위레이어로 설정된 8가지 feedback timing offset 중 하나를 지시한다.
* Antenna port (4 또는 5 또는 6 bits): DMRS port 및 CDM group without data를 지시한다.
* Transmission configuration indication (TCI) (0 또는 3 bits): TCI 지시자.
* SRS request (2 또는 3 bits): SRS 전송 요청 지시자
* CBG transmission information (0 또는 2 또는 4 또는 6 또는 8 bits): 할당된 PDSCH 내 code block group들에 대한 전송 여부를 알려주는 지시자. 0은 해당 CBG가 전송되지 않음을 의미하고, 1은 전송 됨을 의미한다.
* CBG flushing out information (0 또는 1 bit): 이전 CBG들의 오염 여부를 알려주는 지시자로, 0이면 오염되었을 수 있음을 의미하고, 1이면 재전송 수신 시 사용할 수 있음(combinable)을 의미한다.
* DMRS sequence initialization (0 또는 1 bit): DMRS scrambling ID 선택 지시자
예를 들어 기지국은 하나의 cell에 PUSCH를 할당하기 위하여 DCI format 0_0 혹은 DCI format 0_1을 사용할 수 있다.
DCI format 0_0은 C-RNTI, CS-RNTI, 또는 MCS-C-RNTI 중 적어도 어느 하나에 의하여 스크램블링 된 CRC와 함께 전송되는 경우 적어도 다음과 같은 정보들을 포함할 수 있다:
* Identifier for DCI formats (1 bit): DCI format 지시자로 항상 0으로 설정
* Frequency domain resource assignment (주파수 축 자원 할당에 따라 payload 결정): 주파수 축 자원 할당을 지시하며,
Figure PCTKR2020012485-appb-img-000021
는 active DL BWP의 크기이다. 상세한 방법은 상술한 주파수 축 자원 할당 방법을 참조하여 설명될 수 있다.
* Time domain resource assignment (4 bits): 상술한 설명에 따라 시간 축 자원 할당을 지시한다.
* Frequency hopping flag (0 또는 1 bit): 해당 DCI가 할당하는 PUSCH의 주파수 축 호핑 여부를 지시한다.
* Modulation and coding scheme (5 bits): PUSCH 전송에 사용되는 modulation order 및 coding rate를 지시한다.
* New data indicator (1 bit): Toggle 여부에 따라 PUSCH가 초기 전송인지, 재전송 인지를 지시한다.
* Redundancy version (2 bits): PUSCH 전송에 사용된 redundancy version을 지시한다.
* HARQ process number (4 bits): PUSCH 전송에 사용된 HARQ process number를 지시한다.
* TPC command for scheduled PUSCH (2 bits): 해당 DCI가 할당하는 PUSCH의 전송 세기 조절을 위한 지시자이다.
* UL-SCH indicator (1 bit): 해당 DCI가 할당하는 PUSCH의 UL-SCH 포함 여부를 지시한다.
DCI format 0_1은 C-RNTI (Cell Radio Network Temporary Identifier), CS-RNTI (Configured Scheduling RNTI), SP-CSI-RNTI (Semi Persistent Channel State Information RNTI) 또는 MCS-C-RNTI 중 적어도 어느 하나에 의하여 스크램블링 된 CRC와 함께 전송되는 경우 적어도 다음과 같은 정보들을 포함할 수 있다:
* Identifier for DCI formats (1 bit): DCI format 지시자로 항상 0으로 설정
* Carrier indicator (0 또는 3 bits): 해당 DCI가 할당하는 PUSCH가 전송되는 CC(혹은 cell)을 지시한다.
* UL/SUL indicator (0 또는 1 bit): 해당 DCI가 할당하는 PUSCH의 추가 상향링크(supplementary uplink, SUL) 전송 여부를 지시한다.
* Bandwidth part indicator (0 또는 1 또는 2 bits): 해당 DCI가 할당하는 PUSCH가 전송되는 BWP을 지시한다.
* Frequency domain resource assignment (주파수 축 자원 할당에 따라 payload 결정): 주파수 축 자원 할당을 지시하며,
Figure PCTKR2020012485-appb-img-000022
는 active DL BWP의 크기이다. 상세한 방법은 상술한 주파수 축 자원 할당 방법을 참조하여 설명될 수 있다.
* Time domain resource assignment (4 bits): 설명에 따라 시간 축 자원 할당을 지시한다.
* Frequency hopping flag (0 또는 1 bit): 해당 DCI가 할당하는 PUSCH의 주파수 축 호핑 여부를 지시한다.
* Modulation and coding scheme (5 bits): PUSCH 전송에 사용되는 modulation order 및 coding rate를 지시한다.
* New data indicator (1 bit): Toggle 여부에 따라 PUSCH가 초기 전송인지, 재전송 인지를 지시한다.
* Redundancy version (2 bits): PUSCH 전송에 사용된 redundancy version을 지시한다.
* HARQ process number (4 bits): PUSCH 전송에 사용된 HARQ process number를 지시한다.
* 1st downlink assignment index (1 또는 2 bits): HARQ-ACK 코드북 생성을 위한 DAI를 지시한다.
* 2nd downlink assignment index (0 또는 2 bits): HARQ-ACK 코드북 생성을 위한 DAI를 지시한다.
* TPC command for scheduled PUSCH (2 bits): 해당 DCI가 할당하는 PUSCH의 전송 세기 조절을 위한 지시자이다.
* SRS resource indicator (SRS의 용처 설정에 따라 다름): 해당 DCI가 할당하는 PUSCH의 전송 프리코딩 설정을 SRS 자원을 통해 지시한다.
* Precoding information and number of layers (0 또는 1 또는 2 또는 3 또는 4 또는 5 또는 6 bits): 해당 DCI가 할당하는 PUSCH의 전송 프리코딩 정보 및 전송 레이어 수를 지시한다.
* Antenna port (2 또는 3 또는 4 또는 5 bits): 해당 DCI가 할당하는 PUSCH의 전송 DMRS port 및 CDM group without data를 지시한다.
* SRS request (2 또는 3 bits): 해당 DCI를 통해 전송을 요청하는 SRS resource를 지시한다.
* CSI request (0 또는 1 또는 2 또는 3 또는 4 또는 5 또는 6 bits): 해당 DCI를 통해 전송을 요청하는 CSI report trigger state를 지시한다.
* CBG transmission information (0 또는 2 또는 4 또는 6 또는 8 bits): 해당 DCI를 통해 할당된 PUSCH 내 code block group들에 대한 전송 여부를 알려주는 지시자이다.
* PTRS-DMRS association (0 또는 2 bits): 해당 DCI가 할당하는 PUSCH의 PTRS와 DMRS 간의 포트 연결 관계를 지시한다.
* Beta_offset indicator (0 또는 2 bits): HARQ-ACK 또는 CSI 보고를 PUSCH에 멀티플렉싱하는 경우 사용되는 offset 값을 지시한다.
* DMRS sequence initialization (0 또는 1 bit): DMRS scrambling ID 선택 지시자이다.
* UL-SCH indicator (1 bit): 해당 DCI가 할당하는 PUSCH의 UL-SCH 포함 여부를 지시한다.
단말이 해당 셀에서 슬롯 당 수신 가능한 서로 다른 크기의 DCI 수는 최대 4이다. 단말이 해당 셀에서 슬롯 당 수신 가능한 C-RNTI로 스크램블링 된 서로 다른 크기의 DCI 수는 최대 3이다.
NR에서는 기지국이 단말에 DCI format 1_0 또는 DCI format 1_1을 사용하여 PDSCH를 스케줄링 할 수 있다. 기지국이 단말에 DCI를 통해 PDSCH를 스케줄링 할 때, 전송하는 PDSCH의 QCL 관계 정보는 DCI를 통해 지시한 TCI state를 참조할 수 있다. 예를 들어, 기지국은 단말에 RRC 시그날링을 통해 다수의 TCI state를 설정할 수 있고 이 중 일부를 MAC CE 시그날링을 통해 선택할 수 있다. MAC CE 시그날링을 통해 선택된 TCI state 중 DCI의 TCI 필드를 통해 선택된 하나의 TCI state를 참조하여 PDSCH의 QCL 관계 정보를 결정할 수 있다. 하지만 PDSCH를 스케줄링하는 DCI format, DCI에 TCI 필드를 포함하는지 여부를 결정하는 CORESET 설정값, 단말이 PDSCH를 수신하기 위한 빔 변경 시간(beam switching time)을 단말 capability (예를 들어, timeDurationForQCL)로 보고했는지 여부, 단말이 보고한 PDSCH를 수신하기 위한 beam switching time 등을 고려하여 DCI의 TCI 필드를 통해 선택된 하나의 TCI state을 따르지 않는 것이 가능하다. 이 경우, DCI를 포함하는 PDCCH가 전송되는 CORESET의 활성화된 TCI state를 따르거나 특정 CORESET의 활성화된 TCI state를 따를 수 있다.
도 9는 일부 실시예에 따른 기지국이 DCI를 통해 PDSCH를 스케줄링 할 때, 전송하는 PDSCH의 QCL 관계 정보를 얻기 위해 참조하는 TCI state의 결정 과정에 대한 순서도의 예시를 도시한 도면이다.
도 9를 참조하면, 기지국이 DCI를 통해 PDSCH를 스케줄링 하는 경우, 전송하는 PDSCH의 QCL 관계 정보를 얻기 위해 참조하는 TCI state는 순서도 9-00에 따라 결정될 수 있다. 기지국은 DCI를 통해 PDSCH를 스케줄링 한다. (9-05) 만일 DCI를 포함하는 PDCCH의 마지막 심볼부터 스케줄링 된 PDSCH의 첫 번째 심볼까지의 심볼 단위 scheduling offset이 단말이 PDSCH를 수신하기 위한 beam switching time에 대해 단말 capability로 보고한 timeDurationForQCL보다 작은 경우 (9-10), 전송하는 PDSCH의 QCL 관계 정보는 서빙셀의 활성화된 BWP 내에서 최소한 하나의 CORESET을 모니터링하는 가장 최근 슬롯의 모니터링 search space를 포함하는 가장 CORESET 인덱스가 낮은 CORESET에서 활성화된 TCI state를 참조한다. (9-15) 만일 scheduling offset이 timeDurationForQCL보다 크거나 같은 경우 (9-10), PDSCH를 스케줄링 하는 DCI format과 DCI에 TCI 필드를 포함하는지 여부를 결정하는 CORESET 설정값 'tci-PresentInDCI'를 판별한다. (9-20) 만일 PDSCH가 DCI format 1_1로 스케줄링 되었고, PDSCH를 스케줄링 하는 PDCCH를 포함하는 CORESET의 'tci-PresentInDCI' 값이 'enabled'로 설정된 경우, 전송하는 PDSCH의 QCL 관계 정보는 DCI의 TCI 필드를 통해 선택된 TCI state를 참조한다. (9-25) 만일 PDSCH가 DCI format 1_0으로 스케줄링 되었거나 PDSCH를 스케줄링 하는 PDCCH를 포함하는 CORESET의 'tci-PresentInDCI' 값이 'disabled'로 설정된 경우, 전송하는 PDSCH의 QCL 관계 정보는 PDSCH를 스케줄링 하는 DCI를 포함한 PDCCH가 전송되는 CORESET의 활성화된 TCI state를 참조한다. (9-30)
순서도 9-00을 참조하여 PDSCH의 QCL 관계 정보를 얻기 위한 TCI state를 결정하는 과정은 단말이 beamSwitchTiming을 단말 capability로 보고하는 경우로 한정하여 적용할 수 있다. 또는 PDSCH가 전송되는 주파수 영역(frequency range, FR)이 FR2인 경우로 한정하여 적용할 수 있다. 또는 RRC 시그날링 또는 MAC CE 시그날링으로 선택된 TCI state 중 최소한 하나의 TCI state가 빔 정보를 포함하는 'QCL-typeD'를 포함하는 경우로 한정하여 적용할 수 있다.
NR에서는 기지국이 단말에 DCI format 1_0 또는 DCI format 1_1을 사용하여 PDSCH를 스케줄링 하는 경우, 단말은 PDSCH에 대한 HARQ-ACK 피드백 정보를 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)을 통해 기지국에 전송할 수 있다. 기지국은 단말에 PDSCH를 스케줄링 하는 DCI를 통해 HARQ-ACK 피드백 정보를 전송하는 PUCCH가 맵핑되는 슬롯, PUCCH resource의 종류를 지시한다. 구체적으로, 기지국은 PDSCH를 스케줄링 하는 DCI의 PDSCH-to-HARQ_feedback timing indicator 필드를 통해 PDSCH와 HARQ-ACK 피드백 정보를 전송하는 PUCCH 간의 슬롯 오프셋을 지시할 수 있다. 또한, 기지국은 PDSCH를 스케줄링 하는 DCI의 PUCCH resource indicator를 통해 HARQ-ACK 피드백 정보를 전송하는 PUCCH resource의 종류를 지시할 수 있다.
도 10은 일부 실시예에 따른 HARQ-ACK 피드백에 대한 PUCCH 자원 할당 예시를 도시한 도면이다.
PDSCH(10-05)가 PDCCH(10-00)의 DCI 정보를 바탕으로 스케줄링 될 때, PDSCH가 전송되고 이에 해당하는 HARQ-ACK 피드백을 포함하는 PUCCH(10-10)가 맵핑되는 슬롯 정보, 그리고 HARQ-ACK 피드백을 포함하는 PUCCH(10-10)의 슬롯 내 심볼 맵핑 정보가 전달된다. 구체적으로는 PDSCH와 이에 해당하는 HARQ-ACK 피드백 간의 슬롯 간격(K2)을 PDSCH-to-HARQ_feedback timing indicator를 통해 지시하며, 슬롯 간격의 후보 값으로 상위레이어 시그날링을 통해 설정되거나 1부터 8까지로 미리 정해진 8가지 feedback timing offset 중 하나를 지시한다. 또한, HARQ-ACK 피드백 정보를 맵핑할 PUCCH-포맷(format), 시작 심볼의 위치, 맵핑 심볼 수를 포함한 PUCCH resource를 전달하기 위해, PUCCH resource indicator를 통해 상위레이어로 설정된 8가지 자원 중 하나를 지시한다. 단말은 PDSCH와 이에 해당하는 HARQ-ACK 피드백 간의 슬롯 간격과 PUCCH resource에 설정된 시작 심볼의 위치, 맵핑 심볼 수를 참조하여 HARQ-ACK 피드백을 포함하는 PUCCH의 시간 축 맵핑 위치를 결정한다. 또한 PUCCH resource에 설정된 PUCCH-포맷에 따라 HARQ-ACK 피드백 정보를 맵핑한다.
PUCCH를 전송하는 단말의 공간 도메인 전송 필터(spatial domain transmission filter)는 PUCCH resource에 MAC CE를 포함한 상위레이어 시그날링을 통해 활성화된 PUCCH의 공간 관계 정보(spatial relation info)를 따른다. PUCCH resource의 활성화된 spatial relation info가 CSI-기준 신호 (Reference Signal, RS) resource 또는 동기/브로드캐스트 채널 블록 (SS/PBCH block, SSB)의 인덱스를 참조하는 경우, 단말은 참조하는 CSI-RS resource 또는 SSB를 수신할 때 사용한 공간 도메인 수신 필터(spatial domain receive filter)와 같은 spatial domain transmission filter를 사용하여 PUCCH를 전송할 수 있다. 또는 PUCCH resource의 활성화된 spatial relation info가 SRS (sounding reference signal) resource 인덱스를 참조하는 경우, 단말은 참조하는 SRS resource를 전송할 때 사용한 spatial domain transmission filter를 사용하여 PUCCH를 전송할 수 있다.
NR에서는 기지국이 단말에 DCI format 0_0 또는 DCI format 0_1을 사용하여 PUSCH를 전송하도록 스케줄링 할 수 있다. 단말이 전송하는 PUSCH의 시간 축 및 주파수 축 자원 맵핑 정보는 DCI의 Time domain resource assignment와 Frequency domain resource assignment 필드의 값을 참조하여 얻으며 상세한 맵핑 방법은 상술한 시간 축 자원 할당 방법과 주파수 축 자원 할당 방법을 따른다. 또한, 단말이 전송하는 PUSCH의 전송 프리코딩 정보, 랭크(rank), 전송 레이어 수는 DCI의 SRS resource indicator (SRI) 필드를 통해 지시된 SRS resource의 설정 정보를 참조하거나 DCI의 precoding information and number of layers 필드에서 지시된 정보를 따른다. 구체적으로, 기지국이 단말에 DCI format 0_0을 사용하여 PUSCH를 전송하도록 스케줄링 하는 경우, 단말은 프리코딩을 적용하지 않고 단일 레이어로 PUSCH를 전송할 수 있다. 기지국이 단말에 DCI format 0_1을 사용하여 코드북(codebook) 기반의 PUSCH를 전송하도록 스케줄링 하는 경우, 단말은 DCI의 SRI 필드를 통해 지시된 SRS resource의 설정 정보와 DCI의 precoding information and number of layers 필드에서 지시된 정보를 따라 전송 프리코딩과 전송 레이어 수를 결정하여 PUSCH를 전송할 수 있다. 기지국이 단말에 DCI format 0_1을 사용하여 논-코드북(non-codebook) 기반의 PUSCH를 전송하도록 스케줄링 하는 경우, 단말은 DCI의 SRI 필드를 통해 지시된 SRS resource(s)을 전송할 때 적용한 전송 프리코딩과 전송 레이어 수에 따라 PUSCH에 적용할 전송 프리코딩과 전송 레이어 수를 결정하여 PUSCH를 전송할 수 있다.
단말이 전송하는 PUSCH에 적용하는 단말의 spatial domain transmission filter는 DCI의 SRI 필드를 통해 지시된 SRS resource에 설정된 값을 따르거나 미리 정해진 spatial domain transmission filter를 적용할 수 있다. 구체적으로, 기지국이 단말에 DCI format 0_0을 사용하여 PUSCH를 전송하도록 스케줄링 하는 경우, 단말은 서빙셀의 활성화된 상향링크 BWP에서 가장 낮은 인덱스를 가지는 PUCCH resource의 활성화된 spatial relation info를 따른다. 만일 spatial relation info가 CSI-RS resource 또는 SSB의 인덱스를 참조하는 경우, 단말은 참조하는 CSI-RS resource 또는 SSB를 수신할 때 사용한 spatial domain receive filter와 같은 spatial domain transmission filter를 사용할 수 있다. 또는 spatial relation info가 SRS resource 인덱스를 참조하는 경우, 단말은 참조하는 SRS resource를 전송할 때 사용한 spatial domain transmission filter를 사용할 수 있다. 기지국이 단말에 DCI format 0_1을 사용하여 PUSCH를 전송하도록 스케줄링 하는 경우, 단말은 DCI의 SRI 필드를 통해 지시된 SRS resource에 상위 레이어 시그널링으로 설정된 spatial relation info 또는 associated CSI-RS 정보를 따른다. 만일 SRS resource에 spatial relation info가 설정된 경우, 단말은 상기 전술한 spatial relation info 참조 방법에 따라 spatial domain transmission filter를 사용할 수 있다. 만일 SRS resource에 spatial relation info가 설정되지 않고, SRS resource를 포함하는 SRS resource set에 csi-RS 또는 associatedCSI-RS 설정 정보를 포함하는 경우, 단말은 associated CSI-RS 정보에 따라 계산한 전송 프리코딩 정보를 참조하여 spatial domain transmission filter를 결정할 수 있다.
기지국이 단말에 DCI format 0_0 또는 DCI format 0_1을 사용하여 PUSCH를 전송하도록 스케줄링 하는 경우, 단말은 DCI를 통해 지시된 전송 방법(SRS resource에 전송 프리코딩 방법, 전송 레이어 수, spatial domain transmission filter)을 적용하여 PUSCH를 전송하기 위한 PUSCH 준비 과정 시간(PUSCH preparation procedure time)이 필요할 수 있다. NR에서는 이를 고려하여 PUSCH preparation procedure time을 정의하였다. 단말의 PUSCH preparation procedure time은 하기의 [수학식 1]을 따를 수 있다.
Figure PCTKR2020012485-appb-img-000023
전술한
Figure PCTKR2020012485-appb-img-000024
에서 각 변수는 하기와 같은 의미를 가질 수 있다.
Figure PCTKR2020012485-appb-img-000025
: 단말의 capability에 따른 단말 처리 능력 (UE processing capability) 1 또는 2와 뉴머롤로지
Figure PCTKR2020012485-appb-img-000026
에 따라 정해지는 심볼 수. 단말의 capability 보고에 따라 단말 처리 능력 1로 보고된 경우 [표 7]의 값을 가지고, 단말 처리 능력 2로 보고되고 단말 처리 능력 2를 사용할 수 있다는 것이 상위레이어 시그날링을 통해 설정된 경우 [표 8]의 값을 가질 수 있다.
Figure PCTKR2020012485-appb-img-000027
Figure PCTKR2020012485-appb-img-000028
Figure PCTKR2020012485-appb-img-000029
: PUSCH의 첫 번째 심볼이 DM-RS만으로 이루어지도록 설정된 경우 0, 아닌 경우 1로 정해지는 심볼 수.
Figure PCTKR2020012485-appb-img-000030
: 64
Figure PCTKR2020012485-appb-img-000031
:
Figure PCTKR2020012485-appb-img-000032
또는
Figure PCTKR2020012485-appb-img-000033
중,
Figure PCTKR2020012485-appb-img-000034
이 더 크게 되는 값을 따른다.
Figure PCTKR2020012485-appb-img-000035
은 PUSCH를 스케줄링 하는 DCI가 포함된 PDCCH가 전송되는 하향링크의 뉴머롤로지를 뜻하고,
Figure PCTKR2020012485-appb-img-000036
은 PUSCH가 전송되는 상향링크의 뉴머롤로지를 뜻한다.
Figure PCTKR2020012485-appb-img-000037
,
Figure PCTKR2020012485-appb-img-000038
,
Figure PCTKR2020012485-appb-img-000039
를 가진다.
Figure PCTKR2020012485-appb-img-000040
: PUSCH를 스케줄링하는 DCI가 BWP 스위칭을 지시하는 경우 BWP 스위칭 시간을 따르고, 그렇지 않은 경우 0을 가진다.
기지국과 단말은 DCI를 통해 스케줄링 한 PUSCH의 시간 축 자원 맵핑 정보와 상향링크-하향링크간 TA (timing advance) 영향을 고려하였을 때, PUSCH를 스케줄링 한 DCI를 포함한 PDCCH의 마지막 심볼부터
Figure PCTKR2020012485-appb-img-000041
이후에 CP가 시작하는 첫 상향링크 심볼보다 PUSCH의 첫 심볼이 먼저 시작하는 경우 PUSCH preparation procedure time이 충분하지 않다고 판단한다. 만일 그렇지 않은 경우 기지국과 단말은 PUSCH preparation procedure time이 충분하다고 판단한다. 단말은 PUSCH preparation procedure time이 충분한 경우에 한해 PUSCH를 전송하고, PUSCH preparation procedure time이 충분하지 않은 경우 PUSCH를 스케줄링 하는 DCI를 무시할 수 있다.
NR에서는 기지국에서 단말의 채널 상태 정보 (Channel state information, CSI) 측정 및 보고를 지시하기 위한 CSI 프레임워크(framework)를 가진다. NR의 CSI 프레임워크는 최소한 자원 설정(resource setting)과 보고 설정(report setting)의 두 가지 요소로 구성될 수 있으며, report setting은 resource setting의 ID를 적어도 하나 이상 참조하여 서로의 연결 관계를 가질 수 있다.
본 개시의 일 실시 예에 따르면, resource setting은 단말이 채널 상태 정보를 측정하기 위한 RS와 관련된 정보를 포함할 수 있다. 기지국은 단말에게 적어도 하나 이상의 resource setting을 설정할 수 있다. 일례로, 기지국과 단말은 resource setting에 관한 정보를 전달하기 위해 [표 9]와 같은 시그날링 정보를 주고 받을 수 있다.
Figure PCTKR2020012485-appb-img-000042
[표 9]의 시그날링 정보 CSI-ResourceConfig은 각 resource setting에 대한 정보를 포함하고 있다. 상기 시그날링 정보에 따르면, 각 resource setting은 resource setting 인덱스 (csi-ResourceConfigId) 또는 BWP 인덱스(bwp-ID) 또는 자원의 시간 축 전송 설정(resourceType) 또는 적어도 하나의 자원 세트(resource set)를 포함하는 자원 세트 리스트(csi-RS-ResourceSetList)를 포함할 수 있다. 자원의 시간 축 전송 설정은 비주기적(aperiodic) 전송 또는 반지속적(semi-persistent) 전송 또는 주기적(periodic) 전송으로 설정될 수 있다. 자원 세트 리스트는 채널 측정을 위한 resource set을 포함하는 집합이거나 간섭 측정을 위한 resource set을 포함하는 집합일 수 있다. 자원 세트 리스트가 채널 측정을 위한 resource set을 포함하는 집합인 경우 각 resource set은 적어도 하나의 자원(resource)을 포함할 수 있으며, 이는 CSI-RS resource 또는 SSB의 인덱스일 수 있다. 자원 세트 리스트가 간섭 측정을 위한 resource set을 포함하는 집합인 경우 각 resource set은 적어도 하나의 간섭 측정 자원(CSI interference measurement, CSI-IM)을 포함할 수 있다. 일례로, resource set이 CSI-RS를 포함할 경우, 기지국과 단말은 resource set에 관한 정보를 전달하기 위해 [표 10]과 같은 시그날링 정보를 주고 받을 수 있다.
Figure PCTKR2020012485-appb-img-000043
[표 10]의 시그날링 정보 NZP-CSI-RS-ResourceSet은 각 resource set에 대한 정보를 포함하고 있다. 상기 시그날링 정보에 따르면, 각 resource set은 적어도 resource set 인덱스(nzp-CSI-ResourceSetId) 또는 포함하는 CSI-RS의 인덱스 집합(nzp-CSI-RS-Resources)에 관한 정보를 포함하며, 포함하는 CSI-RS resource의 공간 도메인 전송 필터에 관한 정보(repetition) 또는 포함하는 CSI-RS resource의 tracking 용도 여부(trs-Info)의 일부를 포함할 수 있다.
CSI-RS는 resource set에 포함되는 가장 대표적인 기준 신호일 수 있다. 기지국과 단말은 CSI-RS resource에 관한 정보를 전달하기 위해 [표 11]과 같은 시그날링 정보를 주고 받을 수 있다.
Figure PCTKR2020012485-appb-img-000044
[표 11]의 시그날링 정보 NZP-CSI-RS-Resource는 각 CSI-RS에 대한 정보를 포함하고 있다. 상기 시그날링 정보 NZP-CSI-RS-Resource에 포함된 정보는 하기와 같은 의미를 가질 수 있다.
- nzp-CSI-RS-ResourceId: CSI-RS resource 인덱스
- resourceMapping: CSI-RS resource의 자원 맵핑 정보
- powerControlOffset: PDSCH EPRE (Energy Per RE) 와 CSI-RS EPRE 간 비율
- powerControlOffsetSS: SS/PBCH block EPRE와 CSI-RS EPRE 간 비율
- scramblingID: CSI-RS 시퀀스의 스크램블링 인덱스
- periodicityAndOffset: CSI-RS resource의 전송 주기 및 슬롯 오프셋(slot offset)
- qcl-InfoPeriodicCSI-RS: 해당 CSI-RS가 주기적인 CSI-RS일 경우, TCI-state 정보
상기 시그날링 정보 NZP-CSI-RS-Resource에 포함된 resourceMapping은 CSI-RS resource의 자원 맵핑 정보를 나타내며, 주파수 자원 resource element (RE) 맵핑, 포트 수, 심볼 맵핑, CDM 타입, 주파수 자원 밀도, 주파수 대역 맵핑 정보를 포함할 수 있다. 이를 통해 설정될 수 있는 포트 수, 주파수 자원 밀도(density), CDM 타입, 시간-주파수 축 RE 맵핑은 하기 [표 12]의 행(row) 중 하나에 정해진 값을 가질 수 있다.
Figure PCTKR2020012485-appb-img-000045
[표 12]는 CSI-RS 포트 수(X)에 따라 설정 가능한 주파수 자원 밀도(density), CDM 타입, CSI-RS 구성(component) RE 패턴(pattern)의 주파수 축 그리고 시간 축 시작 위치 (
Figure PCTKR2020012485-appb-img-000046
) CSI-RS 구성(component) RE 패턴(pattern)의 주파수 축 RE 개수(k') 및 시간 축 RE 개수(l')를 나타낸다. 전술한 CSI-RS component RE pattern은 CSI-RS resource를 구성하는 기본 단위일 수 있다. 주파수 축의
Figure PCTKR2020012485-appb-img-000047
개의 RE들과 시간 축의
Figure PCTKR2020012485-appb-img-000048
개의 RE들을 통해, CSI-RS component RE pattern은, YZ개의 RE로 구성될 수 있다. CSI-RS 포트 수가 1 포트(port)일 경우, PRB(Physical Resource Block)내 서브캐리어의 제한 없이 CSI-RS RE 위치가 지정될 수 있고, 12비트의 비트맵에 의하여 CSI-RS RE 위치가 지정될 수 있다. CSI-RS 포트 수가 {2, 4, 8, 12, 16, 24, 32} 포트(port)이고 Y=2인 경우, PRB내 두 개의 서브캐리어 마다 CSI-RS RE 위치가 지정될 수 있고, 6비트의 비트맵에 의하여 CSI-RS RE 위치가 지정될 수 있다. CSI-RS 포트 수가 4 포트(port) 이고 Y=4일 경우, PRB내 네 개의 서브캐리어 마다 CSI-RS RE 위치가 지정될 수 있고, 3비트의 비트맵에 의하여 CSI-RS RE 위치가 지정될 수 있다. 이와 유사하게, 시간 축 RE 위치는, 총 14비트의 비트맵에 의하여 지정될 수 있다. 이때, [표 12]의 Z 값에 따라, 주파수 위치 지정과 같이 비트맵의 길이가 변하는 것이 가능하나, 그 원리는 상술한 설명과 유사하므로 이하에서는 중복되는 설명은 생략하도록 한다.
기지국은 RRC 시그날링 또는 MAC CE 시그날링을 포함한 상위레이어 시그날링, 또는 L1 시그날링(예를 들어, DCI)을 통해 단말에게 CSI-RS 전송 및 수신을 활성화 또는 비활성화(deactivation)하거나 트리거할 수 있다.
예를 들어, 기지국은 단말에 상위레이어 시그날링을 통해 periodic CSI-RS 전송 및 수신을 활성화하거나 비활성화할 수 있다. 기지국은 상위레이어 시그날링을 통해 resourceType이 periodic으로 설정된 CSI-ResourceConfig을 활성화하도록 지시할 수 있고, 활성화된 CSI-ResourceConfig에서 참조하는 NZP CSI-RS resource set에 포함된 NZP CSI-RS resource를 전송할 수 있다. 전송하는 NZP CSI-RS resource의 슬롯 내 시간-주파수 축 자원 맵핑은 CSI-RS resource에 설정된 자원 맵핑 정보를 따르며, 전송 주기 및 슬롯 오프셋을 포함한 슬롯 맵핑은 CSI-RS resource에 설정된 periodicityAndOffset을 따른다. 또한, 전송하는 NZP CSI-RS resource의 QCL 관계 정보는 CSI-RS resource에 설정된 TCI state를 참조할 수 있다. 단말은 상위레이어 시그날링을 통해 활성화된 periodic CSI-RS resource에 대해 활성화된 BWP 내에서 전송되는 CSI-RS를 수신할 수 있다.
예를 들어, 기지국은 단말에 상위레이어 시그날링을 통해 semi-persistent CSI-RS 전송 및 수신을 활성화하거나 비활성화할 수 있다. 기지국은 MAC CE 시그날링을 통해 단일 혹은 다수의 NZP CSI-RS resource set을 활성화하도록 지시할 수 있고, 활성화된 NZP CSI-RS resource set에 포함된 NZP CSI-RS resource를 전송할 수 있다. MAC CE 시그날링을 통해 활성화되는 NZP CSI-RS resource set은 semi-persistent NZP CSI-RS resource만을 포함하는 NZP CSI-RS resource set로 한정할 수 있고, semi-persistent NZP CSI-RS resource는 전송 주기 및 슬롯 오프셋을 포함한 슬롯 맵핑을 설정하는 periodicityAndOffset를 포함하고 QCL 관계 정보를 포함하지 않는 NZP CSI-RS resource로 한정할 수 있다. 전송하는 NZP CSI-RS resource의 슬롯 내 시간-주파수 축 자원 맵핑은 CSI-RS resource에 설정된 자원 맵핑 정보를 따르며, 전송 주기 및 슬롯 오프셋을 포함한 슬롯 맵핑은 CSI-RS resource에 설정된 periodicityAndOffset을 따른다. 또한, 전송하는 NZP CSI-RS resource의 QCL 관계 정보는 NZP CSI-RS resource set을 활성화하는 MAC CE 시그날링에서 개별 NZP CSI-RS resource에 지시하는 TCI state를 참조할 수 있다. 단말은 MAC CE 시그날링을 통해 활성화된 semi-persistent CSI-RS resource에 대해 활성화된 BWP 내에서 전송되는 CSI-RS를 수신할 수 있다.
예를 들어, 기지국은 단말에 상위레이어 시그날링 또는 DCI를 통해 aperiodic CSI-RS 전송 및 수신을 트리거할 수 있다. 기지국은 단말에 RRC 시그날링을 통해 다수의 aperiodic 트리거 상태를 설정할 수 있고 이 중 일부를 MAC CE 시그날링을 통해 선택할 수 있다. 기지국은 MAC CE 시그날링을 통해 선택된 aperiodic 트리거 상태 중 하나를 DCI를 통해 선택함으로써 aperiodic 트리거 상태에서 참조하는 aperiodic CSI-RS(s)에 대한 전송 및 수신을 트리거할 수 있다. 구체적으로, 기지국이 DCI를 통해 선택한 aperiodic 트리거 상태는 단일 혹은 다수의 CSI-AssociatedReportConfigInfo를 참조할 수 있으며, CSI-AssociatedReportConfigInfo는 CSI 보고 설정을 위한 CSI-ReportConfig과 CSI 보고를 위해 참조하는 CSI-RS resource set 또는 SSB resource set을 참조할 수 있다. 만일 CSI 보고를 위해 참조하는 CSI-RS resource set이 aperiodic NZP CSI-RS resource만을 포함하는 NZP CSI-RS resource set인 경우, NZP CSI-RS resource set에서 포함하는 aperiodic NZP CSI-RS resource에 대한 전송 및 수신이 트리거된다. aperiodic NZP CSI-RS resource는 periodic CSI-RS 또는 semi-persistent CSI-RS의 전송 주기 및 슬롯 오프셋을 포함한 슬롯 맵핑을 설정하는 periodicityAndOffset를 포함하지 않는 NZP CSI-RS resource로 한정할 수 있다. 전송하는 NZP CSI-RS resource의 슬롯 내 시간-주파수 축 자원 맵핑은 CSI-RS resource에 설정된 자원 맵핑 정보를 따른다. 또한, 전송하는 NZP CSI-RS resource의 슬롯 맵핑은 DCI를 포함하는 PDCCH과 NZP CSI-RS resource 간의 슬롯 오프셋을 통해 결정될 수 있으며, 이는 NZP CSI-RS resource set에 설정된 triggering offset을 따를 수 있다. 만일 전송하는 NZP CSI-RS resource(s)을 위해 참조하는 모든 TCI state가 빔 정보를 포함하는 'QCL-typeD'를 포함하지 않으면, DCI를 포함하는 PDCCH과 NZP CSI-RS resource 간의 슬롯 오프셋을 NZP CSI-RS resource set에 설정된 triggering offset을 따르지 않고 0으로 결정할 수 있다. 단말은 DCI를 통해 트리거된 aperiodic CSI-RS resource에 대해 활성화된 BWP 내에서 전송되는 CSI-RS를 수신할 수 있다.
기지국이 단말에 상위레이어 시그날링 또는 DCI를 통해 aperiodic CSI-RS 전송 및 수신을 트리거할 때, 전송하는 NZP CSI-RS resource의 QCL 관계 정보는 DCI를 통해 선택한 aperiodic 트리거 상태에서 참조하는 CSI-AssociatedReportConfigInfo(s)에 개별 NZP CSI-RS resource를 위해 설정된 TCI state를 참조할 수 있다. 만일 단말이 aperiodic CSI-RS를 수신하기 위한 빔 변경 시간(beam switching time)을 단말 capability로 보고할 경우(예를 들어, beamSwitchTiming), 이를 고려하여 NZP CSI-RS resource를 위해 설정된 TCI state을 따르지 않고 같은 심볼에서 전송되는 다른 하향링크 채널 또는 RS에서 참조하는 TCI state를 따르거나 특정 CORESET의 활성화된 TCI state를 따를 수 있다.
도 11은 일부 실시예에 따른 기지국이 DCI를 통해 aperiodic CSI-RS 전송 및 수신을 트리거할 때, 전송하는 NZP CSI-RS resource의 QCL 관계 정보를 얻기 위해 참조하는 TCI state의 결정 과정에 대한 순서도의 예시를 도시한 도면이다.
도 11을 참조하면, 기지국이 DCI를 통해 aperiodic CSI-RS 전송 및 수신을 트리거하는 경우, 전송하는 NZP CSI-RS resource의 QCL 관계 정보를 얻기 위해 참조하는 TCI state는 순서도 11-00에 따라 결정될 수 있다. 기지국은 DCI를 통해 NZP CSI-RS resource set에 포함된 aperiodic CSI-RS resource(s) 전송 및 수신을 트리거한다. (11-05) 만일 DCI를 포함하는 PDCCH의 마지막 심볼부터 트리거된 aperiodic CSI-RS resource(s)의 첫 번째 심볼까지의 심볼 단위 scheduling offset이 단말이 aperiodic CSI-RS를 수신하기 위한 beam switching time에 대해 단말 capability로 보고한 beamSwitchTiming보다 작지 않은 경우 (11-10), 전송하는 NZP CSI-RS resource의 QCL 관계 정보는 DCI를 통해 선택한 aperiodic 트리거 상태에서 참조하는 CSI-AssociatedReportConfigInfo(s)에 개별 NZP CSI-RS resource를 위해 설정된 TCI state를 참조한다. (11-15) 만일 scheduling offset이 beamSwitchTiming보다 작은 경우 (11-10), 전송하는 NZP CSI-RS resource와 동일한 심볼에서 전송되는 '특별한 조건을 만족하는 하향링크 신호'가 있는 지를 판별한다. (11-20) '특별한 조건을 만족하는 하향링크 신호'는 PDSCH를 수신하기 위한 beam switching time에 대해 단말 capability로 보고한 timeDurationForQCL보다 크거나 같은 PDCCH와 PDSCH간의 오프셋을 두고 스케줄링된 PDSCH 또는 beamSwitchTiming보다 크거나 같은 PDDCCH와 CSI-RS간의 오프셋의 두고 스케줄링된 aperiodic CSI-RS 또는 periodic CSI-RS 또는 semi-persistent CSI-RS로 한정할 수 있다. 만일 전송하는 NZP CSI-RS resource와 동일한 심볼에서 전송되는 '특별한 조건을 만족하는 하향링크 신호'가 없는 경우, 전송하는 NZP CSI-RS resource의 QCL 관계 정보는 서빙셀의 활성화된 BWP 내에서 최소한 하나의 CORESET을 모니터링하는 가장 최근 슬롯의 모니터링 search space를 포함하는 가장 CORESET 인덱스가 낮은 CORESET에서 활성화된 TCI state를 참조한다. (11-25) 만일 전송하는 NZP CSI-RS resource와 동일한 심볼에서 전송되는 '특별한 조건을 만족하는 하향링크 신호'가 있는 경우, 전송하는 NZP CSI-RS resource의 QCL 관계 정보는 NZP CSI-RS resource와 동일한 심볼에서 전송되는 '특별한 조건을 만족하는 하향링크 신호'를 위해 설정된 TCI state를 참조한다. (11-30)
순서도 11-00을 참조하여 NZP CSI-RS resource의 QCL 관계 정보를 얻기 위한 TCI sate를 결정하는 과정은 NZP CSI-RS resource의 사용처에 따라 NZP CSI-RS resource를 포함하는 NZP CSI-RS resource set이 'trs-info' 또는 'repetition' 설정 정보를 포함하지 않는 경우로 한정하여 적용할 수 있다. 또는 단말이 beamSwitchTiming을 단말 capability로 보고하는 경우로 한정하여 적용할 수 있다. 또는 단말이 보고한 beamSwitchTiming이 14, 28, 또는 48 심볼인 경우로 한정하여 적용할 수 있다.
기지국은 단말에게 SRS 전송을 위한 설정 정보를 전달하기 위해 상향링크 BWP마다 적어도 하나의 SRS configuration을 설정할 수 있고, 또한 SRS configuration마다 적어도 하나의 SRS resource set을 설정할 수 있다. 일례로, 기지국과 단말은 SRS resource set에 관한 정보를 전달하기 위해 하기와 같은 시그날링 정보를 주고 받을 수 있다.
- srs-ResourceSetId: SRS resource set 인덱스
- srs-ResourceIdList: SRS resource set에서 참조하는 SRS resource 인덱스의 집합
- resourceType: SRS resource set에서 참조하는 SRS resource의 시간 축 전송 설정으로, 'periodic', 'semi-persistent', 'aperiodic' 중 하나를 가질 수 있다. 만약 'periodic' 또는 'semi-persistent'로 설정될 경우, SRS resource set의 사용처에 따라 associated CSI-RS 정보를 제공할 수 있다. 만약 'aperiodic'으로 설정될 경우, aperiodic SRS resource 트리거 리스트, 슬롯 오프셋 정보를 제공할 수 있고, SRS resource set의 용처에 따라 associated CSI-RS 정보를 제공할 수 있다.
- usage: SRS resource set에서 참조하는 SRS resource의 사용처에 대한 설정으로, 'beamManagement', 'codebook', 'nonCodebook', 'antennaSwitching' 중 하나를 가질 수 있다.
- alpha, p0, pathlossReferenceRS, srs-PowerControlAdjustmentStates: SRS resource set에서 참조하는 SRS resource의 송신 전력 조절을 위한 파라미터 설정을 제공한다.
단말은 SRS resource set에서 참조하는 SRS resource 인덱스의 집합에 포함된 SRS resource는 SRS resource set에 설정된 정보를 따른다고 이해할 수 있다.
또한, 기지국과 단말은 SRS resource에 대한 개별 설정 정보를 전달하기 위해 상위레이어 시그날링 정보를 주고 받을 수 있다. 일례로, SRS resource에 대한 개별 설정 정보는 SRS resource의 슬롯 내 시간-주파수 축 맵핑 정보를 포함할 수 있고, 이는 SRS resource의 슬롯 내 또는 슬롯 간 주파수 호핑(hopping)에 대한 정보를 포함할 수 있다. 또 다른 일례로, SRS resource에 대한 개별 설정 정보는 SRS resource의 시간 축 전송 설정을 포함할 수 있고, 'periodic', 'semi-persistent', 'aperiodic' 중 하나를 가질 수 있다. 이는 SRS resource가 포함된 SRS resource set과 같은 시간 축 전송 설정을 가지도록 제한할 수 있다. 만일 SRS resource의 시간 축 전송 설정이 'periodic' 또는 'semi-persistent'로 설정되는 경우, 추가적으로 SRS resource 전송 주기 및 슬롯 오프셋(예를 들어, periodicityAndOffset)을 포함할 수 있다. 또 다른 일례로, SRS resource에 대한 개별 설정 정보는 SRS resource를 전송하는 단말의 spatial domain transmission filter에 대한 설정을 포함할 수 있고, 이는 SRS를 위한 spatial relation info를 통해 제공될 수 있다. SRS resource에 대한 개별 설정 정보에 포함된 spatial relation info가 CSI-RS resource 또는 SSB의 인덱스를 참조하는 경우, 단말은 참조하는 CSI-RS resource 또는 SSB를 수신할 때 사용한 spatial domain receive filter와 같은 spatial domain transmission filter를 사용하는 것으로 이해할 수 있다. 또는 spatial relation info가 다른 SRS resource 인덱스를 참조하는 경우, 단말은 참조하는 SRS resource를 전송할 때 사용한 spatial domain transmission filter를 사용하는 것으로 이해할 수 있다.
기지국은 RRC 시그날링 또는 MAC CE 시그날링을 포함한 상위레이어 시그날링, 또는 L1 시그날링(예를 들어, DCI)을 통해 단말에게 SRS 전송을 활성화 또는 비활성화(deactivation)하거나 트리거 할 수 있다.
예를 들어, 기지국은 단말에 상위레이어 시그날링을 통해 periodic SRS 전송을 활성화하거나 비활성화할 수 있다. 기지국은 상위레이어 시그날링을 통해 resourceType이 periodic으로 설정된 SRS resource set을 활성화하도록 지시할 수 있고, 단말은 활성화된 SRS resource set에서 참조하는 SRS resource를 전송할 수 있다. 전송하는 SRS resource의 슬롯 내 시간-주파수 축 자원 맵핑은 SRS resource에 설정된 자원 맵핑 정보를 따르며, 전송 주기 및 슬롯 오프셋을 포함한 슬롯 맵핑은 SRS resource에 설정된 periodicityAndOffset을 따른다. 또한, 전송하는 SRS resource에 적용하는 spatial domain transmission filter는 SRS resource에 설정된 spatial relation info를 참조할 수 있고, 또는 SRS resource가 포함된 SRS resource set에 설정된 associated CSI-RS 정보를 참조할 수 있다. 단말은 상위레이어 시그날링을 통해 활성화된 periodic SRS resource에 대해 활성화된 상향링크 BWP 내에서 SRS resource를 전송할 수 있다.
예를 들어, 기지국은 단말에 상위레이어 시그날링을 통해 semi-persistent SRS 전송을 활성화하거나 비활성화할 수 있다. 기지국은 MAC CE 시그날링을 통해 SRS resource set을 활성화하도록 지시할 수 있고, 단말은 활성화된 SRS resource set에서 참조하는 SRS resource를 전송할 수 있다. MAC CE 시그날링을 통해 활성화되는 SRS resource set은 resourceType이 semi-persistent로 설정된 SRS resource set으로 한정할 수 있다. 전송하는 SRS resource의 슬롯 내 시간-주파수 축 자원 맵핑은 SRS resource에 설정된 자원 맵핑 정보를 따르며, 전송 주기 및 슬롯 오프셋을 포함한 슬롯 맵핑은 SRS resource에 설정된 periodicityAndOffset을 따른다. 또한, 전송하는 SRS resource에 적용하는 spatial domain transmission filter는 SRS resource에 설정된 spatial relation info를 참조할 수 있고, 또는 SRS resource가 포함된 SRS resource set에 설정된 associated CSI-RS 정보를 참조할 수 있다. 만일 SRS resource에 spatial relation info가 설정되어 있는 경우, 이를 따르지 않고 semi-persistent SRS 전송을 활성화하는 MAC CE 시그날링을 통해 전달되는 spatial relation info에 대한 설정 정보를 참조하여 spatial domain transmission filter를 결정할 수 있다. 단말은 상위레이어 시그날링을 통해 활성화된 semi-persistent SRS resource에 대해 활성화된 상향링크 BWP 내에서 SRS resource를 전송할 수 있다.
예를 들어, 기지국은 단말에 DCI를 통해 aperiodic SRS 전송을 트리거 할 수 있다. 기지국은 DCI의 SRS request 필드를 통해 aperiodic SRS resource 트리거 중 하나를 지시할 수 있다. 단말은 SRS resource set의 설정 정보 중, aperiodic SRS resource 트리거 리스트에서 DCI를 통해 지시된 aperiodic SRS resource 트리거를 포함하는 SRS resource set이 트리거 되었다고 이해할 수 있다. 단말은 트리거 된 SRS resource set에서 참조하는 SRS resource를 전송할 수 있다. 전송하는 SRS resource의 슬롯 내 시간-주파수 축 자원 맵핑은 SRS resource에 설정된 자원 맵핑 정보를 따른다. 또한, 전송하는 SRS resource의 슬롯 맵핑은 DCI를 포함하는 PDCCH과 SRS resource 간의 슬롯 오프셋을 통해 결정될 수 있으며, 이는 SRS resource set에 설정된 slot offset 집합에 포함된 값(들)을 참조할 수 있다. 구체적으로, DCI를 포함하는 PDCCH과 SRS resource 간의 슬롯 오프셋은 SRS resource set에 설정된 slot offset 집합에 포함된 오프셋 값(들) 중에 DCI의 time domain resource assignment 필드에서 지시한 값을 적용할 수 있다. 또한, 전송하는 SRS resource에 적용하는 spatial domain transmission filter는 SRS resource에 설정된 spatial relation info를 참조할 수 있고, 또는 SRS resource가 포함된 SRS resource set에 설정된 associated CSI-RS 정보를 참조할 수 있다. 단말은 DCI를 통해 트리거 된 aperiodic SRS resource에 대해 활성화된 상향링크 BWP 내에서 SRS resource를 전송할 수 있다.
기지국이 단말에 DCI를 통해 aperiodic SRS 전송을 트리거 하는 경우, 단말은 SRS resource에 대한 설정 정보를 적용하여 SRS를 전송하기 위해, aperiodic SRS 전송을 트리거하는 DCI를 포함하는 PDCCH와 전송하는 SRS 사이의 최소한의 타임 인터벌 (minimum time interval)이 필요할 수 있다. 단말의 SRS 전송을 위한 time interval은 aperiodic SRS 전송을 트리거하는 DCI를 포함하는 PDCCH의 마지막 심볼부터 전송하는 SRS resource(s) 중에 가장 먼저 전송되는 SRS resource가 맵핑된 첫 번째 심볼 사이의 심볼 수로 정의할 수 있다. Minimum time interval은 단말이 PUSCH 전송을 준비하기 위해 필요한 PUSCH preparation procedure time을 참조하여 정해질 수 있다. 또한, minimum time interval은 전송하는 SRS resource를 포함한 SRS resource set의 사용처에 따라 다른 값을 가질 수 있다. 예를 들어, minimum time interval은 단말의 PUSCH preparation procedure time을 참조하여 단말의 capability에 따른 단말 처리 능력을 고려하여 정의된
Figure PCTKR2020012485-appb-img-000049
심볼로 정해질 수 있다. 또한, 전송하는 SRS resource를 포함한 SRS resource set의 사용처를 고려하여 SRS resource set의 사용처가 'codebook' 또는 'antennaSwitching'으로 설정된 경우 minimum time interval을
Figure PCTKR2020012485-appb-img-000050
심볼로 정하고, SRS resource set의 사용처가 'nonCodebook' 또는 'beamManagement'로 설정된 경우 minimum time interval을
Figure PCTKR2020012485-appb-img-000051
심볼로 정할 수 있다. 단말은 SRS 전송을 위한 time interval이 minimum time interval보다 크거나 같은 경우 aperiodic SRS를 전송하고, SRS 전송을 위한 time interval이 minimum time interval보다 작은 경우 aperiodic SRS를 트리거하는 DCI를 무시할 수 있다.
본 개시에서는 단말이 상위레이어 시그날링 또는 L1 시그날링을 통해 지시된 상향링크 빔으로 상향링크 신호를 전송하기 위해 필요한 beam switching time을 결정하는 방법과 다양한 상향링크 신호(예를 들어, SRS 또는 PUSCH 또는 PUCCH) 전송 시에 beam switching time을 고려하여 상향링크 빔을 결정하는 방법을 제공한다. 기지국은 상위레이어 시그날링 또는 L1 시그날링을 통해 단말에 상향링크 신호 전송을 지시할 수 있고, 상향링크 신호 전송 시 단말이 사용하는 상향링크 빔에 대한 설정 정보를 함께 전달할 수 있다. 기지국은 상향링크 빔에 대한 설정 정보를 단말에 알리기 위해 상향링크 빔을 직접적으로 알려줄 수 있고, 또는 상향링크 신호 전송에 대한 설정 정보(예를 들어, SRS resource 또는 PUCCH resource 설정 정보)를 통해 간접적으로 상향링크 빔을 지시할 수 있다. 단말은 상향링크 신호 전송을 지시하는 기지국의 상위레이어 시그날링 또는 L1 시그날링을 디코딩 한 후에, 기지국이 지시하는 상향링크 빔을 사용하여 상향링크 신호 전송을 수행한다. 이 경우, 단말은 기지국의 상위레이어 시그날링 또는 L1 시그날링을 디코딩 한 후에 기지국이 지시하는 상향링크 빔을 사용하기 위해 기지국의 시그날링과 상향링크 신호 전송 사이에 상향링크 빔을 준비하기 위한 충분한 시간이 보장되어야 할 수 있다. 본 개시에서는 이를 단말의 상향링크 신호 전송을 위한 beam switching time으로 정의한다. 단말의 상향링크 신호 전송을 위한 beam switching time은 기지국이 단말에 상향링크 신호 전송에 대한 지시를 포함하는 시그날링과 단말의 상향링크 신호 전송 사이에 단말이 필요로 하는 시간으로 기지국의 시그날링 방법과 단말이 전송하는 상향링크 신호의 성질에 따라 달라질 수 있다. 본 개시에서 고려하는 상향링크 신호는 최소한 SRS 또는 PUSCH 또는 PUCCH의 일부 혹은 전체를 포함하며, 기지국의 상향링크 신호 전송에 대한 시그날링은 RRC 또는 MAC CE를 포함한 상위레이어 시그날링 또는 DCI를 포함한 L1 시그날링의 일부 혹은 전체를 포함한다. 다양한 경우의 수에 대해 단말의 상향링크 신호 전송을 위한 beam switching time을 결정하는 방법은 하기 실시예들에서 구체적으로 서술하고자 한다.
단말은 상향링크 신호 전송을 위한 beam switching time과 기지국의 상향링크 신호 전송에 대한 지시 또는 설정 정보를 고려하여 상향링크 신호 전송을 수행할 수 있다. 일례로, 단말은 기지국의 상향링크 전송에 대한 지시와 상향링크 전송을 위한 설정 정보를 고려하여 기지국의 상향링크 전송에 대한 시그날링이 상향링크 신호 전송을 위한 beam switching time을 충분히 만족하는 경우 기지국이 지시한 상향링크 빔을 사용하여 상향링크 신호 전송을 수행할 수 있다. 만일 기지국의 상향링크 전송에 대한 시그날링이 상향링크 신호 전송을 위한 beam switching time을 충분히 만족하지 않는 경우, 단말은 하기의 상향링크 신호 전송 방법 중 하나를 따를 수 있다.
- 방법 1: 단말은 기지국이 지시한 상향링크 빔을 따르지 않고 미리 정해진 규칙에 따른 상향링크 빔을 사용하여 상향링크 신호 전송을 수행할 수 있다. 이 경우, 상향링크 빔을 제외한 상향링크 신호 전송에 대한 설정은 기지국의 지시를 따른다.
- 방법 2: 단말은 기지국이 지시한 상향링크 신호 전송에 대한 설정 정보를 따르지 않고, 미리 정해진 규칙에 따른 상향링크 신호 전송에 대한 설정 정보(예를 들어, SRS resource 또는 PUCCH resource)를 따라 상향링크 신호 전송을 수행할 수 있다. 이 경우 상향링크 빔은 미리 정해진 규칙에 따른 상향링크 신호 전송에 대한 설정 정보를 따른다.
방법 3: 단말은 기지국이 지시한 상향링크 신호 전송을 수행하지 않을 수 있다. Aperiodic SRS 전송의 경우 beam switching time을 고려하여 minimum time interval을 결정함으로써 단말이 aperiodic SRS 전송을 위한 beam switching time을 만족하지 않을 때 aperiodic SRS 전송을 수행하지 않도록 지시할 수 있다. 또는 beam switching time과 minimum time interval을 개별적으로 고려하여 둘 중 최소한 하나를 만족하지 않을 때 aperiodic SRS 전송을 수행하지 않도록 지시할 수 있다. PUSCH 전송의 경우 beam switching time을 고려하여 PUSCH preparation procedure time을 결정함으로써 단말이 PUSCH 전송을 위한 beam switching time을 만족하지 않을 때 PUSCH 전송을 수행하지 않도록 지시할 수 있다. 또는 beam switching time과 PUSCH preparation procedure time을 개별적으로 고려하여 둘 중 최소한 하나를 만족하지 않을 때 PUSCH 전송을 수행하지 않도록 지시할 수 있다.
상향링크 신호 전송을 위한 beam switching time을 고려한 단말의 상향링크 신호 전송에 대한 구체적인 동작은 기지국의 시그날링 방법과 단말이 전송하는 상향링크 신호의 성질에 따라 달라질 수 있다. 다양한 경우의 수에 대해 상향링크 신호 전송을 위한 beam switching time을 고려한 단말의 상향링크 신호 전송 동작은 하기 실시예들에서 구체적으로 서술하고자 한다.
본 개시에서는 단말의 상향링크 신호 전송을 위한 beam switching time을 고려하여 단말이 기지국의 상위레이어 시그날링 또는 L1 시그날링을 디코딩 한 후에 기지국이 지시하는 상향링크 빔을 사용하기 위해 필요한 준비 시간을 충분히 보장하고자 한다. 단말의 상향링크 신호 전송을 위한 beam switching time은 단말의 capability로 기지국에 이를 보고할 수 있고, 기지국의 시그날링 방법과 단말이 전송하는 상향링크 신호의 성질에 따라 달라질 수 있다. 이를 통해, 단말이 만족해야 하는 상향링크 빔을 사용하기 위한 준비 시간을 정함으로써 기지국과 단말의 운용 관점에서 하기와 같은 이점을 가질 수 있다.
이점 1: 기지국이 지시한 상향링크 빔을 사용하기 위한 준비 시간을 기지국과 단말이 공통적으로 인지함으로써 기지국이 단말에 이를 고려한 상향링크 신호 전송을 지시할 수 있다. 다시 말하면, 기지국은 단말이 상향링크 신호 전송을 위한 beam switching time을 만족하는 경우에 지시한 상향링크 빔을 사용할 것으로 기대할 수 있다.
이점 2: 단말이 상향링크 신호 전송을 위한 beam switching time을 충분히 만족하지 않을 때 상향링크 신호 전송을 수행하지 않는 경우, 단말의 비효율적인 상향링크 신호 전송을 억제함으로써 상향링크 채널을 효율적으로 운용할 수 있다.
이점 3: 단말이 상향링크 신호 전송을 위한 beam switching time을 충분히 만족하지 않을 때 기지국이 지시한 상향링크 빔을 따르지 않고 미리 정해진 규칙에 따른 상향링크 빔을 사용하여 상향링크 신호 전송을 수행하는 경우, 단말이 사용하는 상향링크 빔을 기지국과 단말이 공통적으로 인지함으로써 기지국의 상향링크 신호 디코딩 성능 향상을 기대할 수 있다.
이점 4: 단말 관점에서 기지국이 지시한 상향링크 빔을 사용하기 위한 준비 시간이 보장됨으로써 상향링크 신호 전송을 위한 beam switching time 이내의 시간에서 기지국의 시그날링에 대한 디코딩 수행과 상향링크 빔을 사용하기 위한 준비를 유연하게 수행할 수 있다. 다시 말하면, 단말은 상향링크 신호 전송을 위한 beam switching time을 만족하는 한도 내에서 자율적인 동작 운용이 가능하다.
이점 5: 단말의 상향링크 신호 전송을 위한 beam switching time을 기지국의 시그날링 방법과 단말이 전송하는 상향링크 신호의 성질에 따라 다르게 결정함으로써 다양한 경우의 수에 대한 기지국과 단말의 동작 및 운용 상 차이를 반영할 수 있다. 이를 통해 효율적인 네트워크 운용을 기대할 수 있다.
이점 6: 단말이 상향링크 신호 전송에 사용할 수 있는 빔의 개수와 단말이 가진 패널의 개수, 단말이 활성화하는 패널의 개수 등 상향링크 신호 전송을 위한 단말의 구현 능력을 고려하여 beam switching time을 결정하는 것이 가능하다. 이를 통해, 상향링크 신호 전송에 대한 설정 및 기지국의 지시에 단말의 구현 상 차이를 반영할 수 있다.
본 개시에서는 하기의 다양한 실시예를 통해 기지국의 시그날링 방법과 상향링크 신호의 성질에 따라 beam switching time을 결정하는 방법을 제공한다. 또한 기지국이 단말에 상향링크 신호 전송을 지시하였을 때, beam switching time을 고려하여 단말의 동작을 결정하는 방법을 제공한다.
이하 본 개시의 실시예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 개시를 설명함에 있어서 관련된 기능 혹은 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하 본 개시에서는 다수의 실시예를 통하여 상기 예제들을 설명하나 이는 독립적인 것들이 아니며 하나 이상의 실시예가 동시에 또는 복합적으로 적용되는 것이 가능하다.
<제 1실시예: 단말의 상향링크 신호 전송을 위한 beam switching time을 결정하는 방법>
단말의 상향링크 신호 전송을 위한 beam switching time을 결정하는 방법 중 일례로 단말은 기지국에 상향링크 신호 전송을 위한 beam switching time에 대한 capability를 보고할 수 있다. 추가적으로 단말의 상향링크 신호 전송을 위한 beam switching time은 하기와 같은 조건 또는 설정 정보 중 최소한 하나를 고려하여 조건 또는 설정 정보에 따라 다르게 결정하는 것이 가능하다.
- 상향링크 신호의 종류(예를 들어, SRS 또는 PUSCH 또는 PUCCH)
- 상향링크 신호를 전송하는 상향링크 BWP의 뉴머롤로지
- 단말 패널의 개수(예를 들어, 단말이 상향링크 신호 전송을 수행하는 패널의 개수 또는 단말이 상향링크 신호 전송을 위해 동시에 활성화할 수 있는 패널의 개수 또는 단말이 상향링크 신호 전송을 위해 사용 가능한 패널의 개수)
기지국과 단말은 단말이 보고한 상향링크 신호 전송을 위한 beam switching time과 상기 전술한 조건 또는 설정 정보를 고려하여 다양한 상향링크 신호의 종류, 뉴머롤로지, 단말 패널의 개수에 따라 개별적으로 beam switching time을 결정하는 것이 가능하다. 일례로, 단말이 기지국에 보고한 상향링크 전송을 위한 beam switching time이 X 심볼이라고 하면, 실제 적용하는 상향링크 전송을 위한 beam switching time은 X + Y 심볼로 결정할 수 있고, Y 값에 대한 결정은 상향링크 신호의 종류, 뉴머롤로지, 단말 패널의 개수에 따라 달라질 수 있다. 또는 단말이 상향링크 신호의 종류, 뉴머롤로지, 단말 패널의 개수를 고려하여 복수 개의 상향링크 전송을 위한 beam switching time을 단말 capability로 보고할 수 있다. 일례로, 단말이 SRS 전송을 위한 beam switching time을
Figure PCTKR2020012485-appb-img-000052
심볼이라고 보고하고, PUSCH 전송을 위한 beam switching time을
Figure PCTKR2020012485-appb-img-000053
심볼이라고 보고하고, PUCCH 전송을 위한 beam switching time을
Figure PCTKR2020012485-appb-img-000054
심볼이라고 보고할 수 있다. 이 경우 단말이 전송하는 상향링크 신호의 종류에 따라 서로 다른 beam switching time을 적용하는 것이 가능하다. 상향링크 신호의 종류가 SRS 또는 PUSCH 또는 PUCCH일 때, 상향링크 신호의 종류에 따른 beam switching time을 결정하는 방법은 제 1-1실시예, 제 1-2실시예, 제 1-3실시예에서 구체적으로 서술하도록 한다. 또 다른 일례로, 단말이 상향링크 뉴머롤로지가
Figure PCTKR2020012485-appb-img-000055
일 때의 beam switching time을
Figure PCTKR2020012485-appb-img-000056
심볼이라고 보고하고
Figure PCTKR2020012485-appb-img-000057
일 때의 beam switching time을
Figure PCTKR2020012485-appb-img-000058
심볼이라고 보고할 수 있다. 이 경우 단말이 상향링크 신호를 전송하는 상향링크 BWP의 뉴머롤로지에 따라 서로 다른 beam switching time을 적용하는 것이 가능하다.
단말의 상향링크 신호 전송을 위한 beam switching time을 만족하는지 판별하기 위해서는 기지국이 단말에 상향링크 신호 전송을 지시하는 시그날링과 단말이 전송하는 상향링크 신호 사이의 시간 간격을 계산하여 이를 beam switching time과 비교하여야 한다. 본 개시에서는 기지국이 단말에 상향링크 신호 전송을 지시하는 시그날링과 단말이 전송하는 상향링크 신호 사이의 시간 간격을 'time offset'으로 표현하기로 하며, 이는 'scheduling interval' 또는 'scheduling offset' 또는 'time interval'로 대체하여 표현할 수도 있다. 상향링크 신호 전송을 지시하는 기지국의 시그날링 방법에 따라 time offset을 하기와 같이 계산할 수 있다.
-기지국이 DCI를 포함한 L1 시그날링을 통해 상향링크 신호 전송을 지시하는 경우, time offset은 'DCI를 포함한 PDCCH가 전송되는 마지막 심볼이 끝난 후부터 상향링크 신호(예를 들어, aperiodic/semi-persistent SRS 또는 PUSCH 또는 PDSCH에 대한 HARQ-ACK을 포함하는 PUCCH)가 전송되는 첫 번째 심볼이 시작하기 전까지'로 계산될 수 있다. 이는 절대 시간 단위 또는 심볼 단위로 환산할 수 있다. 만일 단말의 DCI 디코딩 시간을 추가적으로 고려하는 경우, time offset은 'DCI를 포함한 PDCCH가 전송되는 마지막 심볼이 끝난 시점에서 단말의 DCI 디코딩 시간이 지난 후부터 상향링크 신호가 전송되는 첫 번째 심볼이 시작하기 전까지'로 계산될 수도 있다.
-기지국이 MAC CE 시그날링을 통해 상향링크 신호 전송을 지시하는 경우, time offset은 하기와 같은 방법에 의해 계산할 수 있다.
* 방법 1: MAC CE 시그날링을 포함하는 PDSCH가 전송되는 마지막 심볼이 끝난 후부터 상향링크 신호(예를 들어, aperiodic/semi-persistent SRS)가 전송되는 첫 번째 심볼이 시작하기 전까지
* 방법 2: MAC CE 시그날링을 포함하는 PDSCH에 대한 HARQ-ACK을 포함하는 PUCCH/PUSCH가 전송되는 마지막 심볼이 끝난 후부터 상향링크 신호가 전송되는 첫 번째 심볼이 시작하기 전까지
* 방법 3: MAC CE 시그날링을 포함하는 PDSCH에 대한 HARQ-ACK을 포함하는 PUCCH/PUSCH가 전송되는 마지막 심볼이 끝난 시점에서 MAC CE 적용 지연시간(예를 들어, 3ms가 지난 후 처음 시작하는 슬롯까지)이 지난 후부터 상향링크 신호가 전송되는 첫 번째 심볼이 시작하기 전까지
상기 정의한 time offset은 절대 시간 단위 또는 심볼 단위로 환산될 수 있다.
만일 상기 전술한 방법에 따라 계산된 time offset이 단말의 상향링크 신호 전송을 위한 beam switching time보다 작을 경우, 기지국과 단말은 단말의 상향링크 신호 전송을 위한 beam switching time을 만족하지 않는다고 판단할 수 있다. 또는 만일 상기 전술한 방법에 따라 계산된 time offset이 단말의 상향링크 신호 전송을 위한 beam switching time보다 크거나 같은 경우, 기지국과 단말은 단말의 상향링크 신호 전송을 위한 beam switching time을 만족한다고 판단할 수 있다. 단말의 상향링크 신호 전송을 위한 beam switching time을 만족하는지 여부에 따른 단말의 동작에 대한 구체적인 실시예는 제 2실시예, 제 3실시예, 제 4실시예를 통해 상세히 기술한다.
<제 1-1실시예: SRS 전송을 위한 beam switching time을 결정하는 방법>
SRS 전송을 위한 beam switching time을 결정하는 방법 중 일례로 단말은 기지국에 SRS 전송을 위한 beam switching time에 대한 capability를 보고할 수 있다. 추가적으로 단말의 SRS 전송을 위한 beam switching time은 하기와 같은 조건 또는 설정 정보 중 최소한 하나를 고려하여 조건 또는 설정 정보에 따라 다르게 결정하는 것이 가능하다.
기지국이 단말에 SRS 전송을 트리거하거나 활성화하는 시그날링 방법(예를 들어, DCI를 포함한 L1 시그날링 또는 MAC CE 시그날링)
- 기지국이 단말에 전송하도록 지시한 SRS의 시간 축 전송 정보(예를 들어, aperiodic SRS 또는 semi-persistent SRS 또는 periodic SRS)
- 기지국이 단말에 전송하도록 지시한 SRS resource set의 usage 설정 정보 또는 SRS resource set에서 참조하는 SRS resource의 사용처(예를 들어, 'beamManagement' 또는 'codebook' 또는 'nonCodebook' 또는 'antennaSwitching')
- 기지국이 단말에 전송하도록 지시할 수 있는 SRS resource set의 개수 또는 단말에 RRC 시그날링을 통해 설정된 활성화된 BWP의 SRS resource set의 개수
- 기지국이 단말에 전송하도록 지시할 수 있는 SRS resource의 개수 또는 단말에 RRC 시그날링을 통해 설정된 활성화된 BWP의 SRS resource의 개수 또는 단말에 RRC 시그날링을 통해 설정된 활성화된 BWP의 SRS resource set에 포함된 최대 SRS resource의 개수
기지국과 단말은 단말이 보고한 SRS 전송을 위한 beam switching time과 상기 전술한 조건 또는 설정 정보를 고려하여 다양한 기지국의 시그날링 방법, SRS의 시간 축 전송 정보, SRS resource set의 usage, SRS resource set 또는 SRS resource의 개수에 따라 개별적으로 beam switching time을 결정하는 것이 가능하다. 일례로, 단말이 기지국에 보고한 SRS 전송을 위한 beam switching time이 X 심볼이라고 하면, 실제 적용하는 SRS 전송을 위한 beam switching time은 X + Y 심볼로 결정될 수 있고, Y 값에 대한 결정은 기지국의 시그날링 방법, SRS의 시간 축 전송 정보, SRS resource set의 usage, SRS resource set 또는 SRS resource의 개수에 따라 달라질 수 있다. 이 때 Y 값은 양수, 0, 음수를 포함한 정수로 한정될 수 있다. 또는 단말이 기지국의 시그날링 방법, SRS의 시간 축 전송 정보, SRS resource set의 usage, SRS resource set 또는 SRS resource의 개수를 고려하여 복수 개의 SRS 전송을 위한 beam switching time을 단말 capability로 보고할 수 있다. 일례로, 단말이 SRS resource set의 usage가 'beam Management'인 경우의 SRS 전송을 위한 beam switching time을
Figure PCTKR2020012485-appb-img-000059
심볼이라고 보고하고, SRS resource set의 usage가 'antennaSwitching'인 경우의 SRS 전송을 위한 beam switching time을
Figure PCTKR2020012485-appb-img-000060
심볼이라고 보고할 수 있다. 이 경우 기지국이 단말에 전송하도록 지시한 SRS resource set의 usage에 따라 서로 다른 beam switching time을 적용하는 것이 가능하다.
<제 1-2실시예: PUSCH 전송을 위한 beam switching time을 결정하는 방법>
PUSCH 전송을 위한 beam switching time을 결정하는 방법 중 일례로 단말은 기지국에 PUSCH 전송을 위한 beam switching time에 대한 capability를 보고할 수 있다. 추가적으로 단말의 PUSCH 전송을 위한 beam switching time은 하기와 같은 조건 또는 설정 정보 중 최소한 하나를 고려하여 조건 또는 설정 정보에 따라 다르게 결정하는 것이 가능하다.
- 기지국이 단말에 PUSCH 전송을 지시하는 DCI의 포맷(예를 들어, DCI format 0_0 또는 DCI format 0_1)
- 기지국이 단말에 전송하도록 지시한 PUSCH의 프리코딩 방법(예를 들어, 코드북 기반 PUSCH 전송 또는 논-코드북 기반 PUSCH 전송)
- 기지국이 단말에 전송하도록 지시한 PUSCH의 프리코딩 방법에 따른 SRS resource set의 개수 또는 SRS resource의 개수(예를 들어, SRS resource set의 usage 설정 정보가 'codebook'인 SRS resource set의 개수 또는 SRS resource set에 포함된 SRS resource의 개수, 또는 SRS resource set의 usage 설정 정보가 'nonCodebook'인 SRS resource set의 개수 또는 SRS resource set에 포함된 SRS resource의 개수)
- 기지국이 단말에 전송하도록 지시한 PUSCH 전송을 위해 사용하는 안테나 포트 번호와 PUSCH 전송을 위해 참조하는 SRS가 전송된 안테나 포트 번호 사이의 관계
기지국과 단말은 단말이 보고한 PUSCH 전송을 위한 beam switching time과 상기 전술한 조건 또는 설정 정보를 고려하여 다양한 DCI의 포맷, PUSCH 프리코딩 방법, PUSCH 프리코딩 방법에 따른 SRS resource set 또는 SRS resource의 개수, PUSCH와 SRS의 안테나 포트 번호 사이의 관계에 따라 개별적으로 beam switching time을 결정하는 것이 가능하다. 일례로, 단말이 기지국에 보고한 PUSCH 전송을 위한 beam switching time이 X 심볼이라고 하면, 실제 적용하는 PUSCH 전송을 위한 beam switching time은 X + Y 심볼로 결정할 수 있고, Y 값에 대한 결정은 DCI의 포맷, PUSCH 프리코딩 방법, PUSCH 프리코딩 방법에 따른 SRS resource set 또는 SRS resource의 개수, PUSCH와 SRS의 안테나 포트 번호 사이의 관계에 따라 달라질 수 있다. 이 때 Y 값은 양수, 0, 음수를 포함한 정수로 한정할 수 있다. 또는 DCI의 포맷, PUSCH 프리코딩 방법, PUSCH 프리코딩 방법에 따른 SRS resource set 또는 SRS resource의 개수, PUSCH와 SRS의 안테나 포트 번호 사이의 관계를 고려하여 복수 개의 PUSCH 전송을 위한 beam switching time을 단말 capability로 보고할 수 있다. 일례로, 코드북 기반의 PUSCH 전송을 위한 beam switching time을
Figure PCTKR2020012485-appb-img-000061
심볼이라고 보고하고, 논-코드북 기반의 PUSCH 전송을 위한 beam switching time을
Figure PCTKR2020012485-appb-img-000062
심볼이라고 보고할 수 있다. 이 경우 기지국이 단말에 전송하도록 지시한 PUSCH의 프리코딩 방법에 따라 서로 다른 beam switching time을 적용하는 것이 가능하다. 또는 DCI의 포맷, PUSCH 프리코딩 방법, PUSCH 프리코딩 방법에 따른 SRS resource set 또는 SRS resource의 개수를 고려하여 beam switching time을 0으로 결정하거나 beam switching time을 고려하지 않을 수 있다. 일례로, 기지국이 DCI format 0_0을 통해 단말에 PUSCH 전송을 지시하는 경우 beam switching time을 0 심볼로 결정하거나, beam switching time을 고려하지 않는 것으로 기지국과 단말이 이해할 수 있다.
<제 1-3실시예: PUCCH 전송을 위한 beam switching time을 결정하는 방법>
PUCCH 전송을 위한 beam switching time을 결정하는 방법 중 일례로 단말은 기지국에 PUCCH 전송을 위한 beam switching time에 대한 capability를 보고할 수 있다. 추가적으로 단말의 PUCCH 전송을 위한 beam switching time은 하기와 같은 조건 또는 설정 정보 중 최소한 하나를 고려하여 조건 또는 설정 정보에 따라 다르게 결정하는 것이 가능하다.
-기지국이 스케줄링한 PDSCH에 대한 HARQ-ACK을 포함하는 PUCCH를 위한 PUCCH resource의 개수
-PUCCH 전송을 위해 RRC 시그날링을 통해 설정한 spatial relation info의 개수 또는 PDSCH에 대한 HARQ-ACK을 포함하는 PUCCH를 위한 PUCCH resource(s)의 활성화된 spatial relation info의 개수
기지국과 단말은 단말이 보고한 PUCCH 전송을 위한 beam switching time과 상기 전술한 조건 또는 설정 정보를 고려하여 스케줄링한 PDSCH에 대한 HARQ-ACK을 포함하는 PUCCH를 위한 PUCCH resource의 개수, PUCCH 전송을 위한 spatial relation info의 개수, PUCCH resource의 활성화된 spatial relation info의 개수에 따라 개별적으로 beam switching time을 결정하는 것이 가능하다. 일례로, 단말이 기지국에 보고한 PUCCH 전송을 위한 beam switching time이 X 심볼이라고 하면, 실제 적용하는 PUCCH 전송을 위한 beam switching time은 X + Y 심볼로 결정될 수 있고, Y 값에 대한 결정은 스케줄링한 PDSCH에 대한 HARQ-ACK을 포함하는 PUCCH를 위한 PUCCH resource의 개수, PUCCH 전송을 위한 spatial relation info의 개수, PUCCH resource의 활성화된 spatial relation info의 개수에 따라 달라질 수 있다. 이 때 Y 값은 양수, 0, 음수를 포함한 정수로 한정될 수 있다. 또는 스케줄링한 PDSCH에 대한 HARQ-ACK을 포함하는 PUCCH를 위한 PUCCH resource의 개수, PUCCH 전송을 위한 spatial relation info의 개수, PUCCH resource의 활성화된 spatial relation info의 개수를 고려하여 복수 개의 PUCCH 전송을 위한 beam switching time을 단말 capability로 보고할 수 있다. 이 경우, 스케줄링한 PDSCH에 대한 HARQ-ACK을 포함하는 PUCCH를 위한 PUCCH resource의 개수, PUCCH 전송을 위한 spatial relation info의 개수, PUCCH resource의 활성화된 spatial relation info의 개수에 따라 서로 다른 beam switching time을 적용하는 것이 가능하다. 또한, 상기 PUCCH resource의 spatial relation info는 이후 NR Release에서 UL TCI state로 대체될 수 있다.
<제 2실시예: beam switching time을 고려하여 SRS 전송을 지시하는 방법>
기지국과 단말은 제 1실시예 또는 제 1-1실시예에서 기술한 방법에 의해 SRS 전송을 위한 beam switching time을 결정할 수 있고, 이를 고려하여 기지국이 단말에 SRS 전송을 지시하는 방법 또는 기지국의 SRS 전송 지시에 대한 단말의 동작을 결정할 수 있다. 일례로 기지국은 단말에 beam switching time을 만족하는 한도 내에서 SRS 전송을 지시하도록 강제할 수 있다. 또는 만일 기지국의 SRS 전송 지시가 단말의 SRS 전송을 위한 beam switching time을 만족하지 않는다면, 단말은 하기와 같은 동작을 수행하도록 결정할 수 있다.
-방법 1: 단말은 기지국이 지시한 SRS 전송을 위한 상향링크 빔을 따르지 않고 미리 정해진 규칙에 따른 상향링크 빔을 사용하여 SRS 신호 전송을 수행할 수 있다.
-방법 2: 단말은 기지국이 지시한 SRS 전송에 대한 설정 정보를 따르지 않고, 미리 정해진 규칙에 따른 SRS 전송에 대한 설정 정보(예를 들어, SRS resource)를 따라 상향링크 신호 전송을 수행할 수 있다.
-방법 3: 단말은 기지국이 지시한 SRS 전송을 수행하지 않을 수 있다.
기지국의 SRS 전송 지시에 대한 단말의 동작은 SRS의 시간 축 동작 설정(예를 들어, aperiodic SRS 또는 semi-persistent SRS 또는 periodic SRS) 또는 기지국이 트리거하거나 활성화하도록 지시한 SRS resource set의 사용처(예를 들어, 'beamManagement' 또는 'codebook' 또는 'nonCodebook' 또는 'antennaSwitching')에 따라 다르게 결정할 수 있다. 기지국의 SRS 전송 지시에 대한 단말의 동작을 결정하는 방법은 제 2-1실시예 또는 제 2-2실시예를 통해 구체적으로 서술하고자 한다.
<제 2-1실시예: SRS 전송을 위한 minimum time interval을 정의하는 방법>
일 실시예로, 단말의 aperiodic SRS 전송을 위한 minimum time interval이 SRS 전송을 위한 beam switching time을 고려하여 새롭게 정의될 수 있다. 단말은 새롭게 정의된 minimum time interval을 고려하였을 때, 만일 기지국의 aperiodic SRS 전송 지시가 minimum time interval을 만족하지 않는다면 기지국이 지시한 SRS 전송을 수행하지 않을 수 있다. 단말의 SRS 전송을 위한 beam switching time을 고려하여 minimum time interval을 새롭게 정의하는 방법은 하기와 같은 방법 중 하나를 따를 수 있다.
-방법 1: 기존에 정의된 minimum time interval과 SRS 전송을 위한 beam switching time 중에 큰 값을 minimum time interval로 새롭게 정의할 수 있다. 예를 들어, 기존에 정의된 minimum time interval이
Figure PCTKR2020012485-appb-img-000063
심볼이면 새롭게 정의한 minimum time interval은 하기의 [수학식 2]를 따를 수 있다.
Figure PCTKR2020012485-appb-img-000064
-방법 2: 기존에 정의된 minimum time interval에 추가적으로 beam switching time이 필요하다는 가정 하에 이를 더하여 minimum time interval을 새롭게 정의할 수 있다. 예를 들어, 기존에 정의된 minimum time interval이
Figure PCTKR2020012485-appb-img-000065
심볼이면 새롭게 정의한 minimum time interval은 하기의 [수학식 3]을 따를 수 있다.
Figure PCTKR2020012485-appb-img-000066
만일 기존에 정의된 minimum time interval이 SRS resource set의 사용처에 따라 다르게 정의되었다면, 새롭게 정의하는 minimum time interval도 이를 반영하여 SRS resource set 의 사용처에 따라 다르게 정의될 수 있다. 예를 들어, SRS resource set의 사용처가 'beamManagement'로 설정되었을 때 minimum time interval이
Figure PCTKR2020012485-appb-img-000067
로 정의되었다면 새롭게 정의하는 minimum time interval을 위한 [수학식 2] 또는 [수학식 3]에
Figure PCTKR2020012485-appb-img-000068
대신
Figure PCTKR2020012485-appb-img-000069
을 대입하여 minimum time interval이 계산될 수 있다.
<제 2-2실시예: SRS 전송을 위한 spatial domain transmission filter를 지시하는 방법>
일 실시예로, 단말의 SRS 전송을 위한 beam switching time을 고려하였을 때 만일 기지국의 SRS 전송 지시가 beam switching time을 만족하지 않는다면 단말이 기지국이 지시한 상향링크 빔을 사용하여 SRS를 전송하기에 충분한 시간이 보장되지 않았다고 판단하여 기지국이 지시한 상향링크 빔을 따르지 않고 미리 정해진 규칙에 따른 상향링크 빔을 사용하여 SRS 신호 전송을 수행할 수 있다. 단말은 기지국이 단말에 전송하도록 지시한 SRS resource set(s) 또는 SRS resource(s)의 설정 정보 중, 상향링크 빔에 대한 설정 정보를 제외한 SRS resource set(s) 또는 SRS resource(s)의 설정 정보는 기지국의 지시를 따를 수 있다. 만일 기지국이 단말에 aperiodic SRS 전송을 지시한 경우, 단말의 aperiodic SRS 전송을 위한 minimum time interval은 beam switching time과 개별적으로 적용될 수 있다. 다시 말하면, 기지국의 aperiodic SRS 전송 지시가 minimum time interval을 만족하지 않는다면 단말은 기지국이 지시한 SRS 전송을 수행하지 않을 수 있고, 기지국의 aperiodic SRS 전송 지시가 minimum time interval을 만족하지만 beam switching time을 만족하지 않는다면 단말은 기지국이 지시한 상향링크 빔을 따르지 않고 미리 정해진 규칙에 따른 상향링크 빔을 사용하여 SRS 신호 전송을 수행할 수 있다.
일례로, 기지국의 SRS 전송 지시가 beam switching time을 만족하지 않을 때, 단말이 SRS 신호를 전송하는 상향링크 빔을 정하는 규칙은 하기와 같은 방법 중 하나를 따를 수 있다.
-방법 1: 단말은 기지국이 지시한 SRS를 전송하기 전 가장 최근에 전송한 SRS resource set 또는 SRS resource의 spatial domain transmission filter 설정 정보를 참조하여 상향링크 빔을 정할 수 있다.
-방법 2: 단말은 기지국이 SRS 전송을 지시하는 상위레이어 시그날링 또는 DCI를 포함한 L1 시그날링이 전송 되기 전 가장 최근에 전송한 SRS resource set 또는 SRS resource의 spatial domain transmission filter 설정 정보를 참조하여 상향링크 빔을 정할 수 있다.
-방법 3: 단말은 미리 설정된 디폴트(default) SRS resource set 또는 SRS resource의 spatial domain transmission filter 설정 정보를 참조하여 상향링크 빔을 정할 수 있다.
-방법 4: 단말은 SRS resource에 설정 가능한 spatial domain transmission filter 설정 정보 중 미리 설정된 default spatial domain transmission filter 설정 정보를 참조하여 상향링크 빔을 정할 수 있다.
-방법 5: 단말은 SRS resource에 설정 가능한 spatial domain transmission filter 설정 정보 중 미리 설정된 spatial domain transmission filter의 집합에서 임의의 spatial domain transmission filter 설정 정보를 참조하여 상향링크 빔을 정할 수 있다.
상기 전술한 방법 1 또는 방법 2는 단말이 최근에 SRS 전송을 위해 사용한 상향링크 빔을 참조하도록 결정함으로써, 단말의 상향링크 빔 송신에 대한 복잡도를 낮출 수 있고 beam switching time이 만족하지 않았을 때의 기지국과 단말 간 송수신 빔 방향의 정확도를 높일 수 있다. 상기 전술한 방법 3 또는 방법 4는 단말이 미리 정해진 상향링크 빔을 사용하도록 결정함으로써, beam switching time이 만족하지 않았을 때 단말의 상향링크 빔 송신에 대한 복잡도를 낮출 수 있다. 또한 상기 전술한 방법 1 내지 방법 4는 기지국이 beam switching time이 만족하지 않았을 때의 단말의 상향링크 빔에 대한 이해를 가질 수 있도록 함으로써 기지국의 상향링크 신호 디코딩 성능을 향상시킬 수 있다. 상기 전술한 방법 5는 단말이 미리 정해진 상향링크 빔의 집합 중 임의로 선택하여 사용하도록 결정함으로써, 단말의 상향링크 빔 운용에 대한 자유도를 높일 수 있고, 기지국의 단말의 상향링크 빔에 대한 이해를 높이는 것도 가능하다.
도 12는 일부 실시예에 따른 기지국이 DCI를 통해 aperiodic SRS 전송을 트리거할 때, 단말의 beam switching time을 고려한 동작 결정 방법에 대한 순서도의 예시를 도시한 도면이다.
도 12를 참조하면, 기지국이 DCI를 통해 단말에 aperiodic SRS 전송을 트리거하는 경우, beam switching time을 고려한 단말의 동작은 순서도 12-00에 따라 결정될 수 있다. 기지국은 단말에 DCI를 통해 지시한 SRS resource set(s)에 포함된 SRS resource(s) 전송을 트리거한다. (12-05) 단말은 기지국이 단말에 aperiodic SRS 전송을 트리거하는 DCI를 포함하는 PDCCH 단말이 전송하는 aperiodic SRS 사이의 time offset (예를 들어, DCI를 포함한 PDCCH가 전송되는 마지막 심볼이 끝난 후부터 aperiodic SRS가 전송되는 첫 번째 심볼이 시작하기 전까지)과 단말이 aperiodic SRS를 전송하기 위한 minimum time interval의 크기를 비교한다. (12-10) 만일 time offset이 minimum time interval보다 작은 경우, 단말은 기지국이 지시한 SRS 전송을 수행하지 않을 수 있다. (12-15) 만일 time offset이 minimum time interval보다 크거나 같은 경우, 단말은 time offset과 SRS를 전송하기 위한 beam switching time의 크기를 비교한다. (12-20) 만일 time offset이 SRS를 전송하기 위한 beam switching time보다 작은 경우, 단말은 기지국이 지시한 상향링크 빔을 따르지 않고 미리 정해진 규칙에 따른 상향링크 빔을 사용하여 SRS 신호 전송을 수행할 수 있다. (12-25) 만일 time offset이 minimum time interval보다 크거나 같은 경우, 단말은 설정 정보에 따라 기지국이 지시한 SRS 전송을 수행한다. (12-30)
순서도 12-00을 참조하여 beam switching time을 고려한 단말의 동작을 결정하는 과정은 기지국이 단말에 SRS 전송을 트리거한 SRS resource set의 사용처에 따라 SRS resource set의 usage 설정 정보가 'beamManagement'로 설정되지 않은 경우로 한정하여 적용할 수 있다. 만일 기지국이 단말에 SRS 전송을 트리거한 SRS resource set의 usage 설정 정보가 'beamManagement'로 설정된 경우, 단말은 제 2-2실시예를 따르지 않고 제 2-1실시예에서 기술한 동작 방법을 따르는 것으로 이해할 수 있다.
도 13은 일부 실시예에 따른 기지국이 DCI를 통해 aperiodic SRS 전송을 트리거할 때, SRS 전송을 트리거하는 DCI를 포함하는 PDCCH와 단말이 전송하는 aperiodic SRS(s)의 time offset에 대한 예시를 도시한 도면이다.
도 13을 참조하면, 기지국이 DCI를 통해 단말에 aperiodic SRS 전송을 트리거하기 위해 전송하는 PDCCH (13-00)와 DCI를 통해 트리거된 SRS-ResourceSet#0 (13-05), SRS-ResourceSet#1 (13-10), SRS-ResourceSet#2 (13-15)의 시간-주파수 축 자원 할당에 대한 예시를 도시하였다. 기지국이 단말에 aperiodic SRS 전송을 트리거하는 DCI를 포함하는 PDCCH와 단말이 전송하는 aperiodic SRS 사이의 time offset은 DCI를 포함한 PDCCH가 전송되는 마지막 심볼이 끝난 후부터 aperiodic SRS가 전송되는 첫 번째 심볼이 시작하기 전까지로 결정될 수 있다. 이에 따라 SRS-ResourceSet#0 (13-05), SRS-ResourceSet#1 (13-10), SRS-ResourceSet#2 (13-15)에 대한 time offset이 Time offset#0 (13-20), Time offset#1 (13-25), Time offset#2 (13-30)과 같이 계산될 수 있다. SRS-ResourceSet#0 (13-05)의 경우, Time offset#0 (13-20)이 minimum time interval (13-35)보다 작으므로 단말은 상기 전술한 실시예에 따라 SRS-ResourceSet#0 (13-05)을 전송하지 않을 수 있다. SRS-ResourceSet#1 (13-10)의 경우, Time offset#1 (13-25)이 minimum time interval (13-35)보다 크거나 같지만 beam switching time (13-40)보다 작으므로 단말은 상기 전술한 실시예에 따라 기지국이 지시한 SRS 전송을 위한 상향링크 빔을 따르지 않고 미리 정해진 규칙에 따른 상향링크 빔을 사용하여 SRS-ResourceSet#1 (13-10)을 전송할 수 있다. 이 때 상향링크 빔에 대한 설정 정보를 제외한 다른 설정 정보는 SRS-ResourceSet#1 (13-10)의 설정 정보 또는 SRS-ResourceSet#1 (13-10)에 포함된 SRS resource(s)의 설정 정보를 따른다. SRS-ResourceSet#2 (13-15)의 경우, Time offset#2 (13-30)이 minimum time interval (13-35)과 beam switching time (13-40)보다 크거나 같으므로 단말은 상기 전술한 실시예에 따라 기지국이 지시한 설정 정보를 참조하여 SRS-ResourceSet#2 (13-15)를 전송할 수 있다.
<제 3실시예: beam switching time을 고려하여 PUSCH 전송을 지시하는 방법>
기지국과 단말은 제 1실시예 또는 제 1-2실시예에서 기술한 방법에 의해 PUSCH 전송을 위한 beam switching time을 결정할 수 있고, 이를 고려하여 기지국이 단말에 PUSCH 전송을 지시하는 방법 또는 기지국의 PUSCH 전송 지시에 대한 단말의 동작을 결정할 수 있다. 일례로 기지국은 단말에 beam switching time을 만족하는 한도 내에서 PUSCH 전송을 지시하도록 강제할 수 있다. 또는 만일 기지국의 PUSCH 전송 지시가 단말의 PUSCH 전송을 위한 beam switching time을 만족하지 않는다면, 단말은 하기와 같은 동작을 수행하도록 결정할 수 있다.
-방법 1: 단말은 기지국이 지시한 PUSCH 전송을 위한 상향링크 빔을 따르지 않고 미리 정해진 규칙에 따른 상향링크 빔을 사용하여 PUSCH 신호 전송을 수행할 수 있다. 이 경우, PUSCH 전송을 위한 설정 정보 중 상향링크 빔에 대한 설정 정보를 제외한 다른 설정 정보는 기지국이 지시한 바를 따를 수 있다.
-방법 2: 단말은 기지국이 지시한 PUSCH 전송에 대한 설정 정보를 따르지 않고, 미리 정해진 규칙에 따른 PUSCH 전송에 대한 설정 정보(예를 들어, SRS resource 또는 PUCCH resource)를 따라 PUSCH 신호 전송을 수행할 수 있다.
-방법 3: 단말은 기지국이 지시한 PUSCH 전송을 수행하지 않을 수 있다.
기지국의 PUSCH 전송 지시에 대한 단말의 동작은 PUSCH를 스케줄링하는 DCI의 포맷(예를 들어, DCI format 0_0 또는 DCI format 0_1), PUSCH의 프리코딩 방법(예를 들어, 코드북 기반 PUSCH 또는 논-코드북 기반 PUSCH), PUSCH와 SRS의 안테나 포트 번호 사이의 관계에 따라 다르게 결정할 수 있다. 기지국의 PUSCH 전송 지시에 대한 단말의 동작을 결정하는 방법은 제 3-1실시예 또는 제 3-2실시예를 통해 구체적으로 서술하고자 한다.
<제 3-1실시예: PUSCH 전송을 위한 preparation procedure time을 정의하는 방법>
일 실시예로, 단말의 PUSCH 전송을 위한 preparation procedure time을 PUSCH 전송을 위한 beam switching time을 고려하여 새롭게 정의할 수 있다. 단말은 새롭게 정의된 PUSCH preparation procedure time을 고려하였을 때, 만일 기지국의 PUSCH 전송 지시가 PUSCH preparation procedure time을 만족하지 않는다면 기지국이 지시한 PUSCH 전송을 수행하지 않을 수 있다. 단말의 PUSCH 전송을 위한 beam switching time을 고려하여 PUSCH preparation procedure time을 새롭게 정의하는 방법은 하기와 같은 방법 중 하나를 따를 수 있다.
-방법 1: 기존에 정의된 PUSCH preparation procedure time과 PUSCH 전송을 위한 beam switching time 중에 큰 값을 PUSCH preparation procedure time로 새롭게 정의할 수 있다. 예를 들어, 기존에 정의된 PUSCH preparation procedure time이 상기 전술한 [수학식 1]을 따른다고 하면 새롭게 정의한 PUSCH preparation procedure time은 하기의 [수학식 4]를 따를 수 있다.
Figure PCTKR2020012485-appb-img-000070
-방법 2: 기존에 정의된 PUSCH preparation procedure time에 추가적으로 beam switching time이 필요하다는 가정 하에 이를 더하여 PUSCH preparation procedure time을 새롭게 정의할 수 있다. 이 경우, BWP 스위칭 시간을 고려한
Figure PCTKR2020012485-appb-img-000071
는 beam switching time과 별개로 고려할 수 있다. 예를 들어, 기존에 정의된 PUSCH preparation procedure time이 상기 전술한 [수학식 1]을 따른다고 하면 새롭게 정의한 PUSCH preparation procedure time은 하기의 [수학식 5]를 따를 수 있다.
Figure PCTKR2020012485-appb-img-000072
만일 PUSCH 전송을 위한 beam switching time이 심볼 단위로 정의되었다면, 기존에 정의된 PUSCH preparation procedure time과의 단위를 맞추기 위해, 이는 절대 시간 단위로 변환되어 새롭게 정의한 PUSCH preparation procedure time을 위한 [수학식 4] 또는 [수학식 5]에 적용될 수 있다.
만일 기존에 정의된 PUSCH preparation procedure time이 단말의 capability 보고에 따라 다르게 정의되었다면, 새롭게 정의하는 PUSCH preparation procedure time도 이를 반영하여 PUSCH preparation procedure time에 대한 단말의 capability 보고 정보에 따라 다르게 정의될 수 있다.
<제 3-2실시예: PUSCH 전송을 위한 SRS resource 또는 spatial domain transmission filter를 지시하는 방법>
일 실시예로, 단말의 PUSCH 전송을 위한 beam switching time을 고려하였을 때 만일 기지국의 PUSCH 전송 지시가 beam switching time을 만족하지 않는다면 단말이 기지국이 지시한 상향링크 빔을 사용하여 PUSCH를 전송하기에 충분한 시간이 보장되지 않았다고 판단하여 기지국이 지시한 상향링크 빔을 따르지 않고 미리 정해진 규칙에 따른 상향링크 빔을 사용하여 PUSCH 신호 전송을 수행할 수 있다. 단말은 기지국이 단말에 전송하도록 지시한 PUSCH를 위한 설정 정보 중, 상향링크 빔에 대한 설정 정보를 제외한 설정 정보는 기지국의 지시를 따를 수 있다. 또는 기지국의 PUSCH 전송 지시가 beam switching time을 만족하지 않는다면 단말은 기지국이 PUSCH 전송을 위해 참조하도록 지시한 SRS resource(s)를 따르지 않고 미리 정해진 규칙에 따른 SRS resource(s) 또는 PUCCH resource를 참조하여 PUSCH 신호 전송을 수행할 수 있다. 단말은 기지국이 단말에 전송하도록 지시한 PUSCH를 위한 설정 정보 중, 참조하는 SRS resource(s) 또는 PUCCH resource에 대한 설정 정보를 제외한 설정 정보는 기지국의 지시를 따를 수 있다. 기지국의 PUSCH 전송 지시가 beam switching time을 만족하지 않을 때의 단말 동작은 PUSCH와 SRS를 전송하는 안테나 포트 번호 사이의 관계에 따라 달라질 수 있다. 일례로, PUSCH와 SRS를 전송하는 안테나 포트 번호를 서로 공유하는 경우(예를 들어, SRS의 안테나 포트 번호와 PUSCH의 안테나 포트 번호가 서로 같을 수 있는 경우) 단말은 기지국이 PUSCH 전송을 위해 참조하도록 지시한 SRS resource(s) 또는 PUCCH resource를 따르지 않고 미리 정해진 규칙에 따른 SRS resource(s) 또는 PUCCH resource를 참조하여 PUSCH 신호 전송을 수행할 수 있다. 만일 PUSCH와 SRS를 전송하는 안테나 포트 번호를 서로 공유하지 않는 경우(예를 들어, SRS의 안테나 포트 번호와 PUSCH의 안테나 포트 번호가 서로 다른 경우) 단말은 기지국이 지시한 상향링크 빔을 따르지 않고 미리 정해진 규칙에 따른 상향링크 빔을 사용하여 PUSCH 신호 전송을 수행할 수 있다.
만일 기지국이 단말에 PUSCH 전송을 지시한 경우, 단말의 PUSCH 전송을 위한 preparation procedure time은 beam switching time과 개별적으로 적용될 수 있다. 다시 말하면, 기지국의 PUSCH 전송 지시가 PUSCH preparation procedure time을 만족하지 않는다면 단말은 기지국이 지시한 PUSCH 전송을 수행하지 않을 수 있고, 기지국의 PUSCH 전송 지시가 PUSCH preparation procedure time을 만족하지만 beam switching time을 만족하지 않는다면 단말은 기지국이 지시한 상향링크 빔을 따르지 않고 미리 정해진 규칙에 따른 상향링크 빔을 사용하여 PUSCH 신호 전송을 수행하거나 기지국이 PUSCH 전송을 위해 참조하도록 지시한 SRS resource(s) 또는 PUCCH resource를 따르지 않고 미리 정해진 규칙에 따른 SRS resource(s) 또는 PUCCH resource를 참조하여 PUSCH 신호 전송을 수행할 수 있다.
일례로, 기지국의 PUSCH 전송 지시가 beam switching time을 만족하지 않을 때, 단말이 PUSCH 신호를 전송하는 규칙은 하기와 같은 방법 중 하나를 따를 수 있다.
-방법 1: 단말은 기지국이 지시한 PUSCH를 전송하기 전 가장 최근에 전송한 SRS resource set 또는 SRS resource를 참조하여 PUSCH 신호 전송을 수행할 수 있다.
-방법 2: 단말은 기지국이 PUSCH 전송을 지시하는 상위레이어 시그날링 또는 DCI를 포함한 L1 시그날링이 전송 되기 전 가장 최근에 전송한 SRS resource set 또는 SRS resource를 참조하여 PUSCH 신호 전송을 수행할 수 있다.
-방법 3: 단말은 미리 설정된 디폴트(default) SRS resource set 또는 SRS resource를 참조하여 PUSCH 신호 전송을 수행할 수 있다.
-방법 4: 단말은 기지국이 지시한 PUSCH를 전송하기 전 가장 최근에 전송한 SRS resource set 또는 SRS resource의 spatial domain transmission filter 설정 정보를 참조하여 PUSCH를 전송하는 상향링크 빔을 정할 수 있다.
-방법 5: 단말은 기지국이 PUSCH 전송을 지시하는 상위레이어 시그날링 또는 DCI를 포함한 L1 시그날링이 전송 되기 전 가장 최근에 전송한 SRS resource set 또는 SRS resource의 spatial domain transmission filter 설정 정보를 참조하여 PUSCH를 전송하는 상향링크 빔을 정할 수 있다.
-방법 6: 단말은 미리 설정된 디폴트(default) SRS resource set 또는 SRS resource의 spatial domain transmission filter 설정 정보를 참조하여 PUSCH를 전송하는 상향링크 빔을 정할 수 있다.
-방법 7: 단말은 미리 설정된 디폴트 PUCCH resource (예를 들어, 서빙셀의 활성화된 상향링크 BWP에 설정된 가장 낮은 ID를 가지는 PUCCH resource)의 spatial domain transmission filter 설정 정보를 참조하여 PUSCH를 전송하는 상향링크 빔을 정할 수 있다.
상기 전술한 방법 1 내지 방법 3은 기지국이 PUSCH 전송을 위해 참조하도록 지시한 SRS resource를 따르지 않고 가장 최근에 전송되었거나 디폴트로 정해진 SRS resource를 참조하도록 결정하는 방법으로 PUSCH와 SRS를 전송하는 안테나 포트 번호를 서로 공유하는 경우에 적용하는 것이 가능하다. PUSCH 신호 전송에 사용되는 spatial domain transmission filter 설정 정보는 참조하는 SRS resource set 또는 SRS resource의 spatial domain transmission filter 설정 정보를 참조할 수 있다. 상기 전술한 방법 4 내지 방법 7은 기지국이 PUSCH 전송을 위해 참조하도록 지시한 SRS resource의 spatial domain transmission filter 설정 정보를 따르지 않고 가장 최근에 전송되었거나 디폴트로 정해진 SRS resource 또는 PUCCH resource의 spatial domain transmission filter를 참조하도록 결정하는 방법으로 PUSCH와 SRS를 전송하는 안테나 포트 번호를 서로 공유하지 않는 경우에 적용하는 것이 가능하다. 단말은 상향링크 빔에 대한 설정 정보를 제외한 설정 정보는 기지국이 지시한 바를 따른다.
상기 전술한 방법 1 또는 방법 2 또는 방법 4 또는 방법 5는 단말이 최근에 전송한 SRS resource의 spatial domain transmission filter 설정 정보를 참조하여 PUSCH 전송을 위한 상향링크 빔을 정하도록 결정함으로써, 단말의 상향링크 빔 송신에 대한 복잡도를 낮출 수 있고 beam switching time이 만족하지 않았을 때의 기지국과 단말 간 송수신 빔 방향의 정확도를 높일 수 있다. 상기 전술한 방법 3 또는 방법 6 또는 방법 7은 단말이 미리 정해진 상향링크 빔을 사용하도록 결정함으로써, beam switching time이 만족하지 않았을 때 단말의 상향링크 빔 송신에 대한 복잡도를 낮출 수 있다. 또한 상기 전술한 방법 1 내지 방법 7은 기지국이 beam switching time이 만족하지 않았을 때의 단말의 상향링크 빔에 대한 이해를 가질 수 있도록 함으로써 기지국의 상향링크 신호 디코딩 성능 향상을 꾀할 수 있다.
도 14는 일부 실시예에 따른 기지국이 DCI를 통해 PUSCH 전송을 지시할 때, PUSCH 전송을 지시하는 DCI를 포함하는 PDCCH와 단말이 전송하는 PUSCH의 time offset에 대한 예시를 도시한 도면이다.
도 14를 참조하면, 기지국이 DCI를 통해 단말에 PUSCH 전송을 지시하는 PDCCH와 DCI를 통해 스케줄링된 PUSCH의 시간-주파수 축 자원 할당에 대한 3가지 예시 (14-00, 14-05, 14-10)를 도시하였다. 도 14-00을 참조하면, 기지국이 단말에 DCI를 통해 PUSCH 전송을 지시하는 PDCCH#0 (14-15)와 단말이 전송하는 PUSCH#0 (14-20) 사이의 Time offset#0 (14-25)이 PUSCH preparation procedure time보다 작은 경우를 도시하였다. Time offset#0 (14-25)이 PUSCH preparation procedure time보다 작은 경우, 단말은 상기 전술한 실시예에 따라 기지국이 지시한 PUSCH#0 (14-20) 전송을 수행하지 않을 수 있다. 도 14-05을 참조하면, 기지국이 단말에 DCI를 통해 PUSCH 전송을 지시하는 PDCCH#1 (14-30)와 단말이 전송하는 PUSCH#1 (14-35) 사이의 Time offset#1 (14-40)이 PUSCH preparation procedure time보다 크거나 같지만 beam switching time보다 작은 경우를 도시하였다. Time offset#1 (14-40)이 beam switching time보다 작은 경우, 단말은 상기 전술한 실시예에 따라 기지국이 지시한 PUSCH 전송을 위한 상향링크 빔을 따르지 않고 미리 정해진 규칙에 따른 상향링크 빔을 사용하여 PUSCH#1 (14-35) 전송을 수행하거나, 기지국이 PUSCH 전송을 위해 참조하도록 지시한 SRS resource를 따르지 않고 미리 정해진 규칙에 따른 SRS resource를 참조하여 PUSCH#1 (14-35) 전송을 수행할 수 있다. 도 14-10을 참조하면, 기지국이 단말에 DCI를 통해 PUSCH 전송을 지시하는 PDCCH#2 (14-45)와 단말이 전송하는 PUSCH#2 (14-50) 사이의 Time offset#2 (14-55)이 PUSCH preparation procedure time과 beam switching time보다 크거나 같은 경우를 도시하였다. Time offset#2 (14-55)이 PUSCH preparation procedure time과 beam switching time보다 크거나 같은 경우, 단말은 상기 전술한 실시예에 따라 기지국이 지시한 설정 정보를 참조하여 PUSCH#2 (14-50) 전송을 수행할 수 있다.
<제 4실시예: beam switching time을 고려하여 PUCCH 전송을 지시하는 방법>
기지국과 단말은 제 1실시예 또는 제 1-3실시예에서 기술한 방법에 의해 PUCCH 전송을 위한 beam switching time을 결정할 수 있고, 이를 고려하여 기지국이 단말에 PUCCH 전송을 지시하는 방법 또는 기지국의 PUCCH 전송 지시에 대한 단말의 동작을 결정할 수 있다. 일례로 기지국은 단말에 beam switching time을 만족하는 한도 내에서 PUCCH 전송을 지시하도록 강제할 수 있다. 또는 만일 기지국의 PUCCH 전송 지시가 단말의 PUCCH 전송을 위한 beam switching time을 만족하지 않는다면, 단말은 하기와 같은 동작을 수행하도록 결정할 수 있다.
-방법 1: 단말은 기지국이 지시한 PUCCH 전송을 위한 상향링크 빔을 따르지 않고 미리 정해진 규칙에 따른 상향링크 빔을 사용하여 PUCCH 신호 전송을 수행할 수 있다. 이 경우, PUCCH 전송을 위한 설정 정보 중 상향링크 빔에 대한 설정 정보를 제외한 다른 설정 정보는 기지국이 지시한 바를 따를 수 있다.
-방법 2: 단말은 기지국이 지시한 PUCCH 전송을 수행하지 않을 수 있다.
기지국의 PUCCH 전송 지시에 대해 PUCCH 전송을 위한 beam switching time을 고려한 단말의 동작은 기지국이 스케줄링한 PDSCH에 대한 HARQ-ACK 정보를 포함하는 PUCCH를 전송하는 경우에 한정하여 적용하는 것이 가능하다. 기지국이 스케줄링한 PDSCH에 대한 HARQ-ACK 정보를 포함하는 PUCCH를 전송하는 경우 time offset은 PDSCH를 스케줄링하는 DCI를 포함한 PDCCH가 전송되는 마지막 심볼이 끝난 후부터 PDSCH에 대한 HARQ-ACK을 포함하는 PUCCH가 전송되는 첫 번째 심볼이 시작하기 전까지로 정의될 수 있다. 또한, 단말의 PUCCH 전송을 위한 beam switching time을 고려한 단말의 PUCCH 전송을 위한 동작은 기지국이 상위레이어 시그날링을 통해 PUCCH resource의 활성화된 spatial relation info를 변경하는 경우에도 확장하여 적용 가능하다. 다시 말하면, 기지국의 PUCCH resource의 활성화된 spatial relation info를 변경하는 시그날링과 단말이 전송하는 PUCCH 사이의 time offset이 PUCCH 전송을 위한 beam switching time을 만족하지 않는다면, 단말은 기지국이 PUCCH 전송을 지시하였을 때 beam switching time을 고려한 동작을 결정하는 방법을 동일하게 적용할 수 있다. 기지국의 PUCCH 전송 지시에 대한 단말의 동작을 결정하는 방법은 제 4-2실시예를 통해 구체적으로 서술하고자 한다.
<제 4-1실시예: PUCCH 전송을 위한 슬롯 오프셋을 정의하는 방법>
일 실시예로, 단말이 기지국이 DCI를 통해 스케줄링한 PDSCH에 대한 HARQ-ACK 정보를 포함하는 PUCCH를 전송하는 경우 PUCCH 전송을 위한 beam switching time을 만족할 수 있도록 하기 위해, HARQ-ACK 정보를 포함하는 PUCCH의 시간 축 자원 할당을 위해 설정되는 PDSCH와 PUCCH 간의 슬롯 오프셋을 새롭게 정의할 수 있다. 단말의 PUCCH 전송을 위한 beam switching time을 고려하여 PDSCH와 PUCCH 간의 슬롯 오프셋이 beam switching time을 만족하도록 충분히 길게 지시될 수 있도록 할 수 있다. 현재 NR Release 15에 따르면 기지국은 PDSCH를 스케줄링 하는 DCI의 PDSCH-to-HARQ_feedback timing indicator 필드를 통해 PDSCH와 HARQ-ACK 피드백 정보를 전송하는 PUCCH 간의 슬롯 오프셋을 지시할 수 있다. PDSCH와 HARQ-ACK 피드백 정보를 전송하는 PUCCH 간의 슬롯 오프셋을 새롭게 정의하는 방법은 하기와 같은 방법 중 하나를 따를 수 있다.
-방법 1: PDSCH와 HARQ-ACK 피드백 정보를 전송하는 PUCCH 간의 슬롯 오프셋을 하향링크 또는 상향링크의 활성화된 BWP의 뉴머롤로지를 고려하여 계산할 수 있다. 예를 들어, DCI의 PDSCH-to-HARQ_feedback timing indicator 필드를 통해 지시된 PDSCH와 HARQ-ACK 피드백 정보를 전송하는 PUCCH 간의 슬롯 오프셋이
Figure PCTKR2020012485-appb-img-000073
슬롯이라고 하면, 상향링크의 활성화된 BWP의 뉴머롤로지가
Figure PCTKR2020012485-appb-img-000074
일 때 슬롯 오프셋
Figure PCTKR2020012485-appb-img-000075
Figure PCTKR2020012485-appb-img-000076
슬롯으로 계산할 수 있다.
-방법 2: PDSCH와 HARQ-ACK 피드백 정보를 전송하는 PUCCH 간의 슬롯 오프셋으로 지시될 수 있는 슬롯 오프셋 집합을 가능한 하향링크 또는 상향링크의 활성화된 BWP의 뉴머롤로지마다 개별적으로 정의할 수 있다. 이 경우, DCI의 PDSCH-to-HARQ_feedback timing indicator 필드 값에 대한 해석이 하향링크 또는 상향링크의 활성화된 BWP의 뉴머롤로지에 따라 달라지는 것이 가능하다. 예를 들어, DCI의 PDSCH-to-HARQ_feedback timing indicator 필드의 코드값이 000으로 설정되었을 때, 상향링크의 활성화된 BWP의 뉴머롤로지가
Figure PCTKR2020012485-appb-img-000077
일 때 슬롯 오프셋은
Figure PCTKR2020012485-appb-img-000078
으로 계산되고 상향링크의 활성화된 BWP의 뉴머롤로지가
Figure PCTKR2020012485-appb-img-000079
일 때 슬롯 오프셋은
Figure PCTKR2020012485-appb-img-000080
로 계산될 수 있다.
도 15는 일부 실시예에 따른 기지국이 DCI를 통해 PDSCH를 스케줄링할 때, PDSCH를 스케줄링하는 DCI를 포함하는 PDCCH, 스케줄링된 PDSCH, PDSCH에 대한 HARQ-ACK 정보를 포함하는 PUCCH의 주파수-시간 축 자원 할당에 대한 예시를 도시한 도면이다.
도 15를 참조하면, 기지국이 DCI를 통해 PDSCH를 스케줄링할 때, PDSCH를 스케줄링하는 DCI를 포함하는 PDCCH, 스케줄링된 PDSCH, PDSCH에 대한 HARQ-ACK 정보를 포함하는 PUCCH의 주파수-시간 축 자원 할당에 대한 2가지 예시 (15-00, 15-05)를 도시하였다.
도 15-00을 참조하면, 기지국이 DCI를 통해 PDSCH를 스케줄링하는 PDCCH#0 (15-10)와 스케줄링된 PDSCH#0 (15-15), PDSCH#0 (15-15)에 대한 HARQ-ACK 정보를 포함하는 PUCCH#0 (15-20)의 주파수-시간 축 자원 할당을 도시하였다. PDCCH#0 (15-10)과 PUCCH#0 (15-20) 사이의 Time offset#0 (15-25)이 PUCCH 전송을 위한 beam switching time#0 (15-30)보다 크거나 같아 단말이 기지국이 지시한 PUCCH#0 (15-20) 전송을 수행할 수 있다. 도 15-05을 참조하면, 도 15-00에 비해 하향링크와 상향링크의 활성화된 BWP의 뉴머롤로지가 2배인 경우에 대해, 기지국이 DCI를 통해 PDSCH를 스케줄링하는 PDCCH#1 (15-40)와 스케줄링된 PDSCH#1 (15-45), PDSCH#1 (15-45)에 대한 HARQ-ACK 정보를 포함하는 PUCCH#1 (15-50)의 주파수-시간 축 자원 할당을 도시하였다. 상기 전술한 실시예에 따라 도 15-00에 비해 상향링크의 활성화된 BWP의 뉴머롤로지가 2배인 점을 고려하여, PDSCH와 HARQ-ACK 피드백 정보를 전송하는 PUCCH 간의 슬롯 오프셋 K2를 2배로 계산하였다. 이 경우, PDCCH#1 (15-40)과 PUCCH#1 (15-50) 사이의 Time offset#1 (15-55)이 PUCCH 전송을 위한 beam switching time#2 (15-60)보다 크거나 같아 단말이 기지국이 지시한 PUCCH#1 (15-40) 전송을 수행할 수 있다.
<제 4-2실시예: PUCCH 전송을 위한 spatial domain transmission filter를 지시하는 방법>
일 실시예로, 단말의 PUCCH 전송을 위한 beam switching time을 고려하였을 때 만일 기지국의 PUCCH 전송 지시가 beam switching time을 만족하지 않는다면, 단말이 기지국이 지시한 상향링크 빔을 사용하여 PUCCH를 전송하기에 충분한 시간이 보장되지 않았다고 판단하여 기지국이 지시한 상향링크 빔을 따르지 않고 미리 정해진 규칙에 따른 상향링크 빔을 사용하여 PUCCH 신호 전송을 수행할 수 있다. 단말은 기지국이 단말에 전송하도록 지시한 PUCCH resource의 설정 정보 중, 상향링크 빔에 대한 설정 정보를 제외한 PUCCH resource의 다른 설정 정보는 기지국의 지시를 따를 수 있다. 일례로, 기지국의 PUCCH 전송 지시가 beam switching time을 만족하지 않을 때, 단말이 PUCCH를 전송하는 상향링크 빔을 정하는 규칙은 하기의 방법들 중 하나를 따를 수 있다.
-방법 1: 단말은 미리 설정된 디폴트 PUCCH resource (예를 들어, 서빙셀의 활성화된 상향링크 BWP에 설정된 가장 낮은 ID를 가지는 PUCCH resource)의 spatial domain transmission filter 설정 정보를 참조하여 PUCCH를 전송하는 상향링크 빔을 정할 수 있다.
-방법 2: 단말은 PUCCH resource를 위해 설정 가능한 (예를 들어, 기 설정된 PUCCH-spatialRelationInfo 중 하나), 또는 사용 가능한 (예를 들어, 초기 접속 시 SS/PBCH block을 수신할 때 사용했던 spatial domain transmission filter) spatial domain transmission filter 설정 정보 중, 미리 설정된 디폴트 spatial domain transmission filter 설정 정보를 참조하여 상향링크 빔을 정할 수 있다.
상기 전술한 방법 1 또는 방법 2는 미리 정해진 상향링크 빔을 사용하도록 결정함으로써, beam switching time이 만족하지 않았을 때 단말의 상향링크 빔 송신에 대한 복잡도를 낮출 수 있다. 또한 상기 전술한 방법 1 또는 방법 2는 기지국이 beam switching time이 만족하지 않았을 때의 단말의 상향링크 빔에 대한 이해를 가질 수 있도록 함으로써 기지국의 상향링크 신호 디코딩 성능 향상을 꾀할 수 있다.
도 15-00을 참조하면, 기지국이 DCI를 통해 PDSCH를 스케줄링하는 PDCCH#0 (15-10)와 스케줄링된 PDSCH#0 (15-15), PDSCH#0 (15-15)에 대한 HARQ-ACK 정보를 포함하는 PUCCH#0 (15-20)의 주파수-시간 축 자원 할당을 도시하였다. PDCCH#0 (15-10)과 PUCCH#0 (15-20) 사이의 Time offset#0 (15-25)이 PUCCH 전송을 위한 beam switching time#1 (15-35)보다 작거나 같으므로, 단말은 기지국이 지시한 PUCCH#0 (15-20) 전송을 수행하지 않거나, 미리 설정된 디폴트 PUCCH resource (예를 들어, 서빙셀의 활성화된 상향링크 BWP에 설정된 가장 낮은 ID를 가지는 PUCCH resource)의 spatial domain transmission filter 설정 정보를 참조하여 PUCCH#0 (15-20) 전송을 위한 상향링크 빔을 정하거나, PUCCH resource를 위해 설정 가능한 spatial domain transmission filter 설정 정보 중, 미리 설정된 디폴트 spatial domain transmission filter 설정 정보를 참조하여 상향링크 빔을 정할 수 있다.
도 16은 일부 실시예에 따른 단말의 구조를 도시하는 블록도이다.
도 16을 참조하면, 단말은 송수신부(16-00, 16-10), 메모리 및 프로세서를 포함하는 처리부(16-05)로 구성될 수 있다. 전술한 단말의 통신 방법에 따라, 단말의 송수신부(16-00, 16-10), 처리부(16-05)가 동작할 수 있다. 다만, 단말의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 단말은 전술한 구성 요소들 보다 더 많은 구성 요소를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 송수신부(16-00, 16-10), 및 처리부(16-05)가 하나의 칩(chip) 형태로 구현될 수도 있다.
송수신부(16-00, 16-10)는 기지국과 신호를 송수신할 수 있다. 여기에서, 신호는 제어 정보 및 데이터를 포함할 수 있다. 이를 위해, 송수신부(16-00, 16-10)는 전송되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부(16-00, 16-10)의 일 실시예일뿐이며, 송수신부(16-00, 16-10)의 구성 요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다.
또한, 송수신부(16-00, 16-10)는 무선 채널을 통해 신호를 수신하여 처리부(16-05)로 출력하고, 처리부(16-05)로부터 출력되는 신호를 무선 채널을 통해 전송할 수 있다.
처리부(16-05)는 단말의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 처리부(16-05)는 단말에서 획득되는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 처리부(16-05)는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성되는 메모리를 포함할 수 있다.
또한 처리부(16-05)는 전술한 실시예에 따라 단말이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 일부 실시예에 따르면, 처리부(16-05)는 두 가지 계층으로 구성되는 DCI를 수신하여 동시에 다수의 PDSCH를 수신하도록 단말의 구성 요소를 제어할 수 있다.
도 17은 일부 실시예에 따른 기지국의 구조를 도시하는 블록도이다.
도 17을 참조하면, 기지국은 송수신부(17-00, 17-10)와 메모리 및 프로세서를 포함하는 처리부(17-05)로 구성될 수 있다. 전술한 기지국의 통신 방법에 따라, 기지국의 송수신부(17-00, 17-10), 처리부(17-05)가 동작할 수 있다. 다만, 기지국의 구성 요소가 전술한 예에 한정되는 것은 아니다. 예를 들어, 기지국은 전술한 구성 요소들 보다 더 많은 구성 요소를 포함하거나 더 적은 구성 요소를 포함할 수도 있다. 뿐만 아니라 송수신부(17-00, 17-10), 처리부(17-05)가 하나의 칩(chip) 형태로 구현될 수도 있다.
송수신부(17-00, 17-10)는 단말과 신호를 송수신할 수 있다. 여기에서, 신호는 제어 정보 및 데이터를 포함할 수 있다. 이를 위해, 송수신부(17-00, 17-10)는 전송되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 다만, 이는 송수신부(17-00, 17-10)의 일 실시예일뿐이며, 송수신부(17-00, 17-10)의 구성 요소가 RF 송신기 및 RF 수신기에 한정되는 것은 아니다.
또한, 송수신부(17-00, 17-10)는 무선 채널을 통해 신호를 수신하여 처리부(17-05)로 출력하고, 처리부(17-05)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다.
처리부(17-05)는 기지국의 동작에 필요한 프로그램 및 데이터를 저장할 수 있다. 또한, 처리부(17-05)는 기지국에서 획득되는 신호에 포함된 제어 정보 또는 데이터를 저장할 수 있다. 처리부(17-05)는 롬(ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성되는 메모리를 포함할 수 있다.
처리부(17-05)는 전술한 본 개시의 실시예에 따라 기지국이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 일부 실시예에 따르면, 처리부(17-05)는 PDSCH에 대한 할당 정보를 포함하는 DCI를 구성하고 이를 전송하기 위해 기지국의 각 구성 요소를 제어할 수 있다.
일 실시예에 따른 무선 통신 시스템에서, 단말은 상향링크 신호 전송을 위한 빔 스위칭 타임 관련 캐퍼빌리티 정보를 기지국에 전송하고, 기지국으로부터 캐퍼빌리티 정보, 상향링크 신호의 종류 및 상향링크 BWP(bandwidth part)의 뉴머롤로지 중 적어도 하나를 기초로 결정된 빔 스위칭 타임에 관한 정보를 수신하며, 빔 스위칭 타임에 관한 정보를 기초로, 상향링크 신호 전송을 수행할 수 있다.
본 개시의 일 실시예에 따르면, 무선 통신 시스템에서 기지국의 동작 방법은, 단말로부터 상향링크 신호의 전송을 위한 제1 빔 스위칭 시간(beam switching time)과 관련된 정보를 수신하는 단계, 상기 상향링크 신호와 관련된 설정 정보 및 제1 빔 스위칭 시간에 기초하여, 상기 상향링크 신호의 전송을 위한 제2 빔 스위칭 시간을 결정하는 단계, 상기 상향링크 신호와 관련된 설정 정보 및 상기 제2 빔 스위칭 시간을 상기 단말에게 전송하는 단계, 및 상기 단말로부터 상기 상향링크 신호를 수신하는 단계를 포함하고, 상기 상향링크 신호는 SRS(sounding reference signal), PUSCH(physical uplink shared channel) 또는 PUCCH(physical uplink control channel) 중 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 상기 상향링크 신호가 SRS인 경우, 상기 상향링크 신호와 관련된 설정 정보는, 상기 SRS의 시간 축 전송 정보 또는 상기 SRS의 자원 세트와 관련된 정보 중 적어도 하나를 포함하고, 상기 상향링크 신호와 관련된 설정 정보 및 상기 제1 빔 스위칭 시간에 기초하여, 상기 상향링크 신호의 전송을 위한 상기 제2 빔 스위칭 시간을 결정하는 단계는, 상기 SRS의 시간 축 전송 정보 또는 상기 SRS의 자원 세트와 관련된 정보 중 적어도 하나와 상기 제1 빔 스위칭 시간에 기초하여, 상기 제2 빔 스위칭 시간을 결정하는 단계를 포함할 수 있다.
일 실시예에 따르면, 상기 상향링크 신호가 PUSCH인 경우, 상기 상향링크 신호와 관련된 설정 정보는, 상기 PUSCH의 전송을 지시하는 DCI(downlink control information) 포맷에 대한 정보, PUSCH의 프리코딩 방법에 대한 정보, 상기 PUSCH의 프리코딩 방법에 대응하는 상기 SRS의 자원 세트와 관련된 정보 또는 상기 PUSCH의 전송과 관련된 안테나 포트 번호와 상기 SRS의 전송과 관련된 안테나 포트 번호 간의 관계를 나타내는 정보 중 적어도 하나를 포함하고,
상기 상향링크 신호와 관련된 설정 정보 및 제1 빔 스위칭 시간에 기초하여, 상기 상향링크 신호의 전송을 위한 상기 제2 빔 스위칭 시간을 결정하는 단계는, 상기 PUSCH의 전송을 지시하는 DCI 포맷에 대한 정보, 상기 PUSCH의 프리코딩 방법에 대한 정보, 상기 PUSCH의 프리코딩 방법에 대응하는 상기 SRS의 자원 세트와 관련된 정보 또는 상기 PUSCH의 전송과 관련된 안테나 포트 번호와 상기 SRS의 전송과 관련된 안테나 포트 번호 간의 관계를 나타내는 정보 중 적어도 하나와 상기 제1 빔 스위칭 시간에 기초하여 상기 제2 빔 스위칭 시간을 결정하는 단계를 포함할 수 있다.
일 실시예에 따르면, 상기 상향링크 신호가 PUCCH인 경우, 상기 상향링크 신호와 관련된 설정 정보는, PDSCH에 대한 HARQ-ACK을 포함하는 상기 PUCCH의 자원과 관련된 정보 또는 상기 PUCCH의 전송과 관련된 공간 관련(spatial relation) 정보 중 적어도 하나를 포함하고,
상기 상향링크 신호와 관련된 설정 정보 및 제1 빔 스위칭 시간에 기초하여, 상기 상향링크 신호의 전송을 위한 상기 제2 빔 스위칭 시간을 결정하는 단계는,
상기 PDSCH에 대한 HARQ-ACK을 포함하는 상기 PUCCH의 자원과 관련된 정보 또는 상기 PUCCH의 전송과 관련된 공간 관련 정보 중 적어도 하나와 상기 제1 빔 스위칭 시간에 기초하여 상기 제2 빔 스위칭 시간을 결정하는 단계를 포함할 수 있다.
본 개시의 일 실시예에 따르면, 무선 통신 시스템에서 단말의 동작 방법은,
상향링크 신호의 전송을 위한 제1 빔 스위칭 시간과 관련된 정보를 기지국에게 전송하는 단계, 상기 기지국으로부터, 상기 상향링크 신호와 관련된 설정 정보 및 상기 상향링크 신호의 전송을 위한 제2 빔 스위칭 시간과 관련된 정보를 수신하고, 상기 제2 빔 스위칭 시간은 상기 제1 빔 스위칭 시간 및 상기 상향링크 신호와 관련된 설정 정보에 기초하여 결정되는 단계, 및 상기 상향링크 신호와 관련된 설정 정보 및 상기 제2 빔 스위칭 시간에 기초하여, 상기 기지국에게 상기 상향링크 신호를 전송하는 단계를 포함하고, 상기 상향링크 신호는 SRS(sounding reference signal), PUSCH(physical uplink shared channel) 또는 PUCCH(physical uplink control channel) 중 적어도 하나를 포함할 수 있다.
본 개시의 일 실시예에 따르면, 무선 통신 시스템에서 단말의 동작 방법은, 상향링크 신호와 관련된 설정 정보에 기초하여, 상기 상향링크 신호의 전송을 위한 빔 스위칭 시간(beam switching time)을 결정하는 단계, 기지국으로부터 상기 상향링크 신호의 전송을 지시하는 정보를 수신하는 단계, 및 상기 빔 스위칭 시간과 상기 상향링크 신호의 전송을 지시하는 정보에 기초하여, 상기 기지국에게 상기 상향링크 신호를 전송하는 단계를 포함하고, 상기 상향링크 신호는 SRS(sounding reference signal), PUSCH(physical uplink shared channel) 또는 PUCCH(physical uplink control channel) 중 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 상기 상향링크 신호가 SRS인 경우, 상기 상향링크 신호와 관련된 설정 정보는, 상기 SRS의 시간 축 전송 정보 또는 상기 SRS의 자원 세트와 관련된 정보 중 적어도 하나를 포함하고,
상기 상향링크 신호와 관련된 설정 정보에 기초하여, 상기 상향링크 신호의 전송을 위한 상기 빔 스위칭 시간을 결정하는 단계는, 상기 SRS의 시간 축 전송 정보 또는 상기 SRS의 자원 세트와 관련된 정보 중 적어도 하나에 기초하여 상기 빔 스위칭 시간을 결정하는 단계를 포함할 수 있다.
일 실시예에 따르면, 상기 상향링크 신호가 PUSCH인 경우, 상기 상향링크 신호와 관련된 설정 정보는, 상기 PUSCH의 전송을 지시하는 DCI(downlink control information) 포맷에 대한 정보, PUSCH의 프리코딩 방법에 대한 정보, 상기 PUSCH의 프리코딩 방법에 대응하는 상기 SRS의 자원 세트와 관련된 정보 또는 상기 PUSCH의 전송과 관련된 안테나 포트 번호와 상기 SRS의 전송과 관련된 안테나 포트 번호 간의 관계를 나타내는 정보 중 적어도 하나를 포함하고,
상기 상향링크 신호와 관련된 설정 정보에 기초하여, 상기 상향링크 신호의 전송을 위한 상기 빔 스위칭 시간을 결정하는 단계는,
상기 PUSCH의 전송을 지시하는 DCI 포맷에 대한 정보, 상기 PUSCH의 프리코딩 방법에 대한 정보, 상기 PUSCH의 프리코딩 방법에 대응하는 상기 SRS의 자원 세트와 관련된 정보 또는 상기 PUSCH의 전송과 관련된 안테나 포트 번호와 상기 SRS의 전송과 관련된 안테나 포트 번호 간의 관계를 나타내는 정보 중 적어도 하나에 기초하여 상기 빔 스위칭 시간을 결정하는 단계를 포함할 수 있다.
일 실시예에 따르면, 상기 상향링크 신호가 PUCCH인 경우, 상기 상향링크 신호와 관련된 설정 정보는, PDSCH에 대한 HARQ-ACK을 포함하는 상기 PUCCH의 자원과 관련된 정보 또는 상기 PUCCH의 전송과 관련된 공간 관련(spatial relation) 정보 중 적어도 하나를 포함하고,
상기 상향링크 신호와 관련된 설정 정보에 기초하여, 상기 상향링크 신호의 전송을 위한 상기 빔 스위칭 시간을 결정하는 단계는,
상기 PDSCH에 대한 HARQ-ACK을 포함하는 상기 PUCCH의 자원과 관련된 정보 또는 상기 PUCCH의 전송과 관련된 공간 관련 정보 중 적어도 하나에 기초하여 상기 빔 스위칭 시간을 결정하는 단계를 포함할 수 있다.
일 실시예에 따르면, 상기 상향링크 신호가 SRS인 경우, 상기 상향링크 신호의 전송을 지시하는 정보는 상기 SRS의 전송을 지시하는 정보를 포함하고,
상기 빔 스위칭 시간에 기초하여, 상기 SRS의 전송을 지시하는 정보가 수신되는 시점과 상기 SRS가 전송되는 시점 사이의 최소 시간 간격(minimum time interval)을 결정하는 단계를 더 포함할 수 있다.
일 실시예에 따르면, 상기 빔 스위칭 시간과 상기 상향링크 신호의 전송을 지시하는 정보에 기초하여, 상기 기지국에게 상기 상향링크 신호를 전송하는 단계는,
상기 최소 시간 간격 또는 상기 빔 스위칭 시간 중 적어도 하나와, 상기 SRS의 전송을 지시하는 정보가 할당된 자원과 상기 SRS의 전송을 지시하는 정보에 의해 할당된 SRS에 대한 적어도 하나의 자원 세트 간의 시간 오프셋을 비교함으로써, 상기 SRS의 전송을 지시하는 정보에 기초한 상기 SRS의 전송 여부를 결정하는 단계를 더 포함할 수 있다.
일 실시예에 따르면, 상기 상향링크 신호가 PUSCH인 경우, 상기 상향링크 신호의 전송을 지시하는 정보는 상기 PUSCH의 전송을 지시하는 정보를 포함하고,
상기 빔 스위칭 시간에 기초하여, 상기 PUSCH의 전송을 위한 PUSCH 준비 과정 시간(preparation procedure time)을 결정하는 단계를 더 포함할 수 있다.
일 실시예에 따르면, 상기 빔 스위칭 시간과 상기 상향링크 신호의 전송을 지시하는 정보에 기초하여, 상기 기지국에게 상기 상향링크 신호를 전송하는 단계는,
상기 PUSCH 준비 과정 시간 또는 상기 빔 스위칭 시간 중 적어도 하나와, 상기 PUSCH의 전송을 지시하는 정보가 할당된 자원과 상기 PUSCH의 전송을 지시하는 정보에 의해 할당된 PUSCH 자원 간의 시간 오프셋을 비교함으로써, 상기 PUSCH의 전송을 지시하는 정보에 기초한 상기 PUSCH 의 전송 여부를 결정하는 단계를 더 포함할 수 있다.
일 실시예에 따르면, 상기 상향링크 신호가 PUCCH인 경우, 상기 상향링크 신호의 전송을 지시하는 정보는 상기 PUCCH의 전송을 지시하는 정보를 포함하고,
PDSCH(physical downlink shared channel)를 스케줄링하는 정보를 포함하는 PDCCH가 수신되는 시점과, 상기 PDSCH에 대한 HARQ-ACK을 포함하는 상기 PUCCH가 전송되는 시점 사이의 시간 간격을 결정하는 단계를 더 포함할 수 있다.
일 실시예에 따르면, 상기 빔 스위칭 시간과 상기 상향링크 신호의 전송을 지시하는 정보에 기초하여, 상기 기지국에게 상기 상향링크 신호를 전송하는 단계는,
상기 PDCCH가 수신되는 시점과 상기 PUCCH가 전송되는 시점 사이의 시간 간격과 상기 빔 스위칭 시간을 비교함으로써, 상기 PUCCH의 전송을 지시하는 정보에 기초한 상기 PUCCH의 전송 여부를 결정하는 단계를 더 포함할 수 있다.
한편, 본 명세서와 도면에 개시된 본 개시의 실시예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉 본 개시의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 개시의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시 예는 필요에 따라 서로 조합되어 운용할 수 있다. 예컨대, 본 개시의 실시예 1 내지 실시예 2의 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다.
상술한 본 개시의 구체적인 실시 예들에서, 개시에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.
한편 본 개시의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 개시의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 개시의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.

Claims (15)

  1. 무선 통신 시스템에서 기지국의 동작 방법에 있어서,
    단말로부터 상향링크 신호의 전송을 위한 제1 빔 스위칭 시간(beam switching time)과 관련된 정보를 수신하는 단계;
    상기 상향링크 신호와 관련된 설정 정보 및 제1 빔 스위칭 시간에 기초하여, 상기 상향링크 신호의 전송을 위한 제2 빔 스위칭 시간을 결정하는 단계;
    상기 상향링크 신호와 관련된 설정 정보 및 상기 제2 빔 스위칭 시간을 상기 단말에게 전송하는 단계; 및
    상기 단말로부터 상기 상향링크 신호를 수신하는 단계;
    를 포함하고,
    상기 상향링크 신호는 SRS(sounding reference signal), PUSCH(physical uplink shared channel) 또는 PUCCH(physical uplink control channel) 중 적어도 하나를 포함하는 방법.
  2. 제1항에 있어서,
    상기 상향링크 신호가 SRS인 경우, 상기 상향링크 신호와 관련된 설정 정보는, 상기 SRS의 시간 축 전송 정보 또는 상기 SRS의 자원 세트와 관련된 정보 중 적어도 하나를 포함하고,
    상기 상향링크 신호와 관련된 설정 정보 및 상기 제1 빔 스위칭 시간에 기초하여, 상기 상향링크 신호의 전송을 위한 상기 제2 빔 스위칭 시간을 결정하는 단계는,
    상기 SRS의 시간 축 전송 정보 또는 상기 SRS의 자원 세트와 관련된 정보 중 적어도 하나와 상기 제1 빔 스위칭 시간에 기초하여, 상기 제2 빔 스위칭 시간을 결정하는 단계;
    를 포함하는 방법.
  3. 제1항에 있어서,
    상기 상향링크 신호가 PUSCH인 경우, 상기 상향링크 신호와 관련된 설정 정보는, 상기 PUSCH의 전송을 지시하는 DCI(downlink control information) 포맷에 대한 정보, PUSCH의 프리코딩 방법에 대한 정보, 상기 PUSCH의 프리코딩 방법에 대응하는 상기 SRS의 자원 세트와 관련된 정보 또는 상기 PUSCH의 전송과 관련된 안테나 포트 번호와 상기 SRS의 전송과 관련된 안테나 포트 번호 간의 관계를 나타내는 정보 중 적어도 하나를 포함하고,
    상기 상향링크 신호와 관련된 설정 정보 및 제1 빔 스위칭 시간에 기초하여, 상기 상향링크 신호의 전송을 위한 상기 제2 빔 스위칭 시간을 결정하는 단계는,
    상기 PUSCH의 전송을 지시하는 DCI 포맷에 대한 정보, 상기 PUSCH의 프리코딩 방법에 대한 정보, 상기 PUSCH의 프리코딩 방법에 대응하는 상기 SRS의 자원 세트와 관련된 정보 또는 상기 PUSCH의 전송과 관련된 안테나 포트 번호와 상기 SRS의 전송과 관련된 안테나 포트 번호 간의 관계를 나타내는 정보 중 적어도 하나와 상기 제1 빔 스위칭 시간에 기초하여 상기 제2 빔 스위칭 시간을 결정하는 단계;
    를 포함하는 방법.
  4. 제1항에 있어서,
    상기 상향링크 신호가 PUCCH인 경우, 상기 상향링크 신호와 관련된 설정 정보는, PDSCH에 대한 HARQ-ACK을 포함하는 상기 PUCCH의 자원과 관련된 정보 또는 상기 PUCCH의 전송과 관련된 공간 관련(spatial relation) 정보 중 적어도 하나를 포함하고,
    상기 상향링크 신호와 관련된 설정 정보 및 제1 빔 스위칭 시간에 기초하여, 상기 상향링크 신호의 전송을 위한 상기 제2 빔 스위칭 시간을 결정하는 단계는,
    상기 PDSCH에 대한 HARQ-ACK을 포함하는 상기 PUCCH의 자원과 관련된 정보 또는 상기 PUCCH의 전송과 관련된 공간 관련 정보 중 적어도 하나와 상기 제1 빔 스위칭 시간에 기초하여 상기 제2 빔 스위칭 시간을 결정하는 단계;
    를 포함하는 방법.
  5. 무선 통신 시스템에서 단말의 동작 방법에 있어서,
    상향링크 신호의 전송을 위한 제1 빔 스위칭 시간과 관련된 정보를 기지국에게 전송하는 단계;
    상기 기지국으로부터, 상기 상향링크 신호와 관련된 설정 정보 및 상기 상향링크 신호의 전송을 위한 제2 빔 스위칭 시간과 관련된 정보를 수신하고, 상기 제2 빔 스위칭 시간은 상기 제1 빔 스위칭 시간 및 상기 상향링크 신호와 관련된 설정 정보에 기초하여 결정되는 단계; 및
    상기 상향링크 신호와 관련된 설정 정보 및 상기 제2 빔 스위칭 시간에 기초하여, 상기 기지국에게 상기 상향링크 신호를 전송하는 단계;
    를 포함하고,
    상기 상향링크 신호는 SRS(sounding reference signal), PUSCH(physical uplink shared channel) 또는 PUCCH(physical uplink control channel) 중 적어도 하나를 포함하는 방법.
  6. 무선 통신 시스템에서 단말의 동작 방법에 있어서,
    상향링크 신호와 관련된 설정 정보에 기초하여, 상기 상향링크 신호의 전송을 위한 빔 스위칭 시간(beam switching time)을 결정하는 단계;
    기지국으로부터 상기 상향링크 신호의 전송을 지시하는 정보를 수신하는 단계; 및
    상기 빔 스위칭 시간과 상기 상향링크 신호의 전송을 지시하는 정보에 기초하여, 상기 기지국에게 상기 상향링크 신호를 전송하는 단계;
    를 포함하고,
    상기 상향링크 신호는 SRS(sounding reference signal), PUSCH(physical uplink shared channel) 또는 PUCCH(physical uplink control channel) 중 적어도 하나를 포함하는 방법.
  7. 제6항에 있어서,
    상기 상향링크 신호가 SRS인 경우, 상기 상향링크 신호와 관련된 설정 정보는, 상기 SRS의 시간 축 전송 정보 또는 상기 SRS의 자원 세트와 관련된 정보 중 적어도 하나를 포함하고,
    상기 상향링크 신호와 관련된 설정 정보에 기초하여, 상기 상향링크 신호의 전송을 위한 상기 빔 스위칭 시간을 결정하는 단계는,
    상기 SRS의 시간 축 전송 정보 또는 상기 SRS의 자원 세트와 관련된 정보 중 적어도 하나에 기초하여 상기 빔 스위칭 시간을 결정하는 단계;
    를 포함하는 방법.
  8. 제6항에 있어서,
    상기 상향링크 신호가 PUSCH인 경우, 상기 상향링크 신호와 관련된 설정 정보는, 상기 PUSCH의 전송을 지시하는 DCI(downlink control information) 포맷에 대한 정보, PUSCH의 프리코딩 방법에 대한 정보, 상기 PUSCH의 프리코딩 방법에 대응하는 상기 SRS의 자원 세트와 관련된 정보 또는 상기 PUSCH의 전송과 관련된 안테나 포트 번호와 상기 SRS의 전송과 관련된 안테나 포트 번호 간의 관계를 나타내는 정보 중 적어도 하나를 포함하고,
    상기 상향링크 신호와 관련된 설정 정보에 기초하여, 상기 상향링크 신호의 전송을 위한 상기 빔 스위칭 시간을 결정하는 단계는,
    상기 PUSCH의 전송을 지시하는 DCI 포맷에 대한 정보, 상기 PUSCH의 프리코딩 방법에 대한 정보, 상기 PUSCH의 프리코딩 방법에 대응하는 상기 SRS의 자원 세트와 관련된 정보 또는 상기 PUSCH의 전송과 관련된 안테나 포트 번호와 상기 SRS의 전송과 관련된 안테나 포트 번호 간의 관계를 나타내는 정보 중 적어도 하나에 기초하여 상기 빔 스위칭 시간을 결정하는 단계;
    를 포함하는 방법.
  9. 제6항에 있어서,
    상기 상향링크 신호가 PUCCH인 경우, 상기 상향링크 신호와 관련된 설정 정보는, PDSCH에 대한 HARQ-ACK을 포함하는 상기 PUCCH의 자원과 관련된 정보 또는 상기 PUCCH의 전송과 관련된 공간 관련(spatial relation) 정보 중 적어도 하나를 포함하고,
    상기 상향링크 신호와 관련된 설정 정보에 기초하여, 상기 상향링크 신호의 전송을 위한 상기 빔 스위칭 시간을 결정하는 단계는,
    상기 PDSCH에 대한 HARQ-ACK을 포함하는 상기 PUCCH의 자원과 관련된 정보 또는 상기 PUCCH의 전송과 관련된 공간 관련 정보 중 적어도 하나에 기초하여 상기 빔 스위칭 시간을 결정하는 단계;
    를 포함하는 방법.
  10. 제6항에 있어서,
    상기 상향링크 신호가 SRS인 경우, 상기 상향링크 신호의 전송을 지시하는 정보는 상기 SRS의 전송을 지시하는 정보를 포함하고,
    상기 빔 스위칭 시간에 기초하여, 상기 SRS의 전송을 지시하는 정보가 수신되는 시점과 상기 SRS가 전송되는 시점 사이의 최소 시간 간격(minimum time interval)을 결정하는 단계;
    를 더 포함하는 방법.
  11. 제10항에 있어서,
    상기 빔 스위칭 시간과 상기 상향링크 신호의 전송을 지시하는 정보에 기초하여, 상기 기지국에게 상기 상향링크 신호를 전송하는 단계는,
    상기 최소 시간 간격 또는 상기 빔 스위칭 시간 중 적어도 하나와, 상기 SRS의 전송을 지시하는 정보가 할당된 자원과 상기 SRS의 전송을 지시하는 정보에 의해 할당된 SRS에 대한 적어도 하나의 자원 세트 간의 시간 오프셋을 비교함으로써, 상기 SRS의 전송을 지시하는 정보에 기초한 상기 SRS의 전송 여부를 결정하는 단계;
    를 더 포함하는 방법.
  12. 제6항에 있어서,
    상기 상향링크 신호가 PUSCH인 경우, 상기 상향링크 신호의 전송을 지시하는 정보는 상기 PUSCH의 전송을 지시하는 정보를 포함하고,
    상기 빔 스위칭 시간에 기초하여, 상기 PUSCH의 전송을 위한 PUSCH 준비 과정 시간(preparation procedure time)을 결정하는 단계;
    를 더 포함하는 방법.
  13. 제12항에 있어서,
    상기 빔 스위칭 시간과 상기 상향링크 신호의 전송을 지시하는 정보에 기초하여, 상기 기지국에게 상기 상향링크 신호를 전송하는 단계는,
    상기 PUSCH 준비 과정 시간 또는 상기 빔 스위칭 시간 중 적어도 하나와, 상기 PUSCH의 전송을 지시하는 정보가 할당된 자원과 상기 PUSCH의 전송을 지시하는 정보에 의해 할당된 PUSCH 자원 간의 시간 오프셋을 비교함으로써, 상기 PUSCH의 전송을 지시하는 정보에 기초한 상기 PUSCH 의 전송 여부를 결정하는 단계;
    를 더 포함하는 방법.
  14. 제6항에 있어서,
    상기 상향링크 신호가 PUCCH인 경우, 상기 상향링크 신호의 전송을 지시하는 정보는 상기 PUCCH의 전송을 지시하는 정보를 포함하고,
    PDSCH(physical downlink shared channel)를 스케줄링하는 정보를 포함하는 PDCCH가 수신되는 시점과, 상기 PDSCH에 대한 HARQ-ACK을 포함하는 상기 PUCCH가 전송되는 시점 사이의 시간 간격을 결정하는 단계;
    를 더 포함하는 방법.
  15. 제14항에 있어서,
    상기 빔 스위칭 시간과 상기 상향링크 신호의 전송을 지시하는 정보에 기초하여, 상기 기지국에게 상기 상향링크 신호를 전송하는 단계는,
    상기 PDCCH가 수신되는 시점과 상기 PUCCH가 전송되는 시점 사이의 시간 간격과 상기 빔 스위칭 시간을 비교함으로써, 상기 PUCCH의 전송을 지시하는 정보에 기초한 상기 PUCCH의 전송 여부를 결정하는 단계;
    를 더 포함하는 방법.
PCT/KR2020/012485 2019-09-27 2020-09-16 무선 통신 시스템에서 단말의 빔 변경 방법 및 장치 WO2021060766A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/762,979 US11716133B2 (en) 2019-09-27 2020-09-16 Method and apparatus for changing beam of terminal in wireless communication system
EP20869242.6A EP4020831A4 (en) 2019-09-27 2020-09-16 METHOD AND APPARATUS FOR TERMINAL BEAM MODIFICATION IN A WIRELESS COMMUNICATION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190120126A KR20210037466A (ko) 2019-09-27 2019-09-27 무선 통신 시스템에서 단말의 빔 변경 방법 및 장치
KR10-2019-0120126 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021060766A1 true WO2021060766A1 (ko) 2021-04-01

Family

ID=75166736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012485 WO2021060766A1 (ko) 2019-09-27 2020-09-16 무선 통신 시스템에서 단말의 빔 변경 방법 및 장치

Country Status (4)

Country Link
US (1) US11716133B2 (ko)
EP (1) EP4020831A4 (ko)
KR (1) KR20210037466A (ko)
WO (1) WO2021060766A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022246346A1 (en) * 2021-05-21 2022-11-24 Qualcomm Incorporated Enhanced sounding reference signal resource allocation using a selected reference resource
WO2022254286A1 (en) 2021-06-01 2022-12-08 Amf Medical Sa Systems and methods for delivering microdoses of medication
WO2022267844A1 (zh) * 2021-06-22 2022-12-29 华为技术有限公司 一种通信方法及装置
WO2023010377A1 (en) * 2021-08-05 2023-02-09 Lenovo (Beijing) Limited Beam determination for multiple pdsch transmissions or pusch transmissions scheduled by one dci

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839700B (zh) * 2017-08-29 2024-07-23 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
KR20210056868A (ko) 2019-11-11 2021-05-20 삼성전자주식회사 무선 통신 시스템에서 데이터를 전송하기 위한 방법 및 장치
CN114930941A (zh) * 2020-01-10 2022-08-19 高通股份有限公司 鲁棒的基于下行链路控制信息的快速波束指示
CN111245587B (zh) * 2020-01-10 2023-04-07 北京紫光展锐通信技术有限公司 一种非周期srs发送方法及相关设备
US11751228B2 (en) * 2020-02-11 2023-09-05 Intel Corporation Methods and apparatuses for uplink spatial relation info switch
EP4128641A4 (en) 2020-04-16 2023-09-06 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR TRANSMITTING AND RECEIVING A UPLINK REFERENCE SIGNAL IN A WIRELESS COMMUNICATIONS SYSTEM
US11923990B2 (en) * 2020-09-29 2024-03-05 Qualcomm Incorporated Techniques for triggering reference signal transmission based on decoding parameters
US11943033B2 (en) * 2020-09-30 2024-03-26 Qualcomm Incorporated Full-duplex beam pair reselect using beam management report
CN116326005A (zh) * 2020-10-12 2023-06-23 苹果公司 蜂窝通信系统中灵活的非周期性srs触发
CN116887417B (zh) * 2020-11-20 2024-02-27 中兴通讯股份有限公司 用于相位跟踪参考信号解调参考信号关联的指示的系统和方法
US11751014B2 (en) * 2021-03-19 2023-09-05 Nokia Technologies Oy Long term evolution (LTE) positioning protocol (LPP) enhancements for latency control
US12068988B2 (en) 2021-10-07 2024-08-20 Qualcomm Incorporated Channel state information collection in physical sidelink channels
US20230318786A1 (en) * 2022-04-04 2023-10-05 Qualcomm Incorporated Patterns for control channel puncturing and shared channel rate-matching

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190260456A1 (en) * 2018-02-16 2019-08-22 Qualcomm Incorporated Feedback of beam switch time capability
US20190297648A1 (en) * 2018-03-23 2019-09-26 Qualcomm Incorporated Beam switch and beam failure recovery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10389428B2 (en) * 2016-11-23 2019-08-20 Qualcomm Incorporated Techniques and apparatuses for switching between a single antenna subarray operation and a multiple antenna subarray operation for different traffic types
KR102169260B1 (ko) * 2017-09-08 2020-10-26 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 빔 포밍 전송을 고려한 무허가 스펙트럼에서의 채널 사용 방법 및 장치
BR112020006112B1 (pt) * 2017-09-28 2022-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Dispositivo sem fio para acesso aleatório baseado em feixe, nó de rede de destino para iniciar o acesso aleatório baseado em feixe e métodos relacionados
US11723049B2 (en) 2017-11-15 2023-08-08 Interdigital Patent Holdings, Inc. Beam management in a wireless network
US10966183B2 (en) * 2018-01-12 2021-03-30 Apple Inc. Beam indication considering beam failure recovery in new radio
US11013007B2 (en) * 2018-05-17 2021-05-18 Qualcomm Incorporated Early transmit beam switching
WO2020091576A1 (ko) * 2018-11-02 2020-05-07 엘지전자 주식회사 무선 통신 시스템에서 빔 관련 보고를 수행하는 방법 및 이에 대한 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190260456A1 (en) * 2018-02-16 2019-08-22 Qualcomm Incorporated Feedback of beam switch time capability
US20190297648A1 (en) * 2018-03-23 2019-09-26 Qualcomm Incorporated Beam switch and beam failure recovery

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On SRS Antenna Switching in FR2", 3GPP DRAFT; R4-1903123 ON SRS ANTENNA SWITCHING IN FR2 R06, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 1 April 2019 (2019-04-01), XP051713574 *
INTEL CORPORATION: "On TCI State Switch Delay", 3GPP DRAFT; R4-1900111_TCI STATE BEAM SWITCH, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 15 February 2019 (2019-02-15), XP051604948 *
QUALCOMM INCORPORATED: "Enhancements on Multi-beam Operation", 3GPP DRAFT; R1-1900906 ENHANCEMENTS ON MULTI-BEAM OPERATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 12 January 2019 (2019-01-12), XP051576443 *
See also references of EP4020831A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022246346A1 (en) * 2021-05-21 2022-11-24 Qualcomm Incorporated Enhanced sounding reference signal resource allocation using a selected reference resource
US11641259B2 (en) 2021-05-21 2023-05-02 Qualcomm Incorporated Enhanced sounding reference signal resource allocation using a selected reference resource
EP4401353A3 (en) * 2021-05-21 2024-07-24 QUALCOMM Incorporated Enhanced sounding reference signal resource allocation using a selected reference resource
WO2022254286A1 (en) 2021-06-01 2022-12-08 Amf Medical Sa Systems and methods for delivering microdoses of medication
WO2022267844A1 (zh) * 2021-06-22 2022-12-29 华为技术有限公司 一种通信方法及装置
WO2023010377A1 (en) * 2021-08-05 2023-02-09 Lenovo (Beijing) Limited Beam determination for multiple pdsch transmissions or pusch transmissions scheduled by one dci

Also Published As

Publication number Publication date
US20220345195A1 (en) 2022-10-27
KR20210037466A (ko) 2021-04-06
US11716133B2 (en) 2023-08-01
EP4020831A1 (en) 2022-06-29
EP4020831A4 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
WO2021060766A1 (ko) 무선 통신 시스템에서 단말의 빔 변경 방법 및 장치
WO2021040338A1 (en) Method and apparatus for transmitting or receiving multiple pieces of data in wireless cooperative communication system
WO2021034120A1 (en) Method and apparatus for indicating beam failure recovery operation of terminal in wireless communication system
WO2018203680A1 (ko) 무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법 및 이를 위한 장치
WO2021015475A1 (ko) 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
WO2018128351A1 (ko) 무선 통신 시스템에서 빔을 이용하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2020204322A1 (ko) 무선 통신 시스템에서 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국
WO2020130755A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
WO2021029749A1 (ko) 무선 통신 시스템에서 물리 하향링크 공유 채널을 송수신 하는 방법 및 이에 대한 장치
WO2018194352A1 (en) Method and device for uplink power control
WO2019190236A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호(srs)를 전송하는 방법 및 이를 위한 장치
WO2019066618A1 (ko) 무선 통신 시스템에서 qcl에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치
EP3596984A1 (en) Method and device for uplink power control
WO2022154539A1 (en) Method and apparatus for transmitting and receiving uplink phase tracking reference signal for network cooperative communication system
WO2021066630A1 (ko) 무선 통신 시스템에서 위상 추적 참조 신호의 송수신 방법 및 이에 대한 장치
WO2021066622A1 (ko) 무선 통신 시스템에서 위상 추적 참조 신호의 송수신 방법 및 이에 대한 장치
WO2021133121A1 (ko) 네트워크 협력통신을 위한 상향링크 데이터 반복 전송 방법 및 장치
WO2021075939A1 (ko) 무선 협력 통신 시스템에서 다중 데이터를 송수신하는 방법 및 장치
WO2021010657A1 (ko) 무선 통신 시스템에서 단말의 채널 상태 정보 처리 유닛의 점유 시간을 설정하는 방법 및 장치
WO2021066624A1 (ko) 무선 통신 시스템에서 pdsch의 송수신 방법 및 이에 대한 장치
WO2021221428A1 (ko) 무선 통신 시스템에서 사운딩 방법 및 장치
WO2022239966A1 (ko) 무선 통신 시스템에서 네트워크 협력 통신의 빔 실패 회복을 위한 방법 및 장치
WO2021162445A1 (ko) 무선 통신 시스템에서 기준 신호 송수신 방법 및 장치
WO2022025628A1 (ko) 무선 협력 통신 시스템에서 제어 정보 송수신 방법 및 장치
WO2021066625A1 (ko) 무선 통신 시스템에서 하향링크 데이터 채널의 송수신 방법 및 이에 대한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020869242

Country of ref document: EP

Effective date: 20220324