WO2021060748A1 - Connectivity learning device and connectivity learning method - Google Patents

Connectivity learning device and connectivity learning method Download PDF

Info

Publication number
WO2021060748A1
WO2021060748A1 PCT/KR2020/012235 KR2020012235W WO2021060748A1 WO 2021060748 A1 WO2021060748 A1 WO 2021060748A1 KR 2020012235 W KR2020012235 W KR 2020012235W WO 2021060748 A1 WO2021060748 A1 WO 2021060748A1
Authority
WO
WIPO (PCT)
Prior art keywords
connectivity
graph
objects
signal
membership
Prior art date
Application number
PCT/KR2020/012235
Other languages
French (fr)
Korean (ko)
Inventor
이종석
장수범
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2021060748A1 publication Critical patent/WO2021060748A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/042Knowledge-based neural networks; Logical representations of neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Definitions

  • the present invention relates to connectivity learning, and more particularly, to a connectivity learning device and connectivity learning method for learning connectivity between a plurality of objects.
  • EEG electroencephalography
  • This analysis of brain activity is essential in a variety of applications, including the brain-computer interface, emotion recognition, and diagnosis of mental illness.
  • the brain is made up of several functional areas, and activation patterns across several functional areas provide valuable information about the state of mind. Therefore, it is effective for brain signal analysis to study the relationship between regions represented by a pattern called functional connectivity (also referred to as'connectivity' for simplicity in this specification). Since brain regions are not in Euclidean space, graphs are the most natural and suitable data structure for connectivity.
  • the problem to be solved by the present invention is to provide a connectivity learning apparatus capable of performing signal classification with improved accuracy through direct learning based on a source signal even without any prior knowledge.
  • Another problem to be solved by the present invention is to provide a connectivity learning device capable of expressing the overall state of a network having interconnectivity between a plurality of objects rather than connectivity between one object pair.
  • Another problem to be solved by the present invention is to determine the connectivity between a plurality of objects even when information on how much interconnectivity exists between a plurality of objects, that is, an explicit loss function for a graph structure is not given. It is to provide a connected learning device that can do.
  • Another problem to be solved by the present invention is to provide a connectivity learning method performed by the connectivity learning device.
  • a connectivity learning device for solving the above problem is a connectivity learning device for determining connectivity between a plurality of objects by learning a deep neural network and classifying an input signal based on the determined connectivity. And a membership extracting unit for extracting a membership indicating the existence of connectivity between the objects from the original signals obtained from the plurality of objects; A graph sampling unit that samples the connectivity between the objects from the extracted membership and generates a graph structure expressing the connectivity between the objects in a graph; A feature extraction unit for extracting a signal feature from the original signal; And a classification processor for classifying the input signal into any one of a plurality of classes based on the generated graph structure and the extracted signal characteristic.
  • the connectivity between the objects may have two or more types.
  • the membership extracting unit may extract the membership for two or more connectivity layers representing different types of connectivity.
  • the graph sampling unit may generate one graph layer for each connectivity layer, and the graph structure may include two or more graph layers.
  • the graph sampling unit may generate the graph structure by deterministic binarization that samples connectivity between the objects based on whether a value indicated by the extracted membership is equal to or greater than a threshold value.
  • the raw signal or the input signal is Functional Magnetic Resonance Imaging (fMRI), electroencephalography (EEG), and Functional Near Infrared Spectroscopy (fNIRS) acquired from a plurality of sensors. It may include one or more of.
  • fMRI Functional Magnetic Resonance Imaging
  • EEG electroencephalography
  • fNIRS Functional Near Infrared Spectroscopy
  • the feature extractor may extract signal features from the original signal through a convolution operation and a max pooling operation.
  • the convolution operation may be performed using an extended convolutional layer having a plurality of time intervals.
  • a connectivity learning method for solving the above problem is a connectivity learning method for determining connectivity between a plurality of objects by learning a deep neural network and classifying an input signal based on the determined connectivity. And a membership extraction step of extracting membership indicating the existence of connectivity between the objects from the original signals obtained from the plurality of objects; A graph sampling step of sampling the connectivity between the objects from the extracted membership and generating a graph structure representing the connectivity between the objects in a graph; A feature extraction step of extracting a signal feature from the original signal; And a classification processing step of classifying the input signal into any one of a plurality of classes based on the generated graph structure and the extracted signal characteristic.
  • the connectivity between the objects may have two or more types.
  • the membership in the membership extraction step, the membership may be extracted for two or more connectivity layers representing different types of connectivity.
  • one graph layer is generated for each connectivity layer, and the graph structure may include two or more graph layers.
  • the graph structure may be generated by deterministic binarization of sampling connectivity between the objects based on whether a value indicated by the extracted membership is equal to or greater than a threshold value.
  • the raw signal or the input signal is Functional Magnetic Resonance Imaging (fMRI), electroencephalography (EEG), and Functional Near Infrared Spectroscopy (fNIRS) acquired from a plurality of sensors. It may include one or more of.
  • fMRI Functional Magnetic Resonance Imaging
  • EEG electroencephalography
  • fNIRS Functional Near Infrared Spectroscopy
  • a signal feature may be extracted from the original signal by a convolution operation and a max pooling operation.
  • the convolution operation may be performed using an extended convolutional layer having a plurality of time intervals.
  • a new deep learning model that automatically extracts graph structures and signal features representing a plurality of connectivity between a plurality of objects and performs signal classification using the extracted graph structures and signal features is used.
  • it is possible to perform signal classification with improved accuracy through direct learning based on the raw signal even without any prior knowledge, and to express the overall state of the network having interconnectivity between a plurality of objects, and the loss function is
  • a connectivity learning apparatus and connectivity learning method capable of determining connectivity between a plurality of objects even when not given may be provided.
  • FIG. 1 is a block diagram of an apparatus for learning connectivity according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing the configuration of the membership extraction unit 10 according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram showing the configuration of the graph sampling unit 20 according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram showing the configuration of a feature extraction unit 30 according to an embodiment of the present invention.
  • 5 is a conceptual diagram showing the configuration of the classification processing unit 40 according to an embodiment of the present invention.
  • 6A to 6D illustrate a raw signal and an extracted graph according to an embodiment of the present invention.
  • FIG. 7 is a graph showing the names and locations of 32 EEG electrodes for graphical representation used in the present invention.
  • 8A to 8C are graphs showing examples of graph structures obtained according to an embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a connection learning method according to an embodiment of the present invention.
  • the present invention can build a neural network model that classifies given signal data using a connectivity structure generated by a deep learning model.
  • the given data is expressed as (X, y ), where And X is the set of time series signals collected from N sensors (EEG electrodes in one embodiment), and y is the corresponding class label.
  • the estimated graph structure is a multi-layer graph having weights and directions without self-loop, and the graph structure G may be expressed by Equation 1.
  • V representing a vertex can be expressed by Equation 2
  • E representing the existence of an edge can be expressed by Equation 3
  • W representing the weight can be expressed by Equation 4.
  • E k represents the existence of an edge between the pair of vertices in the k-th graph layer
  • W k represents the weight of the edge between the pair of vertices. Is assumed, and K is a hyper parameter that controls the number of graph layers.
  • FIG. 1 is a block diagram of an apparatus 1 for learning connectivity according to an embodiment of the present invention.
  • the connectivity learning apparatus 1 may include a membership extracting unit 10, a graph sampling unit 20, a feature extracting unit 30, and a classification processing unit 40.
  • the connectivity learning apparatus 1 may determine connectivity between a plurality of objects by learning a deep neural network, and classify an input signal based on the determined connectivity.
  • the connectivity between the objects includes a causal relationship or a correlation, and may include two or more types.
  • the connectivity between objects may be represented by a plurality of connectivity layers, as described later.
  • the membership extracting unit 10 may extract a membership indicating the existence of connectivity between objects from a raw signal obtained from a plurality of objects, and output the extracted membership to the graph sampling unit 20.
  • the object may include a sensor or sensing element capable of sensing or detecting various signals.
  • the raw signal or input signal may include one or more of Functional Magnetic Resonance Imaging (fMRI), electroencephalography (EEG), and Functional Near Infrared Spectroscopy (fNIRS).
  • fMRI Functional Magnetic Resonance Imaging
  • EEG electroencephalography
  • fNIRS Functional Near Infrared Spectroscopy
  • the original signal or the input signal is not limited to a signal related to the brain, and may include an image or an audio signal related to the heart in another embodiment.
  • the original signal or the input signal may include a signal related to weather data such as an air volume or wind speed, or an image signal indicating vehicle traffic on a road.
  • the membership extraction unit 10 may extract membership for each of two or more connectivity layers representing different types of connectivity.
  • the graph sampling unit 20 may generate one graph layer for each connectivity layer.
  • the graph sampling unit 20 samples the connectivity between objects from the membership extracted by the membership extraction unit 10 to generate a graph structure expressing the connectivity between the objects in a graph, and classifies the generated graph structure into a classification processing unit ( 40).
  • the graph sampling unit 20 generates a graph structure by deterministic binarization that samples the connectivity between objects based on whether the value indicated by the membership extracted by the membership extraction unit 10 is equal to or greater than a threshold value. I can.
  • the feature extraction unit 30 may extract a signal feature from an original signal obtained from a plurality of objects and output the extracted signal feature to the classification processor 40.
  • the feature extraction unit 30 may extract a signal feature from the original signal through a convolution operation and a max pooling operation.
  • the convolution operation performed by the feature extraction unit 30 may be performed through extended convolutional layers having a plurality of time intervals.
  • FIG. 2 is a conceptual diagram showing the configuration of the membership extraction unit 10 according to an embodiment of the present invention.
  • the membership extraction unit 10 calculates potential membership from the input time series data.
  • the potential membership (h ij ) represents the probability of the existence of an edge from the vertex vi to the vertex vj for each graph layer, and can be calculated by Equations 5 and 6.
  • the membership extraction unit 10 includes vertex-edge operation and edge-vertex operation (for'vertex-edge operation and edge-vertex operation, 2018 editions Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zeme.
  • Equation 5 and Equation 6 (For'exponential linear units', see'exponential linear unit: Fast and accurate deep network learning by exponential linear units (ELUs)' in the 2015 edition of Djork-Arn ⁇ Clevert, Thomas Unterthiner, and Sepp Hochreiter' In Proceedings of The 3rd International Conference on Learning Representations, pages 1 to 14, the disclosures of which are incorporated herein in their entirety by reference), and batch normalization (for'batch normalization', 2015 edition of Sergey Ioffe and Christian Szegedy co-author'Batch normalization: accelerating deep network training by reducing internal covariate shift' In Proceedings of the 32nd International Conference on Machine Learning, pages 448 to 456, the disclosures of which are disclosed in the present specification by reference. Included) is a fully connected network.
  • ELUs exponential linear units
  • FIG. 3 is a conceptual diagram showing the configuration of the graph sampling unit 20 according to an embodiment of the present invention.
  • the graph sampling unit 20 may generate a graph structure from the layer membership information through probabilistic or deterministic sampling.
  • three methods are considered for graph sampling: stochastic sampling (STO), deterministic thresholding (DET), and continuous sampling (CON).
  • the probabilistic sampling method probabilistically assigns a potential edge from vertex vi to vertex vj to one of the K graph layers. Since the sampled graph weights are discontinuous, the Gumbel-softmax reparameterization technique ('Categorical reparameterization with Gumbel-softmax' In Proceedings, 2017 edition of Eric Jang, Shixiang Gu, and Ben Poole) of the 5th International Conference on Learning Representations, pp. 1-12 and'The concrete distribution: a continuous relaxation of discrete random variables' In Proceedings of the 5th International Conference by Chris J. Maddison, Andriy Mnih, and Yee Whye Teh, 2017 edition. on Learning Representations, pages 1 to 20, the disclosure of which is incorporated herein in its entirety by reference) to provide continuous relaxation and to enable gradient calculations.
  • the Gumbel-softmax reparameterization technique ('Categorical reparameterization with Gumbel-softmax' In Proceedings, 2017 edition of Eric Jang, Shixiang Gu, and Ben Poole) of the 5th
  • the estimated graph includes a plurality of graph layers, different types of connectivity information may be modeled for each graph layer.
  • the probabilistic sampling method limits each edge to belong to only one graph layer, but the deterministic binarization method alleviates this limitation so that a pair of vertices has edges in multiple layers through binarization.
  • Equation 9 r is a threshold value, and in the example, it is set to 0.5.
  • Discrete variables can be differentiated during learning using the same continuous relaxation technique used in the probabilistic sampling method.
  • the previous two methods constitute an unweighted graph, but if the continuous sampling method is used, different degrees of connectivity can be maintained in different graph layers by using the edge weight as a continuous value. To do this, we have a continuous value between 0 and 1 obtained from the Gumbel-softmax operation. Is used directly as the edge weight from vi to vj in the k-th graph layer. Therefore, this method creates the most common type of graph structure among the three methods, that is, a multi-layer graph with weights and directions.
  • one of the graph layers may be assigned as a skip layer. Since the skip layer is discarded when the graph is transmitted to the classification processing unit 40, the trunk line belonging to this layer is omitted from the graph used for classification.
  • FIG. 4 is a conceptual diagram showing the configuration of a feature extraction unit 30 according to an embodiment of the present invention.
  • the feature extraction unit 30 may extract signal features from the original signal by 1-D convolution and max pooling operations.
  • the present invention adopts the 1-D version of the extended inception module including convolutional layers with various dilation rates.
  • the extended convolution layer with a low expansion rate captures features that appear between surrounding samples corresponding to fast-changing high-frequency information
  • the extended convolution layer with a high expansion rate captures features that change slowly for a large temporal window. .
  • the signal feature U i can be calculated by Equation 10.
  • T' is the reduced signal length
  • F is the feature dimension.
  • 5 is a conceptual diagram showing the configuration of the classification processing unit 40 according to an embodiment of the present invention.
  • the classification processing unit 40 includes a graph neural network (GNN), and class labels predicted by performing classification using signal features and a built graph Can be printed. First, a vertex-edge operation is performed on signal features, and the result is combined with a graph structure through a message passing operation, and an aggregation operation and an edge-vertex operation are performed.
  • GNN graph neural network
  • the input and output are F-dimensional and F'-dimensional, respectively It is modeled by a fully connected network with ReLU (Rectified Linear Unit). Finally, this result is linked to the signal features via a skip connection, vectorized and provided to a fully connected network.
  • the Database for Emotion Analysis using Physiological Signals (DEAP) data set was used.
  • the data set of the example includes 32 channel EEG records collected from 32 subjects while watching 40 video stimuli and the corresponding emotion rating by the subject.
  • a video identification task was performed to classify a set of EEG signals given by a deep learning model into one of 40 video stimuli.
  • the obtained signal sets are randomly separated into training, validation and test data sets holding 80%, 10% and 10% of the total data set, respectively.
  • the deep learning model of this example is PyTorch (Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer co-authored'Automatic differentiation in PyTorch In Proceedings of the NIPS 2017 Autodiff Workshop: The Future of Gradient-based Machine Learning Software and Techniques', pages 1 to 4, the disclosures of which are incorporated herein by reference in their entirety)
  • Adam optimizer 'Adam optimizer', 2015 edition of Diederik P. Kingma and Jimmy Ba co-author'Adam: a method for stochastic optimization' In Proceedings of the 3rd International Conference on Learning Representations, published on pages 1 to 15 And the corresponding disclosure has been learned using (the whole is incorporated herein by reference).
  • Graph membership extraction f1, f2 and f3 are fully connected two-layer networks with 256 hidden neurons and 256 output neurons. Each fully connected layer has an exponential linear unit, and batch normalization is used for the output layer.
  • f4 contains 3 fully connected layers. Among the three layers, there are 256 hidden neurons with exponential linear units in the first two layers, and K output neurons in the last layer.
  • g 2 is a two-layer fully connected network with 256 hidden neurons with ReLU (Rectified Linear Unit) and 40 soft max output neurons.
  • the deep learning model according to the embodiment of the present invention has a learning rate of 0.0001 for 30 epochs for the purpose of minimizing cross entropy loss. Diederik P. Kingma and Jimmy Ba. Adam: a method for stochastic optimization', In Proceedings of the 3rd International Conference on Learning Representations, pages 1 to 15, the disclosures of which are incorporated herein by reference in their entirety It was learned using).
  • the batch size is 32.
  • the training procedure took about 10-12 hours using one NVIDIA K80 GPU. Test accuracy was measured using the network that showed the best validation accuracy during the training process. The experiment was repeated 5 times with different random seeds and the average performance was determined.
  • Table 1 shows a deep learning model (a deterministic binarization method for graph sampling and three graph layers without a skip layer) according to an embodiment of the present invention and classification accuracy of the conventional method.
  • Traditional classifier including k-nearest neighbor (k-NN) and random forest, ChebNet-based method in which the graph structure is determined by the physical distance between electrodes and signal entropy is used as a feature ( Soobeom Jang, Seong-Eun Moon, and Jong-Seok Lee.EEG-based video identification using graph signal modeling and graph convolutional neural network.In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3066-3070, 2018 ) were tested. .
  • a model excluding graph structure extraction (indicated as "GNN only” in Table 1) was also tested. From Table 1, it is clearly understood that the deep learning model according to an embodiment of the present invention performs much better than other methods.
  • the deep learning model of the present invention has better performance than the ChebNet-based method, which indicates that data-driven graph and function extraction are effective.
  • the graph structure is important for EEG data modeling because performance is greatly degraded if graph extraction is omitted (ie, in the case of “GNN only”) in the deep learning model of the present invention.
  • Table 2 shows the accuracy of the model for various combinations of the graph sampling method, the number of graph layers (K), and the presence or absence of skip layers.
  • the results show that the number of graph layers is the most important parameter.
  • the single layer graphs considered in most existing studies are not sufficient, and it is very advantageous to model the interactions between separate graph layers and different types of regions.
  • the probabilistic sampling method it was found that the performance is limited by selecting only one edge of the graph layer.
  • the presence of the skip layer only has a minor effect on performance, especially when the number of graph layers is large.
  • FIGS. 6A to 6D illustrate a raw signal and an extracted graph according to an embodiment of the present invention.
  • the color color may refer to the color drawing of the original application.
  • FIG. 6A is a visualization of the raw signal for subject #1
  • FIG. 6B is an extracted graph for subject #1
  • 6C is a visualization of the raw signal for subject #2
  • FIG. 6D is an extracted graph for subject #2.
  • Different colors represent different classes.
  • the plots of FIGS. 2B and 2D are enlarged versions of the areas marked with red boxes B0 and B1 for better visualization.
  • the extracted graph structure was analyzed using the t-SNE technique (Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research, 9:2579-2605, 2008).
  • 6A to 6D compare the t-SNE visualization of the original EEG signal and adjacency matrices of all graph layers in graphs extracted for two subjects. Different colors here represent different classes. In Figs. 6A and 6C, different classes of raw signals are mixed, so it is not easy to distinguish them. On the other hand, in Figs. 6B and 6D, graphs of the same class are closely grouped, which greatly contributes to classification.
  • FIG. 7 is a graph showing the names and locations of 32 EEG electrodes for graphical representation used in the present invention.
  • An example of a graph structure to be described later is based on 32 EEG electrodes shown in FIG. 7.
  • 8A to 8C are graphs showing examples of graph structures obtained according to an embodiment of the present invention.
  • the graph structure obtained in order to understand the learned expression in terms of the emotional cognitive response is shown. Investigated. Since the obtained graph structure is different for each iteration, a representative graph structure including the edge that appears most frequently (top 10%) among several graphs obtained in the repeated experiment was obtained. 8A is a representative graph including the trunk line that is most frequently activated across all video stimuli. 8B and 8C correspond to a representative graph structure for a video stimulus having the highest valence and a video stimulus having the lowest incentive, respectively. The size of the vertex represents the input degree (in-degree). The out-degree is similar at all vertices, so the marking is omitted.
  • the first layer L1 of FIG. 8A In the first layer (red, L1) of Fig. 8A, strong activation towards the left temporal lobe is observed.
  • the temporal lobe is involved in the processing of complex visual stimuli such as scenes.
  • the amygdala which plays an important role in emotional processing, is also located in the medial temporal lobe.
  • the first layer L1 represents a mental state exposed to an emotional visual stimulus.
  • Functional connectivity related to visual content and emotion processing in the first layer is also observed in FIGS. 8B and 8C.
  • the first layer L1 of FIG. 8C includes a large number of trunk lines entering the frontal and occipital lobes, respectively, associated with emotional processing and sensory processing of visual stimuli.
  • the connectivity In the case of the first layer L1 of FIG. 8B, the connectivity is largely related to the content of the video stimulus. This video includes rhythmic dance, which is probably understood to contribute to the incoming connection to the central frontal region known to be involved in motion-related
  • the second layers (green, L2) of FIGS. 8B and 8C show patterns that are clearly distinguished from each other.
  • Fig. 8b the right part of the front area receives more incoming connections than the left part, which is the opposite of Fig. 8c.
  • the asymmetry of the right and left frontal lobes is strongly related to induction. That is, one side of the forebrain is more activated than the other side in the emotional processing process, and the more activated side changes according to the polarity of the emotion, which is consistent with the observed pattern of the second layer (L2) of FIGS. 8B and 8C. .
  • incoming trunk lines are spread over the entire brain, which is thought to be a result of aggregation of patterns appearing in positive and negative induced video stimuli. Accordingly, it can be inferred that the second layer L2 has learned the emotional characteristics of the brain signals.
  • the third layer (blue, L3) of FIGS. 8A to 8C shows relatively few connections, and seems to mainly complement other layers.
  • the frontal region of the brain receives a large number of connections.
  • FIG. 9 is a flowchart illustrating a connection learning method according to an embodiment of the present invention.
  • the connectivity learning method may include a membership extraction step (S10), a graph sampling step (S20), a feature extraction step (S30), and a classification processing step (S40).
  • Membership extraction step (S10), graph sampling step (S20), feature extraction step (S30), and classification processing step (S40) are the membership extraction unit 10 of the connectivity learning device 1 described with reference to FIG. 1, graph sampling It may be performed by the unit 20, the feature extraction unit 30, and the classification processing unit 40, respectively, and a membership extraction step (S10), a graph sampling step (S20), a feature extraction step (S30), and a classification processing step (
  • S40 For a description of S40), a description of the membership extracting unit 10, the graph sampling unit 20, the feature extracting unit 30, and the classification processing unit 40 may be referred to.

Abstract

A connectivity learning device according to an embodiment of the present invention is a connectivity learning device for determining connectivity between multiple objects by deep neural network learning, and classifying an input signal on the basis of the determined connectivity. The device may comprise: a membership extraction unit for extracting membership representing the existence of connectivity between the multiple objects from a raw signal obtained from the objects; a graph sampling unit for sampling the connectivity between the objects from the extracted membership, and generating a graph structure expressing the connectivity between the objects as a graph; a feature extraction unit for extracting a signal feature from the raw signal; and a classification processing unit for classifying an input signal as one class among multiple classes on the basis of the generated graph structure and the extracted signal feature.

Description

연결성 학습 장치 및 연결성 학습 방법Connectivity learning device and connectivity learning method
본 발명은 연결성 학습에 관한 것으로서, 더욱 상세하게는, 복수의 객체간의 연결성을 학습하기 위한 연결성 학습 장치 및 연결성 학습 방법에 관한 것이다.The present invention relates to connectivity learning, and more particularly, to a connectivity learning device and connectivity learning method for learning connectivity between a plurality of objects.
뇌전도(EEG:electroencephalography)와 같은 뇌 영상을 통한 뇌 활동 분석은 인간의 정신 상태나 생각을 이해하는데 중요하다. 이러한 뇌 활동 분석은 뇌와 컴퓨터 간의 인터페이스, 감정 인식 및 정신 질환 진단을 포함한 다양한 응용 분야에서 필수적이다. 뇌는 여러 기능 영역으로 구성되며, 여러 기능 영역에 걸친 활성화 패턴은 정신 상태에 관한 가치 있는 정보를 제공한다. 따라서, 기능적 연결성(본 명세서에서는 간략화를 위해 '연결성'이라고도 함)이라고 하는 패턴으로 나타나는 영역간 관계를 연구하는 것이 뇌 신호 분석에 효과적이다. 뇌 영역은 유클리드 공간에 있지 않기 때문에 그래프는 연결성을 나타내는 가장 자연스럽고 적합한 데이터 구조이다. Analysis of brain activity through brain images such as electroencephalography (EEG) is important for understanding human mental states and thoughts. This analysis of brain activity is essential in a variety of applications, including the brain-computer interface, emotion recognition, and diagnosis of mental illness. The brain is made up of several functional areas, and activation patterns across several functional areas provide valuable information about the state of mind. Therefore, it is effective for brain signal analysis to study the relationship between regions represented by a pattern called functional connectivity (also referred to as'connectivity' for simplicity in this specification). Since brain regions are not in Euclidean space, graphs are the most natural and suitable data structure for connectivity.
그러나, 연결성의 정도를 측정하는 방법, 적절한 그래프 구조를 정의하는 방법 및 다른 뇌 영역으로부터의 신호에 대한 적절한 기능을 정의하는 방법은 여전히 해결되지 않은 문제이다. 이러한 문제들은 일반적으로 사전 지식에 따라 수동으로 결정된다. 예를 들어, 서로 다른 영역의 신호 사이의 상관 또는 인과 관계 행렬은 연결성 측정치로 사용될 수 있다. 그리고, 높은 연결성 값을 나타내는 뇌 영역 쌍을 연결함으로써 그래프를 구성할 수 있고, 마지막으로, 신호의 파워 또는 엔트로피가 각 영역의 특징(즉, 그래프의 정점)으로서 사용될 수 있다. 그러나 이러한 문제를 수동으로 해결하는 것이 최선의 방법은 아니다. 실제로 이러한 문제는 뇌 신호 데이터뿐만 아니라 소셜 네트워크 및 화학 물질과 같은 그래프 구조와 관련된 기타 데이터에도 동일하게 적용된다.However, how to measure the degree of connectivity, how to define an appropriate graph structure, and how to define an appropriate function for signals from other brain regions are still unresolved problems. These issues are usually determined manually based on prior knowledge. For example, a correlation or causal matrix between signals in different regions can be used as a measure of connectivity. And, a graph can be constructed by connecting a pair of brain regions showing a high connectivity value, and finally, the power or entropy of a signal can be used as a feature of each region (ie, a peak of the graph). However, solving these problems manually is not the best option. In fact, these issues apply equally to brain signaling data as well as other data related to graph structures such as social networks and chemicals.
본 발명이 해결하고자 하는 과제는 사전 지식이 전혀 없는 상태에서도 원시 신호에 기초한 직접 학습을 통해 향상된 정확도로 신호 분류를 수행할 수 있는 연결성 학습 장치를 제공하는 것이다.The problem to be solved by the present invention is to provide a connectivity learning apparatus capable of performing signal classification with improved accuracy through direct learning based on a source signal even without any prior knowledge.
본 발명이 해결하고자 하는 다른 과제는 하나의 객체 쌍 사이의 연결성이 아닌 복수의 객체들 사이에 상호 연결성을 갖는 네트워크의 전체 상태를 표현할 수 있는 연결성 학습 장치를 제공하는 것이다.Another problem to be solved by the present invention is to provide a connectivity learning device capable of expressing the overall state of a network having interconnectivity between a plurality of objects rather than connectivity between one object pair.
본 발명이 해결하고자 하는 또 다른 과제는 복수의 객체들 사이에 상호 연결성이 얼마나 존재하는지에 대한 정보, 즉 그래프 구조에 대한 명시적인 손실 함수가 주어지지 않은 경우에도 복수의 객체들 사이의 연결성을 판정할 수 있는 연결성 학습 장치를 제공하는 것이다.Another problem to be solved by the present invention is to determine the connectivity between a plurality of objects even when information on how much interconnectivity exists between a plurality of objects, that is, an explicit loss function for a graph structure is not given. It is to provide a connected learning device that can do.
본 발명이 해결하고자 하는 또 다른 과제는 상기 연결성 학습 장치에 의해 수행되는 연결성 학습 방법을 제공하는 것이다.Another problem to be solved by the present invention is to provide a connectivity learning method performed by the connectivity learning device.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 연결성 학습 장치는, 심층 신경망 학습에 의해 복수의 객체들 간의 연결성을 판단하고, 판단된 연결성에 기초하여 입력 신호를 분류하기 위한 연결성 학습 장치로서, 상기 복수의 객체들로부터 얻어진 원시 신호로부터 상기 객체들 간의 연결성의 존재를 나타내는 멤버십을 추출하는 멤버십 추출부; 추출된 멤버십으로부터 상기 객체들 간의 연결성을 샘플링하여 상기 객체들 간의 연결성을 그래프로 표현하는 그래프 구조를 생성하는 그래프 샘플링부; 상기 원시 신호로부터 신호 특징을 추출하는 특징 추출부; 및 생성된 상기 그래프 구조 및 추출된 상기 신호 특징에 기초하여 입력 신호를 복수의 클래스 중 어느 하나로 분류하는 분류 처리부를 포함할 수 있다.A connectivity learning device according to an embodiment of the present invention for solving the above problem is a connectivity learning device for determining connectivity between a plurality of objects by learning a deep neural network and classifying an input signal based on the determined connectivity. And a membership extracting unit for extracting a membership indicating the existence of connectivity between the objects from the original signals obtained from the plurality of objects; A graph sampling unit that samples the connectivity between the objects from the extracted membership and generates a graph structure expressing the connectivity between the objects in a graph; A feature extraction unit for extracting a signal feature from the original signal; And a classification processor for classifying the input signal into any one of a plurality of classes based on the generated graph structure and the extracted signal characteristic.
일 실시예에서, 상기 객체들 간의 연결성은 2 이상의 타입을 가질 수 있다. 또한, 상기 멤버십 추출부는 상이한 타입의 연결성을 나타내는 2 이상의 연결성 레이어에 대하여 상기 멤버십을 추출할 수 있다.In one embodiment, the connectivity between the objects may have two or more types. In addition, the membership extracting unit may extract the membership for two or more connectivity layers representing different types of connectivity.
일 실시예에서, 상기 그래프 샘플링부는 각 연결성 레이어에 대하여 하나의 그래프 레이어를 생성하고, 상기 그래프 구조는 2 이상의 그래프 레이어를 포함할 수 있다. 또한, 상기 그래프 샘플링부는, 추출된 상기 멤버십이 나타내는 값이 임계값 이상인지 여부에 기초하여 상기 객체들 간의 연결성을 샘플링하는 결정론적 이진화에 의해 상기 그래프 구조를 생성할 수 있다.In an embodiment, the graph sampling unit may generate one graph layer for each connectivity layer, and the graph structure may include two or more graph layers. In addition, the graph sampling unit may generate the graph structure by deterministic binarization that samples connectivity between the objects based on whether a value indicated by the extracted membership is equal to or greater than a threshold value.
일 실시예에서, 상기 원시 신호 또는 상기 입력 신호는 복수의 센서로부터 취득된 기능적 자기공명영상(Functional Magnetic Resonance Imaging, fMRI), 뇌전도(electroencephalography, EEG) 및 기능적 근적외선 분광(Functional Near Infrared Spectroscopy, fNIRS) 중 하나 이상을 포함할 수 있다.In one embodiment, the raw signal or the input signal is Functional Magnetic Resonance Imaging (fMRI), electroencephalography (EEG), and Functional Near Infrared Spectroscopy (fNIRS) acquired from a plurality of sensors. It may include one or more of.
일 실시예에서, 상기 특징 추출부는 컨벌루션 연산 및 맥스 풀링 연산에 의해 상기 원시 신호로부터 신호 특징을 추출할 수 있다. 또한, 상기 컨벌루션 연산은 복수의 시간 간격을 갖는 확장된 컨벌루션 레이어를 이용하여 수행될 수 있다.In an embodiment, the feature extractor may extract signal features from the original signal through a convolution operation and a max pooling operation. In addition, the convolution operation may be performed using an extended convolutional layer having a plurality of time intervals.
상기 과제를 해결하기 위한 본 발명의 다른 실시예에 따른 연결성 학습 방법은, 심층 신경망 학습에 의해 복수의 객체들 간의 연결성을 판단하고, 판단된 연결성에 기초하여 입력 신호를 분류하기 위한 연결성 학습 방법으로서, 상기 복수의 객체들로부터 얻어진 원시 신호로부터 상기 객체들 간의 연결성의 존재를 나타내는 멤버십을 추출하는 멤버십 추출 단계; 추출된 멤버십으로부터 상기 객체들 간의 연결성을 샘플링하여 상기 객체들 간의 연결성을 그래프로 표현하는 그래프 구조를 생성하는 그래프 샘플링 단계; 상기 원시 신호로부터 신호 특징을 추출하는 특징 추출 단계; 및 생성된 상기 그래프 구조 및 추출된 상기 신호 특징에 기초하여 상기 입력 신호를 복수의 클래스 중 어느 하나로 분류하는 분류 처리 단계를 포함할 수 있다.A connectivity learning method according to another embodiment of the present invention for solving the above problem is a connectivity learning method for determining connectivity between a plurality of objects by learning a deep neural network and classifying an input signal based on the determined connectivity. And a membership extraction step of extracting membership indicating the existence of connectivity between the objects from the original signals obtained from the plurality of objects; A graph sampling step of sampling the connectivity between the objects from the extracted membership and generating a graph structure representing the connectivity between the objects in a graph; A feature extraction step of extracting a signal feature from the original signal; And a classification processing step of classifying the input signal into any one of a plurality of classes based on the generated graph structure and the extracted signal characteristic.
일 실시예에서, 상기 객체들 간의 연결성은 2 이상의 타입을 가질 수 있다. 또한, 상기 멤버십 추출 단계에서는 상이한 타입의 연결성을 나타내는 2 이상의 연결성 레이어에 대하여 상기 멤버십이 추출될 수 있다. In one embodiment, the connectivity between the objects may have two or more types. In addition, in the membership extraction step, the membership may be extracted for two or more connectivity layers representing different types of connectivity.
일 실시예에서, 상기 그래프 샘플링 단계에서는 각 연결성 레이어에 대하여 하나의 그래프 레이어가 생성되고, 상기 그래프 구조는 2 이상의 그래프 레이어를 포함할 수 있다. 또한, 상기 그래프 샘플링 단계는, 추출된 상기 멤버십이 나타내는 값이 임계값 이상인지 여부에 기초하여 상기 객체들 간의 연결성을 샘플링하는 결정론적 이진화에 의해 상기 그래프 구조를 생성할 수 있다.In an embodiment, in the graph sampling step, one graph layer is generated for each connectivity layer, and the graph structure may include two or more graph layers. In addition, in the graph sampling step, the graph structure may be generated by deterministic binarization of sampling connectivity between the objects based on whether a value indicated by the extracted membership is equal to or greater than a threshold value.
일 실시예에서, 상기 원시 신호 또는 상기 입력 신호는 복수의 센서로부터 취득된 기능적 자기공명영상(Functional Magnetic Resonance Imaging, fMRI), 뇌전도(electroencephalography, EEG) 및 기능적 근적외선 분광(Functional Near Infrared Spectroscopy, fNIRS) 중 하나 이상을 포함할 수 있다. In one embodiment, the raw signal or the input signal is Functional Magnetic Resonance Imaging (fMRI), electroencephalography (EEG), and Functional Near Infrared Spectroscopy (fNIRS) acquired from a plurality of sensors. It may include one or more of.
일 실시예에서, 상기 특징 추출 단계에서는 컨벌루션 연산 및 맥스 풀링 연산에 의해 상기 원시 신호로부터 신호 특징이 추출될 수 있다. 또한, 상기 컨벌루션 연산은 복수의 시간 간격을 갖는 확장된 컨벌루션 레이어를 이용하여 수행될 수 있다.In an embodiment, in the feature extraction step, a signal feature may be extracted from the original signal by a convolution operation and a max pooling operation. In addition, the convolution operation may be performed using an extended convolutional layer having a plurality of time intervals.
본 발명의 실시예에 따르면, 복수의 객체들 간의 복수의 연결성을 나타내는 그래프 구조 및 신호 특징을 자동적으로 추출하고, 추출된 그래프 구조와 신호 특징을 이용하여 신호 분류를 수행하는 새로운 심층 학습 모델을 이용함으로써, 사전 지식이 전혀 없는 상태에서도 원시 신호에 기초한 직접 학습을 통해 향상된 정확도로 신호 분류를 수행할 수 있고, 복수의 객체들 사이에 상호 연결성을 갖는 네트워크의 전체 상태를 표현할 수 있으며, 손실 함수가 주어지지 않은 경우에도 복수의 객체들 사이의 연결성을 판정할 수 있는 연결성 학습 장치 및 연결성 학습 방법이 제공될 수 있다.According to an embodiment of the present invention, a new deep learning model that automatically extracts graph structures and signal features representing a plurality of connectivity between a plurality of objects and performs signal classification using the extracted graph structures and signal features is used. By doing so, it is possible to perform signal classification with improved accuracy through direct learning based on the raw signal even without any prior knowledge, and to express the overall state of the network having interconnectivity between a plurality of objects, and the loss function is A connectivity learning apparatus and connectivity learning method capable of determining connectivity between a plurality of objects even when not given may be provided.
도 1은 본 발명의 일 실시예에 따른 연결성 학습 장치의 블록도이다.1 is a block diagram of an apparatus for learning connectivity according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 멤버십 추출부(10)의 구성을 도시하는 개념도이다.2 is a conceptual diagram showing the configuration of the membership extraction unit 10 according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 그래프 샘플링부(20)의 구성을 도시하는 개념도이다.3 is a conceptual diagram showing the configuration of the graph sampling unit 20 according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 특징 추출부(30)의 구성을 도시하는 개념도이다.4 is a conceptual diagram showing the configuration of a feature extraction unit 30 according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 분류 처리부(40)의 구성을 도시하는 개념도이다.5 is a conceptual diagram showing the configuration of the classification processing unit 40 according to an embodiment of the present invention.
도 6a 내지 도 6d는 본 발명의 일 실시예에 따른 원시 신호 및 추출된 그래프를 도시한다.6A to 6D illustrate a raw signal and an extracted graph according to an embodiment of the present invention.
도 7은 본 발명에서 사용된 그래프 표현을 위한 32개의 EEG 전극의 명칭 및 위치를 도시하는 그래프이다.7 is a graph showing the names and locations of 32 EEG electrodes for graphical representation used in the present invention.
도 8a 내지 도 8c는 본 발명의 일 실시예에 따라 얻어진 그래프 구조의 예를 도시하는 그래프이다.8A to 8C are graphs showing examples of graph structures obtained according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 연결성 학습 방법을 나타내는 흐름도이다.9 is a flowchart illustrating a connection learning method according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.The embodiments of the present invention are provided to more completely describe the present invention to those of ordinary skill in the art, and the following examples may be modified in various other forms, and the scope of the present invention is as follows. It is not limited to the examples. Rather, these embodiments are provided to make the present disclosure more faithful and complete, and to fully convey the spirit of the present invention to those skilled in the art.
이하, 본 발명의 실시예들은 본 발명의 이상적인 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명된다. 도면들에 있어서, 예를 들면, 부재들의 크기와 형상은 설명의 편의와 명확성을 위하여 과장될 수 있으며, 실제 구현시, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명의 실시예는 본 명세서에 도시된 부재 또는 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 된다.Hereinafter, embodiments of the present invention will be described with reference to the drawings schematically showing ideal embodiments of the present invention. In the drawings, for example, the size and shape of members may be exaggerated for convenience and clarity of description, and in actual implementation, variations of the illustrated shape may be expected. Accordingly, embodiments of the present invention should not be construed as being limited to the specific shape of the member or region shown herein.
본 발명은 딥 러닝 모델에 의해 생성된 연결성 구조를 이용하여 주어진 신호 데이터의 분류를 수행하는 신경망 모델을 구축할 수 있다. 주어진 데이터는 (X, y)로 표현되며, 여기서
Figure PCTKR2020012235-appb-I000001
이고, X 는 N 개의 센서(일 실시예에서 EEG 전극)로부터 수집된 시계열 신호 세트이고, y는 대응하는 클래스 레이블이다.
The present invention can build a neural network model that classifies given signal data using a connectivity structure generated by a deep learning model. The given data is expressed as (X, y ), where
Figure PCTKR2020012235-appb-I000001
And X is the set of time series signals collected from N sensors (EEG electrodes in one embodiment), and y is the corresponding class label.
추정되는 그래프 구조는 자가 루프가 없는 가중치 및 방향성을 갖는 멀티 레이어 그래프이고, 그래프 구조(G)는 수학식 1로 표현될 수 있다. The estimated graph structure is a multi-layer graph having weights and directions without self-loop, and the graph structure G may be expressed by Equation 1.
[수학식 1][Equation 1]
Figure PCTKR2020012235-appb-I000002
Figure PCTKR2020012235-appb-I000002
정점(vertex)을 나타내는 V는 수학식 2로 표현될 수 있고, 간선(edge)의 존재를 나타내는 E는 수학식 3으로 표현될 수 있고, 가중치를 나타내는 W는 수학식 4로 표현될 수 있다. V representing a vertex can be expressed by Equation 2, E representing the existence of an edge can be expressed by Equation 3, and W representing the weight can be expressed by Equation 4.
[수학식 2][Equation 2]
Figure PCTKR2020012235-appb-I000003
Figure PCTKR2020012235-appb-I000003
[수학식 3][Equation 3]
Figure PCTKR2020012235-appb-I000004
Figure PCTKR2020012235-appb-I000004
[수학식 4][Equation 4]
Figure PCTKR2020012235-appb-I000005
Figure PCTKR2020012235-appb-I000005
Ek는 k번째 그래프 레이어에서 정점 쌍 사이의 간선의 존재를 나타내고, Wk는 정점 쌍 사이의 간선 가중치를 나타낸다.
Figure PCTKR2020012235-appb-I000006
로 가정되었고, K는 그래프 레이어의 개수를 제어하는 하이퍼 파라미터이다.
E k represents the existence of an edge between the pair of vertices in the k-th graph layer, and W k represents the weight of the edge between the pair of vertices.
Figure PCTKR2020012235-appb-I000006
Is assumed, and K is a hyper parameter that controls the number of graph layers.
도 1은 본 발명의 일 실시예에 따른 연결성 학습 장치(1)의 블록도이다.1 is a block diagram of an apparatus 1 for learning connectivity according to an embodiment of the present invention.
도 1을 참조하면, 연결성 학습 장치(1)는 멤버십 추출부(10), 그래프 샘플링부(20), 특징 추출부(30) 및 분류 처리부(40)를 포함할 수 있다. 연결성 학습 장치(1)는 심층 신경망 학습에 의해 복수의 객체들 간의 연결성을 판단하고, 판단된 연결성에 기초하여 입력 신호를 분류할 수 있다.Referring to FIG. 1, the connectivity learning apparatus 1 may include a membership extracting unit 10, a graph sampling unit 20, a feature extracting unit 30, and a classification processing unit 40. The connectivity learning apparatus 1 may determine connectivity between a plurality of objects by learning a deep neural network, and classify an input signal based on the determined connectivity.
상기 객체들 간의 연결성은 인과 관계 또는 상관 관계를 포함하고, 2 이상의 타입을 포함할 수 있다. 객체들 간의 연결성이 2 이상의 타입을 포함하는 경우에는 후술하는 바와 같이 복수의 연결성 레이어에 의해 표현될 수 있다.The connectivity between the objects includes a causal relationship or a correlation, and may include two or more types. When the connectivity between objects includes two or more types, it may be represented by a plurality of connectivity layers, as described later.
멤버십 추출부(10)는 복수의 객체들로부터 얻어진 원시 신호로부터 객체들 간의 연결성의 존재를 나타내는 멤버십을 추출하고, 추출된 멤버십을 그래프 샘플링부(20)로 출력할 수 있다. 일 실시예에서, 객체는 다양한 신호를 센싱 또는 감지할 수 있는 센서 또는 감지 소자를 포함할 수 있다. The membership extracting unit 10 may extract a membership indicating the existence of connectivity between objects from a raw signal obtained from a plurality of objects, and output the extracted membership to the graph sampling unit 20. In an embodiment, the object may include a sensor or sensing element capable of sensing or detecting various signals.
원시 신호 또는 입력 신호는 기능적 자기공명영상(Functional Magnetic Resonance Imaging, fMRI), 뇌전도(electroencephalography, EEG) 및 기능적 근적외선 분광(Functional Near Infrared Spectroscopy, fNIRS) 중 하나 이상을 포함할 수 있다. 싱기 원시 신호 또는 상기 입력 신호는 뇌와 관련된 신호에 한정되지 않고, 다른 실시예에서는 심장과 관련된 영상 또는 음향 신호를 포함할 수도 있다. 다른 실시예에서, 상기 원시 신호 또는 상기 입력 신호는 풍량 또는 풍속과 같은 기상 데이터에 관한 신호나 도로의 차량 통행을 나타내는 영상 신호를 포함할 수 있다.The raw signal or input signal may include one or more of Functional Magnetic Resonance Imaging (fMRI), electroencephalography (EEG), and Functional Near Infrared Spectroscopy (fNIRS). The original signal or the input signal is not limited to a signal related to the brain, and may include an image or an audio signal related to the heart in another embodiment. In another embodiment, the original signal or the input signal may include a signal related to weather data such as an air volume or wind speed, or an image signal indicating vehicle traffic on a road.
상기 객체들 간의 연결성이 2 이상의 타입인 경우에, 멤버십 추출부(10)는 상이한 타입의 연결성을 나타내는 2 이상의 연결성 레이어 각각에 대하여 멤버십을 추출할 수 있다. 또한, 이러한 경우에, 그래프 샘플링부(20)는 각 연결성 레이어에 대하여 하나의 그래프 레이어를 생성할 수 있다.When the connectivity between the objects is of two or more types, the membership extraction unit 10 may extract membership for each of two or more connectivity layers representing different types of connectivity. In addition, in this case, the graph sampling unit 20 may generate one graph layer for each connectivity layer.
그래프 샘플링부(20)는 멤버십 추출부(10)에 의해 추출된 상기 멤버십으로부터 객체들 간의 연결성을 샘플링하여 객체들 간의 연결성을 그래프로 표현하는 그래프 구조를 생성하고, 생성된 그래프 구조를 분류 처리부(40)로 출력할 수 있다.The graph sampling unit 20 samples the connectivity between objects from the membership extracted by the membership extraction unit 10 to generate a graph structure expressing the connectivity between the objects in a graph, and classifies the generated graph structure into a classification processing unit ( 40).
또한, 그래프 샘플링부(20)는 멤버십 추출부(10)에 의해 추출된 상기 멤버십이 나타내는 값이 임계값 이상인지 여부에 기초하여 객체들 간의 연결성을 샘플링하는 결정론적 이진화에 의해 그래프 구조를 생성할 수 있다.In addition, the graph sampling unit 20 generates a graph structure by deterministic binarization that samples the connectivity between objects based on whether the value indicated by the membership extracted by the membership extraction unit 10 is equal to or greater than a threshold value. I can.
특징 추출부(30)는 복수의 객체들로부터 얻어진 원시 신호로부터 신호 특징을 추출하고, 추출된 신호 특징을 분류 처리부(40)에 출력할 수 있다. 특징 추출부(30)는 컨벌루션 연산 및 맥스 풀링 연산에 의해 상기 원시 신호로부터 신호 특징을 추출할 수 있다. 특징 추출부(30)가 수행하는 컨벌루션 연산은 복수의 시간 간격을 갖는 확장된 컨벌루션 레이어들을 통해 수행될 수 있다.The feature extraction unit 30 may extract a signal feature from an original signal obtained from a plurality of objects and output the extracted signal feature to the classification processor 40. The feature extraction unit 30 may extract a signal feature from the original signal through a convolution operation and a max pooling operation. The convolution operation performed by the feature extraction unit 30 may be performed through extended convolutional layers having a plurality of time intervals.
도 2는 본 발명의 일 실시예에 따른 멤버십 추출부(10)의 구성을 도시하는 개념도이다.2 is a conceptual diagram showing the configuration of the membership extraction unit 10 according to an embodiment of the present invention.
멤버십 추출부(10)는 입력된 시계열 데이터로부터 잠재적인 멤버십을 계산한다. 잠재적인 멤버십(hij)은 각 그래프 레이어에 대해 정점 vi에서 정점 vj로 향하는 간선의 존재 확률을 나타내고, 수학식 5 및 수학식 6에 의해 계산될 수 있다. 멤버십 추출부(10)는 정점-간선 연산 및 간선-정점 연산('정점-간선 연산과 간선-정점 연산에 관하여는, 2018년판 Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, 및 Richard Zeme 공저의 'Neural Relational Inference for Interacting Systems' In Proceedings of the 35th International Conference on Machine Learning, 2678 내지 2687쪽에 개시되어 있으며, 해당 개시 사항은 참조에 의해 그 전체가 본 명세서에 포함된다), 그리고 완전 연결(fully-connected) 네트워크를 사용한다.The membership extraction unit 10 calculates potential membership from the input time series data. The potential membership (h ij ) represents the probability of the existence of an edge from the vertex vi to the vertex vj for each graph layer, and can be calculated by Equations 5 and 6. The membership extraction unit 10 includes vertex-edge operation and edge-vertex operation (for'vertex-edge operation and edge-vertex operation, 2018 editions Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zeme. Co-authored'Neural Relational Inference for Interacting Systems' In Proceedings of the 35th International Conference on Machine Learning, pages 2678 to 2687, the disclosures of which are incorporated herein by reference in their entirety), and a full connection ( Use a fully-connected) network.
[수학식 5][Equation 5]
Figure PCTKR2020012235-appb-I000007
Figure PCTKR2020012235-appb-I000007
[수학식 6][Equation 6]
Figure PCTKR2020012235-appb-I000008
Figure PCTKR2020012235-appb-I000008
수학식 5 및 수학식 6에서
Figure PCTKR2020012235-appb-I000009
는 연결 연산('지수적 선형 유닛'에 관하여는 2015년 판 Djork-Arnι Clevert, Thomas Unterthiner 및 Sepp Hochreiter 공저의 'exponential linear unit: Fast and accurate deep network learning by exponential linear units (ELUs)' In Proceedings of the 3rd International Conference on Learning Representations, 1 내지 14 쪽에 개시되어 있으며, 해당 개시 사항은 참조에 의해 그 전체가 본 명세서에 포함된다)을 가지며, 배치 정규화('배치 정규화'에 관하여는 2015년판 Sergey Ioffe 및 Christian Szegedy 공저의 'Batch normalization: accelerating deep network training by reducing internal covariate shift' In Proceedings of the 32nd International Conference on Machine Learning, 448 내지 456 쪽에 개시되어 있으며, 해당 개시 사항은 참조에 의해 그 전체가 본 명세서에 포함된다)를 갖는 완전 연결 네트워크이다.
In Equation 5 and Equation 6
Figure PCTKR2020012235-appb-I000009
(For'exponential linear units', see'exponential linear unit: Fast and accurate deep network learning by exponential linear units (ELUs)' in the 2015 edition of Djork-Arnι Clevert, Thomas Unterthiner, and Sepp Hochreiter' In Proceedings of The 3rd International Conference on Learning Representations, pages 1 to 14, the disclosures of which are incorporated herein in their entirety by reference), and batch normalization (for'batch normalization', 2015 edition of Sergey Ioffe and Christian Szegedy co-author'Batch normalization: accelerating deep network training by reducing internal covariate shift' In Proceedings of the 32nd International Conference on Machine Learning, pages 448 to 456, the disclosures of which are disclosed in the present specification by reference. Included) is a fully connected network.
도 3은 본 발명의 일 실시예에 따른 그래프 샘플링부(20)의 구성을 도시하는 개념도이다.3 is a conceptual diagram showing the configuration of the graph sampling unit 20 according to an embodiment of the present invention.
그래프 샘플링부(20)에서는 레이어 멤버십 정보로부터, 확률론적 또는 결정론적 샘플링을 통해 그래프 구조를 생성할 수 있다. 본 발명에서는 그래프 샘플링을 위해 확률론적 샘플링(Stochastic sampling, STO), 결정론적 이진화(DET: Deterministic Thresholding) 및 연속 샘플링(CON: Continuous sampling)의 3 가지 방법을 고려한다.The graph sampling unit 20 may generate a graph structure from the layer membership information through probabilistic or deterministic sampling. In the present invention, three methods are considered for graph sampling: stochastic sampling (STO), deterministic thresholding (DET), and continuous sampling (CON).
확률론적 샘플링 방법은 확률적으로 정점 vi에서 정점 vj까지의 잠재적 간선을 K 그래프 레이어 중 하나에 할당한다. 샘플링된 그래프 가중치는 불연속적이므로 Gumbel-softmax 재파라미터화 기술('Gumbel-softmax 재파라미터화 기술'에 관하여, 2017년판 Eric Jang, Shixiang Gu, 및 Ben Poole 공저의 'Categorical reparameterization with Gumbel-softmax' In Proceedings of the 5th International Conference on Learning Representations, 1 내지 12쪽과 2017년판 Chris J. Maddison, Andriy Mnih, 및 Yee Whye Teh 공저의 'The concrete distribution: a continuous relaxation of discrete random variables' In Proceedings of the 5th International Conference on Learning Representations, 1 내지 20 쪽에 개시되어 있으며, 해당 개시 사항은 참조에 의해 그 전체가 본 명세서에 포함된다)이 사용되어 continuous relaxation을 제공하고 그래디언트 계산을 가능하게 한다.The probabilistic sampling method probabilistically assigns a potential edge from vertex vi to vertex vj to one of the K graph layers. Since the sampled graph weights are discontinuous, the Gumbel-softmax reparameterization technique ('Categorical reparameterization with Gumbel-softmax' In Proceedings, 2017 edition of Eric Jang, Shixiang Gu, and Ben Poole) of the 5th International Conference on Learning Representations, pp. 1-12 and'The concrete distribution: a continuous relaxation of discrete random variables' In Proceedings of the 5th International Conference by Chris J. Maddison, Andriy Mnih, and Yee Whye Teh, 2017 edition. on Learning Representations, pages 1 to 20, the disclosure of which is incorporated herein in its entirety by reference) to provide continuous relaxation and to enable gradient calculations.
[수학식 7][Equation 7]
Figure PCTKR2020012235-appb-I000010
Figure PCTKR2020012235-appb-I000010
여기서,
Figure PCTKR2020012235-appb-I000011
는 랜덤 벡터이고, 이 랜덤 벡터의 각 요소들은 IID(Independent and Identically Distributed) 속성을 갖고, 표준 Gumbel 분포를 따른다.
Figure PCTKR2020012235-appb-I000012
는 샘플링 평활도(smoothness)를 제어하는 소프트맥스 온도이다. 본 실시예에서는 0.5로 설정하였다. vi로부터 vj로의 비가중 간선(
Figure PCTKR2020012235-appb-I000013
)은 수학식 8에 의해 얻을 수 있다.
here,
Figure PCTKR2020012235-appb-I000011
Is a random vector, and each element of this random vector has an IID (Independent and Identically Distributed) attribute, and follows a standard Gumbel distribution.
Figure PCTKR2020012235-appb-I000012
Is the softmax temperature that controls the sampling smoothness. In this example, it was set to 0.5. unweighted edges from vi to vj (
Figure PCTKR2020012235-appb-I000013
) Can be obtained by Equation 8.
[수학식 8][Equation 8]
Figure PCTKR2020012235-appb-I000014
Figure PCTKR2020012235-appb-I000014
추정된 그래프에는 복수의 그래프 레이어가 있으므로, 그래프 레이어마다 다른 유형의 연결성 정보가 모델링될 수 있다. 확률론적 샘플링 방법은 각 간선을 하나의 그래프 레이어에만 속하도록 제한하지만 결정론적 이진화 방법은 이 제한을 완화하여 한 쌍의 정점이 이진화를 통해 복수의 레이어에 간선을 갖게 한다.Since the estimated graph includes a plurality of graph layers, different types of connectivity information may be modeled for each graph layer. The probabilistic sampling method limits each edge to belong to only one graph layer, but the deterministic binarization method alleviates this limitation so that a pair of vertices has edges in multiple layers through binarization.
[수학식 9][Equation 9]
Figure PCTKR2020012235-appb-I000015
Figure PCTKR2020012235-appb-I000015
수학식 9에서 r은 임계값이고, 실시예에서 0.5로 설정하였다. 확률론적 샘플링 방법에 사용된 것과 동일한 continuous relaxation 기술을 사용하여 학습 동안에 불연속 변수를 차별화할 수 있다.In Equation 9, r is a threshold value, and in the example, it is set to 0.5. Discrete variables can be differentiated during learning using the same continuous relaxation technique used in the probabilistic sampling method.
앞의 2가지 방법은 비가중 그래프를 구성하지만, 연속 샘플링 방법을 사용하면 간선 가중치를 연속적인 값으로 하여 다른 그래프 레이어에서 서로 다른 연결성 정도가 유지될 수 있다. 이를 위해, Gumbel-softmax 연산으로부터 얻어진 0과 1 사이의 연속적인 값을 갖는
Figure PCTKR2020012235-appb-I000016
는 k 번째 그래프 계층에서 vi에서 vj까지의 간선 가중치로 직접 사용된다. 따라서 이 방법은 세 가지 방법 중 가장 일반적인 형태의 그래프 구조, 즉 가중치 및 방향성을 갖는 멀티 레이어 그래프를 생성한다.
The previous two methods constitute an unweighted graph, but if the continuous sampling method is used, different degrees of connectivity can be maintained in different graph layers by using the edge weight as a continuous value. To do this, we have a continuous value between 0 and 1 obtained from the Gumbel-softmax operation.
Figure PCTKR2020012235-appb-I000016
Is used directly as the edge weight from vi to vj in the k-th graph layer. Therefore, this method creates the most common type of graph structure among the three methods, that is, a multi-layer graph with weights and directions.
특정한 정점 쌍 사이에는 직접적인 관계가 없을 수 있다. 이를 가능하게 하기 위해 그래프 레이어 중 하나를 스킵 레이어(Skip Layer)로 할당할 수 있다. 그래프가 분류 처리부(40)에 전달될 때 스킵 레이어는 폐기되므로, 이 레이어에 속하는 간선은 분류를 위해 사용되는 그래프에서 생략된다.There may be no direct relationship between a particular pair of vertices. To enable this, one of the graph layers may be assigned as a skip layer. Since the skip layer is discarded when the graph is transmitted to the classification processing unit 40, the trunk line belonging to this layer is omitted from the graph used for classification.
도 4는 본 발명의 일 실시예에 따른 특징 추출부(30)의 구성을 도시하는 개념도이다.4 is a conceptual diagram showing the configuration of a feature extraction unit 30 according to an embodiment of the present invention.
특징 추출부(30)는 1-D 컨벌루션 및 맥스 풀링 연산에 의해 원시 신호로부터 신호 특징을 추출할 수 있다. 신호의 동적 정보를 캡처하기 위해, 본 발명은 다양한 확장률(dilation rate)을 갖는 컨벌루션 레이어들을 포함하여 확장된 인셉션 모듈(inception module)의 1-D 버전을 채택한다. 낮은 확장률을 갖는 확장된 컨벌루션 레이어는 빠르게 변하는 고주파 정보에 해당하는 주변 샘플들 사이에 나타나는 특징을 포착하고, 높은 확장률을 갖는 확장된 컨벌루션 레이어는 큰 시간적 윈도우에 대하여 느리게 변화하는 특징을 포착한다. The feature extraction unit 30 may extract signal features from the original signal by 1-D convolution and max pooling operations. In order to capture the dynamic information of the signal, the present invention adopts the 1-D version of the extended inception module including convolutional layers with various dilation rates. The extended convolution layer with a low expansion rate captures features that appear between surrounding samples corresponding to fast-changing high-frequency information, and the extended convolution layer with a high expansion rate captures features that change slowly for a large temporal window. .
[수학식 10][Equation 10]
Figure PCTKR2020012235-appb-I000017
Figure PCTKR2020012235-appb-I000017
신호 특징 Ui는 수학식 10에 의해 계산될 수 있다. 여기서, T'는 감소된 신호 길이이고, F는 특징 차원(feature dimension)이다.The signal feature U i can be calculated by Equation 10. Here, T'is the reduced signal length, and F is the feature dimension.
도 5는 본 발명의 일 실시예에 따른 분류 처리부(40)의 구성을 도시하는 개념도이다.5 is a conceptual diagram showing the configuration of the classification processing unit 40 according to an embodiment of the present invention.
분류 처리부(40)는 GNN(Graph Neural Network)를 포함하고, 신호 특징들과 구축된 그래프를 사용하여 분류를 수행하여 예측된 클래스 레이블
Figure PCTKR2020012235-appb-I000018
를 출력할 수 있다. 먼저, 신호 특징들에 대해 정점-간선 연산이 수행되고, 그 결과는 메시지 전달(message passing) 연산을 통해 그래프 구조와 결합되고 집계 연산(aggregation operation) 및 간선-정점 연산이 수행된다.
The classification processing unit 40 includes a graph neural network (GNN), and class labels predicted by performing classification using signal features and a built graph
Figure PCTKR2020012235-appb-I000018
Can be printed. First, a vertex-edge operation is performed on signal features, and the result is combined with a graph structure through a message passing operation, and an aggregation operation and an edge-vertex operation are performed.
[수학식 11][Equation 11]
Figure PCTKR2020012235-appb-I000019
Figure PCTKR2020012235-appb-I000019
수학식 11에서 t는 시간 인덱스이고, 스킵 레이어가 사용되는 경우에 s=2이고, 스킵 레이어가 사용되지 않는 경우에 s=1이다.
Figure PCTKR2020012235-appb-I000020
는 입력 및 출력이 각각 F-차원 및 F'-차원, 즉
Figure PCTKR2020012235-appb-I000021
인 ReLU(Rectified Linear Unit)를 갖는 완전 연결된 네트워크에 의해 모델링된다. 마지막으로 이 결과는 스킵 커넥션을 통해 신호 특징들과 연결되어 벡터화 후에 완전 연결된 네트워크에 제공된다.
In Equation 11, t is a time index, s=2 when a skip layer is used, and s=1 when a skip layer is not used.
Figure PCTKR2020012235-appb-I000020
Is the input and output are F-dimensional and F'-dimensional, respectively
Figure PCTKR2020012235-appb-I000021
It is modeled by a fully connected network with ReLU (Rectified Linear Unit). Finally, this result is linked to the signal features via a skip connection, vectorized and provided to a fully connected network.
[수학식 12][Equation 12]
Figure PCTKR2020012235-appb-I000022
Figure PCTKR2020012235-appb-I000022
(여기서
Figure PCTKR2020012235-appb-I000023
이다.)
(here
Figure PCTKR2020012235-appb-I000023
to be.)
이하에서는 본 발명의 구체적인 실시예를 설명한다.Hereinafter, specific embodiments of the present invention will be described.
본 실시예에서는 인간의 정서적 정신 상태에 관한 가장 큰 데이터베이스 중 하나인 DEAP(Database for Emotion Analysis using Physiological Signals) 데이터 세트가 사용되었다. 실시예의 데이터 세트에는 40개의 비디오 자극을 시청하는 동안 32명의 피검자로부터 수집된 32 채널 EEG 기록 및 피검자에 의한 대응하는 감정 등급이 포함된다. 실시예에서는 딥 러닝 모델이 주어진 EEG 신호 세트를 40 개의 비디오 자극 중 하나로 분류하는 비디오 식별 작업을 수행하였다. In this embodiment, one of the largest databases on the emotional and mental state of humans, the Database for Emotion Analysis using Physiological Signals (DEAP) data set was used. The data set of the example includes 32 channel EEG records collected from 32 subjects while watching 40 video stimuli and the corresponding emotion rating by the subject. In the embodiment, a video identification task was performed to classify a set of EEG signals given by a deep learning model into one of 40 video stimuli.
구체적으로, DEAP 데이터 세트의 1 분 길이의 각 EEG 신호는 2초 길이가 겹치는 3초 길이의 세그먼트로 분할된다(T=384). 그 결과, 총 74,240 개 (32개 피검자×40개 비디오×58개 세그먼트)의 32 채널 EEG 신호 세트가 얻어진다. 얻어진 신호 세트들은 전체 데이터 세트의 각각 80 %, 10 % 및 10 %를 보유하는 학습, 검증 및 테스트 데이터 세트로 무작위로 분리된다.Specifically, each 1 minute long EEG signal of the DEAP data set is divided into 3 second long segments overlapping 2 seconds long (T=384). As a result, a total of 74,240 32-channel EEG signal sets (32 subjects x 40 videos x 58 segments) are obtained. The obtained signal sets are randomly separated into training, validation and test data sets holding 80%, 10% and 10% of the total data set, respectively.
본 실시예의 딥러닝 모델은 PyTorch('PyTorch'에 관하여 2017년판 Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, 및 Adam Lerer 공저의 'Automatic differentiation in PyTorch In Proceedings of the NIPS 2017 Autodiff Workshop: The Future of Gradient-based Machine Learning Software and Techniques' , 1 내지 4쪽에 개시되어 있으며, 해당 개시사항은 참조에 의해 그 전체가 본 명세서에 포함된다)로 구현되었고, Adam optimizer('Adam optimizer'에 관하여, 2015년판 Diederik P. Kingma 및 Jimmy Ba 공저의 'Adam : a method for stochastic optimization' In Proceedings of the 3rd International Conference on Learning Representations, 1 내지 15쪽에 개시되어 있으며, 해당 개시사항은 참조에 의해 그 전체가 본 명세서에 포함된다)를 사용하여 학습되었다. The deep learning model of this example is PyTorch (Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer co-authored'Automatic differentiation in PyTorch In Proceedings of the NIPS 2017 Autodiff Workshop: The Future of Gradient-based Machine Learning Software and Techniques', pages 1 to 4, the disclosures of which are incorporated herein by reference in their entirety) Adam optimizer ('Adam optimizer', 2015 edition of Diederik P. Kingma and Jimmy Ba co-author'Adam: a method for stochastic optimization' In Proceedings of the 3rd International Conference on Learning Representations, published on pages 1 to 15 And the corresponding disclosure has been learned using (the whole is incorporated herein by reference).
모델 구조 및 학습 매개 변수에 대한 자세한 내용에 대하여 이하에서 설명한다.Details of the model structure and learning parameters will be described below.
그래프 멤버십 추출: f1, f2 및 f3은 256 개의 은닉 뉴런과 256 개의 출력 뉴런이 있는 완전 연결된 2 레이어 네트워크이다. 완전 연결된 각 레이어는 지수적 선형 유닛을 가지며, 배치 정규화가 출력 레이어에 사용된다. f4는 완전 연결된 3 개의 레이어를 포함한다. 3개의 레이어 중 처음의 2개의 레이어에는 지수적 선형 유닛을 갖는 256 개의 은닉 뉴런이 존재하고, 마지막 레이어에는 K개의 출력 뉴런이 존재한다.Graph membership extraction: f1, f2 and f3 are fully connected two-layer networks with 256 hidden neurons and 256 output neurons. Each fully connected layer has an exponential linear unit, and batch normalization is used for the output layer. f4 contains 3 fully connected layers. Among the three layers, there are 256 hidden neurons with exponential linear units in the first two layers, and K output neurons in the last layer.
특징 추출: 각각의 확장된 인셉션 모듈은 각각 1, 2, 4 및 8의 확장률을 갖는, 커널 크기가 3 인 4 개의 1-D 컨벌루션 층으로 구성된다. 각 계층에는 8 개의 출력 채널이 있으므로 F = 8×4 = 32이다. 최대 풀링 크기는 α = 4로 설정된다. 신호 확장의 길이가 T'= 6이 되도록 3 개의 확장된 시작 모듈이 일렬로 연결된다.Feature Extraction: Each extended inception module consists of four 1-D convolutional layers with a kernel size of 3, each with a scaling factor of 1, 2, 4 and 8. Each layer has 8 output channels, so F = 8 × 4 = 32. The maximum pooling size is set to α = 4. Three extended start modules are connected in a line so that the length of the signal extension is T'=6.
신경망 그래프:
Figure PCTKR2020012235-appb-I000024
(k = 1,..., K)는 256 개의 은닉 뉴런과 ReLU를 갖는 256 개의 출력 뉴런을 갖춘 2 레이어의 완전 연결 네트워크이다. g2는 ReLU(Rectified Linear Unit)를 갖는 256 개의 은닉 뉴런과 40 개의 소프트 맥스 출력 뉴런을 갖는 2 레이어의 완전 연결 네트워크이다.
Neural network graph:
Figure PCTKR2020012235-appb-I000024
( k = 1,..., K) is a two-layer fully connected network with 256 hidden neurons and 256 output neurons with ReLU. g 2 is a two-layer fully connected network with 256 hidden neurons with ReLU (Rectified Linear Unit) and 40 soft max output neurons.
학습: 본 발명의 실시예에 따른 딥 러닝 모델은 교차 엔트로피 손실을 최소화하는 것을 목적으로 30 에포크(epoch) 동안 0.0001의 학습률(learning rate)로 Adam 옵티마이저('옵티마이저'에 관하여, 2015년판 'Diederik P. Kingma and Jimmy Ba. Adam: a method for stochastic optimization', In Proceedings of the 3rd International Conference on Learning Representations, 1 내지 15쪽에 개시되어 있으며, 해당 개시사항은 참조에 의해 그 전체가 본 명세서에 포함된다)를 사용하여 학습되었다. 배치(batch) 크기는 32이다. 훈련 절차는 하나의 NVIDIA K80 GPU를 사용하여 약 10-12 시간이 걸렸다. 테스트 정확도는 훈련 과정 중 최상의 검증 정확도를 나타낸 네트워크를 사용하여 측정되었다. 다른 무작위 시드로 실험을 5 회 반복하고 평균 성능을 측정하였다.Learning: The deep learning model according to the embodiment of the present invention has a learning rate of 0.0001 for 30 epochs for the purpose of minimizing cross entropy loss. Diederik P. Kingma and Jimmy Ba. Adam: a method for stochastic optimization', In Proceedings of the 3rd International Conference on Learning Representations, pages 1 to 15, the disclosures of which are incorporated herein by reference in their entirety It was learned using). The batch size is 32. The training procedure took about 10-12 hours using one NVIDIA K80 GPU. Test accuracy was measured using the network that showed the best validation accuracy during the training process. The experiment was repeated 5 times with different random seeds and the average performance was determined.
k-NNk-NN Random forestRandom forest ChebNetChebNet GNN onlyGNN only 본 발명The present invention
AccuracyAccuracy 48.50%48.50% 51.34%51.34% 65.27%65.27% 44.70%44.70% 91.23%91.23%
상기 [표 1]은 본 발명의 일 실시예에 따른 딥 러닝 모델(그래프 샘플링을 위한 결정론적 이진화 방법과 스킵 레이어가 없는 3 개의 그래프 레이어 사용)과 기존 방법의 분류 정확도를 나타낸다. k-NN(k-nearest neighbor)과 랜덤 포레스트(Random Forest)를 포함한 전통적인 분류기, 그래프 구조가 전극 사이의 물리적 거리에 의해 결정되고 신호 엔트로피가 특징으로 사용되는 ChebNet 기반 방법(Soobeom Jang, Seong-Eun Moon, and Jong-Seok Lee. EEG-based video identification using graph signal modeling and graph convolutional neural network. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3066-3070, 2018 참조)을 테스트하였다. 또한, 일 실시예에 따른 딥 러닝 모델에서 그래프 구조 추출을 제외한 모델(표 1에서 "GNN only"로 표시함)도 테스트하였다. 표 1로부터 본 발명의 일 실시예에 따른 딥 러닝 모델이 다른 방법보다 성능이 훨씬 뛰어나다는 것이 명확히 파악된다. 본 발명의 딥 러닝 모델은 ChebNet 기반 방법보다 성능이 뛰어나며, 이것은 데이터 중심의 그래프 및 기능 추출이 효과적이라는 것을 나타낸다. 또한, 본 발명의 딥 러닝 모델에서 그래프 추출을 생략하면(즉, "GNN only"의 경우) 성능이 크게 저하되는 것으로부터, 그래프 구조가 EEG 데이터 모델링에 중요하다는 것을 파악할 수 있다. Table 1 shows a deep learning model (a deterministic binarization method for graph sampling and three graph layers without a skip layer) according to an embodiment of the present invention and classification accuracy of the conventional method. Traditional classifier including k-nearest neighbor (k-NN) and random forest, ChebNet-based method in which the graph structure is determined by the physical distance between electrodes and signal entropy is used as a feature ( Soobeom Jang, Seong-Eun Moon, and Jong-Seok Lee.EEG-based video identification using graph signal modeling and graph convolutional neural network.In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3066-3070, 2018 ) were tested. . In addition, in the deep learning model according to an embodiment, a model excluding graph structure extraction (indicated as "GNN only" in Table 1) was also tested. From Table 1, it is clearly understood that the deep learning model according to an embodiment of the present invention performs much better than other methods. The deep learning model of the present invention has better performance than the ChebNet-based method, which indicates that data-driven graph and function extraction are effective. In addition, it can be understood that the graph structure is important for EEG data modeling because performance is greatly degraded if graph extraction is omitted (ie, in the case of “GNN only”) in the deep learning model of the present invention.
#Layers(K)#Layers(K) 1+skip1+skip 22 2+skip2+skip 33 3+skip3+skip
STOSTO 69.28%69.28% 73.98%73.98% 76.03%76.03% 86.86%86.86% 86.65%86.65%
DETDET 55.91%55.91% 86.61%86.61% 83.14%83.14% 91.23%91.23% 91.04%91.04%
CONCON 58.31%58.31% 76.29%76.29% 77.84%77.84% 90.08%90.08% 89.43%89.43%
상기 [표 2]에서는 그래프 샘플링 방법, 그래프 레이어 수(K) 및 스킵 레이어 유무의 다양한 조합에 대한 모델의 정확도를 나타낸다. 결과는 그래프 레이어의 수가 가장 중요한 매개 변수임을 보여준다. 대부분의 기존 연구에서 고려된 단일 계층 그래프로는 충분하지 않으며 분리된 그래프 계층들과 다른 유형의 영역 간 상호 작용을 모델링하는 것이 매우 유리하다. 3 종류의 그래프 샘플링 방법 중 결정론적 이진화 방법은 K=1 인 경우를 제외하고 최상의 성능을 나타내고, 연속 샘플링 방법은 그래프 레이어 수가 많을 때 우수한 성능을 나타내었다. 확률론적 샘플링 방법에서는 그래프 레이어 중 하나의 간선만 선택하는 것에 의해 성능이 제한되는 것으로 파악되었다. 스킵 레이어의 존재는 특히 그래프 레이어 수가 많은 경우 성능에 미세한 영향만 미친다.Table 2 shows the accuracy of the model for various combinations of the graph sampling method, the number of graph layers (K), and the presence or absence of skip layers. The results show that the number of graph layers is the most important parameter. The single layer graphs considered in most existing studies are not sufficient, and it is very advantageous to model the interactions between separate graph layers and different types of regions. Of the three graph sampling methods, the deterministic binarization method showed the best performance except for the case of K=1, and the continuous sampling method showed excellent performance when the number of graph layers was large. In the probabilistic sampling method, it was found that the performance is limited by selecting only one edge of the graph layer. The presence of the skip layer only has a minor effect on performance, especially when the number of graph layers is large.
도 6a 내지 도 6d는 본 발명의 일 실시예에 따른 원시 신호 및 추출된 그래프를 도시한다. 도 6a 내지 도 6dj에서 컬러 색상은 원출원의 칼라 도면을 참조할 수 있다. 6A to 6D illustrate a raw signal and an extracted graph according to an embodiment of the present invention. In FIGS. 6A to 6D, the color color may refer to the color drawing of the original application.
도 6a는 피검자 #1에 대한 원시 신호를 시각화한 것이고, 도 6b는 피검자 #1에 대한 추출된 그래프이다. 도 6c는 피검자 #2에 대한 원시 신호를 시각화한 것이고, 도 6d는 피검자 #2에 대한 추출된 그래프이다. 다른 색상은 다른 클래스를 나타낸다. 도 2b 및 도 2d의 플롯은 더 좋은 시각화를 위해 적색 박스(B0, B1)로 표시된 영역의 확대 버전이다. 6A is a visualization of the raw signal for subject #1, and FIG. 6B is an extracted graph for subject #1. 6C is a visualization of the raw signal for subject #2, and FIG. 6D is an extracted graph for subject #2. Different colors represent different classes. The plots of FIGS. 2B and 2D are enlarged versions of the areas marked with red boxes B0 and B1 for better visualization.
추출된 그래프 구조는 t-SNE 기법(Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research, 9:2579-2605, 2008 참조)을 사용하여 분석되었다. 도 6a 내지 도 6d는 2개의 피검자에 대해 추출된 그래프에서 원본 EEG 신호의 t-SNE 시각화와 모든 그래프 레이어의 인접 행렬들을 비교한다. 여기서 다른 색상은 다른 클래스를 나타낸다. 도 6a와 도 6c에서 서로 다른 클래스의 원시 신호는 혼합되어 있으므로 구분하기가 쉽지 않다. 한편, 도 6b와 도 6d에서는 동일한 클래스의 그래프는 밀접하게 그룹화되며, 이것은 분류에 크게 기여한다.The extracted graph structure was analyzed using the t-SNE technique (Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research, 9:2579-2605, 2008). 6A to 6D compare the t-SNE visualization of the original EEG signal and adjacency matrices of all graph layers in graphs extracted for two subjects. Different colors here represent different classes. In Figs. 6A and 6C, different classes of raw signals are mixed, so it is not easy to distinguish them. On the other hand, in Figs. 6B and 6D, graphs of the same class are closely grouped, which greatly contributes to classification.
그래프 구조에 대한 근거가 없기 때문에 추출된 그래프의 정확성의 평가가 어렵다. 이에 따라, 추출된 그래프의 품질을 평가하기 위한 하나의 방법으로서, 반복 실험에 대한 일관성을 테스트하였다. 즉, 상이한 반복 실험으로부터 획득된 그래프 구조들 간의 모든 페어 단위 조합에 대해 비유사성이 측정된다. 획득된 그래프 구조들 간의 낮은 수준의 비유사성, 즉 높은 수준의 일관성은 신뢰할 수 있고 의미가 있음을 나타낸다. 두 그래프 구조의 비유사성을 계산하는 전체 절차는 [알고리즘 1]에 요약되어 있다.[알고리즘 1]에서, 거리 함수(Dist)는 두 그래프 레이어의 인접 행렬을 입력으로 하여 그 거리를 계산하는 함수이며, 실시예에서는 절대 차이의 합을 채택하였다. 정점은 구별된 EEG 전극으로 명확하게 식별되어 차이를 계산할 수 있기 때문에 동형 이성(isomorphism)의 문제는 없다. 모든 반복 쌍에서 계산된 거리들의 평균값을 가능한 간선의 총 수로 나누고, 1로부터 감산하여 최종적인 일관성 스코어를 얻었다.Since there is no basis for the graph structure, it is difficult to evaluate the accuracy of the extracted graph. Accordingly, as one method for evaluating the quality of the extracted graph, the consistency of repeated experiments was tested. That is, dissimilarity is measured for all pair-wise combinations between graph structures obtained from different repeated experiments. A low level of dissimilarity, i.e., a high level of consistency, between the obtained graph structures indicates that it is reliable and meaningful. The whole procedure for calculating the dissimilarity of two graph structures is summarized in [Algorithm 1]. In [Algorithm 1], the distance function (Dist) is a function that calculates the distance by taking the adjacency matrix of two graph layers as input. , In the examples, the sum of the absolute differences was adopted. There is no problem of isomorphism because the vertices are clearly identified by distinct EEG electrodes and differences can be calculated. The average value of the distances calculated in all repeat pairs was divided by the total number of possible edges and subtracted from 1 to obtain the final consistency score.
[알고리즘 1][Algorithm 1]
Algorithm 1 Computing graph dissimilarity Algorithm 1 Computing graph dissimilarity
Input: Dist(·,·),
Figure PCTKR2020012235-appb-I000025
,
Figure PCTKR2020012235-appb-I000026
Input: Dist(·,·),
Figure PCTKR2020012235-appb-I000025
,
Figure PCTKR2020012235-appb-I000026
Output: D*, P* Output: D*, P*
1: M = GetPerm(1,...,K)1: M = GetPerm(1,...,K)
▷ Make a set of permutations in the lexicographic order ▷ Make a set of permutations in the lexicographic order
2: P* ← (1,...,K), D* ←
Figure PCTKR2020012235-appb-I000027
▷ Initial permutation and distance
2: P* ← (1,...,K), D* ←
Figure PCTKR2020012235-appb-I000027
▷ Initial permutation and distance
3: for P in M do ▷ Pick a permutation of (1,...,K)3: for P in M do ▷ Pick a permutation of (1,...,K)
4:
Figure PCTKR2020012235-appb-I000028
4:
Figure PCTKR2020012235-appb-I000028
▷ Permute the graph layers in W(m) with P▷ Permute the graph layers in W (m) with P
5:
Figure PCTKR2020012235-appb-I000029
5:
Figure PCTKR2020012235-appb-I000029
6: if D < D* then 6: if D <D* then
7: D* ← D7: D* ← D
8: P* ← P8: P* ← P
9: end if 9: end if
10: end for 10: end for
#Layers(K)#Layers(K) 1+skip1+skip 22 2+skip2+skip 33 3+skip3+skip
STOSTO 43.91%43.91% 89.32%89.32% 89.67%89.67% 83.41%83.41% 79.10%79.10%
DETDET 61.23%61.23% 88.01%88.01% 85.31%85.31% 77.79%77.79% 77.66%77.66%
CONCON 55.87%55.87% 84.01%84.01% 76.58%76.58% 81.64%81.64% 82.11%82.11%
상기 [표 3]은 일관성 분석 결과를 백분율로 나타낸다. K=1 인 경우를 제외하고, 다른 조건에서 높은 일관성 수준(약 75 ~ 90 %)이 관찰된다. 이는 그래프 추출 프로세스가 안정적으로 작동함을 나타내고, 추출된 그래프에 의미있는 데이터 표현이 포함되어 있는 것으로 예상할 수 있다.[Table 3] shows the results of the consistency analysis as a percentage. Except for the case of K=1, a high level of consistency (approximately 75-90%) is observed under other conditions. This indicates that the graph extraction process works stably, and it can be expected that the extracted graph contains a meaningful data representation.
도 7은 본 발명에서 사용된 그래프 표현을 위한 32개의 EEG 전극의 명칭 및 위치를 도시하는 그래프이다. 후술하는 그래프 구조의 예는 도 7에 도시된 32개의 EEG 전극에 기초한 것이다.7 is a graph showing the names and locations of 32 EEG electrodes for graphical representation used in the present invention. An example of a graph structure to be described later is based on 32 EEG electrodes shown in FIG. 7.
도 8a 내지 도 8c는 본 발명의 일 실시예에 따라 얻어진 그래프 구조의 예를 도시하는 그래프이다.8A to 8C are graphs showing examples of graph structures obtained according to an embodiment of the present invention.
본 발명의 실시예 중 가장 좋은 결과가 나온 실시예의 경우(즉, K=3, 스킵 레이어 없음, 결정론적 이진화)에 대하여, 감정적 인지 반응의 관점에서 학습된 표현을 이해하기 위해 획득된 그래프 구조를 조사하였다. 획득된 그래프 구조는 각 반복마다 다르므로, 반복 실험에서 얻어진 여러 그래프 중 가장 자주 나타나는(상위 10%) 간선을 포함하는 대표 그래프 구조를 얻었다. 도 8a는 모든 비디오 자극에 걸쳐 가장 자주 활성화되는 간선을 포함하는 대표 그래프이다. 도 8b와 도 8c는 각각 가장 높은 유인가(valence)를 가지는 비디오 자극과, 가장 낮은 유인가를 가지는 비디오 자극에 대한 대표적인 그래프 구조에 대응한다. 정점의 크기는 입력 차수(in-degree)를 나타낸다. 출력 차수(out-degree)는 모든 정점에서 유사하므로 표시를 생략한다.In the case of the example in which the best result was obtained among the examples of the present invention (i.e., K=3, no skip layer, deterministic binarization), the graph structure obtained in order to understand the learned expression in terms of the emotional cognitive response is shown. Investigated. Since the obtained graph structure is different for each iteration, a representative graph structure including the edge that appears most frequently (top 10%) among several graphs obtained in the repeated experiment was obtained. 8A is a representative graph including the trunk line that is most frequently activated across all video stimuli. 8B and 8C correspond to a representative graph structure for a video stimulus having the highest valence and a video stimulus having the lowest incentive, respectively. The size of the vertex represents the input degree (in-degree). The out-degree is similar at all vertices, so the marking is omitted.
도 8a의 제 1 레이어(적색, L1)에서, 좌측 측두엽을 향한 강한 활성화가 관찰된다. 측두엽은 장면과 같은 복잡한 시각 자극의 처리와 관련이 있다. 정서적 처리에 중요한 역할을 하는 편도체(amygdala)도 내측 측두엽에 위치한다. 따라서, 제 1 레이어(L1)는 정서적 시각 자극에 노출된 정신 상태를 나타낸다. 제 1 레이어에서 시각 컨텐츠 및 감정 처리와 관련된 기능적 연결성은 도 8b 및 8c에서도 관찰된다. 도 8c의 제 1 레이어(L1)는 각각 정서적 처리와 시각 자극의 감각 처리와 관련된 전두엽과 후두엽으로 들어가는 많은 수의 간선들을 포함한다. 도 8b의 제 1 레이어(L1)의 경우, 연결성은 비디오 자극의 내용과 크게 관련되어 있다. 이 비디오에는 리듬 댄스가 포함되어 있는데, 이것은 아마도 움직임 관련 인식에 관여하는 것으로 알려진 전두 중앙 영역으로 들어오는 연결에 기여하는 것으로 이해된다.In the first layer (red, L1) of Fig. 8A, strong activation towards the left temporal lobe is observed. The temporal lobe is involved in the processing of complex visual stimuli such as scenes. The amygdala, which plays an important role in emotional processing, is also located in the medial temporal lobe. Accordingly, the first layer L1 represents a mental state exposed to an emotional visual stimulus. Functional connectivity related to visual content and emotion processing in the first layer is also observed in FIGS. 8B and 8C. The first layer L1 of FIG. 8C includes a large number of trunk lines entering the frontal and occipital lobes, respectively, associated with emotional processing and sensory processing of visual stimuli. In the case of the first layer L1 of FIG. 8B, the connectivity is largely related to the content of the video stimulus. This video includes rhythmic dance, which is probably understood to contribute to the incoming connection to the central frontal region known to be involved in motion-related perception.
도 8b 및 8c의 제 2 레이어(녹색, L2)는 서로 명확하게 구별되는 패턴을 도시한다. 도 8b에서 정면 영역의 오른쪽 부분은 왼쪽 부분보다 많은 수의 들어오는 연결을 수신하고, 이것은 도 8c와 반대이다. 기존 관련 연구 논문들에서, 우측 및 좌측 전두엽의 비대칭이 유인가와 크게 관련되어 있다고 지속적으로 보고되었다. 즉, 전뇌의 일측은 정서적 처리 과정에서 타측에 비해 더 활성화되고, 더 활성화된 쪽은 감정의 극성에 따라 변화하며, 이는 도 8b 와 도 8c의 제 2 레이어(L2)의 관찰된 패턴과 일치한다. 도 8a의 제 2 레이어(L2)에서는 들어오는 간선들이 뇌 전체에 걸쳐 퍼져 있으며, 이는 긍정적 및 부정적 유인가 비디오 자극에 나타나는 패턴의 집계 결과로 생각된다. 따라서, 제 2 레이어(L2)가 뇌 신호가 가지는 정서적 특성을 학습했다고 추론될 수 있다.The second layers (green, L2) of FIGS. 8B and 8C show patterns that are clearly distinguished from each other. In Fig. 8b the right part of the front area receives more incoming connections than the left part, which is the opposite of Fig. 8c. In previous related research papers, it has been continuously reported that the asymmetry of the right and left frontal lobes is strongly related to induction. That is, one side of the forebrain is more activated than the other side in the emotional processing process, and the more activated side changes according to the polarity of the emotion, which is consistent with the observed pattern of the second layer (L2) of FIGS. 8B and 8C. . In the second layer (L2) of FIG. 8A, incoming trunk lines are spread over the entire brain, which is thought to be a result of aggregation of patterns appearing in positive and negative induced video stimuli. Accordingly, it can be inferred that the second layer L2 has learned the emotional characteristics of the brain signals.
도 8a 내지 도 8c의 제 3 레이어(청색, L3)는 상대적으로 적은 연결을 나타내고, 주로 다른 계층을 보완하는 것으로 보인다. 모든 경우에, 뇌의 정면 영역은 많은 수의 연결을 수신한다. 전두엽에는 도 8b에 여러 개의 들어오는 간선들이 존재하는데, 이것은 제 1 레이어(즉, 움직임 관련)의 경우와 같은 이유 때문인 것으로 생각된다.The third layer (blue, L3) of FIGS. 8A to 8C shows relatively few connections, and seems to mainly complement other layers. In all cases, the frontal region of the brain receives a large number of connections. There are several incoming trunk lines in FIG. 8B in the frontal lobe, which is thought to be due to the same reason as in the case of the first layer (ie, motion related).
도 9는 본 발명의 일 실시예에 따른 연결성 학습 방법을 나타내는 흐름도이다.9 is a flowchart illustrating a connection learning method according to an embodiment of the present invention.
도 9를 참조하면 본 발명의 일 실시예에 따른 연결성 학습 방법은 멤버십 추출 단계(S10), 그래프 샘플링 단계(S20), 특징 추출 단계(S30) 및 분류 처리 단계(S40)를 포함할 수 있다.Referring to FIG. 9, the connectivity learning method according to an embodiment of the present invention may include a membership extraction step (S10), a graph sampling step (S20), a feature extraction step (S30), and a classification processing step (S40).
멤버십 추출 단계(S10), 그래프 샘플링 단계(S20), 특징 추출 단계(S30) 및 분류 처리 단계(S40)는 도 1을 참조하여 설명한 연결성 학습 장치(1)의 멤버십 추출부(10), 그래프 샘플링부(20), 특징 추출부(30) 및 분류 처리부(40)에 의해 각각 수행될 수 있으며, 멤버십 추출 단계(S10), 그래프 샘플링 단계(S20), 특징 추출 단계(S30) 및 분류 처리 단계(S40)에 대한 설명은 멤버십 추출부(10), 그래프 샘플링부(20), 특징 추출부(30) 및 분류 처리부(40)에 대한 설명이 참조될 수 있다.Membership extraction step (S10), graph sampling step (S20), feature extraction step (S30), and classification processing step (S40) are the membership extraction unit 10 of the connectivity learning device 1 described with reference to FIG. 1, graph sampling It may be performed by the unit 20, the feature extraction unit 30, and the classification processing unit 40, respectively, and a membership extraction step (S10), a graph sampling step (S20), a feature extraction step (S30), and a classification processing step ( For a description of S40), a description of the membership extracting unit 10, the graph sampling unit 20, the feature extracting unit 30, and the classification processing unit 40 may be referred to.
이상에서 설명한 본 발명이 전술한 실시예 및 첨부된 도면에 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러가지 치환, 변형 및 변경이 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and that various substitutions, modifications, and changes are possible within the scope of the technical spirit of the present invention. It will be obvious to those who have knowledge.

Claims (16)

  1. 심층 신경망 학습에 의해 복수의 객체들 간의 연결성을 판단하고, 판단된 연결성에 기초하여 입력 신호를 분류하기 위한 연결성 학습 장치로서,As a connectivity learning device for determining connectivity between a plurality of objects by learning a deep neural network and classifying an input signal based on the determined connectivity,
    상기 복수의 객체들로부터 얻어진 원시 신호로부터 상기 객체들 간의 연결성의 존재를 나타내는 멤버십을 추출하는 멤버십 추출부; A membership extracting unit for extracting a membership indicating the existence of connectivity between the objects from the original signals obtained from the plurality of objects;
    추출된 멤버십으로부터 상기 객체들 간의 연결성을 샘플링하여 상기 객체들 간의 연결성을 그래프로 표현하는 그래프 구조를 생성하는 그래프 샘플링부; A graph sampling unit that samples the connectivity between the objects from the extracted membership and generates a graph structure expressing the connectivity between the objects in a graph;
    상기 원시 신호로부터 신호 특징을 추출하는 특징 추출부; 및A feature extraction unit for extracting a signal feature from the original signal; And
    생성된 상기 그래프 구조 및 추출된 상기 신호 특징에 기초하여 입력 신호를 복수의 클래스 중 어느 하나로 분류하는 분류 처리부Classification processing unit for classifying an input signal into any one of a plurality of classes based on the generated graph structure and the extracted signal characteristics
    를 포함하는 연결성 학습 장치.Connectivity learning device comprising a.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 객체들 간의 연결성은 2 이상의 타입을 갖는 연결성 학습 장치.Connectivity learning device having two or more types of connectivity between the objects.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 멤버십 추출부는 상이한 타입의 연결성을 나타내는 2 이상의 연결성 레이어에 대하여 상기 멤버십을 추출하는 연결성 학습 장치. The connectivity learning device for extracting the membership with respect to two or more connectivity layers representing different types of connectivity.
  4. 제 3 항에 있어서,The method of claim 3,
    상기 그래프 샘플링부는 각 연결성 레이어에 대하여 하나의 그래프 레이어를 생성하고, 상기 그래프 구조는 2 이상의 그래프 레이어를 포함하는 연결성 학습 장치.The graph sampling unit generates one graph layer for each connectivity layer, and the graph structure includes two or more graph layers.
  5. 제 4 항에 있어서,The method of claim 4,
    상기 그래프 샘플링부는, 추출된 상기 멤버십이 나타내는 값이 임계값 이상인지 여부에 기초하여 상기 객체들 간의 연결성을 샘플링하는 결정론적 이진화에 의해 상기 그래프 구조를 생성하는 연결성 학습 장치.The graph sampling unit generates the graph structure by deterministic binarization that samples connectivity between the objects based on whether a value indicated by the extracted membership is equal to or greater than a threshold value.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 원시 신호 또는 상기 입력 신호는 복수의 센서로부터 취득된 기능적 자기공명영상(Functional Magnetic Resonance Imaging, fMRI), 뇌전도(electroencephalography, EEG) 및 기능적 근적외선 분광(Functional Near Infrared Spectroscopy, fNIRS) 중 하나 이상을 포함하는 연결성 학습 장치.The raw signal or the input signal includes at least one of Functional Magnetic Resonance Imaging (fMRI), electroencephalography (EEG), and Functional Near Infrared Spectroscopy (fNIRS) acquired from a plurality of sensors. Connected learning device.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 특징 추출부는 컨벌루션 연산 및 맥스 풀링 연산에 의해 상기 원시 신호로부터 신호 특징을 추출하는 연결성 학습 장치.The feature extraction unit extracts a signal feature from the original signal by a convolution operation and a max pooling operation.
  8. 제 7 항에 있어서,The method of claim 7,
    상기 컨벌루션 연산은 복수의 시간 간격을 갖는 확장된 컨벌루션 레이어를 이용하여 수행되는 연결성 학습 장치.The device for learning connectivity, wherein the convolution operation is performed using an extended convolutional layer having a plurality of time intervals.
  9. 심층 신경망 학습에 의해 복수의 객체들 간의 연결성을 판단하고, 판단된 연결성에 기초하여 입력 신호를 분류하기 위한 연결성 학습 방법으로서,As a connectivity learning method for determining connectivity between a plurality of objects by learning a deep neural network and classifying an input signal based on the determined connectivity,
    상기 복수의 객체들로부터 얻어진 원시 신호로부터 상기 객체들 간의 연결성의 존재를 나타내는 멤버십을 추출하는 멤버십 추출 단계; A membership extraction step of extracting membership indicating the existence of connectivity between the objects from the original signals obtained from the plurality of objects;
    추출된 멤버십으로부터 상기 객체들 간의 연결성을 샘플링하여 상기 객체들 간의 연결성을 그래프로 표현하는 그래프 구조를 생성하는 그래프 샘플링 단계; A graph sampling step of sampling the connectivity between the objects from the extracted membership and generating a graph structure representing the connectivity between the objects in a graph;
    상기 원시 신호로부터 신호 특징을 추출하는 특징 추출 단계; 및A feature extraction step of extracting a signal feature from the original signal; And
    생성된 상기 그래프 구조 및 추출된 상기 신호 특징에 기초하여 상기 입력 신호를 복수의 클래스 중 어느 하나로 분류하는 분류 처리 단계Classification processing step of classifying the input signal into any one of a plurality of classes based on the generated graph structure and the extracted signal characteristic
    를 포함하는 연결성 학습 방법.Connectivity learning method comprising a.
  10. 제 9 항에 있어서, The method of claim 9,
    상기 객체들 간의 연결성은 2 이상의 타입을 갖는 연결성 학습 방법.The connectivity learning method having two or more types of connectivity between the objects.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 멤버십 추출 단계에서는 상이한 타입의 연결성을 나타내는 2 이상의 연결성 레이어에 대하여 상기 멤버십이 추출되는 연결성 학습 방법.In the membership extraction step, the membership is extracted for two or more connectivity layers representing different types of connectivity.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 그래프 샘플링 단계에서는 각 연결성 레이어에 대하여 하나의 그래프 레이어가 생성되고, 상기 그래프 구조는 2 이상의 그래프 레이어를 포함하는 연결성 학습 방법.In the graph sampling step, one graph layer is generated for each connectivity layer, and the graph structure includes two or more graph layers.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 그래프 샘플링 단계는, 추출된 상기 멤버십이 나타내는 값이 임계값 이상인지 여부에 기초하여 상기 객체들 간의 연결성을 샘플링하는 결정론적 이진화에 의해 상기 그래프 구조를 생성하는 연결성 학습 방법.In the graph sampling step, the graph structure is generated by deterministic binarization of sampling connectivity between the objects based on whether a value indicated by the extracted membership is equal to or greater than a threshold value.
  14. 제 9 항에 있어서,The method of claim 9,
    상기 원시 신호 또는 상기 입력 신호는 복수의 센서로부터 취득된 기능적 자기공명영상(Functional Magnetic Resonance Imaging, fMRI), 뇌전도(electroencephalography, EEG) 및 기능적 근적외선 분광(Functional Near Infrared Spectroscopy, fNIRS) 중 하나 이상을 포함하는 연결성 학습 방법.The raw signal or the input signal includes at least one of Functional Magnetic Resonance Imaging (fMRI), electroencephalography (EEG), and Functional Near Infrared Spectroscopy (fNIRS) acquired from a plurality of sensors. How to learn connectedness.
  15. 제 9 항에 있어서,The method of claim 9,
    상기 특징 추출 단계에서는 컨벌루션 연산 및 맥스 풀링 연산에 의해 상기 원시 신호로부터 신호 특징이 추출되는 연결성 학습 방법.In the feature extraction step, a signal feature is extracted from the original signal by a convolution operation and a max pooling operation.
  16. 제 15 항에 있어서,The method of claim 15,
    상기 컨벌루션 연산은 복수의 시간 간격을 갖는 확장된 컨벌루션 레이어를 이용하여 수행되는 연결성 학습 방법.The convolutional learning method is performed using an extended convolutional layer having a plurality of time intervals.
PCT/KR2020/012235 2019-09-24 2020-09-10 Connectivity learning device and connectivity learning method WO2021060748A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190117432A KR102298709B1 (en) 2019-09-24 2019-09-24 Device and method for learning connectivity
KR10-2019-0117432 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021060748A1 true WO2021060748A1 (en) 2021-04-01

Family

ID=75165087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012235 WO2021060748A1 (en) 2019-09-24 2020-09-10 Connectivity learning device and connectivity learning method

Country Status (2)

Country Link
KR (1) KR102298709B1 (en)
WO (1) WO2021060748A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4199130A1 (en) 2021-12-15 2023-06-21 Idemitsu Kosan Co.,Ltd. An organic electroluminescence device comprising a light emitting layer comprising three different compounds and an electronic equipment comprising said organic electroluminescence device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102334580B1 (en) * 2021-04-15 2021-12-06 동국대학교 산학협력단 Apparatus and method for recognizing emotion based on user voice and graph neural network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101881731B1 (en) * 2018-02-27 2018-07-25 한국과학기술정보연구원 Apparatus and Method for Dementia Prediction using Machine Learning, and Storage Medium Storing the Same
KR20190035368A (en) * 2017-09-26 2019-04-03 연세대학교 산학협력단 Method and Apparatus for Recognizing Emotion Based on Image Converted from Brain Signal
KR101955583B1 (en) * 2016-12-28 2019-07-31 (주)뮤테이션 Study support apparatus using eeg and artificial reality and the method thereof
US20190251432A1 (en) * 2016-05-19 2019-08-15 National University Corporation Hokkaido University Neural network circuit and neural network integrated circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102143910B1 (en) * 2017-09-14 2020-08-12 고려대학교 산학협력단 Method for integrated signal processing of bci system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190251432A1 (en) * 2016-05-19 2019-08-15 National University Corporation Hokkaido University Neural network circuit and neural network integrated circuit
KR101955583B1 (en) * 2016-12-28 2019-07-31 (주)뮤테이션 Study support apparatus using eeg and artificial reality and the method thereof
KR20190035368A (en) * 2017-09-26 2019-04-03 연세대학교 산학협력단 Method and Apparatus for Recognizing Emotion Based on Image Converted from Brain Signal
KR101881731B1 (en) * 2018-02-27 2018-07-25 한국과학기술정보연구원 Apparatus and Method for Dementia Prediction using Machine Learning, and Storage Medium Storing the Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOOBEOM JANG; SEONG-EUN MOON; JONG-SEOK LEE: "Brain Signal Classification via Learning Connectivity Structure", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 28 May 2019 (2019-05-28), 201 Olin Library Cornell University Ithaca, NY 14853, XP081365543 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4199130A1 (en) 2021-12-15 2023-06-21 Idemitsu Kosan Co.,Ltd. An organic electroluminescence device comprising a light emitting layer comprising three different compounds and an electronic equipment comprising said organic electroluminescence device

Also Published As

Publication number Publication date
KR102298709B1 (en) 2021-09-03
KR20210035530A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
WO2019216504A1 (en) Method and system for human emotion estimation using deep physiological affect network for human emotion recognition
WO2021060748A1 (en) Connectivity learning device and connectivity learning method
Zhang et al. Tongue color analysis for medical application
WO2017051945A1 (en) Method and apparatus for providing medical information service on basis of disease model
WO2019054638A1 (en) Image analysis method and apparatus and computer program
WO2021054706A1 (en) Teaching gan (generative adversarial networks) to generate per-pixel annotation
WO2013012150A1 (en) Image filtering method for detecting a directional component of an edge, and image recognition method using same
WO2021153858A1 (en) Device for assisting identification by using atypical skin disease image data
WO2019235828A1 (en) Two-face disease diagnosis system and method thereof
WO2018151357A1 (en) Human face recognition method based on improved multi-channel cabor filter
WO2021075826A1 (en) Method for diagnosing disease by preprocessing biologically-extracted data and device therefor
WO2016108327A1 (en) Vehicle detection method, database structure for vehicle detection, and database construction method for vehicle detection
WO2018143486A1 (en) Method for providing content using modularizing system for deep learning analysis
Mishra et al. Visual brain decoding for short duration EEG signals
JPH02159681A (en) Geometrical characteristic discrimination
WO2021091092A1 (en) System and method for diagnosing small bowel cleanliness
CN112528788B (en) Domain invariant feature and space-time feature based re-identification method
CN116758397A (en) Single-mode induced multi-mode pre-training method and system based on deep learning
WO2020032561A2 (en) Disease diagnosis system and method using multiple color models and neural network
WO2021091052A1 (en) Method and device for classification using subpattern learning and fine-tuning through deep neural network with weighted fuzzy membership function
WO2018088649A1 (en) Glint detection method
WO2020045903A1 (en) Method and device for detecting object size-independently by using cnn
WO2020145605A1 (en) Special microscope image generation method and image processing device using artificial neural network
WO2021141187A1 (en) Skin image-based skin disease identification apparatus
Zhang et al. Tongue Color Analysis for Medical Application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870128

Country of ref document: EP

Kind code of ref document: A1