WO2021060719A1 - Method for evaluating battery and electronic device supporting same - Google Patents

Method for evaluating battery and electronic device supporting same Download PDF

Info

Publication number
WO2021060719A1
WO2021060719A1 PCT/KR2020/011371 KR2020011371W WO2021060719A1 WO 2021060719 A1 WO2021060719 A1 WO 2021060719A1 KR 2020011371 W KR2020011371 W KR 2020011371W WO 2021060719 A1 WO2021060719 A1 WO 2021060719A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
rate
capacity
charging
discharging
Prior art date
Application number
PCT/KR2020/011371
Other languages
French (fr)
Korean (ko)
Inventor
안성진
김길호
이재연
오부근
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2021060719A1 publication Critical patent/WO2021060719A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • Various embodiments of the present disclosure relate to a method for acquiring information on a state of a battery based on a voltage change amount and charging/discharging efficiency of a battery during charging, and an electronic device supporting the same.
  • Batteries eg, secondary batteries
  • batteries are used in various fields such as mobile devices or electric vehicles.
  • the demand for rapid charging is increasing, and types of batteries for rapid charging/rapid discharging are diversifying.
  • the capacity of the battery may gradually decrease (or the life of the battery of the electronic device may gradually deteriorate).
  • the battery's stability or life is evaluated by observing the change in the capacity of the battery while performing the operation of charging and discharging the battery over several hundred cycles.
  • a method of evaluating the stability or lifespan of the battery by observing the change in capacity of the battery while performing the operation of charging and discharging the battery over several hundred cycles may take a long time (eg, several months). If the battery is evaluated over a long period of time and then the improved battery is evaluated again, it may take several months additionally, and accordingly, the right time to develop the battery may be missed. In addition, such a battery evaluation method may be difficult to quantitatively analyze the stability of the battery.
  • Various embodiments of the present invention relate to a method for evaluating a battery, and an electronic device supporting the same, capable of quantitatively evaluating the safety of a battery in a short period (eg, about 1 to 3 days).
  • An electronic device includes a power supply unit and a processor operatively connected to the power supply unit, wherein the processor includes a first power supply unit through the power supply unit when the battery is completely discharged.
  • the processor includes a first power supply unit through the power supply unit when the battery is completely discharged.
  • the battery is charged at the first C-rate so that the battery is fully charged through the power supply unit, and in a state where the battery is fully charged, through the power supply unit. , It may be set to discharge the battery at the first C-rate so that the battery is completely discharged.
  • the method includes an operation of charging the battery at a first C-rate while the battery is completely discharged, and when the capacity of the battery reaches a specified battery capacity, the first time period.
  • the battery At a second C-rate higher than the first C-rate, the battery is charged by a first capacity corresponding to the first time and the second C-rate, and is higher than the first C-rate for a second time.
  • An operation of discharging the battery by the first capacity at a high third C-rate for a specified number of times, charging the battery at the first C-rate so that the battery is fully charged, and the battery In a fully charged state, discharging the battery at the first C-rate so that the battery is completely discharged may be included.
  • a method for evaluating a battery according to various embodiments of the present disclosure and an electronic device supporting the same may evaluate the stability of a battery (eg, a battery for rapid charging) in a short period without long-term life evaluation.
  • a battery eg, a battery for rapid charging
  • a method for evaluating a battery according to various embodiments of the present disclosure and an electronic device supporting the same may shorten the development period of the battery by evaluating the stability of the battery in a short period of time.
  • a method for evaluating a battery according to various embodiments of the present disclosure and an electronic device supporting the same may quantify a side reaction level of a battery according to a charge rate (or discharge rate) or a state of charge.
  • FIG. 1 is a diagram illustrating an environment for evaluating a battery according to various embodiments.
  • FIG. 2 is a diagram illustrating an electronic device for evaluating a battery according to various embodiments of the present disclosure.
  • FIG. 3 is a diagram illustrating a zero-sum charge/discharge operation according to various embodiments of the present disclosure.
  • FIG. 4 is a diagram illustrating a voltage that changes differently depending on whether a side reaction of a battery occurs or not, according to various embodiments of the present disclosure.
  • FIG. 5 is a diagram illustrating a method for evaluating a battery according to various embodiments of the present disclosure.
  • FIG. 6 is a flowchart illustrating a method for evaluating a battery according to various embodiments of the present disclosure.
  • FIG. 7 is a flowchart illustrating a method for evaluating a battery according to various embodiments of the present disclosure.
  • FIG. 8 is a diagram illustrating a result of comparing charging and discharging efficiencies of different batteries according to various embodiments of the present disclosure.
  • FIG. 9 is a diagram illustrating charging/discharging efficiency of a battery according to the number of pulses applied in a zero-sum charging/discharging operation according to various embodiments of the present disclosure.
  • FIG. 10 is a diagram illustrating charge/discharge efficiency for each cycle according to a capacity for starting a zero-sum charge/discharge operation according to various embodiments of the present disclosure.
  • FIG. 11 is a diagram illustrating a change in resistance of a battery according to the number of pulses applied in a zero-sum charge/discharge operation according to various embodiments of the present disclosure.
  • any (eg, first) component is referred to as being “(functionally or communicatively) connected” or “connected” to another (eg, second) component, the component is It may be directly connected to the component, or may be connected through another component (eg, a third component).
  • FIG. 1 is a diagram 100 illustrating an environment for evaluating a battery according to various embodiments.
  • an environment (or system) for evaluating a battery may include an electronic device 101 and a battery 102 (or a battery cell).
  • the electronic device 101 may charge or discharge the battery 102.
  • the electronic device 101 is a battery 102 (for example, the positive and negative terminals of the battery) connected through the cable 103, a constant current, a constant voltage, or a constant power (constant power). By supplying ), the battery 102 can be charged or discharged.
  • the electronic device 101 may be referred to as a battery charger and discharger.
  • the battery 102 may include a rechargeable secondary battery.
  • the battery 102 is a lithium ion (Li-ion) battery, a lithium ion polymer (Li-ion polymer) battery, a lithium iron phosphate (LiFePO 4 ) battery, a lead-acid accumulator, nickel cadmium It may include a (NiCd) battery or a nickel hydride (NiMH) battery.
  • the present invention is not limited thereto, and the battery 102 may include all secondary batteries capable of charging or discharging.
  • the electronic device 101 charges or discharges the battery at a low charge rate or discharge rate (hereinafter referred to as'charge/discharge'), or charges and discharges the battery 102 at a high charge rate or discharge rate. I can make it.
  • the charging rate or the discharging rate will be referred to as'C-rate'.
  • the operation of charging the battery 102 at a low C-rate may correspond to (or simulate) the operation of normal charging (or normal charging) of the battery.
  • the operation of charging the battery 102 at a high C-rate may correspond to an operation (or rapid charging) of rapidly (or fast) charging the battery.
  • the operation of charging the battery 102 at a low C-rate is an operation of charging the battery 102 at a C-rate less than a specified C-rate, and charging the battery 102 at a high C-rate.
  • the operation may be an operation of charging the battery 102 at a C-rate equal to or higher than the designated C-rate.
  • the state of charge of the battery 102 may be referred to as a state of charge (SOC) of the battery (0% to 100%).
  • SOC of the battery 102 may be referred to as the current charge amount or level of charge of the battery.
  • the case of charging the battery 102 at a low C-rate eg, normal charging
  • the case of charging the battery 102 at a high C-rate eg, rapid charging
  • Li + lithium ions
  • lithium deposited on the surface of the negative active material is difficult to form a stable film (protective film) that suppresses reaction with the electrolyte, it may continuously react with the electrolyte of the battery 102 during the charging operation, and in this case, the electrolyte may be consumed.
  • some electrons of the electrons supplied from the electronic device 101 for charging the battery react with the lithium compound (side reactant). Can be created. Accordingly, when the electronic device 101 charges the battery 102 at a high C-rate, the amount of charge in which the battery 102 is actually charged may be smaller than the amount of charge supplied to the battery 102. However, as the electronic device 101 charges the battery 102 at a high C-rate, the reason why the battery 102 is actually charged less than the amount of charge supplied to the battery 102 is limited to the above example. It doesn't work.
  • the level of side reactions generated by the electronic device 101 charging (or discharging) the battery 102 at a high C-rate may vary from battery to battery.
  • the level of side reactions generated by charging the battery 102 at a high C-rate by the electronic device 101 may vary from battery to battery, depending on the type of battery, the model of the battery, or the battery manufacturer.
  • the battery 102 eg, the safety of the battery or the battery life is determined. Can be evaluated.
  • the electronic device 101 repeatedly performs an operation of charging and discharging the battery 102 at a high C-rate for a specified number of times while charging the battery 102, May induce side reactions.
  • the electronic device 101 in a fully discharged state (or fully discharged state), the battery 102 at a low C-rate (hereinafter referred to as a'first C-rate') (102) can be charged.
  • the electronic device 101 is set to a specified number of times (for example, about 3 to 50 times), and a high C-rate (hereinafter, The battery 102 is charged by supplying (or applying) a current in the form of a step to the battery 102 as much as the first charge in a'second C-rate'), and the battery 102 is charged.
  • the battery 102 may be discharged by discharging a stepped current from the battery 102 at a second C-rate equal to the first capacity supplied to the battery 102 for charging.
  • the zero-sum charging/discharging operation may be an operation of charging and discharging the battery 102 with the same capacity so that the capacity of the battery 102 does not change.
  • the electronic device 101 may fully charge the battery 102 at the first C-rate.
  • the electronic device 101 may discharge the battery 102 at a first C-rate so that the battery 102 is completely discharged after the battery 102 is fully charged.
  • the second C-rate may be about 1.5 or more greater than the first C-rate. However, it is not limited thereto.
  • the electronic device 101 may designate the number of times to perform an operation of charging and discharging the battery 102 at the second C-rate, based on a user input.
  • the electronic device 101 may induce a side reaction of the battery 102 by performing a zero-sum charge/discharge operation.
  • a current supplied to the battery by the electronic device 101 at a first C-rate or a second C-rate may be a constant current.
  • the constant current supplied by the electronic device 101 to the battery 102 will be referred to as a “pulse”.
  • the electronic device 101 applies a pulse for charging to the battery 102 at a second C-rate, and discharges at a second C-rate after applying the pulse for charging. You can apply a pulse for it.
  • the charge (or amount of charge) supplied to the battery 102 by applying a pulse for charging is extracted from the battery 102 by applying a pulse for discharging. May be the same as the dose.
  • the pulse for charging and the pulse for discharging are applied at the same C-rate, but the present invention is not limited thereto.
  • the electronic device 101 in a zero-sum charging and discharging operation, the electronic device 101 is first configured to be charged so that the capacity supplied to the battery 102 for charging and the capacity discharged from the battery 102 for discharging are the same.
  • a pulse of a third C-rate may be applied to the battery 102 for a period of time
  • a pulse of a fourth C-rate may be applied to the battery 102 for a second period of time for discharging.
  • the electronic device 101 when the user (or observer) of the electronic device 101 tries to evaluate the side reaction level of the battery 102 due to the charging operation, the electronic device 101 is A pulse of a third C-rate (for example, about 2 C-rate) higher than the C-rate is applied to the battery 102, and the fourth C-rate for the second time is a time longer than the first time for discharging.
  • the pulse of can be applied.
  • the electronic device 101 is charged at a third C-rate for a first time period for charging.
  • a pulse may be applied to the battery 102, and a pulse having a fourth C-rate higher than the third C-rate may be applied to the battery 102 for a second period of time shorter than the first period for discharging.
  • a pulse having a fourth C-rate higher than the third C-rate may be applied to the battery 102 for a second period of time shorter than the first period for discharging.
  • the pulse for charging and the pulse for discharging are applied at the same C-rate.
  • the electronic device 101 may induce a side reaction of the battery 102 by performing a zero-sum charge/discharge operation, and evaluate the battery 102 by measuring the level of the induced side reaction of the battery 102. .
  • the electronic device 101 calculates the capacity supplied to the battery 102 until the battery 102 is fully charged after performing the zero-sum charging and discharging operation, so that the side reaction level of the battery 102 Can be measured. For example, when a side reaction occurs as the electronic device 101 performs a zero-sum charge/discharge operation, the battery 102 is fully charged after the zero-sum charge/discharge operation compared to a case where no side reaction occurs. To this end, a capacity corresponding to the amount of electrons consumed by the side reaction (or the amount of lithium deposited on the surface of the negative electrode active material by lithium-plating) may be additionally supplied to the battery 102. The electronic device 101 may determine that the level of side reactions generated in the battery 102 is greater as the capacity supplied to the battery 102 increases after performing the zero-sum charge/discharge operation until the battery 102 is fully charged. have.
  • the electronic device 101 charges the battery 102 at a first C-rate while the battery 102 is completely discharged, and performs a zero-sum charge/discharge operation based on the second C-rate. Then, the operation of fully charging the battery 102 at the first C-rate is sequentially performed, and the battery 102 is transferred to the battery 102 at the first C-rate while the battery 102 is fully charged.
  • the battery 102 may be evaluated based on the charging/discharging efficiency of the battery 102 calculated after completely discharging.
  • the charging/discharging efficiency ( ⁇ ) of the battery 102 is supplied to the battery 102 in order to fully charge the battery 102 in a state where the battery 102 is completely discharged, as shown in Equation 1 below.
  • the capacity extracted from the battery 102 or the battery 102 in a fully charged state
  • the capacity that the electronic device 101 supplies or extracts to the battery 102 to charge or discharge the battery 102 is a current (eg, constant current) by the electronic device 101 to the battery 102. It can be calculated based on the time and C-rate to supply.
  • the electronic device 101 since the electronic device 101 performs a zero-sum charge/discharge operation, the higher the level of side reactions generated in the battery 102 is, the greater the capacity supplied to the battery 102 is measured.
  • the discharge efficiency can be calculated low.
  • a user of the electronic device 101 may evaluate a battery having a low charging/discharging efficiency of the battery 102 as a battery having a low stability or a short lifespan.
  • FIG. 2 is a diagram illustrating an electronic device 101 for evaluating a battery according to various embodiments of the present disclosure.
  • FIG. 3 is a diagram 300 for explaining a zero-sum charging and discharging operation according to various embodiments of the present disclosure.
  • the electronic device 101 may include a power supply unit 210, a processor 220, and a memory 230.
  • the power supply 210 may supply power to the battery 102.
  • the power supply unit 210 may supply a constant current (or pulse) to the battery 102 in order to charge or discharge the battery 102.
  • the present invention is not limited thereto, and for example, the power supply unit 210 may supply a constant voltage or a constant output.
  • the power supply unit 210 may apply a pulse for charging and a pulse for discharging to the battery 102 during a zero-sum charge/discharge operation. For example, during a zero-sum charge/discharge operation, the power supply unit 210 applies a pulse for charging at a second C-rate to the battery 102 and discharges at a second C-rate after applying the pulse for charging. The operation of applying the pulse for the battery 102 to the battery 102 may be repeatedly performed a specified number of times.
  • the processor 220 may perform an overall operation for evaluating the battery 102.
  • the processor 220 when the battery 102 is completely discharged, through the power supply 210, the battery 102 at a first C-rate (for example, about 0.2 C-rate). Can be charged.
  • the processor 220 may perform an operation for completely discharging the battery 102 before charging the battery 102 at a first C-rate.
  • the processor 220 may start an operation of charging the battery 102 at a first C-rate.
  • the designated battery capacity may be designated by a user of the electronic device 101 (eg, a subject performing battery evaluation).
  • the processor 220 may perform a zero-sum charge/discharge operation. For example, the processor 220, through the power supply unit 210, applies a pulse for charging to the battery 102 for a first time at a second C-rate higher than the first C-rate, and The operation of applying a pulse for discharging during the first time at a C-rate may be performed a specified number of times (eg, about 3 to about 50 times). For example, as shown in FIG.
  • the size (or absolute value) of the second C-rate (C 2 ) to which the pulse for charging is applied and the size of the second C-rate (C 3 ) to which the pulse for discharging is applied may be the same. I can.
  • the pulse may not be applied.
  • a specified time for not applying a pulse between an operation of applying a pulse for charging and an operation of applying a pulse for discharging may be omitted.
  • FIG. 3 illustrates that the pulse for charging and the pulse for discharging are applied to the battery 102 three times, respectively, but the present invention is not limited thereto, and the pulse for charging and the pulse for discharging are each battery
  • the number of times applied to (102) can be set in various ways.
  • the battery capacity supplied to the battery 102 by one pulse for charging and the battery capacity discharged from the battery 102 by one pulse for discharging may be specified.
  • the battery capacity supplied to the battery 102 by one pulse for charging and the battery capacity discharged from the battery 102 by one pulse for discharging are, respectively, the battery capacity in a fully charged state. It can be specified as a dose corresponding to about 10% of the. However, it is not limited thereto.
  • the time the pulse is supplied to the battery 102 is determined (or specified ) Can be.
  • the battery capacity supplied to the battery 102 by one pulse for charging is designated as about 10% of the battery capacity in a fully charged state
  • the C-rate is designated as C 2
  • the time for applying a constant current to the battery 102 at a charge rate of C 2 Can be determined (or designated).
  • the supplied to the battery 102 by one pulse based on the C-rate for applying one pulse to the battery 102 and the voltage that may irreversibly damage the battery 102, the supplied to the battery 102 by one pulse.
  • the battery capacity or the time for applying one pulse to the battery 102 may be specified. For example, when a pulse for charging is applied to the battery 102, the voltage across the battery 102 increases (or increases), and when a pulse for discharging is applied to the battery, the voltage across the battery falls (or Decrease).
  • the battery voltage is designated by applying a pulse for charging to the battery 102 (for example, a voltage in a fully charged state) (hereinafter referred to as a'high threshold voltage')
  • a pulse for charging to the battery 102 for example, a voltage in a fully charged state
  • the designated second voltage for example, the discharge end voltage or the voltage in the fully discharged state
  • 'low threshold voltage' the second voltage
  • Battery 102 may be irreversibly damaged.
  • a C-rate for applying one pulse to the battery 102 and a voltage that may irreversibly damage the battery 102 e.g., high or low threshold voltage.
  • a battery capacity supplied to the battery 102 by one pulse or a time for applying one pulse to the battery 102 may be designated (or adjusted).
  • the size (or absolute value) of the second C-rate (C 3 ) to which the pulse for charging is applied in FIG. 3 and the size of the second C-rate (C 4 ) to which the pulse for discharging is applied Is illustrated as the same, but is not limited thereto. For example, as described through the embodiments of FIG.
  • the processor 220 A pulse for charging at a C-rate may be applied to the battery 102 for a second time, and a pulse for discharging at a fourth C-rate may be applied to the battery 102 for a third time longer than the second time. .
  • FIG. 3 illustrates that a pulse for charging is applied to the battery 102 and then a pulse for discharging is applied to the battery 102, but is not limited thereto.
  • the pulse for discharging It may be applied to the battery 102 earlier (or preferentially), or a pulse for discharging may be applied to the battery 102 before the pulse for charging.
  • the pulse for discharging is less than the pulse for charging.
  • the processor 220 may apply a pulse for charging before the pulse for discharging. have.
  • the charging pulse is applied to the battery 102 before the discharge pulse.
  • the processor 220 may apply a pulse for discharging to the battery 102 prior to a pulse for charging so that the voltage of 102) does not rise above (or does not increase) above the high threshold voltage.
  • the present invention is not limited thereto, and when the capacity of the battery 102 that starts the zero-sum charge/discharge operation falls between the first battery capacity and the second battery capacity, the processor 220 generates a charging pulse.
  • the pulse for discharging may be applied to the battery 102 before the pulse for discharging, or the pulse for discharging may be applied to the battery 102 before the pulse for charging.
  • the processor 220 may perform an operation of charging the battery 102 in a constant voltage (CV) mode before completing the charging operation.
  • the processor 220 may have an OCV period by setting the current to 0 before the initial zero-sum pulse and after the final zero-sum pulse.
  • the processor 220 may completely discharge the battery 102 at the first C-rate after the battery 102 is fully charged.
  • the battery 102 can be discharged so that) is completely discharged.
  • the size (or absolute value) of the first C-rate (C 1 ) used for charging and the size of the first C-rate (C 4 ) used for discharging may be the same.
  • the processor 220 charges the battery 102 at a first C-rate while the battery 102 is completely discharged, and performs a zero-sum charge/discharge operation based on the second C-rate. Then, the operation of fully charging the battery 102 at the first C-rate is sequentially performed, and the battery 102 is charged at the first C-rate while the battery 102 is fully charged. After completely discharging, the charging/discharging efficiency of the battery 102 can be calculated.
  • the processor 220 is the charging/discharging efficiency of the battery, which is supplied to the battery 102 in order to fully charge the battery 102 when the battery 102 is completely discharged.
  • the processor 220 during the zero-sum charge/discharge operation, the capacity supplied to the battery 102 by pulses for charging and the capacity extracted from the battery 102 by pulses for discharge are Without consideration, the charging/discharging efficiency of the battery 102 can be calculated. However, it is not limited thereto.
  • the memory 230 may store various pieces of information calculated while performing an operation of evaluating the battery 102.
  • the memory 230 may store at least one of a battery capacity at a time when a zero-sum charge/discharge operation starts or a battery capacity at a time immediately after a zero-sum charge/discharge operation is performed.
  • the information stored by the memory 230 is not limited to the above-described example.
  • the electronic device 101 may additionally include a component.
  • the electronic device 101 is a device for outputting at least one of a current applied to the battery, a voltage measured across the battery, or a capacity supplied to the battery 102 that changes over time (for example: Display) may be further included.
  • FIG. 4 is a diagram illustrating a voltage that changes differently depending on whether a side reaction of a battery occurs or not, according to various embodiments of the present disclosure.
  • FIG. 4 shows that when one pulse for charging and one pulse for discharging are applied to the battery 102, it changes differently depending on the presence or absence of a side reaction of the battery 102. It may be a diagram showing the voltage.
  • the graph 410 of FIG. 4 shows that when one pulse for charging and one pulse for discharging are applied to the battery 102, when a side reaction does not occur in the battery 102. It may be a diagram showing a voltage change.
  • the graph 420 of FIG. 4 shows that when one pulse for charging and one pulse for discharging are applied to the battery 102, the battery 102 is applied by applying one pulse for charging. It may be a diagram showing a voltage change when a side reaction occurs in.
  • a pulse and one pulse for discharging are applied to the battery 102
  • it may represent a voltage that changes over time.
  • the voltage V represents a closed circuit voltage (or closed loop voltage) across the battery
  • the voltages V 1 or V 4 are It may represent an open circuit voltage (or an open loop voltage) across the battery.
  • differences between voltages (V 2 -V 1 or V 4 -V 5 ) may represent a voltage generated by the resistance (or direct current internal resistance (DCIR)) of the battery 102.
  • the battery The voltage (V) of 102 may rise from the voltage (V 1 ) through the voltage (V 2 ) to the voltage (V 3 ).
  • the voltage (V) of the battery 102 is The voltage V 4 may be reached as an open circuit voltage after applying a pulse for charging to the battery 102.
  • the voltage (V) of the battery 102 is the voltage ( It can fall from V 4 ) to voltage V 6 through voltage V 5.
  • the voltage (V) of the battery 102 is discharged.
  • the voltage V 1 may be reached as an open circuit voltage after the pulse for is applied to the battery 102.
  • the open circuit before applying the pulse for charging The voltage (V 1 ) and the open circuit voltage (V 1 ) after application of the pulse for discharging can be the same (or can be kept the same) when the pause time is sufficiently long, and reach parallel when the pause time is short. The difference may occur due to the time difference.
  • the battery 102 may be discharged by a capacity corresponding to V 4 -V 6 ).
  • the capacity at which the battery 102 is charged for a period of time is determined by the pulse for charging.
  • the voltage V represents the closed circuit voltage across the battery
  • the voltages V 1, V 8 , or V 11 represent the open circuit voltage across the battery.
  • the voltages V 1, V 8 , or V 11 may converge in parallel over time.
  • differences between voltages (V 2 -V 1 or V 8 -V 9 ) may represent a voltage generated by the resistance of the battery 102.
  • the battery The voltage V of 102 may rise from the voltage V 1 to the voltage V 7 through the voltage V 2.
  • the voltage V 7 may be smaller (or lower) than the voltage V 3 of the graph 410.
  • the voltage (V) of the battery 102 is The voltage V 8 can be reached as an open circuit voltage after applying a pulse to the battery 102.
  • the voltage difference (eg, V 1 -V 8 ) may be different from each other, and the voltage difference (eg, V 1 -V 4 ) of the graph 410 may be different from each other.
  • the voltage difference eg, V 1 -V 4
  • the voltage of the battery 102 ( V) may fall from the voltage V 8 to the voltage V 10 through the voltage V9.
  • the voltage (V 10 ), the voltage difference (eg, V 10 -V 8 ) is substantially equal to the voltage difference (eg, V 6 -V 4 ) of the graph 410, and the voltage (V 8 ) Since it is less than the voltage V 4 of the graph 410, it may be less than the voltage V 6.
  • the voltage (V) of the battery 102 is discharged.
  • the voltage V 11 may be reached as a voltage after applying the pulse for the battery 102 to the battery 102.
  • the voltage (V 11 ), the voltage difference (eg, V 11 -V 10 ) is substantially equal to the voltage difference (eg, V 1 -V 6 ) of the graph 410, and the voltage (V 10 ) is Since it is less than the voltage V 6 , it may be less than the voltage V 1 of the graph 410.
  • a side reaction (e.g., for charging) is applied to the battery 102.
  • the voltage difference (V 7 -V 1 ) that changes by the pulse for charging is greater than the voltage difference (V 8 -V 10) that changes by the pulse for discharging. Since it is small, the open circuit voltage V 1 before application of the pulse for charging may be lower (or may be changed lower) than the open circuit voltage V 11 after application of the pulse for discharging.
  • the battery 102 may be discharged by a capacity corresponding to V 8 -V 10 ).
  • FIG. 4 illustrates a case in which a side reaction occurs in the battery when a pulse for charging is applied to the battery 102, but when a pulse for discharging is applied to the battery 102, the battery 102 The same or similar can be applied even when a side reaction occurs.
  • the maximum voltage V 3 after applying the pulse for charging to the battery 102 is lower than the high threshold voltage and the pulse for charging A pulse for charging and a pulse for discharging may be applied to the battery 102 so that the lowest voltage V 10 after applying to the battery 102 is lower than the low threshold voltage.
  • the pulse for charging is applied to the battery 102 before the pulse for discharging, but the present invention is not limited thereto.
  • a pulse for discharging may be applied to the battery 102 before a pulse for charging.
  • FIG. 5 is a diagram illustrating a method for evaluating a battery according to various embodiments of the present disclosure.
  • the graph 510 and the graph 520 respectively perform the charging/discharging operation for the battery 102 over 3 cycles (or 3 times), so that the battery It can represent the change over time of the current and voltage applied to (102).
  • the first charge/discharge cycle (hereinafter referred to as'first cycle') is a current corresponding to the first C-rate so that the battery 102 is fully charged while the battery 102 is completely discharged. Is applied to the battery, and a charge/discharge operation is performed in which a current corresponding to the first C-rate is extracted from the battery 102 so that the battery 102 is completely discharged while the battery 102 is fully charged. have.
  • the processor 220 in a first cycle (for example, in a time period (A)), in a state in which the battery 102 is completely discharged during the time period (A1) A current corresponding to the first C-rate is applied to the battery 102 so that 102 is fully charged, and the battery 102 is completely discharged while the battery 102 is fully charged during the time period A2. Current corresponding to 1 C-rate may be extracted from the battery 102.
  • the first cycle may include charging in the CV mode before the operation in the section A1 ends.
  • the processor 220 based on the first C-rate and the time interval (A1) (or the size of the time interval (A1)), the battery to charge the battery 102 in the first cycle.
  • the supply capacity or charging capacity
  • the battery to discharge the battery 102 in the first cycle From (102), the discharged capacity (or discharge capacity) can be calculated.
  • the processor 220 in the first cycle, the capacity supplied to the battery 102 to charge the battery 102 and the capacity discharged from the battery 102 to discharge the battery 102. Based on this, the charging/discharging efficiency of the first cycle can be calculated.
  • the second charge/discharge cycle (hereinafter, referred to as'second cycle') is a battery at a first C-rate until the battery capacity reaches a specified capacity in a state where the battery 102 is completely discharged.
  • a zero-sum charge/discharge operation based on the second C-rate is performed, and the battery 102 is fully charged, corresponding to the first C-rate. It may be a cycle in which a current is applied to the battery 102 and a current corresponding to the first C-rate is extracted from the battery 102 so that the battery 102 is completely discharged while the battery 102 is fully charged.
  • the processor 220 in the second cycle (for example, in the time period (B)), the battery in a state in which the battery 102 is completely discharged during the time period (B1)
  • the battery 102 is charged at the first C-rate until the capacity reaches the specified capacity, and when the battery capacity reaches the specified capacity, zero-sum charging based on the second C-rate during the time period (B2).
  • a discharge operation is performed, and a current corresponding to the first C-rate is applied to the battery 102 during the time period B3 so that the battery 102 is fully charged, and the battery 102 is fully charged.
  • the current corresponding to the first C-rate may be extracted from the battery 102 during the time period B4 so that 102 is completely discharged.
  • the second cycle may include charging in the CV mode before the operation in section B3 ends.
  • the processor 220 based on the first C-rate, the time interval (B1), and the time interval (B3), to the battery 102 to charge the battery 102 in the second cycle.
  • Calculate the capacity (or charging capacity) to be supplied, and based on the first C-rate and time interval (B4), the capacity (or discharge) discharged from the battery 102 to discharge the battery 102 in the second cycle Capacity) can be calculated.
  • the processor 220 in the second cycle, the capacity supplied to the battery 102 to charge the battery 102 and the capacity discharged from the battery 102 to discharge the battery 102. Based on this, the charging/discharging efficiency of the second cycle can be calculated.
  • the second cycle may be a cycle including the zero-sum charge/discharge operation described with reference to FIGS. 1 to 4 described above.
  • the third charge/discharge cycle (hereinafter referred to as'third cycle') is a current corresponding to the first C-rate so that the battery 102 is fully charged while the battery 102 is completely discharged. Is applied to the battery 102, and a charging/discharging operation is performed to extract a current corresponding to the first C-rate from the battery 102 so that the battery 102 is completely discharged while the battery 102 is fully charged. It can be a cycle.
  • the processor 220 in the third cycle (for example, in the time period (C)), the battery in a state in which the battery 102 is completely discharged during the time period (C1) A current corresponding to the first C-rate is applied to the battery 102 so that 102 is fully charged, and the battery 102 is completely discharged while the battery 102 is fully charged during the time period (C2). Current corresponding to 1 C-rate may be extracted from the battery 102.
  • the third cycle may include charging in the CV mode before the operation in the section C1 is terminated.
  • the processor 220 based on the first C-rate and the time period (C1), the capacity (or charging capacity) supplied to the battery 102 to charge the battery 102 in the third cycle ), and based on the first C-rate and the time interval C2, the capacity (or discharge capacity) discharged from the battery 102 to discharge the battery 102 in the third cycle may be calculated. .
  • the processor 220 in the third cycle, the capacity supplied to the battery 102 to charge the battery 102 and the capacity discharged from the battery 102 to discharge the battery 102. Based on this, the charging/discharging efficiency of the third cycle can be calculated.
  • the capacity supplied to the battery 102 to charge the battery 102 in the second cycle is The capacity supplied to the battery 102 to charge the battery 102 in one cycle and the capacity supplied to the battery 102 to charge the battery 102 in the third cycle may be greater than each.
  • the zero-sum charging and discharging operation is performed in a time period in which the battery 102 is charged in the second cycle.
  • the time period excluding time is a time period in which the battery 102 is charged in the first cycle (eg, a time period A1), and It may be longer than each of the time periods (eg, time period C1) in which the battery 102 is charged in the third cycle.
  • the zero-sum charge/discharge operation is performed in the time period in which the battery 102 is charged in the second cycle.
  • the time period excluding the time period is the time period in which the battery 102 is charged in the first cycle (eg, time period (A1)).
  • the time period for charging the battery 102 in the third cycle eg, time period C1).
  • the charge/discharge efficiency of the second cycle is the charge/discharge efficiency of the first cycle and the charge/discharge of the third cycle.
  • the efficiency can be less than each.
  • the charge/discharge efficiency of the second cycle is the charge/discharge efficiency of the first cycle and the third cycle. It can be quite the same as each of the charge and discharge.
  • the processor 220 (or the user of the electronic device 101) is based on the charging/discharging efficiency of the first cycle, the charging/discharging efficiency of the second cycle, and the charging/discharging efficiency of the third cycle. (102) can be evaluated.
  • the processor 220 may determine at least one of a difference between the charge/discharge efficiency of the second cycle and the charge/discharge efficiency of the first cycle, or the difference between the charge/discharge efficiency of the second cycle and the charge/discharge efficiency of the third cycle. Can be calculated.
  • the processor 220 as at least one of the difference between the charging and discharging efficiency of the second cycle and the charging and discharging efficiency of the first cycle, or the difference between the charging and discharging efficiency of the second cycle and the charging and discharging efficiency of the third cycle is larger, the battery ( It can be determined that the degree (or level) at which side reactions occur in 102) is large.
  • the processor 220 may evaluate the battery 102 based on the charging/discharging efficiency of the second cycle. For example, the processor 220 may determine that the degree of occurrence of a side reaction in the battery 102 is greater as the charging/discharging efficiency of the second cycle is lower.
  • the processor 220 determines the stability of the battery 102 or the life of the battery 102 based on the degree to which a side reaction occurs in the battery 102. I can. For example, the processor 220 may determine that the battery 102 has high stability or that the battery life is longer as the degree of occurrence of the side reaction in the battery 102 decreases.
  • the electronic device 101 includes a power supply unit 210 and a processor 220, and the processor 220 is, in a state in which the battery 102 is completely discharged, the When the battery 102 is charged at a first C-rate through the power supply unit 210 and the capacity of the battery 102 reaches a specified battery capacity, the first At a second C-rate higher than the first C-rate for a period of time, the battery 102 is charged by a first capacity corresponding to the first time and the second C-rate, and the second C-rate is The operation of discharging the battery 102 by the first capacity at a third C-rate higher than the first C-rate is performed a specified number of times, and through the power supply unit 210, the battery 102 is completely In order to be charged, the battery 102 is charged at the first C-rate, and in a state where the battery 102 is fully charged, the battery 102 is completely discharged through the power supply unit 210. , It may be set to discharge the battery 102
  • the first time and the second C-rate may be the same as the second time and the third C-rate, respectively.
  • the processor 220 charges the battery 102 by the first capacity at the second C-rate according to the designated battery capacity, and then charges the battery 102 at the third C-rate. After discharging the battery 102 by a capacity or by discharging the battery 102 by the first capacity at the third C-rate, the battery 102 by the first capacity at the second C-rate It can be set to charge.
  • the specified number of times may be specified by a user.
  • the processor 220 the second capacity supplied to the battery 102 until the capacity of the battery 102 reaches a specified battery capacity, the first at the second C-rate.
  • the first supplied to the battery 102 to fully charge the battery 102 3 based on the capacity and the fourth capacity supplied to the battery 102 to completely discharge the battery 102 while the battery 102 is fully charged, the first charging and discharging of the battery 102 It can be set to yield efficiency.
  • the processor 220 is in a state in which the battery 102 is completely discharged before charging the battery 102 at the first C-rate while the battery 102 is completely discharged.
  • the battery 102 is transferred to the battery at the first C-rate.
  • the battery 102 may be set to calculate the second charging/discharging efficiency of the battery 102 based on an operation of completely discharging the battery 102 at the first C-rate in the current state.
  • the battery 102 after discharging the battery 102 at the first C-rate while the battery 102 is fully charged, the battery 102 is discharged while the battery 102 is completely discharged.
  • the battery 102 is fully charged at the first C-rate, and the battery 102 is completely discharged at the first C-rate while the battery 102 is fully charged.
  • the battery 102 In a state in which the battery 102 is completely discharged, the battery 102 is fully charged at the first C-rate, and the battery 102 is fully charged.
  • the first time is designated so that the voltage of the battery 102 increases below a specified voltage while charging the battery 102 by the first capacity at the second C-rate
  • the The second time period may be designated so that the voltage of the battery 102 decreases above a specified voltage while discharging the battery 102 by the first capacity at the third C-rate.
  • the processor 220 charges the battery 102 by the first capacity at the second C-rate for the specified number of times and the first capacity at the third C-rate. While discharging the battery 102, it may be set to check a change in the resistance of the battery 102.
  • the capacity of the designated battery 102 may be designated by a user.
  • FIG. 6 is a flow diagram 600 describing a method for evaluating battery 102, according to various embodiments of the present invention.
  • the processor 220 charges the battery 102 at a first C-rate (eg, about 0.2 C-rate) through the power supply 210 I can make it.
  • the processor 220 may perform an operation for completely discharging the battery 102 before charging the battery 102 at a first C-rate. After the battery 102 is completely discharged, the processor 220 may start an operation of charging the battery 102 at a first C-rate.
  • the processor 220 may charge the battery 102 at the first C-rate until the battery capacity reaches the specified battery capacity.
  • the designated battery capacity may be designated by a user of the electronic device 101 (eg, a subject performing battery evaluation).
  • the processor 220, the battery 102 at a C-rate higher than the first C-rate, e.g., a second C-rate (e.g., about 2 C-rate).
  • the operation of charging and discharging can be performed a specified number of times.
  • the processor 220 may perform a zero-sum charge/discharge operation. For example, the processor 220, through the power supply unit 210, applies a pulse for charging to the battery 102 for a first time at a second C-rate higher than the first C-rate, and The operation of applying a pulse for discharging during the first time at a C-rate may be performed a specified number of times (eg, about 3 to about 50 times).
  • the processor 220 during a zero-sum charge/discharge operation, between the operation of applying a pulse for charging and the operation of applying the pulse for discharge, during a specified time (or resting period) It is possible to not apply a pulse. In one embodiment, by setting a specified time not to apply a pulse between an operation of applying a pulse for charging and an operation of applying a pulse for discharging, it is possible to more accurately observe a voltage change due to the pulse. In one embodiment, a specified time for not applying a pulse between an operation of applying a pulse for charging and an operation of applying a pulse for discharging may be omitted. In an embodiment, a pause may be set for at least one of a specified time immediately before starting the zero-sum charging/discharging operation or for a specified time immediately after ending the zero-sum charging/discharging operation.
  • the capacity of the battery supplied to the battery 102 by the pulse for charging may be the same as the capacity of the battery discharged from the battery 102 by the pulse for discharging.
  • the battery capacity supplied to the battery 102 by one pulse for charging and the battery capacity discharged from the battery 102 by one pulse for discharging are, for example, the electronic device 101 ) Can be specified by the user.
  • the battery capacity supplied to the battery 102 by one pulse for charging and the battery capacity discharged from the battery 102 by one pulse for discharging are, respectively, the battery capacity in a fully charged state. It can be specified as a dose corresponding to about 10% of the. However, it is not limited thereto.
  • the time the pulse is supplied to the battery 102 is determined (or specified ) Can be.
  • the capacity of the battery to be discharged or a time for applying one pulse to the battery 102 may be specified. For example, when a pulse for charging is applied to the battery 102, the voltage across the battery increases, and when a pulse for discharging is applied to the battery 102, the voltage across the battery may decrease. As the voltage across the battery rises or falls, the battery voltage becomes higher than the high threshold voltage by applying a pulse for charging to the battery 102, or below the low threshold voltage by applying a pulse for discharging to the battery 102. If so, the battery can be irreversibly damaged.
  • a C-rate for applying one pulse to the battery 102 and a voltage that may irreversibly damage the battery 102 e.g., high or low threshold voltage.
  • a battery capacity supplied (or discharged) to the battery 102 by one pulse or a time period for applying one pulse to the battery 102 may be specified (or adjusted).
  • the magnitude (or absolute value) of the second C-rate to which the pulse for charging is applied and the magnitude of the second C-rate to which the pulse for discharging is applied are the same. It is not limited thereto.
  • the processor 220 applies a pulse for charging at a third C-rate for a second time.
  • a pulse for discharging at a fourth C-rate may be applied to the battery 102 for a third time longer than the second time.
  • the processor 220 based on the capacity of the battery 102 to start the zero-sum charging and discharging operation, the pulse for charging prior to (or preferentially) the pulse for discharging the battery 102 or, a pulse for discharging may be applied to the battery 102 before the pulse for charging.
  • the processor 220 may apply the pulse for charging before the pulse for discharging. have.
  • the charging pulse is applied to the battery 102 before the discharge pulse.
  • the processor 220 may apply a pulse for discharging to the battery 102 prior to the pulse for charging so that the voltage of 102) does not rise (or does not increase) above the high threshold voltage.
  • the present invention is not limited thereto, and when the capacity of the battery 102 that starts the zero-sum charge/discharge operation falls between the first battery capacity and the second battery capacity, the processor 220 generates a charging pulse.
  • a pulse for discharging may be applied to the battery 102 before the pulse for discharging, or a pulse for discharging may be applied to the battery 102 before a pulse for a wind field.
  • the processor 220 may designate the number of times to perform an operation of charging and discharging the battery 102 at a second C-rate (eg, about 2 C-rate) based on a user input.
  • a second C-rate eg, about 2 C-rate
  • the processor 220 may charge the battery 102 at a first C-rate so that the battery 102 is fully charged after performing a zero-sum charge/discharge operation. .
  • the processor 220 may completely discharge the battery 102 at a first C-rate after the battery 102 is fully charged.
  • the processor 220 charges the battery 102 at a first C-rate while the battery 102 is completely discharged, and based on the second C-rate.
  • a zero-sum charge/discharge operation is performed, the operation of completely charging the battery 102 at the first C-rate is sequentially performed, and the battery 102 is transferred to the first C- After completely discharging the battery 102 at the rate, the charging/discharging efficiency of the battery 102 may be calculated.
  • the processor 220 may evaluate the battery 102 based on the charging/discharging efficiency of the battery 102. For example, the processor 220 may determine that the lower the charging/discharging efficiency of the battery 102 is, the greater the degree to which a side reaction occurs in the battery 102. In one embodiment, the processor 220 (or the user of the electronic device 101) determines the stability of the battery 102 or the life of the battery 102 based on the degree to which a side reaction occurs in the battery 102. I can. For example, the processor 220 may determine that the battery 102 has a higher stability or that the battery 102 has a longer life as the degree of occurrence of the side reaction in the battery 102 decreases.
  • FIG. 7 is a flow chart 700 describing a method for evaluating the battery 102, according to various embodiments of the present invention.
  • the processor 220 may charge and discharge the battery 102 at a first C-rate through the power supply unit 210.
  • operation 701 may be an operation corresponding to the first cycle described with reference to FIG. 5.
  • the processor 220 generates a current corresponding to the first C-rate so that the battery 102 is fully charged in a state where the battery 102 is completely discharged (or after completely discharging the battery 102).
  • a current corresponding to the first C-rate may be discharged from the battery 102 such that it is applied to the battery 102 and the battery 102 is completely discharged while the battery 102 is fully charged.
  • the processor 220 based on the first C-rate and the time for supplying the current for charging to the battery 102, the capacity to supply the battery 102 to charge the battery 102 (Or charging capacity) can be calculated.
  • the processor 220 based on the first C-rate and the time for supplying the current for discharging to the battery 102, the capacity extracted from the battery 102 to discharge the battery 102 in the first cycle ( Alternatively, the discharge capacity) can be calculated.
  • the processor 220 based on the capacity supplied to the battery 102 to charge the battery 102 and the capacity extracted from the battery 102 to discharge the battery 102, operation 701 After performing (or after performing the first cycle), the charging/discharging efficiency of the battery 102 may be calculated.
  • the processor 220 may charge the battery 102 at a first C-rate (eg, about 0.2 C-rate) through the power supply 210.
  • a first C-rate eg, about 0.2 C-rate
  • the processor 220, the battery 102 at a C-rate higher than the first C-rate, e.g., a second C-rate (e.g., about 2 C-rate).
  • the operation of charging and discharging can be performed a specified number of times.
  • the processor 220 may charge the battery 102 at a first C-rate so that the battery 102 is fully charged after performing a zero-sum charge/discharge operation. .
  • the processor 220 may completely discharge the battery 102 at a first C-rate after the battery 102 is fully charged.
  • operations 703 to 709 are at least partially the same as or similar to operations 601 to 607 of FIG. 6, detailed descriptions will be omitted.
  • operations 703 to 709 may be operations corresponding to the second cycle described in FIG. 5.
  • the processor 220, the first C-rate, and the time until reaching the specified capacity in operation 703 e.g., the time of supplying current until reaching the specified capacity
  • operation 707 The time from the time after (or after the completion of the zero-sum charge/discharge operation) to the time until the battery 102 is fully charged (e.g., the battery 102 is fully charged from the completion of the zero-sum charge/discharge operation)
  • the capacity (or charging capacity) supplied to the battery 102 in order to charge the battery 102 may be calculated based on the time obtained by adding up the time until the current is supplied.
  • the first C-rate, and the time from when the battery 102 is fully charged in operation 709 until the battery 102 is completely discharged (for example, when the battery 102 is fully charged) Based on the time of supplying current to completely discharge the battery 102), the capacity (or discharge capacity) extracted from the battery 102 to discharge the battery 102 may be calculated. .
  • the processor 220 in operations 703 to 709 (or in the second cycle), to discharge the battery 102 and the capacity supplied to the battery 102 to charge the battery 102 Based on the capacity extracted from the battery 102, the charging/discharging efficiency of the battery 102 may be calculated.
  • the processor 220 may charge and discharge the battery 102 at a first C-rate through the power supply unit 210.
  • operation 711 may be an operation corresponding to the third cycle described in FIG. 5.
  • the processor 220 generates a current corresponding to the first C-rate so that the battery 102 is fully charged in a state where the battery 102 is completely discharged (or after completely discharging the battery 102).
  • a current corresponding to the first C-rate may be discharged from the battery 102 such that it is applied to the battery 102 and the battery 102 is completely discharged while the battery 102 is fully charged.
  • the processor 220 may calculate the charging/discharging efficiency of the battery 102 in the same manner as described in operation 701.
  • the charging/discharging efficiency calculated through operations 703 to 709 (eg, charging/discharging efficiency of the second cycle) May be smaller than the charging/discharging efficiency calculated through operation 701 (eg, charging and discharging efficiency in the first cycle) and charging/discharging efficiency calculated through operation 711 (eg, charging and discharging efficiency in the third cycle).
  • the charge/discharge efficiency (eg, charge/discharge efficiency of the second cycle) calculated through the operations 703 to 709 is determined by the operation 701.
  • the charging/discharging efficiency calculated through (eg, charging/discharging efficiency in the first cycle) and the charging/discharging efficiency calculated through operation 711 (eg, charging/discharging efficiency in the third cycle) may be substantially the same.
  • the processor 220 (or the user of the electronic device 101), the charge/discharge efficiency calculated through operation 701, the charge/discharge efficiency calculated through operation 703 to operation 709, and the operation 711 Based on the charging and discharging efficiency, the battery 102 may be evaluated.
  • the processor 220 the difference between the charge and discharge efficiency calculated through the operation 703 to operation 709 and the charge/discharge efficiency calculated through operation 701, or the charge/discharge efficiency and operation calculated through operation 703 to operation 709 At least one of the differences between charge and discharge efficiencies calculated through 711 may be calculated.
  • the processor 220 the difference between the charge/discharge efficiency calculated through the operations 703 to 709 and the charge/discharge efficiency calculated through the operation 701, or the charge/discharge efficiency calculated through the operations 703 to 709 and the operation 711 As at least one of the difference between the charged and discharge efficiencies is greater, it may be determined that the degree (or level) of the side reaction in the battery 102 is greater. However, the present invention is not limited thereto, and in an embodiment, the processor 220 may evaluate the battery 102 based on the charge/discharge efficiency calculated through operations 703 to 709. For example, the processor 220 may determine that the degree of occurrence of a side reaction in the battery 102 is greater as the charge/discharge efficiency calculated through operations 703 to 709 is lower.
  • the processor 220 determines the stability of the battery 102 or the life of the battery 102 based on the degree to which a side reaction occurs in the battery 102. I can. For example, the processor 220 may determine that the battery 102 has a higher stability or that the battery 102 has a longer life as the degree of occurrence of the side reaction in the battery 102 decreases.
  • FIG. 7 illustrates that both operations 701 and 711 are performed, but is not limited thereto.
  • operation 701 or operation 711 may be omitted.
  • FIG. 8 is a diagram illustrating a result of comparing charging and discharging efficiencies of different batteries according to various embodiments of the present disclosure.
  • a graph 810 may be a diagram showing charge/discharge efficiency calculated after performing a charge/discharge operation for a first battery during a first cycle to a third cycle.
  • reference numeral 811 denotes charge/discharge efficiency of the first cycle
  • reference numeral 813 denotes charge/discharge efficiency of the second cycle
  • reference numeral 815 May represent the charging and discharging efficiency of the third cycle.
  • the graph 820 may be a diagram showing the charge/discharge efficiency calculated after performing a charge/discharge operation during a first cycle to a third cycle for a second battery different from the first battery.
  • reference numeral 821 denotes charge/discharge efficiency of the first cycle
  • reference numeral 823 denotes charge/discharge efficiency of the second cycle
  • reference numeral 825 denotes the third cycle. It can show the charging/discharging efficiency of
  • a zero-sum using the same pulse eg, a pulse for charging and a pulse for discharging
  • the charging and discharging operation has been performed.
  • comparing the graph 810 and the graph 820, the charging/discharging efficiency of the first cycle and the charging/discharging efficiency of the third cycle for the first battery are, respectively, of the first cycle of the second battery.
  • the charge/discharge efficiency and the charge/discharge efficiency of the third cycle may be substantially the same.
  • comparing the graph 810 and the graph 820, the charging/discharging efficiency of the second cycle for the first battery may be smaller than that of the second cycle for the second battery.
  • the processor 220 (or the user of the electronic device 101), based on the charging/discharging efficiency of the second cycle for the first battery and the charging/discharging efficiency of the second cycle for the second battery, When the first battery is charged at a higher C-rate (eg, the second C-rate) than the second battery, it may be evaluated as more stable.
  • a higher C-rate eg, the second C-rate
  • FIG. 9 is a diagram 900 showing charge/discharge efficiency of the battery 102 according to the number of pulses applied in a zero-sum charge/discharge operation according to various embodiments of the present disclosure.
  • reference numeral 911 denotes charge/discharge efficiency of the first cycle
  • reference numeral 913 denotes charge/discharge efficiency of the second cycle
  • Number 915 may indicate the charging and discharging efficiency of the third cycle.
  • the charging/discharging efficiency of the second cycle corresponding to the reference numeral 913 is calculated when the pulse for charging and the pulse for discharging are applied over about 10 times during the second cycle. It can be efficiency.
  • reference numeral 921 denotes charge/discharge efficiency of the first cycle
  • reference numeral 923 denotes the first battery.
  • reference numeral 925 may indicate charge/discharge efficiency of a third cycle.
  • the charging/discharging efficiency of the second cycle corresponding to the reference numeral 923 is calculated when the pulse for charging and the pulse for discharging are applied over about 50 times during the second cycle. It can be efficiency.
  • the charging/discharging efficiency of the second cycle may be lowered.
  • the charging/discharging efficiency of the second cycle of the first battery 102 may be lower than that of the second cycle of the second battery.
  • FIG. 10 is a diagram 1000 showing charge/discharge efficiency for each cycle according to a capacity at which a zero-sum charge/discharge operation starts according to various embodiments of the present disclosure.
  • FIG. 10 may assume that a zero-sum charge/discharge operation is performed in a second cycle.
  • reference numeral 1001 denotes the charging and discharging efficiency of the first cycle according to the capacity (or SOC) to start the zero-sum charging and discharging operation
  • reference numeral 1005 denotes a zero-sum charging and discharging operation.
  • the charging/discharging efficiency of the second cycle according to the starting capacity is indicated
  • reference numeral 1003 may indicate the charging/discharging efficiency of the third cycle according to the capacity of starting the zero-sum charging/discharging operation.
  • the charge/discharge efficiency of the second cycle calculated after performing the first zero-sum charge/discharge operation at the SOC of the battery 102 is 60%, and the SOC of the battery 102 is 30% to the first zero.
  • the second zero-sum charge/discharge operation is the same as the -sum charge/discharge operation (for example, applying the same number of charge pulses and discharge pulses to the battery 102 at the same C-rate as the first zero-sum charge/discharge operation). It may be lower than the charging/discharging efficiency of the second cycle calculated after performing.
  • a side reaction such as lithium-plating may occur due to a zero-sum charge/discharge operation, and as the SOC of the battery 102 increases, the degree of occurrence of lithium-plating may increase. In an embodiment, due to a side reaction such as lithium-plating, the charging/discharging efficiency of the battery 102 may decrease.
  • the processor 220 may calculate the charging/discharging efficiency of the battery 102 that changes according to the SOC starting the zero-sum charging/discharging operation.
  • FIG. 11 is a diagram 1100 showing a change in resistance of the battery 102 according to the number of pulses applied in a zero-sum charge/discharge operation according to various embodiments of the present disclosure.
  • FIG. 11 shows a pulse for charging and discharging during a zero-sum charging/discharging operation when a zero-sum charging/discharging operation is performed at an SOC of 50% of the battery 102.
  • the resistance (or direct current internal resistance (DCIR)) of the battery 102 may change as the number of times the pulse is applied increases.
  • the resistance of the battery 102 is divided by the difference between voltage values measured immediately before and immediately after applying the pulse for charging or the pulse for discharging to the battery 102 by the constant current applied to the battery 102. May correspond to a value.
  • the change in the resistance of the battery 102 is a plurality of times, when a pulse for charging and discharging is applied to the battery 102, a pulse for charging or a pulse for discharging at each of the plurality of times. It may correspond to a change in a value obtained by dividing a difference between voltage values measured immediately before and immediately after applying a pulse to the battery 102 by a constant current applied to the battery 102.
  • the processor 220 when performing a zero-sum charge/discharge operation, increases the number of times of applying a pulse for charging and a pulse for discharging during the zero-sum charge/discharge operation.
  • the change in resistance can be calculated (or measured).
  • reference numeral 1101 in FIG. 11 denotes a pulse for charging and a pulse for discharging during a zero-sum charging/discharging operation when a zero-sum charging/discharging operation is performed at 50% SOC of the battery 102. It may represent a change in resistance of the battery 102 according to an increase in the number of times that is applied. In one embodiment, reference numeral 1103 in FIG. 11 may be a line linearly representing a change in resistance of the battery 102 of reference numeral 1101.
  • the resistance of the battery 102 may increase.
  • the resistance of the battery 102 may increase.
  • the method includes an operation of charging the battery 102 at a first C-rate while the battery 102 is completely discharged, and the capacity of the battery 102 is adjusted to a specified battery capacity.
  • the battery 102 is charged with a second C-rate higher than the first C-rate for a first time, by a first capacity corresponding to the first time and the second C-rate, and , An operation of discharging the battery 102 by the first capacity at a third C-rate higher than the first C-rate for a second time period for a specified number of times, so that the battery 102 is fully charged.
  • the first time and the second C-rate may be the same as the second time and the third C-rate, respectively.
  • performing an operation of charging the battery 102 by the first capacity at the second C-rate and discharging the battery 102 by the first capacity at the third C-rate Is, according to the designated battery capacity, charging the battery 102 by the first capacity at the second C-rate and then discharging the battery 102 by the first capacity at the third C-rate. Or discharging the battery 102 by the first capacity at the third C-rate and then charging the battery 102 by the first capacity at the second C-rate.
  • the specified number of times may be specified by a user.
  • the method includes a second capacity supplied to the battery 102 until the capacity of the battery 102 reaches a specified battery capacity, and the first capacity at the second C-rate.
  • the method includes, in a state in which the battery 102 is completely discharged, before charging the battery 102 at the first C-rate, the battery 102 is completely discharged. (102) The battery 102 is fully charged at the first C-rate, and the battery 102 is transferred to the battery 102 at the first C-rate while the battery 102 is fully charged. The operation of completely discharging the battery, and completely charging the battery 102 at the first C-rate while the battery 102 is completely discharged, and the battery 102 is fully charged. In the state, based on the operation of completely discharging the battery 102 at the first C-rate, the operation of calculating a second charge/discharge efficiency of the battery 102 may be included.
  • the method includes discharging the battery 102 at the first C-rate while the battery 102 is fully charged, and then the battery 102 is completely discharged. (102)
  • the battery 102 is fully charged at the first C-rate, and the battery 102 is transferred to the battery 102 at the first C-rate while the battery 102 is fully charged.
  • the operation of calculating a third charge/discharge efficiency of the battery 102 based on an operation of completely discharging the battery 102 at the first C-rate may be further included.
  • the first time is designated so that the voltage of the battery 102 increases below a specified voltage while charging the battery 102 by the first capacity at the second C-rate
  • the The second time period may be designated so that the voltage of the battery 102 decreases above a specified voltage while discharging the battery 102 by the first capacity at the third C-rate.
  • the method comprises charging the battery 102 by the first capacity at the second C-rate for the specified number of times, and charging the battery 102 by the first capacity at the third C-rate. While discharging ), an operation of checking a change in resistance of the battery 102 may be further included.
  • the capacity of the designated battery 102 may be designated by a user.
  • the structure of the data used in the above-described embodiment of the present invention can be recorded on a computer-readable recording medium through various means.
  • the computer-readable recording medium includes a storage medium such as a magnetic storage medium (eg, ROM, floppy disk, hard disk, etc.), and an optical reading medium (eg, CD-ROM, DVD, etc.).
  • the computer-readable recording medium is an operation of charging the battery 102 at a first C-rate in a state in which the battery 102 is completely discharged in the electronic device 101.
  • the capacity reaches the specified battery capacity, at a second C-rate higher than the first C-rate for a first time, the battery by a first capacity corresponding to the first time and the second C-rate
  • a program for executing an operation of discharging the battery 102 at -rate can be recorded.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

An electronic device according to various embodiments of the present invention comprises a power supply unit and a processor, wherein the processor can be set to: charge a battery at a first C-rate through the power supply unit in a state in which the battery is completely discharged; perform an operation a specified number of times through the power supply unit when the capacity of the battery reaches a specified battery capacity, wherein said operation involves charging the battery for a first duration at a second C-rate higher than the first C-rate to charge the battery to a first capacity corresponding to the first duration and the second C-rate, and discharging the battery by the first capacity for a second duration at a third C-rate higher than the first C-rate; charge the battery at the first C-rate through the power supply unit so that the battery is completely charged; and, in a state in which the battery is completely charged, discharge the battery at the first C-rate through the power supply unit so that the battery is completely discharged.

Description

배터리를 평가하기 위한 방법 및 이를 지원하는 전자 장치Method for evaluating battery and electronic device supporting same
본 발명의 다양한 실시예들은, 충전 중 배터리의 전압 변화량 및 충/방전효율에 기반하여 배터리의 상태에 대한 정보를 획득하기 위한 방법 및 이를 지원하는 전자 장치에 관한 것이다.Various embodiments of the present disclosure relate to a method for acquiring information on a state of a battery based on a voltage change amount and charging/discharging efficiency of a battery during charging, and an electronic device supporting the same.
배터리(예: 2차 전지)는 모바일 기기 또는 전기 자동차와 같은 다양한 분야에서 사용되고 있다. 최근에는 급속 충전의 요구가 증가하고 있으며, 급속 충전용/급속 방전용 배터리의 종류가 다양화되고 있다.Batteries (eg, secondary batteries) are used in various fields such as mobile devices or electric vehicles. In recent years, the demand for rapid charging is increasing, and types of batteries for rapid charging/rapid discharging are diversifying.
배터리가 충전 또는 방전되는 횟수가 증가될수록 배터리의 용량(capacity)은 점진적으로 감소될 수 있다(또는 전자 장치의 배터리의 수명이 점진적으로 열화될 수 있다). 배터리를 충전 및 방전시키는 동작을 수백 사이클(cycle)에 걸쳐 수행하는 동안 배터리의 용량 변화를 관측함으로써, 배터리의 안정성 또는 수명을 평가하고 있다. As the number of times the battery is charged or discharged increases, the capacity of the battery may gradually decrease (or the life of the battery of the electronic device may gradually deteriorate). The battery's stability or life is evaluated by observing the change in the capacity of the battery while performing the operation of charging and discharging the battery over several hundred cycles.
배터리를 충전 및 방전시키는 동작을 수백 사이클에 걸쳐 수행하는 동안 배터리의 용량 변화를 관측함으로써, 배터리의 안정성 또는 수명을 평가하는 방법은, 장기간(예: 수개월)의 시간이 소요될 수 있다. 배터리를 장기간에 걸쳐서 평가한 후 개선된 배터리를 다시 평가하는 경우 추가적으로 수개월이 소요되며, 이에 따라, 배터리의 개발 적기를 놓칠 수 있다. 또한, 이러한 배터리 평가 방법은 배터리의 안정성을 정량적으로 분석하기 어려울 수 있다. A method of evaluating the stability or lifespan of the battery by observing the change in capacity of the battery while performing the operation of charging and discharging the battery over several hundred cycles may take a long time (eg, several months). If the battery is evaluated over a long period of time and then the improved battery is evaluated again, it may take several months additionally, and accordingly, the right time to develop the battery may be missed. In addition, such a battery evaluation method may be difficult to quantitatively analyze the stability of the battery.
본 발명의 다양한 실시예들은, 단기간(예: 약 1일 내지 3일)에 정량적으로 배터리의 안전성을 평가할 수 있는, 배터리를 평가하기 위한 방법 및 이를 지원하는 전자 장치에 관한 것이다.Various embodiments of the present invention relate to a method for evaluating a battery, and an electronic device supporting the same, capable of quantitatively evaluating the safety of a battery in a short period (eg, about 1 to 3 days).
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved by the present invention are not limited to the technical problems mentioned above, and other technical problems that are not mentioned can be clearly understood by those of ordinary skill in the technical field to which the present invention belongs from the following description. There will be.
본 발명의 다양한 실시예들에 따른 전자 장치는, 전원 공급부, 및 상기전원 공급부와 작동적으로 연결된 프로세서를 포함하고, 상기 프로세서는, 배터리가 완전히 방전된 상태에서, 상기 전원 공급부를 통하여, 제 1 C-rate로 상기 배터리를 충전시키고, 상기 배터리의 용량이 지정된 배터리 용량에 도달한 경우, 상기 전원 공급부를 통하여, 제 1 시간 동안 상기 제 1 C-rate 보다 높은 제 2 C-rate로, 상기 제 1 시간 및 상기 제 2 C-rate에 대응하는 제 1 용량만큼, 상기 배터리를 충전시키고, 제 2 시간 동안 상기 제 1 C-rate 보다 높은 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리를 방전시키는 동작을 지정된 횟수만큼 수행하고, 상기 전원 공급부를 통하여, 상기 배터리가 완전히 충전되도록, 상기 제 1 C-rate로 상기 배터리를 충전시키고, 및 상기 배터리가 완전히 충전된 상태에서, 상기 전원 공급부를 통하여, 상기 배터리가 완전히 방전되도록, 상기 제 1 C-rate로 상기 배터리를 방전시키도록 설정될 수 있다.An electronic device according to various embodiments of the present disclosure includes a power supply unit and a processor operatively connected to the power supply unit, wherein the processor includes a first power supply unit through the power supply unit when the battery is completely discharged. When the battery is charged at a C-rate and the capacity of the battery reaches a specified battery capacity, through the power supply unit, at a second C-rate higher than the first C-rate for a first time, the second C-rate Charges the battery for one hour and a first capacity corresponding to the second C-rate, and discharges the battery for a second time at a third C-rate higher than the first C-rate. The battery is charged at the first C-rate so that the battery is fully charged through the power supply unit, and in a state where the battery is fully charged, through the power supply unit. , It may be set to discharge the battery at the first C-rate so that the battery is completely discharged.
본 발명의 다양한 실시예들에 따른 방법은, 배터리가 완전히 방전된 상태에서 제 1 C-rate로 상기 배터리를 충전시키는 동작, 상기 배터리의 용량이 지정된 배터리 용량에 도달한 경우, 제 1 시간 동안 상기 제 1 C-rate 보다 높은 제 2 C-rate로, 상기 제 1 시간 및 상기 제 2 C-rate에 대응하는 제 1 용량만큼, 상기 배터리를 충전시키고, 제 2 시간 동안 상기 제 1 C-rate 보다 높은 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리를 방전시키는 동작을 지정된 횟수만큼 수행하는 동작, 상기 배터리가 완전히 충전되도록, 상기 제 1 C-rate로 상기 배터리를 충전시키는 동작, 및 상기 배터리가 완전히 충전된 상태에서, 상기 배터리가 완전히 방전되도록, 상기 제 1 C-rate로 상기 배터리를 방전시키는 동작을 포함할 수 있다.The method according to various embodiments of the present invention includes an operation of charging the battery at a first C-rate while the battery is completely discharged, and when the capacity of the battery reaches a specified battery capacity, the first time period. At a second C-rate higher than the first C-rate, the battery is charged by a first capacity corresponding to the first time and the second C-rate, and is higher than the first C-rate for a second time. An operation of discharging the battery by the first capacity at a high third C-rate for a specified number of times, charging the battery at the first C-rate so that the battery is fully charged, and the battery In a fully charged state, discharging the battery at the first C-rate so that the battery is completely discharged may be included.
본 발명의 다양한 실시예에 따른 배터리를 평가하기 위한 방법 및 이를 지원하는 전자 장치는, 장기간의 수명 평가 없이, 단기간에 배터리(예: 급속 충전용 배터리)의 안정성을 평가할 수 있다.A method for evaluating a battery according to various embodiments of the present disclosure and an electronic device supporting the same may evaluate the stability of a battery (eg, a battery for rapid charging) in a short period without long-term life evaluation.
본 발명의 다양한 실시예에 따른 배터리를 평가하기 위한 방법 및 이를 지원하는 전자 장치는, 단기간에 배터리의 안정성을 평가함으로써, 배터리의 개발 기간을 단축시킬 수 있다.A method for evaluating a battery according to various embodiments of the present disclosure and an electronic device supporting the same may shorten the development period of the battery by evaluating the stability of the battery in a short period of time.
본 발명의 다양한 실시예에 따른 배터리를 평가하기 위한 방법 및 이를 지원하는 전자 장치는, 충전률(또는 방전률) 또는 배터리의 용량(state of charge) 별로 배터리의 부반응 수준을 정량화할 수 있다. A method for evaluating a battery according to various embodiments of the present disclosure and an electronic device supporting the same may quantify a side reaction level of a battery according to a charge rate (or discharge rate) or a state of charge.
도 1은, 다양한 실시예들에 따른, 배터리를 평가하기 위한 환경을 나타내는 도면이다.1 is a diagram illustrating an environment for evaluating a battery according to various embodiments.
도 2는, 본 발명의 다양한 실시예에 따른, 배터리를 평가하기 위한 전자 장치를 나타내는 도면이다.2 is a diagram illustrating an electronic device for evaluating a battery according to various embodiments of the present disclosure.
도 3은, 본 발명의 다양한 실시예에 따른, zero-sum 충방전 동작을 설명하기 위한 도면이다.3 is a diagram illustrating a zero-sum charge/discharge operation according to various embodiments of the present disclosure.
도 4는, 본 발명의 다양한 실시예에 따른, 배터리의 부반응 발생 유무에 따라 다르게 변화하는 전압을 나타내는 도면이다.4 is a diagram illustrating a voltage that changes differently depending on whether a side reaction of a battery occurs or not, according to various embodiments of the present disclosure.
도 5는, 본 발명의 다양한 실시예에 따른, 배터리를 평가하기 위한 방법을 설명하기 위한 도면이다.5 is a diagram illustrating a method for evaluating a battery according to various embodiments of the present disclosure.
도 6은, 본 발명의 다양한 실시예에 따른, 배터리를 평가하기 위한 방법을 설명하는 흐름도이다.6 is a flowchart illustrating a method for evaluating a battery according to various embodiments of the present disclosure.
도 7은, 본 발명의 다양한 실시예에 따른, 배터리를 평가하기 위한 방법을 설명하는 흐름도이다.7 is a flowchart illustrating a method for evaluating a battery according to various embodiments of the present disclosure.
도 8은, 본 발명의 다양한 실시예에 따른, 서로 다른 배터리들의 충방전 효율들을 비교한 결과를 나타내는 도면이다.8 is a diagram illustrating a result of comparing charging and discharging efficiencies of different batteries according to various embodiments of the present disclosure.
도 9는, 본 발명의 다양한 실시예에 따른, zero-sum 충방전 동작에서 인가된 펄스의 횟수에 따른 배터리의 충방전 효율을 나타내는 도면이다.9 is a diagram illustrating charging/discharging efficiency of a battery according to the number of pulses applied in a zero-sum charging/discharging operation according to various embodiments of the present disclosure.
도 10은, 본 발명의 다양한 실시예에 따른, zero-sum 충방전 동작을 시작하는 용량에 따른 사이클 별 충방전 효율을 나타내는 도면이다.10 is a diagram illustrating charge/discharge efficiency for each cycle according to a capacity for starting a zero-sum charge/discharge operation according to various embodiments of the present disclosure.
도 11은, 본 발명의 다양한 실시예에 따른, zero-sum 충방전 동작에서 인가된 펄스의 횟수에 따른 배터리의 저항 변화를 나타내는 도면이다.11 is a diagram illustrating a change in resistance of a battery according to the number of pulses applied in a zero-sum charge/discharge operation according to various embodiments of the present disclosure.
본 문서의 다양한 실시예들 및 이에 사용된 용어들은 본 문서에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 해당 실시예의 다양한 변경, 균등물, 및/또는 대체물을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 본 문서에서, "A 또는 B", "A 및/또는 B 중 적어도 하나", "A, B 또는 C" 또는 "A, B 및/또는 C 중 적어도 하나" 등의 표현은 함께 나열된 항목들의 모든 가능한 조합을 포함할 수 있다. "제 1", "제 2", "첫째" 또는 "둘째" 등의 표현들은 해당 구성요소들을, 순서 또는 중요도에 상관없이 수식할 수 있고, 한 구성요소를 다른 구성요소와 구분하기 위해 사용될 뿐 해당 구성요소들을 한정하지 않는다. 어떤(예: 제 1) 구성요소가 다른(예: 제 2) 구성요소에 "(기능적으로 또는 통신적으로) 연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결되거나, 다른 구성요소(예: 제 3 구성요소)를 통하여 연결될 수 있다.Various embodiments of the present document and terms used therein are not intended to limit the technology described in this document to a specific embodiment, and should be understood to include various modifications, equivalents, and/or substitutes of the corresponding embodiment. In connection with the description of the drawings, similar reference numerals may be used for similar elements. Singular expressions may include plural expressions unless the context clearly indicates otherwise. In this document, expressions such as "A or B", "at least one of A and/or B", "A, B or C" or "at least one of A, B and/or C" are all of the items listed together. It can include possible combinations. Expressions such as "first", "second", "first" or "second" can modify the corresponding elements regardless of their order or importance, and are only used to distinguish one element from another. It does not limit the components. When any (eg, first) component is referred to as being “(functionally or communicatively) connected” or “connected” to another (eg, second) component, the component is It may be directly connected to the component, or may be connected through another component (eg, a third component).
도 1은, 다양한 실시예들에 따른, 배터리를 평가하기 위한 환경을 나타내는 도면(100)이다.1 is a diagram 100 illustrating an environment for evaluating a battery according to various embodiments.
도 1을 참조하면, 일 실시예에서, 배터리를 평가하기 위한 환경(또는 시스템)은, 전자 장치(101) 및 배터리(102)(또는 배터리 셀(battery cell))를 포함할 수 있다. Referring to FIG. 1, in an embodiment, an environment (or system) for evaluating a battery may include an electronic device 101 and a battery 102 (or a battery cell).
일 실시예에서, 전자 장치(101)는 배터리(102)를 충전 또는 방전시킬 수 있다. 예를 들어, 전자 장치(101)는 케이블(103)을 통하여 연결된 배터리(102) (예: 배터리의 양극 및 음극 단자)로 정전류(constant current), 정전압(constant voltage), 또는 정전력(constant power)를 공급함으로써, 배터리(102)를 충전 또는 방전시킬 수 있다.In an embodiment, the electronic device 101 may charge or discharge the battery 102. For example, the electronic device 101 is a battery 102 (for example, the positive and negative terminals of the battery) connected through the cable 103, a constant current, a constant voltage, or a constant power (constant power). By supplying ), the battery 102 can be charged or discharged.
일 실시예에서, 전자 장치(101)는 배터리 충방전기(cycler)로 지칭될 수 있다. In one embodiment, the electronic device 101 may be referred to as a battery charger and discharger.
일 실시예에서, 배터리(102)는 충전 가능한 2차 전지를 포함할 수 있다. 예를 들어, 배터리(102)는, 리튬 이온(Li-ion) 전지, 리튬 이온 폴리머(Li-ion polymer) 전지, 리튬인산철(LiFePO4) 전지, 납 축전지(lead-acid accumulator), 니켈카드뮴(NiCd) 전지, 또는 니켈수소(NiMH) 전지를 포함할 수 있다. 다만, 이에 제한되지 않으며, 배터리(102)는 충전 또는 방전이 가능한 2차 전지는 모두 포함할 수 있다.In one embodiment, the battery 102 may include a rechargeable secondary battery. For example, the battery 102 is a lithium ion (Li-ion) battery, a lithium ion polymer (Li-ion polymer) battery, a lithium iron phosphate (LiFePO 4 ) battery, a lead-acid accumulator, nickel cadmium It may include a (NiCd) battery or a nickel hydride (NiMH) battery. However, the present invention is not limited thereto, and the battery 102 may include all secondary batteries capable of charging or discharging.
일 실시예에서, 전자 장치(101)는 낮은 충전률 또는 방전률로 배터리를 충전 또는 방전(이하, '충방전'으로 지칭함)시키거나, 높은 충전률 또는 방전률로 배터리(102)를 충방전시킬 수 있다. 이하에서, 충전률 또는 방전률을 'C-rate'로 지칭하기로 한다.In one embodiment, the electronic device 101 charges or discharges the battery at a low charge rate or discharge rate (hereinafter referred to as'charge/discharge'), or charges and discharges the battery 102 at a high charge rate or discharge rate. I can make it. Hereinafter, the charging rate or the discharging rate will be referred to as'C-rate'.
일 실시예에서, 낮은 C-rate(예: 약 0.2 C-rate)로 배터리(102)를 충전시키는 동작은, 배터리를 일반 충전시키는 동작(또는 일반 충전)에 대응(또는 모사)될 수 있다. 일 실시예에서, 높은 C-rate(예: 약 2 C-rate)로 배터리(102)를 충전시키는 동작은, 배터리를 급속(또는 고속) 충전시키는 동작(또는 급속 충전)에 대응될 수 있다. 일 실시예에서, 낮은 C-rate로 배터리(102)를 충전시키는 동작은 지정된 C-rate 미만의 C-rate로 배터리(102)를 충전시키는 동작이고, 높은 C-rate로 배터리(102)를 충전시키는 동작은 상기 지정된 C-rate 이상의 C-rate로 배터리(102)를 충전시키는 동작일 수 있다.In one embodiment, the operation of charging the battery 102 at a low C-rate (eg, about 0.2 C-rate) may correspond to (or simulate) the operation of normal charging (or normal charging) of the battery. In one embodiment, the operation of charging the battery 102 at a high C-rate (eg, about 2 C-rate) may correspond to an operation (or rapid charging) of rapidly (or fast) charging the battery. In one embodiment, the operation of charging the battery 102 at a low C-rate is an operation of charging the battery 102 at a C-rate less than a specified C-rate, and charging the battery 102 at a high C-rate. The operation may be an operation of charging the battery 102 at a C-rate equal to or higher than the designated C-rate.
일 실시예에서, 배터리(102)의 충전 상태는 배터리의 SOC(state of charge: 충전 수준으로 0% 내지 100% )로 지칭될 수 있다. 배터리(102)의 SOC는 배터리의 현재 충전량 또는 충전 수준으로 지칭될 수 있다.In one embodiment, the state of charge of the battery 102 may be referred to as a state of charge (SOC) of the battery (0% to 100%). The SOC of the battery 102 may be referred to as the current charge amount or level of charge of the battery.
일 실시예에서, 배터리(102)를 낮은 C-rate로 충전(또는 방전)하는 경우(예: 일반 충전)에 비하여, 배터리(102)를 높은 C-rate로 충전(예: 급속 충전)하는 경우, 배터리(102)에 부반응이 발생할 가능성이 높을 수 있으며(또는 보다 많은 부반응이 발생할 수 있으며), 배터리(102)의 수명(state of health) 저하의 원인이 될 수 있다. 예를 들어, 높은 C-rate로 배터리(102)(예: 리튬 이온 전지)를 충전시키는 경우, 많은 양의 양이온(예: 리튬 이온(Li+))이 배터리(102)의 양극에서 음극 활물질(예: graphite) 입자로 이동하지만, 이동한 양이온이 음극 활물질 안으로 들어가는 속도의 한계로 인해, 이동한 양이온 중 일부는 음극 활물질로 유입되지 못하고, 음극 활물질 표면(또는 음극 표면)에 금속(예: 리튬(Li))으로 증착(또는 석출)될 수 있다. 음극 활물질 표면에 금속이 증착되는 현상은 리튬-플레이팅(Li-plating)으로 지칭될 수 있다. 음극 활물질 표면에 증착된 리튬은 전해액과 반응을 억제해주는 안정된 피막(보호막)을 형성하기 어려우므로 충전 동작 동안 지속적으로 배터리(102)의 전해액과 반응할 수 있고, 이 경우 전해액이 소모될 수 있다. 또한 음극 활물질 표면에서 리튬 이온이 배터리(102)의 전해액과 반응하는 동안, 리튬 이온과 전자 장치(101)로부터 배터리 충전을 위하여 공급된 전자들 중 일부의 전자가 반응하면서 리튬 화합물(부반응물)이 생성될 수 있다. 이에 따라, 전자 장치(101)가 높은 C-rate로 배터리(102)를 충전하는 경우, 배터리(102)로 공급한 충전량에 비하여 배터리(102)가 실제로 충전된 충전량은 적을 수 있다. 다만, 전자 장치(101)가 높은 C-rate로 배터리(102)를 충전함에 따라, 배터리(102)로 공급한 충전량에 비하여 배터리(102)가 실제로 충전된 충전량이 적은 원인은 전술한 예시에 제한되지 않는다.In one embodiment, compared to the case of charging (or discharging) the battery 102 at a low C-rate (eg, normal charging), the case of charging the battery 102 at a high C-rate (eg, rapid charging) , There may be a high possibility that side reactions may occur in the battery 102 (or more side reactions may occur), and may cause a decrease in the state of health of the battery 102. For example, when charging the battery 102 (e.g., a lithium ion battery) at a high C-rate, a large amount of cations (e.g., lithium ions (Li + )) are transferred from the positive electrode of the battery 102 to the negative active material ( Example: graphite) Moves to particles, but due to the limitation of the speed at which the moved positive ions enter the negative active material, some of the moved positive ions cannot flow into the negative active material, and metal (for example, lithium) on the negative active material surface (or negative electrode surface) (Li)) can be deposited (or precipitated). A phenomenon in which a metal is deposited on the surface of the negative active material may be referred to as Li-plating. Since lithium deposited on the surface of the negative active material is difficult to form a stable film (protective film) that suppresses reaction with the electrolyte, it may continuously react with the electrolyte of the battery 102 during the charging operation, and in this case, the electrolyte may be consumed. In addition, while lithium ions react with the electrolyte of the battery 102 on the surface of the negative active material, some electrons of the electrons supplied from the electronic device 101 for charging the battery react with the lithium compound (side reactant). Can be created. Accordingly, when the electronic device 101 charges the battery 102 at a high C-rate, the amount of charge in which the battery 102 is actually charged may be smaller than the amount of charge supplied to the battery 102. However, as the electronic device 101 charges the battery 102 at a high C-rate, the reason why the battery 102 is actually charged less than the amount of charge supplied to the battery 102 is limited to the above example. It doesn't work.
일 실시예에서, 전자 장치(101)가 높은 C-rate로 배터리(102)를 충전(또는 방전)시킴으로써 발생하는 부반응 수준은, 배터리 마다 다를 수 있다. 예를 들어, 전자 장치(101)가 높은 C-rate로 배터리(102)를 충전시킴으로써 발생하는 부반응 수준은, 배터리의 종류, 배터리의 모델(model), 또는 배터리 제조사에 따라, 배터리 마다 다를 수 있다. 일 실시예에서, 전자 장치(101)가 높은 C-rate로 배터리(102)를 충전(또는 방전)시킴으로써 발생하는 부반응 수준에 기반하여 배터리(102)(예: 배터리의 안전성 또는 배터리의 수명)를 평가할 수 있다. In one embodiment, the level of side reactions generated by the electronic device 101 charging (or discharging) the battery 102 at a high C-rate may vary from battery to battery. For example, the level of side reactions generated by charging the battery 102 at a high C-rate by the electronic device 101 may vary from battery to battery, depending on the type of battery, the model of the battery, or the battery manufacturer. . In one embodiment, based on the level of side reactions generated by the electronic device 101 charging (or discharging) the battery 102 at a high C-rate, the battery 102 (eg, the safety of the battery or the battery life) is determined. Can be evaluated.
일 실시예에서, 전자 장치(101)는, 배터리(102)를 충전하는 동안, 지정된 횟수만큼, 높은 C-rate로 배터리(102)를 충전 및 방전시키는 동작을 반복적으로 수행함으로써, 단기간에 배터리의 부반응을 유도할 수 있다. In one embodiment, the electronic device 101 repeatedly performs an operation of charging and discharging the battery 102 at a high C-rate for a specified number of times while charging the battery 102, May induce side reactions.
예를 들어, 전자 장치(101)는, 배터리(102)가 완전히 방전된(fully discharged) 상태(또는 만방전 상태)에서 낮은 C-rate(이하, '제 1 C-rate'로 지칭함)로 배터리(102)를 충전시킬 수 있다. 배터리(102)를 충전시킴에 따라 배터리(102)가 지정된 배터리 용량에 도달한 경우, 전자 장치(101)는, 지정된 횟수(예: 약 3회 내지 50회)로, 높은 C-rate(이하, '제 2 C-rate'로 지칭함)로 스텝(step) 형태의 전류를 제 1 용량(charge)만큼 배터리(102)로 공급(또는 인가)함으로써 배터리(102)를 충전시키고, 배터리(102)를 충전하기 위하여 배터리(102)로 공급한 상기 제 1 용량과 동일한 용량만큼, 제 2 C-rate로 스텝 형태의 전류를 배터리(102)로부터 방출함으로써, 배터리(102)를 방전시킬 수 있다. For example, the electronic device 101, in a fully discharged state (or fully discharged state), the battery 102 at a low C-rate (hereinafter referred to as a'first C-rate') (102) can be charged. When the battery 102 reaches the specified battery capacity as the battery 102 is charged, the electronic device 101 is set to a specified number of times (for example, about 3 to 50 times), and a high C-rate (hereinafter, The battery 102 is charged by supplying (or applying) a current in the form of a step to the battery 102 as much as the first charge in a'second C-rate'), and the battery 102 is charged. The battery 102 may be discharged by discharging a stepped current from the battery 102 at a second C-rate equal to the first capacity supplied to the battery 102 for charging.
이하에서, 전자 장치(101)가, 지정된 횟수만큼, 제 2 C-rate로 배터리(102)를 충전 및 방전시키는 동작을 'zero-sum 충방전 동작'으로 지칭하기로 한다. zero-sum 충방전 동작은, 배터리(102)의 용량의 변화가 없도록 동일한 용량으로 배터리(102)를 충전 및 방전하는 동작일 수 있다. 전자 장치(101)는 zero-sum 충방전 동작을 수행한 후, 제 1 C-rate로 배터리(102)를 완전히 충전(fully charge)시킬 수 있다. 일 실시예에서, 전자 장치(101)는, 배터리(102)가 완전히 충전된 후, 배터리(102)가 완전히 방전되도록, 제 1 C-rate로 배터리(102)를 방전시킬 수 있다. 일 실시예에서, 제 2 C-rate는 제 1 C-rate 보다 약 1.5 이상 클 수 있다. 다만, 이에 제한되지 않는다.Hereinafter, an operation in which the electronic device 101 charges and discharges the battery 102 at a second C-rate for a specified number of times will be referred to as a'zero-sum charge/discharge operation'. The zero-sum charging/discharging operation may be an operation of charging and discharging the battery 102 with the same capacity so that the capacity of the battery 102 does not change. After performing the zero-sum charge/discharge operation, the electronic device 101 may fully charge the battery 102 at the first C-rate. In an embodiment, the electronic device 101 may discharge the battery 102 at a first C-rate so that the battery 102 is completely discharged after the battery 102 is fully charged. In one embodiment, the second C-rate may be about 1.5 or more greater than the first C-rate. However, it is not limited thereto.
일 실시예에서, 전자 장치(101)는, 제 2 C-rate로 배터리(102)를 충전 및 방전시키는 동작을 수행하는 횟수를 사용자 입력에 기반하여 지정할 수 있다. In an embodiment, the electronic device 101 may designate the number of times to perform an operation of charging and discharging the battery 102 at the second C-rate, based on a user input.
일 실시예에서, 전자 장치(101)가 zero-sum 충방전 동작을 수행함으로써 배터리(102)의 부반응을 유도할 수 있다. In an embodiment, the electronic device 101 may induce a side reaction of the battery 102 by performing a zero-sum charge/discharge operation.
일 실시예에서, 전자 장치(101)가 제 1 C-rate 또는 제 2 C-rate로 배터리로 공급하는 전류는 정전류(constant current)일 수 있다. 이하에서, zero-sum 충방전 동작에서, 전자 장치(101)가 배터리(102)로 공급하는 정전류를 '펄스(pulse)'로 지칭하기로 한다. 예를 들어, zero-sum 충방전 동작에서, 전자 장치(101)는 제 2 C-rate로 배터리(102)로 충전을 위한 펄스를 인가하고, 충전을 위한 펄스 인가 후 제 2 C-rate로 방전을 위한 펄스를 인가할 수 있다. In an embodiment, a current supplied to the battery by the electronic device 101 at a first C-rate or a second C-rate may be a constant current. Hereinafter, in the zero-sum charge/discharge operation, the constant current supplied by the electronic device 101 to the battery 102 will be referred to as a “pulse”. For example, in a zero-sum charge/discharge operation, the electronic device 101 applies a pulse for charging to the battery 102 at a second C-rate, and discharges at a second C-rate after applying the pulse for charging. You can apply a pulse for it.
일 실시예에서, zero-sum 충방전 동작에서, 충전을 위한 펄스를 인가함으로써 배터리(102)로 공급한 용량(charge)(또는 전하량)은, 방전을 위한 펄스를 인가함으로써 배터리(102)에서 추출한 용량과 동일할 수 있다.In one embodiment, in the zero-sum charge/discharge operation, the charge (or amount of charge) supplied to the battery 102 by applying a pulse for charging is extracted from the battery 102 by applying a pulse for discharging. May be the same as the dose.
전술한 예시에서, zero-sum 충방전 동작에서, 충전을 위한 펄스와 방전을 위한 펄스가 동일한 C-rate로 인가되는 것으로 설명하였지만, 이에 제한되지 않는다. 예를 들어, zero-sum 충방전 동작에서, 충전을 위하여 배터리(102)로 공급되는 용량과 방전을 위하여 배터리(102)로부터 방출되는 용량이 동일하도록, 전자 장치(101)는 충전을 위하여 제 1 시간 동안 제 3 C-rate의 펄스를 배터리(102)로 인가하고, 방전을 위하여 제 2 시간 동안 제 4 C-rate의 펄스를 배터리(102)로 인가할 수 있다. 일 실시예에서, 전자 장치(101)의 사용자(또는 관찰자)는, 충전 동작에 의한 배터리(102)의 부반응 수준을 평가하려고 하는 경우, 전자 장치(101)는 충전을 위하여 제 1 시간 동안 제 4 C-rate에 비하여 높은 제 3 C-rate(예: 약 2 C-rate)의 펄스를 배터리(102)로 인가하고, 방전을 위하여 제 1 시간 보다 긴 시간으로서 제 2 시간 동안 제 4 C-rate의 펄스를 인가할 수 있다. 일 실시예에서, 전자 장치(101)의 사용자는, 방전 동작에 의한 배터리(102)의 부반응 수준을 평가하려고 하는 경우, 전자 장치(101)는 충전을 위하여 제 1 시간 동안 제 3 C-rate의 펄스를 배터리(102)로 인가하고, 방전을 위하여 제 1 시간 보다 짧은 시간으로서 제 2 시간 동안 제 3 C-rate에 비하여 높은 제 4 C-rate의 펄스를 배터리(102)로 인가할 수 있다. 다만, 이하에서, 설명의 편의를 위하여, 충전을 위한 펄스와 방전을 위한 펄스가 동일한 C-rate로 인가되는 것을 가정하고 설명하기로 한다.In the above example, in the zero-sum charge/discharge operation, it has been described that the pulse for charging and the pulse for discharging are applied at the same C-rate, but the present invention is not limited thereto. For example, in a zero-sum charging and discharging operation, the electronic device 101 is first configured to be charged so that the capacity supplied to the battery 102 for charging and the capacity discharged from the battery 102 for discharging are the same. A pulse of a third C-rate may be applied to the battery 102 for a period of time, and a pulse of a fourth C-rate may be applied to the battery 102 for a second period of time for discharging. In one embodiment, when the user (or observer) of the electronic device 101 tries to evaluate the side reaction level of the battery 102 due to the charging operation, the electronic device 101 is A pulse of a third C-rate (for example, about 2 C-rate) higher than the C-rate is applied to the battery 102, and the fourth C-rate for the second time is a time longer than the first time for discharging. The pulse of can be applied. In one embodiment, when the user of the electronic device 101 tries to evaluate the side reaction level of the battery 102 due to the discharging operation, the electronic device 101 is charged at a third C-rate for a first time period for charging. A pulse may be applied to the battery 102, and a pulse having a fourth C-rate higher than the third C-rate may be applied to the battery 102 for a second period of time shorter than the first period for discharging. However, in the following, for convenience of description, it is assumed that the pulse for charging and the pulse for discharging are applied at the same C-rate.
일 실시예에서, 전자 장치(101)는 zero-sum 충방전 동작을 수행함으로써 배터리(102)의 부반응을 유도하고, 유도된 배터리(102)의 부반응 수준을 측정함으로써 배터리(102)를 평가할 수 있다. In one embodiment, the electronic device 101 may induce a side reaction of the battery 102 by performing a zero-sum charge/discharge operation, and evaluate the battery 102 by measuring the level of the induced side reaction of the battery 102. .
일 실시예에서, 전자 장치(101)는, zero-sum 충방전 동작 수행 후, 배터리(102)를 완전히 충전하기까지, 배터리(102)로 공급한 용량을 산출함으로써, 배터리(102)의 부반응 수준을 측정할 수 있다. 예를 들어, 전자 장치(101)가 zero-sum 충방전 동작을 수행함에 따라 부반응이 발생하는 경우, 부반응이 발생하지 않는 경우에 비하여, zero-sum 충방전 동작 후 배터리(102)를 완전히 충전하기 위하여, 부반응에 의해 소모되는 전자의 양(또는 리튬-플레이팅에 의해 음극 활물질 표면에 증착되는 리튬의 양)에 대응하는 용량을 추가적으로 배터리(102)로 공급할 수 있다. 전자 장치(101)는, zero-sum 충방전 동작 수행 후, 배터리(102)를 완전히 충전하기까지, 배터리(102)로 공급한 용량이 클수록 배터리(102)에 발생한 부반응의 수준이 큰 것으로 결정할 수 있다.In one embodiment, the electronic device 101 calculates the capacity supplied to the battery 102 until the battery 102 is fully charged after performing the zero-sum charging and discharging operation, so that the side reaction level of the battery 102 Can be measured. For example, when a side reaction occurs as the electronic device 101 performs a zero-sum charge/discharge operation, the battery 102 is fully charged after the zero-sum charge/discharge operation compared to a case where no side reaction occurs. To this end, a capacity corresponding to the amount of electrons consumed by the side reaction (or the amount of lithium deposited on the surface of the negative electrode active material by lithium-plating) may be additionally supplied to the battery 102. The electronic device 101 may determine that the level of side reactions generated in the battery 102 is greater as the capacity supplied to the battery 102 increases after performing the zero-sum charge/discharge operation until the battery 102 is fully charged. have.
일 실시예에서, 전자 장치(101)는, 배터리(102)가 완전히 방전된 상태에서 제 1 C-rate로 배터리(102)를 충전하고, 제 2 C-rate에 기반하여 zero-sum 충방전 동작을 수행하고, 제 1 C-rate로 배터리(102)를 완전히 충전시키는 동작을 순차적으로 수행하고, 배터리(102)가 완전히 충전된 상태에서 배터리(102)를 제 1 C-rate로 배터리(102)를 완전히 방전시킨 후 산출한 배터리(102)의 충방전 효율에 기반하여, 배터리(102)를 평가할 수 있다. In one embodiment, the electronic device 101 charges the battery 102 at a first C-rate while the battery 102 is completely discharged, and performs a zero-sum charge/discharge operation based on the second C-rate. Then, the operation of fully charging the battery 102 at the first C-rate is sequentially performed, and the battery 102 is transferred to the battery 102 at the first C-rate while the battery 102 is fully charged. The battery 102 may be evaluated based on the charging/discharging efficiency of the battery 102 calculated after completely discharging.
일 실시예에서, 배터리(102)의 충방전 효율(η) 은, 하기 수학식 1과 같이, 배터리(102)가 완전히 방전된 상태에서 배터리(102)를 완전히 충전시키기 위하여 배터리(102)로 공급한 용량(또는 전하량)에 대한, 완전히 충전된 상태에 있는 배터리(102)를 완전히 방전시키기 위하여 배터리(102)에서 추출한 용량(또는 완전히 충전된 상태에 있는 배터리(102)를 완전히 방전된 상태로 전환시키기 위하여 소모되는 용량)의 비율일 수 있다.In one embodiment, the charging/discharging efficiency (η) of the battery 102 is supplied to the battery 102 in order to fully charge the battery 102 in a state where the battery 102 is completely discharged, as shown in Equation 1 below. To completely discharge the battery 102 in a fully charged state for one capacity (or amount of charge), the capacity extracted from the battery 102 (or the battery 102 in a fully charged state) is converted to a fully discharged state. It may be a ratio of the capacity consumed to do so.
Figure PCTKR2020011371-appb-I000001
Figure PCTKR2020011371-appb-I000001
일 실시예에서, 전자 장치(101)가 배터리(102)를 충전 또는 방전시키기 위하여 배터리(102)로 공급 또는 추출하는 용량은, 전자 장치(101)가 배터리(102)로 전류(예: 정전류)를 공급하는 시간 및 C-rate에 기반하여 산출될 수 있다.In one embodiment, the capacity that the electronic device 101 supplies or extracts to the battery 102 to charge or discharge the battery 102 is a current (eg, constant current) by the electronic device 101 to the battery 102. It can be calculated based on the time and C-rate to supply.
일 실시예에서, 전자 장치(101)가 zero-sum 충방전 동작을 수행함으로써 배터리(102)에서 발생하는 부반응 수준이 클수록 배터리(102)로 공급되는 용량이 크게 측정되기 때문에 배터리(102)의 충방전 효율은 낮게 산출될 수 있다. 일 실시예에서, 전자 장치(101)의 사용자는 배터리(102)의 충방전 효율이 낮게 산출된 배터리일수록 안정성이 낮거나 수명이 짧은 배터리로 평가할 수 있다.In one embodiment, since the electronic device 101 performs a zero-sum charge/discharge operation, the higher the level of side reactions generated in the battery 102 is, the greater the capacity supplied to the battery 102 is measured. The discharge efficiency can be calculated low. In an embodiment, a user of the electronic device 101 may evaluate a battery having a low charging/discharging efficiency of the battery 102 as a battery having a low stability or a short lifespan.
이하에서, 배터리(102)를 평가하기 위한 방법에 대하여 보다 상세히 설명하도록 한다.Hereinafter, a method for evaluating the battery 102 will be described in more detail.
도 2는, 본 발명의 다양한 실시예에 따른, 배터리를 평가하기 위한 전자 장치(101)를 나타내는 도면이다.2 is a diagram illustrating an electronic device 101 for evaluating a battery according to various embodiments of the present disclosure.
도 3은, 본 발명의 다양한 실시예에 따른, zero-sum 충방전 동작을 설명하기 위한 도면(300)이다.3 is a diagram 300 for explaining a zero-sum charging and discharging operation according to various embodiments of the present disclosure.
도 2 및 도 3을 참조하면, 일 실시예에서, 전자 장치(101)는, 전원 공급부(210), 프로세서(220), 및 메모리(230)를 포함할 수 있다.2 and 3, in an embodiment, the electronic device 101 may include a power supply unit 210, a processor 220, and a memory 230.
일 실시예에서, 전원 공급부(210)는 배터리(102)로 전원을 공급할 수 있다. 예를 들어, 전원 공급부(210)는, 배터리(102)를 충전 또는 방전시키기 위하여, 배터리(102)로 정전류(또는 펄스)를 공급할 수 있다. 다만, 이에 제한되지 않으며, 예를 들어, 전원 공급부(210)는, 정전압 또는 정출력을 공급할 수 있다.In one embodiment, the power supply 210 may supply power to the battery 102. For example, the power supply unit 210 may supply a constant current (or pulse) to the battery 102 in order to charge or discharge the battery 102. However, the present invention is not limited thereto, and for example, the power supply unit 210 may supply a constant voltage or a constant output.
일 실시예에서, 전원 공급부(210)는 zero-sum 충방전 동작 동안 충전을 위한 펄스 및 방전을 위한 펄스를 배터리(102)로 인가할 수 있다. 예를 들어, 전원 공급부(210)는, zero-sum 충방전 동작 동안, 제 2 C-rate로 충전을 위한 펄스를 배터리(102)로 인가하고 충전을 위한 펄스 인가 후 제 2 C-rate로 방전을 위한 펄스를 배터리(102)로 인가하는 동작을 지정된 횟수만큼 반복적으로 수행할 수 있다. In one embodiment, the power supply unit 210 may apply a pulse for charging and a pulse for discharging to the battery 102 during a zero-sum charge/discharge operation. For example, during a zero-sum charge/discharge operation, the power supply unit 210 applies a pulse for charging at a second C-rate to the battery 102 and discharges at a second C-rate after applying the pulse for charging. The operation of applying the pulse for the battery 102 to the battery 102 may be repeatedly performed a specified number of times.
일 실시예에서, 프로세서(220)는, 배터리(102)를 평가하기 위한 전반적인 동작을 수행할 수 있다. In one embodiment, the processor 220 may perform an overall operation for evaluating the battery 102.
일 실시예에서, 프로세서(220)는, 배터리(102)가 완전히 방전된 상태에서, 전원 공급부(210)를 통하여, 제 1 C-rate(예: 약 0.2 C-rate)로 배터리(102)를 충전시킬 수 있다. 예를 들어, 프로세서(220)는, 제 1 C-rate로 배터리(102)를 충전시키기 전 배터리(102)를 완전히 방전시키기 위한 동작을 수행할 수 있다. 프로세서(220)는, 배터리(102)가 완전히 방전된 후, 제 1 C-rate로 배터리(102)를 충전시키는 동작을 시작할 수 있다.In one embodiment, the processor 220, when the battery 102 is completely discharged, through the power supply 210, the battery 102 at a first C-rate (for example, about 0.2 C-rate). Can be charged. For example, the processor 220 may perform an operation for completely discharging the battery 102 before charging the battery 102 at a first C-rate. After the battery 102 is completely discharged, the processor 220 may start an operation of charging the battery 102 at a first C-rate.
일 실시예에서, 프로세서(220)는, 배터리 용량이 지정된 배터리 용량에 도달할 때까지 제 1 C-rate로 배터리(102)를 충전시킬 수 있다. 예를 들어, 프로세서(220)는, 도 3에 도시된 바와 같이, 배터리(102)가 완전히 방전된 상태에 있는 시간(t=0)부터 배터리(102)의 용량이 지정된 배터리 용량에 도달하는 시간(t=t1)까지 제 1 C-rate(C1)로 배터리(102)를 충전시킬 수 있다. 일 실시예에서, 지정된 배터리 용량은, 전자 장치(101)의 사용자(예: 배터리 평가를 수행하는 주체)에 의해 지정될 수 있다. In one embodiment, the processor 220 may charge the battery 102 at the first C-rate until the battery capacity reaches the specified battery capacity. For example, the processor 220, as shown in Figure 3, from the time when the battery 102 is in a completely discharged state (t = 0) to the time when the capacity of the battery 102 reaches the specified battery capacity The battery 102 may be charged at a first C-rate (C 1) until (t=t1). In an embodiment, the designated battery capacity may be designated by a user of the electronic device 101 (eg, a subject performing battery evaluation).
일 실시예에서, 배터리의 용량이 지정된 배터리 용량에 도달한 경우, 프로세서(220)는, zero-sum 충방전 동작을 수행할 수 있다. 예를 들어, 프로세서(220)는, 전원 공급부(210)를 통하여, 제 1 C-rate 보다 높은 제 2 C-rate로 제 1 시간 동안 배터리(102)에 충전을 위한 펄스를 인가하고, 제 2 C-rate로 제 1 시간 동안 방전을 위한 펄스를 인가하는 동작을 지정된 횟수(예: 약 3회 내지 약 50회)만큼 수행할 수 있다. 예를 들어, 도 3에 도시된 바와 같이, 프로세서(220)는, 전원 공급부(210)를 통하여, 제 2 C-rate(C2)로, 제 1 시간(예: 시간(t=t1)부터 시간(t=t2), 시간(t=t5)부터 시간(t=t6), 및 시간(t=t9)부터 시간(t=t10)) 동안, 충전을 위한 펄스를 인가하고, 제 2 C-rate(C3)로, 제 1 시간(예: 시간(t=t3)부터 시간(t=t4), 시간(t=t7)부터 시간(t=t8), 및 시간(t=t11)부터 시간(t=t12)) 동안, 방전을 위한 펄스를 인가하는 동작을 3회만큼 반복적으로 수행할 수 있다. 일 실시예에서, 충전을 위한 펄스가 인가되는 제 2 C-rate(C2)의 크기(또는 절대 값) 및 방전을 위한 펄스가 인가되는 제 2 C-rate(C3)의 크기는 동일할 수 있다. In one embodiment, when the capacity of the battery reaches the specified battery capacity, the processor 220 may perform a zero-sum charge/discharge operation. For example, the processor 220, through the power supply unit 210, applies a pulse for charging to the battery 102 for a first time at a second C-rate higher than the first C-rate, and The operation of applying a pulse for discharging during the first time at a C-rate may be performed a specified number of times (eg, about 3 to about 50 times). For example, as shown in FIG. 3, the processor 220, through the power supply 210, at a second C-rate (C 2 ), from a first time (e.g., time (t=t1)) During time (t=t2), time (t=t5) to time (t=t6), and time (t=t9) to time (t=t10)), a pulse for charging is applied, and the second C- Rate(C 3 ), from the first time (e.g., from time (t=t3) to time (t=t4), from time (t=t7) to time (t=t8), and time from time (t=t11) During (t=t12)), the operation of applying a pulse for discharging may be repeatedly performed three times. In one embodiment, the size (or absolute value) of the second C-rate (C 2 ) to which the pulse for charging is applied and the size of the second C-rate (C 3 ) to which the pulse for discharging is applied may be the same. I can.
일 실시예에서, 프로세서(220)는, 도 3 도시된 바와 같이, zero-sum 충방전 동작 동안, 충전을 위한 펄스를 인가하는 동작 및 방전을 위한 펄스를 인가하는 동작 사이에, 지정된 시간(또는 휴지기(resting period))(예: 시간(t=t2)부터 시간(t=t3), 시간(t=t4)부터 시간(t=t5), 시간(t=t6)부터 시간(t=t7), 시간(t=t8)부터 시간(t=t9), 및 시간(t=t10)부터 시간(t=t11)) 동안 펄스를 인가하기 않을 수 있다. 일 실시예에서, 충전을 위한 펄스를 인가하는 동작 및 방전을 위한 펄스를 인가하기 동작 사이에 펄스를 인가하지 않는 지정된 시간을 설정함으로써, 펄스에 의한 전압 변화를 보다 정확하게 관찰할 수 있다. 일 실시예에서, 충전을 위한 펄스를 인가하는 동작 및 방전을 위한 펄스를 인가하기 동작 사이에 펄스를 인가하지 않는 지정된 시간은 생략될 수 있다. 일 실시예에서, 도 3에 도시하지는 않았지만, zero-sum 충방전 동작을 시작하기 직전(예: 시간(t=t1) 직전) 지정된 시간 동안 또는 zero-sum 충방전 동작을 종료한 직후(예: 시간(t=t12) 직후) 지정된 시간 동안 중 적어도 하나의 시간 동안 휴지기가 설정될 수 있다. In one embodiment, the processor 220, as shown in Figure 3, during the zero-sum charging and discharging operation, between the operation of applying the pulse for charging and the operation of applying the pulse for discharging, a specified time (or Resting period) (e.g., from time (t=t2) to time (t=t3), from time (t=t4) to time (t=t5), from time (t=t6) to time (t=t7) , From time (t=t8) to time (t=t9), and from time (t=t10) to time (t=t11)), the pulse may not be applied. In one embodiment, by setting a specified time not to apply a pulse between an operation of applying a pulse for charging and an operation of applying a pulse for discharging, it is possible to more accurately observe a voltage change due to the pulse. In one embodiment, a specified time for not applying a pulse between an operation of applying a pulse for charging and an operation of applying a pulse for discharging may be omitted. In one embodiment, although not shown in FIG. 3, immediately before starting the zero-sum charging and discharging operation (eg, immediately before time (t=t1)) for a specified time or immediately after the zero-sum charging and discharging operation is finished (eg: A pause may be set for at least one of a specified period of time (just after t=t12).
일 실시예에서, 도 3은 충전을 위한 펄스 및 방전을 위한 펄스가 각각 배터리(102)로 3회 인가되는 것으로 예시하고 있지만, 이에 제한되지 않으며, 충전을 위한 펄스 및 방전을 위한 펄스가 각각 배터리(102)로 인가되는 횟수는 다양하게 설정될 수 있다. In one embodiment, FIG. 3 illustrates that the pulse for charging and the pulse for discharging are applied to the battery 102 three times, respectively, but the present invention is not limited thereto, and the pulse for charging and the pulse for discharging are each battery The number of times applied to (102) can be set in various ways.
일 실시예에서, 충전을 위한 펄스에 의해 배터리로 공급되는 배터리 용량은 방전을 위한 펄스에 의해 배터리(102)로부터 방출되는 배터리 용량은 동일할 수 있다. 예를 들어, 제 2 C-rate(C2)로 시간(t=t1)부터 시간(t=t2), 시간(t=t5)부터 시간(t=t6), 및 시간(t=t9)부터 시간(t=t10) 각각 동안 배터리(102)로 인가되는 펄스에 의해 배터리(102)로 공급되는 용량은, 제 2 C-rate(C3)로 시간(t=t3)부터 시간(t=t4), 시간(t=t7)부터 시간(t=t8), 및 시간(t=t11)부터 시간(t=t12) 각각 동안 배터리(102)로 인가되는 펄스에 의해 배터리(102)로부터 방출되는 용량은 동일할 수 있다. In one embodiment, the capacity of the battery supplied to the battery by the pulse for charging may be the same as the capacity of the battery discharged from the battery 102 by the pulse for discharging. For example, from time (t=t1) to time (t=t2), time (t=t5) to time (t=t6), and time (t=t9) at the second C-rate (C 2) The capacity supplied to the battery 102 by the pulse applied to the battery 102 for each time (t=t10) is from time (t=t3) to time (t=t4) at a second C-rate (C 3 ). ), from time (t=t7) to time (t=t8), and from time (t=t11) to time (t=t12), the capacity released from the battery 102 by a pulse applied to the battery 102, respectively Can be the same.
일 실시예에서, 충전을 위한 하나의 펄스에 의해 배터리(102)로 공급되는 배터리 용량 및 방전을 위한 하나의 펄스에 의해 배터리(102)로부터 방출되는 배터리 용량은, 지정될 수 있다. 예를 들어, 충전을 위한 하나의 펄스에 의해 배터리(102)로 공급되는 배터리 용량 및 방전을 위한 하나의 펄스에 의해 배터리(102)로부터 방출되는 배터리 용량은, 각각, 완전히 충전된 상태의 배터리 용량의 약 10%에 대응하는 용량으로 지정될 수 있다. 다만, 이에 제한되지 않는다. In one embodiment, the battery capacity supplied to the battery 102 by one pulse for charging and the battery capacity discharged from the battery 102 by one pulse for discharging may be specified. For example, the battery capacity supplied to the battery 102 by one pulse for charging and the battery capacity discharged from the battery 102 by one pulse for discharging are, respectively, the battery capacity in a fully charged state. It can be specified as a dose corresponding to about 10% of the. However, it is not limited thereto.
일 실시예에서, 충전 또는 방전을 위한 하나의 펄스에 의해 배터리(102)로 공급 또는 방출되는 지정된 배터리 용량 및 C-rate에 기반하여, 배터리(102)로 펄스가 공급되는 시간이 결정(또는 지정)될 수 있다. 예를 들어, 도 3에서, 충전을 위한 하나의 펄스에 의해 배터리(102)로 공급되는 배터리 용량이 완전히 충전된 상태의 배터리 용량의 약 10%로 지정되고, C-rate가 C2로 지정된 경우, 완전히 충전된 상태의 배터리 용량의 약 10%를 공급하기 위하여, C2의 충전율로 정전류를 배터리(102)로 인가하는 시간(예: 시간(t=t1)부터 시간(t=t2))이 결정(또는 지정)될 수 있다. In one embodiment, based on the specified battery capacity and C-rate supplied or released to the battery 102 by one pulse for charging or discharging, the time the pulse is supplied to the battery 102 is determined (or specified ) Can be. For example, in FIG. 3, when the battery capacity supplied to the battery 102 by one pulse for charging is designated as about 10% of the battery capacity in a fully charged state, and the C-rate is designated as C 2 , In order to supply about 10% of the battery capacity in a fully charged state, the time (e.g., time (t=t1) to time (t=t2)) for applying a constant current to the battery 102 at a charge rate of C 2 Can be determined (or designated).
일 실시예에서, 하나의 펄스를 배터리(102)로 인가하기 위한 C-rate 및 배터리(102)를 비가역적으로 손상시킬 수 있는 전압에 기반하여, 하나의 펄스에 의해 배터리(102)로 공급되는 배터리 용량 또는 하나의 펄스를 배터리(102)로 인가하는 시간이 지정될 수 있다. 예를 들어, 충전을 위한 펄스를 배터리(102)로 인가하는 경우 배터리(102) 양단의 전압이 상승(또는 증가)되고, 방전을 위한 펄스를 배터리로 인가하는 경우 배터리 양단의 전압은 하강(또는 감소)할 수 있다. 배터리 양단의 전압이 상승 또는 하강함에 따라, 배터리 전압이 배터리(102)에 충전을 위한 펄스를 인가함으로써 지정된 제 1 전압(예: 만충전 상태의 전압)(이하, '고임계 전압'으로 지칭함) 이상이 되거나, 배터리(102)에 방전을 위한 펄스를 인가함으로써 지정된 제 2 전압(예: 방전 종지 전압, 또는 만방전 상태의 전압)(이하, '저임계 전압'으로 지칭함) 이하가 되는 경우, 배터리(102)는 비가역적으로 손상될 수 있다. 배터리(102)가 비가역적으로 손상되지 않도록, 하나의 펄스를 배터리(102)로 인가하기 위한 C-rate 및 배터리(102)를 비가역적으로 손상시킬 수 있는 전압(예: 고임계 전압 또는 저임계 전압 중 적어도 하나)에 기반하여, 하나의 펄스에 의해 배터리(102)로 공급되는 배터리 용량 또는 하나의 펄스를 배터리(102)로 인가하는 시간이 지정(또는 조정)될 수 있다.In one embodiment, based on the C-rate for applying one pulse to the battery 102 and the voltage that may irreversibly damage the battery 102, the supplied to the battery 102 by one pulse. The battery capacity or the time for applying one pulse to the battery 102 may be specified. For example, when a pulse for charging is applied to the battery 102, the voltage across the battery 102 increases (or increases), and when a pulse for discharging is applied to the battery, the voltage across the battery falls (or Decrease). As the voltage across the battery rises or falls, the battery voltage is designated by applying a pulse for charging to the battery 102 (for example, a voltage in a fully charged state) (hereinafter referred to as a'high threshold voltage') When it becomes abnormal or becomes less than or equal to the designated second voltage (for example, the discharge end voltage or the voltage in the fully discharged state) (hereinafter referred to as'low threshold voltage') by applying a pulse for discharging to the battery 102, Battery 102 may be irreversibly damaged. In order not to irreversibly damage the battery 102, a C-rate for applying one pulse to the battery 102 and a voltage that may irreversibly damage the battery 102 (e.g., high or low threshold voltage). Based on at least one of the voltages), a battery capacity supplied to the battery 102 by one pulse or a time for applying one pulse to the battery 102 may be designated (or adjusted).
일 실시예에서, 도 3에서 충전을 위한 펄스가 인가되는 제 2 C-rate(C3)의 크기(또는 절대 값) 및 방전을 위한 펄스가 인가되는 제 2 C-rate(C4)의 크기가 동일한 것으로 예시하고 있지만, 이에 제한되지 않는다. 예를 들어, 도 1의 실시예들을 통하여 설명한 바와 같이, 충전을 위한 펄스에 의해 배터리(102)로 공급되는 용량과 방전을 위한 펄스에 의해 배터리(102)에서 방출되는 용량이 동일하도록(또는 프로세서(220)가 충전을 위한 펄스에 의해 배터리로 공급하는 용량과 동일한, 방전을 위한 펄스에 의해 배터리(102)로 공급에서 방출하는 용량을 공급하는 것을 전제로), 프로세서(220)는, 제 3 C-rate로 충전을 위한 펄스를 제 2 시간 동안 배터리(102)로 인가하고, 제 4 C-rate로 방전을 위한 펄스를 제 2 시간 보다 긴 제 3 시간 동안 배터리(102)로 인가할 수 있다. In one embodiment, the size (or absolute value) of the second C-rate (C 3 ) to which the pulse for charging is applied in FIG. 3 and the size of the second C-rate (C 4 ) to which the pulse for discharging is applied Is illustrated as the same, but is not limited thereto. For example, as described through the embodiments of FIG. 1, the capacity supplied to the battery 102 by the pulse for charging and the capacity discharged from the battery 102 by the pulse for discharging are the same (or the processor (Assuming that the capacity discharged from the supply to the battery 102 is supplied to the battery 102 by the pulse for discharging, which is the same as the capacity supplied to the battery by the pulse for charging), the processor 220 A pulse for charging at a C-rate may be applied to the battery 102 for a second time, and a pulse for discharging at a fourth C-rate may be applied to the battery 102 for a third time longer than the second time. .
일 실시예에서, 도 3은 충전을 위한 펄스를 배터리(102)로 인가한 후 방전을 위한 펄스를 배터리(102)로 인가하는 것으로 예시하고 있지만, 이에 제한되지 않는다.In one embodiment, FIG. 3 illustrates that a pulse for charging is applied to the battery 102 and then a pulse for discharging is applied to the battery 102, but is not limited thereto.
일 실시예에서, 프로세서(220)는, zero-sum 충방전 동작을 시작하는 배터리의 용량(예: 시간(t=t3)에서의 배터리 용량)에 기반하여, 충전을 위한 펄스를 방전을 위한 펄스 보다 먼저(또는 우선적으로) 배터리(102)로 인가하거나, 방전을 위한 펄스를 충전을 위한 펄스 보다 먼저 배터리(102)로 인가할 수 있다. In one embodiment, the processor 220, based on the capacity of the battery starting the zero-sum charging and discharging operation (eg, battery capacity at time (t = t3)), based on the pulse for charging, the pulse for discharging It may be applied to the battery 102 earlier (or preferentially), or a pulse for discharging may be applied to the battery 102 before the pulse for charging.
예를 들어, zero-sum 충방전 동작을 시작하는 배터리(102)의 용량이 제 1 배터리 용량(예: 약 10%에 해당하는 배터리 용량) 보다 작은 경우, 방전을 위한 펄스를 충전을 위한 펄스 보다 먼저 배터리(102)로 인가하는 경우 배터리(102)의 전압이 저임계 전압 이하로 떨어지지 않도록(또는 하강되지 않도록), 프로세서(220)는, 충전을 위한 펄스를 방전을 위한 펄스 보다 먼저 인가할 수 있다. For example, when the capacity of the battery 102 that starts the zero-sum charge/discharge operation is smaller than the first battery capacity (eg, a battery capacity corresponding to about 10%), the pulse for discharging is less than the pulse for charging. When first applied to the battery 102, so that the voltage of the battery 102 does not fall below the low threshold voltage (or does not fall), the processor 220 may apply a pulse for charging before the pulse for discharging. have.
다른 예를 들어, zero-sum 충방전 동작을 시작하는 배터리(102)의 용량이 제 2 배터리 용량 보다 큰 경우, 충전을 위한 펄스를 방전을 위한 펄스 보다 먼저 배터리(102)로 인가하는 경우 배터리(102)의 전압이 고임계 전압 이상으로 올라가지 않도록(또는 상승되지 않도록), 프로세서(220)는, 방전을 위한 펄스를 충전을 위한 펄스 보다 먼저 배터리(102)로 인가할 수 있다. 다만, 이에 제한되지 않으며, zero-sum 충방전 동작을 시작하는 배터리(102)의 용량이 상기 제 1 배터리 용량 및 제 2 배터리 용량 사이에 해당하는 경우, 프로세서(220)는, 충전을 위한 펄스를 방전을 위한 펄스 보다 먼저 배터리(102)로 인가하거나, 방전을 위한 펄스를 충전을 위한 펄스 보다 먼저 배터리(102)로 인가할 수 있다.As another example, when the capacity of the battery 102 that starts the zero-sum charging and discharging operation is larger than the capacity of the second battery, the charging pulse is applied to the battery 102 before the discharge pulse. The processor 220 may apply a pulse for discharging to the battery 102 prior to a pulse for charging so that the voltage of 102) does not rise above (or does not increase) above the high threshold voltage. However, the present invention is not limited thereto, and when the capacity of the battery 102 that starts the zero-sum charge/discharge operation falls between the first battery capacity and the second battery capacity, the processor 220 generates a charging pulse. The pulse for discharging may be applied to the battery 102 before the pulse for discharging, or the pulse for discharging may be applied to the battery 102 before the pulse for charging.
일 실시예에서, 프로세서(220)는, zero-sum 충방전 동작을 수행한 후, 배터리(102)가 완전히 충전되도록, 제 1 C-rate로 배터리(102)를 충전시킬 수 있다. 예를 들어, 도 3에 도시된 바와 같이, 프로세서(220)는, 제 1 C-rate(C1)로 시간(예: 시간(t=t12) 내지 시간(t=t13)) 동안 배터리(102)가 완전히 충전되도록, 배터리(102)를 충전시킬 수 있다. 일 실시예에서, 프로세서(220)는 배터리(102) 충전 동작을 완료하기 전에 정전압(CV, constant voltage) 모드로 충전하는 동작을 수행할 수 있다. 프로세서(220)는 최초 zero-sum pulse 전과 최종 zero-sum pulse 후에 전류를 0으로 하여 OCV 구간을 가질 수 있다. In an embodiment, the processor 220 may charge the battery 102 at a first C-rate so that the battery 102 is fully charged after performing a zero-sum charge/discharge operation. For example, as shown in Figure 3, the processor 220, the battery 102 for a time (eg, time (t=t12) to time (t=t13)) at a first C-rate (C 1 ). ) To be fully charged, it is possible to charge the battery 102. In an embodiment, the processor 220 may perform an operation of charging the battery 102 in a constant voltage (CV) mode before completing the charging operation. The processor 220 may have an OCV period by setting the current to 0 before the initial zero-sum pulse and after the final zero-sum pulse.
일 실시예에서, 프로세서(220)는, 배터리(102)가 완전히 충전된 후, 배터리(102)를 제 1 C-rate로 배터리(102)를 완전히 방전시킬 수 있다. 예를 들어, 도 3에 도시된 바와 같이, 프로세서(220)는, 제 1 C-rate(C4)로 시간(예: 시간(t=t13) 내지 시간(t=t14)) 동안 배터리(102)가 완전히 방전되도록, 배터리(102)를 방전시킬 수 있다. 일 실시예에서, 충전을 위하여 이용되는 제 1 C-rate(C1)의 크기(또는 절대 값) 및 방전을 위하여 이용되는 제 1 C-rate(C4)의 크기는 동일할 수 있다. In one embodiment, the processor 220 may completely discharge the battery 102 at the first C-rate after the battery 102 is fully charged. For example, as shown in Figure 3, the processor 220, the battery 102 for a time (eg, time (t=t13) to time (t=t14)) at a first C-rate (C 4 ). The battery 102 can be discharged so that) is completely discharged. In an embodiment, the size (or absolute value) of the first C-rate (C 1 ) used for charging and the size of the first C-rate (C 4 ) used for discharging may be the same.
일 실시예에서, 프로세서(220)는, 배터리(102)가 완전히 방전된 상태에서 제 1 C-rate로 배터리(102)를 충전하고, 제 2 C-rate에 기반하여 zero-sum 충방전 동작을 수행하고, 제 1 C-rate로 배터리(102)를 완전히 충전시키는 동작을 순차적으로 수행하고, 배터리(102)가 완전히 충전된 상태에서 배터리(102)를 제 1 C-rate로 배터리(102)를 완전히 방전시킨 후, 배터리(102)의 충방전 효율을 산출할 수 있다.In one embodiment, the processor 220 charges the battery 102 at a first C-rate while the battery 102 is completely discharged, and performs a zero-sum charge/discharge operation based on the second C-rate. Then, the operation of fully charging the battery 102 at the first C-rate is sequentially performed, and the battery 102 is charged at the first C-rate while the battery 102 is fully charged. After completely discharging, the charging/discharging efficiency of the battery 102 can be calculated.
일 실시예에서, 프로세서(220)는, 도 3을 참조하면, 배터리의 충방전 효율로서, 배터리(102)가 완전히 방전된 상태에서 배터리(102)를 완전히 충전시키기 위하여 배터리(102)로 공급한 용량(또는 전하량)(예: 시간(t=0)부터 시간(t=t1) 및 시간(t=t12)부터 시간(t=t13)까지 배터리(102)로 공급한 용량)에 대한 완전히 충전된 상태에 있는 배터리(102)를 완전히 방전시키기 위하여 배터리(102)에서 추출한 용량(예: 시간(t=t13)부터 시간(t=t14)까지 배터리(102)로 공급한 용량)의 비율을 산출할 수 있다. 일 실시예에서, 프로세서(220)는, zero-sum 충방전 동작 동안, 충전을 위한 펄스들에 의해 배터리(102)로 공급한 용량 및 방전을 위한 펄스들에 의해 배터리(102)에서 추출한 용량은 고려함 없이, 배터리(102)의 충방전 효율을 산출할 수 있다. 다만, 이에 제한되지 않는다.In one embodiment, the processor 220, referring to FIG. 3, is the charging/discharging efficiency of the battery, which is supplied to the battery 102 in order to fully charge the battery 102 when the battery 102 is completely discharged. Fully charged for capacity (or amount of charge) (e.g., the capacity supplied to battery 102 from time (t=0) to time (t=t1) and time (t=t12) to time (t=t13)) In order to completely discharge the battery 102 in the state, the ratio of the capacity extracted from the battery 102 (e.g., the capacity supplied to the battery 102 from time (t=t13) to time (t=t14)) is calculated. I can. In one embodiment, the processor 220, during the zero-sum charge/discharge operation, the capacity supplied to the battery 102 by pulses for charging and the capacity extracted from the battery 102 by pulses for discharge are Without consideration, the charging/discharging efficiency of the battery 102 can be calculated. However, it is not limited thereto.
일 실시예에서, 메모리(230)는, 배터리(102)를 평가하는 동작을 수행하는 동안 산출되는 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(230)는, zero-sum 충방전 동작을 시작하는 시점의 배터리 용량 또는 zero-sum 충방전 동작을 수행한 직후 시점의 배터리 용량 중 적어도 하나를 저장할 수 있다. 다만, 메모리(230)가 저장하는 정보는 전술한 예시에 제한되지 않는다.In one embodiment, the memory 230 may store various pieces of information calculated while performing an operation of evaluating the battery 102. For example, the memory 230 may store at least one of a battery capacity at a time when a zero-sum charge/discharge operation starts or a battery capacity at a time immediately after a zero-sum charge/discharge operation is performed. However, the information stored by the memory 230 is not limited to the above-described example.
도 2에 도시하지는 않았지만, 일 실시예에서, 전자 장치(101)는 추가적으로 구성을 포함할 수 있다. 예를 들어, 전자 장치(101)는, 시간에 따라 변화하는, 배터리로 인가되는 전류, 배터리 양단에서 측정되는 전압, 또는 배터리(102)로 공급되는 용량 중 적어도 하나를 출력하기 위한 장치(예: 디스플레이)를 더 포함할 수 있다.Although not shown in FIG. 2, in an embodiment, the electronic device 101 may additionally include a component. For example, the electronic device 101 is a device for outputting at least one of a current applied to the battery, a voltage measured across the battery, or a capacity supplied to the battery 102 that changes over time (for example: Display) may be further included.
도 4는, 본 발명의 다양한 실시예에 따른, 배터리의 부반응 발생 유무에 따라 다르게 변화하는 전압을 나타내는 도면이다. 4 is a diagram illustrating a voltage that changes differently depending on whether a side reaction of a battery occurs or not, according to various embodiments of the present disclosure.
도 4를 참조하면, 일 실시예에서, 도 4는 충전을 위한 하나의 펄스 및 방전을 위한 하나의 펄스를 배터리(102)로 인가한 경우, 배터리(102)의 부반응 발생 유무에 따라, 다르게 변화하는 전압을 나타내는 도면일 수 있다.Referring to FIG. 4, in an embodiment, FIG. 4 shows that when one pulse for charging and one pulse for discharging are applied to the battery 102, it changes differently depending on the presence or absence of a side reaction of the battery 102. It may be a diagram showing the voltage.
일 실시예에서, 도 4의 그래프(410)는, 충전을 위한 하나의 펄스 및 방전을 위한 하나의 펄스를 배터리(102)로 인가한 경우, 배터리(102)에 부반응이 발생하지 않은 경우에 있어서 전압 변화를 나타내는 도면일 수 있다.In one embodiment, the graph 410 of FIG. 4 shows that when one pulse for charging and one pulse for discharging are applied to the battery 102, when a side reaction does not occur in the battery 102. It may be a diagram showing a voltage change.
일 실시예에서, 도 4의 그래프(420)는, 충전을 위한 하나의 펄스 및 방전을 위한 하나의 펄스를 배터리(102)로 인가한 경우, 충전을 위한 하나의 펄스 인가에 의해 배터리(102)에 부반응이 발생한 경우에 있어서 전압 변화을 나타내는 도면일 수 있다.In one embodiment, the graph 420 of FIG. 4 shows that when one pulse for charging and one pulse for discharging are applied to the battery 102, the battery 102 is applied by applying one pulse for charging. It may be a diagram showing a voltage change when a side reaction occurs in.
일 실시예에서, 도 4의 그래프들(410, 420) 각각은, 도 3에서 충전을 위한 하나의 펄스 및 방전을 위한 하나의 펄스를 배터리(102)로 인가한 경우(예: 시간(t=t1)부터 시간(t=t4), 시간(t=t5)부터 시간(t=t8), 또는 시간(t=t9)부터 시간(t=t12) 중 어느 하나의 시간 구간에서 충전을 위한 하나의 펄스 및 방전을 위한 하나의 펄스를 배터리(102)로 인가한 경우), 시간에 따라 변화하는 전압을 나타낼 수 있다. In one embodiment, each of the graphs 410 and 420 of FIG. 4 is a case in which one pulse for charging and one pulse for discharging in FIG. 3 is applied to the battery 102 (e.g., time (t = One for charging in any one of the time intervals from t1) to time (t=t4), from time (t=t5) to time (t=t8), or from time (t=t9) to time (t=t12) When a pulse and one pulse for discharging are applied to the battery 102), it may represent a voltage that changes over time.
일 실시예에서, 그래프(410)에서, 전압(V)은 배터리 양단의 폐회로 전압 (closed circuit voltage)(또는 폐루프 전압(closed loop voltage))을 나타내고, 전압들(V1 또는 V4)은 배터리 양단의 개회로 전압(open circuit voltage)(또는 개루프 전압(open loop voltage)을 나타낼 수 있다. 일 실시예에서, 그래프(410)에서, 전압들 간 차이들(V2-V1 또는 V4-V5)은 배터리(102)의 저항(또는 DCIR(direct current internal resistance)에 의해 발생하는 전압을 나타낼 수 있다.In one embodiment, in the graph 410, the voltage V represents a closed circuit voltage (or closed loop voltage) across the battery, and the voltages V 1 or V 4 are It may represent an open circuit voltage (or an open loop voltage) across the battery. In one embodiment, in the graph 410, differences between voltages (V 2 -V 1 or V 4 -V 5 ) may represent a voltage generated by the resistance (or direct current internal resistance (DCIR)) of the battery 102.
일 실시예에서, 그래프(410)에서, 시간 동안(예: 시간(t=t0)부터 시간(t=t15)까지의 시간 구간 동안) 충전을 위한 펄스가 배터리(102)로 인가되는 경우, 배터리(102)의 전압(V)은 전압(V1)으로부터 전압(V2)를 거쳐 전압(V3)으로 상승할 수 있다. 펄스가 배터리(102)로 인가되지 않는 시간 동안(예: 시간(t=t15)부터 시간(t=t16)까지의 시간 구간 동안)(또는 휴지기 동안), 배터리(102)의 전압(V)은 충전을 위한 펄스를 배터리(102)로 인가한 후의 개회로 전압으로서 전압(V4)에 도달할 수 있다. 시간 동안(예: 시간(t=t16)부터 시간(t=t17)까지의 시간 구간 동안) 방전을 위한 펄스가 배터리(102)로 인가되는 경우, 배터리(102)의 전압(V)은 전압(V4)으로부터 전압(V5)를 거쳐 전압(V6)으로 하강할 수 있다. 펄스가 배터리(102)로 인가되지 않는 시간 동안(예: 시간(t=t17)부터 시간(t=t18)까지의 시간 구간 동안)(또는 휴지기 동안) 배터리(102)의 전압(V)은 방전을 위한 펄스를 배터리(102)로 인가한 후의 개회로 전압으로서 전압(V1)에 도달할 수 있다.In one embodiment, in the graph 410, when a pulse for charging is applied to the battery 102 for a period of time (e.g., for a time period from time (t=t0) to time (t=t15)), the battery The voltage (V) of 102 may rise from the voltage (V 1 ) through the voltage (V 2 ) to the voltage (V 3 ). During the period during which the pulse is not applied to the battery 102 (e.g., during a time period from time (t=t15) to time (t=t16)) (or during rest), the voltage (V) of the battery 102 is The voltage V 4 may be reached as an open circuit voltage after applying a pulse for charging to the battery 102. When a pulse for discharging is applied to the battery 102 for a period of time (e.g., during a time period from time (t=t16) to time (t=t17)), the voltage (V) of the battery 102 is the voltage ( It can fall from V 4 ) to voltage V 6 through voltage V 5. During the period when no pulse is applied to the battery 102 (e.g., during a time period from time (t=t17) to time (t=t18)) (or during rest), the voltage (V) of the battery 102 is discharged. The voltage V 1 may be reached as an open circuit voltage after the pulse for is applied to the battery 102.
일 실시예에서, 그래프(410)에 도시된 바와 같이, 충전을 위한 하나의 펄스 및 방전을 위한 하나의 펄스를 배터리(102)로 인가한 경우, 배터리(102)에 부반응이 발생하지 않은 경우에 있어서, 충전을 위한 펄스에 의해 변화하는 전압 차이(V3-V1)가 방전을 위한 펄스에 의해 변화하는 전압 차이(V4-V6)가 동일하기 때문에, 충전을 위한 펄스 인가 전의 개회로 전압(V1) 및 방전을 위한 펄스 인가 후의 개회로 전압(V1)은, 휴지시간이 충분히 긴 경우 서로 동일할 수 있으며(또는 동일하게 유지될 수 있다), 휴지시간이 짧을 경우 평행에 도달하는 시간차이로 인해 서로 차이가 발생할 수 있다.In one embodiment, as shown in the graph 410, when one pulse for charging and one pulse for discharging are applied to the battery 102, when a side reaction does not occur in the battery 102 Since the voltage difference (V 3 -V 1 ) changed by the pulse for charging is the same as the voltage difference (V 4 -V 6 ) changed by the pulse for discharging, the open circuit before applying the pulse for charging The voltage (V 1 ) and the open circuit voltage (V 1 ) after application of the pulse for discharging can be the same (or can be kept the same) when the pause time is sufficiently long, and reach parallel when the pause time is short. The difference may occur due to the time difference.
일 실시예에서, 그래프(410)에서, 시간 동안(예: 시간(t=t0)부터 시간(t=t15)까지의 시간 구간 동안) 충전을 위한 펄스에 의해 변화하는 전압 차이(V3-V1)에 대응하는 용량만큼 배터리(102)가 충전되고, 시간 동안(예: 시간(t=t16)부터 시간(t=t17)까지의 시간 구간 동안) 방전을 위한 펄스에 의해 변화하는 전압 차이(V4-V6)에 대응하는 용량만큼 배터리(102)가 방전될 수 있다. In one embodiment, in the graph 410, the voltage difference (V 3 -V) changed by the pulse for charging during a period of time (e.g., during a time period from time (t=t0) to time (t=t15)) The battery 102 is charged by the capacity corresponding to 1 ), and the voltage difference changed by the pulse for discharging for a period of time (e.g., during a time period from time (t=t16) to time (t=t17)) ( The battery 102 may be discharged by a capacity corresponding to V 4 -V 6 ).
일 실시예에서, 그래프(410)에서, 시간 동안(예: 시간(t=t0)부터 시간(t=t15)까지의 시간 구간 동안) 배터리(102)가 충전되는 용량은, 충전을 위한 펄스에 의해 변화하는 전압 차이(V3-V1)에 대응될 수 있고, 시간 동안(예: 시간(t=t16)부터 시간(t=t17)까지의 시간 구간 동안) 배터리(102)가 방전되는 용량은, 방전을 위한 펄스에 의해 변화하는 전압 차이(V4-V6)에 대응될 수 있다. In one embodiment, in the graph 410, the capacity at which the battery 102 is charged for a period of time (for example, during a time period from time (t=t0) to time (t=t15)) is determined by the pulse for charging. The capacity at which the battery 102 is discharged during a time period (eg, during a time period from time (t=t16) to time (t=t17)), which may correspond to a voltage difference (V 3 -V 1) that changes by Silver may correspond to a voltage difference (V 4 -V 6 ) varying by a pulse for discharging.
일 실시예에서, 그래프(410)에서, 시간 동안(예: 시간(t=t0)부터 시간(t=t15)까지의 시간 구간 동안) 충전되는 용량과 시간 동안(예: 시간(t=t16)부터 시간(t=t17)까지의 시간 구간 동안) 방전되는 용량은 동일하기 때문에, 충전을 위한 펄스에 의해 변화하는 전압 차이(V3-V1)와 방전을 위한 펄스에 의해 변화하는 전압 차이(V4-V6)는 동일할 수 있다. In one embodiment, in the graph 410, the capacity to be charged during time (e.g., during a time interval from time (t=t0) to time (t=t15)) and during time (e.g., time (t=t16)) Since the discharged capacity is the same during the time period from t=t17), the voltage difference (V 3 -V 1 ) changed by the pulse for charging and the voltage difference changed by the pulse for discharging ( V 4 -V 6 ) can be the same.
일 실시예에서, 그래프(420)에서, 전압(V)은 배터리 양단의 폐회로 전압을 나타내고, 전압들(V1, V8, 또는 V11)은 배터리 양단의 개회로 전압을 나타낼 수 있다. 전압들(V1, V8, 또는 V11)은 시간이 경과함에 따라 평행에 수렴할 수 있다. 일 실시예에서, 그래프(420)에서, 전압들 간 차이들(V2-V1 또는 V8-V9)은 배터리(102)의 저항에 의해 발생하는 전압을 나타낼 수 있다.In an embodiment, in the graph 420, the voltage V represents the closed circuit voltage across the battery, and the voltages V 1, V 8 , or V 11 represent the open circuit voltage across the battery. The voltages V 1, V 8 , or V 11 may converge in parallel over time. In an embodiment, in the graph 420, differences between voltages (V 2 -V 1 or V 8 -V 9 ) may represent a voltage generated by the resistance of the battery 102.
일 실시예에서, 그래프(420)에서, 시간 동안(예: 시간(t=t0)부터 시간(t=t15)까지의 시간 구간 동안) 충전을 위한 펄스가 배터리(102)로 인가되는 경우, 배터리(102)의 전압(V)은 전압(V1)으로부터 전압(V2)를 거쳐 전압(V7)으로 상승할 수 있다. 일 실시예에서, 전압(V7)은 그래프(410)의 전압(V3) 보다 작을(또는 낮을) 수 있다. 펄스가 배터리로 인가되지 않는 시간 동안(예: 시간(t=t15)부터 시간(t=t16)까지의 시간 구간 동안)(또는 휴지기 동안), 배터리(102)의 전압(V)은 충전을 위한 펄스를 배터리(102)로 인가한 후의 개회로 전압으로서 전압(V8)에 도달할 수 있다. In one embodiment, in the graph 420, when a pulse for charging is applied to the battery 102 for a period of time (e.g., during a time period from time (t=t0) to time (t=t15)), the battery The voltage V of 102 may rise from the voltage V 1 to the voltage V 7 through the voltage V 2. In an embodiment, the voltage V 7 may be smaller (or lower) than the voltage V 3 of the graph 410. During the period when the pulse is not applied to the battery (e.g., during the time period from time (t=t15) to time (t=t16)) (or during rest), the voltage (V) of the battery 102 is The voltage V 8 can be reached as an open circuit voltage after applying a pulse to the battery 102.
일 실시예에서, 전압 차이(예: V1-V8)는 그래프(410)의 전압 차이(예: V1-V4)는 서로 상이할 수 있다. 예를 들면, 그래프(420)에서 부반응이 많이 발생할수록 전압(V8)이 낮아질 수 있으며, 그래프(420)의 전압 차이(V1-V8)는 그래프(410)의 전압 차이(V1-V4) 보다 작아질 수 있다. 일 실시예에서, 시간 동안(예: 시간(t=t16)부터 시간(t=t17)까지의 시간 구간 동안) 방전을 위한 펄스가 배터리(102)로 인가되는 경우, 배터리(102)의 전압(V)은 전압(V8)으로부터 전압(V9)을 거쳐 전압(V10)으로 하강할 수 있다. 일 실시예에서, 전압(V10)은, 전압 차이(예: V10-V8)는 그래프(410)의 전압 차이(예: V6-V4)와 상당히 동일하고, 전압(V8)이 그래프(410)의 전압(V4) 보다 작기 때문에, 전압(V6) 보다 작을 수 있다. 펄스가 배터리(102)로 인가되지 않는 시간 동안(예: 시간(t=t17)부터 시간(t=t18)까지의 시간 구간 동안)(또는 휴지기 동안) 배터리(102)의 전압(V)은 방전을 위한 펄스를 배터리(102)로 인가한 후의 전압으로서 전압(V11)에 도달할 수 있다. 일 실시예에서, 전압(V11)은, 전압 차이(예: V11-V10)가 그래프(410)의 전압 차이(예: V1-V6)와 상당히 동일하고 전압(V10)이 전압(V6) 보다 작기 때문에, 그래프(410)의 전압(V1) 보다 작을 수 있다. In an embodiment, the voltage difference (eg, V 1 -V 8 ) may be different from each other, and the voltage difference (eg, V 1 -V 4 ) of the graph 410 may be different from each other. For example, the more the side reactions occur in the graph 420, the voltage of the voltage (V 8), a voltage difference (V 1 -V 8) is a graph 410 of the can is lowered, and the graph 420, the difference (V 1 - Can be smaller than V 4 ). In one embodiment, when a pulse for discharging is applied to the battery 102 for a period of time (e.g., during a time period from time (t=t16) to time (t=t17)), the voltage of the battery 102 ( V) may fall from the voltage V 8 to the voltage V 10 through the voltage V9. In one embodiment, the voltage (V 10 ), the voltage difference (eg, V 10 -V 8 ) is substantially equal to the voltage difference (eg, V 6 -V 4 ) of the graph 410, and the voltage (V 8 ) Since it is less than the voltage V 4 of the graph 410, it may be less than the voltage V 6. During the period when no pulse is applied to the battery 102 (e.g., during a time period from time (t=t17) to time (t=t18)) (or during rest), the voltage (V) of the battery 102 is discharged. The voltage V 11 may be reached as a voltage after applying the pulse for the battery 102 to the battery 102. In one embodiment, the voltage (V 11 ), the voltage difference (eg, V 11 -V 10 ) is substantially equal to the voltage difference (eg, V 1 -V 6 ) of the graph 410, and the voltage (V 10 ) is Since it is less than the voltage V 6 , it may be less than the voltage V 1 of the graph 410.
일 실시예에서, 그래프(420)에 도시된 바와 같이, 충전을 위한 하나의 펄스 및 방전을 위한 하나의 펄스를 배터리(102)로 인가한 경우, 배터리(102)에 부반응(예: 충전을 위한 펄스를 인가함으로써 발생하는 부반응)이 발생한 경우에 있어서, 충전을 위한 펄스에 의해 변화하는 전압 차이(V7-V1)가 방전을 위한 펄스에 의해 변화하는 전압 차이(V8-V10) 보다 작기 때문에, 충전을 위한 펄스 인가 전의 개회로 전압(V1)은 방전을 위한 펄스 인가 후의 개회로 전압(V11) 보다 낮을 수 있다(또는 낮게 변화할 수 있다). In one embodiment, as shown in the graph 420, when one pulse for charging and one pulse for discharging are applied to the battery 102, a side reaction (e.g., for charging) is applied to the battery 102. In the case of a side reaction occurring by applying a pulse), the voltage difference (V 7 -V 1 ) that changes by the pulse for charging is greater than the voltage difference (V 8 -V 10) that changes by the pulse for discharging. Since it is small, the open circuit voltage V 1 before application of the pulse for charging may be lower (or may be changed lower) than the open circuit voltage V 11 after application of the pulse for discharging.
일 실시예에서, 그래프(420)에서, 시간 동안(예: 시간(t=t0)부터 시간(t=t15)까지의 시간 구간 동안) 충전을 위한 펄스에 의해 변화하는 전압 차이(V7-V1)에 대응하는 용량만큼 배터리(102)가 충전되고, 시간 동안(예: 시간(t=t16)부터 시간(t=t17)까지의 시간 구간 동안) 방전을 위한 펄스에 의해 변화하는 전압 차이(V8-V10)에 대응하는 용량만큼 배터리(102)가 방전될 수 있다. 일 실시예에서, 그래프(420)에서, 충전을 위한 펄스에 의해 변화하는 전압 차이(V7-V1)가 방전을 위한 펄스에 의해 변화하는 전압 차이(V8-V10) 보다 작기 때문에, 시간 동안(예: 시간(t=t0)부터 시간(t=t15)까지의 시간 구간 동안) 충전되는 용량은 시간 동안(예: 시간(t=t16)부터 시간(t=t17)까지의 시간 구간 동안) 방전되는 용량 보다 작을 수 있다. In one embodiment, in the graph 420, the voltage difference (V 7 -V) changed by the pulse for charging during a period of time (e.g., during a time period from time (t=t0) to time (t=t15)) The battery 102 is charged by the capacity corresponding to 1 ), and the voltage difference changed by the pulse for discharging for a period of time (e.g., during a time period from time (t=t16) to time (t=t17)) ( The battery 102 may be discharged by a capacity corresponding to V 8 -V 10 ). In one embodiment, in the graph 420, since the voltage difference (V 7 -V 1 ) changing by the pulse for charging is smaller than the voltage difference (V 8 -V 10 ) changing by the pulse for discharging, During a period of time (e.g., during a time period from time (t=t0) to time (t=t15)), the capacity to be charged is a time period from time (e.g., time (t=t16) to time (t=t17)). During) may be smaller than the discharged capacity.
일 실시예에서, 도 4는 충전을 위한 펄스를 배터리(102)로 인가한 경우 배터리에서 부반응이 발생한 경우를 예시하고 있지만, 방전을 위한 펄스를 배터리(102)로 인가한 경우 배터리(102)에서 부반응이 발생한 경우에도 동일 또는 유사하게 적용될 수 있다.In one embodiment, FIG. 4 illustrates a case in which a side reaction occurs in the battery when a pulse for charging is applied to the battery 102, but when a pulse for discharging is applied to the battery 102, the battery 102 The same or similar can be applied even when a side reaction occurs.
도 4에 도시하지는 않았지만, 일 실시예에서, 그래프들(410, 420)에 있어서, 충전을 위한 펄스를 배터리(102)로 인가 후의 최대 전압(V3)이 고임계 전압 보다 낮고 충전을 위한 펄스를 배터리(102)로 인가 후의 최저 전압(V10)이 저임계 전압 보다 낮도록, 충전을 위한 펄스 및 방전을 위한 펄스가 배터리(102)로 인가될 수 있다.Although not shown in FIG. 4, in one embodiment, in the graphs 410 and 420, the maximum voltage V 3 after applying the pulse for charging to the battery 102 is lower than the high threshold voltage and the pulse for charging A pulse for charging and a pulse for discharging may be applied to the battery 102 so that the lowest voltage V 10 after applying to the battery 102 is lower than the low threshold voltage.
도 4에서는 충전을 위한 펄스를 방전을 위한 펄스 보다 먼저 배터리(102)로 인가하는 것으로 도시하고 있지만, 이에 제한되지 않는다. 예를 들어, 방전을 위한 펄스가 충전을 위한 펄스 보다 먼저 배터리(102)로 인가될 수도 있다.4 illustrates that the pulse for charging is applied to the battery 102 before the pulse for discharging, but the present invention is not limited thereto. For example, a pulse for discharging may be applied to the battery 102 before a pulse for charging.
도 5는, 본 발명의 다양한 실시예에 따른, 배터리를 평가하기 위한 방법을 설명하기 위한 도면이다.5 is a diagram illustrating a method for evaluating a battery according to various embodiments of the present disclosure.
도 5를 참조하면, 일 실시예에서, 그래프(510) 및 그래프(520)는 각각, 배터리(102)에 대한 충방전 동작을 3 사이클(cycle)(또는 3회)에 걸쳐 수행함에 따라, 배터리(102)로 인가되는 전류 및 전압의 시간에 따른 변화를 나타낼 수 있다. Referring to FIG. 5, in one embodiment, the graph 510 and the graph 520 respectively perform the charging/discharging operation for the battery 102 over 3 cycles (or 3 times), so that the battery It can represent the change over time of the current and voltage applied to (102).
일 실시예에서, 첫 번째 충방전 사이클(이하, '제 1 사이클'로 지칭함)은, 배터리(102)가 완전히 방전된 상태에서 배터리(102)가 완전히 충전되도록 제 1 C-rate에 대응하는 전류를 배터리로 인가하고, 배터리(102)가 완전히 충전된 상태에서 배터리(102)가 완전히 방전되도록 제 1 C-rate에 대응하는 전류를 배터리(102)에서 추출하는 충방전 동작을 수행하는 사이클일 수 있다. 예를 들어, 프로세서(220)는, 도 5에 도시된 바와 같이, 제 1 사이클에서(예: 시간 구간(A)에서), 시간 구간(A1) 동안 배터리(102)가 완전히 방전된 상태에서 배터리(102)가 완전히 충전되도록 제 1 C-rate에 대응하는 전류를 배터리(102)로 인가하고, 시간 구간(A2) 동안 배터리(102)가 완전히 충전된 상태에서 배터리(102)가 완전히 방전되도록 제 1 C-rate에 대응하는 전류를 배터리(102)에서 추출할 수 있다. 일 실시예에서, 제1 사이클은, A1 구간에서의 동작이 종료되기 전, CV 모드로 충전하는 동작을 포함할 수 있다. In one embodiment, the first charge/discharge cycle (hereinafter referred to as'first cycle') is a current corresponding to the first C-rate so that the battery 102 is fully charged while the battery 102 is completely discharged. Is applied to the battery, and a charge/discharge operation is performed in which a current corresponding to the first C-rate is extracted from the battery 102 so that the battery 102 is completely discharged while the battery 102 is fully charged. have. For example, the processor 220, as shown in Figure 5, in a first cycle (for example, in a time period (A)), in a state in which the battery 102 is completely discharged during the time period (A1) A current corresponding to the first C-rate is applied to the battery 102 so that 102 is fully charged, and the battery 102 is completely discharged while the battery 102 is fully charged during the time period A2. Current corresponding to 1 C-rate may be extracted from the battery 102. In one embodiment, the first cycle may include charging in the CV mode before the operation in the section A1 ends.
일 실시예에서, 프로세서(220)는, 제 1 C-rate 및 시간 구간(A1)(또는 시간 구간(A1)의 크기)에 기반하여, 제 1 사이클에서 배터리(102)를 충전하기 위하여 배터리로 공급하는 용량(또는 충전 용량)을 산출하고, 제 1 C-rate 및 시간 구간(A2)(또는 시간 구간(A2)의 크기)에 기반하여, 제 1 사이클에서 배터리(102)를 방전시키기 위하여 배터리(102)에서 방출하는 용량(또는 방전 용량)을 산출할 수 있다. In one embodiment, the processor 220, based on the first C-rate and the time interval (A1) (or the size of the time interval (A1)), the battery to charge the battery 102 in the first cycle. To calculate the supply capacity (or charging capacity), and based on the first C-rate and the time interval (A2) (or the size of the time interval (A2)), the battery to discharge the battery 102 in the first cycle From (102), the discharged capacity (or discharge capacity) can be calculated.
일 실시예에서, 프로세서(220)는, 제 1 사이클에서, 배터리(102)를 충전하기 위하여 배터리(102)로 공급하는 용량 및 배터리(102)를 방전시키기 위하여 배터리(102)에서 방출하는 용량에 기반하여, 제 1 사이클의 충방전 효율을 산출할 수 있다.In one embodiment, the processor 220, in the first cycle, the capacity supplied to the battery 102 to charge the battery 102 and the capacity discharged from the battery 102 to discharge the battery 102. Based on this, the charging/discharging efficiency of the first cycle can be calculated.
일 실시예에서, 두 번째 충방전 사이클(이하, '제 2 사이클'로 지칭함)은, 배터리(102)가 완전히 방전된 상태에서 배터리 용량이 지정된 용량에 도달할 때까지 제 1 C-rate로 배터리(102)를 충전시키고, 배터리 용량이 지정된 용량에 도달한 경우 제 2 C-rate에 기반하는 zero-sum 충방전 동작을 수행하고, 배터리(102)가 완전히 충전되도록 제 1 C-rate에 대응하는 전류를 배터리(102)로 인가하고, 배터리(102)가 완전히 충전된 상태에서 배터리(102)가 완전히 방전되도록 제 1 C-rate에 대응하는 전류를 배터리(102)에서 추출하는 사이클일 수 있다. 예를 들어, 프로세서(220)는, 도 5에 도시된 바와 같이, 제 2 사이클에서(예: 시간 구간(B)에서), 시간 구간(B1) 동안 배터리(102)가 완전히 방전된 상태에서 배터리 용량이 지정된 용량에 도달할 때까지 제 1 C-rate로 배터리(102)를 충전하고, 배터리 용량이 지정된 용량에 도달한 경우 시간 구간(B2) 동안 제 2 C-rate에 기반하는 zero-sum 충방전 동작을 수행하고, 배터리(102)가 완전히 충전되도록 시간 구간(B3) 동안 제 1 C-rate에 대응하는 전류를 배터리(102)로 인가하고, 배터리(102)가 완전히 충전된 상태에서 배터리(102)가 완전히 방전되도록 시간 구간(B4) 동안 제 1 C-rate에 대응하는 전류를 배터리(102)에서 추출할 수 있다. 일 실시예에서, 제2 사이클은, B3 구간에서의 동작이 종료되기 전, CV 모드로 충전하는 동작을 포함할 수 있다.In one embodiment, the second charge/discharge cycle (hereinafter, referred to as'second cycle') is a battery at a first C-rate until the battery capacity reaches a specified capacity in a state where the battery 102 is completely discharged. When the battery 102 is charged and the battery capacity reaches the specified capacity, a zero-sum charge/discharge operation based on the second C-rate is performed, and the battery 102 is fully charged, corresponding to the first C-rate. It may be a cycle in which a current is applied to the battery 102 and a current corresponding to the first C-rate is extracted from the battery 102 so that the battery 102 is completely discharged while the battery 102 is fully charged. For example, the processor 220, as shown in Figure 5, in the second cycle (for example, in the time period (B)), the battery in a state in which the battery 102 is completely discharged during the time period (B1) The battery 102 is charged at the first C-rate until the capacity reaches the specified capacity, and when the battery capacity reaches the specified capacity, zero-sum charging based on the second C-rate during the time period (B2). A discharge operation is performed, and a current corresponding to the first C-rate is applied to the battery 102 during the time period B3 so that the battery 102 is fully charged, and the battery 102 is fully charged. The current corresponding to the first C-rate may be extracted from the battery 102 during the time period B4 so that 102 is completely discharged. In one embodiment, the second cycle may include charging in the CV mode before the operation in section B3 ends.
일 실시예에서, 프로세서(220)는, 제 1 C-rate, 시간 구간(B1), 및 시간 구간(B3)에 기반하여, 제 2 사이클에서 배터리(102)를 충전하기 위하여 배터리(102)로 공급하는 용량(또는 충전 용량)을 산출하고, 제 1 C-rate 및 시간 구간(B4)에 기반하여, 제 2 사이클에서 배터리(102)를 방전시키기 위하여 배터리(102)에서 방출하는 용량(또는 방전 용량)을 산출할 수 있다. In one embodiment, the processor 220, based on the first C-rate, the time interval (B1), and the time interval (B3), to the battery 102 to charge the battery 102 in the second cycle. Calculate the capacity (or charging capacity) to be supplied, and based on the first C-rate and time interval (B4), the capacity (or discharge) discharged from the battery 102 to discharge the battery 102 in the second cycle Capacity) can be calculated.
일 실시예에서, 프로세서(220)는, 제 2 사이클에서, 배터리(102)를 충전하기 위하여 배터리(102)로 공급하는 용량 및 배터리(102)를 방전시키기 위하여 배터리(102)에서 방출하는 용량에 기반하여, 제 2 사이클의 충방전 효율을 산출할 수 있다.In one embodiment, the processor 220, in the second cycle, the capacity supplied to the battery 102 to charge the battery 102 and the capacity discharged from the battery 102 to discharge the battery 102. Based on this, the charging/discharging efficiency of the second cycle can be calculated.
일 실시예에서, 제 2 사이클은, 전술한 도 1 내지 도 4를 통하여 설명한 zero-sum 충방전 동작을 포함하는 사이클일 수 있다.In an embodiment, the second cycle may be a cycle including the zero-sum charge/discharge operation described with reference to FIGS. 1 to 4 described above.
일 실시예에서, 세 번째 충방전 사이클(이하, '제 3 사이클'로 지칭함)은, 배터리(102)가 완전히 방전된 상태에서 배터리(102)가 완전히 충전되도록 제 1 C-rate에 대응하는 전류를 배터리(102)로 인가하고, 배터리(102)가 완전히 충전된 상태에서 배터리(102)가 완전히 방전되도록 제 1 C-rate에 대응하는 전류를 배터리(102)에서 추출하는 충방전 동작을 수행하는 사이클일 수 있다. 예를 들어, 프로세서(220)는, 도 5에 도시된 바와 같이, 제 3 사이클에서(예: 시간 구간(C)에서), 시간 구간(C1) 동안 배터리(102)가 완전히 방전된 상태에서 배터리(102)가 완전히 충전되도록 제 1 C-rate에 대응하는 전류를 배터리(102)로 인가하고, 시간 구간(C2) 동안 배터리(102)가 완전히 충전된 상태에서 배터리(102)가 완전히 방전되도록 제 1 C-rate에 대응하는 전류를 배터리(102)에서 추출할 수 있다. 일 실시예에서, 제3 사이클은, C1 구간에서의 동작이 종료되기 전, CV 모드로 충전하는 동작을 포함할 수 있다.In one embodiment, the third charge/discharge cycle (hereinafter referred to as'third cycle') is a current corresponding to the first C-rate so that the battery 102 is fully charged while the battery 102 is completely discharged. Is applied to the battery 102, and a charging/discharging operation is performed to extract a current corresponding to the first C-rate from the battery 102 so that the battery 102 is completely discharged while the battery 102 is fully charged. It can be a cycle. For example, the processor 220, as shown in Figure 5, in the third cycle (for example, in the time period (C)), the battery in a state in which the battery 102 is completely discharged during the time period (C1) A current corresponding to the first C-rate is applied to the battery 102 so that 102 is fully charged, and the battery 102 is completely discharged while the battery 102 is fully charged during the time period (C2). Current corresponding to 1 C-rate may be extracted from the battery 102. In one embodiment, the third cycle may include charging in the CV mode before the operation in the section C1 is terminated.
일 실시예에서, 프로세서(220)는, 제 1 C-rate 및 시간 구간(C1)에 기반하여, 제 3 사이클에서 배터리(102)를 충전하기 위하여 배터리(102)로 공급하는 용량(또는 충전 용량)을 산출하고, 제 1 C-rate 및 시간 구간(C2)에 기반하여, 제 3 사이클에서 배터리(102)를 방전시키기 위하여 배터리(102)에서 방출하는 용량(또는 방전 용량)을 산출할 수 있다. In one embodiment, the processor 220, based on the first C-rate and the time period (C1), the capacity (or charging capacity) supplied to the battery 102 to charge the battery 102 in the third cycle ), and based on the first C-rate and the time interval C2, the capacity (or discharge capacity) discharged from the battery 102 to discharge the battery 102 in the third cycle may be calculated. .
일 실시예에서, 프로세서(220)는, 제 3 사이클에서, 배터리(102)를 충전하기 위하여 배터리(102)로 공급하는 용량 및 배터리(102)를 방전시키기 위하여 배터리(102)에서 방출하는 용량에 기반하여, 제 3 사이클의 충방전 효율을 산출할 수 있다.In one embodiment, the processor 220, in the third cycle, the capacity supplied to the battery 102 to charge the battery 102 and the capacity discharged from the battery 102 to discharge the battery 102. Based on this, the charging/discharging efficiency of the third cycle can be calculated.
일 실시예에서, 제 2 사이클의 zero-sum 충방전 동작을 통하여 배터리(102)에 부반응이 발생한 경우, 제 2 사이클에서 배터리(102)를 충전하기 위하여 배터리(102)로 공급한 용량은, 제 1 사이클에서 배터리(102)를 충전하기 위하여 배터리(102)로 공급한 용량 및 제 3 사이클에서 배터리(102)를 충전하기 위하여 배터리(102)로 공급한 용량 각각 보다 많을 수 있다. In one embodiment, when a side reaction occurs in the battery 102 through the zero-sum charge/discharge operation of the second cycle, the capacity supplied to the battery 102 to charge the battery 102 in the second cycle is The capacity supplied to the battery 102 to charge the battery 102 in one cycle and the capacity supplied to the battery 102 to charge the battery 102 in the third cycle may be greater than each.
일 실시예에서, 제 2 사이클의 zero-sum 충방전 동작을 통하여 배터리(102)에 부반응이 발생한 경우, 제 2 사이클에서 배터리(102)를 충전하는 시간 구간에서 zero-sum 충방전 동작을 수행하는 시간을 제외한 시간 구간(예: 시간 구간(B1) 및 시간 구간(B3)를 합산한 시간 구간)은, 제 1 사이클에서 배터리(102)를 충전하는 시간 구간(예: 시간 구간(A1)) 및 제 3 사이클에서 배터리(102)를 충전하는 시간 구간(예: 시간 구간(C1)) 각각 보다 길 수 있다.In one embodiment, when a side reaction occurs in the battery 102 through the zero-sum charging and discharging operation of the second cycle, the zero-sum charging and discharging operation is performed in a time period in which the battery 102 is charged in the second cycle. The time period excluding time (for example, a time period in which the time period B1 and the time period B3 are summed) is a time period in which the battery 102 is charged in the first cycle (eg, a time period A1), and It may be longer than each of the time periods (eg, time period C1) in which the battery 102 is charged in the third cycle.
일 실시예에서, 제 2 사이클의 zero-sum 충방전 동작을 통하여 배터리(102)에 부반응이 발생하지 않은 경우, 제 2 사이클에서 배터리(102)를 충전하는 시간 구간에서 zero-sum 충방전 동작을 수행하는 시간을 제외한 시간 구간(예: 시간 구간(B1) 및 시간 구간(B3)를 합산한 시간 구간)은, 제 1 사이클에서 배터리(102)를 충전하는 시간 구간(예: 시간 구간(A1)) 및 제 3 사이클에서 배터리(102)를 충전하는 시간 구간(예: 시간 구간(C1)) 각각과 동일할 수 있다.In one embodiment, when a side reaction does not occur in the battery 102 through the zero-sum charge/discharge operation of the second cycle, the zero-sum charge/discharge operation is performed in the time period in which the battery 102 is charged in the second cycle. The time period excluding the time period (for example, the time period in which the time period (B1) and the time period (B3) are summed) is the time period in which the battery 102 is charged in the first cycle (eg, time period (A1)). ) And the time period for charging the battery 102 in the third cycle (eg, time period C1).
일 실시예에서, 제 2 사이클의 zero-sum 충방전 동작을 통하여 배터리(102)에 부반응이 발생한 경우, 제 2 사이클의 충방전 효율은, 제 1 사이클의 충방전 효율 및 제 3 사이클의 충방전 효율 각각 보다 작을 수 있다.In one embodiment, when a side reaction occurs in the battery 102 through the zero-sum charge/discharge operation of the second cycle, the charge/discharge efficiency of the second cycle is the charge/discharge efficiency of the first cycle and the charge/discharge of the third cycle. The efficiency can be less than each.
일 실시예에서, 제 2 사이클의 zero-sum 충방전 동작을 통하여 배터리(102)에 부반응이 발생하지 않은 경우, 제 2 사이클의 충방전 효율은, 제 1 사이클의 충방전 효율 및 제 3 사이클의 충방전 각각과 상당히 동일할 수 있다.In one embodiment, when no side reaction occurs in the battery 102 through the zero-sum charge/discharge operation of the second cycle, the charge/discharge efficiency of the second cycle is the charge/discharge efficiency of the first cycle and the third cycle. It can be quite the same as each of the charge and discharge.
일 실시예에서, 프로세서(220)(또는 전자 장치(101)의 사용자)는, 제 1 사이클의 충방전 효율, 제 2 사이클의 충방전 효율, 및 제 3 사이클의 충방전 효율에 기반하여, 배터리(102)를 평가할 수 있다. 예를 들어, 프로세서(220)는, 제 2 사이클의 충방전 효율 및 제 1 사이클의 충방전 효율 간 차이, 또는 제 2 사이클의 충방전 효율 및 제 3 사이클의 충방전 효율 간 차이 중 적어도 하나를 산출할 수 있다. 프로세서(220)는, 제 2 사이클의 충방전 효율 및 제 1 사이클의 충방전 효율 간 차이, 또는 제 2 사이클의 충방전 효율 및 제 3 사이클의 충방전 효율 간 차이 중 적어도 하나가 클수록, 배터리(102)에 부반응이 발생하는 정도(또는 수준)가 큰 것으로 결정할 수 있다. 다만, 이에 제한되지 않으며, 일 실시예에서, 프로세서(220)는, 제 2 사이클의 충방전 효율에 기반하여 배터리(102)를 평가할 수 있다. 예를 들어, 프로세서(220)는, 제 2 사이클의 충방전 효율이 낮을수록 배터리(102)에 부반응이 발생하는 정도가 큰 것으로 결정할 수 있다.In one embodiment, the processor 220 (or the user of the electronic device 101) is based on the charging/discharging efficiency of the first cycle, the charging/discharging efficiency of the second cycle, and the charging/discharging efficiency of the third cycle. (102) can be evaluated. For example, the processor 220 may determine at least one of a difference between the charge/discharge efficiency of the second cycle and the charge/discharge efficiency of the first cycle, or the difference between the charge/discharge efficiency of the second cycle and the charge/discharge efficiency of the third cycle. Can be calculated. The processor 220, as at least one of the difference between the charging and discharging efficiency of the second cycle and the charging and discharging efficiency of the first cycle, or the difference between the charging and discharging efficiency of the second cycle and the charging and discharging efficiency of the third cycle is larger, the battery ( It can be determined that the degree (or level) at which side reactions occur in 102) is large. However, the present invention is not limited thereto, and in an embodiment, the processor 220 may evaluate the battery 102 based on the charging/discharging efficiency of the second cycle. For example, the processor 220 may determine that the degree of occurrence of a side reaction in the battery 102 is greater as the charging/discharging efficiency of the second cycle is lower.
일 실시예에서, 프로세서(220)(또는 전자 장치(101)의 사용자)는, 배터리(102)에 부반응이 발생하는 정도에 기반하여, 배터리(102)의 안정성 또는 배터리(102)의 수명을 결정할 수 있다. 예를 들어, 프로세서(220)는, 배터리(102)에 부반응이 발생하는 정도가 작을수록, 배터리(102)가 높은 안정성을 가지거나 배터리의 수명이 긴 것으로 결정할 수 있다.In one embodiment, the processor 220 (or the user of the electronic device 101) determines the stability of the battery 102 or the life of the battery 102 based on the degree to which a side reaction occurs in the battery 102. I can. For example, the processor 220 may determine that the battery 102 has high stability or that the battery life is longer as the degree of occurrence of the side reaction in the battery 102 decreases.
본 발명의 다양한 실시예들에 따른 전자 장치(101)는, 전원 공급부(210), 및 프로세서(220)를 포함하고, 상기 프로세서(220)는, 배터리(102)가 완전히 방전된 상태에서, 상기 전원 공급부(210)를 통하여, 제 1 C-rate로 상기 배터리(102)를 충전시키고, 상기 배터리(102)의 용량이 지정된 배터리 용량에 도달한 경우, 상기 전원 공급부(210)를 통하여, 제 1 시간 동안 상기 제 1 C-rate 보다 높은 제 2 C-rate로, 상기 제 1 시간 및 상기 제 2 C-rate에 대응하는 제 1 용량만큼, 상기 배터리(102)를 충전시키고, 제 2 시간 동안 상기 제 1 C-rate 보다 높은 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 방전시키는 동작을 지정된 횟수만큼 수행하고, 상기 전원 공급부(210)를 통하여, 상기 배터리(102)가 완전히 충전되도록, 상기 제 1 C-rate로 상기 배터리(102)를 충전시키고, 및 상기 배터리(102)가 완전히 충전된 상태에서, 상기 전원 공급부(210)를 통하여, 상기 배터리(102)가 완전히 방전되도록, 상기 1 C-rate로 상기 배터리(102)를 방전시키도록 설정될 수 있다.The electronic device 101 according to various embodiments of the present disclosure includes a power supply unit 210 and a processor 220, and the processor 220 is, in a state in which the battery 102 is completely discharged, the When the battery 102 is charged at a first C-rate through the power supply unit 210 and the capacity of the battery 102 reaches a specified battery capacity, the first At a second C-rate higher than the first C-rate for a period of time, the battery 102 is charged by a first capacity corresponding to the first time and the second C-rate, and the second C-rate is The operation of discharging the battery 102 by the first capacity at a third C-rate higher than the first C-rate is performed a specified number of times, and through the power supply unit 210, the battery 102 is completely In order to be charged, the battery 102 is charged at the first C-rate, and in a state where the battery 102 is fully charged, the battery 102 is completely discharged through the power supply unit 210. , It may be set to discharge the battery 102 at the 1 C-rate.
다양한 실시예에서, 상기 제 1 시간 및 상기 제 2 C-rate은, 각각, 상기 제 2 시간 및 상기 제 3 C-rate와 동일할 수 있다.In various embodiments, the first time and the second C-rate may be the same as the second time and the third C-rate, respectively.
다양한 실시예에서, 상기 프로세서(220)는, 상기 지정된 배터리 용량에 따라, 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 충전시킨 후 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 방전시키거나, 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 방전시킨 후 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 충전시키도록 설정될 수 있다.In various embodiments, the processor 220 charges the battery 102 by the first capacity at the second C-rate according to the designated battery capacity, and then charges the battery 102 at the third C-rate. After discharging the battery 102 by a capacity or by discharging the battery 102 by the first capacity at the third C-rate, the battery 102 by the first capacity at the second C-rate It can be set to charge.
다양한 실시예에서, 상기 지정된 횟수는 사용자에 의해 지정될 수 있다.In various embodiments, the specified number of times may be specified by a user.
다양한 실시예에서, 상기 프로세서(220)는, 상기 배터리(102)의 용량이 지정된 배터리 용량에 도달할 때까지 상기 배터리(102)로 공급한 제 2 용량, 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 충전시키고 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 방전시킨 후 상기 배터리(102)를 완전히 충전시키기 위하여 상기 배터리(102)로 공급한 제 3 용량, 및 상기 배터리(102)가 완전히 충전된 상태에서 상기 배터리(102)를 완전히 방전시키기 위하여 상기 배터리(102)로 공급한 제 4 용량에 기반하여, 상기 배터리(102)의 제 1 충방전 효율을 산출하도록 설정될 수 있다.In various embodiments, the processor 220, the second capacity supplied to the battery 102 until the capacity of the battery 102 reaches a specified battery capacity, the first at the second C-rate. After charging the battery 102 by the capacity and discharging the battery 102 by the first capacity at the third C-rate, the first supplied to the battery 102 to fully charge the battery 102 3, based on the capacity and the fourth capacity supplied to the battery 102 to completely discharge the battery 102 while the battery 102 is fully charged, the first charging and discharging of the battery 102 It can be set to yield efficiency.
다양한 실시예에서, 상기 프로세서(220)는, 상기 배터리(102)가 완전히 방전된 상태에서 상기 제 1 C-rate로 상기 배터리(102)를 충전시키기 전, 상기 배터리(102)가 완전히 방전된 상태에서 상기 배터리(102)를 상기 제 1 C-rate로 상기 배터리(102)를 완전히 충전시키고, 상기 배터리(102)가 완전히 충전된 상태에서 상기 배터리(102)를 상기 제 1 C-rate로 상기 배터리(102)를 완전히 방전시키고, 상기 배터리(102)가 완전히 방전된 상태에서 상기 배터리(102)를 상기 제 1 C-rate로 상기 배터리(102)를 완전히 충전시키고, 상기 배터리(102)가 완전히 충전된 상태에서 상기 배터리(102)를 상기 제 1 C-rate로 상기 배터리(102)를 완전히 방전시키는 동작에 기반하여 상기 배터리(102)의 제 2 충방전 효율을 산출하도록 설정될 수 있다.In various embodiments, the processor 220 is in a state in which the battery 102 is completely discharged before charging the battery 102 at the first C-rate while the battery 102 is completely discharged. In a state in which the battery 102 is fully charged at the first C-rate, and the battery 102 is fully charged, the battery 102 is transferred to the battery at the first C-rate. Completely discharging 102, and completely charging the battery 102 at the first C-rate while the battery 102 is completely discharged, and the battery 102 is fully charged. The battery 102 may be set to calculate the second charging/discharging efficiency of the battery 102 based on an operation of completely discharging the battery 102 at the first C-rate in the current state.
다양한 실시예에서, 상기 배터리(102)가 완전히 충전된 상태에서 상기 제 1 C-rate로 상기 배터리(102)를 방전시킨 후, 상기 배터리(102)가 완전히 방전된 상태에서 상기 배터리(102)를 상기 제 1 C-rate로 상기 배터리(102)를 완전히 충전시키고, 상기 배터리(102)가 완전히 충전된 상태에서 상기 배터리(102)를 상기 제 1 C-rate로 상기 배터리(102)를 완전히 방전시키고, 상기 배터리(102)가 완전히 방전된 상태에서 상기 배터리(102)를 상기 제 1 C-rate로 상기 배터리(102)를 완전히 충전시키고, 상기 배터리(102)가 완전히 충전된 상태에서 상기 배터리(102)를 상기 제 1 C-rate로 상기 배터리(102)를 완전히 방전시키는 동작에 기반하여 상기 배터리(102)의 제 3 충방전 효율을 산출하도록 설정될 수 있다.In various embodiments, after discharging the battery 102 at the first C-rate while the battery 102 is fully charged, the battery 102 is discharged while the battery 102 is completely discharged. The battery 102 is fully charged at the first C-rate, and the battery 102 is completely discharged at the first C-rate while the battery 102 is fully charged. In a state in which the battery 102 is completely discharged, the battery 102 is fully charged at the first C-rate, and the battery 102 is fully charged. ) May be set to calculate the third charge/discharge efficiency of the battery 102 based on an operation of completely discharging the battery 102 at the first C-rate.
다양한 실시예에서, 상기 제 1 시간은, 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 충전시키는 동안 상기 배터리(102)의 전압이 지정된 전압 이하에서 증가하도록 지정되고, 상기 제 2 시간은, 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 방전시키는 동안 상기 배터리(102)의 전압이 지정된 전압 이상에서 감소하도록 지정될 수 있다.In various embodiments, the first time is designated so that the voltage of the battery 102 increases below a specified voltage while charging the battery 102 by the first capacity at the second C-rate, and the The second time period may be designated so that the voltage of the battery 102 decreases above a specified voltage while discharging the battery 102 by the first capacity at the third C-rate.
다양한 실시예에서, 상기 프로세서(220)는, 상기 지정된 횟수만큼, 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 충전시키고 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 방전시키는 동안, 상기 배터리(102)의 저항의 변화를 확인하도록 설정될 수 있다.In various embodiments, the processor 220 charges the battery 102 by the first capacity at the second C-rate for the specified number of times and the first capacity at the third C-rate. While discharging the battery 102, it may be set to check a change in the resistance of the battery 102.
다양한 실시예에서, 상기 지정된 배터리(102)의 용량은 사용자에 의해 지정될 수 있다.In various embodiments, the capacity of the designated battery 102 may be designated by a user.
도 6은, 본 발명의 다양한 실시예에 따른, 배터리(102)를 평가하기 위한 방법을 설명하는 흐름도(600)이다.6 is a flow diagram 600 describing a method for evaluating battery 102, according to various embodiments of the present invention.
도 6을 참조하면, 동작 601에서, 일 실시예에서, 프로세서(220)는, 전원 공급부(210)를 통하여, 제 1 C-rate(예: 약 0.2 C-rate)로 배터리(102)를 충전시킬 수 있다. 예를 들어, 프로세서(220)는, 제 1 C-rate로 배터리(102)를 충전시키기 전 배터리(102)를 완전히 방전시키기 위한 동작을 수행할 수 있다. 프로세서(220)는, 배터리(102)가 완전히 방전된 후, 제 1 C-rate로 배터리(102)를 충전시키는 동작을 시작할 수 있다.6, in operation 601, in an embodiment, the processor 220 charges the battery 102 at a first C-rate (eg, about 0.2 C-rate) through the power supply 210 I can make it. For example, the processor 220 may perform an operation for completely discharging the battery 102 before charging the battery 102 at a first C-rate. After the battery 102 is completely discharged, the processor 220 may start an operation of charging the battery 102 at a first C-rate.
일 실시예에서, 프로세서(220)는, 배터리 용량이 지정된 배터리 용량에 도달할 때까지 제 1 C-rate로 배터리(102)를 충전시킬 수 있다. In one embodiment, the processor 220 may charge the battery 102 at the first C-rate until the battery capacity reaches the specified battery capacity.
일 실시예에서, 지정된 배터리 용량은, 전자 장치(101)의 사용자(예: 배터리 평가를 수행하는 주체)에 의해 지정될 수 있다. In an embodiment, the designated battery capacity may be designated by a user of the electronic device 101 (eg, a subject performing battery evaluation).
동작 603에서, 일 실시예에서, 프로세서(220)는, 제 1 C-rate 보다 높은 C-rate, 예를 들어, 제 2 C-rate(예: 약 2 C-rate)로 배터리(102)를 충전 및 방전시키는 동작을, 지정된 횟수만큼 수행할 수 있다.In operation 603, in one embodiment, the processor 220, the battery 102 at a C-rate higher than the first C-rate, e.g., a second C-rate (e.g., about 2 C-rate). The operation of charging and discharging can be performed a specified number of times.
일 실시예에서, 배터리(102)의 용량이 지정된 배터리 용량에 도달한 경우, 프로세서(220)는, zero-sum 충방전 동작을 수행할 수 있다. 예를 들어, 프로세서(220)는, 전원 공급부(210)를 통하여, 제 1 C-rate 보다 높은 제 2 C-rate로 제 1 시간 동안 배터리(102)에 충전을 위한 펄스를 인가하고, 제 2 C-rate로 제 1 시간 동안 방전을 위한 펄스를 인가하는 동작을 지정된 횟수(예: 약 3회 내지 약 50회)만큼 수행할 수 있다. In one embodiment, when the capacity of the battery 102 reaches the specified battery capacity, the processor 220 may perform a zero-sum charge/discharge operation. For example, the processor 220, through the power supply unit 210, applies a pulse for charging to the battery 102 for a first time at a second C-rate higher than the first C-rate, and The operation of applying a pulse for discharging during the first time at a C-rate may be performed a specified number of times (eg, about 3 to about 50 times).
일 실시예에서, 프로세서(220)는, zero-sum 충방전 동작 동안, 충전을 위한 펄스를 인가하는 동작 및 방전을 위한 펄스를 인가하기 동작 사이에, 지정된 시간(또는 휴지기(resting period)) 동안 펄스를 인가하기 않을 수 있다. 일 실시예에서, 충전을 위한 펄스를 인가하는 동작 및 방전을 위한 펄스를 인가하기 동작 사이에 펄스를 인가하지 않는 지정된 시간을 설정함으로써, 펄스에 의한 전압 변화를 보다 정확하게 관찰할 수 있다. 일 실시예에서, 충전을 위한 펄스를 인가하는 동작 및 방전을 위한 펄스를 인가하기 동작 사이에 펄스를 인가하지 않는 지정된 시간은 생략될 수 있다. 일 실시예에서, zero-sum 충방전 동작을 시작하기 직전 지정된 시간 동안 또는 zero-sum 충방전 동작을 종료한 직후 지정된 시간 동안 중 적어도 하나의 시간 동안 휴지기가 설정될 수 있다. In one embodiment, the processor 220, during a zero-sum charge/discharge operation, between the operation of applying a pulse for charging and the operation of applying the pulse for discharge, during a specified time (or resting period) It is possible to not apply a pulse. In one embodiment, by setting a specified time not to apply a pulse between an operation of applying a pulse for charging and an operation of applying a pulse for discharging, it is possible to more accurately observe a voltage change due to the pulse. In one embodiment, a specified time for not applying a pulse between an operation of applying a pulse for charging and an operation of applying a pulse for discharging may be omitted. In an embodiment, a pause may be set for at least one of a specified time immediately before starting the zero-sum charging/discharging operation or for a specified time immediately after ending the zero-sum charging/discharging operation.
일 실시예에서, 충전을 위한 펄스에 의해 배터리(102)로 공급되는 배터리 용량은 방전을 위한 펄스에 의해 배터리(102)로부터 방출되는 배터리 용량은 동일할 수 있다. In one embodiment, the capacity of the battery supplied to the battery 102 by the pulse for charging may be the same as the capacity of the battery discharged from the battery 102 by the pulse for discharging.
일 실시예에서, 충전을 위한 하나의 펄스에 의해 배터리(102)로 공급되는 배터리 용량 및 방전을 위한 하나의 펄스에 의해 배터리(102)로부터 방출되는 배터리 용량은, 예를 들어, 전자 장치(101)의 사용자에 의해 지정될 수 있다. 예를 들어, 충전을 위한 하나의 펄스에 의해 배터리(102)로 공급되는 배터리 용량 및 방전을 위한 하나의 펄스에 의해 배터리(102)로부터 방출되는 배터리 용량은, 각각, 완전히 충전된 상태의 배터리 용량의 약 10%에 대응하는 용량으로 지정될 수 있다. 다만, 이에 제한되지 않는다. In one embodiment, the battery capacity supplied to the battery 102 by one pulse for charging and the battery capacity discharged from the battery 102 by one pulse for discharging are, for example, the electronic device 101 ) Can be specified by the user. For example, the battery capacity supplied to the battery 102 by one pulse for charging and the battery capacity discharged from the battery 102 by one pulse for discharging are, respectively, the battery capacity in a fully charged state. It can be specified as a dose corresponding to about 10% of the. However, it is not limited thereto.
일 실시예에서, 충전 또는 방전을 위한 하나의 펄스에 의해 배터리(102)로 공급 또는 방출되는 지정된 배터리 용량 및 C-rate에 기반하여, 배터리(102)로 펄스가 공급되는 시간이 결정(또는 지정)될 수 있다. In one embodiment, based on the specified battery capacity and C-rate supplied or released to the battery 102 by one pulse for charging or discharging, the time the pulse is supplied to the battery 102 is determined (or specified ) Can be.
일 실시예에서, 하나의 펄스를 배터리(102)로 인가하기 위한 C-rate 및 배터리(102)를 비가역적으로 손상시킬 수 있는 전압에 기반하여, 하나의 펄스에 의해 배터리(102)로 공급(또는 방출)되는 배터리 용량 또는 하나의 펄스를 배터리(102)로 인가하는 시간이 지정될 수 있다. 예를 들어, 충전을 위한 펄스를 배터리(102)로 인가하는 경우 배터리 양단의 전압이 상승되고, 방전을 위한 펄스를 배터리(102)로 인가하는 경우 배터리 양단의 전압은 하강할 수 있다. 배터리 양단의 전압이 상승 또는 하강함에 따라, 배터리 전압이 배터리(102)에 충전을 위한 펄스를 인가함으로써 고임계 전압 이상이 되거나, 배터리(102)에 방전을 위한 펄스를 인가함으로써 저임계 전압 이하가 되는 경우, 배터리는 비가역적으로 손상될 수 있다. 배터리(102)가 비가역적으로 손상되지 않도록, 하나의 펄스를 배터리(102)로 인가하기 위한 C-rate 및 배터리(102)를 비가역적으로 손상시킬 수 있는 전압(예: 고임계 전압 또는 저임계 전압 중 적어도 하나)에 기반하여, 하나의 펄스에 의해 배터리(102)로 공급(또는 방출)되는 배터리 용량 또는 하나의 펄스를 배터리(102)로 인가하는 시간이 지정(또는 조정)될 수 있다.In one embodiment, based on the C-rate for applying one pulse to the battery 102 and the voltage that may irreversibly damage the battery 102, supply to the battery 102 by one pulse ( Alternatively, the capacity of the battery to be discharged or a time for applying one pulse to the battery 102 may be specified. For example, when a pulse for charging is applied to the battery 102, the voltage across the battery increases, and when a pulse for discharging is applied to the battery 102, the voltage across the battery may decrease. As the voltage across the battery rises or falls, the battery voltage becomes higher than the high threshold voltage by applying a pulse for charging to the battery 102, or below the low threshold voltage by applying a pulse for discharging to the battery 102. If so, the battery can be irreversibly damaged. In order not to irreversibly damage the battery 102, a C-rate for applying one pulse to the battery 102 and a voltage that may irreversibly damage the battery 102 (e.g., high or low threshold voltage). Based on at least one of the voltages), a battery capacity supplied (or discharged) to the battery 102 by one pulse or a time period for applying one pulse to the battery 102 may be specified (or adjusted).
일 실시예에서, 동작 603에서, 충전을 위한 펄스가 인가되는 제 2 C-rate의 크기(또는 절대 값) 및 방전을 위한 펄스가 인가되는 제 2 C-rate의 크기가 동일한 것으로 예시하고 있지만, 이에 제한되지 않는다. 예를 들어, 충전을 위한 펄스에 의해 배터리(102)로 공급되는 용량과 방전을 위한 펄스에 의해 배터리(102)에서 방출되는 용량이 동일하도록(또는 프로세서(220)가 충전을 위한 펄스에 의해 배터리(102)로 공급하는 용량과 동일한 용량을, 방전을 위한 펄스에 의해 배터리(102)에서 추출하는 것을 전제로), 프로세서(220)는, 제 3 C-rate로 충전을 위한 펄스를 제 2 시간 동안 배터리(102)로 인가하고, 제 4 C-rate로 방전을 위한 펄스를 제 2 시간 보다 긴 제 3 시간 동안 배터리(102)로 인가할 수 있다.In one embodiment, in operation 603, it is exemplified that the magnitude (or absolute value) of the second C-rate to which the pulse for charging is applied and the magnitude of the second C-rate to which the pulse for discharging is applied are the same. It is not limited thereto. For example, so that the capacity supplied to the battery 102 by the pulse for charging and the capacity discharged from the battery 102 by the pulse for discharging are the same (or the processor 220 is (Assuming that the same capacity as the capacity supplied to 102 is extracted from the battery 102 by a pulse for discharging), the processor 220 applies a pulse for charging at a third C-rate for a second time. During application to the battery 102, a pulse for discharging at a fourth C-rate may be applied to the battery 102 for a third time longer than the second time.
일 실시예에서, 프로세서(220)는, zero-sum 충방전 동작을 시작하는 배터리(102)의 용량에 기반하여, 충전을 위한 펄스를 방전을 위한 펄스 보다 먼저(또는 우선적으로) 배터리(102)로 인가하거나, 방전을 위한 펄스를 충전을 위한 펄스 보다 먼저 배터리(102)로 인가할 수 있다. 예를 들어, zero-sum 충방전 동작을 시작하는 배터리(102)의 용량이 제 1 배터리 용량(예: 약 10%에 해당하는 배터리 용량) 보다 작은 경우, 방전을 위한 펄스를 충전을 위한 펄스 보다 먼저 배터리(102)로 인가하는 경우 배터리(102)의 전압이 저임계 전압 이하로 떨어지지 않도록(또는 감소되지 않도록), 프로세서(220)는, 충전을 위한 펄스를 방전을 위한 펄스 보다 먼저 인가할 수 있다. 다른 예를 들어, zero-sum 충방전 동작을 시작하는 배터리(102)의 용량이 제 2 배터리 용량 보다 큰 경우, 충전을 위한 펄스를 방전을 위한 펄스 보다 먼저 배터리(102)로 인가하는 경우 배터리(102)의 전압이 고임계 전압 이상으로 올라가지 않도록(또는 증가되지 않도록), 프로세서(220)는, 방전을 위한 펄스를 충전을 위한 펄스 보다 먼저 배터리(102)로 인가할 수 있다. 다만, 이에 제한되지 않으며, zero-sum 충방전 동작을 시작하는 배터리(102)의 용량이 상기 제 1 배터리 용량 및 제 2 배터리 용량 사이에 해당하는 경우, 프로세서(220)는, 충전을 위한 펄스를 방전을 위한 펄스 보다 먼저 배터리(102)로 인가하거나, 방전을 위한 펄스를 풍전을 위한 펄스 보다 먼저 배터리(102)로 인가할 수 있다.In one embodiment, the processor 220, based on the capacity of the battery 102 to start the zero-sum charging and discharging operation, the pulse for charging prior to (or preferentially) the pulse for discharging the battery 102 Or, a pulse for discharging may be applied to the battery 102 before the pulse for charging. For example, when the capacity of the battery 102 starting the zero-sum charge/discharge operation is smaller than the first battery capacity (eg, a battery capacity corresponding to about 10%), the pulse for discharging is less than the pulse for charging. When first applied to the battery 102, so that the voltage of the battery 102 does not drop (or does not decrease) below the low threshold voltage, the processor 220 may apply the pulse for charging before the pulse for discharging. have. For another example, when the capacity of the battery 102 that starts the zero-sum charging and discharging operation is larger than the capacity of the second battery, the charging pulse is applied to the battery 102 before the discharge pulse. The processor 220 may apply a pulse for discharging to the battery 102 prior to the pulse for charging so that the voltage of 102) does not rise (or does not increase) above the high threshold voltage. However, the present invention is not limited thereto, and when the capacity of the battery 102 that starts the zero-sum charge/discharge operation falls between the first battery capacity and the second battery capacity, the processor 220 generates a charging pulse. A pulse for discharging may be applied to the battery 102 before the pulse for discharging, or a pulse for discharging may be applied to the battery 102 before a pulse for a wind field.
일 실시예에서, 프로세서(220)는, 제 2 C-rate(예: 약 2 C-rate)로 배터리(102)를 충전 및 방전시키는 동작을 수행하는 횟수를 사용자 입력에 기반하여 지정할 수 있다. In an embodiment, the processor 220 may designate the number of times to perform an operation of charging and discharging the battery 102 at a second C-rate (eg, about 2 C-rate) based on a user input.
동작 605에서, 일 실시예에서, 프로세서(220)는, zero-sum 충방전 동작을 수행한 후, 배터리(102)가 완전히 충전되도록, 제 1 C-rate로 배터리(102)를 충전시킬 수 있다.In operation 605, in an embodiment, the processor 220 may charge the battery 102 at a first C-rate so that the battery 102 is fully charged after performing a zero-sum charge/discharge operation. .
동작 607에서, 일 실시예에서, 프로세서(220)는, 배터리(102)가 완전히 충전된 후, 배터리(102)를 제 1 C-rate로 배터리(102)를 완전히 방전시킬 수 있다. In operation 607, in one embodiment, the processor 220 may completely discharge the battery 102 at a first C-rate after the battery 102 is fully charged.
도 6에 도시하지는 않았지만, 일 실시예에서, 프로세서(220)는, 배터리(102)가 완전히 방전된 상태에서 제 1 C-rate로 배터리(102)를 충전하고, 제 2 C-rate에 기반하여 zero-sum 충방전 동작을 수행하고, 제 1 C-rate로 배터리(102)를 완전히 충전시키는 동작을 순차적으로 수행하고, 배터리(102)가 완전히 충전된 상태에서 배터리(102)를 제 1 C-rate로 배터리(102)를 완전히 방전시킨 후, 배터리(102)의 충방전 효율을 산출할 수 있다.Although not shown in FIG. 6, in an embodiment, the processor 220 charges the battery 102 at a first C-rate while the battery 102 is completely discharged, and based on the second C-rate. A zero-sum charge/discharge operation is performed, the operation of completely charging the battery 102 at the first C-rate is sequentially performed, and the battery 102 is transferred to the first C- After completely discharging the battery 102 at the rate, the charging/discharging efficiency of the battery 102 may be calculated.
도 6에 도시하지는 않았지만, 일 실시예에서, 프로세서(220)는, 배터리(102)의 충방전 효율에 기반하여 배터리(102)를 평가할 수 있다. 예를 들어, 프로세서(220)는, 배터리(102)의 충방전 효율이 낮을수록 배터리(102)에 부반응이 발생하는 정도가 큰 것으로 결정할 수 있다. 일 실시예에서, 프로세서(220)(또는 전자 장치(101)의 사용자)는, 배터리(102)에 부반응이 발생하는 정도에 기반하여, 배터리(102)의 안정성 또는 배터리(102)의 수명을 결정할 수 있다. 예를 들어, 프로세서(220)는, 배터리(102)에 부반응이 발생하는 정도가 작을수록, 배터리(102)가 높은 안정성을 가지거나 배터리(102)의 수명이 긴 것으로 결정할 수 있다.Although not shown in FIG. 6, in an embodiment, the processor 220 may evaluate the battery 102 based on the charging/discharging efficiency of the battery 102. For example, the processor 220 may determine that the lower the charging/discharging efficiency of the battery 102 is, the greater the degree to which a side reaction occurs in the battery 102. In one embodiment, the processor 220 (or the user of the electronic device 101) determines the stability of the battery 102 or the life of the battery 102 based on the degree to which a side reaction occurs in the battery 102. I can. For example, the processor 220 may determine that the battery 102 has a higher stability or that the battery 102 has a longer life as the degree of occurrence of the side reaction in the battery 102 decreases.
도 7은, 본 발명의 다양한 실시예에 따른, 배터리(102)를 평가하기 위한 방법을 설명하는 흐름도(700)이다.7 is a flow chart 700 describing a method for evaluating the battery 102, according to various embodiments of the present invention.
도 7을 참조하면, 동작 701에서, 프로세서(220)는, 전원 공급부(210)를 통하여, 제 1 C-rate로 배터리(102)를 충전 및 방전시킬 수 있다.Referring to FIG. 7, in operation 701, the processor 220 may charge and discharge the battery 102 at a first C-rate through the power supply unit 210.
일 실시예에서, 동작 701은, 도 5에서 설명한 제 1 사이클에 해당하는 동작일 수 있다. 예를 들어, 프로세서(220)는, 배터리(102)가 완전히 방전된 상태에서(또는 배터리(102)를 완전히 방전시킨 후) 배터리(102)가 완전히 충전되도록 제 1 C-rate에 대응하는 전류를 배터리(102)로 인가하고, 배터리(102)가 완전히 충전된 상태에서 배터리(102)가 완전히 방전되도록 제 1 C-rate에 대응하는 전류를 배터리(102)로부터 방출할 수 있다.In an embodiment, operation 701 may be an operation corresponding to the first cycle described with reference to FIG. 5. For example, the processor 220 generates a current corresponding to the first C-rate so that the battery 102 is fully charged in a state where the battery 102 is completely discharged (or after completely discharging the battery 102). A current corresponding to the first C-rate may be discharged from the battery 102 such that it is applied to the battery 102 and the battery 102 is completely discharged while the battery 102 is fully charged.
일 실시예에서, 프로세서(220)는, 제 1 C-rate 및 충전을 위한 전류를 배터리(102)로 공급하는 시간에 기반하여, 배터리(102)를 충전하기 위하여 배터리(102)로 공급하는 용량(또는 충전 용량)을 산출할 수 있다. 프로세서(220)는, 제 1 C-rate 및 방전을 위한 전류를 배터리(102)로 공급하는 시간에 기반하여, 제 1 사이클에서 배터리(102)를 방전시키기 위하여 배터리(102)에서 추출하는 용량(또는 방전 용량)을 산출할 수 있다. In one embodiment, the processor 220, based on the first C-rate and the time for supplying the current for charging to the battery 102, the capacity to supply the battery 102 to charge the battery 102 (Or charging capacity) can be calculated. The processor 220, based on the first C-rate and the time for supplying the current for discharging to the battery 102, the capacity extracted from the battery 102 to discharge the battery 102 in the first cycle ( Alternatively, the discharge capacity) can be calculated.
일 실시예에서, 프로세서(220)는, 배터리(102)를 충전하기 위하여 배터리(102)로 공급하는 용량 및 배터리(102)를 방전시키기 위하여 배터리(102)에서 추출하는 용량에 기반하여, 동작 701을 수행한 후(또는 제 1 사이클을 수행한 후) 배터리(102)의 충방전 효율을 산출할 수 있다.In one embodiment, the processor 220, based on the capacity supplied to the battery 102 to charge the battery 102 and the capacity extracted from the battery 102 to discharge the battery 102, operation 701 After performing (or after performing the first cycle), the charging/discharging efficiency of the battery 102 may be calculated.
동작 703에서, 일 실시예에서, 프로세서(220)는, 전원 공급부(210)를 통하여, 제 1 C-rate(예: 약 0.2 C-rate)로 배터리(102)를 충전시킬 수 있다.In operation 703, in an embodiment, the processor 220 may charge the battery 102 at a first C-rate (eg, about 0.2 C-rate) through the power supply 210.
동작 705에서, 일 실시예에서, 프로세서(220)는, 제 1 C-rate 보다 높은 C-rate, 예를 들어, 제 2 C-rate(예: 약 2 C-rate)로 배터리(102)를 충전 및 방전시키는 동작을, 지정된 횟수만큼 수행할 수 있다.In operation 705, in one embodiment, the processor 220, the battery 102 at a C-rate higher than the first C-rate, e.g., a second C-rate (e.g., about 2 C-rate). The operation of charging and discharging can be performed a specified number of times.
동작 707에서, 일 실시예에서, 프로세서(220)는, zero-sum 충방전 동작을 수행한 후, 배터리(102)가 완전히 충전되도록, 제 1 C-rate로 배터리(102)를 충전시킬 수 있다.In operation 707, in an embodiment, the processor 220 may charge the battery 102 at a first C-rate so that the battery 102 is fully charged after performing a zero-sum charge/discharge operation. .
동작 709에서, 일 실시예에서, 프로세서(220)는, 배터리(102)가 완전히 충전된 후, 배터리(102)를 제 1 C-rate로 배터리(102)를 완전히 방전시킬 수 있다. In operation 709, in one embodiment, the processor 220 may completely discharge the battery 102 at a first C-rate after the battery 102 is fully charged.
일 실시예에서, 동작 703 내지 동작 709은, 도 6의 동작 601 내지 동작 607와 적어도 일부가 동일 또는 유사하므로, 상세한 설명은 생략하기로 한다.In an embodiment, since operations 703 to 709 are at least partially the same as or similar to operations 601 to 607 of FIG. 6, detailed descriptions will be omitted.
일 실시예에서, 동작 703 내지 동작 709은, 도 5에서 설명한 제 2 사이클에 해당하는 동작일 수 있다.In an embodiment, operations 703 to 709 may be operations corresponding to the second cycle described in FIG. 5.
일 실시예에서, 프로세서(220)는, 제 1 C-rate, 및 동작 703에서 지정된 용량에 도달할 때까지의 시간(예: 지정된 용량에 도달할 때까지 전류를 공급한 시간)과 동작 707에서 zero-sum 충방전 동작을 수행한 후(또는 완료한 후)의 시간부터 배터리(102)가 완전히 충전될 때까지의 시간(예: zero-sum 충방전 동작 완료 시부터 배터리(102)가 완전히 충전될 때까지 전류를 공급한 시간)을 합산한 시간에 기반하여, 배터리(102)를 충전하기 위하여 배터리(102)로 공급하는 용량(또는 충전 용량)을 산출할 수 있다. 일 실시예에서, 제 1 C-rate, 및 동작 709에서 배터리(102)가 완전히 충전된 상태에서 배터리(102)가 완전히 방전될 때까지의 시간(예: 배터리(102)가 완전히 충전된 상태에서 배터리(102)를 완전히 방전시키기 위하여 전류를 공급한 시간)에 기반하여, 배터리(102)를 배터리(102)를 방전시키기 위하여 배터리(102)에서 추출하는 용량(또는 방전 용량)을 산출할 수 있다. In one embodiment, the processor 220, the first C-rate, and the time until reaching the specified capacity in operation 703 (e.g., the time of supplying current until reaching the specified capacity) and operation 707 The time from the time after (or after the completion of the zero-sum charge/discharge operation) to the time until the battery 102 is fully charged (e.g., the battery 102 is fully charged from the completion of the zero-sum charge/discharge operation) The capacity (or charging capacity) supplied to the battery 102 in order to charge the battery 102 may be calculated based on the time obtained by adding up the time until the current is supplied. In one embodiment, the first C-rate, and the time from when the battery 102 is fully charged in operation 709 until the battery 102 is completely discharged (for example, when the battery 102 is fully charged) Based on the time of supplying current to completely discharge the battery 102), the capacity (or discharge capacity) extracted from the battery 102 to discharge the battery 102 may be calculated. .
일 실시예에서, 프로세서(220)는, 동작 703 내지 동작 709에서(또는 제 2 사이클에서), 배터리(102)를 충전하기 위하여 배터리(102)로 공급하는 용량 및 배터리(102)를 방전시키기 위하여 배터리(102)에서 추출하는 용량에 기반하여, 배터리(102)의 충방전 효율을 산출할 수 있다.In one embodiment, the processor 220, in operations 703 to 709 (or in the second cycle), to discharge the battery 102 and the capacity supplied to the battery 102 to charge the battery 102 Based on the capacity extracted from the battery 102, the charging/discharging efficiency of the battery 102 may be calculated.
동작 711에서, 프로세서(220)는, 전원 공급부(210)를 통하여, 제 1 C-rate로 배터리(102)를 충전 및 방전시킬 수 있다.In operation 711, the processor 220 may charge and discharge the battery 102 at a first C-rate through the power supply unit 210.
일 실시예에서, 동작 711은, 도 5에서 설명한 제 3 사이클에 해당하는 동작일 수 있다. 예를 들어, 프로세서(220)는, 배터리(102)가 완전히 방전된 상태에서(또는 배터리(102)를 완전히 방전시킨 후) 배터리(102)가 완전히 충전되도록 제 1 C-rate에 대응하는 전류를 배터리(102)로 인가하고, 배터리(102)가 완전히 충전된 상태에서 배터리(102)가 완전히 방전되도록 제 1 C-rate에 대응하는 전류를 배터리(102)로부터 방출할 수 있다.In an embodiment, operation 711 may be an operation corresponding to the third cycle described in FIG. 5. For example, the processor 220 generates a current corresponding to the first C-rate so that the battery 102 is fully charged in a state where the battery 102 is completely discharged (or after completely discharging the battery 102). A current corresponding to the first C-rate may be discharged from the battery 102 such that it is applied to the battery 102 and the battery 102 is completely discharged while the battery 102 is fully charged.
일 실시예에서, 동작 711에서, 프로세서(220)는, 동작 701에서 설명한 바와 동일한 방법으로 배터리(102)의 충방전 효율을 산출할 수 있다.In an embodiment, in operation 711, the processor 220 may calculate the charging/discharging efficiency of the battery 102 in the same manner as described in operation 701.
도 7에 도시하지는 않았지만, 일 실시예에서, 동작 705을 수행함으로써 배터리(102)에 부반응이 발생한 경우, 동작 703 내지 동작 709를 통하여 산출된 충방전 효율(예: 제 2 사이클의 충방전 효율)은, 동작 701을 통하여 산출된 충방전 효율(예: 제 1 사이클의 충방전 효율) 및 동작 711을 통하여 산출된 충방전 효율(예: 제 3 사이클의 충방전 효율) 각각 보다 작을 수 있다.Although not shown in FIG. 7, in an embodiment, when a side reaction occurs in the battery 102 by performing operation 705, the charging/discharging efficiency calculated through operations 703 to 709 (eg, charging/discharging efficiency of the second cycle) May be smaller than the charging/discharging efficiency calculated through operation 701 (eg, charging and discharging efficiency in the first cycle) and charging/discharging efficiency calculated through operation 711 (eg, charging and discharging efficiency in the third cycle).
일 실시예에서, 동작 705를 수행함으로써 배터리(102)에 부반응이 발생하지 않은 경우, 동작 703 내지 동작 709를 통하여 산출된 충방전 효율(예: 제 2 사이클의 충방전 효율)은, 동작 701을 통하여 산출된 충방전 효율(예: 제 1 사이클의 충방전 효율) 및 동작 711을 통하여 산출된 충방전 효율(예: 제 3 사이클의 충방전 효율) 각각과 상당히 동일할 수 있다.In one embodiment, when a side reaction does not occur in the battery 102 by performing the operation 705, the charge/discharge efficiency (eg, charge/discharge efficiency of the second cycle) calculated through the operations 703 to 709 is determined by the operation 701. The charging/discharging efficiency calculated through (eg, charging/discharging efficiency in the first cycle) and the charging/discharging efficiency calculated through operation 711 (eg, charging/discharging efficiency in the third cycle) may be substantially the same.
일 실시예에서, 프로세서(220)(또는 전자 장치(101)의 사용자)는, 동작 701을 통하여 산출된 충방전 효율, 동작 703 내지 동작 709를 통하여 산출된 충방전 효율, 및 동작 711을 통하여 산출된 충방전 효율에 기반하여, 배터리(102)를 평가할 수 있다. 예를 들어, 프로세서(220)는, 동작 703 내지 동작 709를 통하여 산출된 충방전 효율 및 동작 701을 통하여 산출된 충방전 효율 간 차이, 또는 동작 703 내지 동작 709를 통하여 산출된 충방전 효율 및 동작 711을 통하여 산출된 충방전 효율 간 차이 중 적어도 하나를 산출할 수 있다. 프로세서(220)는, 동작 703 내지 동작 709를 통하여 산출된 충방전 효율 및 동작 701을 통하여 산출된 충방전 효율 간 차이, 또는 동작 703 내지 동작 709를 통하여 산출된 충방전 효율 및 동작 711을 통하여 산출된 충방전 효율 간 차이 중 적어도 하나가 클수록, 배터리(102)에 부반응이 발생하는 정도(또는 수준)가 큰 것으로 결정할 수 있다. 다만, 이에 제한되지 않으며, 일 실시예에서, 프로세서(220)는, 동작 703 내지 동작 709를 통하여 산출된 충방전 효율에 기반하여 배터리(102)를 평가할 수 있다. 예를 들어, 프로세서(220)는, 동작 703 내지 동작 709를 통하여 산출된 충방전 효율이 낮을수록 배터리(102)에 부반응이 발생하는 정도가 큰 것으로 결정할 수 있다.In one embodiment, the processor 220 (or the user of the electronic device 101), the charge/discharge efficiency calculated through operation 701, the charge/discharge efficiency calculated through operation 703 to operation 709, and the operation 711 Based on the charging and discharging efficiency, the battery 102 may be evaluated. For example, the processor 220, the difference between the charge and discharge efficiency calculated through the operation 703 to operation 709 and the charge/discharge efficiency calculated through operation 701, or the charge/discharge efficiency and operation calculated through operation 703 to operation 709 At least one of the differences between charge and discharge efficiencies calculated through 711 may be calculated. The processor 220, the difference between the charge/discharge efficiency calculated through the operations 703 to 709 and the charge/discharge efficiency calculated through the operation 701, or the charge/discharge efficiency calculated through the operations 703 to 709 and the operation 711 As at least one of the difference between the charged and discharge efficiencies is greater, it may be determined that the degree (or level) of the side reaction in the battery 102 is greater. However, the present invention is not limited thereto, and in an embodiment, the processor 220 may evaluate the battery 102 based on the charge/discharge efficiency calculated through operations 703 to 709. For example, the processor 220 may determine that the degree of occurrence of a side reaction in the battery 102 is greater as the charge/discharge efficiency calculated through operations 703 to 709 is lower.
일 실시예에서, 프로세서(220)(또는 전자 장치(101)의 사용자)는, 배터리(102)에 부반응이 발생하는 정도에 기반하여, 배터리(102)의 안정성 또는 배터리(102)의 수명을 결정할 수 있다. 예를 들어, 프로세서(220)는, 배터리(102)에 부반응이 발생하는 정도가 작을수록, 배터리(102)가 높은 안정성을 가지거나 배터리(102)의 수명이 긴 것으로 결정할 수 있다.In one embodiment, the processor 220 (or the user of the electronic device 101) determines the stability of the battery 102 or the life of the battery 102 based on the degree to which a side reaction occurs in the battery 102. I can. For example, the processor 220 may determine that the battery 102 has a higher stability or that the battery 102 has a longer life as the degree of occurrence of the side reaction in the battery 102 decreases.
일 실시예에서, 도 7은, 동작 701 및 동작 711을 모두 수행하는 것으로 예시하고 있지만, 이에 제한되지 않는다. 예를 들어, 동작 701 또는 동작 711은 생략될 수 있다.In an embodiment, FIG. 7 illustrates that both operations 701 and 711 are performed, but is not limited thereto. For example, operation 701 or operation 711 may be omitted.
도 8은, 본 발명의 다양한 실시예에 따른, 서로 다른 배터리들의 충방전 효율들을 비교한 결과를 나타내는 도면이다.8 is a diagram illustrating a result of comparing charging and discharging efficiencies of different batteries according to various embodiments of the present disclosure.
도 8을 참조하면, 일 실시예에서, 그래프(810)는, 제 1 배터리에 대하여 제 1 사이클 내지 제 3 사이클 동안 충방전 동작을 수행한 후 산출된 충방전 효율을 나타내는 도면일 수 있다. 예를 들어, 그래프(810)에서, 제 1 배터리에 대하여, 도면 번호(811)은 제 1 사이클의 충방전 효율, 도면 번호(813)은 제 2 사이클의 충방전 효율, 및 도면 번호(815)은 제 3 사이클의 충방전 효율을 나타낼 수 있다. Referring to FIG. 8, in an embodiment, a graph 810 may be a diagram showing charge/discharge efficiency calculated after performing a charge/discharge operation for a first battery during a first cycle to a third cycle. For example, in the graph 810, for the first battery, reference numeral 811 denotes charge/discharge efficiency of the first cycle, reference numeral 813 denotes charge/discharge efficiency of the second cycle, and reference numeral 815 May represent the charging and discharging efficiency of the third cycle.
일 실시예에서, 그래프(820)는, 제 1 배터리와 다른 제 2 배터리에 대하여 제 1 사이클 내지 제 3 사이클 동안 충방전 동작을 수행한 후 산출된 충방전 효율을 나타내는 도면일 수 있다. 그래프(820)에서, 제 2 배터리에 대하여, 도면 번호(821)은 제 1 사이클의 충방전 효율, 도면 번호(823)은 제 2 사이클의 충방전 효율, 및 도면 번호(825)은 제 3 사이클의 충방전 효율을 나타낼 수 있다. In an embodiment, the graph 820 may be a diagram showing the charge/discharge efficiency calculated after performing a charge/discharge operation during a first cycle to a third cycle for a second battery different from the first battery. In the graph 820, for the second battery, reference numeral 821 denotes charge/discharge efficiency of the first cycle, reference numeral 823 denotes charge/discharge efficiency of the second cycle, and reference numeral 825 denotes the third cycle. It can show the charging/discharging efficiency of
일 실시예에서, 그래프들(810, 820)에서, 제 1 배터리 및 제 2 배터리 각각에 대하여, 제 2 사이클에서 동일한 펄스(예: 충전을 위한 펄스 및 방전을 위한 펄스)를 이용하여 zero-sum 충방전 동작이 수행된 것을 전제할 수 있다.In one embodiment, in the graphs 810 and 820, for each of the first battery and the second battery, a zero-sum using the same pulse (eg, a pulse for charging and a pulse for discharging) in the second cycle. It can be assumed that the charging and discharging operation has been performed.
일 실시예에서, 그래프(810) 및 그래프(820)를 비교하면, 제 1 배터리에 대한 제 1 사이클의 충방전 효율 및 제 3 사이클의 충방전 효율은, 각각, 제 2 배터리의 제 1 사이클의 충방전 효율 및 제 3 사이클의 충방전 효율과 상당히 동일할 수 있다. 일 실시예에서, 그래프(810) 및 그래프(820)를 비교하면, 제 1 배터리에 대한 제 2 사이클의 충방전 효율은 제 2 배터리에 대한 제 2 사이클의 충방전 효율에 비하여 작을 수 있다. 일 실시예에서, 프로세서(220)(또는 전자 장치(101)의 사용자)는, 제 1 배터리에 대한 제 2 사이클의 충방전 효율 및 제 2 배터리에 대한 제 2 사이클의 충방전 효율에 기반하여, 제 1 배터리가 제 2 배터리에 비하여 높은 C-rate(예: 제 2 C-rate)로 충전을 수행하는 경우 보다 안정한 것으로 평가할 수 있다.In one embodiment, comparing the graph 810 and the graph 820, the charging/discharging efficiency of the first cycle and the charging/discharging efficiency of the third cycle for the first battery are, respectively, of the first cycle of the second battery. The charge/discharge efficiency and the charge/discharge efficiency of the third cycle may be substantially the same. In one embodiment, comparing the graph 810 and the graph 820, the charging/discharging efficiency of the second cycle for the first battery may be smaller than that of the second cycle for the second battery. In one embodiment, the processor 220 (or the user of the electronic device 101), based on the charging/discharging efficiency of the second cycle for the first battery and the charging/discharging efficiency of the second cycle for the second battery, When the first battery is charged at a higher C-rate (eg, the second C-rate) than the second battery, it may be evaluated as more stable.
도 9는, 본 발명의 다양한 실시예에 따른, zero-sum 충방전 동작에서 인가된 펄스의 횟수에 따른 배터리(102)의 충방전 효율을 나타내는 도면(900)이다.9 is a diagram 900 showing charge/discharge efficiency of the battery 102 according to the number of pulses applied in a zero-sum charge/discharge operation according to various embodiments of the present disclosure.
도 9를 참조하면, 일 실시예에서, 제 1 배터리(102)에 대하여, 도면 번호(911)은 제 1 사이클의 충방전 효율, 도면 번호(913)은 제 2 사이클의 충방전 효율, 및 도면 번호(915)은 제 3 사이클의 충방전 효율을 나타낼 수 있다. 일 실시예에서, 도면 번호(913)에 대응하는 제 2 사이클의 충방전 효율은, 제 2 사이클 동안 충전을 위한 펄스 및 방전을 위한 펄스 각각을 약 10회에 걸쳐서 인가한 경우, 산출된 충방전 효율일 수 있다.Referring to FIG. 9, in one embodiment, for the first battery 102, reference numeral 911 denotes charge/discharge efficiency of the first cycle, reference numeral 913 denotes charge/discharge efficiency of the second cycle, and Number 915 may indicate the charging and discharging efficiency of the third cycle. In one embodiment, the charging/discharging efficiency of the second cycle corresponding to the reference numeral 913 is calculated when the pulse for charging and the pulse for discharging are applied over about 10 times during the second cycle. It can be efficiency.
일 실시예에서, 제 1 배터리와 동일한 종류 및 동일한 모델에 해당하고, 동일한 제조사에서 제조한 제 2 배터리에 대하여, 도면 번호(921)은 제 1 사이클의 충방전 효율, 도면 번호(923)은 제 2 사이클의 충방전 효율, 및 도면 번호(925)은 제 3 사이클의 충방전 효율을 나타낼 수 있다. 일 실시예에서, 도면 번호(923)에 대응하는 제 2 사이클의 충방전 효율은, 제 2 사이클 동안 충전을 위한 펄스 및 방전을 위한 펄스 각각을 약 50회에 걸쳐서 인가한 경우, 산출된 충방전 효율일 수 있다.In one embodiment, for a second battery that corresponds to the same type and model as the first battery and manufactured by the same manufacturer, reference numeral 921 denotes charge/discharge efficiency of the first cycle, and reference numeral 923 denotes the first battery. Charge/discharge efficiency of two cycles, and reference numeral 925 may indicate charge/discharge efficiency of a third cycle. In one embodiment, the charging/discharging efficiency of the second cycle corresponding to the reference numeral 923 is calculated when the pulse for charging and the pulse for discharging are applied over about 50 times during the second cycle. It can be efficiency.
일 실시예에서, 제 2 사이클 동안 충전을 위한 펄스 및 방전을 위한 펄스를 많은 횟수로 인가할수록, 제 2 사이클의 충방전 효율은 낮아질 수 있다. 예를 들어, 도 9에 도시된 바와 같이, 제 1 배터리(102)의 제 2 사이클의 충방전 효율은, 제 2 배터리의 제 2 사이클의 충방전 효율 보다 낮을 수 있다.In an embodiment, as the pulse for charging and the pulse for discharging are applied more times during the second cycle, the charging/discharging efficiency of the second cycle may be lowered. For example, as shown in FIG. 9, the charging/discharging efficiency of the second cycle of the first battery 102 may be lower than that of the second cycle of the second battery.
도 10은, 본 발명의 다양한 실시예에 따른, zero-sum 충방전 동작을 시작하는 용량에 따른 사이클 별 충방전 효율을 나타내는 도면(1000)이다.10 is a diagram 1000 showing charge/discharge efficiency for each cycle according to a capacity at which a zero-sum charge/discharge operation starts according to various embodiments of the present disclosure.
도 10을 참조하면, 일 실시예에서, 도 10은, 제 2 사이클에서 zero-sum 충방전 동작을 수행한 경우를 전제로 할 수 있다.Referring to FIG. 10, in an embodiment, FIG. 10 may assume that a zero-sum charge/discharge operation is performed in a second cycle.
일 실시예에서, 도면 번호(1001)은 zero-sum 충방전 동작을 시작하는 용량(또는 SOC)에 따른 제 1 사이클의 충방전 효율을 나타내고, 도면 번호(1005)은 zero-sum 충방전 동작을 시작하는 용량에 따른 제 2 사이클의 충방전 효율을 나타내고, 도면 번호(1003)은 zero-sum 충방전 동작을 시작하는 용량에 따른 제 3 사이클의 충방전 효율을 나타낼 수 있다. In one embodiment, reference numeral 1001 denotes the charging and discharging efficiency of the first cycle according to the capacity (or SOC) to start the zero-sum charging and discharging operation, and reference numeral 1005 denotes a zero-sum charging and discharging operation. The charging/discharging efficiency of the second cycle according to the starting capacity is indicated, and reference numeral 1003 may indicate the charging/discharging efficiency of the third cycle according to the capacity of starting the zero-sum charging/discharging operation.
일 실시예에서, 도 10의 도면 번호 (1005)를 참조하면, 제 2 사이클에서 zero-sum 충방전 동작을 시작하는 용량이 클수록, 제 2 사이클의 충방전 효율은 낮아질 수 있다. 예를 들어, 배터리(102)의 SOC가 60%에서 제 1 zero-sum 충방전 동작을 수행한 후 산출된 제 2 사이클의 충방전 효율은, 배터리(102)의 SOC가 30%에서 제 1 zero-sum 충방전 동작과 동일한(예: 제 1 zero-sum 충방전 동작과 동일한 C-rate로 동일한 횟수의 충전 펄스 및 방전 펄스를 배터리(102)로 인가하는) 제 2 zero-sum 충방전 동작을 수행한 후 산출된 제 2 사이클의 충방전 효율 보다 낮을 수 있다. 일 실시 예에서, zero-sum 충방전 동작에 의해 리튬-플레이팅과 같은 부반응이 발생할 수 있고, 배터리(102)의 SOC가 증가할수록 리튬-플레이팅이 발생하는 정도는 증가할 수 있다. 일 실시 예에서, 리튬-플레이팅과 같은 부반응으로 인해, 배터리(102)의 충방전 효율이 감소할 수 있다. In one embodiment, referring to reference numeral 1005 of FIG. 10, the larger the capacity for starting the zero-sum charge/discharge operation in the second cycle, the lower the charge/discharge efficiency of the second cycle. For example, the charge/discharge efficiency of the second cycle calculated after performing the first zero-sum charge/discharge operation at the SOC of the battery 102 is 60%, and the SOC of the battery 102 is 30% to the first zero. The second zero-sum charge/discharge operation is the same as the -sum charge/discharge operation (for example, applying the same number of charge pulses and discharge pulses to the battery 102 at the same C-rate as the first zero-sum charge/discharge operation). It may be lower than the charging/discharging efficiency of the second cycle calculated after performing. In an embodiment, a side reaction such as lithium-plating may occur due to a zero-sum charge/discharge operation, and as the SOC of the battery 102 increases, the degree of occurrence of lithium-plating may increase. In an embodiment, due to a side reaction such as lithium-plating, the charging/discharging efficiency of the battery 102 may decrease.
일 실시예에서, 프로세서(220)는, zero-sum 충방전 동작을 시작하는 SOC에 따라 변화하는 배터리(102)의 충방전 효율을 산출할 수 있다. In one embodiment, the processor 220 may calculate the charging/discharging efficiency of the battery 102 that changes according to the SOC starting the zero-sum charging/discharging operation.
도 11은, 본 발명의 다양한 실시예에 따른, zero-sum 충방전 동작에서 인가된 펄스의 횟수에 따른 배터리(102)의 저항 변화를 나타내는 도면(1100)이다.11 is a diagram 1100 showing a change in resistance of the battery 102 according to the number of pulses applied in a zero-sum charge/discharge operation according to various embodiments of the present disclosure.
도 11을 참조하면, 일 실시예에서, 도 11은, 배터리(102)의 SOC가 50%에서 zero-sum 충방전 동작을 수행한 경우 zero-sum 충방전 동작 동안 충전을 위한 펄스 및 방전을 위한 펄스를 인가하는 횟수의 증가에 따라 배터리(102)의 저항(또는 DCIR(direct current internal resistance)) 변화를 나타낼 수 있다. 일 실시예에서, 배터리(102)의 저항은 충전을 위한 펄스 또는 방전을 위한 펄스를 배터리(102)로 인가하기 직전 및 직후에 측정한 전압 값들 간 차이를 배터리(102)로 인가하는 정전류로 나눈 값에 해당될 수 있다. 예를 들어, 배터리(102)의 저항의 변화는, 복수의 횟수로, 충전 및 방전을 위한 펄스를 배터리(102)로 인가하는 경우, 복수의 횟수 각각의 횟수 마다 충전을 위한 펄스 또는 방전을 위한 펄스를 배터리(102)로 인가하기 직전 및 직후에 측정한 전압 값들 간 차이를 배터리(102)로 인가하는 정전류로 나눈 값의 변화에 해당될 수 있다.Referring to FIG. 11, in one embodiment, FIG. 11 shows a pulse for charging and discharging during a zero-sum charging/discharging operation when a zero-sum charging/discharging operation is performed at an SOC of 50% of the battery 102. The resistance (or direct current internal resistance (DCIR)) of the battery 102 may change as the number of times the pulse is applied increases. In one embodiment, the resistance of the battery 102 is divided by the difference between voltage values measured immediately before and immediately after applying the pulse for charging or the pulse for discharging to the battery 102 by the constant current applied to the battery 102. May correspond to a value. For example, the change in the resistance of the battery 102 is a plurality of times, when a pulse for charging and discharging is applied to the battery 102, a pulse for charging or a pulse for discharging at each of the plurality of times. It may correspond to a change in a value obtained by dividing a difference between voltage values measured immediately before and immediately after applying a pulse to the battery 102 by a constant current applied to the battery 102.
일 실시예에서, 프로세서(220)는, zero-sum 충방전 동작을 수행한 경우 zero-sum 충방전 동작 동안 충전을 위한 펄스 및 방전을 위한 펄스를 인가하는 횟수의 증가에 따른 배터리(102)의 저항 변화를 산출(또는 측정)할 수 있다.In one embodiment, when performing a zero-sum charge/discharge operation, the processor 220 increases the number of times of applying a pulse for charging and a pulse for discharging during the zero-sum charge/discharge operation. The change in resistance can be calculated (or measured).
일 실시예에서, 도 11에서 도면 번호(1101)은 배터리(102)의 SOC가 50%에서 zero-sum 충방전 동작을 수행한 경우 zero-sum 충방전 동작 동안 충전을 위한 펄스 및 방전을 위한 펄스를 인가하는 횟수의 증가에 따라 배터리(102)의 저항 변화를 나타낼 수 있다. 일 실시예에서, 도 11에서 도면 번호(1103)은 도면 번호(1101)의 배터리(102)의 저항 변화를 선형적으로 나타내는 라인일 수 있다.In one embodiment, reference numeral 1101 in FIG. 11 denotes a pulse for charging and a pulse for discharging during a zero-sum charging/discharging operation when a zero-sum charging/discharging operation is performed at 50% SOC of the battery 102. It may represent a change in resistance of the battery 102 according to an increase in the number of times that is applied. In one embodiment, reference numeral 1103 in FIG. 11 may be a line linearly representing a change in resistance of the battery 102 of reference numeral 1101.
일 실시예에서, 도 11에 도시된 바와 같이, zero-sum 충방전 동작 동안 충전을 위한 펄스 및 방전을 위한 펄스를 인가하는 횟수가 증가할수록 배터리(102)의 저항이 증가될 수 있다.In one embodiment, as illustrated in FIG. 11, as the number of times of applying a pulse for charging and a pulse for discharging during a zero-sum charge/discharge operation increases, the resistance of the battery 102 may increase.
일 실시예에서, 배터리(102)에서 발생하는 부반응 정도는 클수록 배터리(102)의 저항이 증가될 수 있다.In one embodiment, as the degree of side reaction occurring in the battery 102 increases, the resistance of the battery 102 may increase.
본 발명의 다양한 실시예들에 따른 방법은, 배터리(102)가 완전히 방전된 상태에서 제 1 C-rate로 상기 배터리(102)를 충전시키는 동작, 상기 배터리(102)의 용량이 지정된 배터리 용량에 도달한 경우, 제 1 시간 동안 상기 제 1 C-rate 보다 높은 제 2 C-rate로, 상기 제 1 시간 및 상기 제 2 C-rate에 대응하는 제 1 용량만큼, 상기 배터리(102)를 충전시키고, 제 2 시간 동안 상기 제 1 C-rate 보다 높은 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 방전시키는 동작을 지정된 횟수만큼 수행하는 동작, 상기 배터리(102)가 완전히 충전되도록, 상기 제 1 C-rate로 상기 배터리(102)를 충전시키는 동작, 및 상기 배터리(102)가 완전히 충전된 상태에서, 상기 배터리(102)가 완전히 방전되도록, 상기 1 C-rate로 상기 배터리(102)를 방전시키는 동작을 포함할 수 있다.The method according to various embodiments of the present invention includes an operation of charging the battery 102 at a first C-rate while the battery 102 is completely discharged, and the capacity of the battery 102 is adjusted to a specified battery capacity. When reached, the battery 102 is charged with a second C-rate higher than the first C-rate for a first time, by a first capacity corresponding to the first time and the second C-rate, and , An operation of discharging the battery 102 by the first capacity at a third C-rate higher than the first C-rate for a second time period for a specified number of times, so that the battery 102 is fully charged. , Charging the battery 102 at the first C-rate, and in a state where the battery 102 is fully charged, so that the battery 102 is completely discharged, the battery at the 1 C-rate ( 102).
다양한 실시예에서, 상기 제 1 시간 및 상기 제 2 C-rate은, 각각, 상기 제 2 시간 및 상기 제 3 C-rate와 동일할 수 있다.In various embodiments, the first time and the second C-rate may be the same as the second time and the third C-rate, respectively.
다양한 실시예에서, 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 충전시키고 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 방전시키는 동작을 수행하는 동작은, 상기 지정된 배터리 용량에 따라, 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 충전시킨 후 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 방전시키거나 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 방전시킨 후 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 충전시키는 동작을 포함할 수 있다.In various embodiments, performing an operation of charging the battery 102 by the first capacity at the second C-rate and discharging the battery 102 by the first capacity at the third C-rate Is, according to the designated battery capacity, charging the battery 102 by the first capacity at the second C-rate and then discharging the battery 102 by the first capacity at the third C-rate. Or discharging the battery 102 by the first capacity at the third C-rate and then charging the battery 102 by the first capacity at the second C-rate.
다양한 실시예에서, 상기 지정된 횟수는 사용자에 의해 지정될 수 있다.In various embodiments, the specified number of times may be specified by a user.
다양한 실시예에서, 상기 방법은, 상기 배터리(102)의 용량이 지정된 배터리 용량에 도달할 때까지 상기 배터리(102)로 공급한 제 2 용량, 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 충전시키고 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 방전시킨 후 상기 배터리(102)를 완전히 충전시키기 위하여 상기 배터리(102)로 공급한 제 3 용량, 및 상기 배터리(102)가 완전히 충전된 상태에서 상기 배터리(102)를 완전히 방전시키기 위하여 상기 배터리(102)에서 추출한 제 4 용량에 기반하여, 상기 배터리(102)의 제 1 충방전 효율을 산출하는 동작을 더 포함할 수 있다.In various embodiments, the method includes a second capacity supplied to the battery 102 until the capacity of the battery 102 reaches a specified battery capacity, and the first capacity at the second C-rate. A third capacity supplied to the battery 102 to fully charge the battery 102 after charging the battery 102 and discharging the battery 102 by the first capacity at the third C-rate, And calculating a first charge/discharge efficiency of the battery 102 based on the fourth capacity extracted from the battery 102 in order to completely discharge the battery 102 while the battery 102 is fully charged. It may further include an operation.
다양한 실시예에서, 상기 방법은, 상기 배터리(102)가 완전히 방전된 상태에서 상기 제 1 C-rate로 상기 배터리(102)를 충전시키기 전, 상기 배터리(102)가 완전히 방전된 상태에서 상기 배터리(102)를 상기 제 1 C-rate로 상기 배터리(102)를 완전히 충전시키고, 상기 배터리(102)가 완전히 충전된 상태에서 상기 배터리(102)를 상기 제 1 C-rate로 상기 배터리(102)를 완전히 방전시키는 동작, 및 상기 배터리(102)가 완전히 방전된 상태에서 상기 배터리(102)를 상기 제 1 C-rate로 상기 배터리(102)를 완전히 충전시키고, 상기 배터리(102)가 완전히 충전된 상태에서 상기 배터리(102)를 상기 제 1 C-rate로 상기 배터리(102)를 완전히 방전시키는 동작에 기반하여 상기 배터리(102)의 제 2 충방전 효율을 산출하는 동작을 포함할 수 있다.In various embodiments, the method includes, in a state in which the battery 102 is completely discharged, before charging the battery 102 at the first C-rate, the battery 102 is completely discharged. (102) The battery 102 is fully charged at the first C-rate, and the battery 102 is transferred to the battery 102 at the first C-rate while the battery 102 is fully charged. The operation of completely discharging the battery, and completely charging the battery 102 at the first C-rate while the battery 102 is completely discharged, and the battery 102 is fully charged. In the state, based on the operation of completely discharging the battery 102 at the first C-rate, the operation of calculating a second charge/discharge efficiency of the battery 102 may be included.
다양한 실시예에서, 상기 방법은, 상기 배터리(102)가 완전히 충전된 상태에서 상기 제 1 C-rate로 상기 배터리(102)를 방전시킨 후, 상기 배터리(102)가 완전히 방전된 상태에서 상기 배터리(102)를 상기 제 1 C-rate로 상기 배터리(102)를 완전히 충전시키고, 상기 배터리(102)가 완전히 충전된 상태에서 상기 배터리(102)를 상기 제 1 C-rate로 상기 배터리(102)를 완전히 방전시키는 동작, 및 상기 배터리(102)가 완전히 방전된 상태에서 상기 배터리(102)를 상기 제 1 C-rate로 상기 배터리(102)를 완전히 충전시키고, 상기 배터리(102)가 완전히 충전된 상태에서 상기 배터리(102)를 상기 제 1 C-rate로 상기 배터리(102)를 완전히 방전시키는 동작에 기반하여 상기 배터리(102)의 제 3 충방전 효율을 산출하는 동작을 더 포함할 수 있다.In various embodiments, the method includes discharging the battery 102 at the first C-rate while the battery 102 is fully charged, and then the battery 102 is completely discharged. (102) The battery 102 is fully charged at the first C-rate, and the battery 102 is transferred to the battery 102 at the first C-rate while the battery 102 is fully charged. The operation of completely discharging the battery, and completely charging the battery 102 at the first C-rate while the battery 102 is completely discharged, and the battery 102 is fully charged. In the state, the operation of calculating a third charge/discharge efficiency of the battery 102 based on an operation of completely discharging the battery 102 at the first C-rate may be further included.
다양한 실시예에서, 상기 제 1 시간은, 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 충전시키는 동안 상기 배터리(102)의 전압이 지정된 전압 이하에서 증가하도록 지정되고, 상기 제 2 시간은, 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 방전시키는 동안 상기 배터리(102)의 전압이 지정된 전압 이상에서 감소하도록 지정될 수 있다.In various embodiments, the first time is designated so that the voltage of the battery 102 increases below a specified voltage while charging the battery 102 by the first capacity at the second C-rate, and the The second time period may be designated so that the voltage of the battery 102 decreases above a specified voltage while discharging the battery 102 by the first capacity at the third C-rate.
다양한 실시예에서, 상기 방법은, 상기 지정된 횟수만큼, 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 충전시키고 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 방전시키는 동안, 상기 배터리(102)의 저항의 변화를 확인하는 동작을 더 포함할 수 있다.In various embodiments, the method comprises charging the battery 102 by the first capacity at the second C-rate for the specified number of times, and charging the battery 102 by the first capacity at the third C-rate. While discharging ), an operation of checking a change in resistance of the battery 102 may be further included.
다양한 실시예에서, 상기 지정된 배터리(102)의 용량은 사용자에 의해 지정될 수 있다. In various embodiments, the capacity of the designated battery 102 may be designated by a user.
또한, 상술한 본 발명의 실시예에서 사용된 데이터의 구조는 컴퓨터로 읽을 수 있는 기록매체에 여러 수단을 통하여 기록될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드 디스크 등), 광학적 판독 매체(예를 들면, CD-ROM, DVD 등)와 같은 저장매체를 포함한다.In addition, the structure of the data used in the above-described embodiment of the present invention can be recorded on a computer-readable recording medium through various means. The computer-readable recording medium includes a storage medium such as a magnetic storage medium (eg, ROM, floppy disk, hard disk, etc.), and an optical reading medium (eg, CD-ROM, DVD, etc.).
일 실시예에서, 컴퓨터 판독 가능한 기록매체는 전자 장치(101)에서, 배터리(102)가 완전히 방전된 상태에서 제 1 C-rate로 상기 배터리(102)를 충전시키는 동작, 상기 배터리(102)의 용량이 지정된 배터리 용량에 도달한 경우, 제 1 시간 동안 상기 제 1 C-rate 보다 높은 제 2 C-rate로, 상기 제 1 시간 및 상기 제 2 C-rate에 대응하는 제 1 용량만큼, 상기 배터리(102)를 충전시키고, 제 2 시간 동안 상기 제 1 C-rate 보다 높은 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리(102)를 방전시키는 동작을 지정된 횟수만큼 수행하는 동작, 상기 배터리(102)가 완전히 충전되도록, 상기 제 1 C-rate로 상기 배터리(102)를 충전시키는 동작, 및 상기 배터리(102)가 완전히 충전된 상태에서, 상기 배터리(102)가 완전히 방전되도록, 상기 1 C-rate로 상기 배터리(102)를 방전시키는 동작을 실행시키기 위한 프로그램을 기록할 수 있다.In one embodiment, the computer-readable recording medium is an operation of charging the battery 102 at a first C-rate in a state in which the battery 102 is completely discharged in the electronic device 101. When the capacity reaches the specified battery capacity, at a second C-rate higher than the first C-rate for a first time, the battery by a first capacity corresponding to the first time and the second C-rate An operation of charging 102 and discharging the battery 102 by the first capacity at a third C-rate higher than the first C-rate for a second time period a specified number of times, the battery ( 102) is fully charged, charging the battery 102 at the first C-rate, and in a state where the battery 102 is fully charged, the battery 102 is completely discharged, the 1 C A program for executing an operation of discharging the battery 102 at -rate can be recorded.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been looked at around its preferred embodiments. Those of ordinary skill in the art to which the present invention pertains will be able to understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative point of view rather than a limiting point of view. The scope of the present invention is shown in the claims rather than the above description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

Claims (15)

  1. 전자 장치에 있어서,In the electronic device,
    전원 공급부; Power supply;
    And
    상기 전원 공급부와 작동적으로 연결된 프로세서를 포함하고,And a processor operatively connected to the power supply,
    상기 프로세서는,The processor,
    배터리가 완전히 방전된 상태에서, 상기 전원 공급부를 통하여, 제 1 C-rate로 상기 배터리를 충전시키고,In a state in which the battery is completely discharged, the battery is charged at a first C-rate through the power supply,
    상기 배터리의 용량이 지정된 배터리 용량에 도달한 경우, 상기 전원 공급부를 통하여, 제 1 시간 동안 상기 제 1 C-rate 보다 높은 제 2 C-rate로, 상기 제 1 시간 및 상기 제 2 C-rate에 대응하는 제 1 용량만큼, 상기 배터리를 충전시키고, 제 2 시간 동안 상기 제 1 C-rate 보다 높은 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리를 방전시키는 동작을 지정된 횟수만큼 수행하고,When the capacity of the battery reaches the specified battery capacity, through the power supply unit, at a second C-rate higher than the first C-rate for a first time, the first time and the second C-rate Charging the battery by a corresponding first capacity, and discharging the battery by the first capacity at a third C-rate higher than the first C-rate for a second time period a specified number of times,
    상기 전원 공급부를 통하여, 상기 배터리가 완전히 충전되도록, 상기 제 1 C-rate로 상기 배터리를 충전시키고, 및Through the power supply, charging the battery at the first C-rate so that the battery is fully charged, and
    상기 배터리가 완전히 충전된 상태에서, 상기 전원 공급부를 통하여, 상기 배터리가 완전히 방전되도록, 상기 제 1 C-rate로 상기 배터리를 방전시키도록 설정된 전자 장치.An electronic device configured to discharge the battery at the first C-rate so that the battery is completely discharged through the power supply unit while the battery is fully charged.
  2. 제 1 항에 있어서, 상기 제 1 시간 및 상기 제 2 C-rate은, 각각, 상기 제 2 시간 및 상기 제 3 C-rate와 동일한 전자 장치.The electronic device of claim 1, wherein the first time and the second C-rate are the same as the second time and the third C-rate, respectively.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 프로세서는,The processor,
    상기 지정된 배터리 용량에 따라, 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리를 충전시킨 후 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리를 방전시키거나, 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리를 방전시킨 후 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리를 충전시키도록 설정된 전자 장치.According to the designated battery capacity, after charging the battery by the first capacity at the second C-rate and discharging the battery by the first capacity at the third C-rate, or the third C-rate An electronic device configured to discharge the battery by the first capacity and then charge the battery by the first capacity at the second C-rate.
  4. 제 1 항에 있어서, 상기 지정된 횟수는 사용자에 의해 지정되는 전자 장치.The electronic device of claim 1, wherein the specified number of times is specified by a user.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 프로세서는,The processor,
    상기 배터리의 용량이 지정된 배터리 용량에 도달할 때까지 상기 배터리로 공급한 제 2 용량, 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리를 충전시키고 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리를 방전시킨 후 상기 배터리를 완전히 충전시키기 위하여 상기 배터리로 공급한 제 3 용량, 및 상기 배터리가 완전히 충전된 상태에서 상기 배터리를 완전히 방전시키기 위하여 상기 배터리에서 추출한 제 4 용량에 기반하여, 상기 배터리의 제 1 충방전 효율을 산출하도록 설정된 전자 장치.The second capacity supplied to the battery until the capacity of the battery reaches a specified battery capacity, and the first capacity is charged by the first capacity at the second C-rate, and the first capacity at the third C-rate. Based on the third capacity supplied to the battery to fully charge the battery after discharging the battery by the amount, and a fourth capacity extracted from the battery to completely discharge the battery when the battery is fully charged, An electronic device configured to calculate a first charge/discharge efficiency of the battery.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 프로세서는,The processor,
    상기 배터리가 완전히 방전된 상태에서 상기 제 1 C-rate로 상기 배터리를 충전시키기 전, 상기 배터리가 완전히 방전된 상태에서 상기 배터리를 상기 제 1 C-rate로 상기 배터리를 완전히 충전시키고, 상기 배터리가 완전히 충전된 상태에서 상기 배터리를 상기 제 1 C-rate로 상기 배터리를 완전히 방전시키고,Before charging the battery at the first C-rate while the battery is completely discharged, completely charge the battery at the first C-rate while the battery is completely discharged, and the battery In a fully charged state, completely discharging the battery at the first C-rate,
    상기 배터리가 완전히 방전된 상태에서 상기 배터리를 상기 제 1 C-rate로 상기 배터리를 완전히 충전시키고, 상기 배터리가 완전히 충전된 상태에서 상기 배터리를 상기 제 1 C-rate로 상기 배터리를 완전히 방전시키는 동작에 기반하여 상기 배터리의 제 2 충방전 효율을 산출하도록 설정된 전자 장치.The operation of completely charging the battery at the first C-rate while the battery is completely discharged, and completely discharging the battery at the first C-rate while the battery is fully charged An electronic device configured to calculate a second charging/discharging efficiency of the battery based on.
  7. 제 5 항에 있어서,The method of claim 5,
    상기 프로세서는,The processor,
    상기 배터리가 완전히 충전된 상태에서 상기 제 1 C-rate로 상기 배터리를 방전시킨 후, 상기 배터리가 완전히 방전된 상태에서 상기 배터리를 상기 제 1 C-rate로 상기 배터리를 완전히 충전시키고, 상기 배터리가 완전히 충전된 상태에서 상기 배터리를 상기 제 1 C-rate로 상기 배터리를 완전히 방전시키고,After discharging the battery at the first C-rate while the battery is fully charged, the battery is fully charged at the first C-rate while the battery is completely discharged, and the battery In a fully charged state, completely discharging the battery at the first C-rate,
    상기 배터리가 완전히 방전된 상태에서 상기 배터리를 상기 제 1 C-rate로 상기 배터리를 완전히 충전시키고, 상기 배터리가 완전히 충전된 상태에서 상기 배터리를 상기 제 1 C-rate로 상기 배터리를 완전히 방전시키는 동작에 기반하여 상기 배터리의 제 3 충방전 효율을 산출하도록 설정된 전자 장치.The operation of completely charging the battery at the first C-rate while the battery is completely discharged, and completely discharging the battery at the first C-rate while the battery is fully charged An electronic device configured to calculate a third charging/discharging efficiency of the battery based on the battery.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 시간은, 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리를 충전시키는 동안 상기 배터리의 전압이 지정된 전압 이하에서 증가하도록 지정되고,The first time is designated so that the voltage of the battery increases below a specified voltage while charging the battery by the first capacity at the second C-rate,
    상기 제 2 시간은, 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리를 방전시키는 동안 상기 배터리의 전압이 지정된 전압 이상에서 감소하도록 지정되는 전자 장치.The second time period is designated so that the voltage of the battery decreases above a specified voltage while discharging the battery by the first capacity at the third C-rate.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 프로세서는,The processor,
    상기 지정된 횟수만큼, 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리를 충전시키고 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리를 방전시키는 동안, 상기 배터리의 저항의 변화를 확인하도록 설정된 전자 장치.While charging the battery by the first capacity at the second C-rate for the specified number of times and discharging the battery by the first capacity at the third C-rate, to check a change in resistance of the battery Set electronic devices.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 지정된 배터리의 용량은 사용자에 의해 지정되는 전자 장치.An electronic device whose capacity of the designated battery is designated by a user.
  11. 방법에 있어서,In the way,
    배터리가 완전히 방전된 상태에서 제 1 C-rate로 상기 배터리를 충전시키는 동작;Charging the battery at a first C-rate while the battery is completely discharged;
    상기 배터리의 용량이 지정된 배터리 용량에 도달한 경우, 제 1 시간 동안 상기 제 1 C-rate 보다 높은 제 2 C-rate로, 상기 제 1 시간 및 상기 제 2 C-rate에 대응하는 제 1 용량만큼, 상기 배터리를 충전시키고, 제 2 시간 동안 상기 제 1 C-rate 보다 높은 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리를 방전시키는 동작을 지정된 횟수만큼 수행하는 동작;When the capacity of the battery reaches the specified battery capacity, the second C-rate is higher than the first C-rate for a first time, and a first capacity corresponding to the first time and the second C-rate. And performing an operation of charging the battery and discharging the battery by the first capacity at a third C-rate higher than the first C-rate for a second time period a specified number of times;
    상기 배터리가 완전히 충전되도록, 상기 제 1 C-rate로 상기 배터리를 충전시키는 동작; 및Charging the battery at the first C-rate so that the battery is fully charged; And
    상기 배터리가 완전히 충전된 상태에서, 상기 배터리가 완전히 방전되도록, 상기 제 1 C-rate로 상기 배터리를 방전시키는 동작을 포함하는 방법.And discharging the battery at the first C-rate so that the battery is completely discharged while the battery is fully charged.
  12. 제 11 항에 있어서, 상기 제 1 시간 및 상기 제 2 C-rate은, 각각, 상기 제 2 시간 및 상기 제 3 C-rate와 동일한 방법.The method of claim 11, wherein the first time and the second C-rate are the same as the second time and the third C-rate, respectively.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리를 충전시키고 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리를 방전시키는 동작을 수행하는 동작은,The operation of charging the battery by the first capacity at the second C-rate and discharging the battery by the first capacity at the third C-rate,
    상기 지정된 배터리 용량에 따라, 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리를 충전시킨 후 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리를 방전시키거나 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리를 방전시킨 후 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리를 충전시키는 동작을 포함하는 방법.Depending on the designated battery capacity, the battery is charged by the first capacity at the second C-rate, and then the battery is discharged by the first capacity at the third C-rate or at the third C-rate. And charging the battery by the first capacity at the second C-rate after discharging the battery by the first capacity.
  14. 제 11 항에 있어서, 상기 지정된 횟수는 사용자에 의해 지정되는 방법.12. The method of claim 11, wherein the specified number of times is specified by a user.
  15. 제 11 항에 있어서, The method of claim 11,
    상기 배터리의 용량이 지정된 배터리 용량에 도달할 때까지 상기 배터리로 공급한 제 2 용량, 상기 제 2 C-rate로 상기 제 1 용량만큼 상기 배터리를 충전시키고 상기 제 3 C-rate로 상기 제 1 용량만큼 상기 배터리를 방전시킨 후 상기 배터리를 완전히 충전시키기 위하여 상기 배터리로 공급한 제 3 용량, 및 상기 배터리가 완전히 충전된 상태에서 상기 배터리를 완전히 방전시키기 위하여 상기 배터리에서 추출한 제 4 용량에 기반하여, 상기 배터리의 제 1 충방전 효율을 산출하는 동작을 더 포함하는 방법.The second capacity supplied to the battery until the capacity of the battery reaches a specified battery capacity, and the first capacity is charged by the first capacity at the second C-rate, and the first capacity at the third C-rate. Based on the third capacity supplied to the battery to fully charge the battery after discharging the battery by the amount, and a fourth capacity extracted from the battery to completely discharge the battery when the battery is fully charged, The method further comprising calculating a first charge/discharge efficiency of the battery.
PCT/KR2020/011371 2019-09-27 2020-08-26 Method for evaluating battery and electronic device supporting same WO2021060719A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190120049A KR20210037424A (en) 2019-09-27 2019-09-27 Method for evaluating battery and electronic device for supporting the same
KR10-2019-0120049 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021060719A1 true WO2021060719A1 (en) 2021-04-01

Family

ID=75165083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011371 WO2021060719A1 (en) 2019-09-27 2020-08-26 Method for evaluating battery and electronic device supporting same

Country Status (2)

Country Link
KR (1) KR20210037424A (en)
WO (1) WO2021060719A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130073802A (en) * 2011-12-23 2013-07-03 삼성에스디아이 주식회사 Device for esitimating life time of secondary battery and method thereof
JP2015061445A (en) * 2013-09-19 2015-03-30 株式会社東芝 Charge device and method therefor, and discharge device and method therefor
US9450440B2 (en) * 2013-11-26 2016-09-20 Lenovo (Singapore) Pte. Ltd. High capacity batteries with on-demand fast charge capability
CN106168652A (en) * 2016-08-12 2016-11-30 联想(北京)有限公司 The detection method of performance of lithium ion battery
KR20180068708A (en) * 2016-12-14 2018-06-22 주식회사 엘지화학 Method and apparatus for assessing lifetime of secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130073802A (en) * 2011-12-23 2013-07-03 삼성에스디아이 주식회사 Device for esitimating life time of secondary battery and method thereof
JP2015061445A (en) * 2013-09-19 2015-03-30 株式会社東芝 Charge device and method therefor, and discharge device and method therefor
US9450440B2 (en) * 2013-11-26 2016-09-20 Lenovo (Singapore) Pte. Ltd. High capacity batteries with on-demand fast charge capability
CN106168652A (en) * 2016-08-12 2016-11-30 联想(北京)有限公司 The detection method of performance of lithium ion battery
KR20180068708A (en) * 2016-12-14 2018-06-22 주식회사 엘지화학 Method and apparatus for assessing lifetime of secondary battery

Also Published As

Publication number Publication date
KR20210037424A (en) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2017034277A1 (en) Apparatus and method for estimating degree of aging of secondary battery
WO2018038383A1 (en) Device and method for testing performance of battery cell
WO2019139335A1 (en) Apparatus and method for testing performance of battery cell
WO2014088324A1 (en) Method and device for estimating parameters for secondary battery
WO2021049800A1 (en) Method for diagnosing abnormal state of battery, electronic device therefor, and storage medium therefor
WO2010016647A1 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
WO2019199064A1 (en) Battery diagnosis device and method
WO2021118118A1 (en) Device and method for diagnosing battery degradation degree
WO2022055080A1 (en) Method for estimating state of charge of battery
WO2020213905A1 (en) Apparatus and method for determining state of degradation of battery, battery pack, and electric vehicle
WO2021118049A1 (en) Apparatus and method for controlling operation of secondary battery by using relative degree of aging of electrode
WO2019009530A1 (en) Apparatus and method for estimating capacity retention ratio of secondary battery
WO2022075708A1 (en) Apparatus and method for diagnosing state of battery
WO2019098576A1 (en) Battery reserve capacity estimation device
WO2022092827A1 (en) Battery management device and method
WO2020166914A1 (en) Device and method for estimating state of charge
WO2022265357A1 (en) Battery soh estimation device and method
WO2022145822A1 (en) Battery management apparatus and method
WO2022071776A1 (en) Apparatus, method, and system for diagnosing battery
WO2022080837A1 (en) Battery diagnostic apparatus and method
WO2021246655A1 (en) Device and method for diagnosing state of battery
WO2022015116A1 (en) Battery management device and method
WO2021230639A1 (en) Charging depth configuration device and method
WO2021075771A1 (en) Device and method for estimating state of charge
WO2021080219A1 (en) Device and method for diagnosing degree of battery deterioration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867737

Country of ref document: EP

Kind code of ref document: A1