WO2021060467A1 - Method for producing megakaryocyte progenitor cell and megakaryocytic cell, and megakaryocyte progenitor cell and megakaryocytic cell obtained thereby - Google Patents

Method for producing megakaryocyte progenitor cell and megakaryocytic cell, and megakaryocyte progenitor cell and megakaryocytic cell obtained thereby Download PDF

Info

Publication number
WO2021060467A1
WO2021060467A1 PCT/JP2020/036272 JP2020036272W WO2021060467A1 WO 2021060467 A1 WO2021060467 A1 WO 2021060467A1 JP 2020036272 W JP2020036272 W JP 2020036272W WO 2021060467 A1 WO2021060467 A1 WO 2021060467A1
Authority
WO
WIPO (PCT)
Prior art keywords
megakaryocyte
cells
cell
gene
megakaryocyte progenitor
Prior art date
Application number
PCT/JP2020/036272
Other languages
French (fr)
Japanese (ja)
Inventor
啓光 中内
山崎 聡
清純 越智
素生 渡部
Original Assignee
国立大学法人東京大学
株式会社メガカリオン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 株式会社メガカリオン filed Critical 国立大学法人東京大学
Priority to JP2021549042A priority Critical patent/JPWO2021060467A1/ja
Publication of WO2021060467A1 publication Critical patent/WO2021060467A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a method for producing immortalized megakaryocyte progenitor cells and platelets from CD34-positive cells.
  • Platelet preparations are administered to patients with decreased platelets during bleeding such as surgery or injury. Platelet preparations are currently produced from blood obtained from blood donations. However, due to changes in the population composition, there is concern that the amount of blood donated will decrease and that platelet preparations will be in short supply. In addition, if the blood donor is infected with an infectious disease such as bacteria, the blood may be contaminated with bacteria, and therefore there is a risk of infectious disease due to administration of the platelet preparation contaminated with bacteria. Therefore, a method for producing platelets in vitro has been developed (Non-Patent Document 1).
  • Producing megakaryocyte cells from pluripotent stem cells such as ES cells and iPS cells that is, through differentiation from pluripotent stem cells to blood stem cells and further to megakaryocyte progenitor cells in vitro, mature megakaryocytes. It is possible to produce sphere cells (pluripotent megakaryocyte cells) (Patent Document 1). However, in these methods, in order to induce differentiation from pluripotent stem cells to megakaryocyte progenitor cells, selection of pluripotent stem cells, various growth factors, and the like are required, so that a large cost is required. In addition, since blood cells other than megakaryocytic cells are also contained in the early stage after induction of differentiation, a large culture period and amount are required for selection.
  • the present invention is a method for producing a megakaryocyte progenitor cell line capable of efficiently and stably producing mature megakaryocyte cells, and a method for producing megakaryocyte cells and platelets from the megakaryocyte progenitor cell line obtained by the production method. I will provide a.
  • the present inventors have established megakaryocyte progenitor cells and megakaryocytes and their immortalized cell lines by expressing and culturing the E6 gene and / or E7 gene of human papillomavirus in human bone marrow-derived hematopoietic stem cells. Successful.
  • the obtained megakaryocyte cells contained multinucleated megakaryocyte cells, and that the megakaryocyte cells formed platelet precursors.
  • the present application is based on these findings.
  • the present invention provides the following. (1) Megakaryocyte progenitor cells or megakaryocyte cells containing either or both of the E6 gene and the E7 gene. (2) The megakaryocyte progenitor cell or megakaryocyte cell according to (1) above, which has either or both of the E6 gene and the E7 gene on the genome. (3) The megakaryocyte progenitor cell according to (1) or (2) above, which is a mononuclear cell. (4) The megakaryocyte progenitor cell or megakaryocyte cell according to (1) above, which is an established megakaryocyte progenitor cell or megakaryocyte cell.
  • the megakaryocyte progenitor cell or megakaryocyte cell according to (3) above which is an established megakaryocyte progenitor cell or megakaryocyte cell.
  • megakaryocyte lineage cells eg, hematopoietic stem cells, hematopoietic progenitor cells or CD34 positive cells
  • a method comprising culturing the resulting cells in the presence of thrombopoietin (TPO).
  • TPO thrombopoietin
  • 7A A method for producing megakaryocyte precursor cells or megakaryocyte cells, in which megakaryocyte lineage cells having the E6 gene and / or the E7 gene (for example, hematopoietic stem cells, hematopoietic precursor cells or CD34-positive cells) are differentiated into megakaryocytes.
  • a method comprising culturing under suitable culturing conditions.
  • a method for producing a platelet preparation which is a method for producing a platelet preparation.
  • E6 and E7 genes Expressing one or both of the E6 and E7 genes in megakaryocyte lineage cells (eg, hematopoietic stem cells or hematopoietic progenitor cells)
  • the obtained cells were cultured in the presence of thrombopoietin (TPO) to obtain megakaryocyte cells, and platelets were recovered from the culture of megakaryocyte cells. Including methods.
  • (9A) A method for producing a platelet preparation, which comprises preparing a culture of megakaryocyte cells having an E6 gene and / or an E7 gene, and recovering platelets from the culture.
  • Method. (10) The method according to (9) or (9A) above, wherein the megakaryocyte cell is a cell in which the gene expression of the E6 gene and the E7 gene is suppressed.
  • a method for producing a megakaryocyte progenitor cell line capable of efficiently and stably producing megakaryocyte progenitor cells and a method for producing megakaryocyte cells and platelets from the megakaryocyte progenitor cell line obtained by the production method. It becomes possible to provide a method of doing so.
  • FIG. 1 shows the results of gene expression analysis of the culture of hematopoietic stem cells expressing the E6 protein and the E7 protein on the 21st day after virus removal (panel A) and the change in the number of CD41 cells after the start of the culture (panel B). ) Is shown.
  • E6-2A-E7 is simply referred to as “E6-E7”.
  • FIG. 2 shows the proportion of CD41-positive and CD42b-positive cells in the culture 70 days after virus removal.
  • FIG. 3 shows the proportion of CD41-positive and CD42b-positive cells in the culture 3 weeks after the introduction of the virus of hematopoietic stem cells expressing the E6 gene or the E7 gene alone (panel A) and either the E6 protein or the E7 protein.
  • the change (week) in the proportion (%) of the CD41-positive and CD42b-positive cells in the culture of the hematopoietic stem cells expressing both or both after the virus removal is shown.
  • FIG. 4 shows changes in the number of hematopoietic stem cells expressing either or both of the E6 gene and the E7 gene during culture.
  • FIG. 5 shows the proportion of PI-positive cells generated in hematopoietic stem cells expressing either or both of the E6 and E7 genes.
  • FIG. 6 shows the production of platelet precursors from immortalized megakaryocyte progenitor cells.
  • hematopoietic stem cell means a stem cell capable of differentiating into a blood lineage cell. It is known that hematopoietic stem cells usually do not have the ability to differentiate into cells other than the blood system. It is also known to have the ability to differentiate into all kinds of blood cells. "Hematopoietic stem cells” are also referred to as “blood stem cells”. Such “hematopoietic stem cells” are separated and recovered from tissues such as cord blood, peripheral blood, bone marrow, and fetal liver by a flow cytometry method or the like using an antibody that specifically binds to a surface antigen (CD34 or the like) of the hematopoietic stem cells. It is known that it is abundantly contained in the cell population. Further, in the present invention, “hematopoietic stem cells” can also be prepared by inducing differentiation from human pluripotent stem cells.
  • megakaryocytes are used in the sense of including mononuclear megakaryocytes and mature megakaryocytes that produce platelets.
  • mature megakaryocytes have chromosomes of 4N to 128N.
  • Mature megakaryocytes are derived from hematopoietic stem cells and become mature megakaryocytes via CD34-positive hematopoietic stem cells, hematopoietic progenitor cells, megakaryocyte blasts, and megakaryocyte progenitor cells (megakaryocyte lineage cells).
  • a megakaryocyte having a 2N chromosome before becoming a polyploid is referred to as a mononuclear megakaryocyte.
  • a megakaryocyte cell line it will be created from mononuclear megakaryocytes.
  • Mature megakaryocytes have the ability to produce platelets.
  • the "megakaryocyte progenitor cell” means a cell capable of differentiating into a mature megakaryocyte cell (that is, a multinucleated megakaryocyte cell). Megakaryocyte progenitor cells can be cells that have lost the ability to differentiate into blood lineage cells other than megakaryocytes.
  • the "megakaryocyte progenitor cell line” means an established megakaryocyte progenitor cell, and specifically, an immortalized megakaryocyte progenitor cell.
  • HPV human papillomavirus
  • HPV is one of the viruses belonging to the papillomavirus family, and is a virus that forms warts called papilloma (or papilloma).
  • HPV has E1 to E7 as early genes and L1 and L2 as late genes.
  • E6 and E7 are known as proteins involved in carcinogenesis (particularly cervical cancer carcinogenesis).
  • the E6 protein means an E6 protein of type 16 of HPV and an E6 protein having an amino acid sequence corresponding to the amino acid sequence of the protein.
  • the E7 protein means an E7 protein of type 16 of HPV and an E7 protein having an amino acid sequence corresponding to the amino acid sequence of the protein.
  • the "cell” is a mammalian cell, for example, a human cell. It is known that when cells are established, they repeat cell division indefinitely.
  • corresponding to a certain amino acid sequence means an ortholog of the amino acid sequence and a protein having the same functionality as the protein having the amino acid sequence.
  • the E6 protein and E7 protein have the same sequence as the above amino acid sequence, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more, respectively.
  • E6 and E7 proteins of sex may be included.
  • HPV human papillomavirus
  • E7 gene also referred to as an E7 gene
  • cells of the megakaryocyte lineage such as megakaryocyte progenitor cells and megakaryocyte cells are provided.
  • the HPV E6 gene is not particularly limited, but can be, for example, the 16-type HPV E6 gene (also referred to as “HPV-E6 gene”).
  • the E7 gene of HPV is not particularly limited, but for example, the E7 gene of type 16 HPV (also referred to as "HPV-E7 gene”; the E6 gene and E7 gene of type 16 HPV are collectively referred to as "HPV-E6 / E7 gene”. It can be said).
  • HPV-E6 / E7 gene is typically a protein consisting of the amino acid sequence set forth in SEQ ID NO: 1 (HPV-E6 protein) and a protein consisting of the amino acid sequence set forth in SEQ ID NO: 2 (HPV-E7). It can be a protein, eg, a nucleic acid encoding SEQ ID NO: 3).
  • the E6 gene and the E7 gene may be contained in separate nucleic acids (for example, DNA and RNA), but may be preferably contained in one nucleic acid. When the E6 gene and the E7 gene are contained in one nucleic acid, they may be polycistronicly contained in the nucleic acid or monocistronicly contained in the nucleic acid.
  • the nucleic acid containing the E6 gene and the E7 gene may contain a gene encoding a fusion protein of the E6 protein and the E7 protein (for example, a fusion protein linked with a 2A peptide).
  • the 2A peptide has a sequence having a length of about 20 amino acids derived from a virus, is recognized by a protease (2A peptidase) inherent in the cell, and is cleaved at one residue from the C-terminal thereof.
  • Examples of the 2A peptide include a 2A peptide having an amino acid sequence corresponding to the amino acid sequence shown in SEQ ID NO: 4, which can be used in the present invention.
  • the 2A peptide can be linked to a protein by interposing a spacer (for example, an amino acid sequence having a length of about 3 amino acids) before and after the spacer.
  • the E6 gene and / or the E7 gene may be contained in a gene expression vector for mammals, or may be contained on the genome of a cell.
  • Gene expression vectors include viral vectors (eg, lentivirus, retrovirus, herpesvirus, adenovirus, adeno-associated virus, and Sendaivirus) and plasmid vectors.
  • the gene expression vector may be integrated into the genome or present episomally in the cell.
  • an RNA viral vector such as Sendai virus, it can be removed by introducing a microRNA target sequence into the genome and introducing microRNA into infected cells of the virus.
  • the E6 gene and / or the E7 gene may be operably linked to an expression regulatory sequence (promoter) capable of expressing these genes in mammalian cells.
  • Promoters include promoters that result in constitutive expression and inducible promoters.
  • the inducible promoter for example, a promoter that activates transcription in response to an external stimulus can be used.
  • the external stimulus is a tetracycline antibiotic (tetracycline, doxycycline, etc.)
  • the tetracycline response can be used.
  • a promoter containing a factor (TRE) and a minimal promoter can be used.
  • a promoter containing a tetracycline response factor (TRE) and a minimal promoter is inactivated when a tetracycline antibiotic (tetracycline, doxycycline, etc.) binds in the presence of a tetracycline-regulated transactivator (tTA), and the tetracycline antibiotic It is activated when (tetracycline, doxycycline, etc.) comes off.
  • TRE tetracycline response factor
  • tTA tetracycline-regulated transactivator
  • a promoter containing a tetracycline response factor (TRE) and a minimal promoter is activated by binding to a tetracycline antibiotic (tetracycline, doxycycline, etc.) in the presence of a rivers tetracycline-regulated transactivator (rtTA), and is a tetracycline antibiotic. It is inactivated when antibiotics (tetracycline, doxycycline, etc.) are removed.
  • a tetracycline response factor tetracycline, doxycycline, etc.
  • the binding of the ecdysteroid with the ecdysone receptor-retinoid receptor complex causes the downstream gene.
  • ecdysteroids ecdysone, mristolone A, ponasterone A, etc.
  • the binding of the ecdysteroid with the ecdysone receptor-retinoid receptor complex causes the downstream gene. Examples include promoters capable of inducing expression.
  • the expression of downstream genes can be induced by binding FKCsA to the Gal4 DNA binding domain fused to FKBP12 and the VP16 activator domain complex fused to cyclophilin. Promoters can be mentioned.
  • megakaryocyte lineage cells examples include CD34-positive hematopoietic stem cells, hematopoietic progenitor cells, megakaryocyte progenitor cells, and megakaryocytes derived from hematopoietic stem cells.
  • the cells of the megakaryocyte lineage are cells selected from the group consisting of CD41-positive cells, von Willebrand factor (VMF) -positive cells, and CD41-positive and CD42b-positive cells (eg, megakaryocyte precursor cells, etc.). And can be a megakaryocyte).
  • Cells with a 2N karyotype are suitable for proliferation. Therefore, cells with a 2N karyotype can be preferably strained. Straining can be done by immortalizing the cells. Immortalization can be performed using conventional methods, for example, by introducing an immortalizing factor (eg, SV40 virus T antigen, telomere reverse transcriptase (TERT), etc.) into cells.
  • an immortalizing factor eg, SV40 virus T antigen, telomere reverse transcriptase (TERT), etc.
  • the megakaryocyte progenitor cells or megakaryocyte cells may be mononuclear.
  • Mononuclear megakaryocyte progenitor cells or mononuclear megakaryocyte cells or compositions containing them can be used, for example, to prepare working cell banks, ie, It can be used as a master cell bank for preparing a working cell bank.
  • a frozen megakaryocyte progenitor cell or megakaryocyte cell containing either or both of the E6 and E7 genes; and either or both of the E6 and E7 genes are present on the genome.
  • Megakaryocyte progenitor cells or frozen megakaryocyte cells are provided for use as a master cell bank.
  • a frozen megakaryocyte precursor cell or megakaryocyte cell containing either or both of the E6 and E7 genes; and either or both of the E6 and E7 genes are present on the genome.
  • Whether or not a cell has the E6 gene and / or the E7 gene can be detected by conventional methods (for example, PCR method, Southern blotting, and Northern blotting).
  • a nucleic acid eg, DNA or mRNA
  • HPV human papillomavirus
  • Cells eg, hematopoietic stem cells and hematopoietic progenitor cells
  • nucleic acids eg, DNA or mRNA
  • the hematopoietic stem cell can be a CD34 positive hematopoietic stem cell.
  • the DNA may contain an E6 gene and / or an E7 gene operably linked to an expression regulatory sequence (promoter).
  • a gene expression vector containing the E6 and / or E7 gene of human papillomavirus (HPV) operably linked to an inducible promoter is introduced into cells.
  • the external stimulus that activates the inducible promoter can be applied to the cells at any time (eg, before, during, or immediately after the introduction of the vector). In some embodiments, no external stimulus that activates the inducible promoter is added prior to vector introduction. In some embodiments, the external stimulus that activates the inducible promoter is added to the cells for a period of time after vector introduction, but may then be removed. Removal can be done before or after the desired cells (eg, megakaryocyte progenitor cells or megakaryocyte cells) are born.
  • desired cells eg, megakaryocyte progenitor cells or megakaryocyte cells
  • An expression cassette capable of inducing the expression of human papillomavirus (HPV) type 16 E6 gene and E7 gene (HPV-E6 / E7 gene) in response to external stimuli introduced into human hematopoietic stem cells ,
  • Inducible promoters eg, nucleic acids comprising a promoter capable of inducing the expression of a downstream gene in response to an external stimulus, the HPV-E6 / E7 gene whose expression is regulated by the promoter, and optionally a terminator. It is a structure.
  • the expression cassette may optionally contain a factor selected from the group consisting of enhancers, silencers, selectable marker genes (eg, drug resistance genes such as neomycin resistance genes), and the SV40 origin of replication. Further, a person skilled in the art can obtain a desired expression level by appropriately selecting and combining enhancers, silencers, selectable marker genes, terminators, etc. from known ones in consideration of the type of the promoter to be used.
  • An expression cassette capable of inducing the expression of the HPV-E6 / E7 gene can be constructed.
  • factors that induce the expression of the HPV-E6 / E7 gene in response to external stimuli for example, tetracycline transactivator, tetracycline repressor, ecdison receptor
  • an expression cassette capable of constitutively expressing the retinoid receptor complex, Gal4 DNA-binding domain fused to FKBP12-VP16 activator domain complex fused to cyclophyllin may also be introduced.
  • the method for introducing the expression cassette into hematopoietic stem cells is not particularly limited, and a known method can be appropriately selected and used.
  • the expression cassette is inserted into an appropriate expression vector, and the expression vector is introduced into cells by infection, lipofection method, liposome method, electroporation method, calcium phosphate co-precipitation method, DEAE dextran method, or microinjection method. Can be done.
  • expression vectors examples include viral vectors such as lentivirus, retrovirus, herpesvirus, adenovirus, adeno-associated virus, and Sendai virus, and animal cell expression plasmids, but blood stem cells having not very high proliferative activity.
  • viral vectors such as lentivirus, retrovirus, herpesvirus, adenovirus, adeno-associated virus, and Sendai virus
  • animal cell expression plasmids but blood stem cells having not very high proliferative activity.
  • a lentivirus can be preferably used from the viewpoint of extremely high efficiency of introduction into genomic DNA.
  • human blood stem cells into which the expression cassette has been introduced can then be cultured in the presence of the external stimulus and blood system growth factor.
  • the expression cassette according to the present invention is "a megakaryocyte precursor cell line into which an expression cassette capable of inducing the expression of human papillomavirus type 16 E6 gene and E7 gene in response to an external stimulus is introduced".
  • a megakaryocyte precursor cell line in which the expression cassette according to the present invention is incorporated into genomic DNA is preferable.
  • blood system growth factor means a factor that contributes to the induction of differentiation of blood stem cells into megakaryocyte progenitor cells or the proliferation of megakaryocyte progenitor cells.
  • blood growth factors include SCF and TPO.
  • the suitable addition concentration of SCF in the culture solution described later is 50 to 100 ng / ml, and the suitable addition concentration of TPO is 50 to 100 ng / ml.
  • the external stimulus a person skilled in the art can appropriately adjust the amount to be added to the medium described later in consideration of the type of the promoter to be used and the like.
  • the external stimulus is the presence of doxycycline (DOX)
  • DOX doxycycline
  • the preferred concentration of DOX added is 1-2 ⁇ g / ml.
  • Examples of the culture medium used for inducing differentiation into megakaryocyte progenitor cells and to which the external stimulus and the blood system growth factor are added include IMDM solution, ⁇ -MEM solution or DMEM solution, and further. , Fetal bovine serum (FBS), bovine serum albumin (BSA), human insulin, human transferrin, 2-mercaptoethanol, sodium selenate, ascorbic acid, alpha monothioglycerol, L-glutamine, SCF, TPO, FLT3, or induction External stimuli (eg, DOX) that actuate the sex promoter may be included.
  • FBS Fetal bovine serum
  • BSA bovine serum albumin
  • 2-mercaptoethanol sodium selenate
  • sodium selenate sodium selenate
  • ascorbic acid alpha monothioglycerol
  • SCF alpha monothioglycerol
  • SCF alpha monothioglycerol
  • TPO glutamine
  • FLT3 FLT3
  • the culture of megakaryocyte precursor cells was continued while exchanging the culture medium, and the culture period considered to be able to establish an immortalized cell line is preferably 3 months. It is judged to be an immortalized cell line when it can be cultured for 6 months or more.
  • the expression is performed before culturing in the presence of the external stimulus and the blood system growth factor.
  • the cassette may be cultured in the absence of the external stimulus and in the presence of blood growth factors for 1 to 7 days after introduction into the blood stem cells.
  • the culture conditions suitable for megakaryocyte differentiation can be conditions in the presence of factors selected from the group consisting of TPO, SCF and FLT3, eg, conditions in the presence of TPO. ..
  • DOX an external stimulus
  • the method for producing mature macronuclear cells of the present invention is used for inducing differentiation into mature macronuclear cells
  • examples of the medium include IMDM solution, ⁇ -MEM solution, and DMEM solution.
  • Inorganic salts or antibiotics may be added as needed.
  • an expression cassette capable of inducing the expression of human papillomavirus type 16 E6 and E7 genes in response to external stimuli has been introduced, the presence of external stimuli and blood growth factors.
  • a human megakaryocyte precursor cell line capable of producing megakaryocyte cells and platelets by growing underneath and culturing in the absence of the external stimulus is provided.
  • the expression cassette according to the present invention is "a megakaryocyte precursor cell line into which an expression cassette capable of inducing the expression of human papillomavirus type 16 E6 gene and E7 gene in response to an external stimulus is introduced".
  • a megakaryocyte precursor cell line in which the expression cassette according to the present invention is incorporated into genomic DNA is preferable.
  • the cells, culture medium and vector used for transformation in this example are as follows.
  • Human bone marrow-derived hematopoietic stem cells (CD34-positive cells) were purchased from Lonza.
  • ⁇ Vector> CSIV-TRE-RfA-UbC-to introduce the human papillomavirus-E6 / E7 (HPV-E6 / E7) gene and the gene encoding the tetracycline transactivator (rtTA) in the process of establishing a macronuclear cell precursor cell line.
  • HPV-E6 / E7 human papillomavirus-E6 / E7
  • rtTA tetracycline transactivator
  • Example 1 Induction of differentiation of hematopoietic stem cells into CD41-positive CD42b-positive megakaryocytes
  • the hematopoietic stem cells are CD41-positive and CD42b-positive cells (megakaryocytes) via CD41-positive cells (megakaryocyte progenitor cells) in the presence of TPO. It differentiates into cells).
  • CD41-positive and CD42b-positive cells megakaryocytes
  • CD41-positive cells megakaryocyte progenitor cells
  • Transtransferase 5 ng / ml sodium selenate; Sigma), 50 mg / ml ascorbic acid (Sigma), PSQ (100 units / ml penicillin, 100 mg / ml streptomycin, 2 mM L-glutamine; Invitrogen), 100 ng / ml
  • an IMDM (Sigma) culture solution containing recombinant human SCF, 100 ng / ml recombinant human TPO, and 100 ng / ml recombinant human FLT3, the mixture was cultured for 48 hours.
  • CSIV incorporating a gene (E6-2A-E7) encoding a fusion protein in which the E6 protein and E7 protein of papillomavirus were ligated into the human bone marrow-derived hematopoietic stem cells (CD34-positive cells) via a 2A peptide.
  • the E6 and E7 genes can be artificially induced to be expressed in the presence of doxycycline (DOX), and the expression of the E6 and E7 genes can be suppressed in the absence of DOX. ..
  • DOX doxycycline
  • the wrench virus was incorporated into the lentivirus so that it can express GFP so that it expresses GFP when it infects cells.
  • DOX was added at the same time as the first wrench virus infection, and the medium was replaced with fresh medium 24 hours and 48 hours after the second infection. By this medium exchange, the lentivirus in the medium was removed.
  • Flow cytometry Cells were stained with a monoclonal antibody for 30 minutes on ice. Cell numbers were the 1 ⁇ 10 6 or less in the staining solution of 100 [mu] l. After staining, it was washed twice with a staining solution containing no antibody, and then measured using a FACS analyzer (BD). Antibodies to human antigens were labeled with fluorescein isothiocyanate (FITC), Alexa Fluor 488 (Alexa 488) or allophycocyanin (APC). CD34, CD36, CD41, and CD42b were labeled with FITC, and CD11b was labeled with Alexa488.
  • FITC fluorescein isothiocyanate
  • Alexa 488 Alexa Fluor 488
  • APC allophycocyanin
  • CD33, CD45, c-KIT were labeled with APC. These labeled antibodies were purchased from BD Biosciences. Cell viability was measured by Propidium Iodide (PI) staining. PI-positive cells were excluded as dead cells, and PI-negative cells were analyzed using CellQuest analysis software.
  • PI Propidium Iodide
  • Fig. 1 The results were as shown in Fig. 1.
  • panel A of FIG. 1 the cells cultured under the above conditions continued cell division satisfactorily even after culturing for 20 days after virus removal, GFP-positive cells were present, and the cells were present. Half of the GFP-positive cells were CD41-positive. In addition, when the culture was continued for several more days, almost all GFP-positive cells changed to CD41-positive cells.
  • Panel B of FIG. 1 the efficiency of cell proliferation changed depending on the concentration of SCF in the medium. Therefore, the cells obtained above were CD41 positive. It was suggested that the cells were.
  • CD41-positive cells are the phenotype of megakaryocyte progenitor cells. Therefore, in this example, it was suggested that CD41-positive megakaryocyte progenitor cells were obtained.
  • the E6 and E7 genes were independently introduced into bone marrow-derived CD34-positive cells, and changes in the expression of surface markers CD41 and CD42b-positive cells after long-term culture were examined. As shown in panel A of FIG. 3, even in the single expression of either the E6 gene or the E7 gene, CD41-positive and CD42b-positive cells could be confirmed 3 weeks after the gene transfer. As shown in panel B of FIG. 3, the peak time of CD41 and CD42b-positive cells was 4 weeks after gene transfer (2 weeks after DOX removal).
  • the cells were cultured in the presence of 100 ng / ml) and TPO (100 ng / ml), and the proportion of cells in the culture was measured after the lapse of a specified number of days.
  • the results were as shown in panel B of FIG. As shown in panel B of FIG. 3, an increase in the number of cells was observed in the gene transfer group of E6 alone or E7 alone and the co-expression group of E6 and E7.
  • the group expressing the E6-2A-E7 gene nearly 50% of the co-positive cells of CD42b and CD41 could be maintained even after 10 weeks.
  • GFP, E6, E7, or after infection with lentivirus containing E6-2A-E7 were cultured cells as 10 three the number of GFP-positive cells in Day 0, cell numbers were determined by cell counter. The results were as shown in FIG. As shown in FIG. 4, in the gene transfer group of E6 alone or E7 alone, a long-term increase in the number of cells was observed as compared with the control (GFP) group, but it took more than 3 weeks for the cells to proliferate. did. On the other hand, in the group expressing the E6-2A-E7 gene, the period until the increase in the number of cells was very short as compared with all the groups.
  • the mortality rate of CD34-positive cells infected with lentivirus containing GFP only, GFP and E6, GFP and E7 or GFP and E6-2A-E7 was defined as the ratio of PI-positive cells, and 14 days after culturing, using a flow cytometer. It was measured. In the gene transfer group of E6 alone or E7 alone, similar PI-positive cells could be confirmed as compared with the control (GFP) group. However, in the group in which the E6-2A-E7 gene was expressed, the number of PI-positive cells decreased as compared with all the groups.
  • Example 2 Analysis of platelet precursor release CD41-positive CD42b-positive megakaryocyte progenitor cells expressing E6 and E7 were subcultured, and the subculture was performed for 1 month or longer to immortalize the CD41. Positive CD42b-positive megakaryocyte progenitor cells were obtained. Immortalized macronuclear progenitor cells (5 ⁇ 10 6 cells) were cultured for 20 days, washed with phosphate buffer (PBS), transferred to a culture dish coated with fibronectin, cultured for 3 days, stained with CD41 antibody, and microscopically stained. Measured below.
  • PBS phosphate buffer
  • SEQ ID NO: 1 An example of the amino acid sequence of HPV 16 type E6 protein MFQDTEEKPRTLHDLCQUARETTIHNIELQCVECKPLQRSEVYDFAFADLTVVYREGNPFGICKLCLLRFLSKISEYRHYNYSVYGNTLEQTVKPRIRKPRIrk
  • SEQ ID NO: 2 An example of the amino acid sequence of HPV 16 type E7 protein MRGHKPTLKEYVLDLYPEPTDLYCYEQLSDSDEDEGLDRPDGQAQPATADYYIVTCCHTCNTTVRLLCVNSTASDLRTIQQLLMGTVNIVCPTCAQQ
  • SEQ ID NO: 3 An example of the amino acid sequence of the fusion protein of E7 protein and E6 protein of HPV 16 type MHGDTPTLHEYMLDLQPETTDLYCYEQLNDSSEEEDEIDGPAGQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIRTLEDLLMGTLGIVCPICSQKPGSGATNFSL

Abstract

The present invention provides a megakaryocyte progenitor cell and a megakaryocytic cell, and a method for producing the same. Specifically, the present invention provides: a megakaryocyte progenitor cell or a megakaryocytic cell containing papillomavirus E6 genes and/or E7 genes; and a method for producing the same.

Description

巨核球前駆細胞および巨核球細胞の製造方法並びに得られた巨核球前駆細胞および巨核球細胞Method for producing megakaryocyte progenitor cells and megakaryocyte cells and the obtained megakaryocyte progenitor cells and megakaryocyte cells
 本発明は、CD34陽性細胞から不死化した巨核球前駆細胞および血小板を製造する方法に関する。 The present invention relates to a method for producing immortalized megakaryocyte progenitor cells and platelets from CD34-positive cells.
 血小板製剤は、手術、傷害等の出血時、その他血小板の減少を伴う患者に対して投与される。血小板製剤は、献血で得られた血液から現在製造されている。しかしながら、人口構成の変化から、献血量が低減し、血小板製剤が不足することが懸念されている。
 また、献血の提供者が細菌等の感染症に罹患している場合、血液が細菌汚染されている可能性があるため、細菌汚染された血小板製剤の投与による感染症のリスクがある。このため、in vitroで血小板を製造する方法が開発されている(非特許文献1)。
Platelet preparations are administered to patients with decreased platelets during bleeding such as surgery or injury. Platelet preparations are currently produced from blood obtained from blood donations. However, due to changes in the population composition, there is concern that the amount of blood donated will decrease and that platelet preparations will be in short supply.
In addition, if the blood donor is infected with an infectious disease such as bacteria, the blood may be contaminated with bacteria, and therefore there is a risk of infectious disease due to administration of the platelet preparation contaminated with bacteria. Therefore, a method for producing platelets in vitro has been developed (Non-Patent Document 1).
 ES細胞やiPS細胞等の多能性幹細胞から巨核球細胞を生産すること、すなわち、in vitroにて多能性幹細胞から血液幹細胞に、さらに巨核球前駆細胞への分化を介して、成熟した巨核球細胞(多核化巨核球細胞)を生産することは可能となっている(特許文献1)。しかしながら、これらの方法において、多能性幹細胞から巨核球前駆細胞までに分化誘導するためには、多能性幹細胞の選別や多種の増殖因子等を必要とするため、大きなコストが必要となる。また、分化誘導後初期には巨核球系以外の血液系細胞も含まれているため、選別に多くの培養期間・培養量を必要とする。 Producing megakaryocyte cells from pluripotent stem cells such as ES cells and iPS cells, that is, through differentiation from pluripotent stem cells to blood stem cells and further to megakaryocyte progenitor cells in vitro, mature megakaryocytes. It is possible to produce sphere cells (pluripotent megakaryocyte cells) (Patent Document 1). However, in these methods, in order to induce differentiation from pluripotent stem cells to megakaryocyte progenitor cells, selection of pluripotent stem cells, various growth factors, and the like are required, so that a large cost is required. In addition, since blood cells other than megakaryocytic cells are also contained in the early stage after induction of differentiation, a large culture period and amount are required for selection.
WO2012/157586WO2012 / 157586
 本発明は、成熟巨核球細胞を効率よく安定的に生産することができる巨核球前駆細胞株の製造方法、並びに該製造方法によって得られる巨核球前駆細胞株から巨核球細胞及び血小板を製造する方法を提供する。 The present invention is a method for producing a megakaryocyte progenitor cell line capable of efficiently and stably producing mature megakaryocyte cells, and a method for producing megakaryocyte cells and platelets from the megakaryocyte progenitor cell line obtained by the production method. I will provide a.
 本発明者らは、ヒト骨髄由来造血幹細胞にヒトパピローマウィルスのE6遺伝子および/またはE7遺伝子を発現させて培養することにより、巨核球前駆細胞および巨核球並びにこれらの不死化細胞株を樹立することに成功した。 The present inventors have established megakaryocyte progenitor cells and megakaryocytes and their immortalized cell lines by expressing and culturing the E6 gene and / or E7 gene of human papillomavirus in human bone marrow-derived hematopoietic stem cells. Successful.
 次に、得られた細胞の成熟した巨核球細胞への分化誘導を試みた。その結果、得られた巨核球細胞には多核化巨核球細胞が含有されており、さらには巨核球細胞は、血小板前駆体を形成していることを見出した。本願はこれらの知見に基づくものである。 Next, we attempted to induce the differentiation of the obtained cells into mature megakaryocyte cells. As a result, it was found that the obtained megakaryocyte cells contained multinucleated megakaryocyte cells, and that the megakaryocyte cells formed platelet precursors. The present application is based on these findings.
 すなわち、本発明は以下を提供する。
(1)E6遺伝子およびE7遺伝子のいずれかまたは両方を含む、巨核球前駆細胞または巨核球細胞。
(2)前記E6遺伝子およびE7遺伝子のいずれかまたは両方をゲノム上に有する、上記(1)に記載の巨核球前駆細胞または巨核球細胞。
(3)単核である、上記(1)または(2)に記載の巨核球前駆細胞。
(4)上記(1)に記載の巨核球前駆細胞または巨核球細胞であって、株化された巨核球前駆細胞または巨核球細胞。
(5)上記(3)に記載の巨核球前駆細胞または巨核球細胞であって、株化された巨核球前駆細胞または巨核球細胞。
(6)上記(4)に記載の巨核球前駆細胞若しくは巨核球細胞または上記(5)に記載の巨核球前駆細胞若しくは巨核球細胞の凍結物。
(7)巨核球前駆細胞または巨核球細胞の製造方法であって、
 巨核球系列の細胞(例えば、造血幹細胞、造血前駆細胞またはCD34陽性細胞)にE6遺伝子およびE7遺伝子のいずれかまたは両方を発現させることと、
 得られた細胞をトロンボポイエチン(TPO)の存在下で培養することと
を含む、方法。
(7A)巨核球前駆細胞または巨核球細胞の製造方法であって、E6遺伝子および/またはE7遺伝子を有する巨核球系列の細胞(例えば、造血幹細胞、造血前駆細胞またはCD34陽性細胞)を巨核球分化に適した培養条件下で培養することを含む、方法。
(8)培養が、TPO、幹細胞因子(SCF)およびfms関連チロシンキナーゼ3(FLT3)存在下で行われる、上記(7)または(7A)に記載の方法。
(9)血小板製剤の製造方法であって、
 巨核球系列の細胞(例えば、造血幹細胞または造血前駆細胞)にE6遺伝子およびE7遺伝子のいずれかまたは両方を発現させることと、
 得られた細胞をトロンボポイエチン(TPO)の存在下で培養して巨核球細胞を得て、巨核球細胞の培養物から血小板を回収することと、
を含む、方法。
(9A)血小板製剤の製造方法であって、E6遺伝子および/またはE7遺伝子を有する巨核球細胞の培養物を用意することと、当該培養物から血小板を回収することとを含む、
方法。
(10)巨核球細胞が、E6遺伝子およびE7遺伝子の遺伝子発現が抑制された細胞である、上記(9)または(9A)に記載の方法。
That is, the present invention provides the following.
(1) Megakaryocyte progenitor cells or megakaryocyte cells containing either or both of the E6 gene and the E7 gene.
(2) The megakaryocyte progenitor cell or megakaryocyte cell according to (1) above, which has either or both of the E6 gene and the E7 gene on the genome.
(3) The megakaryocyte progenitor cell according to (1) or (2) above, which is a mononuclear cell.
(4) The megakaryocyte progenitor cell or megakaryocyte cell according to (1) above, which is an established megakaryocyte progenitor cell or megakaryocyte cell.
(5) The megakaryocyte progenitor cell or megakaryocyte cell according to (3) above, which is an established megakaryocyte progenitor cell or megakaryocyte cell.
(6) A frozen product of the megakaryocyte progenitor cell or megakaryocyte cell according to (4) above or the megakaryocyte progenitor cell or megakaryocyte cell according to (5) above.
(7) A method for producing megakaryocyte progenitor cells or megakaryocyte cells.
Expressing either or both of the E6 and E7 genes in megakaryocyte lineage cells (eg, hematopoietic stem cells, hematopoietic progenitor cells or CD34 positive cells)
A method comprising culturing the resulting cells in the presence of thrombopoietin (TPO).
(7A) A method for producing megakaryocyte precursor cells or megakaryocyte cells, in which megakaryocyte lineage cells having the E6 gene and / or the E7 gene (for example, hematopoietic stem cells, hematopoietic precursor cells or CD34-positive cells) are differentiated into megakaryocytes. A method comprising culturing under suitable culturing conditions.
(8) The method according to (7) or (7A) above, wherein the culture is carried out in the presence of TPO, stem cell factor (SCF) and fms-related tyrosine kinase 3 (FLT3).
(9) A method for producing a platelet preparation, which is a method for producing a platelet preparation.
Expressing one or both of the E6 and E7 genes in megakaryocyte lineage cells (eg, hematopoietic stem cells or hematopoietic progenitor cells)
The obtained cells were cultured in the presence of thrombopoietin (TPO) to obtain megakaryocyte cells, and platelets were recovered from the culture of megakaryocyte cells.
Including methods.
(9A) A method for producing a platelet preparation, which comprises preparing a culture of megakaryocyte cells having an E6 gene and / or an E7 gene, and recovering platelets from the culture.
Method.
(10) The method according to (9) or (9A) above, wherein the megakaryocyte cell is a cell in which the gene expression of the E6 gene and the E7 gene is suppressed.
 本発明によれば、巨核球前駆細胞を効率よく安定的に生産することができる巨核球前駆細胞株の製造方法、並びに該製造方法によって得られる巨核球前駆細胞株から巨核球細胞および血小板を製造する方法を提供することが可能となる。 According to the present invention, a method for producing a megakaryocyte progenitor cell line capable of efficiently and stably producing megakaryocyte progenitor cells, and a method for producing megakaryocyte cells and platelets from the megakaryocyte progenitor cell line obtained by the production method. It becomes possible to provide a method of doing so.
図1は、E6タンパク質とE7タンパク質とを発現させた造血幹細胞のウイルス除去後21日目の培養物の遺伝子発現解析の結果(パネルA)および上記培養開始後のCD41細胞数の変化(パネルB)を示す。以下、図中では、「E6-2A-E7」を単に「E6-E7」と表記する。FIG. 1 shows the results of gene expression analysis of the culture of hematopoietic stem cells expressing the E6 protein and the E7 protein on the 21st day after virus removal (panel A) and the change in the number of CD41 cells after the start of the culture (panel B). ) Is shown. Hereinafter, in the figure, "E6-2A-E7" is simply referred to as "E6-E7". 図2は、ウイルス除去後70日目の培養物中のCD41陽性かつCD42b陽性細胞の割合を示す。FIG. 2 shows the proportion of CD41-positive and CD42b-positive cells in the culture 70 days after virus removal. 図3は、E6遺伝子またはE7遺伝子を単独で発現させた造血幹細胞のウイルスの導入3週間後の培養物中のCD41陽性かつCD42b陽性細胞の割合(パネルA)およびE6タンパク質とE7タンパク質のいずれかまたは両方を発現させた造血幹細胞のウイルス除去後のCD41陽性かつCD42b陽性細胞の培養物中に占める割合(%)の変化(週)を示す。FIG. 3 shows the proportion of CD41-positive and CD42b-positive cells in the culture 3 weeks after the introduction of the virus of hematopoietic stem cells expressing the E6 gene or the E7 gene alone (panel A) and either the E6 protein or the E7 protein. The change (week) in the proportion (%) of the CD41-positive and CD42b-positive cells in the culture of the hematopoietic stem cells expressing both or both after the virus removal is shown. 図4は、E6遺伝子およびE7遺伝子のいずれかまたは両方を発現させた造血幹細胞の培養中の細胞数の推移を示す。FIG. 4 shows changes in the number of hematopoietic stem cells expressing either or both of the E6 gene and the E7 gene during culture. 図5は、E6遺伝子およびE7遺伝子のいずれかまたは両方を発現させた造血幹細胞において生じるPI陽性細胞の割合を示す。FIG. 5 shows the proportion of PI-positive cells generated in hematopoietic stem cells expressing either or both of the E6 and E7 genes. 図6は、不死化した巨核球前駆細胞からの血小板前駆体の産生を示す。FIG. 6 shows the production of platelet precursors from immortalized megakaryocyte progenitor cells.
発明の具体的な説明Specific description of the invention
 本明細書では、「造血幹細胞」とは、血液系細胞への分化能を有する幹細胞を意味する。造血幹細胞は、通常は血液系以外の細胞への分化能を有しないことが知られている。また、ありとあらゆる血液系細胞への分化能を有することが知られている。「造血幹細胞」は、「血液幹細胞」とも称される。かかる「造血幹細胞」は、臍帯血、末梢血、骨髄、および胎児肝臓等の組織から、造血幹細胞の表面抗原(CD34等)に特異的に結合する抗体を用いてフローサイトメトリー法等により分離回収した細胞集団中に豊富に含まれていることが知られている。また、本発明において「造血幹細胞」は、ヒト多能性幹細胞から分化誘導することにより調製することもできる。 In the present specification, "hematopoietic stem cell" means a stem cell capable of differentiating into a blood lineage cell. It is known that hematopoietic stem cells usually do not have the ability to differentiate into cells other than the blood system. It is also known to have the ability to differentiate into all kinds of blood cells. "Hematopoietic stem cells" are also referred to as "blood stem cells". Such "hematopoietic stem cells" are separated and recovered from tissues such as cord blood, peripheral blood, bone marrow, and fetal liver by a flow cytometry method or the like using an antibody that specifically binds to a surface antigen (CD34 or the like) of the hematopoietic stem cells. It is known that it is abundantly contained in the cell population. Further, in the present invention, "hematopoietic stem cells" can also be prepared by inducing differentiation from human pluripotent stem cells.
 本明細書では、「巨核球」とは、単核巨核球および血小板を産生する成熟巨核球を含む意味で用いられる。巨核球のうち、成熟巨核球は、4Nから128Nの染色体を有する。成熟巨核球は、造血幹細胞に由来し、CD34陽性造血幹細胞、造血前駆細胞、巨核芽球、および巨核球前駆細胞(巨核球系列の細胞)を経て、成熟巨核球となる。本明細書では、倍数体になる前の2Nの染色体を有する巨核球を単核巨核球という。巨核球の細胞株を作成する場合には、単核巨核球から作成することになる。成熟巨核球は、血小板の産生能力を有する。 In the present specification, "megakaryocytes" are used in the sense of including mononuclear megakaryocytes and mature megakaryocytes that produce platelets. Of the megakaryocytes, mature megakaryocytes have chromosomes of 4N to 128N. Mature megakaryocytes are derived from hematopoietic stem cells and become mature megakaryocytes via CD34-positive hematopoietic stem cells, hematopoietic progenitor cells, megakaryocyte blasts, and megakaryocyte progenitor cells (megakaryocyte lineage cells). In the present specification, a megakaryocyte having a 2N chromosome before becoming a polyploid is referred to as a mononuclear megakaryocyte. When creating a megakaryocyte cell line, it will be created from mononuclear megakaryocytes. Mature megakaryocytes have the ability to produce platelets.
 本発明では、「巨核球前駆細胞」とは、成熟巨核球細胞(すなわち、多核化した巨核球細胞)への分化能を有する細胞を意味する。巨核球前駆細胞は、巨核球以外の血液系細胞への分化能を喪失している細胞であり得る。また、「巨核球前駆細胞株」とは、株化された巨核球前駆細胞を意味し、具体的には、不死化した巨核球前駆細胞のことを意味する。 In the present invention, the "megakaryocyte progenitor cell" means a cell capable of differentiating into a mature megakaryocyte cell (that is, a multinucleated megakaryocyte cell). Megakaryocyte progenitor cells can be cells that have lost the ability to differentiate into blood lineage cells other than megakaryocytes. In addition, the "megakaryocyte progenitor cell line" means an established megakaryocyte progenitor cell, and specifically, an immortalized megakaryocyte progenitor cell.
 本明細書では、「ヒトパピローマウイルス」(HPV)とは、パピローマウイルス科に属するウイルスの一つであり、パピローマ(または乳頭腫)と呼ばれるイボを形成させるウイルスである。HPVは、初期遺伝子としてE1~E7を有し、後期遺伝子としてL1およびL2を有する。E6およびE7は、発がん(特に子宮頸がんの発がん)に関与するタンパク質として知られている。本明細書では、E6タンパク質は、HPVの16型のE6タンパク質および当該タンパク質が有するアミノ酸配列に対応するアミノ酸配列を有するE6タンパク質を意味する。本明細書では、E7タンパク質は、HPVの16型のE7タンパク質および当該タンパク質が有するアミノ酸配列に対応するアミノ酸配列を有するE7タンパク質を意味する。 In the present specification, "human papillomavirus" (HPV) is one of the viruses belonging to the papillomavirus family, and is a virus that forms warts called papilloma (or papilloma). HPV has E1 to E7 as early genes and L1 and L2 as late genes. E6 and E7 are known as proteins involved in carcinogenesis (particularly cervical cancer carcinogenesis). As used herein, the E6 protein means an E6 protein of type 16 of HPV and an E6 protein having an amino acid sequence corresponding to the amino acid sequence of the protein. As used herein, the E7 protein means an E7 protein of type 16 of HPV and an E7 protein having an amino acid sequence corresponding to the amino acid sequence of the protein.
 本明細書では、「細胞」は、哺乳動物の細胞であり、例えば、ヒト細胞であり得る。細胞は株化されると、無制限に細胞分裂を繰り返すようになることが知られている。 In the present specification, the "cell" is a mammalian cell, for example, a human cell. It is known that when cells are established, they repeat cell division indefinitely.
 本明細書では、「あるアミノ酸配列に対応する」とは、当該アミノ酸配列のオーソログであって、当該アミノ酸配列を有するタンパク質と同質の機能性を有するタンパク質をいう。E6タンパク質およびE7タンパク質としてはそれぞれ、例えば、上記アミノ酸配列と80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、または99%以上の配列同一性を有するE6タンパク質およびE7タンパク質が含まれ得る。配列同一性は、例えば、NEEDLE program (Journal of Molecular Biology、1970、Vol.48、p.443-453)検索によりデフォルトで用意されているパラメータを用いて得られた値Identityを意味し得る。前記のパラメータは以下の通りであり得る。Gap penalty = 10、Extend penalty = 0.5、およびMatrix = EBLOSUM62。 In the present specification, "corresponding to a certain amino acid sequence" means an ortholog of the amino acid sequence and a protein having the same functionality as the protein having the amino acid sequence. The E6 protein and E7 protein have the same sequence as the above amino acid sequence, for example, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more, respectively. E6 and E7 proteins of sex may be included. The sequence identity can mean, for example, the value Identity obtained by using the parameters prepared by default by the NEEDLE program (Journal of Molecular Biology, 1970, Vol. 48, p. 443-453). The above parameters can be: Gap penalty = 10, Extended penalty = 0.5, and Matrix = EBLOSUM62.
<巨核球前駆細胞および巨核球細胞>
 本発明では、ヒトパピローマウイルス(HPV)のE6タンパク質をコードする遺伝子(E6遺伝子ともいう)およびE7タンパク質をコードする遺伝子(E7遺伝子ともいう)からなる群から選択される少なくとも1つを有する、細胞(例えば、巨核球系列の細胞、例えば、巨核球前駆細胞および巨核球細胞)が提供される。
<Megakaryocyte progenitor cells and megakaryocyte cells>
In the present invention, a cell having at least one selected from the group consisting of a gene encoding the E6 protein of human papillomavirus (HPV) (also referred to as the E6 gene) and a gene encoding the E7 protein (also referred to as the E7 gene) (also referred to as an E7 gene). For example, cells of the megakaryocyte lineage, such as megakaryocyte progenitor cells and megakaryocyte cells) are provided.
 HPVのE6遺伝子は、特に限定されないが、例えば、16型HPVのE6遺伝子(「HPV-E6遺伝子」ともいう)とすることができる。HPVのE7遺伝子は、特に限定されないが、例えば、16型HPVのE7遺伝子(「HPV-E7遺伝子」ともいう;16型HPVのE6遺伝子およびE7遺伝子を併せて「HPV-E6/E7遺伝子」ともいう)とすることができる。 The HPV E6 gene is not particularly limited, but can be, for example, the 16-type HPV E6 gene (also referred to as “HPV-E6 gene”). The E7 gene of HPV is not particularly limited, but for example, the E7 gene of type 16 HPV (also referred to as "HPV-E7 gene"; the E6 gene and E7 gene of type 16 HPV are collectively referred to as "HPV-E6 / E7 gene". It can be said).
 「HPV-E6/E7遺伝子」は、典型的には、配列番号:1に記載のアミノ酸配列からなるタンパク質(HPV-E6タンパク質)及び配列番号:2に記載のアミノ酸配列からなるタンパク質(HPV-E7タンパク質、例えば、配列番号:3)をコードする核酸であり得る。 The "HPV-E6 / E7 gene" is typically a protein consisting of the amino acid sequence set forth in SEQ ID NO: 1 (HPV-E6 protein) and a protein consisting of the amino acid sequence set forth in SEQ ID NO: 2 (HPV-E7). It can be a protein, eg, a nucleic acid encoding SEQ ID NO: 3).
 E6遺伝子およびE7遺伝子は、別々の核酸(例えば、DNAおよびRNA)に含まれていてもよいが、好ましくは1つの核酸に含まれていてもよい。E6遺伝子およびE7遺伝子が1つの核酸に含まれている場合には、ポリシストロニックに核酸に含まれていてもよいし、モノシストロニックに核酸に含まれていてもよい。E6遺伝子およびE7遺伝子を含む核酸は、E6タンパク質とE7タンパク質との融合タンパク質(例えば、2Aペプチドで連結した融合タンパク質)をコードする遺伝子を含んでいてもよい。2Aペプチドは、ウイルス由来の20アミノ酸前後の長さを有する配列を有し、細胞に内在するプロテアーゼ(2Aペプチダーゼ)によって認識されて、そのC末端から1残基の箇所で切断されることが知られている。2Aペプチドとしては、例えば配列番号4に記載のアミノ酸配列に対応するアミノ酸配列を有する2Aペプチドが挙げられ、本発明で用いることができる。2Aペプチドは、その前後にスペーサー(例えば、3アミノ酸長程度のアミノ酸配列)を介在させ、タンパク質と連結させることができる。 The E6 gene and the E7 gene may be contained in separate nucleic acids (for example, DNA and RNA), but may be preferably contained in one nucleic acid. When the E6 gene and the E7 gene are contained in one nucleic acid, they may be polycistronicly contained in the nucleic acid or monocistronicly contained in the nucleic acid. The nucleic acid containing the E6 gene and the E7 gene may contain a gene encoding a fusion protein of the E6 protein and the E7 protein (for example, a fusion protein linked with a 2A peptide). It is known that the 2A peptide has a sequence having a length of about 20 amino acids derived from a virus, is recognized by a protease (2A peptidase) inherent in the cell, and is cleaved at one residue from the C-terminal thereof. Has been done. Examples of the 2A peptide include a 2A peptide having an amino acid sequence corresponding to the amino acid sequence shown in SEQ ID NO: 4, which can be used in the present invention. The 2A peptide can be linked to a protein by interposing a spacer (for example, an amino acid sequence having a length of about 3 amino acids) before and after the spacer.
 E6遺伝子および/またはE7遺伝子は、哺乳動物用の遺伝子発現ベクターに含まれてていてもよいし、細胞のゲノム上に含まれていてもよい。遺伝子発現ベクターとしては、ウイルスベクター(例えば、レンチウイルス、レトロウイルス、ヘルペスウイルス、アデノウイルス、アデノ随伴ウイルス、およびセンダイウイルス)およびプラスミドベクターが挙げられる。遺伝子発現ベクターは、細胞内では、ゲノムにインテグレートしていてもよいし、エピゾーマルに存在していてもよい。センダイウイルスなどのRNAウイルスベクターの場合は、マイクロRNA標的配列をゲノムに導入し、当該ウイルスの感染細胞にマイクロRNAを導入することによって除去することができる。 The E6 gene and / or the E7 gene may be contained in a gene expression vector for mammals, or may be contained on the genome of a cell. Gene expression vectors include viral vectors (eg, lentivirus, retrovirus, herpesvirus, adenovirus, adeno-associated virus, and Sendaivirus) and plasmid vectors. The gene expression vector may be integrated into the genome or present episomally in the cell. In the case of an RNA viral vector such as Sendai virus, it can be removed by introducing a microRNA target sequence into the genome and introducing microRNA into infected cells of the virus.
 E6遺伝子および/またはE7遺伝子は、哺乳動物細胞内でこれらの遺伝子を発現させることができる発現調節配列(プロモーター)に作動可能に連結していてもよい。プロモーターとしては、構成的発現をもたらすプロモーターおよび誘導性プロモーターが挙げられる。誘導性プロモーターとしては、例えば、外部刺激に応答して転写を活性化させるプロモーターを用いることができ、例えば、外的刺激がテトラサイクリン系抗生物質(テトラサイクリン、ドキシサイクリン等)である場合には、テトラサイクリン応答因子(TRE)と最小プロモーターを含むプロモーターを用いることができる。テトラサイクリン応答因子(TRE)と最小プロモーターを含むプロモーターは、テトラサイクリン調節性トランス活性化因子(tTA)の存在下において、テトラサイクリン系抗生物質(テトラサイクリン、ドキシサイクリン等)が結合すると不活性化し、テトラサイクリン系抗生物質(テトラサイクリン、ドキシサイクリン等)が外れると活性化する。また、テトラサイクリン応答因子(TRE)と最小プロモーターを含むプロモーターは、リバーズテトラサイクリン調節性トランス活性化因子(rtTA)の存在下において、テトラサイクリン系抗生物質(テトラサイクリン、ドキシサイクリン等)と結合すると活性化し、テトラサイクリン系抗生物質(テトラサイクリン、ドキシサイクリン等)が外れると不活性化する。また、外的刺激がエクジステロイド(エクジソン、ムリステロンA、ポナステロンA等)の存在である場合には、エクジステロイドと、エクジソン受容体-レチノイド受容体複合体との結合によって、下流の遺伝子の発現を誘導できるプロモーターが挙げられる。さらに、外的刺激がFKCsAの存在である場合には、FKCsAと、FKBP12に融合したGal4 DNA結合ドメイン-シクロフィリンに融合したVP16アクチベータードメイン複合体との結合によって、下流の遺伝子の発現を誘導できるプロモーターが挙げられる。 The E6 gene and / or the E7 gene may be operably linked to an expression regulatory sequence (promoter) capable of expressing these genes in mammalian cells. Promoters include promoters that result in constitutive expression and inducible promoters. As the inducible promoter, for example, a promoter that activates transcription in response to an external stimulus can be used. For example, when the external stimulus is a tetracycline antibiotic (tetracycline, doxycycline, etc.), the tetracycline response. A promoter containing a factor (TRE) and a minimal promoter can be used. A promoter containing a tetracycline response factor (TRE) and a minimal promoter is inactivated when a tetracycline antibiotic (tetracycline, doxycycline, etc.) binds in the presence of a tetracycline-regulated transactivator (tTA), and the tetracycline antibiotic It is activated when (tetracycline, doxycycline, etc.) comes off. In addition, a promoter containing a tetracycline response factor (TRE) and a minimal promoter is activated by binding to a tetracycline antibiotic (tetracycline, doxycycline, etc.) in the presence of a rivers tetracycline-regulated transactivator (rtTA), and is a tetracycline antibiotic. It is inactivated when antibiotics (tetracycline, doxycycline, etc.) are removed. In addition, when the external stimulus is the presence of ecdysteroids (ecdysone, mristolone A, ponasterone A, etc.), the binding of the ecdysteroid with the ecdysone receptor-retinoid receptor complex causes the downstream gene. Examples include promoters capable of inducing expression. Furthermore, when the external stimulus is the presence of FKCsA, the expression of downstream genes can be induced by binding FKCsA to the Gal4 DNA binding domain fused to FKBP12 and the VP16 activator domain complex fused to cyclophilin. Promoters can be mentioned.
 巨核球系列の細胞は、造血幹細胞に由来するCD34陽性造血幹細胞、造血前駆細胞、および巨核球前駆細胞、並びに巨核球が挙げられる。巨核球系列の細胞は、CD41陽性細胞、フォンヴィレブランド因子(von Willebrand factor; VMF)陽性の細胞、およびCD41陽性かつCD42b陽性の細胞からなる群から選択される細胞(例えば、巨核球前駆細胞、並びに巨核球)であり得る。 Examples of megakaryocyte lineage cells include CD34-positive hematopoietic stem cells, hematopoietic progenitor cells, megakaryocyte progenitor cells, and megakaryocytes derived from hematopoietic stem cells. The cells of the megakaryocyte lineage are cells selected from the group consisting of CD41-positive cells, von Willebrand factor (VMF) -positive cells, and CD41-positive and CD42b-positive cells (eg, megakaryocyte precursor cells, etc.). And can be a megakaryocyte).
 2Nの核型を有する細胞は、増殖に適している。したがって、2Nの核型を有する細胞は、好ましく株化され得る。株化は、細胞を不死化することによって行われ得る。不死化は、常法を用いて行うことができ、例えば、不死化因子(例えば、SV40ウイルスのT抗原やテロメア逆転写タンパク質(TERT)等)を細胞に導入することによって行われ得る。 Cells with a 2N karyotype are suitable for proliferation. Therefore, cells with a 2N karyotype can be preferably strained. Straining can be done by immortalizing the cells. Immortalization can be performed using conventional methods, for example, by introducing an immortalizing factor (eg, SV40 virus T antigen, telomere reverse transcriptase (TERT), etc.) into cells.
 本発明によれば、
E6遺伝子およびE7遺伝子のいずれかまたは両方を含む、巨核球前駆細胞または巨核球細胞の凍結物;および
E6遺伝子およびE7遺伝子のいずれかまたは両方をゲノム上に有する、巨核球前駆細胞または巨核球細胞の凍結物が提供される。凍結物において、巨核球前駆細胞または巨核球細胞は単核であってもよい。単核の巨核球前駆細胞若しくは単核の巨核球細胞またはこれを含む組成物(例えば、凍結状態の組成物または凍結物)は、例えば、ワーキングセルバンクを調製することに用いることができ、すなわち、ワーキングセルバンクを調製するためのマスターセルバンクとして用いることができる。従って、本発明のある態様では、E6遺伝子およびE7遺伝子のいずれかまたは両方を含む、巨核球前駆細胞または巨核球細胞の凍結物;および
E6遺伝子およびE7遺伝子のいずれかまたは両方をゲノム上に有する、巨核球前駆細胞または巨核球細胞の凍結物
のマスターセルバンクとしての使用が提供される。また、本発明のある態様では、E6遺伝子およびE7遺伝子のいずれかまたは両方を含む、巨核球前駆細胞または巨核球細胞の凍結物;および
E6遺伝子およびE7遺伝子のいずれかまたは両方をゲノム上に有する、巨核球前駆細胞または巨核球細胞の凍結物
からなる群から選択される凍結物または当該凍結物を含む、血小板を製造することに用いるためのマスターセルバンクまたはワーキングセルバンクが提供される。
According to the present invention
Frozen megakaryocyte progenitor cells or megakaryocyte cells containing either or both of the E6 and E7 genes; and megakaryocyte progenitor cells or megakaryocyte cells having either or both of the E6 and E7 genes on their genome. Frozen material is provided. In the frozen product, the megakaryocyte progenitor cells or megakaryocyte cells may be mononuclear. Mononuclear megakaryocyte progenitor cells or mononuclear megakaryocyte cells or compositions containing them (eg, frozen compositions or frozen products) can be used, for example, to prepare working cell banks, ie, It can be used as a master cell bank for preparing a working cell bank. Thus, in some embodiments of the invention, a frozen megakaryocyte progenitor cell or megakaryocyte cell containing either or both of the E6 and E7 genes; and either or both of the E6 and E7 genes are present on the genome. , Megakaryocyte progenitor cells or frozen megakaryocyte cells are provided for use as a master cell bank. Also, in some embodiments of the invention, a frozen megakaryocyte precursor cell or megakaryocyte cell containing either or both of the E6 and E7 genes; and either or both of the E6 and E7 genes are present on the genome. , A master cell bank or a working cell bank for use in producing platelets, comprising a frozen product selected from the group consisting of megakaryocyte precursor cells or frozen products of megakaryocyte cells, or the frozen product.
 細胞が、E6遺伝子および/またはE7遺伝子を有するかどうかは、常法(例えば、PCR法、サザンブロット法、およびノーザンブロット法)によって検出することができる。 Whether or not a cell has the E6 gene and / or the E7 gene can be detected by conventional methods (for example, PCR method, Southern blotting, and Northern blotting).
<巨核球前駆細胞株の製造方法>
 本発明の巨核球前駆細胞株の製造方法においては、ヒトパピローマウィルス(HPV)のE6遺伝子および/またはE7遺伝子を含む核酸(例えば、DNAまたはmRNA)を細胞(例えば、造血幹細胞から巨核球前駆細胞までのいずれかの分化段階にある細胞(例えば、造血幹細胞および造血前駆細胞)に導入することができる。従って、本発明によれば、造血幹細胞から巨核球前駆細胞までのいずれかの分化段階にある細胞(例えば、造血幹細胞および造血前駆細胞)であって、ヒトパピローマウィルス(HPV)のE6遺伝子および/またはE7遺伝子を含む核酸(例えば、DNAまたはmRNA)を含む、細胞が提供され得る。本発明のある態様では、造血幹細胞は、CD34陽性の造血幹細胞であり得る。
 細胞にE6遺伝子および/またはE7遺伝子を含むDNAを導入する場合には、DNAは、発現調節配列(プロモーター)に作動可能に連結させたE6遺伝子および/またはE7遺伝子を含み得る。
 本発明のある態様では、誘導性プロモーターに作動可能に連結したヒトパピローマウィルス(HPV)のE6遺伝子および/またはE7遺伝子を含む遺伝子発現ベクターを、細胞に導入する。誘導性プロモーターを作動させる外的刺激は、任意のタイミングで(例えば、ベクター導入前、導入中、または導入後若しくは導入直後に)、細胞に対して加えることができる。ある態様では、誘導性プロモーターを作動させる外的刺激は、ベクター導入前には添加されない。ある態様では、誘導性プロモーターを作動させる外的刺激は、ベクター導入後の一定期間は細胞に対して添加されるが、その後除去されてもよい。除去は、所望の細胞(例えば、巨核球前駆細胞または巨核球細胞)が生じる前または後で行うことができる。
<Manufacturing method of megakaryocyte progenitor cell line>
In the method for producing a macronuclear progenitor cell line of the present invention, a nucleic acid (eg, DNA or mRNA) containing the E6 gene and / or the E7 gene of human papillomavirus (HPV) is applied to cells (eg, from hematopoietic stem cells to macronuclear progenitor cells). It can be introduced into cells at any stage of differentiation (eg, hematopoietic stem cells and hematopoietic progenitor cells). Therefore, according to the present invention, it is at any stage of differentiation from hematopoietic stem cells to macronuclear progenitor cells. Cells (eg, hematopoietic stem cells and hematopoietic progenitor cells), comprising nucleic acids (eg, DNA or mRNA) containing the E6 and / or E7 genes of human papillomavirus (HPV), can be provided. In some embodiments, the hematopoietic stem cell can be a CD34 positive hematopoietic stem cell.
When introducing a DNA containing an E6 gene and / or an E7 gene into a cell, the DNA may contain an E6 gene and / or an E7 gene operably linked to an expression regulatory sequence (promoter).
In one aspect of the invention, a gene expression vector containing the E6 and / or E7 gene of human papillomavirus (HPV) operably linked to an inducible promoter is introduced into cells. The external stimulus that activates the inducible promoter can be applied to the cells at any time (eg, before, during, or immediately after the introduction of the vector). In some embodiments, no external stimulus that activates the inducible promoter is added prior to vector introduction. In some embodiments, the external stimulus that activates the inducible promoter is added to the cells for a period of time after vector introduction, but may then be removed. Removal can be done before or after the desired cells (eg, megakaryocyte progenitor cells or megakaryocyte cells) are born.
 ヒト造血幹細胞に導入される「外的刺激に応答して、ヒトパピローマウィルス(HPV)16型のE6遺伝子及びE7遺伝子(HPV-E6/E7遺伝子)の発現を誘導することが可能な発現カセット」は、誘導性プロモーター、例えば、外的刺激に応答して下流の遺伝子の発現を誘導できるプロモーターと、該プロモーターによって発現が制御されるHPV-E6/E7遺伝子と、必要に応じてターミネーターとを含む核酸構築物である。 "An expression cassette capable of inducing the expression of human papillomavirus (HPV) type 16 E6 gene and E7 gene (HPV-E6 / E7 gene) in response to external stimuli" introduced into human hematopoietic stem cells , Inducible promoters, eg, nucleic acids comprising a promoter capable of inducing the expression of a downstream gene in response to an external stimulus, the HPV-E6 / E7 gene whose expression is regulated by the promoter, and optionally a terminator. It is a structure.
 発現カセットは、必要に応じて、エンハンサー、サイレンサー、選択マーカー遺伝子(例えば、ネオマイシン耐性遺伝子等の薬剤耐性遺伝子)、およびSV40複製起点からなる群から選択される因子を含んでいてもよい。また、当業者であれば、利用する前記プロモーターの種類等を考慮して、エンハンサー、サイレンサー、選択マーカー遺伝子及びターミネーター等を、公知のものから適宜選択して組み合わせることにより、所望の発現レベルにてHPV-E6/E7遺伝子の発現を誘導することが可能な発現カセットを構築することができる。 The expression cassette may optionally contain a factor selected from the group consisting of enhancers, silencers, selectable marker genes (eg, drug resistance genes such as neomycin resistance genes), and the SV40 origin of replication. Further, a person skilled in the art can obtain a desired expression level by appropriately selecting and combining enhancers, silencers, selectable marker genes, terminators, etc. from known ones in consideration of the type of the promoter to be used. An expression cassette capable of inducing the expression of the HPV-E6 / E7 gene can be constructed.
 また、必要に応じて、本発明にかかるヒト血液幹細胞には、外的刺激に応じてHPV-E6/E7遺伝子の発現を誘導する因子(例えば、テトラサイクリントランスアクチベーター、テトラサイクリンリプレッサー、エクジソン受容体-レチノイド受容体複合体、FKBP12に融合したGal4 DNA結合ドメイン-シクロフィリンに融合したVP16アクチベータードメイン複合体)を核内において恒常的に発現させることが可能な発現カセットも導入されていてもよい。 In addition, if necessary, in the human blood stem cells according to the present invention, factors that induce the expression of the HPV-E6 / E7 gene in response to external stimuli (for example, tetracycline transactivator, tetracycline repressor, ecdison receptor) An expression cassette capable of constitutively expressing the retinoid receptor complex, Gal4 DNA-binding domain fused to FKBP12-VP16 activator domain complex fused to cyclophyllin) may also be introduced.
 本発明において、前記発現カセットを造血幹細胞に導入する方法としては特に制限はなく、公知の手法を適宜選択して用いることができる。例えば、前記発現カセットを適当な発現ベクターに挿入し、該発現ベクターを感染、リポフェクション法、リポソーム法、エレクトロポレーション法、リン酸カルシウム共沈殿法、DEAEデキストラン法、マイクロインジェクション法にて細胞に導入することができる。 In the present invention, the method for introducing the expression cassette into hematopoietic stem cells is not particularly limited, and a known method can be appropriately selected and used. For example, the expression cassette is inserted into an appropriate expression vector, and the expression vector is introduced into cells by infection, lipofection method, liposome method, electroporation method, calcium phosphate co-precipitation method, DEAE dextran method, or microinjection method. Can be done.
 このような発現ベクターとしては、例えば、レンチウイルス、レトロウイルス、ヘルペスウイルス、アデノウイルス、アデノ随伴ウイルス、センダイウイルス等のウイルスベクター、動物細胞発現プラスミドが挙げられるが、増殖活性があまり高くない血液幹細胞のゲノムDNAへの導入効率が極めて高いという観点から、レンチウイルスが好ましく用いられ得る。 Examples of such expression vectors include viral vectors such as lentivirus, retrovirus, herpesvirus, adenovirus, adeno-associated virus, and Sendai virus, and animal cell expression plasmids, but blood stem cells having not very high proliferative activity. A lentivirus can be preferably used from the viewpoint of extremely high efficiency of introduction into genomic DNA.
 本発明の巨核球前駆細胞株の製造方法においては、次に、前記発現カセットが導入されたヒト血液幹細胞を、前記外的刺激及び血液系増殖因子の存在下にて培養することができる。 In the method for producing a megakaryocyte progenitor cell line of the present invention, human blood stem cells into which the expression cassette has been introduced can then be cultured in the presence of the external stimulus and blood system growth factor.
 なお、「ヒトパピローマウィルス16型E6遺伝子及びE7遺伝子の発現を外的刺激に応答して誘導することが可能な発現カセットが導入されている巨核球前駆細胞株」とは、本発明にかかる発現カセットが細胞内に導入された結果、外的刺激の存在下においてHPV-E6/E7遺伝子を安定的に発現し得る巨核球前駆細胞株のことであり、細胞株の樹立、さらには後述の巨核球細胞への分化段階にて、核と共に本発明にかかる発現カセットが除去できるという観点から、本発明にかかる発現カセットがゲノムDNAに組み込まれている巨核球前駆細胞株が好ましい。 The expression cassette according to the present invention is "a megakaryocyte precursor cell line into which an expression cassette capable of inducing the expression of human papillomavirus type 16 E6 gene and E7 gene in response to an external stimulus is introduced". Is a megakaryocyte precursor cell line capable of stably expressing the HPV-E6 / E7 gene in the presence of an external stimulus as a result of being introduced into the cell. From the viewpoint that the expression cassette according to the present invention can be removed together with the nucleus at the stage of differentiation into cells, a megakaryocyte precursor cell line in which the expression cassette according to the present invention is incorporated into genomic DNA is preferable.
 本発明において、「血液系増殖因子」は、血液幹細胞から巨核球前駆細胞への分化誘導又は巨核球前駆細胞の増殖に寄与する因子を意味する。このような「血液系増殖因子」としては、例えば、SCF、およびTPOが挙げられる。 In the present invention, "blood system growth factor" means a factor that contributes to the induction of differentiation of blood stem cells into megakaryocyte progenitor cells or the proliferation of megakaryocyte progenitor cells. Examples of such "blood growth factors" include SCF and TPO.
 後述の培養液における、SCFの好適な添加濃度としては、50~100ng/mlであり、TPOの好適な添加濃度としては、50~100ng/mlである。 The suitable addition concentration of SCF in the culture solution described later is 50 to 100 ng / ml, and the suitable addition concentration of TPO is 50 to 100 ng / ml.
 また、前記外的刺激に関しては、当業者であれば、利用する前記プロモーターの種類等を考慮して、後述の培地への添加量を適宜調整することができる。例えば、外的刺激がドキシサイクリン(DOX)の存在である場合には、DOXの好適な添加濃度としては、1~2μg/mlである。 Further, regarding the external stimulus, a person skilled in the art can appropriately adjust the amount to be added to the medium described later in consideration of the type of the promoter to be used and the like. For example, when the external stimulus is the presence of doxycycline (DOX), the preferred concentration of DOX added is 1-2 μg / ml.
 巨核球前駆細胞への分化誘導のために用いられ、前記外的刺激及び前記血液系増殖因子が添加される培養液としては、例えば、IMDM溶液、α-MEM溶液又はDMEM溶液が挙げられ、さらに、ウシ胎児血清(FBS)、ウシ血清アルブミン(BSA)、ヒトインシュリン、ヒトトランスフェリン、2-メルカプトエタノール、セレン酸ナトリウム、アスコルビン酸、アルファモノチオグリセロール、L-グルタミン、SCF、TPO、FLT3、または誘導性プロモーターを作動させる外部刺激(例えば、DOX)等が含まれていてもよい。また、必要に応じて、無機塩類(硫酸第一鉄等)、または抗生物質(例えば、ストレプトマイシン、ペニシリン等)等が添加してあってもよい。 Examples of the culture medium used for inducing differentiation into megakaryocyte progenitor cells and to which the external stimulus and the blood system growth factor are added include IMDM solution, α-MEM solution or DMEM solution, and further. , Fetal bovine serum (FBS), bovine serum albumin (BSA), human insulin, human transferrin, 2-mercaptoethanol, sodium selenate, ascorbic acid, alpha monothioglycerol, L-glutamine, SCF, TPO, FLT3, or induction External stimuli (eg, DOX) that actuate the sex promoter may be included. In addition, if necessary, inorganic salts (ferrous sulfate, etc.), antibiotics (for example, streptomycin, penicillin, etc.) and the like may be added.
 前記外的刺激及び血液系増殖因子の存在下にて、培養液交換を行いながら巨核球前駆細胞の培養を継続し、不死化細胞株を樹立できたと考えられる培養期間としては、好ましくは3ヶ月間であり、より好ましくは6ヶ月以上培養できた時点で不死化細胞株と判断する。 In the presence of the external stimulus and blood growth factor, the culture of megakaryocyte precursor cells was continued while exchanging the culture medium, and the culture period considered to be able to establish an immortalized cell line is preferably 3 months. It is judged to be an immortalized cell line when it can be cultured for 6 months or more.
 さらに、前記発現カセットが前記血液幹細胞のゲノムDNAに安定的に導入されるまでの期間を確保するという観点から、前記外的刺激及び血液系増殖因子の存在下にて培養する前に、前記発現カセットを前記血液幹細胞に導入してから、1~7日間は、前記外的刺激の非存在下及び血液系増殖因子の存在下にて培養してもよい。 Furthermore, from the viewpoint of ensuring a period until the expression cassette is stably introduced into the genomic DNA of the blood stem cells, the expression is performed before culturing in the presence of the external stimulus and the blood system growth factor. The cassette may be cultured in the absence of the external stimulus and in the presence of blood growth factors for 1 to 7 days after introduction into the blood stem cells.
 本発明のある態様では、巨核球分化に適した培養条件とは、TPO、SCFおよびFLT3からなる群から選択される因子の存在下の条件であり得、例えば、TPO存在下の条件であり得る。 In some aspects of the invention, the culture conditions suitable for megakaryocyte differentiation can be conditions in the presence of factors selected from the group consisting of TPO, SCF and FLT3, eg, conditions in the presence of TPO. ..
<成熟巨核球細胞の製造方法>
 後述の実施例において示す通り、E6遺伝子および/またはE7遺伝子の発現は、樹立した巨核球前駆細胞株の取得量の増加において重要である。一方、巨核球細胞の分化・成熟過程においては、巨核球前駆細胞から徐々に細胞分裂能が低下していることから、前述の方法にて製造されたヒト巨核球前駆細胞株を、誘導性プロモーターを作動させる外部刺激(例えば、DOX)の非存在下にて培養してもよい。
<Manufacturing method of mature megakaryocyte cells>
As shown in Examples below, expression of the E6 and / or E7 genes is important in increasing the amount of established megakaryocyte progenitor cell lines. On the other hand, in the process of differentiation and maturation of megakaryocyte cells, the cell division ability gradually decreases from the megakaryocyte progenitor cells. Therefore, the human megakaryocyte progenitor cell line produced by the above method is used as an inducible promoter. May be cultured in the absence of an external stimulus (eg, DOX) that activates.
 すなわち、本発明の成熟巨核球細胞の製造方法は、成熟巨核球細胞への分化誘導のために用いられ、培地としては、例えば、IMDM溶液、α-MEM溶液、DMEM溶液が挙げられ、培地には、ウシ胎児血清(FBS)、ウシ血清アルブミン(BSA)、ヒトインシュリン、ヒトトランスフェリン、2-メルカプトエタノール、セレン酸ナトリウム、アスコルビン酸、アルファモノチオグリセロール、L-グルタミン、SCF、TPO、またはFLT3等が含まれていてもよい。また、必要に応じて、無機塩類、または抗生物質が添加してあってもよい。 That is, the method for producing mature macronuclear cells of the present invention is used for inducing differentiation into mature macronuclear cells, and examples of the medium include IMDM solution, α-MEM solution, and DMEM solution. Fetal bovine serum (FBS), bovine serum albumin (BSA), human insulin, human transferase, 2-mercaptoethanol, sodium selenate, ascorbic acid, alpha monothioglycerol, L-glutamine, SCF, TPO, FLT3, etc. May be included. Inorganic salts or antibiotics may be added as needed.
 なお、かかる製造方法についても、当業者であれば、前述の本発明に関する説明及び実施例の具体的な説明を参照しつつ、本発明にかかる発現カセットの構成、該発現カセットの導入方法、各分化段階における培養条件(例えば、培地の組成、培養期間)等を適宜選択しつつ、必要に応じてこれらの方法に適宜、修飾ないし改変を加えることにより、実施することができる。 As for such a production method, those skilled in the art can refer to the above-mentioned description of the present invention and the specific description of the examples, and refer to the configuration of the expression cassette according to the present invention, the method of introducing the expression cassette, and the like. It can be carried out by appropriately selecting the culture conditions (for example, the composition of the medium, the culture period) and the like at the differentiation stage, and appropriately modifying or modifying these methods as necessary.
 本発明のある態様では、ヒトパピローマウィルス16型E6遺伝子及びE7遺伝子の発現を外的刺激に応答して誘導することが可能な発現カセットが導入されており、外的刺激及び血液系増殖因子の存在下で増殖し、前記外的刺激の非存在下にて培養することにより巨核球細胞および血小板の産生能を有する、ヒト巨核球前駆細胞株が提供される。 In one aspect of the invention, an expression cassette capable of inducing the expression of human papillomavirus type 16 E6 and E7 genes in response to external stimuli has been introduced, the presence of external stimuli and blood growth factors. A human megakaryocyte precursor cell line capable of producing megakaryocyte cells and platelets by growing underneath and culturing in the absence of the external stimulus is provided.
 なお、「ヒトパピローマウィルス16型E6遺伝子及びE7遺伝子の発現を外的刺激に応答して誘導することが可能な発現カセットが導入されている巨核球前駆細胞株」とは、本発明にかかる発現カセットが細胞内に導入された結果、外的刺激の存在下においてHPV-E6/E7遺伝子を安定的に発現し得る巨核球前駆細胞株のことであり、細胞株の樹立、さらには後述の巨核球細胞への分化段階にて、核と共に本発明にかかる発現カセットが除去できるという観点から、本発明にかかる発現カセットがゲノムDNAに組み込まれている巨核球前駆細胞株が好ましい。 The expression cassette according to the present invention is "a megakaryocyte precursor cell line into which an expression cassette capable of inducing the expression of human papillomavirus type 16 E6 gene and E7 gene in response to an external stimulus is introduced". Is a megakaryocyte precursor cell line capable of stably expressing the HPV-E6 / E7 gene in the presence of an external stimulus as a result of being introduced into the cell. From the viewpoint that the expression cassette according to the present invention can be removed together with the nucleus at the stage of differentiation into cells, a megakaryocyte precursor cell line in which the expression cassette according to the present invention is incorporated into genomic DNA is preferable.
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。また、本実施例において用いた細胞、培養液及び形質転換に用いたベクターは以下の通りである。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to the following Examples. The cells, culture medium and vector used for transformation in this example are as follows.
<細胞>
 ヒト骨髄由来造血幹細胞(CD34陽性細胞)は、Lonza社より購入した。
<Cell>
Human bone marrow-derived hematopoietic stem cells (CD34-positive cells) were purchased from Lonza.
<ベクター>
 巨核球前駆細胞株樹立の工程において、ヒトパピローマウィルス-E6/E7(HPV-E6/E7)遺伝子及びテトラサイクリントランスアクチベーター(rtTA)をコードする遺伝子を導入するために、CSIV-TRE-RfA-UbC-KTレンチウイルスベクターを用いた。また、これらレンチウイルスベクターを用いたレンチウイルスの調製は、標準的な手技手法を採用して行った。
<Vector>
CSIV-TRE-RfA-UbC-to introduce the human papillomavirus-E6 / E7 (HPV-E6 / E7) gene and the gene encoding the tetracycline transactivator (rtTA) in the process of establishing a macronuclear cell precursor cell line. A KT wrench virus vector was used. In addition, the preparation of the wrench virus using these wrench virus vectors was carried out by adopting a standard procedure.
実施例1:造血幹細胞からのCD41陽性CD42b陽性の巨核球細胞への分化誘導
 造血幹細胞は、TPO存在下でCD41陽性細胞(巨核球前駆細胞)を経由してCD41陽性かつCD42b陽性細胞(巨核球細胞)へと分化する。本実施例では、造血幹細胞から巨核球細胞への誘導を試みた。
Example 1: Induction of differentiation of hematopoietic stem cells into CD41-positive CD42b-positive megakaryocytes The hematopoietic stem cells are CD41-positive and CD42b-positive cells (megakaryocytes) via CD41-positive cells (megakaryocyte progenitor cells) in the presence of TPO. It differentiates into cells). In this example, we attempted to induce hematopoietic stem cells to megakaryocyte cells.
 2×105細胞のヒト骨髄由来造血幹細胞(CD34陽性細胞)(Lonza)を6ウェルプレートディッシュに播種して、10% FBS(Invitrogen)、ITS(10μg/ml ヒトインシュリン、5.5μg/mlヒトトランスフェリン、5 ng/ml セレン酸ナトリウム;Sigma)、50 mg/ml アスコルビン酸(Sigma)、PSQ(100 units/ml ペニシリン、100 mg/ml ストレプトマイシン、2 mM L-グルタミン;Invitrogen)、100 ng/mlの組換えヒトSCF、100 ng/mlの組換えヒトTPO、および100 ng/ml組換えヒトFLT3を含むIMDM(Sigma)培養液で48時間培養した。その後、上記ヒト骨髄由来造血幹細胞(CD34陽性細胞)にパピローマウイルスのE6タンパク質とE7タンパク質とを2Aペプチドを介して連結させた融合タンパク質をコードする遺伝子(E6-2A-E7)を組み込んだ、CSIV-TRE-RfA-UbC-KTレンチウイルスベクター(TAKARA BIO)(CSIV-TRE-HPV16-T2A-E7-UbC-KT)をMOI=20(MOIは293T細胞を用いて確認した)で12時間毎に2回感染させた後、上記IMDM培養液に100 ng/mlの組換えヒトSCF、100 ng/mlの組換えヒトTPO、および100 ng/ml組換えヒトFLT3および1 μg/ml DOXを加えてE6およびE7の発現誘導を行った。この系は、E6とE7の効果を検証するために誘導可能な系とした。具体的には、E6とE7遺伝子はドキシサイクリン(DOX)存在下では発現を人為的に誘導することが可能であり、DOX非存在下ではE6とE7遺伝子の発現を抑制することができる系とした。また、レンチウイルスには、細胞に感染するとGFPを発現するようにGFPを発現可能に組み込まれた。 2 × 10 5 cells of human bone marrow-derived hematopoietic stem cells (CD34-positive cells) (Lonza) were seeded in a 6-well plate dish, and 10% FBS (Invitrogen), ITS (10 μg / ml human insulin, 5.5 μg / ml human). Transtransferase, 5 ng / ml sodium selenate; Sigma), 50 mg / ml ascorbic acid (Sigma), PSQ (100 units / ml penicillin, 100 mg / ml streptomycin, 2 mM L-glutamine; Invitrogen), 100 ng / ml In an IMDM (Sigma) culture solution containing recombinant human SCF, 100 ng / ml recombinant human TPO, and 100 ng / ml recombinant human FLT3, the mixture was cultured for 48 hours. Then, CSIV incorporating a gene (E6-2A-E7) encoding a fusion protein in which the E6 protein and E7 protein of papillomavirus were ligated into the human bone marrow-derived hematopoietic stem cells (CD34-positive cells) via a 2A peptide. -TRE-RfA-UbC-KT wrench virus vector (TAKARA BIO) (CSIV-TRE-HPV16-T2A-E7-UbC-KT) with MOI = 20 (MOI confirmed using 293T cells) every 12 hours After two infections, 100 ng / ml recombinant human SCF, 100 ng / ml recombinant human TPO, and 100 ng / ml recombinant human FLT3 and 1 μg / ml DOX were added to the IMDM culture medium. Expression of E6 and E7 was induced. This system was an inducible system to verify the effects of E6 and E7. Specifically, the E6 and E7 genes can be artificially induced to be expressed in the presence of doxycycline (DOX), and the expression of the E6 and E7 genes can be suppressed in the absence of DOX. .. In addition, the wrench virus was incorporated into the lentivirus so that it can express GFP so that it expresses GFP when it infects cells.
 1回目のレンチウイルス感染と同時にDOXを添加し、2回目の感染後24時間後と48時間後に培地を新鮮な培地に交換した。この培地交換によって、培地中のレンチウイルスは除去された。 DOX was added at the same time as the first wrench virus infection, and the medium was replaced with fresh medium 24 hours and 48 hours after the second infection. By this medium exchange, the lentivirus in the medium was removed.
 ウイルス除去後、培養液を交換しながら、経時的に細胞の増殖を観察した。培養20日後に一部の培養細胞を回収して、CD41の発現を抗ヒトCD41抗体を用いて蛍光染色し、フローサイトメーターで確認した。この際、レンチウイルスの感染が成立しているかを確認するため、フローサイトメトリーでGFPの発現を同時に確認した。 After removing the virus, cell growth was observed over time while exchanging the culture medium. After 20 days of culturing, some cultured cells were collected, and the expression of CD41 was fluorescently stained with an anti-human CD41 antibody and confirmed with a flow cytometer. At this time, in order to confirm whether or not the wrench virus infection was established, the expression of GFP was simultaneously confirmed by flow cytometry.
フローサイトメトリー
 モノクローナル抗体を用いて、氷上で細胞を30分間、染色した。細胞数は、100 μlの染色液に1×106以下とした。染色後、抗体を含まない染色液で2回洗浄後、FACS analyzer (BD)を用いて、測定した。ヒト抗原に対する抗体は、フルオレッセン イソチオシアネイト(fluorescein isothiocyanate ; FITC)、Alexa Fluor 488 (Alexa488) または アロフィコシアニン(APC)で標識した。CD34、CD36、CD41、CD42bは、FITCで標識し、CD11bは、Alexa488で標識した。アイソタイプ・コントロールとして、CD33、CD45、c-KITは、APCで標識した。これらの標識抗体は、BD Biosciencesから購入した。細胞生存率は、ヨウ化プロピジウム(Propidium Iodide;PI)染色により測定した。PI陽性細胞は、死細胞として除外し、PI陰性細胞について、CellQuest分析ソフトウェアを用いて解析した。
Flow cytometry Cells were stained with a monoclonal antibody for 30 minutes on ice. Cell numbers were the 1 × 10 6 or less in the staining solution of 100 [mu] l. After staining, it was washed twice with a staining solution containing no antibody, and then measured using a FACS analyzer (BD). Antibodies to human antigens were labeled with fluorescein isothiocyanate (FITC), Alexa Fluor 488 (Alexa 488) or allophycocyanin (APC). CD34, CD36, CD41, and CD42b were labeled with FITC, and CD11b was labeled with Alexa488. As isotype controls, CD33, CD45, c-KIT were labeled with APC. These labeled antibodies were purchased from BD Biosciences. Cell viability was measured by Propidium Iodide (PI) staining. PI-positive cells were excluded as dead cells, and PI-negative cells were analyzed using CellQuest analysis software.
 結果は、図1に示される通りであった。図1のパネルAに示されるように、上記の条件で培養された細胞は、ウイルス除去後の20日間の培養を経ても、良好に細胞分裂を継続し、GFP陽性細胞が存在し、かつ、GFP陽性細胞の半数がCD41陽性を示した。また、培養をさらに数日継続すると、GFP陽性細胞はほぼすべてCD41陽性細胞に変化した。細胞のSCF濃度依存性を確認すると、図1のパネルBに示されるように、培地中のSCFの濃度依存的に細胞増殖の効率が変化することから、上記で得られた細胞は、CD41陽性の細胞であることが示唆された。巨核球細胞の発生分化において、CD41陽性の細胞は、巨核球前駆細胞の表現型である。従って、本実施例では、CD41陽性の巨核球前駆細胞が得られたことが示唆された。 The results were as shown in Fig. 1. As shown in panel A of FIG. 1, the cells cultured under the above conditions continued cell division satisfactorily even after culturing for 20 days after virus removal, GFP-positive cells were present, and the cells were present. Half of the GFP-positive cells were CD41-positive. In addition, when the culture was continued for several more days, almost all GFP-positive cells changed to CD41-positive cells. When the SCF concentration dependence of the cells was confirmed, as shown in Panel B of FIG. 1, the efficiency of cell proliferation changed depending on the concentration of SCF in the medium. Therefore, the cells obtained above were CD41 positive. It was suggested that the cells were. In the developmental differentiation of megakaryocyte cells, CD41-positive cells are the phenotype of megakaryocyte progenitor cells. Therefore, in this example, it was suggested that CD41-positive megakaryocyte progenitor cells were obtained.
 また、ウイルス除去後70日間培養した細胞を回収して、CD41aとCD42bの発現を抗ヒトCD41a抗体および抗ヒトCD42b抗体を用いてフローサイトメトリーで確認した。結果は、図2に示される通りであった。図2に示されるように、大半の細胞が、CD41a陽性かつCD42b陽性を示した。これにより、CD41a陽性かつCD42b陽性の巨核球前駆細胞が得られたことが明らかとなった。 In addition, cells cultured for 70 days after virus removal were collected, and the expression of CD41a and CD42b was confirmed by flow cytometry using an anti-human CD41a antibody and an anti-human CD42b antibody. The results were as shown in FIG. As shown in FIG. 2, most of the cells were CD41a positive and CD42b positive. This revealed that CD41a-positive and CD42b-positive megakaryocyte progenitor cells were obtained.
 E6とE7遺伝子を単独で骨髄由来CD34陽性細胞に遺伝子導入して長期間培養後における表面マーカーであるCD41とCD42b陽性細胞の発現変化を検討した。
 図3のパネルAに示すように、E6遺伝子およびE7遺伝子のいずれかの単独発現においても、遺伝子導入から3週間後には、CD41陽性かつCD42b陽性細胞を確認できた。図3のパネルBに示すように、CD41とCD42b陽性細胞が最もピークである時期は、遺伝子導入後4週間後(DOX除去2週間後)であった。
The E6 and E7 genes were independently introduced into bone marrow-derived CD34-positive cells, and changes in the expression of surface markers CD41 and CD42b-positive cells after long-term culture were examined.
As shown in panel A of FIG. 3, even in the single expression of either the E6 gene or the E7 gene, CD41-positive and CD42b-positive cells could be confirmed 3 weeks after the gene transfer. As shown in panel B of FIG. 3, the peak time of CD41 and CD42b-positive cells was 4 weeks after gene transfer (2 weeks after DOX removal).
 次に、GFPのみ、GFPとE6、GFPとE7またはGFPとE6-2A-E7を含むレンチウイルスで感染したCD34陽性細胞の細胞数の変化を検討した。 Next, changes in the number of CD34-positive cells infected with wrench virus containing GFP only, GFP and E6, GFP and E7, or GFP and E6-2A-E7 were examined.
 GFPのみ(対照)、GFPとE6、GFPとE7またはGFPとE6-2A-E7を含むレンチウイルスで感染したCD34陽性細胞は、3日後、各群の細胞(1×104細胞)をSCF(100ng/ml)とTPO(100ng/ml)存在下で培養し、指定した日数の経過後に培養物に占める細胞の割合を測定した。結果は図3のパネルBに示される通りであった。図3のパネルBに示されるように、E6単独もしくはE7単独の遺伝子導入群およびE6とE7の共発現群において細胞数の増加が認められた。一方で、E6-2A-E7遺伝子を発現させた群においては10週間を過ぎてもCD42bとCD41の共陽性細胞が50%近くを維持できた。 CD34-positive cells infected with lentivirus containing GFP only (control), GFP and E6, GFP and E7 or GFP and E6-2A-E7, SCF ( 1 × 10 4 cells) in each group after 3 days. The cells were cultured in the presence of 100 ng / ml) and TPO (100 ng / ml), and the proportion of cells in the culture was measured after the lapse of a specified number of days. The results were as shown in panel B of FIG. As shown in panel B of FIG. 3, an increase in the number of cells was observed in the gene transfer group of E6 alone or E7 alone and the co-expression group of E6 and E7. On the other hand, in the group expressing the E6-2A-E7 gene, nearly 50% of the co-positive cells of CD42b and CD41 could be maintained even after 10 weeks.
 GFP、E6、E7またはE6-2A-E7を含むレンチウイルスで感染後、Day0でのGFP陽性細胞数を103個として細胞の培養を行い、細胞数をセルカウンターで測定した。結果は図4に示される通りであった。図4に示されるように、E6単独もしくはE7単独の遺伝子導入群においてはコントロール(GFP)群と比較して長期の細胞数の増加は認められるが、細胞の増殖に3週間を超える時間を要した。一方で、E6-2A-E7遺伝子を発現させた群においては全ての群と比べて非常に細胞数の増加までの期間が短かった。 GFP, E6, E7, or after infection with lentivirus containing E6-2A-E7, were cultured cells as 10 three the number of GFP-positive cells in Day 0, cell numbers were determined by cell counter. The results were as shown in FIG. As shown in FIG. 4, in the gene transfer group of E6 alone or E7 alone, a long-term increase in the number of cells was observed as compared with the control (GFP) group, but it took more than 3 weeks for the cells to proliferate. did. On the other hand, in the group expressing the E6-2A-E7 gene, the period until the increase in the number of cells was very short as compared with all the groups.
 GFPのみ、GFPとE6、GFPとE7またはGFPとE6-2A-E7を含むレンチウイルスで感染したCD34陽性細胞の死亡率をPI陽性細胞数の割合とし、培養14日後にフローサイトメーターを用いて測定した。E6単独もしくはE7単独の遺伝子導入群においてはコントロール(GFP)群と比較して同様のPI陽性細胞が確認できた。しかし、E6-2A-E7遺伝子発現させた群においては全ての群と比べてPI陽性細胞が減少していた。
 これらのことからE6とE7の同時発現はアポトーシスを抑制することで細胞の増幅が他の群と比較して効率がよいことが示唆された。
The mortality rate of CD34-positive cells infected with lentivirus containing GFP only, GFP and E6, GFP and E7 or GFP and E6-2A-E7 was defined as the ratio of PI-positive cells, and 14 days after culturing, using a flow cytometer. It was measured. In the gene transfer group of E6 alone or E7 alone, similar PI-positive cells could be confirmed as compared with the control (GFP) group. However, in the group in which the E6-2A-E7 gene was expressed, the number of PI-positive cells decreased as compared with all the groups.
These results suggest that co-expression of E6 and E7 suppresses apoptosis, and cell amplification is more efficient than in other groups.
実施例2:血小板前駆体(proplatelet)放出の分析
 E6およびE7を発現したCD41陽性CD42b陽性の巨核球前駆細胞について継代培養を行い、継代培養を1ヶ月以上行うことにより、不死化したCD41陽性CD42b陽性の巨核球前駆細胞を得た。不死化した巨核球前駆細胞(5×106細胞)を20日間培養し、リン酸緩衝液(PBS)で洗浄後、フィブロネクチン塗布した培養皿に移し3日間培養後、CD41抗体で染色して顕微鏡下に測定した。
Example 2: Analysis of platelet precursor release CD41-positive CD42b-positive megakaryocyte progenitor cells expressing E6 and E7 were subcultured, and the subculture was performed for 1 month or longer to immortalize the CD41. Positive CD42b-positive megakaryocyte progenitor cells were obtained. Immortalized macronuclear progenitor cells (5 × 10 6 cells) were cultured for 20 days, washed with phosphate buffer (PBS), transferred to a culture dish coated with fibronectin, cultured for 3 days, stained with CD41 antibody, and microscopically stained. Measured below.
 分化条件として、20日間、DOX非存在下に培養した不死化巨核球前駆細胞をフィブロネクチン塗布した培養皿に移し、3日間培養後にCD41抗体(赤色)の分布を顕微鏡下に観察した。その結果proplatelet状の構造が確認された。 As a differentiation condition, immortalized megakaryocyte progenitor cells cultured in the absence of DOX for 20 days were transferred to a culture dish coated with fibronectin, and after culturing for 3 days, the distribution of CD41 antibody (red) was observed under a microscope. As a result, a probe-like structure was confirmed.
配列表
 配列番号1:HPV 16型のE6タンパク質のアミノ酸配列の一例
MFQDTEEKPRTLHDLCQALETTIHNIELQCVECKKPLQRSEVYDFAFADLTVVYREGNPFGICKLCLRFLSKISEYRHYNYSVYGNTLEQTVKKPLNEILIRCIICQRPLCPQEKKRHVDLNKRFHNISGRWAGRCAACWRSRRRETAL
 
 配列番号2:HPV 16型のE7タンパク質のアミノ酸配列の一例
MRGHKPTLKEYVLDLYPEPTDLYCYEQLSDSSDEDEGLDRPDGQAQPATADYYIVTCCHTCNTTVRLCVNSTASDLRTIQQLLMGTVNIVCPTCAQQ
 
 配列番号3:HPV 16型のE7タンパク質とE6タンパク質の融合タンパク質のアミノ酸配列の一例
MHGDTPTLHEYMLDLQPETTDLYCYEQLNDSSEEEDEIDGPAGQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIRTLEDLLMGTLGIVCPICSQKPGSGATNFSLLKQAGDVEENPGPLINMHQKRTAMFQDPQERPRKLPQLCTELQTTIHDIILECVYCKQQLLRREVYDFAFRDLCIVYRDGNPYAVCDKCLKFYSKISEYRHYCYSLYGTTLEQQYNKPLCDLLIRCINCQKPLCPEEKQRHLDKKQRFHNIRGRWTGRCMSCCRSSRTRRETQL
 
 配列番号4:2Aペプチドのアミノ酸配列の一例
ATNFSLLKQAGDVEENPGP
Sequence Listing SEQ ID NO: 1: An example of the amino acid sequence of HPV 16 type E6 protein MFQDTEEKPRTLHDLCQUARETTIHNIELQCVECKPLQRSEVYDFAFADLTVVYREGNPFGICKLCLLRFLSKISEYRHYNYSVYGNTLEQTVKPRIRKPRIrk

SEQ ID NO: 2: An example of the amino acid sequence of HPV 16 type E7 protein MRGHKPTLKEYVLDLYPEPTDLYCYEQLSDSDEDEGLDRPDGQAQPATADYYIVTCCHTCNTTVRLLCVNSTASDLRTIQQLLMGTVNIVCPTCAQQ

SEQ ID NO: 3: An example of the amino acid sequence of the fusion protein of E7 protein and E6 protein of HPV 16 type MHGDTPTLHEYMLDLQPETTDLYCYEQLNDSSEEEDEIDGPAGQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIRTLEDLLMGTLGIVCPICSQKPGSGATNFSLLKQAGDVEENPGPLINMHQKRTAMFQDPQERPRKLPQLCTELQTTIHDIILECVYCKQQLLRREVYDFAFRDLCIVYRDGNPYAVCDKCLKFYSKISEYRHYCYSLYGTTLEQQYNKPLCDLLIRCINCQKPLCPEEKQRHLDKKQRFHNIRGRWTGRCMSCCRSSRTRRETQL

Example of amino acid sequence of SEQ ID NO: 4: 2A peptide ATNFSLLKQAGDVEENPGP

Claims (10)

  1.  E6遺伝子およびE7遺伝子のいずれかまたは両方を含む、巨核球前駆細胞または巨核球細胞。 Megakaryocyte progenitor cells or megakaryocyte cells containing either or both of the E6 gene and the E7 gene.
  2.  前記E6遺伝子およびE7遺伝子のいずれかまたは両方をゲノム上に有する、請求項1に記載の巨核球前駆細胞または巨核球細胞。 The megakaryocyte progenitor cell or megakaryocyte cell according to claim 1, which has either or both of the E6 gene and the E7 gene on the genome.
  3.  単核である、請求項1または2に記載の巨核球前駆細胞または巨核球細胞。 The megakaryocyte progenitor cell or megakaryocyte cell according to claim 1 or 2, which is a mononuclear cell.
  4.  請求項1に記載の巨核球前駆細胞または巨核球細胞であって、株化された巨核球前駆細胞または巨核球細胞。 The megakaryocyte progenitor cell or megakaryocyte cell according to claim 1, which is an established megakaryocyte progenitor cell or megakaryocyte cell.
  5.  請求項3に記載の巨核球前駆細胞または巨核球細胞であって、株化された巨核球前駆細胞または巨核球細胞。 The megakaryocyte progenitor cell or megakaryocyte cell according to claim 3, which is an established megakaryocyte progenitor cell or megakaryocyte cell.
  6.  請求項4に記載の巨核球前駆細胞若しくは巨核球細胞または請求項5に記載の巨核球前駆細胞若しくは巨核球細胞の凍結物。 The frozen product of the megakaryocyte progenitor cell or megakaryocyte cell according to claim 4 or the megakaryocyte progenitor cell or megakaryocyte cell according to claim 5.
  7.  巨核球前駆細胞または巨核球細胞の製造方法であって、E6遺伝子および/またはE7遺伝子を有する巨核球系列の細胞を巨核球分化に適した培養条件下で培養することを含む、方法。 A method for producing megakaryocyte progenitor cells or megakaryocyte cells, which comprises culturing cells of the megakaryocyte lineage having the E6 gene and / or the E7 gene under culture conditions suitable for megakaryocyte differentiation.
  8.  培養が、トロンボポイエチン(TPO)、幹細胞因子(SCF)およびfms関連チロシンキナーゼ3(FLT3)存在下で行われる、請求項7に記載の方法。 The method of claim 7, wherein the culture is carried out in the presence of thrombopoietin (TPO), stem cell factor (SCF) and fms-related tyrosine kinase 3 (FLT3).
  9.  血小板製剤の製造方法であって、E6遺伝子および/またはE7遺伝子を有する巨核球細胞の培養物を用意することと、当該培養物から血小板を回収することとを含む、方法。 A method for producing a platelet preparation, which comprises preparing a culture of megakaryocyte cells having an E6 gene and / or an E7 gene, and recovering platelets from the culture.
  10.  巨核球細胞が、E6遺伝子およびE7遺伝子の遺伝子発現が抑制された細胞である、請求項9に記載の方法。

     
    The method according to claim 9, wherein the megakaryocyte cell is a cell in which the gene expression of the E6 gene and the E7 gene is suppressed.

PCT/JP2020/036272 2019-09-25 2020-09-25 Method for producing megakaryocyte progenitor cell and megakaryocytic cell, and megakaryocyte progenitor cell and megakaryocytic cell obtained thereby WO2021060467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021549042A JPWO2021060467A1 (en) 2019-09-25 2020-09-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-174624 2019-09-25
JP2019174624 2019-09-25

Publications (1)

Publication Number Publication Date
WO2021060467A1 true WO2021060467A1 (en) 2021-04-01

Family

ID=75165244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036272 WO2021060467A1 (en) 2019-09-25 2020-09-25 Method for producing megakaryocyte progenitor cell and megakaryocytic cell, and megakaryocyte progenitor cell and megakaryocytic cell obtained thereby

Country Status (2)

Country Link
JP (1) JPWO2021060467A1 (en)
WO (1) WO2021060467A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068613A1 (en) * 2004-01-14 2005-07-28 Renomedix Institute Inc. Differentiation of cd34 positive cell to megakaryocyte and multiplication
JP2014503190A (en) * 2010-11-02 2014-02-13 ヘルムホルツ−ツェントルム フュア インフェクツィオンスフォルシュンク ゲーエムベーハー Methods and vectors for cell immortalization
JP2014036651A (en) * 2012-07-20 2014-02-27 Institute Of Physical & Chemical Research Manufacturing method of human erythrocyte precursor cell line and human enucleated erythrocyte

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068613A1 (en) * 2004-01-14 2005-07-28 Renomedix Institute Inc. Differentiation of cd34 positive cell to megakaryocyte and multiplication
JP2014503190A (en) * 2010-11-02 2014-02-13 ヘルムホルツ−ツェントルム フュア インフェクツィオンスフォルシュンク ゲーエムベーハー Methods and vectors for cell immortalization
JP2014036651A (en) * 2012-07-20 2014-02-27 Institute Of Physical & Chemical Research Manufacturing method of human erythrocyte precursor cell line and human enucleated erythrocyte

Also Published As

Publication number Publication date
JPWO2021060467A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US10435710B2 (en) Engineering a heterogeneous tissue from pluripotent stem cells
JP4012688B2 (en) Genetically modified CD34-negative adherent growing stem cells and their use in gene therapy
Baccini et al. Role of p21Cip1/Waf1 in cell-cycle exit of endomitotic megakaryocytes
CN101310014A (en) Method for the production of permanent human cell lines
WO2006078034A1 (en) Cells capable of differentiating into cardiac muscle cells
JPH03504917A (en) Production of neural progenitor cell lines
JP2021522860A (en) Method for Producing γδ T Cells Modified with Chimeric Antigen Receptor
Santos et al. Leukemia inhibitory factor (LIF) overexpression increases the angiogenic potential of bone marrow mesenchymal stem/stromal cells
Piñeiro-Ramil et al. Immortalizing mesenchymal stromal cells from aged donors while keeping their essential features
Cajero-Juárez et al. Immortalization of bovine umbilical vein endothelial cells: a model for the study of vascular endothelium
JP6854461B2 (en) Viral vector, iPS cell preparation method and construct
CN116194573A (en) Method for producing erythroid and/or erythroid
JP2023502318A (en) Compositions for Reprogramming Cells to Convert to Plasmacytoid Dendritic Cells or Type I Interferon Producing Cells, Methods and Uses Therefor
WO2021060467A1 (en) Method for producing megakaryocyte progenitor cell and megakaryocytic cell, and megakaryocyte progenitor cell and megakaryocytic cell obtained thereby
Ozasa et al. Efficient conversion of ES cells into myogenic lineage using the gene-inducible system
Guo et al. Immortalization effect of SV40T lentiviral vectors on canine corneal epithelial cells
Mayers et al. Establishment of an erythroid progenitor cell line capable of enucleation achieved with an inducible c-Myc vector
JP2011177145A (en) High-efficiency microcell fusion method
Lu et al. Bone marrow stromal cells transduced with a thrombopoietin, interleukin‐6, and interleukin‐11 syncretic gene induce cord mononuclear cells to generate platelets in vitro
WO2014168255A1 (en) Megakaryocyte maturation accelerator
Schlatter et al. Novel surface tagging technology for selection of complex proliferation‐controlled mammalian cell phenotypes
JP2011517566A (en) Human host cells for producing excellent recombinant proteins
WO2021039965A1 (en) Method for producing parvalbumin-positive nerve cells, cell, and differentiation inducer
JP2021048875A (en) Method for producing pancreatic endocrine cells, and transdifferentiation agent
JP2011201813A (en) Gene therapy for hematopoietic tumor by proliferation-regulated virus vector carrying survivin promoter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021549042

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869099

Country of ref document: EP

Kind code of ref document: A1