WO2021060400A1 - Stacked battery and method of transporting stacked battery - Google Patents

Stacked battery and method of transporting stacked battery Download PDF

Info

Publication number
WO2021060400A1
WO2021060400A1 PCT/JP2020/036112 JP2020036112W WO2021060400A1 WO 2021060400 A1 WO2021060400 A1 WO 2021060400A1 JP 2020036112 W JP2020036112 W JP 2020036112W WO 2021060400 A1 WO2021060400 A1 WO 2021060400A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
laminated battery
side portion
positive electrode
tab
Prior art date
Application number
PCT/JP2020/036112
Other languages
French (fr)
Japanese (ja)
Inventor
和徳 小関
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN202080043387.2A priority Critical patent/CN113966559A/en
Publication of WO2021060400A1 publication Critical patent/WO2021060400A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a laminated battery and a method for transporting the laminated battery.
  • a laminated battery in which positive electrode plates and negative electrode plates are alternately laminated is widely used.
  • a lithium ion secondary battery can be exemplified.
  • One of the features of the lithium-ion secondary battery is that it has a larger capacity than other types of stacked batteries. Lithium-ion secondary batteries having such characteristics are expected to be further spread in various applications such as in-vehicle applications and stationary housing applications.
  • the laminated battery includes a membrane electrode assembly having a plurality of positive electrode plates (first electrode plates) and a plurality of negative electrode plates (second electrode plates) alternately laminated in the stacking direction.
  • the membrane electrode assembly is sealed in the outer body together with the electrolytic solution. After that, the laminated battery is suspended and conveyed in an upright state while the bulging portion region where the bulging portion of the exterior body is located is sandwiched by the sandwiching device.
  • the pressing force on the bulging portion region by the sandwiching device increases, and the portion of the membrane electrode assembly located inside the bulging portion (for example, the electrode active material layer) is deformed. There is a risk of In this case, uneven reaction may occur and the performance of the laminated battery may deteriorate.
  • the present invention has been made in consideration of such a point, and an object of the present invention is to provide a laminated battery and a method for transporting the laminated battery, which can suppress deterioration of the performance of the laminated battery.
  • the laminated battery according to the present invention It ’s a stacked battery, An exterior body having a first base material and a second base material and forming a sealing space between the first base material and the second base material, A membrane electrode assembly provided in the sealing space, the membrane electrode assembly having a plurality of first electrode plates and a plurality of second electrode plates alternately laminated in the stacking direction.
  • a first tab connected to one side of the membrane electrode assembly in the first direction when viewed in the stacking direction and extending to the outside of the exterior body in the first direction is provided.
  • the first base material is the first tab side portion extending inward from the outer edge on the side of the first tab in the first direction, and the first base material from the inner end of the first tab side portion in the first direction.
  • the tab side portion includes a bulging portion that bulges on the side opposite to the side of the second base material and defines the sealing space.
  • the weight of the laminated battery is 500 g or more, and the weight is 500 g or more.
  • the dimension of the first tab side portion in the first direction is 20 mm or more.
  • the dimension of the first tab side portion in the first direction is 100 mm or less. You may do so.
  • the dimension of the first tab side portion in the second direction orthogonal to the first direction when viewed in the stacking direction is 100 mm or more. You may do so.
  • the first electrode plate includes a first electrode current collector including a first connection region and a first effective region adjacent to each other, and a first electrode active material layer provided in the first effective region.
  • the first tab side portion faces the first connection region of the first electrode plate. You may do so.
  • the laminated battery according to the present invention Further comprising a second tab connected to the other side of the membrane electrode assembly in the first direction and extending outward of the exterior in the first direction.
  • the first substrate includes a second tab side portion extending inward from the outer edge on the side of the second tab in the first direction.
  • the bulging portion is formed from the inner end of the first tab side portion to the inner end of the second tab side portion in the first direction.
  • the dimension of the second tab side portion in the first direction is 20 mm or more. You may do so.
  • the dimension of the second tab side portion in the first direction is 100 mm or less. You may do so.
  • the dimension of the second tab side portion in the second direction orthogonal to the first direction when viewed in the stacking direction is 100 mm or more. You may do so.
  • the second electrode plate includes a second electrode current collector including a second connection region and a second effective region adjacent to each other, and a second electrode active material layer provided in the second effective region.
  • the second tab side portion faces the second connection region of the second electrode plate. You may do so.
  • the first base material and the second base material each include a metal layer and a resin adhesive layer provided on the inner surface of the metal layer.
  • the bulging portion and the first tab side portion of the first base material are composed of the metal layer and the resin adhesive layer. You may do so.
  • the method for transporting a laminated battery according to the present invention is as follows.
  • a transfer step of suspending and transporting the laminated battery while sandwiching the sandwiched area by the sandwiching device is provided.
  • the method for transporting a laminated battery according to the present invention further includes an erecting step for erecting the laminated battery before the sandwiching step. You may do so.
  • FIG. 1 is a perspective view showing a stacked battery according to an embodiment.
  • FIG. 2 is a perspective view showing a membrane electrode assembly included in the laminated battery of FIG.
  • FIG. 3 is a plan view of FIG.
  • FIG. 4 is a partial cross-sectional view of the membrane electrode assembly of FIG. 2 as viewed in the second direction d2.
  • FIG. 5 is a plan view of FIG.
  • FIG. 6 is a cross-sectional view of the stacked battery of FIG. 5 as viewed in the second direction d2.
  • FIG. 7 is a diagram for explaining a step of raising the laminated battery in the method of transporting the laminated battery according to the embodiment.
  • FIG. 1 is a perspective view showing a stacked battery according to an embodiment.
  • FIG. 2 is a perspective view showing a membrane electrode assembly included in the laminated battery of FIG.
  • FIG. 3 is a plan view of FIG.
  • FIG. 4 is a partial cross-sectional view of the membrane electrode assembly of FIG. 2 as
  • FIG. 8 is a diagram for explaining a step of sandwiching the sandwiched area of the laminated battery by the sandwiching device in the method of transporting the laminated battery according to the embodiment.
  • FIG. 9 is a partial cross-sectional view seen in the second direction d2 of FIG.
  • FIG. 10 is a diagram for explaining a step of suspending and transporting a laminated battery while sandwiching a sandwiched area by a sandwiching device in the method of transporting a laminated battery according to an embodiment.
  • FIG. 11 is a partial cross-sectional view showing a modified example (fourth modified example) of FIG.
  • [Stacked battery] 1 to 6 are diagrams for explaining a laminated battery according to an embodiment of the present invention.
  • the laminated battery 1 As shown in FIGS. 1 and 2, the laminated battery 1 according to the present embodiment is connected to the exterior body 40, the membrane electrode assembly 5 housed in the exterior body 40, and the membrane electrode assembly 5. It includes a pair of tabs 16 and 26.
  • the tabs 16 and 26 extend to the outside of the exterior body 40.
  • a module composed of a combination of a plurality of laminated batteries 1 is mounted on the automobile. The electrical connection between the plurality of stacked batteries 1 is realized via the tabs 16 and 26.
  • the membrane electrode assembly 5 has a plurality of electrode plates 10X and 20Y including a positive electrode plate 10X (first electrode plate) and a negative electrode plate 20Y (second electrode plate) alternately laminated in the stacking direction dL.
  • the membrane electrode assembly 5 constitutes a lithium ion secondary battery
  • the first electrode plate constitutes the positive electrode plate 10X
  • the second electrode plate constitutes the negative electrode plate 20Y.
  • the first electrode plate may form the negative electrode plate 20Y
  • the second electrode plate may form the positive electrode plate 10X.
  • the present invention is not limited to the lithium ion secondary battery, and can be widely applied to the membrane electrode assembly 5 in which the first electrode plate and the second electrode plate are alternately laminated.
  • the membrane electrode assembly 5 has a plurality of positive electrode plates 10X and a plurality of negative electrode plates 20Y.
  • the positive electrode plate 10X and the negative electrode plate 20Y are alternately arranged and laminated along the stacking direction dL.
  • the negative electrode plates 20Y are arranged at the lowermost and uppermost portions of the membrane electrode assembly 5 in the stacking direction dL.
  • the membrane electrode assembly 5 and the laminated battery 1 have a flat shape as a whole, have a thin thickness in the stacking direction dL, and spread in the directions d1 and d2 orthogonal to the stacking direction dL.
  • the positive electrode plate 10X and the negative electrode plate 20Y may have any shape when viewed in the stacking direction dL. As shown in the figure, the positive electrode plate 10X and the negative electrode plate 20Y may have an outer contour having a rectangular shape as a whole when viewed in the stacking direction dL.
  • the laminated battery 1 has a first direction d1 in which a pair of tabs 16 and 26 are arranged, and a second direction d2 orthogonal to the first direction d1.
  • the first direction d1 corresponds to the longitudinal direction (length direction) of the laminated battery 1
  • the second direction d2 corresponds to the lateral direction (width direction) of the laminated battery 1. ..
  • first direction d1 may correspond to the lateral direction of the laminated battery 1
  • second direction d2 may correspond to the longitudinal direction of the laminated battery 1.
  • the stacking direction dL is orthogonal to both the first direction d1 and the second direction d2.
  • the positive electrode plate 10X and the negative electrode plate 20Y are arranged so as to be offset in the first direction d1. More specifically, the plurality of positive electrode plates 10X are arranged closer to one side in the first direction d1 (right side in FIG. 3), and the plurality of negative electrode plates 20Y are arranged on the other side in the first direction d1 (in FIG. 3). It is located closer to the left side).
  • the positive electrode plate 10X and the negative electrode plate 20Y overlap in the stacking direction dL in the central portion (positive electrode effective region b1 and negative electrode effective region b2 described later) in the first direction d1.
  • the positive electrode plate 10X has a sheet-like outer shape.
  • the positive electrode plate 10X has a positive electrode current collector 11X (first electrode current collector) and a positive electrode active material layer 12X (first electrode active material layer) provided on the positive electrode current collector 11X. ..
  • the positive electrode active material layer 12X may have an arbitrary shape, but may have a rectangular outer contour as shown in the figure.
  • the positive electrode plate 10X occludes lithium ions during discharging and releases lithium ions during charging.
  • the positive electrode current collector 11X has a first surface 11a and a second surface 11b located on opposite sides of each other as main surfaces.
  • the positive electrode active material layer 12X is formed on at least one surface of the first surface 11a and the second surface 11b of the positive electrode current collector 11X.
  • the positive electrode active material layers 12X are provided on both sides of the positive electrode current collector 11X of each positive electrode plate 10X, and the positive electrode plates 10X can be configured to be the same as each other.
  • the positive electrode current collector 11X and the positive electrode active material layer 12X can be produced by various manufacturing methods using various materials that can be applied to the laminated battery 1 (lithium ion secondary battery).
  • the positive electrode current collector 11X can be formed of an aluminum foil or an aluminum foil coated with highly conductive carbon particles or carbon nanotubes.
  • the positive electrode active material layer 12X may contain, for example, a positive electrode active material, a conductive auxiliary agent, and a binder serving as a binder.
  • a positive electrode slurry formed by dispersing a positive electrode active material, a conductive auxiliary agent and a binder in a solvent is applied onto a material forming the positive electrode current collector 11X, and then dried, and then dried.
  • the positive electrode active material may contain a transition metal and lithium, or may contain one kind of transition metal and lithium.
  • the positive electrode active material include a lithium transition metal composite oxide, a lithium-containing transition metal phosphoric acid compound, and the like, and these may be mixed and used.
  • the transition metal of the lithium transition metal composite oxide may be vanadium, titanium, chromium, manganese, iron, cobalt, nickel, copper or the like.
  • Specific examples of the lithium transition metal composite oxide include a lithium cobalt composite oxide such as LiCoO 2 , a lithium nickel composite oxide such as LiNiO 2 , and a lithium manganese composite oxide such as LiMnO 2 , LiMn 2 O 4 , and Li 2 MnO 3.
  • substitution product examples include, for example, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.80 Co 0.17 Al 0.03 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O. 2 , LiMn 1.8 Al0.2 O 4 , LiMn 1.5 Ni 0.5 O 4, and the like can be mentioned.
  • the transition metal of the lithium-containing transition metal phosphoric acid compound may be vanadium, titanium, manganese, iron, cobalt, nickel or the like, and specific examples thereof include iron phosphates such as LiFePO 4 and LiCoPO. Cobalt phosphates such as 4 and some of the transition metal atoms that are the main constituents of these lithium transition metal phosphate compounds are aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, magnesium, gallium. , Substituents substituted with other metals such as zirconium, niobium and the like.
  • the conductive auxiliary agent fine particles of graphite, carbon black such as acetylene black and Ketjen black, fine particles of amorphous carbon such as needle coke, carbon nanofibers and the like are used, but the present invention is not limited thereto.
  • a fluororesin such as polyvinylidene fluoride can be used.
  • the positive electrode current collector 11X has a positive electrode connection region a1 (first connection region) and a positive electrode effective region b1 (first effective region) adjacent to each other.
  • the positive electrode active material layer 12X is arranged only in the positive electrode effective region b1 of the positive electrode current collector 11X.
  • the positive electrode effective region b1 may have an arbitrary shape. As shown in the figure, the positive electrode effective region b1 may have a rectangular outer contour, or may be a region provided with the positive electrode active material layer 12X as a whole.
  • the positive electrode connection region a1 and the positive electrode effective region b1 are arranged in the first direction d1 of the positive electrode plate 10X.
  • the positive electrode connection region a1 is located outside the positive electrode plate 10X in the first direction d1 (right side in FIG. 3) with respect to the positive electrode effective region b1.
  • the positive electrode connection portion 13 (first connection portion) is configured by the positive electrode connection region a1 of each positive electrode current collector 11X.
  • the positive electrode connecting portion 13 has a first surface 13a, which is a side surface of the first base material 41, and a second surface 13b, which is a side surface of the second base material 42.
  • the first surface 13a corresponds to the first surface 11a in the positive electrode connection region a1 of the positive electrode current collector 11X arranged on the side of the first base material 41 among the plurality of positive electrode current collectors 11X.
  • the second surface 13b corresponds to the second surface 11b in the positive electrode connection region a1 of the positive electrode current collector 11X arranged closest to the second base material 42 among the plurality of positive electrode current collectors 11X.
  • the positive electrode tab 16 (first tab) is joined to the second surface 13b (see FIG. 6).
  • the positive electrode tab 16 is bonded to the second surface 13b by resistance welding, ultrasonic welding, tape bonding, welding, or the like.
  • each positive electrode current collector 11X is also joined to each other at a position where the positive electrode tab 16 is joined to the second surface 13b. As a result, each positive electrode current collector 11X and the positive electrode tab 16 are electrically connected.
  • the positive electrode effective region b1 is provided in the region of the negative electrode plate 20Y facing the negative electrode active material layer 22Y, which will be described later, when viewed in the stacking direction dL. Therefore, the size of the positive electrode effective region b1 of the positive electrode plate 10X in the first direction d1 is smaller than the size of the negative electrode effective region b2 of the negative electrode plate 20Y in the first direction d1 which will be described later. Further, the size of the positive electrode plate 10X in the second direction d2 is smaller than the size of the negative electrode plate 20Y in the second direction d2.
  • the positive electrode plate 10X has a relatively large size, and the size of the positive electrode plate 10X in the first direction d1 may be 180 mm or more.
  • the size of the positive electrode effective region b1 of the positive electrode plate 10X in the first direction d1 may be 150 mm or more.
  • the size of the positive electrode plate 10X in the second direction d2 may be 80 mm or more.
  • the negative electrode plate 20Y also has a sheet-like outer shape like the positive electrode plate 10X.
  • the negative electrode plate 20Y has a negative electrode current collector 21Y (second electrode current collector) and a negative electrode active material layer 22Y (second electrode active material layer) provided on the negative electrode current collector 21Y. ..
  • the negative electrode active material layer 22Y may have an arbitrary shape, but may have a rectangular outer contour as shown in the figure.
  • the negative electrode plate 20Y emits lithium ions at the time of discharging and occludes the lithium ions at the time of charging.
  • the negative electrode current collector 21Y has a first surface 21a and a second surface 21b located on opposite sides of each other as main surfaces.
  • the negative electrode active material layer 22Y is formed on at least one of the first surface 21a and the second surface 21b of the negative electrode current collector 21Y.
  • the negative electrode active material layers 22Y are provided on both sides of the negative electrode current collector 21Y of each negative electrode plate 20Y, and the negative electrode plates 20Y can be configured to be the same as each other.
  • the negative electrode active material layer 22Y may not be provided on the first surface 21a of the negative electrode current collector 21Y of the negative electrode plate 20Y arranged closest to the first base material 41. Further, the negative electrode active material layer 22Y may not be provided on the second surface 21b of the negative electrode current collector 21Y of the negative electrode plate 20Y arranged closest to the second base material 42.
  • the negative electrode current collector 21Y and the negative electrode active material layer 22Y can be produced by various manufacturing methods using various materials that can be applied to the laminated battery 1 (lithium ion secondary battery).
  • the negative electrode current collector 21Y is formed of, for example, a copper foil.
  • the negative electrode active material layer 22Y may contain, for example, a negative electrode active material, a conductive auxiliary agent, a binder serving as a binder, and a thickener.
  • a slurry for a negative electrode formed by dispersing a negative electrode active material, a conductive auxiliary agent, a binder and a thickener in a solvent is applied onto a material forming the negative electrode current collector 21Y, followed by coating.
  • Examples of the negative electrode active material include metallic lithium, lithium alloys, carbon-based materials capable of occluding and releasing lithium ions (carbon powder, graphite powder, etc.), metal oxides, and the like.
  • Examples of the conductive auxiliary agent include acetylene black and carbon nanotubes.
  • Examples of the binder include fluororesins such as polyvinylidene fluoride and styrene-butadiene rubber.
  • Examples of the thickener include carboxymethyl cellulose and the like.
  • the negative electrode current collector 21Y has a negative electrode connection region a2 (second connection region) and a negative electrode effective region b2 (second effective region) adjacent to each other.
  • the negative electrode active material layer 22Y is arranged only in the negative electrode effective region b2 of the negative electrode current collector 21Y.
  • the negative electrode effective region b2 may have an arbitrary shape. As shown in the figure, the negative electrode effective region b2 may have a rectangular outer contour, or may be a region provided with the negative electrode active material layer 22Y as a whole.
  • the negative electrode connection region a2 and the negative electrode effective region b2 are arranged in the first direction d1 of the negative electrode plate 20Y.
  • the negative electrode connection region a2 is located outside the negative electrode plate 20Y in the first direction d1 (left side in FIG. 3) with respect to the negative electrode effective region b2.
  • the negative electrode connection portion 23 (second connection portion) is configured by the negative electrode connection region a2 of each negative electrode current collector 21Y.
  • the negative electrode connecting portion 23 has a first surface 23a, which is a side surface of the first base material 41, and a second surface 23b, which is a side surface of the second base material 42.
  • the first surface 23a corresponds to the first surface 21a in the negative electrode connection region a2 of the negative electrode current collector 21Y arranged closest to the first base material 41 among the plurality of negative electrode current collectors 21Y.
  • the second surface 23b corresponds to the second surface 21b in the negative electrode connection region a2 of the negative electrode current collector 21Y arranged closest to the second base material 42 among the plurality of negative electrode current collectors 21Y.
  • the negative electrode tab 26 (second tab) is joined to the second surface 23b (see FIG. 6).
  • the negative electrode tab 26 is bonded to the second surface 23b by resistance welding, ultrasonic welding, tape bonding, welding, or the like.
  • the negative electrode current collectors 21Y are also joined to each other at the position where the negative electrode tab 26 is joined to the second surface 23b. As a result, each negative electrode current collector 21Y and the negative electrode tab 26 are electrically connected.
  • the negative electrode effective region b2 extends so as to include a region of the positive electrode plate 10X facing the positive electrode active material layer 12X when viewed in the stacking direction dL. That is, the negative electrode effective region b2 extends so as to protrude to the outside of the positive electrode active material layer 12X over the entire circumference when viewed in the stacking direction dL. Therefore, as described above, the size of the negative electrode effective region b2 of the negative electrode plate 20Y in the first direction d1 is larger than the size of the positive electrode effective region b1 of the positive electrode plate 10X in the first direction d1. Further, the size of the negative electrode plate 20Y in the second direction d2 is larger than the size of the positive electrode plate 10X in the second direction d2.
  • the negative electrode plate 20Y has a relatively large size, and the size of the negative electrode plate 20Y in the first direction d1 may be 180 mm or more.
  • the size of the negative electrode effective region b2 of the negative electrode plate 20Y in the first direction d1 may be 150 mm or more.
  • the size of the negative electrode plate 20Y in the second direction d2 may be 80 mm or more.
  • the insulating sheet 31 may be arranged between the positive electrode plate 10X and the negative electrode plate 20Y.
  • the insulating sheet 31 is interposed between the positive electrode plate 10X and the negative electrode plate 20Y and functions as a separator.
  • the insulating sheet 31 is arranged between the functional layer 30A of the positive electrode plate 10X, which will be described later, and the negative electrode active material layer 22Y of the negative electrode plate 20Y.
  • Such an insulating sheet 31 can be formed of, for example, a non-woven fabric or a porous material.
  • the electrolytic solution or the gel-like electrolytic solution contained in the exterior body 40 is impregnated into the insulating sheet 31 and held.
  • the insulating sheet 31 used in this example is not particularly limited, and various insulators applicable to the laminated battery 1, particularly the lithium ion secondary battery, can be used.
  • the positive electrode plate 10X and the negative electrode plate 20Y may have the functional layer 30A on the surface facing the other.
  • the functional layer 30A has an insulating property and prevents the positive electrode plate 10X and the negative electrode plate 20Y from being short-circuited.
  • the positive electrode plate 10X has a functional layer 30A.
  • the functional layer 30A is provided on the surface of the positive electrode active material layer 12X on the side of the insulating sheet 31 (the surface facing the insulating sheet 31). That is, the functional layer 30A is provided on the surface of each positive electrode active material layer 12X on the opposite side of the insulating sheet 31.
  • the surface of each positive electrode active material layer 12X is covered with the functional layer 30A.
  • the surface of the positive electrode plate 10X facing the insulating sheet 31 in the stacking direction dL is formed by the functional layer 30A.
  • the negative electrode plate 20Y may have a functional layer 30A covering each negative electrode active material layer 22Y.
  • the functional layer 30A may have a higher porosity than the negative electrode active material layer 22Y. Further, the functional layer 30A may have excellent heat resistance.
  • An inorganic material may be used as the material of such a functional layer 30A. The inorganic material can impart excellent heat resistance, for example, heat resistance of 150 ° C. or higher to the functional layer 30A together with a high porosity.
  • Inorganic materials include silicon dioxide, silicon nitride, alumina, boehmite, titania, zirconia, boron nitride, zinc oxide, tin dioxide, niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), potassium fluoride, Examples thereof include lithium fluoride, clay, zeolite, calcium carbonate, niob-tantalum composite oxide and magnesium-tantalum composite oxide. Further, an organic material may be used as the material of the functional layer 30A.
  • organic material examples include fibrous substances and particulate substances such as cellulose and its variants, polyolefins, polyethylene terephthalates, polybutylene terephthalates, polypropylenes, polyesters, polyacrylonitriles, aramids, polyamideimides, and polyimides.
  • the functional layer 30A is formed of alumina, it can be produced by coating it on the positive electrode active material layer 12X and solidifying it.
  • the positive electrode tab 16 is connected to one side (right side in FIG. 3) of the membrane electrode assembly 5 in the first direction d1. Further, the negative electrode tab 26 is connected to the other side (left side in FIG. 3) of the membrane electrode assembly 5 in the first direction d1.
  • the positive electrode tab 16 is connected to the second surface 13b of the positive electrode connection portion 13 of the membrane electrode assembly 5. Further, the negative electrode tab 26 is connected to the second surface 23b of the negative electrode connection portion 23 of the membrane electrode assembly 5.
  • the tabs 16 and 26 are bonded by resistance welding, ultrasonic welding, tape bonding, welding, or the like, respectively. As a result, the positive electrode tab 16 is electrically connected to each positive electrode current collector 11X, and the negative electrode tab 26 is electrically connected to each negative electrode current collector 21Y.
  • the positive electrode tab 16 extends to the outside of the exterior body 40 in the first direction d1 and functions as a positive electrode terminal of the laminated battery 1.
  • the positive electrode tab 16 is provided with a positive electrode sealant 18.
  • the negative electrode tab 26 extends to the outside of the exterior body 40 in the first direction d1 and functions as a negative electrode terminal of the laminated battery 1.
  • the negative electrode tab 26 is provided with a negative electrode sealant 28.
  • the positive electrode tab 16 can be formed by using aluminum or the like.
  • the negative electrode tab 26 can be formed using nickel, nickel-plated copper, or the like.
  • the sealants 18 and 28 are made of a material that can be welded to the resin adhesive layer 40b of the exterior body 40 and the tabs 16 and 26. Examples of the materials of the sealants 18 and 28 include polypropylene, modified polypropylene, low-density polypropylene, ionomer, ethylene-vinyl acetate and the like.
  • the exterior body 40 is a packaging material for sealing the membrane electrode assembly 5. As shown in FIGS. 5 and 6, the exterior body 40 has a first base material 41 (upper outer body) and a second base material 42 (lower outer body) facing the first base material 41. are doing. In the present embodiment, the first base material 41 and the second base material 42 are configured as separate bodies.
  • the second base material 42 is formed in a sheet shape.
  • the first base material 41 is formed in a convex shape. More specifically, the first base material 41 has a peripheral portion 43 and a bulging portion 44.
  • the peripheral portion 43 includes a positive electrode tab side portion 43a (first tab side portion) extending inward from the outer edge 41a (right side in FIG. 5) on the positive electrode tab 16 side in the first direction d1, and a negative electrode in the first direction d1. It includes a negative electrode tab side portion 43b (second tab side portion) extending inward from the outer edge 41b (left side in FIG. 5) on the tab 26 side.
  • the peripheral portion 43 includes a first side portion 43c extending inward from the outer edge 41c on one side in the second direction d2 (lower side in FIG. 5) and an outer edge 41d on the other side in the second direction d2.
  • a second side portion 43d extending inward from the upper side in FIG. 5) is included.
  • the bulging portion 44 bulges to the side opposite to the side of the second base material 42 (the side of the metal layer 40a described later of the first base material 41) with respect to the positive electrode tab side portion 43a.
  • the bulging portion 44 is formed from the inner end 43e of the positive electrode tab side portion 43a to the inner end 43f of the negative electrode tab side portion 43b in the first direction d1.
  • the bulging portion 44 is formed from the inner end 43g of the first side portion 43c to the inner end 43h of the second side portion 43d in the second direction d2.
  • the bulging portion 44 defines a sealing space 45 between the first base material 41 and the second base material 42.
  • the membrane electrode assembly 5 is housed in the sealing space 45.
  • the bulging portion 44 faces the portion where the positive electrode effective region b1 and the negative electrode effective region b2 of the membrane electrode assembly 5 overlap.
  • the positive electrode tab side portion 43a faces the positive electrode connecting portion 13 of the membrane electrode assembly 5, that is, the positive electrode connecting region a1 of the positive electrode plate 10X.
  • the negative electrode tab side portion 43b faces the negative electrode connection portion 23 of the membrane electrode assembly 5, that is, the negative electrode connection region a2 of the negative electrode plate 20Y.
  • the bulging portion 44 is formed, for example, by pressing a desired region of the sheet-shaped first base material 41 (drawing). In this case, the peripheral portion 43 and the bulging portion 44 are integrally formed.
  • the exterior body 40 may have flexibility.
  • the first base material 41 and the second base material 42 of the exterior body 40 are each composed of a laminated film having a metal layer 40a and a resin adhesive layer 40b provided on the inner surface of the metal layer 40a.
  • the metal layer 40a may have high gas barrier properties and molding processability.
  • Such a metal layer 40a may be formed of a metal material such as aluminum foil or stainless steel foil.
  • the resin adhesive layer 40b is located on the inner surface of the metal layer 40a and functions as a sealing layer for joining the metal layers 40a.
  • the resin adhesive layer 40b may have insulating property, chemical resistance, thermoplasticity, etc. in addition to adhesiveness.
  • Such a resin adhesive layer 40b may be formed of a resin material such as polypropylene, modified polypropylene, low density polypropylene, ionomer, ethylene / vinyl acetate or the like.
  • the laminated battery 1 according to the present embodiment is manufactured by arranging the membrane electrode assembly 5 between the first base material 41 and the second base material 42 and then laminating. That is, on the peripheral edge of the exterior body 40, the resin adhesive layer 40b formed on the inner surfaces of the first base material 41 and the second base material 42 is heat-sealed (heat welded) to form the seal portion 46. .. In this way, the membrane electrode assembly 5 is housed in the sealing space 45 in which the first base material 41 and the second base material 42 are joined and the inside of the exterior body 40 is sealed.
  • the tabs 16 and 26 each extend from the inside of the exterior body 40 to the outside of the exterior body 40 through the seal portion 46 in the first direction d1.
  • the first base material 41 and the tabs 16 and 26 are heat-sealed via the sealants 18 and 28.
  • the second base material 42 and the tabs 16 and 26 are heat-sealed via the sealants 18 and 28.
  • the exterior body 40 accommodates the positive electrode plate 10X and the negative electrode plate 20Y having a relatively large size as described above. Therefore, the exterior body 40 also has a relatively large size.
  • the dimension L of the first base material 41 in the first direction d1 may be 200 mm or more.
  • the dimension W of the first base material 41 in the second direction d2 may be 100 mm or more.
  • the dimensions L and W here mean the plane dimensions in a state where the peripheral edge portion of the exterior body 40 is flat without folding back at the end portion of the exterior body 40. When the end portion of the exterior body 40 is folded back, the dimensions L and W are the dimensions when the folded portion is returned to flatten the peripheral edge portion of the exterior body 40.
  • the dimensions of the second base material 42 in the first direction d1 and the dimensions of the second base material 42 in the second direction d2 may be similar to those of the first base material 41.
  • the dimension dx1 of the positive electrode tab side portion 43a in the first direction d1 may be 20 mm or more, or 100 mm or less.
  • the dimension dx2 of the negative electrode tab side portion 43b in the first direction d1 may also be 20 mm or more, or 100 mm or less.
  • the dimension of the positive electrode tab side portion 43a in the second direction d2 may be the same as the dimension W of the first base material 41 in the second direction d2, or may be 100 mm or more.
  • the size of the negative electrode tab side portion 43b in the second direction d2 may be the same as the size W of the first base material 41 in the second direction d2, or may be 100 mm or more.
  • these dimensions also mean the dimensions in a state where the peripheral edge portion of the exterior body 40 is flat without folding back at the end portion of the exterior body 40, and the end portion of the exterior body 40 is folded back. If so, it is the dimension when the folded-back portion is returned and the peripheral edge portion of the exterior body 40 is made flat.
  • the laminated battery 1 is a large laminated battery 1 including electrode plates 10X and 20Y having a relatively large size and an exterior body 40. Therefore, the weight of the laminated battery 1 is increased. In the present embodiment, the weight of the laminated battery 1 may be 500 g or more.
  • the laminated battery 1 configured in this way has a first sandwiched region S1 defined as a region overlapping the positive electrode tab side portion 43a and a region overlapping the negative electrode tab side portion 43b when viewed in the stacking direction dL. It is divided into a defined second sandwiched area S2 and a bulging portion area SB where the bulging portion 44 is located, which is provided between the first sandwiched area S1 and the second sandwiched area S2. (See FIGS. 5 and 6).
  • the first sandwiched area S1 and the second sandwiched area S2 are areas for being sandwiched by the sandwiching device 60, which will be described later, when the laminated battery 1 is conveyed.
  • the method for manufacturing the laminated battery described below includes a membrane electrode assembly preparation step for preparing the membrane electrode assembly 5, a tab attachment step for attaching the tabs 16 and 26 to the membrane electrode assembly 5, and a first base material 41. And an exterior body preparation step for preparing the second base material 42, and a sealing step for sealing the membrane electrode assembly 5 between the first base material 41 and the second base material 42.
  • a membrane electrode assembly preparation step for preparing the membrane electrode assembly 5
  • a tab attachment step for attaching the tabs 16 and 26 to the membrane electrode assembly 5
  • a first base material 41 for attaching the tabs 16 and 26 to the membrane electrode assembly 5
  • an exterior body preparation step for preparing the second base material 42
  • a sealing step for sealing the membrane electrode assembly 5 between the first base material 41 and the second base material 42.
  • the membrane electrode assembly preparation step includes a step of producing the positive electrode plate 10X and the negative electrode plate 20Y, respectively, and a step of alternately laminating the positive electrode plate 10X and the negative electrode plate 20Y.
  • a composition (slurry) that constitutes the positive electrode active material layer 12X is applied onto a long aluminum foil that constitutes the positive electrode current collector 11X, and then dried. Then press to increase the density. Next, it can be cut to a desired size to produce a single-wafer-shaped positive electrode plate 10X.
  • a composition (slurry) that constitutes the negative electrode active material layer 22Y is applied onto a long copper foil that constitutes the negative electrode current collector 21Y, subsequently dried, and then pressed. To increase the density. Next, it can be cut to a desired size to produce a single-wafer-shaped negative electrode plate 20Y.
  • the functional layer 30A is formed of alumina on at least one of the positive electrode plate 10X and the negative electrode plate 20Y and applied, for example, on a long material before cutting or after cutting so as to form the electrode plates 10X and 20Y.
  • the functional layer 30A can be produced by applying a material containing alumina on the single-wafer material of No. 1 and solidifying it.
  • a step of alternately laminating the positive electrode plate 10X and the negative electrode plate 20Y is carried out.
  • the positive electrode active material layer 12X of the positive electrode plate 10X and the negative electrode active material layer 22Y of the negative electrode plate 20Y face each other, and the insulating sheet 31 is interposed between the positive electrode plate 10X and the negative electrode plate 20Y.
  • Positive electrode plate 10X and negative electrode plate 20Y are laminated.
  • the negative electrode plate 20Y is arranged at the lowermost portion and the uppermost portion in the stacking direction dL.
  • the membrane electrode assembly 5 in which the positive electrode plate 10X and the negative electrode plate 20Y are alternately laminated can be obtained.
  • a tab attachment step is performed.
  • a pair of tabs 16 and 26 are attached to both sides of the membrane electrode assembly 5 in the first direction d1.
  • the tab attachment step includes a step of preparing the tabs 16 and 26 and a step of attaching the tabs 16 and 26 to the membrane electrode assembly 5.
  • a positive electrode tab 16 made of aluminum metal and to which a positive electrode sealant 18 is attached is prepared.
  • the positive electrode sealant 18 is attached so as to cover a part of the positive electrode tab 16 in the first direction d1, and is attached so as to extend to both sides of the positive electrode tab 16 in the second direction d2.
  • a negative electrode tab 26 formed of copper metal and to which a negative electrode sealant 28 is attached is prepared.
  • the negative electrode sealant 28 is attached so as to cover a part of the negative electrode tab 26 in the first direction d1, and is attached so as to extend to both sides of the negative electrode tab 26 in the second direction d2.
  • the steps of attaching the tabs 16 and 26 to the membrane electrode assembly 5 are carried out.
  • the prepared tabs 16 and 26 are attached to the connecting portions 13 and 23 of the membrane electrode assembly 5, respectively.
  • the positive electrode tab 16 is placed on the stage.
  • the membrane electrode assembly 5 is placed so that the upper surface of the positive electrode tab 16 and the second surface 13b of the positive electrode connection portion 13 of the membrane electrode assembly 5 partially overlap.
  • the membrane electrode assembly 5 is aligned with the positive electrode tab 16 so that the center position of the positive electrode connection region a1 in the second direction d2 and the center position of the positive electrode tab 16 coincide with each other.
  • the positive electrode tab 16 is welded to the positive electrode connection portion 13 of the membrane electrode assembly 5 by resistance welding, ultrasonic welding, or the like. As a result, the positive electrode tab 16 is joined to the second surface 13b of the positive electrode connecting portion 13. At this time, the positive electrode current collectors 11X are also joined to each other at the position where the positive electrode tab 16 is joined to the second surface 13b. In this way, the positive electrode tab 16 can be electrically connected to the positive electrode connection portion 13 of the membrane electrode assembly. Similarly, the prepared negative electrode tab 26 can be electrically connected to the negative electrode connection portion 23 of the membrane electrode assembly 5.
  • the exterior body preparation step In the exterior body preparation step, the first base material 41 and the second base material 42 are prepared.
  • the exterior body preparation step includes a step of manufacturing the first base material 41 and a step of manufacturing the second base material 42.
  • the step of producing the first base material 41 first, a composition of a resin material that constitutes the resin adhesive layer 40b is applied to one side of the aluminum foil that constitutes the metal layer 40a and solidified. Next, it is cut to a desired size to obtain a flat plate-shaped first base material 41. After that, the flat plate-shaped first base material 41 is drawn to form a bulging portion 44.
  • the dimension dx1 of the positive electrode tab side portion 43a and the dimension dx2 of the negative electrode tab side portion 43b in the first direction d1 are formed so as to have desired values.
  • the first base material 41 having the positive electrode tab side portion 43a and the negative electrode tab side portion 43b having desired dimensions can be produced (see FIG. 5).
  • a composition of a resin material that constitutes the resin adhesive layer 40b is applied to one side of the aluminum foil that constitutes the metal layer 40a and solidified. Next, it is cut to a desired size to obtain a flat plate-shaped second base material 42.
  • first base material 41 and the second base material 42 constituting the exterior body 40 that seals the membrane electrode assembly 5 can be obtained.
  • a sealing step is performed after the tab mounting step and the exterior body preparation step.
  • the membrane electrode assembly 5 is sealed in the exterior body 40.
  • the second base material 42 is placed on the stage so that the resin adhesive layer 40b faces upward.
  • the membrane electrode assembly 5 is placed on the second base material 42.
  • the first base material 41 is covered over the membrane electrode assembly 5 so that the membrane electrode assembly 5 is housed in the bulge 44.
  • the first base material 41 is covered so that the resin adhesive layer 40b of the first base material 41 faces the resin adhesive layer 40b of the second base material 42.
  • the first base material 41 is covered so that the positive electrode tab side portion 43a faces the positive electrode connection region a1 of the positive electrode plate 10X and the negative electrode tab side portion 43b faces the negative electrode connection region a2 of the negative electrode plate 20Y.
  • the membrane electrode assembly 5 is arranged between the first base material 41 and the second base material 42 with the tabs 16 and 26 extending to the outside.
  • the sealants 18 and 28 are arranged between the exterior body 40 and the tabs 16 and 26.
  • the first base material 41 and the second base material 42 are pressed by a metal heat bar having a temperature of, for example, 150 ° C. to 200 ° C. around the membrane electrode assembly 5.
  • a metal heat bar having a temperature of, for example, 150 ° C. to 200 ° C. around the membrane electrode assembly 5.
  • the resin adhesive layers 40b formed on the inner surfaces of the first base material 41 and the second base material 42 are melted in the vicinity of the region pressed by the heat bar, and they are heat-sealed (heat welded) with each other.
  • the seal portion 46 is formed.
  • one edge of the exterior body 40 in the second direction d2 (lower side in FIG. 5) and one edge of the exterior body 40 in the first direction d1 (side of the positive electrode tab 16).
  • the right side in FIG. 5) and the other edge of the exterior body 40 in the first direction d1 (the side of the negative electrode tab 26, the left side in FIG. 5) are pressed by the heat bar.
  • the resin adhesive layers 40b formed on the inner surfaces of the first base material 41 and the second base material 42 are melted in the vicinity of the region pressed by the heat bar, and they are heat-sealed (heat welded) with each other.
  • the sealants 18 and 28 melt together with the resin adhesive layer 40b of the first base material 41 and the resin adhesive layer 40b of the second base material 42 around the tabs 16 and 26. Therefore, the first base material 41 and the tabs 16 and 26 are heat-sealed, and the second base material 42 and the tabs 16 and 26 are heat-sealed. As a result, it is possible to prevent the formation of a gap around the tabs 16 and 26 so as to communicate the sealing space 45 with the outside of the exterior body 40. By heat-sealing in this way, an opening is formed at the other side edge portion (upper side in FIG. 5) of the exterior body 40 in the second direction d2.
  • the electrolytic solution is injected into the exterior body 40 from this opening.
  • the inside of the exterior body 40 is filled with the electrolytic solution.
  • the other edge portion (upper side in FIG. 5) of the exterior body 40 is pressed by the heat bar.
  • the other side edge portion of the exterior body 40 in the second direction d2 is heat-sealed, and the opening portion is closed. Therefore, as shown in FIG. 5, the sealing portion 46 is continuously formed around the entire circumference of the membrane electrode assembly 5, and the frame-shaped sealing portion 46 allows the membrane electrode assembly 5 in the sealing space 45 to be formed. It is sealed in the exterior body 40 together with the electrolytic solution. This heat seal is performed in a pressure reducing chamber (not shown), and the sealing space 45 is sealed while being reduced in pressure.
  • the laminated battery 1 in which the membrane electrode assembly 5 is sealed in the exterior body 40 can be obtained.
  • the method for transporting the laminated battery described below includes a laminated battery preparation step (preparation step) for preparing the laminated battery 1, an upright step for raising the laminated battery 1, and a holding device 60 for the laminated battery 1. It includes a sandwiching step of sandwiching the sandwiched areas S1 and S2, and a transporting step of suspending and transporting the laminated battery 1 while sandwiching the sandwiched areas S1 and S2 by the sandwiching device 60.
  • a laminated battery preparation step for preparing the laminated battery 1
  • an upright step for raising the laminated battery 1 and a holding device 60 for the laminated battery 1.
  • a holding device 60 for the laminated battery 1. It includes a sandwiching step of sandwiching the sandwiched areas S1 and S2, and a transporting step of suspending and transporting the laminated battery 1 while sandwiching the sandwiched areas S1 and S2 by the sandwiching device 60.
  • the laminated battery 1 is prepared.
  • the laminated battery 1 can be obtained by the method for manufacturing the laminated battery described above.
  • the obtained laminated battery 1 is mounted on the mounting surface 51 of the stage 50 so that the stacking direction dL of the laminated battery 1 is orthogonal to the mounting surface 51 of the stage 50.
  • the lower surface (outer surface) of the second base material 42 of the laminated battery 1 faces the mounting surface 51.
  • the stacking direction dL of the laminated battery 1 is parallel to the mounting surface 51 of the stage 50, and the outer surface of the second base material 42 of the laminated battery 1 is mounted. It becomes perpendicular to the surface 51.
  • the laminated battery 1 is arranged so that one side in the second direction d2 is positioned upward when viewed in the first direction d1.
  • the lower surface of the second base material 42 may be pushed up.
  • the laminated battery 1 can be erected on the stage 50.
  • the sandwiching step includes a step of sandwiching the first sandwiched area S1 and a step of sandwiching the second sandwiched area S2.
  • the first sandwiched area S1 is provided by the sandwiching device 60 having the first sandwiching portion 61 for sandwiching the first sandwiched area S1 and the second sandwiching portion 62 for sandwiching the second sandwiched area S2.
  • An example of sandwiching the second sandwiched area S2 will be described.
  • the dimension dm1 of the first sandwiching portion 61 in the first direction d1 may be 5 mm or more and 20 mm or less.
  • the dimension dm1 of the first sandwiching portion 61 in the first direction d1 is 20 mm.
  • the dimension dn1 of the first holding portion 61 in the second direction d2 is, for example, 100 mm (see FIG. 8).
  • the dimension dm2 of the second sandwiching portion 62 in the first direction d1 may be 5 mm or more and 20 mm or less.
  • the dimension dm2 of the second sandwiching portion 62 in the first direction d1 is 20 mm.
  • the dimension dn2 of the second holding portion 62 in the second direction d2 is, for example, 100 mm (see FIG. 8).
  • the contact portions of the sandwiching portions 61 and 62 with the laminated battery 1 may be covered with rubber.
  • the pair of first sandwiched portions 61 of the sandwiching device 60 are moved to a position where the first sandwiched area S1 of the laminated battery 1 can be sandwiched. More specifically, one of the first sandwiching portions 61 is positioned on one side of the positive electrode tab side portion 43a so as to face the positive electrode tab side portion 43a, and the other first sandwiching portion 61 is positioned on the positive electrode tab side portion 43a. It is positioned on the other side so as to face the positive electrode tab side portion 43a (see FIG. 9). Subsequently, the pair of first sandwiching portions 61 sandwiches the first sandwiched area S1 with a predetermined pressing force.
  • the first sandwiching portion 61 sandwiches the positive electrode connecting portion 13 of the positive electrode plate 10X via the first base material 41 and the second base material 42.
  • the dimension dm1 of the first sandwiching portion 61 in the first direction d1 is equal to or less than the dimension dx1 of the positive electrode tab side portion 43a in the first direction d1 described above. Therefore, the first sandwiched area S1 can be sandwiched by the first sandwiched portion 61.
  • the pair of second sandwiched portions 62 of the sandwiching device 60 is moved to a position where the second sandwiched area S2 of the laminated battery 1 can be sandwiched.
  • the second sandwiching portions 62 is positioned on one side of the negative electrode tab side portion 43b so as to face the negative electrode tab side portion 43b, and the other second sandwiching portion 62 is located on the negative electrode tab side portion 43b. It is positioned on the other side so as to face the negative electrode tab side portion 43b (see FIG. 9).
  • the pair of second sandwiching portions 62 sandwiches the second sandwiched area S2 with a predetermined pressing force.
  • the second sandwiching portion 62 sandwiches the negative electrode connecting portion 23 of the negative electrode plate 20Y via the first base material 41 and the second base material 42.
  • the dimension dm2 of the second sandwiching portion 62 in the first direction d1 is equal to or less than the dimension dx2 of the negative electrode tab side portion 43b in the first direction d1 described above. Therefore, the second sandwiched area S2 can be sandwiched by the second sandwiched portion 62.
  • the first sandwiched area S1 and the second sandwiched area S2 of the laminated battery 1 are sandwiched by the sandwiching device 60.
  • the step of sandwiching the first sandwiched area S1 and the step of sandwiching the second sandwiched area S2 may be performed at the same time, but may be performed at different timings.
  • this transfer step first, as shown in FIG. 8, in a state where the first sandwiched area S1 and the second sandwiched area S2 of the laminated battery 1 are sandwiched by the sandwiching device 60, the first sandwiching device 60 is sandwiched. The portion 61 and the second sandwiching portion 62 are raised. As a result, as shown in FIG. 10, the laminated battery 1 is separated from the mounting surface 51 of the stage 50 and suspended by the holding device 60. Subsequently, the first holding portion 61 and the second holding portion 62 are moved in the horizontal direction to transport the laminated battery 1 to a desired target position (a position where the next step, for example, the inspection step of the laminated battery is performed). To do.
  • a desired target position a position where the next step, for example, the inspection step of the laminated battery is performed.
  • the first holding portion 61 and the second holding portion 62 are lowered, and the stacked battery 1 is in an upright state and a tray having a slit provided at the target position (not shown). ).
  • the first sandwiching portion 61 is removed from the first sandwiched area S1
  • the second sandwiching portion 62 is removed from the second sandwiched area S2
  • the first sandwiching portion 61 and the second sandwiching portion 62 are retracted.
  • the laminated battery 1 can be suspended and conveyed while sandwiching the sandwiched areas S1 and S2 by the sandwiching device 60.
  • the dimension dx1 of the positive electrode tab side portion 43a in the first direction d1 is 20 mm or more.
  • the laminated battery 1 can be provided with the first sandwiched area S1 for sandwiching by the sandwiching device 60. Therefore, when the laminated battery 1 is conveyed, the first sandwiched area S1 can be sandwiched by the sandwiching device 60, and it is possible to prevent the bulging region SB from being sandwiched by the sandwiching device 60. That is, when the weight of the laminated battery 1 is large, the pressing force by the holding device 60 can be high.
  • the portion of the membrane electrode assembly 5 located inside the bulging portion 44 (for example, the electrode active material layers 12X and 22Y) is deformed. There is a possibility of doing so.
  • the first sandwiched region S1 can be sandwiched, so that the bulge region SB is prevented from being sandwiched. can do. As a result, deterioration of the performance of the laminated battery 1 can be suppressed.
  • the dimension dx1 of the positive electrode tab side portion 43a in the first direction d1 is 100 mm or less. As a result, it is possible to suppress an increase in the area of the first sandwiched region S1 when viewed in the stacking direction dL. Therefore, it is possible to suppress a decrease in the energy density of the laminated battery 1.
  • the dimension W of the positive electrode tab side portion 43a in the second direction d2 is 100 mm or more.
  • the first sandwiched area S1 can be sandwiched by the first sandwiched portion 61 over the entire area of the first sandwiched portion 61 in the second direction d2. Therefore, the pinching device 60 can hold the first pinched area S1 more firmly.
  • the positive electrode tab side portion 43a faces the positive electrode connection region a1 of the positive electrode plate 10X.
  • the sandwiching device 60 can sandwich the positive electrode connection region a1 of the positive electrode plate 10X via the first base material 41 and the second base material 42. it can. Therefore, the holding device 60 can hold the laminated battery 1 more firmly.
  • the positive electrode active material layer 12X is not provided in the positive electrode connection region a1, even when the positive electrode connection region a1 is sandwiched by a predetermined pressing force, deterioration of the performance of the laminated battery 1 can be suppressed. it can.
  • the dimension of the negative electrode tab side portion 43b in the first direction d1 is 20 mm or more.
  • the laminated battery 1 can be provided with a second sandwiched area S2 for sandwiching by the sandwiching device 60. Therefore, when the laminated battery 1 is conveyed, both the first sandwiched area S1 and the second sandwiched area S2 can be sandwiched by the sandwiching device 60, and the laminated battery 1 can be held more firmly. Can be done.
  • the dimension dx2 of the negative electrode tab side portion 43b in the first direction d1 is 100 mm or less. As a result, it is possible to suppress an increase in the area of the second sandwiched region S2 when viewed in the stacking direction dL. Therefore, it is possible to suppress a decrease in the energy density of the laminated battery 1.
  • the dimension W of the negative electrode tab side portion 43b in the second direction d2 is 100 mm or more.
  • the second sandwiched area S2 can be sandwiched by the second sandwiched portion 62 over the entire area of the second sandwiched portion 62 in the second direction d2. Therefore, the sandwiching device 60 can hold the second sandwiched area S2 more firmly.
  • the negative electrode tab side portion 43b faces the negative electrode connection region a2 of the negative electrode plate 20Y.
  • the sandwiching device 60 can sandwich the negative electrode connection region a2 of the negative electrode plate 20Y via the first base material 41 and the second base material 42. it can. Therefore, the holding device 60 can hold the laminated battery 1 more firmly.
  • the negative electrode active material layer 22Y is not provided in the negative electrode connection region a2, it is possible to suppress the deterioration of the performance of the laminated battery 1 even when the negative electrode connection region a2 is sandwiched by a predetermined pressing force. it can.
  • the first base material 41 and the second base material 42 include a metal layer 40a and a resin adhesive layer 40b provided on the inner surface of the metal layer 40a.
  • the strength of the exterior body 40 may decrease. Therefore, when the bulging portion region SB of the laminated battery 1 having such an exterior body 40 is sandwiched by the sandwiching device 60, the portion located in the bulging portion 44 is more easily deformed.
  • the first sandwiched region S1 can be sandwiched, so that the bulging portion region SB is formed. It is possible to avoid being pinched. As a result, deterioration of the performance of the laminated battery 1 can be suppressed.
  • both the dimension dx1 of the positive electrode tab side portion 43a and the dimension dx2 of the negative electrode tab side portion 43b in the first direction d1 are 20 mm or more, and the first sandwiched area S1 and the second sandwiched area S1 and the second by the sandwiching device 60.
  • An example of transporting the laminated battery 1 by sandwiching both of the sandwiched areas S2 is shown.
  • the present invention is not limited to this, and if the sandwiching device 60 can sandwich only the first sandwiched area S1a and convey the laminated battery 1, the size of the negative electrode tab side portion 43b is not 20 mm or more. You may. Similarly, if the sandwiching device 60 can sandwich only the second sandwiched area S2 and convey the laminated battery 1, the size of the positive electrode tab side portion 43a does not have to be 20 mm or more.
  • the sandwiching device 60 can sandwich the first sandwiched area S1 or the second sandwiched area S2, which reduces the performance of the laminated battery 1. It can be suppressed.
  • the method for transporting the laminated battery includes an upright step, and after the laminated battery 1 is brought into an upright state in the upright step, the held area S1 of the laminated battery 1 is held in the holding step. , S2 is sandwiched.
  • the method of transporting the laminated battery is not limited to this, and the method of transporting the laminated battery may not include an upright step.
  • the sandwiched area S1 of the laminated battery 1 S2 may be sandwiched by the sandwiching device 60.
  • the first sandwiched area S1 can be sandwiched by the sandwiching device 60, and the performance deterioration of the laminated battery 1 can be suppressed.
  • first base material 41 and the second base material 42 are configured as separate bodies.
  • first base material 41 and the second base material 42 may be integrally and continuously formed.
  • first base material 41 and the second base material 42 may be continuously formed in a single sheet shape on one side in the second direction d2.
  • the exterior body 40 may be formed by being bent at the boundary between the first base material 41 and the second base material 42.
  • the seal portion 46 may not be formed on the bent portion.
  • the dimension dx1 of the positive electrode tab side portion 43a in the first direction d1 is 20 mm or more
  • the first sandwiched area S1 is transferred to the sandwiching device 60 when the laminated battery 1 is conveyed. Can be sandwiched, and deterioration of the performance of the laminated battery 1 can be suppressed.
  • the second base material 42 is the first with respect to the peripheral portion 43'and the peripheral portion 43', similarly to the first base material 41. It may have a bulging portion 44'that bulges on the side opposite to the side of the base material 41 (the side of the metal layer 40a of the second base material 42).
  • the peripheral portion 43'of the second base material 42 includes the positive electrode tab side portion 43a' extending inward from the outer edge 41a'(right side in FIG. 11) on the positive electrode tab 16 side in the first direction d1 and the first.
  • the negative electrode tab side portion 43b'extending inward from the outer edge 41b'(left side in FIG. 11) on the negative electrode tab 26 side in the direction d1 may be included.
  • the bulging portion 44' may be formed from the inner end 43e'of the positive electrode tab side portion 43a' to the inner end 43f' of the negative electrode tab side portion 43b'in the first direction d1.
  • the dimension dx1'of the positive electrode tab side portion 43a'of the second base material 42 in the first direction d1 may be equal to the dimension dx1 of the positive electrode tab side portion 43a of the first base material 41.
  • the dimension dx2'of the negative electrode tab side portion 43b'of the second base material 42 in the first direction d1 may be equal to the dimension dx2 of the negative electrode tab side portion 43a' of the first base material 41.
  • the positive electrode tab side portion 43a'of the second base material 42 is located in the first sandwiched region S1
  • the negative electrode tab side portion 43b' of the second base material 42 is located. It is located in the second pinched area S2.
  • the bulging portion 44'of the second base material 42 is located in the bulging portion region SB.
  • the present invention is not limited to this, and the dimension dx1'of the positive electrode tab side portion 43a'of the second base material 42 in the first direction d1 is larger than the dimension dx1 of the positive electrode tab side portion 43a of the first base material 41. May be large. Further, the dimension dx2'of the negative electrode tab side portion 43b'of the second base material 42 in the first direction d1 may also be larger than the dimension dx2 of the negative electrode tab side portion 43a' of the first base material 41.
  • a part of the positive electrode tab side portion 43a'of the second base material 42 is located in the first sandwiched region S1, and the remaining portion is in the bulging portion region SB.
  • a part of the negative electrode tab side portion 43b'of the second base material 42 is located in the second sandwiched region S2, and the remaining portion is in the bulging portion region SB.
  • the bulging portion 44'of the second base material 42 is located in the bulging portion region SB.
  • the dimension dx1 of the positive electrode tab side portion 43a in the first direction d1 is 20 mm or more. Therefore, when the laminated battery 1 is conveyed, the sandwiching device 60 can sandwich the first sandwiched region S1, and the performance deterioration of the laminated battery 1 can be suppressed.
  • the sealing space 45 can be defined by both the bulging portion 44 of the first base material 41 and the bulging portion 44'of the second base material 42. Therefore, more electrode plates 10X and 20Y can be accommodated in the sealing space 45, and the capacity of the laminated battery 1 can be increased.
  • the present invention is not limited to this, and the insulating sheet 31 may not be arranged between the positive electrode plate 10X and the negative electrode plate 20Y. Even in such a case, since at least one of the positive electrode plate 10X and the negative electrode plate 20Y has the functional layer 30A on the surface facing the other, the positive electrode plate 10X and the negative electrode plate 20Y are short-circuited. Can be prevented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

A stacked battery includes an exterior body having a first base material and a second base material, a membrane electrode assembly having a plurality of first electrode plates and a plurality of second electrode plates alternately stacked in a stacking direction, and a first tab connected to one side of the membrane electrode assembly in the first direction when viewed in the stacking direction. The first base material includes a first tab side portion extending inward from the outer edge on the first tab side in the first direction, and a bulging portion that bulges to the side opposite to the side of the second base material with respect to the first tab side portion from the inner end of the first tab side portion in the first direction. The weight of the stacked battery is 500 g or more, and the dimension of the first tab side portion in the first direction is 20 mm or more.

Description

積層型電池および積層型電池の搬送方法Stacked battery and method of transporting stacked battery
 本発明は、積層型電池および積層型電池の搬送方法に関する。 The present invention relates to a laminated battery and a method for transporting the laminated battery.
 例えば特許文献1で提案されているように、正極板と負極板とを交互に積層してなる積層型電池が広く普及している。積層型電池の一例として、リチウムイオン二次電池が例示され得る。リチウムイオン二次電池は、他の形式の積層型電池と比較して大容量であることを特徴の一つとしている。このような特徴を有するリチウムイオン二次電池は、今般、車載用途や定置住宅用途等の種々の用途での更なる普及を期待されている。 For example, as proposed in Patent Document 1, a laminated battery in which positive electrode plates and negative electrode plates are alternately laminated is widely used. As an example of the laminated battery, a lithium ion secondary battery can be exemplified. One of the features of the lithium-ion secondary battery is that it has a larger capacity than other types of stacked batteries. Lithium-ion secondary batteries having such characteristics are expected to be further spread in various applications such as in-vehicle applications and stationary housing applications.
 積層型電池は、積層方向に交互に積層された複数の正極板(第1電極板)および複数の負極板(第2電極板)を有する膜電極接合体を備えている。積層型電池の製造時において、膜電極接合体は、外装体内に電解液とともに封止される。その後、積層型電池は、起立状態で、外装体の膨出部が位置する膨出部領域が挟持装置により挟持されながら吊り下げられて搬送される。 The laminated battery includes a membrane electrode assembly having a plurality of positive electrode plates (first electrode plates) and a plurality of negative electrode plates (second electrode plates) alternately laminated in the stacking direction. At the time of manufacturing the laminated battery, the membrane electrode assembly is sealed in the outer body together with the electrolytic solution. After that, the laminated battery is suspended and conveyed in an upright state while the bulging portion region where the bulging portion of the exterior body is located is sandwiched by the sandwiching device.
特開2014-60141号公報Japanese Unexamined Patent Publication No. 2014-60141
 しかしながら、重量の大きな積層型電池を搬送する場合、挟持装置による膨出部領域への押圧力が高まり、膜電極接合体のうち膨出部内に位置する部分(例えば、電極活物質層)が変形するおそれがある。この場合、反応ムラが生じ、積層型電池の性能が低下するおそれがある。 However, when a heavy laminated battery is transported, the pressing force on the bulging portion region by the sandwiching device increases, and the portion of the membrane electrode assembly located inside the bulging portion (for example, the electrode active material layer) is deformed. There is a risk of In this case, uneven reaction may occur and the performance of the laminated battery may deteriorate.
 本発明は、このような点を考慮してなされたものであり、積層型電池の性能低下を抑制することができる積層型電池および積層型電池の搬送方法を提供することを目的とする。 The present invention has been made in consideration of such a point, and an object of the present invention is to provide a laminated battery and a method for transporting the laminated battery, which can suppress deterioration of the performance of the laminated battery.
 本発明による積層型電池は、
 積層型電池であって、
 第1基材と第2基材とを有し、前記第1基材と前記第2基材との間に封止空間を形成する外装体と、
 前記封止空間に設けられた膜電極接合体であって、積層方向に交互に積層された複数の第1電極板および複数の第2電極板を有する膜電極接合体と、
 前記積層方向で見たときの第1方向において前記膜電極接合体の一側に接続され、前記第1方向において前記外装体の外側に延び出た第1タブと、を備え、
 前記第1基材は、前記第1方向において前記第1タブの側の外端縁から内側に延びる第1タブ側部と、前記第1タブ側部の前記第1方向における内端から前記第1タブ側部に対して前記第2基材の側とは反対側に膨出し、前記封止空間を画定する膨出部と、を含み、
 前記積層型電池の重量は、500g以上であり、
 前記第1方向における前記第1タブ側部の寸法は、20mm以上である。
The laminated battery according to the present invention
It ’s a stacked battery,
An exterior body having a first base material and a second base material and forming a sealing space between the first base material and the second base material,
A membrane electrode assembly provided in the sealing space, the membrane electrode assembly having a plurality of first electrode plates and a plurality of second electrode plates alternately laminated in the stacking direction.
A first tab connected to one side of the membrane electrode assembly in the first direction when viewed in the stacking direction and extending to the outside of the exterior body in the first direction is provided.
The first base material is the first tab side portion extending inward from the outer edge on the side of the first tab in the first direction, and the first base material from the inner end of the first tab side portion in the first direction. The tab side portion includes a bulging portion that bulges on the side opposite to the side of the second base material and defines the sealing space.
The weight of the laminated battery is 500 g or more, and the weight is 500 g or more.
The dimension of the first tab side portion in the first direction is 20 mm or more.
 本発明による積層型電池において、
 前記第1方向における前記第1タブ側部の寸法は、100mm以下である、
 ようにしてもよい。
In the laminated battery according to the present invention
The dimension of the first tab side portion in the first direction is 100 mm or less.
You may do so.
 本発明による積層型電池において、
 前記積層方向で見たときに前記第1方向に直交する第2方向における前記第1タブ側部の寸法は、100mm以上である、
ようにしてもよい。
In the laminated battery according to the present invention
The dimension of the first tab side portion in the second direction orthogonal to the first direction when viewed in the stacking direction is 100 mm or more.
You may do so.
 本発明による積層型電池において、
 前記第1電極板は、互いに隣接する第1接続領域および第1有効領域を含む第1電極集電体と、前記第1有効領域に設けられた第1電極活物質層と、を含み、
 前記第1タブ側部は、前記第1電極板の前記第1接続領域に対向している、
ようにしてもよい。
In the laminated battery according to the present invention
The first electrode plate includes a first electrode current collector including a first connection region and a first effective region adjacent to each other, and a first electrode active material layer provided in the first effective region.
The first tab side portion faces the first connection region of the first electrode plate.
You may do so.
 本発明による積層型電池において、
 前記第1方向において前記膜電極接合体の他側に接続され、前記第1方向において前記外装体の外側に延び出た第2タブを更に備え、
 前記第1基材は、前記第1方向において前記第2タブの側の外端縁から内側に延びる第2タブ側部を含み、
 前記膨出部は、前記第1方向において前記第1タブ側部の内端から前記第2タブ側部の内端にわたって形成され、
 前記第1方向における前記第2タブ側部の寸法は、20mm以上である、
ようにしてもよい。
In the laminated battery according to the present invention
Further comprising a second tab connected to the other side of the membrane electrode assembly in the first direction and extending outward of the exterior in the first direction.
The first substrate includes a second tab side portion extending inward from the outer edge on the side of the second tab in the first direction.
The bulging portion is formed from the inner end of the first tab side portion to the inner end of the second tab side portion in the first direction.
The dimension of the second tab side portion in the first direction is 20 mm or more.
You may do so.
 本発明による積層型電池において、
 前記第1方向における前記第2タブ側部の寸法は、100mm以下である、
ようにしてもよい。
In the laminated battery according to the present invention
The dimension of the second tab side portion in the first direction is 100 mm or less.
You may do so.
 本発明による積層型電池において、
 前記積層方向で見たときに前記第1方向に直交する第2方向における前記第2タブ側部の寸法は、100mm以上である、
ようにしてもよい。
In the laminated battery according to the present invention
The dimension of the second tab side portion in the second direction orthogonal to the first direction when viewed in the stacking direction is 100 mm or more.
You may do so.
 本発明による積層型電池において、
 前記第2電極板は、互いに隣接する第2接続領域および第2有効領域を含む第2電極集電体と、前記第2有効領域に設けられた第2電極活物質層と、を含み、
 前記第2タブ側部は、前記第2電極板の前記第2接続領域に対向している、
ようにしてもよい。
In the laminated battery according to the present invention
The second electrode plate includes a second electrode current collector including a second connection region and a second effective region adjacent to each other, and a second electrode active material layer provided in the second effective region.
The second tab side portion faces the second connection region of the second electrode plate.
You may do so.
 本発明による積層型電池において、
 前記第1基材および前記第2基材は、金属層と、前記金属層の内面に設けられた樹脂接着層と、をそれぞれ含み、
 前記第1基材の前記膨出部および前記第1タブ側部は、前記金属層および前記樹脂接着層で構成されている、
ようにしてもよい。
In the laminated battery according to the present invention
The first base material and the second base material each include a metal layer and a resin adhesive layer provided on the inner surface of the metal layer.
The bulging portion and the first tab side portion of the first base material are composed of the metal layer and the resin adhesive layer.
You may do so.
 本発明による積層型電池の搬送方法は、
 上述した積層型電池を準備する準備工程と、
 前記積層方向で見たときに前記積層型電池のうち前記第1タブ側部と重なる領域として画定される被挟持領域を、挟持装置により挟持する挟持工程と、
 前記挟持装置により前記被挟持領域を挟持しながら前記積層型電池を吊り下げて搬送する搬送工程と、を備える。
The method for transporting a laminated battery according to the present invention is as follows.
The preparatory process for preparing the above-mentioned laminated battery and
A sandwiching step of sandwiching a sandwiched area defined as an area overlapping the first tab side portion of the laminated battery when viewed in the stacking direction by a sandwiching device.
A transfer step of suspending and transporting the laminated battery while sandwiching the sandwiched area by the sandwiching device is provided.
 本発明による積層型電池の搬送方法において
 前記挟持工程の前に前記積層型電池を起立させる起立工程を更に備える、
ようにしてもよい。
The method for transporting a laminated battery according to the present invention further includes an erecting step for erecting the laminated battery before the sandwiching step.
You may do so.
 本発明によれば、積層型電池の性能低下を抑制することができる。 According to the present invention, deterioration of the performance of the laminated battery can be suppressed.
図1は、実施の形態による積層型電池を示す斜視図である。FIG. 1 is a perspective view showing a stacked battery according to an embodiment. 図2は、図1の積層型電池に含まれる膜電極接合体を示す斜視図である。FIG. 2 is a perspective view showing a membrane electrode assembly included in the laminated battery of FIG. 図3は、図2の平面図である。FIG. 3 is a plan view of FIG. 図4は、図2の膜電極接合体の第2方向d2で見た部分断面図である。FIG. 4 is a partial cross-sectional view of the membrane electrode assembly of FIG. 2 as viewed in the second direction d2. 図5は、図1の平面図である。FIG. 5 is a plan view of FIG. 図6は、図5の積層型電池の第2方向d2で見た断面図である。FIG. 6 is a cross-sectional view of the stacked battery of FIG. 5 as viewed in the second direction d2. 図7は、実施の形態による積層型電池の搬送方法において、積層型電池を起立させる工程を説明するための図である。FIG. 7 is a diagram for explaining a step of raising the laminated battery in the method of transporting the laminated battery according to the embodiment. 図8は、実施の形態による積層型電池の搬送方法において、挟持装置により積層型電池の被挟持領域を挟持する工程を説明するための図である。FIG. 8 is a diagram for explaining a step of sandwiching the sandwiched area of the laminated battery by the sandwiching device in the method of transporting the laminated battery according to the embodiment. 図9は、図8の第2方向d2で見た部分断面図である。FIG. 9 is a partial cross-sectional view seen in the second direction d2 of FIG. 図10は、実施の形態による積層型電池の搬送方法において、挟持装置により被挟持領域を挟持しながら積層型電池を吊り下げて搬送する工程を説明するための図である。FIG. 10 is a diagram for explaining a step of suspending and transporting a laminated battery while sandwiching a sandwiched area by a sandwiching device in the method of transporting a laminated battery according to an embodiment. 図11は、図6の一変形例(第4の変形例)を示す部分断面図である。FIG. 11 is a partial cross-sectional view showing a modified example (fourth modified example) of FIG.
 以下、図面を参照して本発明の実施の形態について説明する。なお、本件明細書に添付する図面においては、理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings attached to the present specification, the scale, aspect ratio, etc. are appropriately changed from those of the actual product and exaggerated for the sake of ease of understanding.
 [積層型電池]
 図1~図6は、本発明の実施の形態による積層型電池を説明するための図である。
[Stacked battery]
1 to 6 are diagrams for explaining a laminated battery according to an embodiment of the present invention.
 図1および図2に示すように、本実施の形態による積層型電池1は、外装体40と、外装体40内に収容された膜電極接合体5と、膜電極接合体5に接続された一対のタブ16,26と、を備えている。タブ16,26は、外装体40の外側に延び出ている。電気自動車等の自動車の分野においては、複数の積層型電池1を組み合わせることにより構成されるモジュールが自動車に搭載される。複数の積層型電池1の間の電気的な接続は、タブ16,26を介して実現される。 As shown in FIGS. 1 and 2, the laminated battery 1 according to the present embodiment is connected to the exterior body 40, the membrane electrode assembly 5 housed in the exterior body 40, and the membrane electrode assembly 5. It includes a pair of tabs 16 and 26. The tabs 16 and 26 extend to the outside of the exterior body 40. In the field of automobiles such as electric vehicles, a module composed of a combination of a plurality of laminated batteries 1 is mounted on the automobile. The electrical connection between the plurality of stacked batteries 1 is realized via the tabs 16 and 26.
 以下、積層型電池1の各構成要素について説明する。 Hereinafter, each component of the laminated battery 1 will be described.
 (膜電極接合体)
 膜電極接合体5は、積層方向dLに交互に積層された正極板10X(第1電極板)および負極板20Y(第2電極板)を含む複数の電極板10X,20Yを有している。
(Membrane electrode assembly)
The membrane electrode assembly 5 has a plurality of electrode plates 10X and 20Y including a positive electrode plate 10X (first electrode plate) and a negative electrode plate 20Y (second electrode plate) alternately laminated in the stacking direction dL.
 本実施の形態においては、膜電極接合体5がリチウムイオン二次電池を構成する例について説明する。この例において、第1電極板は正極板10Xを構成し、第2電極板は負極板20Yを構成するものとする。ただし、以下に説明する作用効果の記載からも理解され得るように、第1電極板が負極板20Yを構成し、第2電極板が正極板10Xを構成してもよい。更には、リチウムイオン二次電池に限定されることなく、第1電極板および第2電極板を交互に積層してなる膜電極接合体5に広く適用され得る。 In the present embodiment, an example in which the membrane electrode assembly 5 constitutes a lithium ion secondary battery will be described. In this example, the first electrode plate constitutes the positive electrode plate 10X, and the second electrode plate constitutes the negative electrode plate 20Y. However, as can be understood from the description of the action and effect described below, the first electrode plate may form the negative electrode plate 20Y, and the second electrode plate may form the positive electrode plate 10X. Further, the present invention is not limited to the lithium ion secondary battery, and can be widely applied to the membrane electrode assembly 5 in which the first electrode plate and the second electrode plate are alternately laminated.
 図2~図4に示すように、膜電極接合体5は、複数の正極板10Xおよび複数の負極板20Yを有している。正極板10Xおよび負極板20Yは、積層方向dLに沿って交互に配列されて積層されている。本実施の形態においては、積層方向dLにおける膜電極接合体5の最下部および最上部に、負極板20Yが配置されている。膜電極接合体5および積層型電池1は、全体的に偏平形状を有し、積層方向dLへの厚さが薄く、積層方向dLに直交する方向d1,d2に広がっている。 As shown in FIGS. 2 to 4, the membrane electrode assembly 5 has a plurality of positive electrode plates 10X and a plurality of negative electrode plates 20Y. The positive electrode plate 10X and the negative electrode plate 20Y are alternately arranged and laminated along the stacking direction dL. In the present embodiment, the negative electrode plates 20Y are arranged at the lowermost and uppermost portions of the membrane electrode assembly 5 in the stacking direction dL. The membrane electrode assembly 5 and the laminated battery 1 have a flat shape as a whole, have a thin thickness in the stacking direction dL, and spread in the directions d1 and d2 orthogonal to the stacking direction dL.
 正極板10Xおよび負極板20Yは、積層方向dLで見たときに、任意の形状を有していてもよい。図示するように、正極板10Xおよび負極板20Yは、積層方向dLで見たときに、全体的に長方形形状の外輪郭を有していてもよい。積層型電池1は、一対のタブ16,26が配列される方向である第1方向d1と、第1方向d1に直交する第2方向d2と、を有している。図示された例においては、第1方向d1が、積層型電池1の長手方向(長さ方向)に相当し、第2方向d2が、積層型電池1の短手方向(幅方向)に相当する。しかしながら、第1方向d1が、積層型電池1の短手方向に相当し、第2方向d2が、積層型電池1の長手方向に相当するようにしてもよい。積層方向dLは、第1方向d1および第2方向d2の両方に直交している。正極板10Xおよび負極板20Yは、第1方向d1にずらして配置されている。より具体的には、複数の正極板10Xは、第1方向d1における一側(図3における右側)に寄って配置され、複数の負極板20Yは、第1方向d1における他側(図3における左側)に寄って配置されている。正極板10Xおよび負極板20Yは、第1方向d1における中央部(後述する正極有効領域b1および負極有効領域b2)において、積層方向dLに重なり合っている。 The positive electrode plate 10X and the negative electrode plate 20Y may have any shape when viewed in the stacking direction dL. As shown in the figure, the positive electrode plate 10X and the negative electrode plate 20Y may have an outer contour having a rectangular shape as a whole when viewed in the stacking direction dL. The laminated battery 1 has a first direction d1 in which a pair of tabs 16 and 26 are arranged, and a second direction d2 orthogonal to the first direction d1. In the illustrated example, the first direction d1 corresponds to the longitudinal direction (length direction) of the laminated battery 1, and the second direction d2 corresponds to the lateral direction (width direction) of the laminated battery 1. .. However, the first direction d1 may correspond to the lateral direction of the laminated battery 1, and the second direction d2 may correspond to the longitudinal direction of the laminated battery 1. The stacking direction dL is orthogonal to both the first direction d1 and the second direction d2. The positive electrode plate 10X and the negative electrode plate 20Y are arranged so as to be offset in the first direction d1. More specifically, the plurality of positive electrode plates 10X are arranged closer to one side in the first direction d1 (right side in FIG. 3), and the plurality of negative electrode plates 20Y are arranged on the other side in the first direction d1 (in FIG. 3). It is located closer to the left side). The positive electrode plate 10X and the negative electrode plate 20Y overlap in the stacking direction dL in the central portion (positive electrode effective region b1 and negative electrode effective region b2 described later) in the first direction d1.
 正極板10Xは、図示するように、シート状の外形状を有している。正極板10Xは、正極集電体11X(第1電極集電体)と、正極集電体11X上に設けられた正極活物質層12X(第1電極活物質層)と、を有している。正極活物質層12Xは、任意の形状を有していてもよいが、図示するように、長方形形状の外輪郭を有していてもよい。リチウムイオン二次電池において、正極板10Xは、放電時にリチウムイオンを吸蔵し、充電時にリチウムイオンを放出する。 As shown in the figure, the positive electrode plate 10X has a sheet-like outer shape. The positive electrode plate 10X has a positive electrode current collector 11X (first electrode current collector) and a positive electrode active material layer 12X (first electrode active material layer) provided on the positive electrode current collector 11X. .. The positive electrode active material layer 12X may have an arbitrary shape, but may have a rectangular outer contour as shown in the figure. In the lithium ion secondary battery, the positive electrode plate 10X occludes lithium ions during discharging and releases lithium ions during charging.
 正極集電体11Xは、互いに反対側に位置する第1面11aおよび第2面11bを主面として有している。正極活物質層12Xは、正極集電体11Xの第1面11aおよび第2面11bの少なくとも一方の面上に形成される。本実施の形態においては、各正極板10Xの正極集電体11Xの両側に、正極活物質層12Xがそれぞれ設けられており、各正極板10Xは、互いに同一に構成され得る。 The positive electrode current collector 11X has a first surface 11a and a second surface 11b located on opposite sides of each other as main surfaces. The positive electrode active material layer 12X is formed on at least one surface of the first surface 11a and the second surface 11b of the positive electrode current collector 11X. In the present embodiment, the positive electrode active material layers 12X are provided on both sides of the positive electrode current collector 11X of each positive electrode plate 10X, and the positive electrode plates 10X can be configured to be the same as each other.
 正極集電体11Xおよび正極活物質層12Xは、積層型電池1(リチウムイオン二次電池)に適用され得る種々の材料を用いて種々の製法により、作製され得る。一例として、正極集電体11Xは、アルミニウム箔、または高導電性のカーボン粒子もしくはカーボンナノチューブを塗布したアルミニウム箔によって形成され得る。正極活物質層12Xは、例えば、正極活物質、導電助剤、およびバインダーとなる結着剤を含んでいてもよい。正極活物質層12Xは、正極活物質、導電助剤および結着剤を溶媒に分散させてなる正極用スラリーを、正極集電体11Xをなす材料上に塗工し、続いて乾燥し、その後プレスして高密度化することで、作製され得る。正極活物質は、遷移金属とリチウムを含有していてもよく、1種の遷移金属とリチウムを含有していてもよい。正極活物質としては、例えば、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物等が挙げられ、これらを混合して用いてもよい。リチウム遷移金属複合酸化物の遷移金属としては、バナジウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅等であってもよい。リチウム遷移金属複合酸化物の具体例としては、LiCoO等のリチウムコバルト複合酸化物、LiNiO等のリチウムニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウムマンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をアルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、マグネシウム、ガリウム、ジルコニウム等の他の金属で置換した置換物等が挙げられる。当該置換物の具体例としては、例えば、LiNi0.5Mn0.5、LiNi0.80Co0.17Al0.03、LiNi1/3Co1/3Mn1/3、LiMn1.8l0.2、LiMn1.5Ni0.5等が挙げられる。また、リチウム含有遷移金属リン酸化合物の遷移金属としては、バナジウム、チタン、マンガン、鉄、コバルト、ニッケル等であってもよく、具体例としては、例えば、LiFePO等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をアルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、マグネシウム、ガリウム、ジルコニウム、ニオブ等の他の金属で置換した置換物等が挙げられる。導電助剤としては、グラファイトの微粒子、アセチレンブラック、ケッチェンブラック等のカーボンブラック、ニードルコークス等の無定形炭素の微粒子等、カーボンナノファイバー等が使用されるが、これらに限定されない。結着剤としては、ポリフッ化ビニリデン等のフッ素樹脂が用いられ得る。 The positive electrode current collector 11X and the positive electrode active material layer 12X can be produced by various manufacturing methods using various materials that can be applied to the laminated battery 1 (lithium ion secondary battery). As an example, the positive electrode current collector 11X can be formed of an aluminum foil or an aluminum foil coated with highly conductive carbon particles or carbon nanotubes. The positive electrode active material layer 12X may contain, for example, a positive electrode active material, a conductive auxiliary agent, and a binder serving as a binder. In the positive electrode active material layer 12X, a positive electrode slurry formed by dispersing a positive electrode active material, a conductive auxiliary agent and a binder in a solvent is applied onto a material forming the positive electrode current collector 11X, and then dried, and then dried. It can be produced by pressing to increase the density. The positive electrode active material may contain a transition metal and lithium, or may contain one kind of transition metal and lithium. Examples of the positive electrode active material include a lithium transition metal composite oxide, a lithium-containing transition metal phosphoric acid compound, and the like, and these may be mixed and used. The transition metal of the lithium transition metal composite oxide may be vanadium, titanium, chromium, manganese, iron, cobalt, nickel, copper or the like. Specific examples of the lithium transition metal composite oxide include a lithium cobalt composite oxide such as LiCoO 2 , a lithium nickel composite oxide such as LiNiO 2 , and a lithium manganese composite oxide such as LiMnO 2 , LiMn 2 O 4 , and Li 2 MnO 3. Others such as aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, magnesium, gallium, zirconium, etc. Examples thereof include a substitute substituted with a metal. Specific examples of the substitution product include, for example, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.80 Co 0.17 Al 0.03 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O. 2 , LiMn 1.8 Al0.2 O 4 , LiMn 1.5 Ni 0.5 O 4, and the like can be mentioned. The transition metal of the lithium-containing transition metal phosphoric acid compound may be vanadium, titanium, manganese, iron, cobalt, nickel or the like, and specific examples thereof include iron phosphates such as LiFePO 4 and LiCoPO. Cobalt phosphates such as 4 and some of the transition metal atoms that are the main constituents of these lithium transition metal phosphate compounds are aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, magnesium, gallium. , Substituents substituted with other metals such as zirconium, niobium and the like. As the conductive auxiliary agent, fine particles of graphite, carbon black such as acetylene black and Ketjen black, fine particles of amorphous carbon such as needle coke, carbon nanofibers and the like are used, but the present invention is not limited thereto. As the binder, a fluororesin such as polyvinylidene fluoride can be used.
 図3に示すように、正極集電体11Xは、互いに隣接する正極接続領域a1(第1接続領域)および正極有効領域b1(第1有効領域)を有している。正極活物質層12Xは、正極集電体11Xの正極有効領域b1のみに配置されている。正極有効領域b1は、任意の形状を有していてもよい。図示するように、正極有効領域b1は、長方形形状の外輪郭を有していてもよく、全体的に正極活物質層12Xが設けられた領域になっていてもよい。正極接続領域a1および正極有効領域b1は、正極板10Xの第1方向d1に配列されている。正極接続領域a1は、正極有効領域b1よりも正極板10Xの第1方向d1における外側(図3における右側)に位置している。 As shown in FIG. 3, the positive electrode current collector 11X has a positive electrode connection region a1 (first connection region) and a positive electrode effective region b1 (first effective region) adjacent to each other. The positive electrode active material layer 12X is arranged only in the positive electrode effective region b1 of the positive electrode current collector 11X. The positive electrode effective region b1 may have an arbitrary shape. As shown in the figure, the positive electrode effective region b1 may have a rectangular outer contour, or may be a region provided with the positive electrode active material layer 12X as a whole. The positive electrode connection region a1 and the positive electrode effective region b1 are arranged in the first direction d1 of the positive electrode plate 10X. The positive electrode connection region a1 is located outside the positive electrode plate 10X in the first direction d1 (right side in FIG. 3) with respect to the positive electrode effective region b1.
 各々の正極集電体11Xの正極接続領域a1によって、正極接続部13(第1接続部)が構成されている。正極接続部13は、第1基材41の側の面である第1面13aと、第2基材42の側の面である第2面13bと、を有している。第1面13aは、複数の正極集電体11Xのうち最も第1基材41の側に配置された正極集電体11Xの正極接続領域a1における第1面11aに相当する。また、第2面13bは、複数の正極集電体11Xのうち最も第2基材42の側に配置された正極集電体11Xの正極接続領域a1における第2面11bに相当する。本実施の形態においては、第2面13bに、正極タブ16(第1タブ)が接合されている(図6参照)。正極タブ16は、抵抗溶接や超音波溶接、テープによる貼着、溶着等によって第2面13bに接合されている。また、各々の正極集電体11Xも、正極タブ16が第2面13bに接合された位置において、互いに接合されている。これにより、各々の正極集電体11Xと正極タブ16とが電気的に接続されている。 The positive electrode connection portion 13 (first connection portion) is configured by the positive electrode connection region a1 of each positive electrode current collector 11X. The positive electrode connecting portion 13 has a first surface 13a, which is a side surface of the first base material 41, and a second surface 13b, which is a side surface of the second base material 42. The first surface 13a corresponds to the first surface 11a in the positive electrode connection region a1 of the positive electrode current collector 11X arranged on the side of the first base material 41 among the plurality of positive electrode current collectors 11X. Further, the second surface 13b corresponds to the second surface 11b in the positive electrode connection region a1 of the positive electrode current collector 11X arranged closest to the second base material 42 among the plurality of positive electrode current collectors 11X. In the present embodiment, the positive electrode tab 16 (first tab) is joined to the second surface 13b (see FIG. 6). The positive electrode tab 16 is bonded to the second surface 13b by resistance welding, ultrasonic welding, tape bonding, welding, or the like. Further, each positive electrode current collector 11X is also joined to each other at a position where the positive electrode tab 16 is joined to the second surface 13b. As a result, each positive electrode current collector 11X and the positive electrode tab 16 are electrically connected.
 一方、図3に示すように、正極有効領域b1は、積層方向dLで見たときに、負極板20Yの後述する負極活物質層22Yに対向する領域内に設けられている。このため、第1方向d1における正極板10Xの正極有効領域b1の寸法は、第1方向d1における負極板20Yの後述する負極有効領域b2の寸法よりも小さくなっている。また、第2方向d2における正極板10Xの寸法は、第2方向d2における負極板20Yの寸法よりも小さくなっている。このような正極有効領域b1の配置により、負極活物質層22Yからのリチウムの析出を防止することができる。 On the other hand, as shown in FIG. 3, the positive electrode effective region b1 is provided in the region of the negative electrode plate 20Y facing the negative electrode active material layer 22Y, which will be described later, when viewed in the stacking direction dL. Therefore, the size of the positive electrode effective region b1 of the positive electrode plate 10X in the first direction d1 is smaller than the size of the negative electrode effective region b2 of the negative electrode plate 20Y in the first direction d1 which will be described later. Further, the size of the positive electrode plate 10X in the second direction d2 is smaller than the size of the negative electrode plate 20Y in the second direction d2. By arranging the positive electrode effective region b1 in this way, it is possible to prevent the precipitation of lithium from the negative electrode active material layer 22Y.
 本実施の形態においては、正極板10Xは、比較的大きなサイズを有しており、第1方向d1における正極板10Xの寸法は、180mm以上であってもよい。第1方向d1における正極板10Xの正極有効領域b1の寸法は、150mm以上であってもよい。また、第2方向d2における正極板10Xの寸法は、80mm以上であってもよい。 In the present embodiment, the positive electrode plate 10X has a relatively large size, and the size of the positive electrode plate 10X in the first direction d1 may be 180 mm or more. The size of the positive electrode effective region b1 of the positive electrode plate 10X in the first direction d1 may be 150 mm or more. Further, the size of the positive electrode plate 10X in the second direction d2 may be 80 mm or more.
 次に、負極板20Yについて説明する。負極板20Yも、正極板10Xと同様に、シート状の外形状を有している。負極板20Yは、負極集電体21Y(第2電極集電体)と、負極集電体21Y上に設けられた負極活物質層22Y(第2電極活物質層)と、を有している。負極活物質層22Yは、任意の形状を有していてもよいが、図示するように、長方形形状の外輪郭を有していてもよい。リチウムイオン二次電池において、負極板20Yは、放電時にリチウムイオンを放出し、充電時にリチウムイオンを吸蔵する。 Next, the negative electrode plate 20Y will be described. The negative electrode plate 20Y also has a sheet-like outer shape like the positive electrode plate 10X. The negative electrode plate 20Y has a negative electrode current collector 21Y (second electrode current collector) and a negative electrode active material layer 22Y (second electrode active material layer) provided on the negative electrode current collector 21Y. .. The negative electrode active material layer 22Y may have an arbitrary shape, but may have a rectangular outer contour as shown in the figure. In the lithium ion secondary battery, the negative electrode plate 20Y emits lithium ions at the time of discharging and occludes the lithium ions at the time of charging.
 負極集電体21Yは、互いに反対側に位置する第1面21aおよび第2面21bを主面として有している。負極活物質層22Yは、負極集電体21Yの第1面21aおよび第2面21bの少なくとも一方の面上に形成される。本実施の形態においては、各負極板20Yの負極集電体21Yの両側に、負極活物質層22Yがそれぞれ設けられており、各負極板20Yは、互いに同一に構成され得る。なお、最も第1基材41の側に配置された負極板20Yの負極集電体21Yの第1面21aには、負極活物質層22Yは設けられていなくてもよい。また、最も第2基材42の側に配置された負極板20Yの負極集電体21Yの第2面21bにも、負極活物質層22Yは設けられていなくてもよい。 The negative electrode current collector 21Y has a first surface 21a and a second surface 21b located on opposite sides of each other as main surfaces. The negative electrode active material layer 22Y is formed on at least one of the first surface 21a and the second surface 21b of the negative electrode current collector 21Y. In the present embodiment, the negative electrode active material layers 22Y are provided on both sides of the negative electrode current collector 21Y of each negative electrode plate 20Y, and the negative electrode plates 20Y can be configured to be the same as each other. The negative electrode active material layer 22Y may not be provided on the first surface 21a of the negative electrode current collector 21Y of the negative electrode plate 20Y arranged closest to the first base material 41. Further, the negative electrode active material layer 22Y may not be provided on the second surface 21b of the negative electrode current collector 21Y of the negative electrode plate 20Y arranged closest to the second base material 42.
 負極集電体21Yおよび負極活物質層22Yは、積層型電池1(リチウムイオン二次電池)に適用され得る種々の材料を用いて種々の製法により、作製され得る。一例として、負極集電体21Yは、例えば銅箔によって形成される。負極活物質層22Yは、例えば、負極活物質、導電助剤、バインダーとなる結着剤、および増粘剤を含んでいてもよい。負極活物質層22Yは、負極活物質、導電助剤、結着剤および増粘剤を溶媒に分散させてなる負極用スラリーを、負極集電体21Yをなす材料上に塗工し、続いて乾燥し、その後プレスして高密度化することで、作製され得る。負極活物質としては、例えば、金属リチウム、リチウム合金、リチウムイオンを吸蔵および放出し得る炭素系材料(炭素粉末、黒鉛粉末等)、金属酸化物等が挙げられる。導電助剤としては、例えば、アセチレンブラック、カーボンナノチューブ等が挙げられる。結着材としては、例えば、ポリフッ化ビニリデン等のフッ素樹脂、スチレンブタジエンゴム等が挙げられる。増粘剤としては、例えば、カルボキシメチルセルロース等が挙げられる。 The negative electrode current collector 21Y and the negative electrode active material layer 22Y can be produced by various manufacturing methods using various materials that can be applied to the laminated battery 1 (lithium ion secondary battery). As an example, the negative electrode current collector 21Y is formed of, for example, a copper foil. The negative electrode active material layer 22Y may contain, for example, a negative electrode active material, a conductive auxiliary agent, a binder serving as a binder, and a thickener. In the negative electrode active material layer 22Y, a slurry for a negative electrode formed by dispersing a negative electrode active material, a conductive auxiliary agent, a binder and a thickener in a solvent is applied onto a material forming the negative electrode current collector 21Y, followed by coating. It can be made by drying and then pressing to densify. Examples of the negative electrode active material include metallic lithium, lithium alloys, carbon-based materials capable of occluding and releasing lithium ions (carbon powder, graphite powder, etc.), metal oxides, and the like. Examples of the conductive auxiliary agent include acetylene black and carbon nanotubes. Examples of the binder include fluororesins such as polyvinylidene fluoride and styrene-butadiene rubber. Examples of the thickener include carboxymethyl cellulose and the like.
 図3に示すように、負極集電体21Yは、互いに隣接する負極接続領域a2(第2接続領域)および負極有効領域b2(第2有効領域)を有している。負極活物質層22Yは、負極集電体21Yの負極有効領域b2のみに配置されている。負極有効領域b2は、任意の形状を有していてもよい。図示するように、負極有効領域b2は、長方形形状の外輪郭を有していてもよく、全体的に負極活物質層22Yが設けられた領域になっていてもよい。負極接続領域a2および負極有効領域b2は、負極板20Yの第1方向d1に配列されている。負極接続領域a2は、負極有効領域b2よりも負極板20Yの第1方向d1における外側(図3における左側)に位置している。 As shown in FIG. 3, the negative electrode current collector 21Y has a negative electrode connection region a2 (second connection region) and a negative electrode effective region b2 (second effective region) adjacent to each other. The negative electrode active material layer 22Y is arranged only in the negative electrode effective region b2 of the negative electrode current collector 21Y. The negative electrode effective region b2 may have an arbitrary shape. As shown in the figure, the negative electrode effective region b2 may have a rectangular outer contour, or may be a region provided with the negative electrode active material layer 22Y as a whole. The negative electrode connection region a2 and the negative electrode effective region b2 are arranged in the first direction d1 of the negative electrode plate 20Y. The negative electrode connection region a2 is located outside the negative electrode plate 20Y in the first direction d1 (left side in FIG. 3) with respect to the negative electrode effective region b2.
 各々の負極集電体21Yの負極接続領域a2によって、負極接続部23(第2接続部)が構成されている。負極接続部23は、第1基材41の側の面である第1面23aと、第2基材42の側の面である第2面23bと、を有している。第1面23aは、複数の負極集電体21Yのうち最も第1基材41の側に配置された負極集電体21Yの負極接続領域a2における第1面21aに相当する。また、第2面23bは、複数の負極集電体21Yのうち最も第2基材42の側に配置された負極集電体21Yの負極接続領域a2における第2面21bに相当する。本実施の形態においては、第2面23bに、負極タブ26(第2タブ)が接合されている(図6参照)。負極タブ26は、抵抗溶接や超音波溶接、テープによる貼着、溶着等によって第2面23bに接合されている。また、各々の負極集電体21Yも、負極タブ26が第2面23bに接合された位置において、互いに接合されている。これにより、各々の負極集電体21Yと負極タブ26とが電気的に接続されている。 The negative electrode connection portion 23 (second connection portion) is configured by the negative electrode connection region a2 of each negative electrode current collector 21Y. The negative electrode connecting portion 23 has a first surface 23a, which is a side surface of the first base material 41, and a second surface 23b, which is a side surface of the second base material 42. The first surface 23a corresponds to the first surface 21a in the negative electrode connection region a2 of the negative electrode current collector 21Y arranged closest to the first base material 41 among the plurality of negative electrode current collectors 21Y. Further, the second surface 23b corresponds to the second surface 21b in the negative electrode connection region a2 of the negative electrode current collector 21Y arranged closest to the second base material 42 among the plurality of negative electrode current collectors 21Y. In the present embodiment, the negative electrode tab 26 (second tab) is joined to the second surface 23b (see FIG. 6). The negative electrode tab 26 is bonded to the second surface 23b by resistance welding, ultrasonic welding, tape bonding, welding, or the like. Further, the negative electrode current collectors 21Y are also joined to each other at the position where the negative electrode tab 26 is joined to the second surface 23b. As a result, each negative electrode current collector 21Y and the negative electrode tab 26 are electrically connected.
 一方、図3に示すように、負極有効領域b2は、積層方向dLで見たときに、正極板10Xの正極活物質層12Xに対向する領域を内包するように広がっている。すなわち、負極有効領域b2は、積層方向dLで見たときに、全周に亘って、正極活物質層12Xの外側にはみ出すように広がっている。このため、上述したように、第1方向d1における負極板20Yの負極有効領域b2の寸法は、第1方向d1における正極板10Xの正極有効領域b1の寸法よりも大きくなっている。また、第2方向d2における負極板20Yの寸法は、第2方向d2における正極板10Xの寸法よりも大きくなっている。 On the other hand, as shown in FIG. 3, the negative electrode effective region b2 extends so as to include a region of the positive electrode plate 10X facing the positive electrode active material layer 12X when viewed in the stacking direction dL. That is, the negative electrode effective region b2 extends so as to protrude to the outside of the positive electrode active material layer 12X over the entire circumference when viewed in the stacking direction dL. Therefore, as described above, the size of the negative electrode effective region b2 of the negative electrode plate 20Y in the first direction d1 is larger than the size of the positive electrode effective region b1 of the positive electrode plate 10X in the first direction d1. Further, the size of the negative electrode plate 20Y in the second direction d2 is larger than the size of the positive electrode plate 10X in the second direction d2.
 本実施の形態においては、負極板20Yは、比較的大きなサイズを有しており、第1方向d1における負極板20Yの寸法は、180mm以上であってもよい。第1方向d1における負極板20Yの負極有効領域b2の寸法は、150mm以上であってもよい。また、第2方向d2における負極板20Yの寸法は、80mm以上であってもよい。 In the present embodiment, the negative electrode plate 20Y has a relatively large size, and the size of the negative electrode plate 20Y in the first direction d1 may be 180 mm or more. The size of the negative electrode effective region b2 of the negative electrode plate 20Y in the first direction d1 may be 150 mm or more. Further, the size of the negative electrode plate 20Y in the second direction d2 may be 80 mm or more.
 図4に示すように、正極板10Xおよび負極板20Yの間に絶縁シート31が配置されていてもよい。絶縁シート31は、正極板10Xと負極板20Yとの間に介在されて、セパレータとして機能する。図4に示す例では、絶縁シート31は、正極板10Xの後述する機能層30Aと負極板20Yの負極活物質層22Yとの間に配置されている。このような絶縁シート31は、例えば、不織布や多孔質材から形成され得る。この例において、外装体40内に収容された電解液またはゲル状電解液が、絶縁シート31に含浸して保持される。この例に用いられる絶縁シート31は、特に限定されることはなく、積層型電池1、とりわけリチウムイオン二次電池に適用され得る種々の絶縁体を用いることができる。 As shown in FIG. 4, the insulating sheet 31 may be arranged between the positive electrode plate 10X and the negative electrode plate 20Y. The insulating sheet 31 is interposed between the positive electrode plate 10X and the negative electrode plate 20Y and functions as a separator. In the example shown in FIG. 4, the insulating sheet 31 is arranged between the functional layer 30A of the positive electrode plate 10X, which will be described later, and the negative electrode active material layer 22Y of the negative electrode plate 20Y. Such an insulating sheet 31 can be formed of, for example, a non-woven fabric or a porous material. In this example, the electrolytic solution or the gel-like electrolytic solution contained in the exterior body 40 is impregnated into the insulating sheet 31 and held. The insulating sheet 31 used in this example is not particularly limited, and various insulators applicable to the laminated battery 1, particularly the lithium ion secondary battery, can be used.
 また、図4に示すように、正極板10Xおよび負極板20Yの少なくとも一方が、他方に対向する面に機能層30Aを有していてもよい。機能層30Aは、絶縁性を有し、正極板10Xおよび負極板20Yが短絡することを防止する。図示された例においては、正極板10Xが機能層30Aを有している。機能層30Aは、正極活物質層12Xの絶縁シート31の側の面(絶縁シート31に対向する面)に設けられている。すなわち、各正極活物質層12Xの対向する絶縁シート31の側の面に機能層30Aが設けられている。各正極活物質層12Xの当該面は、機能層30Aにより覆われている。そして、正極板10Xのうち絶縁シート31と積層方向dLに対向する面が、機能層30Aによって形成されている。なお、図4に示す機能層30Aの代わりに、あるいは加えて、負極板20Yが、各負極活物質層22Yを覆う機能層30Aを有することも可能である。 Further, as shown in FIG. 4, at least one of the positive electrode plate 10X and the negative electrode plate 20Y may have the functional layer 30A on the surface facing the other. The functional layer 30A has an insulating property and prevents the positive electrode plate 10X and the negative electrode plate 20Y from being short-circuited. In the illustrated example, the positive electrode plate 10X has a functional layer 30A. The functional layer 30A is provided on the surface of the positive electrode active material layer 12X on the side of the insulating sheet 31 (the surface facing the insulating sheet 31). That is, the functional layer 30A is provided on the surface of each positive electrode active material layer 12X on the opposite side of the insulating sheet 31. The surface of each positive electrode active material layer 12X is covered with the functional layer 30A. The surface of the positive electrode plate 10X facing the insulating sheet 31 in the stacking direction dL is formed by the functional layer 30A. In addition to or in addition to the functional layer 30A shown in FIG. 4, the negative electrode plate 20Y may have a functional layer 30A covering each negative electrode active material layer 22Y.
 機能層30Aは、負極活物質層22Yよりも高い空孔率を有していてもよい。また、機能層30Aは、優れた耐熱性を有していてもよい。このような機能層30Aの材料には、無機材料を用いてもよい。無機材料は、高い空孔率とともに優れた耐熱性、例えば150℃以上の耐熱性を機能層30Aに付与することができる。無機材料としては、二酸化ケイ素、窒化ケイ素、アルミナ、ベーマイト、チタニア、ジルコニア、窒化ホウ素、酸化亜鉛、二酸化スズ、酸化ニオブ(Nb)、酸化タンタル(Ta)、フッ化カリウム、フッ化リチウム、クレイ、ゼオライト、炭酸カルシウム、ニオブ-タンタル複合酸化物及びマグネシウム-タンタル複合酸化物等が挙げられる。また、機能層30Aの材料には、有機材料を用いてもよい。有機材料としては、セルロースおよびその変成体、ポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレン、ポリエステル、ポリアクリロニトリル、アラミド、ポリアミドイミド、ポリイミド等の繊維状物や粒子状物が挙げられる。機能層30Aは、アルミナで形成する場合には、正極活物質層12X上に塗工して固化させることで、作製され得る。 The functional layer 30A may have a higher porosity than the negative electrode active material layer 22Y. Further, the functional layer 30A may have excellent heat resistance. An inorganic material may be used as the material of such a functional layer 30A. The inorganic material can impart excellent heat resistance, for example, heat resistance of 150 ° C. or higher to the functional layer 30A together with a high porosity. Inorganic materials include silicon dioxide, silicon nitride, alumina, boehmite, titania, zirconia, boron nitride, zinc oxide, tin dioxide, niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), potassium fluoride, Examples thereof include lithium fluoride, clay, zeolite, calcium carbonate, niob-tantalum composite oxide and magnesium-tantalum composite oxide. Further, an organic material may be used as the material of the functional layer 30A. Examples of the organic material include fibrous substances and particulate substances such as cellulose and its variants, polyolefins, polyethylene terephthalates, polybutylene terephthalates, polypropylenes, polyesters, polyacrylonitriles, aramids, polyamideimides, and polyimides. When the functional layer 30A is formed of alumina, it can be produced by coating it on the positive electrode active material layer 12X and solidifying it.
 (タブ)
 図1~図3に示すように、第1方向d1において膜電極接合体5の一側(図3における右側)に正極タブ16が接続されている。また、第1方向d1において膜電極接合体5の他側(図3における左側)に負極タブ26が接続されている。本実施の形態においては、上述したように、正極タブ16は、膜電極接合体5の正極接続部13の第2面13bに接続されている。また、負極タブ26は、膜電極接合体5の負極接続部23の第2面23bに接続されている。上述したように、タブ16,26はそれぞれ、抵抗溶接や超音波溶接、テープによる貼着、溶着等によって接合されている。これにより、正極タブ16は、各々の正極集電体11Xと電気的に接続され、負極タブ26は、各々の負極集電体21Yと電気的に接続されている。
(tab)
As shown in FIGS. 1 to 3, the positive electrode tab 16 is connected to one side (right side in FIG. 3) of the membrane electrode assembly 5 in the first direction d1. Further, the negative electrode tab 26 is connected to the other side (left side in FIG. 3) of the membrane electrode assembly 5 in the first direction d1. In the present embodiment, as described above, the positive electrode tab 16 is connected to the second surface 13b of the positive electrode connection portion 13 of the membrane electrode assembly 5. Further, the negative electrode tab 26 is connected to the second surface 23b of the negative electrode connection portion 23 of the membrane electrode assembly 5. As described above, the tabs 16 and 26 are bonded by resistance welding, ultrasonic welding, tape bonding, welding, or the like, respectively. As a result, the positive electrode tab 16 is electrically connected to each positive electrode current collector 11X, and the negative electrode tab 26 is electrically connected to each negative electrode current collector 21Y.
 正極タブ16は、第1方向d1において、外装体40の外部に延び出ており、積層型電池1の正極端子として機能する。正極タブ16には、正極シーラント18が設けられている。同様に、負極タブ26は、第1方向d1において、外装体40の外部に延び出ており、積層型電池1の負極端子として機能する。負極タブ26には、負極シーラント28が設けられている。 The positive electrode tab 16 extends to the outside of the exterior body 40 in the first direction d1 and functions as a positive electrode terminal of the laminated battery 1. The positive electrode tab 16 is provided with a positive electrode sealant 18. Similarly, the negative electrode tab 26 extends to the outside of the exterior body 40 in the first direction d1 and functions as a negative electrode terminal of the laminated battery 1. The negative electrode tab 26 is provided with a negative electrode sealant 28.
 正極タブ16は、アルミニウム等を用いて形成され得る。負極タブ26は、ニッケル、ニッケルメッキ銅等を用いて形成され得る。シーラント18,28は、外装体40の樹脂接着層40bとタブ16,26とに溶着可能な材料から構成される。シーラント18,28の材料としては、ポリプロピレン、変性ポリプロピレン、低密度ポリプロピレン、アイオノマー、エチレン・酢酸ビニル等を挙げることができる。 The positive electrode tab 16 can be formed by using aluminum or the like. The negative electrode tab 26 can be formed using nickel, nickel-plated copper, or the like. The sealants 18 and 28 are made of a material that can be welded to the resin adhesive layer 40b of the exterior body 40 and the tabs 16 and 26. Examples of the materials of the sealants 18 and 28 include polypropylene, modified polypropylene, low-density polypropylene, ionomer, ethylene-vinyl acetate and the like.
 (外装体)
 外装体40は、膜電極接合体5を封止するための包装材である。図5および図6に示すように、外装体40は、第1基材41(上側外装体)と、第1基材41に対向する第2基材42(下側外装体)と、を有している。本実施の形態においては、第1基材41と第2基材42は、別体として構成されている。
(Exterior body)
The exterior body 40 is a packaging material for sealing the membrane electrode assembly 5. As shown in FIGS. 5 and 6, the exterior body 40 has a first base material 41 (upper outer body) and a second base material 42 (lower outer body) facing the first base material 41. are doing. In the present embodiment, the first base material 41 and the second base material 42 are configured as separate bodies.
 第2基材42は、シート状に形成されている。一方、第1基材41は、凸状に形成されている。より具体的には、第1基材41は、周辺部43と、膨出部44と、を有している。周辺部43は、第1方向d1において正極タブ16の側の外端縁41a(図5における右側)から内側に延びる正極タブ側部43a(第1タブ側部)と、第1方向d1において負極タブ26の側の外端縁41b(図5における左側)から内側に延びる負極タブ側部43b(第2タブ側部)と、を含んでいる。また、周辺部43は、第2方向d2における一側の外端縁41c(図5における下側)から内側に延びる第1側部43cと、第2方向d2における他側の外端縁41d(図5における上側)から内側に延びる第2側部43dと、を含んでいる。図6に示すように、膨出部44は、正極タブ側部43aに対して第2基材42の側とは反対側(第1基材41の後述する金属層40aの側)に膨出している。また、膨出部44は、第1方向d1において正極タブ側部43aの内端43eから負極タブ側部43bの内端43fにわたって形成されている。また、膨出部44は、第2方向d2において第1側部43cの内端43gから第2側部43dの内端43hにわたって形成されている。この膨出部44により、第1基材41と第2基材42との間に、封止空間45が画定されている。この封止空間45に、膜電極接合体5が収容されている。膨出部44は、膜電極接合体5の正極有効領域b1および負極有効領域b2が重なり合った部分に対向している。一方、正極タブ側部43aは、膜電極接合体5の正極接続部13、すなわち正極板10Xの正極接続領域a1に対向している。また、負極タブ側部43bは、膜電極接合体5の負極接続部23、すなわち負極板20Yの負極接続領域a2に対向している。膨出部44は、例えば、シート状の第1基材41のうち所望の領域を押圧すること(絞り加工)により形成される。この場合、周辺部43と膨出部44は一体的に形成される。 The second base material 42 is formed in a sheet shape. On the other hand, the first base material 41 is formed in a convex shape. More specifically, the first base material 41 has a peripheral portion 43 and a bulging portion 44. The peripheral portion 43 includes a positive electrode tab side portion 43a (first tab side portion) extending inward from the outer edge 41a (right side in FIG. 5) on the positive electrode tab 16 side in the first direction d1, and a negative electrode in the first direction d1. It includes a negative electrode tab side portion 43b (second tab side portion) extending inward from the outer edge 41b (left side in FIG. 5) on the tab 26 side. Further, the peripheral portion 43 includes a first side portion 43c extending inward from the outer edge 41c on one side in the second direction d2 (lower side in FIG. 5) and an outer edge 41d on the other side in the second direction d2. A second side portion 43d extending inward from the upper side in FIG. 5) is included. As shown in FIG. 6, the bulging portion 44 bulges to the side opposite to the side of the second base material 42 (the side of the metal layer 40a described later of the first base material 41) with respect to the positive electrode tab side portion 43a. ing. Further, the bulging portion 44 is formed from the inner end 43e of the positive electrode tab side portion 43a to the inner end 43f of the negative electrode tab side portion 43b in the first direction d1. Further, the bulging portion 44 is formed from the inner end 43g of the first side portion 43c to the inner end 43h of the second side portion 43d in the second direction d2. The bulging portion 44 defines a sealing space 45 between the first base material 41 and the second base material 42. The membrane electrode assembly 5 is housed in the sealing space 45. The bulging portion 44 faces the portion where the positive electrode effective region b1 and the negative electrode effective region b2 of the membrane electrode assembly 5 overlap. On the other hand, the positive electrode tab side portion 43a faces the positive electrode connecting portion 13 of the membrane electrode assembly 5, that is, the positive electrode connecting region a1 of the positive electrode plate 10X. Further, the negative electrode tab side portion 43b faces the negative electrode connection portion 23 of the membrane electrode assembly 5, that is, the negative electrode connection region a2 of the negative electrode plate 20Y. The bulging portion 44 is formed, for example, by pressing a desired region of the sheet-shaped first base material 41 (drawing). In this case, the peripheral portion 43 and the bulging portion 44 are integrally formed.
 外装体40は、フレキシブル性を有していてもよい。外装体40の第1基材41および第2基材42はそれぞれ、金属層40aと、金属層40aの内面に設けられた樹脂接着層40bと、を有するラミネートフィルムで構成されている。金属層40aは、高ガスバリア性と成形加工性を有していてもよい。このような金属層40aは、アルミニウム箔やステンレス箔等の金属材料により形成されていてもよい。樹脂接着層40bは、金属層40aの内面に位置し、金属層40aを接合するためのシール層として機能する。樹脂接着層40bは、接着性に加え、絶縁性、耐薬品性、熱可塑性等を有していてもよい。このような樹脂接着層40bは、ポリプロピレン、変性ポリプロピレン、低密度ポリプロピレン、アイオノマー、エチレン・酢酸ビニル等の樹脂材料により形成されていてもよい。 The exterior body 40 may have flexibility. The first base material 41 and the second base material 42 of the exterior body 40 are each composed of a laminated film having a metal layer 40a and a resin adhesive layer 40b provided on the inner surface of the metal layer 40a. The metal layer 40a may have high gas barrier properties and molding processability. Such a metal layer 40a may be formed of a metal material such as aluminum foil or stainless steel foil. The resin adhesive layer 40b is located on the inner surface of the metal layer 40a and functions as a sealing layer for joining the metal layers 40a. The resin adhesive layer 40b may have insulating property, chemical resistance, thermoplasticity, etc. in addition to adhesiveness. Such a resin adhesive layer 40b may be formed of a resin material such as polypropylene, modified polypropylene, low density polypropylene, ionomer, ethylene / vinyl acetate or the like.
 本実施の形態による積層型電池1は、第1基材41と第2基材42との間に膜電極接合体5を配置した後、ラミネート加工を行うことによって作製される。すなわち、外装体40の周縁部において、第1基材41および第2基材42の各々の内面に形成された樹脂接着層40bがヒートシール(熱溶着)されて、シール部46が形成される。このようにして、第1基材41と第2基材42とが接合されて、外装体40の内部を封止した封止空間45に、膜電極接合体5が収容される。 The laminated battery 1 according to the present embodiment is manufactured by arranging the membrane electrode assembly 5 between the first base material 41 and the second base material 42 and then laminating. That is, on the peripheral edge of the exterior body 40, the resin adhesive layer 40b formed on the inner surfaces of the first base material 41 and the second base material 42 is heat-sealed (heat welded) to form the seal portion 46. .. In this way, the membrane electrode assembly 5 is housed in the sealing space 45 in which the first base material 41 and the second base material 42 are joined and the inside of the exterior body 40 is sealed.
 なお、タブ16,26はそれぞれ、第1方向d1において外装体40の内側からシール部46を通って外装体40の外側に延び出ている。第1基材41とタブ16,26とは、シーラント18,28を介してヒートシールされる。同様に、第2基材42とタブ16,26とは、シーラント18,28を介してヒートシールされる。 The tabs 16 and 26 each extend from the inside of the exterior body 40 to the outside of the exterior body 40 through the seal portion 46 in the first direction d1. The first base material 41 and the tabs 16 and 26 are heat-sealed via the sealants 18 and 28. Similarly, the second base material 42 and the tabs 16 and 26 are heat-sealed via the sealants 18 and 28.
 本実施の形態においては、外装体40は、上述したような比較的大きなサイズを有する正極板10Xおよび負極板20Yを収容している。このため、外装体40も、比較的大きなサイズを有している。第1方向d1における第1基材41の寸法Lは、200mm以上であってもよい。また、第2方向d2における第1基材41の寸法Wは、100mm以上であってもよい。なお、ここでの寸法L,Wとは、外装体40の端部での折り返し等がなく外装体40の周縁部が平坦な状態での平面寸法を意味する。外装体40の端部が折り返されている場合には、寸法L,Wは、その折り返し部分を戻して外装体40の周縁部を平坦な状態にしたときの寸法である。第1方向d1における第2基材42の寸法および第2方向d2における第2基材42の寸法は、第1基材41のそれらの寸法と同程度であってもよい。 In the present embodiment, the exterior body 40 accommodates the positive electrode plate 10X and the negative electrode plate 20Y having a relatively large size as described above. Therefore, the exterior body 40 also has a relatively large size. The dimension L of the first base material 41 in the first direction d1 may be 200 mm or more. Further, the dimension W of the first base material 41 in the second direction d2 may be 100 mm or more. The dimensions L and W here mean the plane dimensions in a state where the peripheral edge portion of the exterior body 40 is flat without folding back at the end portion of the exterior body 40. When the end portion of the exterior body 40 is folded back, the dimensions L and W are the dimensions when the folded portion is returned to flatten the peripheral edge portion of the exterior body 40. The dimensions of the second base material 42 in the first direction d1 and the dimensions of the second base material 42 in the second direction d2 may be similar to those of the first base material 41.
 また、本実施の形態において、第1方向d1における正極タブ側部43aの寸法dx1は、20mm以上であってもよく、100mm以下であってもよい。第1方向d1における負極タブ側部43bの寸法dx2も、20mm以上であってもよく、100mm以下であってもよい。また、第2方向d2における正極タブ側部43aの寸法は、第2方向d2における第1基材41の寸法Wと同じであってもよく、100mm以上であってもよい。第2方向d2における負極タブ側部43bの寸法も、第2方向d2における第1基材41の寸法Wと同じであってもよく、100mm以上であってもよい。なお、これらの寸法も、上記と同様、外装体40の端部での折り返し等がなく外装体40の周縁部が平坦な状態での寸法を意味し、外装体40の端部が折り返されている場合には、その折り返し部分を戻して外装体40の周縁部を平坦な状態にしたときの寸法である。 Further, in the present embodiment, the dimension dx1 of the positive electrode tab side portion 43a in the first direction d1 may be 20 mm or more, or 100 mm or less. The dimension dx2 of the negative electrode tab side portion 43b in the first direction d1 may also be 20 mm or more, or 100 mm or less. Further, the dimension of the positive electrode tab side portion 43a in the second direction d2 may be the same as the dimension W of the first base material 41 in the second direction d2, or may be 100 mm or more. The size of the negative electrode tab side portion 43b in the second direction d2 may be the same as the size W of the first base material 41 in the second direction d2, or may be 100 mm or more. Note that these dimensions also mean the dimensions in a state where the peripheral edge portion of the exterior body 40 is flat without folding back at the end portion of the exterior body 40, and the end portion of the exterior body 40 is folded back. If so, it is the dimension when the folded-back portion is returned and the peripheral edge portion of the exterior body 40 is made flat.
 上述したように、本実施の形態においては、積層型電池1は、比較的大きなサイズを有する電極板10X,20Yおよび外装体40を備える大型の積層型電池1である。このため、積層型電池1の重量が大きくなっている。本実施の形態においては、積層型電池1の重量は、500g以上であってもよい。 As described above, in the present embodiment, the laminated battery 1 is a large laminated battery 1 including electrode plates 10X and 20Y having a relatively large size and an exterior body 40. Therefore, the weight of the laminated battery 1 is increased. In the present embodiment, the weight of the laminated battery 1 may be 500 g or more.
 このように構成された積層型電池1は、積層方向dLで見たときに、正極タブ側部43aと重なる領域として画定される第1被挟持領域S1と、負極タブ側部43bと重なる領域として画定される第2被挟持領域S2と、第1被挟持領域S1と第2被挟持領域S2との間に設けられた、膨出部44が位置する膨出部領域SBと、に区画される(図5および図6参照)。第1被挟持領域S1と第2被挟持領域S2は、積層型電池1を搬送する際に、後述する挟持装置60により挟持されるための領域である。 The laminated battery 1 configured in this way has a first sandwiched region S1 defined as a region overlapping the positive electrode tab side portion 43a and a region overlapping the negative electrode tab side portion 43b when viewed in the stacking direction dL. It is divided into a defined second sandwiched area S2 and a bulging portion area SB where the bulging portion 44 is located, which is provided between the first sandwiched area S1 and the second sandwiched area S2. (See FIGS. 5 and 6). The first sandwiched area S1 and the second sandwiched area S2 are areas for being sandwiched by the sandwiching device 60, which will be described later, when the laminated battery 1 is conveyed.
 [積層型電池の製造方法]
 次に、リチウムイオン二次電池として構成された本実施の形態による積層型電池1の製造方法について説明する。以下に説明する積層型電池の製造方法は、膜電極接合体5を準備する膜電極接合体準備工程と、膜電極接合体5にタブ16,26を取り付けるタブ取付工程と、第1基材41および第2基材42を準備する外装体準備工程と、膜電極接合体5を第1基材41と第2基材42との間に封止する封止工程と、を備える。以下、各工程について説明する。
[Manufacturing method of stacked batteries]
Next, a method of manufacturing the laminated battery 1 according to the present embodiment, which is configured as a lithium ion secondary battery, will be described. The method for manufacturing the laminated battery described below includes a membrane electrode assembly preparation step for preparing the membrane electrode assembly 5, a tab attachment step for attaching the tabs 16 and 26 to the membrane electrode assembly 5, and a first base material 41. And an exterior body preparation step for preparing the second base material 42, and a sealing step for sealing the membrane electrode assembly 5 between the first base material 41 and the second base material 42. Hereinafter, each step will be described.
 (膜電極接合体準備工程)
 膜電極接合体準備工程では、膜電極接合体5を準備する。膜電極接合体準備工程は、正極板10Xおよび負極板20Yをそれぞれ作製する工程と、正極板10Xおよび負極板20Yを交互に積層する工程と、を含んでいる。
(Membrane electrode assembly preparation process)
In the membrane electrode assembly preparation step, the membrane electrode assembly 5 is prepared. The membrane electrode assembly preparation step includes a step of producing the positive electrode plate 10X and the negative electrode plate 20Y, respectively, and a step of alternately laminating the positive electrode plate 10X and the negative electrode plate 20Y.
 まず、正極板10Xおよび負極板20Yをそれぞれ作製する工程を実施する。この工程においては、まず、正極集電体11Xを構成するようになる長尺のアルミニウム箔上に、正極活物質層12Xを構成するようになる組成物(スラリー)を塗工し、続いて乾燥し、その後プレスして高密度化する。次に、所望の大きさに断裁し、枚葉状の正極板10Xが作製され得る。同様に、負極集電体21Yを構成するようになる長尺の銅箔上に、負極活物質層22Yを構成するようになる組成物(スラリー)を塗工し、続いて乾燥し、その後プレスして高密度化する。次に、所望の大きさに断裁し、枚葉状の負極板20Yが作製され得る。なお、正極板10Xおよび負極板20Yの少なくとも一方に機能層30Aをアルミナで形成して付与する場合には、例えば、電極板10X,20Yをなすようになる断裁前の長尺材上または断裁後の枚葉材上に、アルミナを含む材料を塗布して固化させることで機能層30Aを作製することができる。 First, the steps of manufacturing the positive electrode plate 10X and the negative electrode plate 20Y are carried out. In this step, first, a composition (slurry) that constitutes the positive electrode active material layer 12X is applied onto a long aluminum foil that constitutes the positive electrode current collector 11X, and then dried. Then press to increase the density. Next, it can be cut to a desired size to produce a single-wafer-shaped positive electrode plate 10X. Similarly, a composition (slurry) that constitutes the negative electrode active material layer 22Y is applied onto a long copper foil that constitutes the negative electrode current collector 21Y, subsequently dried, and then pressed. To increase the density. Next, it can be cut to a desired size to produce a single-wafer-shaped negative electrode plate 20Y. When the functional layer 30A is formed of alumina on at least one of the positive electrode plate 10X and the negative electrode plate 20Y and applied, for example, on a long material before cutting or after cutting so as to form the electrode plates 10X and 20Y. The functional layer 30A can be produced by applying a material containing alumina on the single-wafer material of No. 1 and solidifying it.
 次に、正極板10Xおよび負極板20Yを交互に積層する工程を実施する。この工程においては、正極板10Xの正極活物質層12Xと負極板20Yの負極活物質層22Yとが正対するようにして、正極板10Xと負極板20Yとの間に絶縁シート31を介在させながら、正極板10Xおよび負極板20Yを積層していく。積層方向dLにおける最下部および最上部には、負極板20Yが配置される。 Next, a step of alternately laminating the positive electrode plate 10X and the negative electrode plate 20Y is carried out. In this step, the positive electrode active material layer 12X of the positive electrode plate 10X and the negative electrode active material layer 22Y of the negative electrode plate 20Y face each other, and the insulating sheet 31 is interposed between the positive electrode plate 10X and the negative electrode plate 20Y. , Positive electrode plate 10X and negative electrode plate 20Y are laminated. The negative electrode plate 20Y is arranged at the lowermost portion and the uppermost portion in the stacking direction dL.
 このようにして、正極板10Xおよび負極板20Yが交互に積層された膜電極接合体5を得ることができる。 In this way, the membrane electrode assembly 5 in which the positive electrode plate 10X and the negative electrode plate 20Y are alternately laminated can be obtained.
 (タブ取付工程)
 膜電極接合体準備工程の後に、タブ取付工程が行われる。タブ取付工程では、第1方向d1において膜電極接合体5の両側に一対のタブ16,26を取り付ける。タブ取付工程は、タブ16,26を準備する工程と、膜電極接合体5にタブ16,26を取り付ける工程と、を含んでいる。
(Tab mounting process)
After the membrane electrode assembly preparation step, a tab attachment step is performed. In the tab attachment step, a pair of tabs 16 and 26 are attached to both sides of the membrane electrode assembly 5 in the first direction d1. The tab attachment step includes a step of preparing the tabs 16 and 26 and a step of attaching the tabs 16 and 26 to the membrane electrode assembly 5.
 まず、タブ16,26を準備する工程を実施する。この工程においては、アルミニウム金属で形成された正極タブ16であって、正極シーラント18が取り付けられた正極タブ16を準備する。正極シーラント18は、第1方向d1において正極タブ16の一部を覆うように取り付けられ、第2方向d2において正極タブ16の両側に延び出るように取り付けられる。また、銅金属で形成された負極タブ26であって、負極シーラント28が取り付けられた負極タブ26を準備する。負極シーラント28は、第1方向d1において負極タブ26の一部を覆うように取り付けられ、第2方向d2において負極タブ26の両側に延び出るように取り付けられる。 First, carry out the process of preparing tabs 16 and 26. In this step, a positive electrode tab 16 made of aluminum metal and to which a positive electrode sealant 18 is attached is prepared. The positive electrode sealant 18 is attached so as to cover a part of the positive electrode tab 16 in the first direction d1, and is attached so as to extend to both sides of the positive electrode tab 16 in the second direction d2. Further, a negative electrode tab 26 formed of copper metal and to which a negative electrode sealant 28 is attached is prepared. The negative electrode sealant 28 is attached so as to cover a part of the negative electrode tab 26 in the first direction d1, and is attached so as to extend to both sides of the negative electrode tab 26 in the second direction d2.
 次に、膜電極接合体5にタブ16,26を取り付ける工程を実施する。この工程においては、準備したタブ16,26を、膜電極接合体5の接続部13,23にそれぞれ取り付ける。より具体的には、まず、正極タブ16をステージ上に載置する。続いて、正極タブ16の上面と膜電極接合体5の正極接続部13の第2面13bとが部分的に重なるように、膜電極接合体5を載置する。この際、第2方向d2における正極接続領域a1の中心位置と正極タブ16の中心位置とが一致するように、正極タブ16に対する膜電極接合体5の位置合わせを行う。その後、抵抗溶接や超音波溶接等によって正極タブ16を膜電極接合体5の正極接続部13に溶着させる。これにより、正極接続部13の第2面13bに、正極タブ16が接合される。この際、各々の正極集電体11Xも、正極タブ16が第2面13bに接合された位置において、互いに接合される。このようにして、正極タブ16を、膜電極接合体の正極接続部13に電気的に接続させることができる。同様にして、準備した負極タブ26を、膜電極接合体5の負極接続部23に電気的に接続させることができる。 Next, the steps of attaching the tabs 16 and 26 to the membrane electrode assembly 5 are carried out. In this step, the prepared tabs 16 and 26 are attached to the connecting portions 13 and 23 of the membrane electrode assembly 5, respectively. More specifically, first, the positive electrode tab 16 is placed on the stage. Subsequently, the membrane electrode assembly 5 is placed so that the upper surface of the positive electrode tab 16 and the second surface 13b of the positive electrode connection portion 13 of the membrane electrode assembly 5 partially overlap. At this time, the membrane electrode assembly 5 is aligned with the positive electrode tab 16 so that the center position of the positive electrode connection region a1 in the second direction d2 and the center position of the positive electrode tab 16 coincide with each other. After that, the positive electrode tab 16 is welded to the positive electrode connection portion 13 of the membrane electrode assembly 5 by resistance welding, ultrasonic welding, or the like. As a result, the positive electrode tab 16 is joined to the second surface 13b of the positive electrode connecting portion 13. At this time, the positive electrode current collectors 11X are also joined to each other at the position where the positive electrode tab 16 is joined to the second surface 13b. In this way, the positive electrode tab 16 can be electrically connected to the positive electrode connection portion 13 of the membrane electrode assembly. Similarly, the prepared negative electrode tab 26 can be electrically connected to the negative electrode connection portion 23 of the membrane electrode assembly 5.
 このようにして、タブ16,26が取り付けられた膜電極接合体5を得ることができる。 In this way, the membrane electrode assembly 5 to which the tabs 16 and 26 are attached can be obtained.
 (外装体準備工程)
 外装体準備工程では、第1基材41および第2基材42を準備する。外装体準備工程は、第1基材41を作製する工程と、第2基材42を作製する工程と、を含んでいる。
(Exterior body preparation process)
In the exterior body preparation step, the first base material 41 and the second base material 42 are prepared. The exterior body preparation step includes a step of manufacturing the first base material 41 and a step of manufacturing the second base material 42.
 第1基材41を作製する工程においては、まず、金属層40aを構成するアルミニウム箔の一側に、樹脂接着層40bを構成するようになる樹脂材料の組成物を塗工して固化する。次に、所望の大きさに断裁し、平板状の第1基材41が得られる。その後、平板状の第1基材41に対して、絞り加工を行い、膨出部44を形成する。ここで、第1方向d1における正極タブ側部43aの寸法dx1および負極タブ側部43bの寸法dx2が、所望の値となるように形成される。これにより、所望の寸法を有する正極タブ側部43aおよび負極タブ側部43bを有する第1基材41が作製され得る(図5参照)。 In the step of producing the first base material 41, first, a composition of a resin material that constitutes the resin adhesive layer 40b is applied to one side of the aluminum foil that constitutes the metal layer 40a and solidified. Next, it is cut to a desired size to obtain a flat plate-shaped first base material 41. After that, the flat plate-shaped first base material 41 is drawn to form a bulging portion 44. Here, the dimension dx1 of the positive electrode tab side portion 43a and the dimension dx2 of the negative electrode tab side portion 43b in the first direction d1 are formed so as to have desired values. As a result, the first base material 41 having the positive electrode tab side portion 43a and the negative electrode tab side portion 43b having desired dimensions can be produced (see FIG. 5).
 第2基材42を作製する工程においては、まず、金属層40aを構成するアルミニウム箔の一側に、樹脂接着層40bを構成するようになる樹脂材料の組成物を塗工して固化する。次に、所望の大きさに断裁し、平板状の第2基材42が得られる。 In the step of producing the second base material 42, first, a composition of a resin material that constitutes the resin adhesive layer 40b is applied to one side of the aluminum foil that constitutes the metal layer 40a and solidified. Next, it is cut to a desired size to obtain a flat plate-shaped second base material 42.
 このようにして、膜電極接合体5を封止する外装体40を構成する第1基材41および第2基材42を得ることができる。 In this way, the first base material 41 and the second base material 42 constituting the exterior body 40 that seals the membrane electrode assembly 5 can be obtained.
 (封止工程)
 タブ取付工程および外装体準備工程の後に、封止工程が行われる。封止工程では、外装体40内に膜電極接合体5を封止する。
(Seal process)
A sealing step is performed after the tab mounting step and the exterior body preparation step. In the sealing step, the membrane electrode assembly 5 is sealed in the exterior body 40.
 この封止工程においては、まず、樹脂接着層40bが上を向くように、ステージ上に第2基材42を載置する。続いて、第2基材42上に膜電極接合体5を載置する。次に、膜電極接合体5の上から、膜電極接合体5が膨出部44内に収容されるように、第1基材41を被せる。ここで、第1基材41の樹脂接着層40bが第2基材42の樹脂接着層40bに対向するように、第1基材41を被せる。また、正極タブ側部43aが正極板10Xの正極接続領域a1に対向し、負極タブ側部43bが負極板20Yの負極接続領域a2に対向するように、第1基材41を被せる。この際、タブ16,26が外部に延び出た状態で、膜電極接合体5が第1基材41と第2基材42との間に配置される。また、この際、外装体40とタブ16,26との間に、シーラント18,28が配置される。 In this sealing step, first, the second base material 42 is placed on the stage so that the resin adhesive layer 40b faces upward. Subsequently, the membrane electrode assembly 5 is placed on the second base material 42. Next, the first base material 41 is covered over the membrane electrode assembly 5 so that the membrane electrode assembly 5 is housed in the bulge 44. Here, the first base material 41 is covered so that the resin adhesive layer 40b of the first base material 41 faces the resin adhesive layer 40b of the second base material 42. Further, the first base material 41 is covered so that the positive electrode tab side portion 43a faces the positive electrode connection region a1 of the positive electrode plate 10X and the negative electrode tab side portion 43b faces the negative electrode connection region a2 of the negative electrode plate 20Y. At this time, the membrane electrode assembly 5 is arranged between the first base material 41 and the second base material 42 with the tabs 16 and 26 extending to the outside. At this time, the sealants 18 and 28 are arranged between the exterior body 40 and the tabs 16 and 26.
 その後、膜電極接合体5の周囲において、第1基材41と第2基材42とが、例えば150℃~200℃の温度を有する金属製のヒートバーにより押圧される。これにより、ヒートバーにより押圧された領域の近傍において、第1基材41と第2基材42の各々の内面に形成された樹脂接着層40bが溶解し、それらが互いにヒートシール(熱溶着)して、シール部46が形成される。 After that, the first base material 41 and the second base material 42 are pressed by a metal heat bar having a temperature of, for example, 150 ° C. to 200 ° C. around the membrane electrode assembly 5. As a result, the resin adhesive layers 40b formed on the inner surfaces of the first base material 41 and the second base material 42 are melted in the vicinity of the region pressed by the heat bar, and they are heat-sealed (heat welded) with each other. The seal portion 46 is formed.
 より具体的には、まず、第2方向d2における外装体40の一側の縁部(図5における下側)、第1方向d1における外装体40の一側の縁部(正極タブ16の側、図5における右側)および第1方向d1における外装体40の他側の縁部(負極タブ26の側、図5における左側)が、ヒートバーにより押圧される。これにより、ヒートバーにより押圧された領域の近傍において、第1基材41と第2基材42の各々の内面に形成された樹脂接着層40bが溶解し、それらが互いにヒートシール(熱溶着)される。ヒートシールの際、タブ16,26の周囲においては、シーラント18,28が第1基材41の樹脂接着層40bおよび第2基材42の樹脂接着層40bとともに溶解する。このため、第1基材41とタブ16,26とがヒートシールされるとともに、第2基材42とタブ16,26とがヒートシールされる。これにより、タブ16,26の周囲に、封止空間45と外装体40の外部とを連通するような隙間が形成されることを防止することができる。このようにヒートシールされることにより、第2方向d2における外装体40の他側の縁部(図5における上側)に開口部が形成される。 More specifically, first, one edge of the exterior body 40 in the second direction d2 (lower side in FIG. 5) and one edge of the exterior body 40 in the first direction d1 (side of the positive electrode tab 16). , The right side in FIG. 5) and the other edge of the exterior body 40 in the first direction d1 (the side of the negative electrode tab 26, the left side in FIG. 5) are pressed by the heat bar. As a result, the resin adhesive layers 40b formed on the inner surfaces of the first base material 41 and the second base material 42 are melted in the vicinity of the region pressed by the heat bar, and they are heat-sealed (heat welded) with each other. To. During heat sealing, the sealants 18 and 28 melt together with the resin adhesive layer 40b of the first base material 41 and the resin adhesive layer 40b of the second base material 42 around the tabs 16 and 26. Therefore, the first base material 41 and the tabs 16 and 26 are heat-sealed, and the second base material 42 and the tabs 16 and 26 are heat-sealed. As a result, it is possible to prevent the formation of a gap around the tabs 16 and 26 so as to communicate the sealing space 45 with the outside of the exterior body 40. By heat-sealing in this way, an opening is formed at the other side edge portion (upper side in FIG. 5) of the exterior body 40 in the second direction d2.
 次に、この開口部から外装体40内に電解液が注入される。これにより、外装体40内が電解液で充填される。 Next, the electrolytic solution is injected into the exterior body 40 from this opening. As a result, the inside of the exterior body 40 is filled with the electrolytic solution.
 その後、第2方向d2において外装体40の他側の縁部(図5における上側)が、ヒートバーにより押圧される。これにより、外装体40の第2方向d2における他側の縁部がヒートシールされ、開口部が塞がれる。このため、図5に示すように、膜電極接合体5の周囲で全周にわたってシール部46が連続状に形成され、枠状のシール部46によって封止空間45内の膜電極接合体5が電解液とともに外装体40内に封止される。なお、このヒートシールは、図示しない減圧チャンバ内で行われ、封止空間45が減圧されながら封止される。 After that, in the second direction d2, the other edge portion (upper side in FIG. 5) of the exterior body 40 is pressed by the heat bar. As a result, the other side edge portion of the exterior body 40 in the second direction d2 is heat-sealed, and the opening portion is closed. Therefore, as shown in FIG. 5, the sealing portion 46 is continuously formed around the entire circumference of the membrane electrode assembly 5, and the frame-shaped sealing portion 46 allows the membrane electrode assembly 5 in the sealing space 45 to be formed. It is sealed in the exterior body 40 together with the electrolytic solution. This heat seal is performed in a pressure reducing chamber (not shown), and the sealing space 45 is sealed while being reduced in pressure.
 このようにして、外装体40内に膜電極接合体5が封止された積層型電池1を得ることができる。 In this way, the laminated battery 1 in which the membrane electrode assembly 5 is sealed in the exterior body 40 can be obtained.
 [積層型電池の搬送方法]
 次に、図7~図10を参照して、本実施の形態による積層型電池1の搬送方法について説明する。以下に説明する積層型電池の搬送方法は、積層型電池1を準備する積層型電池準備工程(準備工程)と、積層型電池1を起立させる起立工程と、挟持装置60により積層型電池1の被挟持領域S1,S2を挟持する挟持工程と、挟持装置60により被挟持領域S1,S2を挟持しながら積層型電池1を吊り下げて搬送する搬送工程と、を備える。以下、各工程について説明する。
[Transportation method for stacked batteries]
Next, a method of transporting the laminated battery 1 according to the present embodiment will be described with reference to FIGS. 7 to 10. The method for transporting the laminated battery described below includes a laminated battery preparation step (preparation step) for preparing the laminated battery 1, an upright step for raising the laminated battery 1, and a holding device 60 for the laminated battery 1. It includes a sandwiching step of sandwiching the sandwiched areas S1 and S2, and a transporting step of suspending and transporting the laminated battery 1 while sandwiching the sandwiched areas S1 and S2 by the sandwiching device 60. Hereinafter, each step will be described.
 (積層型電池準備工程)
 積層型電池準備工程では、積層型電池1を準備する。
(Stacked battery preparation process)
In the laminated battery preparation step, the laminated battery 1 is prepared.
 この工程においては、上述した積層型電池の製造方法により、積層型電池1を得ることができる。得られた積層型電池1は、積層型電池1の積層方向dLがステージ50の載置面51に直交するように、ステージ50の載置面51上に載置される。載置面51には、積層型電池1の第2基材42の下面(外面)が対向している。 In this step, the laminated battery 1 can be obtained by the method for manufacturing the laminated battery described above. The obtained laminated battery 1 is mounted on the mounting surface 51 of the stage 50 so that the stacking direction dL of the laminated battery 1 is orthogonal to the mounting surface 51 of the stage 50. The lower surface (outer surface) of the second base material 42 of the laminated battery 1 faces the mounting surface 51.
 (起立工程)
 積層型電池準備工程の後に、起立工程が行われる。起立工程では、積層型電池1を起立させて起立状態にする。
(Standing process)
After the laminated battery preparation step, an upright step is performed. In the standing step, the laminated battery 1 is raised to be in the standing state.
 この工程においては、図7に示すように、例えば積層型電池1の積層方向dLがステージ50の載置面51と平行になり、積層型電池1の第2基材42の外面が、載置面51に垂直になる。例えば、図示しない起立装置により、第1方向d1で見たときに、積層型電池1が第2方向d2における一側が上方に位置するような姿勢となるように、当該一側で積層型電池1の第2基材42の下面を押し上げるようにしてもよい。このことにより、図7に示すように、積層型電池1をステージ50上に起立させることができる。 In this step, as shown in FIG. 7, for example, the stacking direction dL of the laminated battery 1 is parallel to the mounting surface 51 of the stage 50, and the outer surface of the second base material 42 of the laminated battery 1 is mounted. It becomes perpendicular to the surface 51. For example, with an upright device (not shown), the laminated battery 1 is arranged so that one side in the second direction d2 is positioned upward when viewed in the first direction d1. The lower surface of the second base material 42 may be pushed up. As a result, as shown in FIG. 7, the laminated battery 1 can be erected on the stage 50.
 (挟持工程)
 起立工程の後に、挟持工程が行われる。挟持工程では、挟持装置60により積層型電池1の被挟持領域S1,S2を挟持する。挟持工程は、第1被挟持領域S1を挟持する工程と、第2被挟持領域S2を挟持する工程と、を含んでいる。以下、第1被挟持領域S1を挟持するための第1挟持部61と、第2被挟持領域S2を挟持するための第2挟持部62と、を有する挟持装置60により第1被挟持領域S1および第2被挟持領域S2を挟持する例について説明する。
(Pinching process)
After the standing process, a pinching process is performed. In the sandwiching step, the sandwiching device 60 sandwiches the sandwiched areas S1 and S2 of the laminated battery 1. The sandwiching step includes a step of sandwiching the first sandwiched area S1 and a step of sandwiching the second sandwiched area S2. Hereinafter, the first sandwiched area S1 is provided by the sandwiching device 60 having the first sandwiching portion 61 for sandwiching the first sandwiched area S1 and the second sandwiching portion 62 for sandwiching the second sandwiched area S2. An example of sandwiching the second sandwiched area S2 will be described.
 なお、この例において、第1挟持部61の第1方向d1における寸法dm1は、5mm以上20mm以下であってもよい。第1挟持部61の第1方向d1における寸法dm1をこのような数値範囲内にすることにより、積層型電池1の重量が500g以上である場合に、積層型電池1を落下させないように挟持しつつ、積層型電池1に圧痕が残らないような圧力で積層型電池1の第1被挟持領域S1を挟持することができる。本実施の形態においては、第1挟持部61の第1方向d1における寸法dm1は、20mmである。また、第1挟持部61の第2方向d2における寸法dn1は、例えば100mmである(図8参照)。同様に、第2挟持部62の第1方向d1における寸法dm2は、5mm以上20mm以下であってもよい。第2挟持部62の第1方向d1における寸法dm2をこのような数値範囲内にすることにより、積層型電池1の重量が500g以上である場合に、積層型電池1を落下させないように挟持しつつ、積層型電池1に圧痕が残らないような圧力で積層型電池1の第2被挟持領域S2を挟持することができる。本実施の形態においては、第2挟持部62の第1方向d1における寸法dm2は、20mmである。また、第2挟持部62の第2方向d2における寸法dn2は、例えば100mmである(図8参照)。なお、積層型電池1の落下や積層型電池1に圧痕が残ることを防止するために、挟持部61,62の積層型電池1との接触部をゴムで覆ってもよい。 In this example, the dimension dm1 of the first sandwiching portion 61 in the first direction d1 may be 5 mm or more and 20 mm or less. By setting the dimension dm1 of the first sandwiching portion 61 in the first direction d1 within such a numerical range, when the weight of the laminated battery 1 is 500 g or more, the laminated battery 1 is sandwiched so as not to drop. At the same time, the first sandwiched area S1 of the laminated battery 1 can be sandwiched at a pressure that does not leave an indentation on the laminated battery 1. In the present embodiment, the dimension dm1 of the first sandwiching portion 61 in the first direction d1 is 20 mm. Further, the dimension dn1 of the first holding portion 61 in the second direction d2 is, for example, 100 mm (see FIG. 8). Similarly, the dimension dm2 of the second sandwiching portion 62 in the first direction d1 may be 5 mm or more and 20 mm or less. By setting the dimension dm2 of the second sandwiching portion 62 in the first direction d1 within such a numerical range, when the weight of the laminated battery 1 is 500 g or more, the laminated battery 1 is sandwiched so as not to drop. At the same time, the second sandwiched region S2 of the laminated battery 1 can be sandwiched at a pressure that does not leave an indentation on the laminated battery 1. In the present embodiment, the dimension dm2 of the second sandwiching portion 62 in the first direction d1 is 20 mm. Further, the dimension dn2 of the second holding portion 62 in the second direction d2 is, for example, 100 mm (see FIG. 8). In order to prevent the laminated battery 1 from falling or leaving indentations on the laminated battery 1, the contact portions of the sandwiching portions 61 and 62 with the laminated battery 1 may be covered with rubber.
 第1被挟持領域S1を挟持する工程においては、まず、挟持装置60の一対の第1挟持部61を、積層型電池1の第1被挟持領域S1を挟持することができる位置まで移動させる。より具体的には、一方の第1挟持部61を正極タブ側部43aの一側で正極タブ側部43aに対向する位置に位置付けるとともに、他方の第1挟持部61を正極タブ側部43aの他側で正極タブ側部43aに対向する位置に位置付ける(図9参照)。続いて、この一対の第1挟持部61により、第1被挟持領域S1を所定の押圧力で挟持する。この際、第1挟持部61は、第1基材41および第2基材42を介して正極板10Xの正極接続部13を挟持する。ここで、第1方向d1における第1挟持部61の寸法dm1は、上述した第1方向d1における正極タブ側部43aの寸法dx1以下の寸法になっている。このため、第1挟持部61に第1被挟持領域S1を挟持させることができる。 In the step of sandwiching the first sandwiched area S1, first, the pair of first sandwiched portions 61 of the sandwiching device 60 are moved to a position where the first sandwiched area S1 of the laminated battery 1 can be sandwiched. More specifically, one of the first sandwiching portions 61 is positioned on one side of the positive electrode tab side portion 43a so as to face the positive electrode tab side portion 43a, and the other first sandwiching portion 61 is positioned on the positive electrode tab side portion 43a. It is positioned on the other side so as to face the positive electrode tab side portion 43a (see FIG. 9). Subsequently, the pair of first sandwiching portions 61 sandwiches the first sandwiched area S1 with a predetermined pressing force. At this time, the first sandwiching portion 61 sandwiches the positive electrode connecting portion 13 of the positive electrode plate 10X via the first base material 41 and the second base material 42. Here, the dimension dm1 of the first sandwiching portion 61 in the first direction d1 is equal to or less than the dimension dx1 of the positive electrode tab side portion 43a in the first direction d1 described above. Therefore, the first sandwiched area S1 can be sandwiched by the first sandwiched portion 61.
 一方、第2被挟持領域S2を挟持する工程においては、まず、挟持装置60の一対の第2挟持部62を、積層型電池1の第2被挟持領域S2を挟持することができる位置まで移動させる。より具体的には、一方の第2挟持部62を負極タブ側部43bの一側で負極タブ側部43bに対向する位置に位置付けるとともに、他方の第2挟持部62を負極タブ側部43bの他側で負極タブ側部43bに対向する位置に位置付ける(図9参照)。続いて、この一対の第2挟持部62により、第2被挟持領域S2を所定の押圧力で挟持する。この際、第2挟持部62は、第1基材41および第2基材42を介して負極板20Yの負極接続部23を挟持する。ここで、第1方向d1における第2挟持部62の寸法dm2は、上述した第1方向d1における負極タブ側部43bの寸法dx2以下の寸法になっている。このため、第2挟持部62に第2被挟持領域S2を挟持させることができる。 On the other hand, in the step of sandwiching the second sandwiched area S2, first, the pair of second sandwiched portions 62 of the sandwiching device 60 is moved to a position where the second sandwiched area S2 of the laminated battery 1 can be sandwiched. Let me. More specifically, one of the second sandwiching portions 62 is positioned on one side of the negative electrode tab side portion 43b so as to face the negative electrode tab side portion 43b, and the other second sandwiching portion 62 is located on the negative electrode tab side portion 43b. It is positioned on the other side so as to face the negative electrode tab side portion 43b (see FIG. 9). Subsequently, the pair of second sandwiching portions 62 sandwiches the second sandwiched area S2 with a predetermined pressing force. At this time, the second sandwiching portion 62 sandwiches the negative electrode connecting portion 23 of the negative electrode plate 20Y via the first base material 41 and the second base material 42. Here, the dimension dm2 of the second sandwiching portion 62 in the first direction d1 is equal to or less than the dimension dx2 of the negative electrode tab side portion 43b in the first direction d1 described above. Therefore, the second sandwiched area S2 can be sandwiched by the second sandwiched portion 62.
 このようにして、図8および図9に示すように、挟持装置60により積層型電池1の第1被挟持領域S1および第2被挟持領域S2が挟持される。なお、第1被挟持領域S1を挟持する工程と第2被挟持領域S2を挟持する工程は、同時に行われてもよいが、異なるタイミングで行われてもよい。 In this way, as shown in FIGS. 8 and 9, the first sandwiched area S1 and the second sandwiched area S2 of the laminated battery 1 are sandwiched by the sandwiching device 60. The step of sandwiching the first sandwiched area S1 and the step of sandwiching the second sandwiched area S2 may be performed at the same time, but may be performed at different timings.
 (搬送工程)
 挟持工程の後に、搬送工程が行われる。搬送工程では、挟持装置60により被挟持領域S1,S2を挟持しながら積層型電池1を吊り下げて搬送する。
(Transport process)
After the pinching process, a transporting process is performed. In the transfer step, the laminated battery 1 is suspended and conveyed while sandwiching the sandwiched areas S1 and S2 by the sandwiching device 60.
 この搬送工程においては、まず、図8に示すような、挟持装置60により積層型電池1の第1被挟持領域S1および第2被挟持領域S2を挟持した状態で、挟持装置60の第1挟持部61および第2挟持部62を上昇させる。これにより、図10に示すように、積層型電池1は、ステージ50の載置面51から離間し、挟持装置60により吊り下げられる。続いて、第1挟持部61および第2挟持部62を水平方向に移動させて、積層型電池1を所望の目標位置(次の工程、例えば積層型電池の検査工程が行われる位置)まで搬送する。積層型電池1が当該目標位置に達した後、第1挟持部61および第2挟持部62を下降させ、積層型電池1を起立状態で当該目標位置に設けられたスリットを有するトレー(不図示)に収容させる。その後、第1挟持部61を第1被挟持領域S1から取り外すとともに、第2挟持部62を第2被挟持領域S2から取り外し、第1挟持部61および第2挟持部62を退避させる。 In this transfer step, first, as shown in FIG. 8, in a state where the first sandwiched area S1 and the second sandwiched area S2 of the laminated battery 1 are sandwiched by the sandwiching device 60, the first sandwiching device 60 is sandwiched. The portion 61 and the second sandwiching portion 62 are raised. As a result, as shown in FIG. 10, the laminated battery 1 is separated from the mounting surface 51 of the stage 50 and suspended by the holding device 60. Subsequently, the first holding portion 61 and the second holding portion 62 are moved in the horizontal direction to transport the laminated battery 1 to a desired target position (a position where the next step, for example, the inspection step of the laminated battery is performed). To do. After the laminated battery 1 reaches the target position, the first holding portion 61 and the second holding portion 62 are lowered, and the stacked battery 1 is in an upright state and a tray having a slit provided at the target position (not shown). ). After that, the first sandwiching portion 61 is removed from the first sandwiched area S1, the second sandwiching portion 62 is removed from the second sandwiched area S2, and the first sandwiching portion 61 and the second sandwiching portion 62 are retracted.
 このようにして、挟持装置60により被挟持領域S1,S2を挟持しながら積層型電池1を吊り下げて搬送することができる。 In this way, the laminated battery 1 can be suspended and conveyed while sandwiching the sandwiched areas S1 and S2 by the sandwiching device 60.
 このように本実施の形態によれば、第1方向d1における正極タブ側部43aの寸法dx1が、20mm以上である。このことにより、積層型電池1の正極タブ側部43aに挟持装置60が挟持するためのスペースを確保することができる。すなわち、積層型電池1に、挟持装置60が挟持するための第1被挟持領域S1を設けることができる。このため、積層型電池1を搬送する際、挟持装置60に第1被挟持領域S1を挟持させることができ、挟持装置60により膨出部領域SBが挟持されることを回避することができる。すなわち、積層型電池1の重量が大きい場合、挟持装置60による押圧力が高くなり得る。このため、重量が大きい積層型電池1の膨出部領域SBを挟持した場合、膜電極接合体5のうち膨出部44内に位置する部分(例えば、電極活物質層12X,22Y)が変形する可能性が考えられる。しかしながら、本実施の形態によれば、積層型電池1の重量が大きい場合であっても、第1被挟持領域S1を挟持することができるため、膨出部領域SBが挟持されることを回避することができる。この結果、積層型電池1の性能低下を抑制することができる。 As described above, according to the present embodiment, the dimension dx1 of the positive electrode tab side portion 43a in the first direction d1 is 20 mm or more. As a result, it is possible to secure a space for the sandwiching device 60 to sandwich the laminated battery 1 on the positive electrode tab side portion 43a. That is, the laminated battery 1 can be provided with the first sandwiched area S1 for sandwiching by the sandwiching device 60. Therefore, when the laminated battery 1 is conveyed, the first sandwiched area S1 can be sandwiched by the sandwiching device 60, and it is possible to prevent the bulging region SB from being sandwiched by the sandwiching device 60. That is, when the weight of the laminated battery 1 is large, the pressing force by the holding device 60 can be high. Therefore, when the bulging portion region SB of the heavy laminated battery 1 is sandwiched, the portion of the membrane electrode assembly 5 located inside the bulging portion 44 (for example, the electrode active material layers 12X and 22Y) is deformed. There is a possibility of doing so. However, according to the present embodiment, even when the weight of the laminated battery 1 is large, the first sandwiched region S1 can be sandwiched, so that the bulge region SB is prevented from being sandwiched. can do. As a result, deterioration of the performance of the laminated battery 1 can be suppressed.
 また、本実施の形態によれば、第1方向d1における正極タブ側部43aの寸法dx1が、100mm以下である。このことにより、積層方向dLで見たときの第1被挟持領域S1の面積の増大を抑制することができる。このため、積層型電池1のエネルギー密度の低下を抑制することができる。 Further, according to the present embodiment, the dimension dx1 of the positive electrode tab side portion 43a in the first direction d1 is 100 mm or less. As a result, it is possible to suppress an increase in the area of the first sandwiched region S1 when viewed in the stacking direction dL. Therefore, it is possible to suppress a decrease in the energy density of the laminated battery 1.
 また、本実施の形態によれば、第2方向d2における正極タブ側部43aの寸法Wが、100mm以上である。この場合、第1被挟持領域S1を、第1挟持部61の第2方向d2における全域で第1挟持部61に挟持させることができる。このため、挟持装置60により、第1被挟持領域S1をより一層しっかりと保持することができる。 Further, according to the present embodiment, the dimension W of the positive electrode tab side portion 43a in the second direction d2 is 100 mm or more. In this case, the first sandwiched area S1 can be sandwiched by the first sandwiched portion 61 over the entire area of the first sandwiched portion 61 in the second direction d2. Therefore, the pinching device 60 can hold the first pinched area S1 more firmly.
 また、本実施の形態によれば、正極タブ側部43aが、正極板10Xの正極接続領域a1に対向している。このことにより、挟持装置60により第1被挟持領域S1を挟持した際、挟持装置60に第1基材41および第2基材42を介して正極板10Xの正極接続領域a1を挟持させることができる。このため、挟持装置60により、積層型電池1をより一層しっかりと保持することができる。また、正極接続領域a1には正極活物質層12Xが設けられていないため、正極接続領域a1を所定の押圧力で挟持した場合であっても、積層型電池1の性能低下を抑制することができる。 Further, according to the present embodiment, the positive electrode tab side portion 43a faces the positive electrode connection region a1 of the positive electrode plate 10X. As a result, when the first sandwiched area S1 is sandwiched by the sandwiching device 60, the sandwiching device 60 can sandwich the positive electrode connection region a1 of the positive electrode plate 10X via the first base material 41 and the second base material 42. it can. Therefore, the holding device 60 can hold the laminated battery 1 more firmly. Further, since the positive electrode active material layer 12X is not provided in the positive electrode connection region a1, even when the positive electrode connection region a1 is sandwiched by a predetermined pressing force, deterioration of the performance of the laminated battery 1 can be suppressed. it can.
 また、本実施の形態によれば、第1方向d1における負極タブ側部43bの寸法が、20mm以上である。このことにより、積層型電池1の負極タブ側部43bに挟持装置60が挟持するためのスペースを確保することができる。すなわち、積層型電池1に、挟持装置60が挟持するための第2被挟持領域S2を設けることができる。このため、積層型電池1を搬送する際、挟持装置60に第1被挟持領域S1および第2被挟持領域S2の両方を挟持させることができ、積層型電池1をより一層しっかりと保持することができる。 Further, according to the present embodiment, the dimension of the negative electrode tab side portion 43b in the first direction d1 is 20 mm or more. As a result, it is possible to secure a space for the sandwiching device 60 to sandwich the negative electrode tab side portion 43b of the laminated battery 1. That is, the laminated battery 1 can be provided with a second sandwiched area S2 for sandwiching by the sandwiching device 60. Therefore, when the laminated battery 1 is conveyed, both the first sandwiched area S1 and the second sandwiched area S2 can be sandwiched by the sandwiching device 60, and the laminated battery 1 can be held more firmly. Can be done.
 また、本実施の形態によれば、第1方向d1における負極タブ側部43bの寸法dx2が、100mm以下である。このことにより、積層方向dLで見たときの第2被挟持領域S2の面積の増大を抑制することができる。このため、積層型電池1のエネルギー密度の低下を抑制することができる。 Further, according to the present embodiment, the dimension dx2 of the negative electrode tab side portion 43b in the first direction d1 is 100 mm or less. As a result, it is possible to suppress an increase in the area of the second sandwiched region S2 when viewed in the stacking direction dL. Therefore, it is possible to suppress a decrease in the energy density of the laminated battery 1.
 また、本実施の形態によれば、第2方向d2における負極タブ側部43bの寸法Wが、100mm以上である。この場合、第2被挟持領域S2を、第2挟持部62の第2方向d2における全域で第2挟持部62に挟持させることができる。このため、挟持装置60により、第2被挟持領域S2をより一層しっかりと保持することができる。 Further, according to the present embodiment, the dimension W of the negative electrode tab side portion 43b in the second direction d2 is 100 mm or more. In this case, the second sandwiched area S2 can be sandwiched by the second sandwiched portion 62 over the entire area of the second sandwiched portion 62 in the second direction d2. Therefore, the sandwiching device 60 can hold the second sandwiched area S2 more firmly.
 また、本実施の形態によれば、負極タブ側部43bが、負極板20Yの負極接続領域a2に対向している。このことにより、挟持装置60により第2被挟持領域S2を挟持した際、挟持装置60に第1基材41および第2基材42を介して負極板20Yの負極接続領域a2を挟持させることができる。このため、挟持装置60により、積層型電池1をより一層しっかりと保持することができる。また、負極接続領域a2には負極活物質層22Yが設けられていないため、負極接続領域a2を所定の押圧力で挟持した場合であっても、積層型電池1の性能低下を抑制することができる。 Further, according to the present embodiment, the negative electrode tab side portion 43b faces the negative electrode connection region a2 of the negative electrode plate 20Y. As a result, when the second sandwiched area S2 is sandwiched by the sandwiching device 60, the sandwiching device 60 can sandwich the negative electrode connection region a2 of the negative electrode plate 20Y via the first base material 41 and the second base material 42. it can. Therefore, the holding device 60 can hold the laminated battery 1 more firmly. Further, since the negative electrode active material layer 22Y is not provided in the negative electrode connection region a2, it is possible to suppress the deterioration of the performance of the laminated battery 1 even when the negative electrode connection region a2 is sandwiched by a predetermined pressing force. it can.
 また、本実施の形態によれば、第1基材41および第2基材42は、金属層40aと、金属層40aの内面に設けられた樹脂接着層40bと、を含んでいる。一般に、積層型電池1の外装体40としてこのような所謂ラミネートフィルム型外装体を用いた場合、外装体40の強度が低下し得る。このため、このような外装体40を有する積層型電池1の膨出部領域SBが挟持装置60により挟持された場合、膨出部44内に位置する部分がより変形し易くなる。これに対して本実施の形態によれば、このような所謂ラミネートフィルム型外装体を用いた場合であっても、第1被挟持領域S1を挟持することができるため、膨出部領域SBが挟持されることを回避することができる。この結果、積層型電池1の性能低下を抑制することができる。 Further, according to the present embodiment, the first base material 41 and the second base material 42 include a metal layer 40a and a resin adhesive layer 40b provided on the inner surface of the metal layer 40a. Generally, when such a so-called laminated film type exterior body is used as the exterior body 40 of the laminated battery 1, the strength of the exterior body 40 may decrease. Therefore, when the bulging portion region SB of the laminated battery 1 having such an exterior body 40 is sandwiched by the sandwiching device 60, the portion located in the bulging portion 44 is more easily deformed. On the other hand, according to the present embodiment, even when such a so-called laminated film type exterior body is used, the first sandwiched region S1 can be sandwiched, so that the bulging portion region SB is formed. It is possible to avoid being pinched. As a result, deterioration of the performance of the laminated battery 1 can be suppressed.
 以上において、具体例を参照しながら一実施の形態を説明してきたが、上述した具体例が一実施の形態を限定することを意図していない。上述した一実施の形態は、その他の様々な具体例で実施されることが可能であり、その要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。 In the above, one embodiment has been described with reference to a specific example, but the above-mentioned specific example is not intended to limit one embodiment. The above-described embodiment can be implemented in various other specific examples, and various omissions, replacements, and changes can be made without departing from the gist thereof.
 以下、図面を参照しながら、変形の一例について説明する。以下の説明および以下の説明で用いる図面では、上述した具体例と同様に構成され得る部分について、上述の具体例における対応する部分に対して用いた符号と同一の符号を用いるとともに、重複する説明を省略する。 Hereinafter, an example of modification will be described with reference to the drawings. In the following description and the drawings used in the following description, the same reference numerals as those used for the corresponding parts in the above-mentioned specific examples are used for the parts that can be configured in the same manner as the above-mentioned specific examples, and the same reference numerals are used, and duplicate explanations are given. Is omitted.
 (第1の変形例)
 上述した実施の形態において、第1方向d1における正極タブ側部43aの寸法dx1および負極タブ側部43bの寸法dx2の両方が20mm以上であり、挟持装置60により第1被挟持領域S1および第2被挟持領域S2の両方を挟持して積層型電池1を搬送する例を示した。しかしながら、このことに限定されることはなく、挟持装置60により第1被挟持領域S1aのみを挟持して積層型電池1を搬送することができれば、負極タブ側部43bの寸法は20mm以上でなくてもよい。また、同様に、挟持装置60により第2被挟持領域S2のみを挟持して積層型電池1を搬送することができれば、正極タブ側部43aの寸法は20mm以上でなくてもよい。
(First modification)
In the above-described embodiment, both the dimension dx1 of the positive electrode tab side portion 43a and the dimension dx2 of the negative electrode tab side portion 43b in the first direction d1 are 20 mm or more, and the first sandwiched area S1 and the second sandwiched area S1 and the second by the sandwiching device 60. An example of transporting the laminated battery 1 by sandwiching both of the sandwiched areas S2 is shown. However, the present invention is not limited to this, and if the sandwiching device 60 can sandwich only the first sandwiched area S1a and convey the laminated battery 1, the size of the negative electrode tab side portion 43b is not 20 mm or more. You may. Similarly, if the sandwiching device 60 can sandwich only the second sandwiched area S2 and convey the laminated battery 1, the size of the positive electrode tab side portion 43a does not have to be 20 mm or more.
 このように、第1方向d1における正極タブ側部43aの寸法dx1および負極タブ側部43bの寸法dx2のいずれか一方のみが20mm以上であってもよい。このような場合であっても、積層型電池1を搬送する際、挟持装置60に第1被挟持領域S1または第2被挟持領域S2を挟持させることができ、積層型電池1の性能低下を抑制することができる。 As described above, only one of the dimension dx1 of the positive electrode tab side portion 43a and the dimension dx2 of the negative electrode tab side portion 43b in the first direction d1 may be 20 mm or more. Even in such a case, when the laminated battery 1 is conveyed, the sandwiching device 60 can sandwich the first sandwiched area S1 or the second sandwiched area S2, which reduces the performance of the laminated battery 1. It can be suppressed.
 (第2の変形例)
 また、上述した実施の形態において、積層型電池の搬送方法は、起立工程を備えており、起立工程において積層型電池1を起立状態にしてから、挟持工程において積層型電池1の被挟持領域S1,S2を挟持する例を示した。しかしながら、このことに限定されることはなく、積層型電池の搬送方法は、起立工程を備えていなくてもよい。この場合、積層型電池1の積層方向dLがステージ50の載置面51に直交するように積層型電池1がステージ50上に載置された状態で、積層型電池1の被挟持領域S1,S2を挟持装置60により挟持するようにしてもよい。
(Second modification)
Further, in the above-described embodiment, the method for transporting the laminated battery includes an upright step, and after the laminated battery 1 is brought into an upright state in the upright step, the held area S1 of the laminated battery 1 is held in the holding step. , S2 is sandwiched. However, the method of transporting the laminated battery is not limited to this, and the method of transporting the laminated battery may not include an upright step. In this case, with the laminated battery 1 mounted on the stage 50 so that the stacking direction dL of the laminated battery 1 is orthogonal to the mounting surface 51 of the stage 50, the sandwiched area S1 of the laminated battery 1 S2 may be sandwiched by the sandwiching device 60.
 このような場合であっても、積層型電池1を搬送する際、挟持装置60に第1被挟持領域S1を挟持させることができ、積層型電池1の性能低下を抑制することができる。 Even in such a case, when the laminated battery 1 is conveyed, the first sandwiched area S1 can be sandwiched by the sandwiching device 60, and the performance deterioration of the laminated battery 1 can be suppressed.
 (第3の変形例)
 また、上述した実施の形態において、第1基材41と第2基材42とが、別体として構成されている例を示した。しかしながら、このことに限定されることはなく、第1基材41と第2基材42とが、一体的に連続状に形成されていてもよい。例えば、第1基材41と第2基材42とが、第2方向d2における一側で連続して、単一のシート状に形成されていてもよい。そして、第1基材41と第2基材42との境界で折り曲げられて、外装体40が形成されてもよい。この折り曲げた部分にはシール部46が形成されていなくてもよい。
(Third variant)
Further, in the above-described embodiment, an example is shown in which the first base material 41 and the second base material 42 are configured as separate bodies. However, the present invention is not limited to this, and the first base material 41 and the second base material 42 may be integrally and continuously formed. For example, the first base material 41 and the second base material 42 may be continuously formed in a single sheet shape on one side in the second direction d2. Then, the exterior body 40 may be formed by being bent at the boundary between the first base material 41 and the second base material 42. The seal portion 46 may not be formed on the bent portion.
 このような場合であっても、第1方向d1における正極タブ側部43aの寸法dx1が、20mm以上であることにより、積層型電池1を搬送する際、挟持装置60に第1被挟持領域S1を挟持させることができ、積層型電池1の性能低下を抑制することができる。 Even in such a case, when the dimension dx1 of the positive electrode tab side portion 43a in the first direction d1 is 20 mm or more, the first sandwiched area S1 is transferred to the sandwiching device 60 when the laminated battery 1 is conveyed. Can be sandwiched, and deterioration of the performance of the laminated battery 1 can be suppressed.
 (第4の変形例)
 また、上述した実施の形態において、第1基材51のみが、膨出部44を有する例を示した。しかしながら、このことに限定されることはなく、図11に示すように、第2基材42が、第1基材41と同様に、周辺部43’と、周辺部43’に対して第1基材41の側とは反対側(第2基材42の金属層40aの側)に膨出した膨出部44’と、を有していてもよい。また、第2基材42の周辺部43’は、第1方向d1において正極タブ16の側の外端縁41a’(図11における右側)から内側に延びる正極タブ側部43a’と、第1方向d1において負極タブ26の側の外端縁41b’(図11における左側)から内側に延びる負極タブ側部43b’と、を含んでいてもよい。そして、膨出部44’は、第1方向d1において正極タブ側部43a’の内端43e’から負極タブ側部43b’の内端43f’にわたって形成されていてもよい。
(Fourth modification)
Further, in the above-described embodiment, an example is shown in which only the first base material 51 has the bulging portion 44. However, the present invention is not limited to this, and as shown in FIG. 11, the second base material 42 is the first with respect to the peripheral portion 43'and the peripheral portion 43', similarly to the first base material 41. It may have a bulging portion 44'that bulges on the side opposite to the side of the base material 41 (the side of the metal layer 40a of the second base material 42). Further, the peripheral portion 43'of the second base material 42 includes the positive electrode tab side portion 43a' extending inward from the outer edge 41a'(right side in FIG. 11) on the positive electrode tab 16 side in the first direction d1 and the first. The negative electrode tab side portion 43b'extending inward from the outer edge 41b'(left side in FIG. 11) on the negative electrode tab 26 side in the direction d1 may be included. The bulging portion 44'may be formed from the inner end 43e'of the positive electrode tab side portion 43a' to the inner end 43f' of the negative electrode tab side portion 43b'in the first direction d1.
 第1方向d1における第2基材42の正極タブ側部43a’の寸法dx1’は、第1基材41の正極タブ側部43aの寸法dx1と等しくてもよい。また、第1方向d1における第2基材42の負極タブ側部43b’の寸法dx2’も、第1基材41の負極タブ側部43a’の寸法dx2と等しくてもよい。この場合、積層方向dLで見たときに、第2基材42の正極タブ側部43a’は、第1被挟持領域S1に位置し、第2基材42の負極タブ側部43b’は、第2被挟持領域S2に位置する。また、積層方向dLで見たときに、第2基材42の膨出部44’は、膨出部領域SBに位置する。しかしながら、このことに限定されることはなく、第1方向d1における第2基材42の正極タブ側部43a’の寸法dx1’は、第1基材41の正極タブ側部43aの寸法dx1よりも大きくてもよい。また、第1方向d1における第2基材42の負極タブ側部43b’の寸法dx2’も、第1基材41の負極タブ側部43a’の寸法dx2よりも大きくてもよい。この場合、積層方向dLで見たときに、第2基材42の正極タブ側部43a’の一部が、第1被挟持領域S1に位置し、残りの部分が、膨出部領域SB内に位置する。また、積層方向dLで見たときに、第2基材42の負極タブ側部43b’の一部が、第2被挟持領域S2に位置し、残りの部分が、膨出部領域SB内に位置する。また、積層方向dLで見たときに、第2基材42の膨出部44’は、膨出部領域SB内に位置する。 The dimension dx1'of the positive electrode tab side portion 43a'of the second base material 42 in the first direction d1 may be equal to the dimension dx1 of the positive electrode tab side portion 43a of the first base material 41. Further, the dimension dx2'of the negative electrode tab side portion 43b'of the second base material 42 in the first direction d1 may be equal to the dimension dx2 of the negative electrode tab side portion 43a' of the first base material 41. In this case, when viewed in the stacking direction dL, the positive electrode tab side portion 43a'of the second base material 42 is located in the first sandwiched region S1, and the negative electrode tab side portion 43b' of the second base material 42 is located. It is located in the second pinched area S2. Further, when viewed in the stacking direction dL, the bulging portion 44'of the second base material 42 is located in the bulging portion region SB. However, the present invention is not limited to this, and the dimension dx1'of the positive electrode tab side portion 43a'of the second base material 42 in the first direction d1 is larger than the dimension dx1 of the positive electrode tab side portion 43a of the first base material 41. May be large. Further, the dimension dx2'of the negative electrode tab side portion 43b'of the second base material 42 in the first direction d1 may also be larger than the dimension dx2 of the negative electrode tab side portion 43a' of the first base material 41. In this case, when viewed in the stacking direction dL, a part of the positive electrode tab side portion 43a'of the second base material 42 is located in the first sandwiched region S1, and the remaining portion is in the bulging portion region SB. Located in. Further, when viewed in the stacking direction dL, a part of the negative electrode tab side portion 43b'of the second base material 42 is located in the second sandwiched region S2, and the remaining portion is in the bulging portion region SB. To position. Further, when viewed in the stacking direction dL, the bulging portion 44'of the second base material 42 is located in the bulging portion region SB.
 このように第1基材41および第2基材42の両方が、膨出部44、44’を有する場合であっても、第1方向d1における正極タブ側部43aの寸法dx1が、20mm以上であることにより、積層型電池1を搬送する際、挟持装置60に第1被挟持領域S1を挟持させることができ、積層型電池1の性能低下を抑制することができる。また、本変形例によれば、第1基材41の膨出部44と第2基材42の膨出部44’との両方により封止空間45を画定することができる。このため、封止空間45により多くの電極板10X,20Yを収容することができ、積層型電池1の容量を増大させることができる。 As described above, even when both the first base material 41 and the second base material 42 have the bulging portions 44 and 44', the dimension dx1 of the positive electrode tab side portion 43a in the first direction d1 is 20 mm or more. Therefore, when the laminated battery 1 is conveyed, the sandwiching device 60 can sandwich the first sandwiched region S1, and the performance deterioration of the laminated battery 1 can be suppressed. Further, according to this modification, the sealing space 45 can be defined by both the bulging portion 44 of the first base material 41 and the bulging portion 44'of the second base material 42. Therefore, more electrode plates 10X and 20Y can be accommodated in the sealing space 45, and the capacity of the laminated battery 1 can be increased.
 (第5の変形例)
 また、上述した実施の形態において、正極板10Xおよび負極板20Yの間に絶縁シート31が配置されている例を示した。しかしながら、このことに限定されることはなく、正極板10Xおよび負極板20Yの間に絶縁シート31が配置されていなくてもよい。このような場合であっても、正極板10Xおよび負極板20Yの少なくとも一方が、他方に対向する面に機能層30Aを有していることにより、正極板10Xおよび負極板20Yが短絡することを防止することができる。
(Fifth variant)
Further, in the above-described embodiment, an example in which the insulating sheet 31 is arranged between the positive electrode plate 10X and the negative electrode plate 20Y is shown. However, the present invention is not limited to this, and the insulating sheet 31 may not be arranged between the positive electrode plate 10X and the negative electrode plate 20Y. Even in such a case, since at least one of the positive electrode plate 10X and the negative electrode plate 20Y has the functional layer 30A on the surface facing the other, the positive electrode plate 10X and the negative electrode plate 20Y are short-circuited. Can be prevented.

Claims (11)

  1.  積層型電池であって、
     第1基材と第2基材とを有し、前記第1基材と前記第2基材との間に封止空間を形成する外装体と、
     前記封止空間に設けられた膜電極接合体であって、積層方向に交互に積層された複数の第1電極板および複数の第2電極板を有する膜電極接合体と、
     前記積層方向で見たときの第1方向において前記膜電極接合体の一側に接続され、前記第1方向において前記外装体の外側に延び出た第1タブと、を備え、
     前記第1基材は、前記第1方向において前記第1タブの側の外端縁から内側に延びる第1タブ側部と、前記第1タブ側部の前記第1方向における内端から前記第1タブ側部に対して前記第2基材の側とは反対側に膨出し、前記封止空間を画定する膨出部と、を含み、
     前記積層型電池の重量は、500g以上であり、
     前記第1方向における前記第1タブ側部の寸法は、20mm以上である、
     積層型電池。
    It ’s a stacked battery,
    An exterior body having a first base material and a second base material and forming a sealing space between the first base material and the second base material,
    A membrane electrode assembly provided in the sealing space, the membrane electrode assembly having a plurality of first electrode plates and a plurality of second electrode plates alternately laminated in the stacking direction.
    A first tab connected to one side of the membrane electrode assembly in the first direction when viewed in the stacking direction and extending to the outside of the exterior body in the first direction is provided.
    The first base material is the first tab side portion extending inward from the outer edge on the side of the first tab in the first direction, and the first base material from the inner end of the first tab side portion in the first direction. The tab side portion includes a bulging portion that bulges on the side opposite to the side of the second base material and defines the sealing space.
    The weight of the laminated battery is 500 g or more, and the weight is 500 g or more.
    The dimension of the first tab side portion in the first direction is 20 mm or more.
    Stacked battery.
  2.  前記第1方向における前記第1タブ側部の寸法は、100mm以下である、
     請求項1に記載の積層型電池。
    The dimension of the first tab side portion in the first direction is 100 mm or less.
    The laminated battery according to claim 1.
  3.  前記積層方向で見たときに前記第1方向に直交する第2方向における前記第1タブ側部の寸法は、100mm以上である、
     請求項1または2に記載の積層型電池。
    The dimension of the first tab side portion in the second direction orthogonal to the first direction when viewed in the stacking direction is 100 mm or more.
    The laminated battery according to claim 1 or 2.
  4.  前記第1電極板は、互いに隣接する第1接続領域および第1有効領域を含む第1電極集電体と、前記第1有効領域に設けられた第1電極活物質層と、を含み、
     前記第1タブ側部は、前記第1電極板の前記第1接続領域に対向している、
     請求項1から3のいずれか一項に記載の積層型電池。
    The first electrode plate includes a first electrode current collector including a first connection region and a first effective region adjacent to each other, and a first electrode active material layer provided in the first effective region.
    The first tab side portion faces the first connection region of the first electrode plate.
    The laminated battery according to any one of claims 1 to 3.
  5.  前記第1方向において前記膜電極接合体の他側に接続され、前記第1方向において前記外装体の外側に延び出た第2タブを更に備え、
     前記第1基材は、前記第1方向において前記第2タブの側の外端縁から内側に延びる第2タブ側部を含み、
     前記膨出部は、前記第1方向において前記第1タブ側部の内端から前記第2タブ側部の内端にわたって形成され、
     前記第1方向における前記第2タブ側部の寸法は、20mm以上である、
     請求項1から4のいずれか一項に記載の積層型電池。
    Further comprising a second tab connected to the other side of the membrane electrode assembly in the first direction and extending outward of the exterior in the first direction.
    The first substrate includes a second tab side portion extending inward from the outer edge on the side of the second tab in the first direction.
    The bulging portion is formed from the inner end of the first tab side portion to the inner end of the second tab side portion in the first direction.
    The dimension of the second tab side portion in the first direction is 20 mm or more.
    The laminated battery according to any one of claims 1 to 4.
  6.  前記第1方向における前記第2タブ側部の寸法は、100mm以下である、
     請求項5に記載の積層型電池。
    The dimension of the second tab side portion in the first direction is 100 mm or less.
    The laminated battery according to claim 5.
  7.  前記積層方向で見たときに前記第1方向に直交する第2方向における前記第2タブ側部の寸法は、100mm以上である、
     請求項5または6に記載の積層型電池。
    The dimension of the second tab side portion in the second direction orthogonal to the first direction when viewed in the stacking direction is 100 mm or more.
    The stacked battery according to claim 5 or 6.
  8.  前記第2電極板は、互いに隣接する第2接続領域および第2有効領域を含む第2電極集電体と、前記第2有効領域に設けられた第2電極活物質層と、を含み、
     前記第2タブ側部は、前記第2電極板の前記第2接続領域に対向している、
     請求項5から7のいずれか一項に記載の積層型電池。
    The second electrode plate includes a second electrode current collector including a second connection region and a second effective region adjacent to each other, and a second electrode active material layer provided in the second effective region.
    The second tab side portion faces the second connection region of the second electrode plate.
    The laminated battery according to any one of claims 5 to 7.
  9.  前記第1基材および前記第2基材は、金属層と、前記金属層の内面に設けられた樹脂接着層と、をそれぞれ含み、
     前記第1基材の前記膨出部および前記第1タブ側部は、前記金属層および前記樹脂接着層で構成されている、
     請求項1から8のいずれか一項に記載の積層型電池。
    The first base material and the second base material each include a metal layer and a resin adhesive layer provided on the inner surface of the metal layer.
    The bulging portion and the first tab side portion of the first base material are composed of the metal layer and the resin adhesive layer.
    The laminated battery according to any one of claims 1 to 8.
  10.  請求項1から9のいずれか一項に記載の積層型電池を準備する準備工程と、
     前記積層方向で見たときに前記積層型電池のうち前記第1タブ側部と重なる領域として画定される被挟持領域を、挟持装置により挟持する挟持工程と、
     前記挟持装置により前記被挟持領域を挟持しながら前記積層型電池を吊り下げて搬送する搬送工程と、を備える、
     積層型電池の搬送方法。
    The preparatory step for preparing the laminated battery according to any one of claims 1 to 9.
    A sandwiching step of sandwiching a sandwiched area defined as an area overlapping the first tab side portion of the laminated battery when viewed in the stacking direction by a sandwiching device.
    A transfer step of suspending and transporting the laminated battery while sandwiching the sandwiched area by the sandwiching device is provided.
    A method for transporting stacked batteries.
  11.  前記挟持工程の前に前記積層型電池を起立させる起立工程を更に備える、
     請求項10に記載の積層型電池の搬送方法。
    A standing step of standing the laminated battery is further provided before the pinching step.
    The method for transporting a laminated battery according to claim 10.
PCT/JP2020/036112 2019-09-25 2020-09-24 Stacked battery and method of transporting stacked battery WO2021060400A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080043387.2A CN113966559A (en) 2019-09-25 2020-09-24 Stacked battery and method for transporting stacked battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-174658 2019-09-25
JP2019174658A JP6853322B2 (en) 2019-09-25 2019-09-25 Stacked battery and method of transporting stacked battery

Publications (1)

Publication Number Publication Date
WO2021060400A1 true WO2021060400A1 (en) 2021-04-01

Family

ID=75158100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036112 WO2021060400A1 (en) 2019-09-25 2020-09-24 Stacked battery and method of transporting stacked battery

Country Status (3)

Country Link
JP (1) JP6853322B2 (en)
CN (1) CN113966559A (en)
WO (1) WO2021060400A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023098304A1 (en) * 2021-11-30 2023-06-08 宁德时代新能源科技股份有限公司 Battery cell, battery and electrical apparatus
WO2023236346A1 (en) * 2022-06-09 2023-12-14 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery and electric apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013122098A1 (en) * 2012-02-13 2013-08-22 日産自動車株式会社 Battery cell storage apparatus and storage apparatus transport system
JP2017041430A (en) * 2015-08-21 2017-02-23 日産自動車株式会社 Battery cell housing device
JP2017152092A (en) * 2016-02-22 2017-08-31 凸版印刷株式会社 Exterior packaging material for power storage device, and power storage device using the same
JP2018022678A (en) * 2016-07-20 2018-02-08 日産自動車株式会社 Battery take-out device
JP2019145756A (en) * 2018-02-23 2019-08-29 Tdk株式会社 Electrochemical device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132673A1 (en) * 2012-03-05 2013-09-12 新日鉄住金マテリアルズ株式会社 Resin-metal composite seal container and method for producing same
JP6659254B2 (en) * 2015-06-30 2020-03-04 日産自動車株式会社 Secondary battery and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013122098A1 (en) * 2012-02-13 2013-08-22 日産自動車株式会社 Battery cell storage apparatus and storage apparatus transport system
JP2017041430A (en) * 2015-08-21 2017-02-23 日産自動車株式会社 Battery cell housing device
JP2017152092A (en) * 2016-02-22 2017-08-31 凸版印刷株式会社 Exterior packaging material for power storage device, and power storage device using the same
JP2018022678A (en) * 2016-07-20 2018-02-08 日産自動車株式会社 Battery take-out device
JP2019145756A (en) * 2018-02-23 2019-08-29 Tdk株式会社 Electrochemical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023098304A1 (en) * 2021-11-30 2023-06-08 宁德时代新能源科技股份有限公司 Battery cell, battery and electrical apparatus
WO2023236346A1 (en) * 2022-06-09 2023-12-14 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery and electric apparatus

Also Published As

Publication number Publication date
JP2021051933A (en) 2021-04-01
JP6853322B2 (en) 2021-03-31
CN113966559A (en) 2022-01-21

Similar Documents

Publication Publication Date Title
US10516185B2 (en) Electrode assembly and electrochemical cell containing the same
JP7069612B2 (en) Manufacturing method of laminated electrode body, power storage element and laminated electrode body
US11824166B2 (en) Secondary battery
WO2021060400A1 (en) Stacked battery and method of transporting stacked battery
WO2014141640A1 (en) Laminate exterior cell
EP2899769B1 (en) Pouch for secondary battery and secondary battery comprising same
WO2021060398A1 (en) Layered battery
WO2021060399A1 (en) Stacked battery and method for producing stacked battery
JP2015032495A (en) Manufacturing method of solid-state battery
JP2020095907A (en) Lamination type battery and manufacturing method of lamination type battery
JP2020144998A (en) Power storage element
JP2020144996A (en) Power storage element and manufacturing method of power storage element
JP6832477B2 (en) Laminated battery and manufacturing method of laminated battery
JP6846490B1 (en) Power storage element and manufacturing method of power storage element
JP6889222B2 (en) Laminated battery and manufacturing method of laminated battery
JP7193363B2 (en) Storage element, method for manufacturing storage element
JP2020144997A (en) Power storage element and manufacturing method of power storage element
JP2020170635A (en) Method of manufacturing power storage element
JP2020140891A (en) Laminated battery
JP2011249157A (en) Battery with laminate outer package
JP2020140833A (en) Lamination type battery and method of manufacturing lamination type battery
JP2020170667A (en) Manufacturing method of stacked battery and stacked batteries
JP2021039833A (en) Power storage element and method for manufacturing power storage element
JP2021068618A (en) Core, roll product, roll product extraction system, and roll product extraction method
JP2019212441A (en) Lamination type battery and manufacturing method of lamination type battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867302

Country of ref document: EP

Kind code of ref document: A1