WO2021060247A1 - Retardation plate, and circular polarization plate, liquid crystal display device, and organic el display device including retardation plate - Google Patents

Retardation plate, and circular polarization plate, liquid crystal display device, and organic el display device including retardation plate Download PDF

Info

Publication number
WO2021060247A1
WO2021060247A1 PCT/JP2020/035704 JP2020035704W WO2021060247A1 WO 2021060247 A1 WO2021060247 A1 WO 2021060247A1 JP 2020035704 W JP2020035704 W JP 2020035704W WO 2021060247 A1 WO2021060247 A1 WO 2021060247A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically anisotropic
anisotropic layer
plate
liquid crystal
display device
Prior art date
Application number
PCT/JP2020/035704
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 久住
中村 大輔
べネマ・ヤン・ウィレム
Original Assignee
日本化薬株式会社
デジマ テック ビー.ブイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社, デジマ テック ビー.ブイ. filed Critical 日本化薬株式会社
Priority to CN202080062441.8A priority Critical patent/CN114341684A/en
Priority to KR1020227008838A priority patent/KR20220067538A/en
Priority to JP2021548915A priority patent/JPWO2021060247A1/ja
Publication of WO2021060247A1 publication Critical patent/WO2021060247A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a retardation plate useful for a liquid crystal display device and an organic EL display device, and a circular polarizing plate, a liquid crystal display device, and an organic EL display device provided with the retardation plate.
  • the retardation plate for circular polarizing plates is used in a wide range of applications for flat panel displays.
  • This circular polarizing plate is composed of a linear polarizing plate and a 1/4 wavelength retardation plate (hereinafter, also referred to as ⁇ / 4 plate), and the external light directed to the display surface of the image display panel is converted into linearly polarized light by the linear polarizing plate. , Then converted to circularly polarized light by the 1/4 wavelength retardation plate.
  • the external light due to the circular polarization is reflected by the surface of the image display panel or the like, and the rotation direction of the circular polarization is reversed at the time of this reflection.
  • this reflected light is converted into linearly polarized light in a direction shaded by the 1/4 wavelength retardation plate and the linear polarizing plate, and then shielded by the subsequent linear polarizing plate to the outside, contrary to the time of arrival. The exposure of reflected light is suppressed.
  • the retardation plate used for this circular polarizing plate is used for each wavelength band in the visible light region when it is used for antireflection of an organic EL display device, for example, due to the wavelength dependence (wavelength dispersion) of the retardation value.
  • it does not function as a ⁇ / 4 plate, and there is a problem that coloring occurs in a dark state (displayed in black).
  • the above problem becomes more remarkable when the display device is observed with a viewing angle.
  • a uniaxially or biaxially stretched retardation plate is used as the retardation plate.
  • a method of using one or more twisted nematic liquid crystal layers (twisted nematic liquid crystal layers) is also disclosed.
  • a ⁇ / 4 plate obtained by biaxially stretching a modified polycarbonate (PC) film is known as a retardation plate for widening the viewing angle.
  • the retardation plate and the retardation plate formed by laminating the ⁇ / 4 plate and the ⁇ / 2 plate described later show inverse wavelength dispersibility with respect to the visible light wavelength region, but in the oblique direction. The suppression of coloring when viewed from the viewpoint was not sufficient.
  • each retardation plate must be cut out so as to have a predetermined optical axis angle with respect to the optical axis of the polarizing plate, and then laminated with a single sheet using an adhesive layer or the like.
  • productivity there was a problem with productivity.
  • Patent Document 1 known uniaxially stretched by a continuous two-layer twist-oriented nematic liquid crystal in which the twist angle and ⁇ nd (the product of the refractive index difference ( ⁇ n) and the film thickness (d)) are controlled. It is described to realize a wideband ⁇ / 4 plate capable of converting linearly polarized light having a wider wavelength into more complete circularly polarized light than a retardation plate of ⁇ / 4 plate and ⁇ / 2 plate.
  • the circular polarizing plate using the ⁇ / 4 plate the observation result is limited to the observation result from directly above, and the displayability (black reproducibility and coloring) when viewed from an oblique direction is fully discussed. Not.
  • the retardation plate it is generally known to add a positive C plate layer in which the retardation value in the thickness direction is within a predetermined range in order to improve the displayability from an oblique direction.
  • a positive C plate layer in which the retardation value in the thickness direction is within a predetermined range in order to improve the displayability from an oblique direction.
  • Patent Document 2 an attempt is made to improve the displayability from an oblique direction by adding a positive C plate layer to the materials of the ⁇ / 2 plate and the ⁇ / 4 plate.
  • a wide-band ⁇ / 4 wavelength retardation plate that is only a combination of a conventional configuration using two twist-oriented nematic liquid crystal layers having the functions of a ⁇ / 2 plate and a ⁇ / 4 plate and a stretched film. Furthermore, with a circular polarizing plate also provided with a positive C plate layer, the black reproducibility (low black brightness) of the display device when viewed from an oblique direction and the displayability regarding coloring are not satisfactory. Further improvement is required. Further, the thickness direction retardation value (Rth) of the positive C plate layer and the optimum arrangement relationship with the retardation plate have not yet been discussed.
  • a broadband retardation plate for a circular polarizing plate that reduces black brightness in a black display when viewed from an oblique direction (a good blackness is displayed), a circular polarizing plate provided thereof, and the circular polarizing plate. It is an object of the present invention to provide a liquid crystal display device and an organic EL display device.
  • the present inventors have conducted diligent studies in order to solve the above problems. As a result, we succeeded in reducing the black brightness in the black display when viewed from an oblique direction by using a positive C plate layer between the two liquid crystal layers having a twisted orientation in the thickness direction.
  • invention 1 A first optically anisotropic layer in which the rod-shaped liquid crystal compound is oriented in the thickness direction along the spiral axis and has an in-plane retardation value (Re) of substantially 1/2 wavelength.
  • n x and ny indicate the refractive index in the plate plane direction orthogonal to each other, and nz indicates the refractive index in the direction perpendicular to the plate plane direction).
  • the third optically anisotropic layer satisfying the above is provided.
  • the twist angle of the first optically anisotropic layer is substantially 26 ° or substantially ⁇ 26 °, and the twist angle of the second optically anisotropic layer is the twist of the first optically anisotropic layer.
  • the retardation plate according to invention 1 which is substantially 78 ° or substantially ⁇ 78 ° from an angle.
  • invention 3 The retardation plate according to Invention 2, wherein the third optically anisotropic layer is a layer having a vertically oriented liquid crystal compound and has a thickness direction retardation value (Rth) of ⁇ 150 to ⁇ 80 nm.
  • Rth thickness direction retardation value
  • invention 4 A circular polarizing plate provided with a polarizing element and a retardation plate according to any one of the inventions 1 to 3.
  • 6 An organic EL display device provided with the circular polarizing plate according to the invention 4 or 5.
  • invention 7 A liquid crystal display device provided with the circular polarizing plate according to the invention 4 or 5.
  • the present application includes a broadband retardation plate for a circular polarizing plate that reduces black brightness in a black display when viewed from an oblique direction and / or reduces coloring, a circular polarizing plate provided with the same, and the circular polarizing plate.
  • a liquid crystal display (LCD) and an organic electroluminescence (EL) display device (organic light emitting diode (OLED) display device) can be provided.
  • LCD liquid crystal display
  • EL organic electroluminescence
  • OLED organic light emitting diode
  • the present application can provide a thin retardation plate.
  • the present application provides black with significantly reduced brightness and coloration in the black display of LCD and OLED display devices, not only in the head-on (front) orientation, but also in a wider orientation with a wide viewing angle. Achieve.
  • the present application can provide a manufacturing method capable of producing a circular polarizing plate only by laminating roll-to-roll without requiring complicated steps such as single-wafer laminating and diagonal stretching.
  • FIG. 5 is an equivalence diagram of luminance with respect to a polar angle of 0 ° to 80 ° and an azimuth angle of 0 ° to 360 ° according to the first embodiment.
  • FIG. 5 is an equivalence diagram of luminance with respect to a polar angle of 0 ° to 80 ° and an azimuth angle of 0 ° to 360 ° according to the second embodiment.
  • FIG. 5 is an equivalence diagram of luminance with respect to a polar angle of 0 ° to 80 ° and an azimuth angle of 0 ° to 360 ° according to the second embodiment.
  • FIG. 5 is an equivalence diagram of luminance with respect to a polar angle of 0 ° to 80 ° and an azimuth angle of 0 ° to 360 ° according to the third embodiment. It is a contour diagram of the luminance with respect to the polar angle 0 ° to 80 ° and the azimuth angle 0 ° to 360 ° of Comparative Example 1. It is a contour diagram of the luminance with respect to the polar angle 0 ° to 80 ° and the azimuth angle 0 ° to 360 ° of Comparative Example 2. It is a contour diagram of the luminance with respect to the polar angle 0 ° to 80 ° and the azimuth angle 0 ° to 360 ° of Comparative Example 3.
  • the retardation plate means an optical element that gives a predetermined phase difference to the incident linearly polarized light.
  • the retardation plate according to the present invention is provided with two optically anisotropic layers (first and second optically anisotropic layers) as a ⁇ / 2 plate and a ⁇ / 4 plate, respectively, and further, the first and second optical anisotropic layers are provided.
  • a third optically anisotropic layer that suppresses coloring when viewed from an oblique direction is provided between the square layers.
  • the retardation plate according to the present invention is suitable for a circular polarizing plate, and is particularly suitable for a wideband circular polarizing plate.
  • the method for producing the retardation plate of the present invention is not particularly limited, and the retardation plate can be produced by a known method such as roll-to-roll.
  • the wide band is generally a retardation plate that gives a substantially constant phase difference in all wavelengths in the visible light region (380 nm to 780 nm) when linearly polarized light is incident. Therefore, in the retardation plate used for manufacturing the circular polarizing plate, a phase difference of approximately 1/4 wavelength is provided at all wavelengths in the visible light region.
  • the first optically anisotropic layer according to the present invention has an in-plane retardation value (Re) of substantially 1/2 wavelength, and functions as a ⁇ / 2 plate.
  • the retardation plate of the present invention is suitable for a circular polarizing plate, the Re does not have to be completely 1/2 wavelength. For example, it includes a numerical range of ⁇ 20%, 15%, 10%, 5%, 2%, or 1%.
  • the second optically anisotropic layer according to the present invention has an in-plane retardation value (Re) of substantially 1/4 wavelength, and functions as a ⁇ / 4 plate.
  • the term "substantial" is the same as above.
  • the liquid crystal compounds forming the first and second optically anisotropic layers are generally roughly classified into a rod-shaped type (rod-shaped liquid crystal compound) and a disk-shaped type (discotic liquid crystal compound) according to their shapes.
  • a rod-shaped liquid crystal compound rod-shaped liquid crystal compound
  • a disk-shaped type disk-shaped type
  • the TN liquid crystal layer is a liquid crystal layer in which nematic liquid crystals in which rod-shaped elongated molecules are lined up in substantially a certain direction are continuously changed in a spiral shape in which the molecular directions are twisted by chirality.
  • the TN liquid crystal layer is preferably a layer formed by fixing a rod-shaped liquid crystal compound or the like having a polymerizable group by polymerization or the like, and in this case, it is not necessary to exhibit liquid crystal property after the layer is formed.
  • the type of the polymerizable group contained in the rod-shaped liquid crystal compound is not particularly limited, and a functional group capable of an addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring-polymerizable group is preferable.
  • a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group and the like are preferably mentioned, and a (meth) acryloyl group is more preferable.
  • known TN liquid crystal materials can be used.
  • a chiral agent may be used together with the above liquid crystal compound, if necessary. Chiral agents are added to twist the liquid crystal compounds.
  • the thickness is generally reduced to 5 ⁇ m to 20 ⁇ m as compared with the film-like retardation plate having a film thickness of 50 ⁇ m to 100 ⁇ m. Can be done.
  • the first and second optically anisotropic layers in the retardation plate of the present invention are twist-oriented with the spiral axis in the thickness direction. Further, the twisting directions of both liquid crystal layers are the same.
  • the in-plane slow-phase axis of the first optically anisotropic layer on the third optically anisotropic layer side is parallel to the in-plane slow-phase axis of the second optically anisotropic layer on the third optically anisotropic layer side. Is. That is, the twist angle of the second optically anisotropic layer is arranged with reference to the twist angle of the first optically anisotropic layer.
  • the absorption axis direction of the polarizing element is 0 °, and when the polarizing element of the circularly polarizing plate is on the visual side, the direction counterclockwise from the absorption axis is positive and negative. The clockwise direction from the absorption axis is shown as negative.
  • the twist angle of the first optically anisotropic layer used in the retardation plate of the present invention is substantially 26 ° in one aspect. More specifically, 26 ⁇ 10 ° is preferable, 26 ⁇ 7 ° is more preferable, and 26 ⁇ 5 ° is further preferable. In this case, the twist angle of the second optically anisotropic layer is substantially 78 °. More specifically, 78 ⁇ 10 ° is preferable, 78 ⁇ 7 ° is more preferable, and 78 ⁇ 5 ° is further preferable. Alternatively, the twist angle of the first optically anisotropic layer is substantially ⁇ 26 ° in other embodiments.
  • the twist angle of the second optically anisotropic layer is substantially ⁇ 78 °. More specifically, ⁇ 78 ⁇ 10 ° is preferable, ⁇ 78 ⁇ 7 ° is more preferable, and ⁇ 78 ⁇ 5 ° is further preferable.
  • the twist angle is measured using a film inspection device (RETS-1100A, manufactured by Otsuka Electronics Co., Ltd.).
  • the face bond retardation value ( ⁇ n1 ⁇ d1) which is the product ( ⁇ n1 ⁇ d1) of the refractive index anisotropy ⁇ n1 at a wavelength of 550 nm and the thickness d1 of the liquid crystal layer.
  • Re is substantially 275 nm, and more specifically, the product ( ⁇ n1 ⁇ d1) is preferably 275 ⁇ 30 nm, more preferably 275 ⁇ 20 nm, and even more preferably 275 ⁇ 10 nm.
  • the face bond phase difference which is the product ( ⁇ n2 ⁇ d2) of the refractive index anisotropy ⁇ n2 at a wavelength of 550 nm and the thickness d2 of the liquid crystal layer.
  • the value (Re) is substantially 137.5 nm, and more specifically, the product ( ⁇ n2 ⁇ d2) is preferably 137.5 ⁇ 15 nm, preferably 137.5 ⁇ 10 nm, and 137.5 ⁇ 5 nm. More preferred.
  • the above ⁇ n1 ⁇ d1 and ⁇ n2 ⁇ d2 are measured using a film inspection device (RETS-1100A, manufactured by Otsuka Electronics Co., Ltd.).
  • the third optically anisotropic layer included in the retardation plate of the present invention is a kind of retardation plate called a positive C plate, and has an xy orthogonal axis on the plate plane and a z-axis perpendicular to the plate plane.
  • it means a retardation plate in which the refractive indexes n x , n y , and n z in each axial direction are n x ⁇ n y ⁇ n z.
  • n x ⁇ n y means that n x and ny are substantially equal, and includes the case where they are completely equal.
  • n x and ny are substantially equal
  • n x and ny may be different as long as they function as a positive C plate.
  • the other side is 20%, 15%, and so on.
  • Etc.
  • a known positive C plate can be used.
  • the third optically anisotropic layer included in the retardation plate of the present invention is, for example, a liquid crystal layer in which a rod-shaped liquid crystal compound is vertically oriented in the thickness direction (plate plane).
  • the vertical means that the orientation angle of the liquid crystal compound is 90 ° and approximately 90 ° with respect to the plate plane (differences to which the influence is negligible, for example, within ⁇ 10 °, ⁇ 5 °, ⁇ 3 °, or ⁇ 1 °). Includes the direction of).
  • the third optically anisotropic layer is preferably a layer formed by fixing a rod-shaped liquid crystal compound or the like having a polymerizable group by polymerization or the like. In this case, it is necessary to exhibit liquid crystallinity after the layer is formed. Absent.
  • the type of the polymerizable group contained in the rod-shaped liquid crystal compound is not particularly limited, and a functional group capable of an addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring-polymerizable group is preferable. More specifically, a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group and the like are preferably mentioned, and a (meth) acryloyl group is more preferable. Further, the phase difference (Rth) in the thickness direction of the liquid crystal layer can be adjusted by adjusting the film thickness.
  • the film thickness is not particularly limited, but is generally preferably set in the range of 0.1 ⁇ m to 3 ⁇ m, more preferably 0.5 ⁇ m to 2 ⁇ m.
  • the cellulosic resin material described in JP-A-2016-108536 can be used. From the viewpoint of thinning and productivity, it is preferable to use the above-mentioned liquid crystal compound.
  • the thickness direction retardation (Rth) of the third optically anisotropic layer of the present invention is determined based on Poincare sphere theory. It is preferable to set a range of optimum values in order to minimize the trajectory of movement from the coordinates on the equator showing linearly polarized light to the coordinates showing circularly polarized light on the North Pole or South Pole on the Poancare sphere.
  • the range of 150 to -80 nm is preferable, the range of -132 to -112 nm is more preferable, and the range of -126 to -120 nm is even more preferable.
  • the third optically anisotropic layer is preferably arranged between the above-mentioned first optically anisotropic layer and the second optically anisotropic layer.
  • the first and second optically anisotropic layers of the present invention are provided with a treatment for aligning a liquid crystal compound or an alignment film on a substrate.
  • the liquid crystal orientation is not particularly limited as long as the orientation direction of the optically anisotropic layer is appropriately defined and the present invention does not prevent the desired performance from being achieved, and an orientation technique known in the art can be used.
  • a rubbing roll that rotates in a direction of about 0 to 50 ° with respect to the transport direction of the base material may be used to physically form anisotropy on the surface of the base material, which is disclosed in Japanese Patent Application Laid-Open No. 2003-014935.
  • the method of rubbing the resin layer provided on the base material may be used, or a photoalignment film may be used in which an anisotropy is formed on the polymer film by linearly polarized ultraviolet rays to form an alignment film.
  • the polarizing element (sometimes referred to as a polarizer or a polarizing film) used to obtain the circular polarizing plate, the liquid crystal display device, and the organic EL display device of the present invention is not particularly limited and is known depending on the application.
  • the polarizing element can be appropriately selected and used.
  • a polarizing element obtained by uniaxially stretching a polyvinyl alcohol (PVA) -based film impregnated with a water-soluble dichroic dye and / or a dichroic dye such as polyiodine ion in a boric acid warm water bath.
  • PVA polyvinyl alcohol
  • a polarizing element obtained by forming a polyene structure by a dehydration reaction or a base film to orient the dichroic dye.
  • a polarizing element integrated with a base material obtained by providing a polyvinyl alcohol layer on a protective film uniaxially stretching the base film together with the base material film, and then impregnating with a dichroic dye.
  • a polarizing element obtained by uniaxially stretching a PVA-based film and adsorbing and orienting a dichroic dye can be preferably used.
  • Examples of commercially available PVA-based films include VF-PS (thickness 75 ⁇ m) manufactured by Kuraray.
  • VF-PS thickness 75 ⁇ m
  • a dichroic dye is adsorbed and oriented, then uniaxially stretched to a thickness of 25 ⁇ m to 35 ⁇ m and polarized. Get the element.
  • the dichroic dye is preferably an iodine ion or a dichroic dye, both of which can be used to obtain a polarizing element for the present invention.
  • the dichroic dye include an azo dye, an anthraquinone dye, and a tetrazine dye. From the viewpoint of hue design and heat durability, two or three or more kinds of azo dyes should be blended and used. Is preferable.
  • the optical characteristics of the polarizing element are high transmittance and high polarization degree (high two) from the viewpoint of obtaining antireflection ability and excellent black display property in the display device to be mounted. It is preferable to have chromaticity), and more specifically, the visible sensitivity correction single transmittance (Ys) is 40% to 45%, and the visual sensitivity correction polarization degree (Py) is 99% or more. Is preferable.
  • an achromatic hue that is, the simple substance transmittance (Ts) of the polarizing element is in the visible light region (wavelength 400 nm to 700 nm, more preferably 380 nm to 780 nm). It is preferable that the color is substantially uniform.
  • the absolute values of the a * and b * values in the L * a * b * color system are 1 or less when measured by the polarizing element alone, and the absorption axis directions of the two polarizing elements are orthogonal to each other.
  • a hue in which the absolute value of the a * value is 4 or less and the absolute value of the b * value is 8 or less when measured in an overlapping manner is also preferable as a specific embodiment of the achromatic color.
  • the circularly polarizing plate provided with the widebanded retardation plate of the present invention not only suppresses the coloring of the reflected light from the display device over the visible light region, but also suppresses the coloration of the reflected light derived from the surface of the polarizing element. However, it is possible to suppress coloring over the visible light region.
  • Examples of the azo dye having dichroism include C.I. I. Direct Yellow 12, C.I. I. Direct Yellow 28, C.I. I. Direct Yellow 44, C.I. I. Direct Yellow 142, C.I. I. Direct Orange 26, C.I. I. Direct Orange 39, C.I. I. Direct Orange 71, C.I. I. Direct Orange 107, C.I. I. Direct Red 2, C.I. I. Direct Red 31, C.I. I. Direct Red 79, C.I. I. Direct Red 81, C.I. I. Direct Red 117, C.I. I. Direct Red 247, C.I. I. Direct Green 80, C.I. I. Direct Green 59, C.I. I. Direct Blue 71, C.I. I.
  • Direct Blue 78 C.I. I. Direct Blue 168, C.I. I. Direct Blue 202, C.I. I. Direct Violet 9, C.I. I. Direct Violet 51, C.I. I. Direct Brown 106, C.I. I. Direct Brown 223 and the like can be mentioned.
  • a dye that can be produced by a known method may be used, and examples of the known method include the method described in JP-A No. 3-12606 or the method described in JP-A-59-14255. And so on. Examples of commercially available dyes include Kayafect Violet P Liquid, Kayafect Yellow Y, Kayafect Orange G, Kayafect Blue KW, and Kayafect Blue Liquid 400 (all manufactured by Nippon Kayaku Co., Ltd.).
  • azo dyes Two or three kinds of these azo dyes are blended and used so that each transmittance in the visible light region becomes uniform.
  • the polarizing element according to the present invention in order to obtain an achromatic polarizing element having high transmittance and high degree of polarization, it is disclosed in International Publication WO2017 / 146212, International Publication WO2019 / 117131 and the like.
  • Azo dyes with improved dichroism can be preferably used for the design of achromatic polarizing elements.
  • the polarizing element preferably contains a base material (also referred to as a support or a support film) for protecting the polarizing element.
  • the base material may be arranged on only one side of the polarizing element, or may be arranged on both sides of the polarizing element so that two identical or different base materials sandwich the polarizing element.
  • a structure in which a polarizing element has a base material is called a polarizing plate.
  • the base material arranged between the polarizing element and the display device has an in-plane retardation value (Re) and a thickness direction retardation (Rth) of 0 or almost. It is preferably 0 (a numerical value in which the influence can be ignored, for example, in the range of -5 nm to 5 nm).
  • the retardation plate and circular polarizing plate of the present invention may include a base material.
  • the base material is not particularly limited as long as it has desired mechanical strength, thermal stability, and the like and does not prevent the present invention from exhibiting desired performance, and a base material known in the art can be used.
  • the thickness of the base material can be appropriately designed, but is preferably 50 to 200 ⁇ m, more preferably 10 to 100 ⁇ m, and even more preferably 20 to 80 ⁇ m.
  • the in-plane retardation value (Re) and the thickness direction retardation value (Rth) of the base material may be 0 or almost 0. preferable.
  • Examples of commercially available base materials having the retardation value include triacetyl cellulose-based resin film Z-TAC (manufactured by Fujifilm Co., Ltd.), acrylic resin film OXIS series (manufactured by Okura Industrial Co., Ltd.), and the like.
  • a laminate may be formed by providing the next layer on a certain layer, or a plurality of layers may be bonded by an adhesive and / or an adhesive to form a laminate.
  • an adhesive and / or an adhesive As long as it functions as a pressure-sensitive adhesive or an adhesive and does not prevent the present invention from exhibiting the desired performance, there is no particular limitation, and a pressure-sensitive adhesive or an adhesive known in the art can be used.
  • Acrylic resin is a typical example of the pressure-sensitive adhesive.
  • the thickness can be appropriately designed, but is preferably 1 to 50 ⁇ m, and more preferably 5 to 25 ⁇ m from the viewpoint of adhesion between layers and processability of adhesive coating and lamination.
  • the adhesive include a water-based adhesive containing a PVA-based resin as a main component, an adhesive containing a thermosetting or photo-curable resin, and a method using plasma bonding.
  • phase difference value and the twist angle value of the optically anisotropic layer of the present invention are values that obtain a good optical effect. These values are not limited in consideration of the orientation characteristics of the actual liquid crystal compound and the product processability, and may include tolerances and margins.
  • the circular polarizing plate of the present invention is a wideband circular polarizing plate, and includes a polarizing element and a retardation plate of the present invention.
  • a rectangular layer and a second optically anisotropic layer are provided in this order.
  • the absorption axis of the polarizing element is in the direction of 0 °
  • the twist angle of the first optically anisotropic layer is relative to the absorption axis of the polarizing element.
  • the twist angle of the second optically anisotropic layer is substantially 78 ° from the twist angle of the first optically anisotropic layer (that is, in the absorption axis of the polarizing element. In contrast, the direction is 104 °).
  • the method for producing the circular polarizing plate of the present invention is not particularly limited, and for example, the films or sheets of the above-mentioned layers may be laminated for each sheet, or the above-mentioned layers produced in a roll shape may be rolled-to-roll. It may be continuously laminated by a roll.
  • the circular polarizing plate of the present invention since it is not necessary to cut out the retardation plate in accordance with a predetermined optical axis angle, the latter roll-to-roll lamination can be easily carried out. Therefore, the productivity can be improved as compared with the conventional method for producing a broadband circular polarizing plate in which a uniaxially stretched film such as a COP-based film is laminated.
  • each optically anisotropic layer is formed on a base material that can be peeled off from the liquid crystal layer and the base material after curing, and each base material is removed to form a circular polarizing plate in a step of sequentially laminating, which will be described later. You may.
  • a liquid crystal compound showing a nematic liquid crystal phase having polymerizable properties, a chiral agent, a photopolymerization initiator, and a diluting solvent are contained on the rubbing surface of the base material rubbed in the direction of 0 ° (transportation direction).
  • the coating composition is applied, then the solvent is removed through a drying step, and the coating film is cured by irradiating with light to have an orientation axis in the 0 ° direction, a twist angle of 26 °, and the retardation value.
  • a first optically anisotropic layer having (Re @ 550 nm) of 275 nm is obtained.
  • a coating composition of a composition containing a liquid crystal compound showing a nematic liquid crystal phase having polymerizable properties, a photopolymerization initiator and a diluting solvent is applied to a base material, and then a drying step is obtained to obtain a solvent.
  • a drying step is obtained to obtain a solvent.
  • a coating composition containing a TN liquid crystal material, a chiral agent, a photopolymerization initiator, and a diluting solvent is applied to the rubbing surface of the base material that has been rubbed in a direction of 26 ° with respect to the transport direction.
  • a drying step is obtained to remove the solvent, and the coating film is cured by irradiating with light to have an orientation axis in the direction of 26 °, a twist angle of 78 °, and the retardation value (Re @ 550 nm).
  • a second optically anisotropic layer having a thickness of 137.5 nm is obtained.
  • the polarizing element or polarizing plate
  • the first optically anisotropic layer, the third optically anisotropic layer, and the second optically anisotropic layer are formed so as to have the optical axis relationship shown in FIG.
  • the circular polarizing plate of the present invention is obtained by sequentially laminating.
  • a coating composition for a composition containing a liquid crystal compound showing a nematic liquid crystal phase having polymerizable properties, a photopolymerization initiator, and a diluting solvent was obtained in the first step.
  • the third optically anisotropic layer oriented in the direction perpendicular to the liquid crystal surface is formed by applying the layer to the liquid crystal surface, then removing the solvent through a drying step, and irradiating with light to cure the coating film. obtain.
  • the polarizing element or polarizing plate
  • the first optically anisotropic layer on which the third optically anisotropic layer is laminated, and the second optically anisotropic layer are formed so as to have the optical axis relationship shown in FIG. It is the same as the first embodiment except that the circular polarizing plate of the present invention is obtained by sequentially laminating.
  • the circularly polarizing plate of the present invention can be preferably applied to the visual side of various display devices such as a liquid crystal display device (LCD) and an organic electroluminescence (EL) display device (organic light emitting diode (OLED) display device).
  • the display device may be configured to include a touch panel, an antiglare layer, an antireflection layer, a translucent cover (also referred to as a front plate), and the like, depending on the design.
  • the translucent cover may have a planar shape or a curved surface shape.
  • the method for producing the display device of the present invention is not particularly limited, and the display device can be produced by a known method.
  • the liquid crystal display device of the present invention may be configured to include a liquid crystal panel and a backlight unit referred to as a transmissive type or a transflective type, or may be configured to include a liquid crystal panel and a reflective layer referred to as a reflective type.
  • an organic EL display device generally includes a metal electrode on the display panel portion
  • the OLED (organic EL display device) itself has a higher reflectance than a liquid crystal panel. This causes, for example, when used in an environment with a lot of outside light such as outdoors in the daytime, impairs the displayability due to the reflection of the outside light from the electrode. Therefore, a circularly polarizing plate is generally attached to the visible side of the organic EL display device in order to suppress reflection of external light. Therefore, the display characteristics of the organic EL display device also depend on the optical characteristics of the circular polarizing plate. Since the circular polarizing plate of the present invention has a wider viewing angle characteristic than the conventional circular polarizing plate, it can be suitably used for an organic EL display device that requires a wide viewing angle.
  • the black brightness (unit is a standardized value) at the following azimuth and inclination angles (polar angles) can be determined by using the liquid crystal simulation software LCDmaster (manufactured by Shintech). The calculation was performed using.
  • the configuration and calculation conditions of the circular polarizing plate are as follows. Table 1 shows a list of the following calculation conditions and the arrangement relationship of the optically anisotropic layer.
  • the in-plane retardation value (Re) and the thickness direction retardation value (Rth) indicate values at a wavelength of 550 nm.
  • the arranged optically anisotropic layers are shown in the columns of the first layer, the second layer, and the third layer in order from the incident light side.
  • Example 1 Polarizing element (in order from the incident light side), first optically anisotropic layer, third optically anisotropic layer 1, second optically anisotropic layer, reflector
  • Example 2 (from the incident light side) (In order) Polarizing element, first optically anisotropic layer, third optically anisotropic layer 2, second optically anisotropic layer, reflecting plate
  • Example 3 (in order from the incident light side) polarizing element, first optical different Square layer, 3rd optical anisotropic layer 3, 2nd optically anisotropic layer, reflector
  • Example 4 Polarizing element (in order from the incident light side), 1st optically anisotropic layer, 3rd optical heterogeneous Sex layer 4, second optically anisotropic layer, reflector
  • Example 5 Polarizing element, first optically anisotropic layer, third optically anisotropic layer 5, second optical heterogeneity (in order from the incident light side) Sexual layer
  • Comparative example 1 Polarizing element, first optically anisotropic element, first optically anis
  • General 1/4 wavelength plate 1 Reflector Comparative Example 5: Polarizing element (in order from the incident light side), general 1/2 wavelength plate 2, third optically anisotropic layer 7, general 1/4 wavelength plate 2, reflector Comparative example 6: (in order from the incident light side) polarizing element, general 1/2 wavelength plate 1, general 1/4 wavelength plate 1, third optical anisotropic layer 8.
  • the Nz coefficient is a value represented by the following equation (2) as one of the indexes indicating the magnitude relationship between the refractive index components n x , n y and n z.
  • n x , ny , and n z of the third optically anisotropic layer using the polymerizable vertically oriented liquid crystal compound are test pieces obtained by forming a film of the liquid crystal compound. It was measured with a refractometer (manufactured by DR-M2 ATAGO).
  • Table 2 shows the evaluation results of the black luminance values of Examples 1 to 5 and Comparative Examples 1 to 6.
  • the contour lines showing the maximum luminance values when the polar angle ⁇ is shifted from 0 ° to 80 ° are 1.6 to 1. It was .8, which was smaller than that of each comparative example, and thus it was found that the viewing angle was wider. In the case of Comparative Example 5, the maximum luminance value exceeded 10.
  • Comparative Examples 1 to 3 The results of plotting Comparative Examples 1 to 3 under the above conditions are shown in FIGS. 16 to 18.
  • the Rth of the third optically anisotropic layer is fixed at ⁇ 120 nm, and the third optically anisotropic layer is arranged after the second optically anisotropic layer or before the first optically anisotropic layer.
  • the black luminance value shows a large value not only in Examples 1 to 5 but also in Comparative Examples 1 to 3, and in the configuration of Comparative Examples 4 to 6 using the conventional COP-based film, the black luminance value shows a large value. Even if the third optically anisotropic layer was arranged, the wide viewing angle could not be achieved.
  • the bandwidth of the circularly polarizing plate of the present invention not only optimizes the presence or absence of the third optically anisotropic layer and its Rth value, but also optimizes the first optically anisotropic layer.
  • the arrangement of the third optically anisotropic layer with respect to the second optically anisotropic layer and the second optically anisotropic layer it is possible to widen the bandwidth as compared with the conventional circular polarizing plate. Therefore, according to the present invention, for example, in a black display of an organic EL display device or the like, it is possible to obtain a black display with less light leakage when viewed from an oblique direction.
  • the retardation plate of the present invention has first and second optical anisotropy having optimum wavelength dispersion characteristics (meaning the wavelength dependence of the phase difference) in order to further reduce the black brightness at a polar angle of 0 °. It may have a sex layer.
  • the third optically anisotropic layer by setting the wavelength dispersion characteristic to negative dispersion (reverse wavelength dispersion), it is possible to further reduce the black brightness in the black display when viewed from an oblique direction. ..
  • the present application can provide a retardation plate that reduces coloring or reflectance in a black display when viewed from an oblique direction, a circular polarizing plate provided with the retarding plate, and a liquid crystal display device and an organic EL display device provided with the circular polarizing plate. ..
  • the organic EL display device can provide a wider viewing angle, it can be suitably used in an in-vehicle environment where the display device is installed and the viewing place is fixed.
  • it is possible to provide a manufacturing method capable of manufacturing a circularly polarizing plate only by laminating roll-to-roll it is possible to support the manufacturing of a circularly polarizing plate for a large-sized display device.
  • Phase difference plate 102 of the present invention 102 First optically anisotropic layer 103 Second optically anisotropic layer 104 Third optically anisotropic layer 105 Circularly polarizing plate 106 of the present invention Polarizing element (polarizing plate) 107 Twisted nematic liquid crystal 108 Base material 1 (alignment film) 109 Base material 2 (alignment film) 201 Absorption axis direction (0 °) 202 Rubbing direction (orientation direction) (0 °) 203 Twist angle direction (26 °) 204 Rubbing direction (orientation direction) (26 °) 205 Twist angle direction (104 °) 206 Parallel to 201

Abstract

This retardation plate comprises a first optically anisotropic layer in which the spiral axis of a stick-shaped liquid crystal compound is aligned with the direction of thickness and which has an in-plane phase difference (Re) of substantially 1/2 wavelength, and a second optically anisotropic layer in which the spiral axis of a stick-shaped liquid crystal compound is aligned with the direction of thickness and which has an in-plane phase difference (Re) of 1/4 wavelength, the retardation plate being characterized by further comprising a third optically anisotropic layer that is disposed between the first optically anisotropic layer and the second optically anisotropic layer and that satisfies equation (1). Equation (1): nx ≃ ny < nz (In the equation, nx and ny are refractive indices in the plate planar directions crossing each other at a right angle, and nz is the refractive index in the direction perpendicular to the plate planar direction.)

Description

位相差板、並びに、それを備えた円偏光板、液晶表示装置、及び有機EL表示装置A retardation plate, a circular polarizing plate equipped with the retardation plate, a liquid crystal display device, and an organic EL display device.
 本発明は、液晶表示装置及び有機EL表示装置に有益な位相差板、並びに、それを備えた円偏光板、液晶表示装置、及び有機EL表示装置に関する。 The present invention relates to a retardation plate useful for a liquid crystal display device and an organic EL display device, and a circular polarizing plate, a liquid crystal display device, and an organic EL display device provided with the retardation plate.
 円偏光板用位相差板はフラットパネルディスプレイの幅広い用途に使用されている。 The retardation plate for circular polarizing plates is used in a wide range of applications for flat panel displays.
 従来、画像表示パネル等に関して、画像表示パネルの表面に円偏光板を配置し、この円偏光板によって外来光の反射を低減する方法が提案されている。この円偏光板は、直線偏光板、1/4波長位相差板(以下λ/4板ともいう)により構成され、画像表示パネルの表示面に向かう外来光を直線偏光板により直線偏光に変換し、続く1/4波長位相差板により円偏光に変換する。ここで、この円偏光による外来光は、画像表示パネルの表面等で反射するが、この反射の際に円偏光の回転方向が逆転する。その結果、この反射光は到来時とは逆に、1/4波長位相差板及び直線偏光板により遮光される方向の直線偏光に変換された後、続く直線偏光板により遮光され、外部への反射光の露出が抑制される。 Conventionally, with respect to an image display panel or the like, a method of arranging a circularly polarizing plate on the surface of the image display panel and reducing the reflection of external light by this circularly polarizing plate has been proposed. This circular polarizing plate is composed of a linear polarizing plate and a 1/4 wavelength retardation plate (hereinafter, also referred to as λ / 4 plate), and the external light directed to the display surface of the image display panel is converted into linearly polarized light by the linear polarizing plate. , Then converted to circularly polarized light by the 1/4 wavelength retardation plate. Here, the external light due to the circular polarization is reflected by the surface of the image display panel or the like, and the rotation direction of the circular polarization is reversed at the time of this reflection. As a result, this reflected light is converted into linearly polarized light in a direction shaded by the 1/4 wavelength retardation plate and the linear polarizing plate, and then shielded by the subsequent linear polarizing plate to the outside, contrary to the time of arrival. The exposure of reflected light is suppressed.
 この円偏光板に用いられる位相差板は、従来、位相差値の波長依存性(波長分散)により、例えば有機EL表示装置の反射防止に用いられた際に、可視光領域の各波長帯に対してλ/4板として機能せず、暗状態(黒表示)で色付きが生じる問題がある。特に上記問題は表示装置に対して視野角をつけて観察した場合により顕著となる。これを防ぐために広帯域な波長帯においてほぼ1/4波長として機能し、広視野角で反射防止を実現できるような円偏光板用位相差板が求められている。上記位相差板には、一軸又は二軸延伸された位相差板が用いられている。さらに、捩れ配向したネマティック液晶層(ツイストネマティック液晶層)を1層以上用いる方法も開示されている。 Conventionally, the retardation plate used for this circular polarizing plate is used for each wavelength band in the visible light region when it is used for antireflection of an organic EL display device, for example, due to the wavelength dependence (wavelength dispersion) of the retardation value. On the other hand, it does not function as a λ / 4 plate, and there is a problem that coloring occurs in a dark state (displayed in black). In particular, the above problem becomes more remarkable when the display device is observed with a viewing angle. In order to prevent this, there is a demand for a retardation plate for a circularly polarizing plate that functions as approximately 1/4 wavelength in a wide wavelength band and can realize antireflection with a wide viewing angle. A uniaxially or biaxially stretched retardation plate is used as the retardation plate. Further, a method of using one or more twisted nematic liquid crystal layers (twisted nematic liquid crystal layers) is also disclosed.
特開2014-209220号公報Japanese Unexamined Patent Publication No. 2014-209220 特開2014-224837号公報Japanese Unexamined Patent Publication No. 2014-224738
 例えば、変性ポリカーボネイト(PC)系フィルムを二軸延伸したλ/4板は、広視野角化のための位相差板として知られている。しかしながら、当該位相差板及び後述するλ/4板と同λ/2板とを積層してなる位相差板では、可視光波長域に対する位相差値については逆波長分散性を示すものの、斜め方向から見た際の色付きの抑制は十分ではなかった。 For example, a λ / 4 plate obtained by biaxially stretching a modified polycarbonate (PC) film is known as a retardation plate for widening the viewing angle. However, the retardation plate and the retardation plate formed by laminating the λ / 4 plate and the λ / 2 plate described later show inverse wavelength dispersibility with respect to the visible light wavelength region, but in the oblique direction. The suppression of coloring when viewed from the viewpoint was not sufficient.
 その他に、シクロオレフィン(COP)系フィルムを一軸延伸したλ/4板と同λ/2板とを積層してなる広視野角化された位相差板がある。しかしながら、当該積層位相差板では、偏光板の光軸に対して、それぞれの位相差板を所定の光軸角度となるように切り出した後、枚葉で粘着層等を用いて積層しなければならず、生産性に問題があった。 In addition, there is a retardation plate with a wide viewing angle, which is formed by laminating a λ / 4 plate obtained by uniaxially stretching a cycloolefin (COP) film and a λ / 2 plate of the same type. However, in the laminated retardation plate, each retardation plate must be cut out so as to have a predetermined optical axis angle with respect to the optical axis of the polarizing plate, and then laminated with a single sheet using an adhesive layer or the like. However, there was a problem with productivity.
 また、特許文献1においては、捩れ角とΔnd(屈折率差(Δn)とフィルムの厚さ(d)の積)を制御した連続する2層の捩れ配向したネマティック液晶により、公知の一軸延伸されてなるλ/4板とλ/2板の位相差板よりも、より幅広い波長の直線偏光をより完全な円偏光に変換し得る広帯域λ/4板を実現することが記載されている。しかしながら、当該λ/4板を用いた円偏光板については、直上方向からの観察結果に留まっており、斜め方向から見たときの表示性(黒の再現性や色付き)については十分に議論されていない。 Further, in Patent Document 1, known uniaxially stretched by a continuous two-layer twist-oriented nematic liquid crystal in which the twist angle and Δnd (the product of the refractive index difference (Δn) and the film thickness (d)) are controlled. It is described to realize a wideband λ / 4 plate capable of converting linearly polarized light having a wider wavelength into more complete circularly polarized light than a retardation plate of λ / 4 plate and λ / 2 plate. However, regarding the circular polarizing plate using the λ / 4 plate, the observation result is limited to the observation result from directly above, and the displayability (black reproducibility and coloring) when viewed from an oblique direction is fully discussed. Not.
 また、上記位相差板に関し、斜め方向からの上記表示性の改善には、一般に、厚み方向の位相差値が所定の範囲である正Cプレート層を追加することが知られている。例えば、特許文献2においてはλ/2板とλ/4板の材料に正Cプレート層を追加することで斜め方向からの表示性の改善を図ろうとしている。 Further, with respect to the retardation plate, it is generally known to add a positive C plate layer in which the retardation value in the thickness direction is within a predetermined range in order to improve the displayability from an oblique direction. For example, in Patent Document 2, an attempt is made to improve the displayability from an oblique direction by adding a positive C plate layer to the materials of the λ / 2 plate and the λ / 4 plate.
 以上の通り、従来からあるそれぞれλ/2板とλ/4板の機能を有する二層の捩れ配向したネマティック液晶層を用いた構成や延伸フィルムを組み合わせたのみの広帯域λ/4波長位相差板、さらに、正Cプレート層をも備えた円偏光板では、斜め方向からの見たときの表示装置の黒の再現性(黒輝度の低さ)や色付きに関する表示性は満足できるものではなく、さらなる改善が求められる。また、正Cプレート層は、厚み方向位相差値(Rth)や位相差板との最適な配置関係について未だ議論されていない。 As described above, a wide-band λ / 4 wavelength retardation plate that is only a combination of a conventional configuration using two twist-oriented nematic liquid crystal layers having the functions of a λ / 2 plate and a λ / 4 plate and a stretched film. Furthermore, with a circular polarizing plate also provided with a positive C plate layer, the black reproducibility (low black brightness) of the display device when viewed from an oblique direction and the displayability regarding coloring are not satisfactory. Further improvement is required. Further, the thickness direction retardation value (Rth) of the positive C plate layer and the optimum arrangement relationship with the retardation plate have not yet been discussed.
 本願は、斜め方向から見たときの黒表示における黒輝度を低減する(良好な黒味が表示される)円偏光板用広帯域位相差板、それを備えた円偏光板、並びに前記円偏光板を備える液晶表示装置及び有機EL表示装置を提供することを目的とする。 In the present application, a broadband retardation plate for a circular polarizing plate that reduces black brightness in a black display when viewed from an oblique direction (a good blackness is displayed), a circular polarizing plate provided thereof, and the circular polarizing plate. It is an object of the present invention to provide a liquid crystal display device and an organic EL display device.
 本発明者らは上記課題を解決すべく、鋭意検討を行った。その結果、厚み方向に捩れ配向を持つ液晶層2層の間に正Cプレート層を用いることによって、斜め方向から見たときの黒表示における黒輝度を低減することに成功した。 The present inventors have conducted diligent studies in order to solve the above problems. As a result, we succeeded in reducing the black brightness in the black display when viewed from an oblique direction by using a positive C plate layer between the two liquid crystal layers having a twisted orientation in the thickness direction.
 すなわち、本発明は、以下の発明に関するが、それらに限定されない。
[発明1]
 棒状液晶化合物が厚み方向を螺旋軸に配向し、実質的に1/2波長の面内位相差値(Re)を有する第1光学異方性層と、
 棒状液晶化合物が厚み方向を螺旋軸に配向し、実質的に1/4波長の面内位相差値(Re)を有する第2光学異方性層と
を備える位相差板であって、
 前記第1及び第2光学異方性層の間に下記式(1):
 
   n≒n<n     (1)
 
(式中n及びnは直交するプレート平面方向の屈折率、nはプレート平面方向に対して垂直方向の屈折率を示す)
を満足する第3光学異方性層を備える、
 ことを特徴とする位相差板。
[発明2]
 前記第1光学異方性層の捩れ角が実質的に26°又は実質的に-26°であり、前記第2光学異方性層の捩れ角が、前記第1光学異方性層の捩れ角から実質的に78°又は実質的に-78°にある、発明1に記載の位相差板。
[発明3]
 前記第3光学異方性層は垂直配向型液晶化合物を有する層であり、当該厚み方向位相差値(Rth)が-150~-80nmである、発明2に記載の位相差板。
[発明4]
 偏光素子及び発明1~3のいずれかに記載の位相差板を備えた円偏光板。
[発明5]
 前記偏光素子は二色性のアゾ染料を含み、その色相が無彩色である、発明4に記載の円偏光板。
[発明6]
 発明4又は5に記載の円偏光板を備えた有機EL表示装置。
[発明7]
 発明4又は5に記載の円偏光板を備えた液晶表示装置。
That is, the present invention relates to the following inventions, but is not limited thereto.
[Invention 1]
A first optically anisotropic layer in which the rod-shaped liquid crystal compound is oriented in the thickness direction along the spiral axis and has an in-plane retardation value (Re) of substantially 1/2 wavelength.
A retardation plate in which a rod-shaped liquid crystal compound is oriented in a spiral axis in the thickness direction and includes a second optically anisotropic layer having an in-plane retardation value (Re) of substantially 1/4 wavelength.
Between the first and second optically anisotropic layers, the following equation (1):

n x ≈ n y <n z (1)

(In the equation, n x and ny indicate the refractive index in the plate plane direction orthogonal to each other, and nz indicates the refractive index in the direction perpendicular to the plate plane direction).
The third optically anisotropic layer satisfying the above is provided.
A retardation plate characterized by that.
[Invention 2]
The twist angle of the first optically anisotropic layer is substantially 26 ° or substantially −26 °, and the twist angle of the second optically anisotropic layer is the twist of the first optically anisotropic layer. The retardation plate according to invention 1, which is substantially 78 ° or substantially −78 ° from an angle.
[Invention 3]
The retardation plate according to Invention 2, wherein the third optically anisotropic layer is a layer having a vertically oriented liquid crystal compound and has a thickness direction retardation value (Rth) of −150 to −80 nm.
[Invention 4]
A circular polarizing plate provided with a polarizing element and a retardation plate according to any one of the inventions 1 to 3.
[Invention 5]
The circular polarizing plate according to Invention 4, wherein the polarizing element contains a dichroic azo dye and its hue is achromatic.
[Invention 6]
An organic EL display device provided with the circular polarizing plate according to the invention 4 or 5.
[Invention 7]
A liquid crystal display device provided with the circular polarizing plate according to the invention 4 or 5.
 本願は、斜め方向から見た時の黒表示における黒輝度を低減する及び/又は色付きを低減する円偏光板用広帯域位相差板及びそれを備えた円偏光板、並びに、前記円偏光板を備える液晶表示装置(LCD)及び有機エレクトロルミネッセンス(EL)表示装置(有機発光ダイオード(OLED)表示装置)を提供できる。一態様において、正面から見たときに黒表示において良好な黒味が表示される表示装置を提供できる。一態様において、本願は薄型の位相差板を提供できる。一態様において、本願はLCD及びOLED表示装置の黒表示において、head-on(正面)の方位だけでなく、視野角を振ったより広い方位において、より低い輝度と色付きが非常に低減された黒を達成する。一態様において、本願は、枚葉貼合や斜め延伸等の複雑な工程を必要とせずロール・トゥ・ロールの貼りあわせのみで円偏光板を作製可能とする製造方法を提供できる。 The present application includes a broadband retardation plate for a circular polarizing plate that reduces black brightness in a black display when viewed from an oblique direction and / or reduces coloring, a circular polarizing plate provided with the same, and the circular polarizing plate. A liquid crystal display (LCD) and an organic electroluminescence (EL) display device (organic light emitting diode (OLED) display device) can be provided. In one aspect, it is possible to provide a display device that displays a good blackness in a black display when viewed from the front. In one aspect, the present application can provide a thin retardation plate. In one aspect, the present application provides black with significantly reduced brightness and coloration in the black display of LCD and OLED display devices, not only in the head-on (front) orientation, but also in a wider orientation with a wide viewing angle. Achieve. In one aspect, the present application can provide a manufacturing method capable of producing a circular polarizing plate only by laminating roll-to-roll without requiring complicated steps such as single-wafer laminating and diagonal stretching.
本発明の1つの実施形態に係る位相差板の断面図である。It is sectional drawing of the retardation plate which concerns on one Embodiment of this invention. 本発明の1つの実施形態に係る円偏光板の断面図である。It is sectional drawing of the circular polarizing plate which concerns on one Embodiment of this invention. 本発明の「第1の態様例」の説明図である。It is explanatory drawing of "the first aspect example" of this invention. 実施例1の極角度0°~80°と方位角0°~360°に対する輝度の等値線図である。FIG. 5 is an equivalence diagram of luminance with respect to a polar angle of 0 ° to 80 ° and an azimuth angle of 0 ° to 360 ° according to the first embodiment. 実施例2の極角度0°~80°と方位角0°~360°に対する輝度の等値線図である。FIG. 5 is an equivalence diagram of luminance with respect to a polar angle of 0 ° to 80 ° and an azimuth angle of 0 ° to 360 ° according to the second embodiment. 実施例3の極角度0°~80°と方位角0°~360°に対する輝度の等値線図である。FIG. 5 is an equivalence diagram of luminance with respect to a polar angle of 0 ° to 80 ° and an azimuth angle of 0 ° to 360 ° according to the third embodiment. 比較例1の極角度0°~80°と方位角0°~360°に対する輝度の等値線図である。It is a contour diagram of the luminance with respect to the polar angle 0 ° to 80 ° and the azimuth angle 0 ° to 360 ° of Comparative Example 1. 比較例2の極角度0°~80°と方位角0°~360°に対する輝度の等値線図である。It is a contour diagram of the luminance with respect to the polar angle 0 ° to 80 ° and the azimuth angle 0 ° to 360 ° of Comparative Example 2. 比較例3の極角度0°~80°と方位角0°~360°に対する輝度の等値線図である。It is a contour diagram of the luminance with respect to the polar angle 0 ° to 80 ° and the azimuth angle 0 ° to 360 ° of Comparative Example 3. 比較例4の極角度0°~80°と方位角0°~360°に対する輝度の等値線図である。It is a contour diagram of the luminance with respect to the polar angle 0 ° to 80 ° and the azimuth angle 0 ° to 360 ° of Comparative Example 4. 比較例5の極角度0°~80°と方位角0°~360°に対する輝度の等値線図である。It is a contour diagram of the luminance with respect to the polar angle 0 ° to 80 ° and the azimuth angle 0 ° to 360 ° of Comparative Example 5. 比較例6の極角度0°~80°と方位角0°~360°に対する輝度の等値線図である。It is a contour diagram of the luminance with respect to the polar angle 0 ° to 80 ° and the azimuth angle 0 ° to 360 ° of Comparative Example 6. 極角度(傾斜角)40°、方位角0~360°(45°刻み)における、実施例1~3の円偏光板の実験結果である。It is an experimental result of the circularly polarizing plate of Examples 1 to 3 at a polar angle (tilt angle) of 40 ° and an azimuth angle of 0 to 360 ° (in 45 ° increments). 極角度(傾斜角)50°、方位角0~360°(45°刻み)における、実実施例1~3の円偏光板の実験結果である。It is an experimental result of the circular polarizing plate of Actual Examples 1 to 3 at a polar angle (tilt angle) of 50 ° and an azimuth angle of 0 to 360 ° (in 45 ° increments). 極角度(傾斜角)60°、方位角0~360°(45°刻み)における、実施例1~3の円偏光板の実験結果である。It is an experimental result of the circularly polarizing plate of Examples 1 to 3 at a polar angle (tilt angle) of 60 ° and an azimuth angle of 0 to 360 ° (in 45 ° increments). 極角度(傾斜角)40°、方位角0~360°(45°刻み)における、実施例1及び比較例1~3の円偏光板の実験結果である。It is an experimental result of the circular polarizing plate of Example 1 and Comparative Examples 1 to 3 at a polar angle (tilt angle) of 40 ° and an azimuth angle of 0 to 360 ° (in 45 ° increments). 極角度(傾斜角)50°、方位角0~360°(45°刻み)における、実施例1及び比較例1~3の円偏光板の実験結果である。It is an experimental result of the circular polarizing plate of Example 1 and Comparative Examples 1 to 3 at a polar angle (tilt angle) of 50 ° and an azimuth angle of 0 to 360 ° (in 45 ° increments). 極角度(傾斜角)60°、方位角0~360°(45°刻み)における、実施例1及び比較例1~3の円偏光板の実験結果である。It is an experimental result of the circular polarizing plate of Example 1 and Comparative Examples 1 to 3 at a polar angle (tilt angle) of 60 ° and an azimuth angle of 0 to 360 ° (in 45 ° increments). 極角度(傾斜角)40°、方位角0~360°(45°刻み)における、実施例1及び比較例4~6の円偏光板の実験結果である。It is an experimental result of the circular polarizing plate of Example 1 and Comparative Examples 4 to 6 at a polar angle (tilt angle) of 40 ° and an azimuth angle of 0 to 360 ° (in 45 ° increments). 極角度(傾斜角)50°、方位角0~360°(45°刻み)における、実施例1及び比較例4~6の円偏光板の実験結果である。It is an experimental result of the circular polarizing plate of Example 1 and Comparative Examples 4 to 6 at a polar angle (tilt angle) of 50 ° and an azimuth angle of 0 to 360 ° (in 45 ° increments). 極角度(傾斜角)60°、方位角0~360°(45°刻み)における、実施例1及び比較例4~6の円偏光板の実験結果である。It is an experimental result of the circular polarizing plate of Example 1 and Comparative Examples 4 to 6 at a polar angle (tilt angle) of 60 ° and an azimuth angle of 0 to 360 ° (in 45 ° increments).
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
(位相差板)
 位相差板(波長板)とは、入射する直線偏光に所定の位相差を与える光学素子を意味する。本発明に係る位相差板はそれぞれλ/2板とλ/4板として二つの光学異方性層(第1及び第2光学異方性層)を備え、さらに、第1及び第2光学異方性層の間に、斜め方向から見たときの色づきを抑制する第3光学異方性層を備える。本発明に係る位相差板は円偏光板に適しており、特に広帯域円偏光板に適している。本発明の位相差板の作製方法は特に限定されず、例えばロール・トゥ・ロール等の公知の方法で作製できる。
 位相差板において広帯域とは、一般に、直線偏光を入射すると可視光域(380nm~780nm)の全ての波長において、ほぼ一定の位相差を与える位相差板である。従って、円偏光板の作製に用いる位相差板においては、可視光域の全ての波長において、ほぼ1/4波長の位相差を与える。
(Phase difference plate)
The retardation plate (wave plate) means an optical element that gives a predetermined phase difference to the incident linearly polarized light. The retardation plate according to the present invention is provided with two optically anisotropic layers (first and second optically anisotropic layers) as a λ / 2 plate and a λ / 4 plate, respectively, and further, the first and second optical anisotropic layers are provided. A third optically anisotropic layer that suppresses coloring when viewed from an oblique direction is provided between the square layers. The retardation plate according to the present invention is suitable for a circular polarizing plate, and is particularly suitable for a wideband circular polarizing plate. The method for producing the retardation plate of the present invention is not particularly limited, and the retardation plate can be produced by a known method such as roll-to-roll.
In the retardation plate, the wide band is generally a retardation plate that gives a substantially constant phase difference in all wavelengths in the visible light region (380 nm to 780 nm) when linearly polarized light is incident. Therefore, in the retardation plate used for manufacturing the circular polarizing plate, a phase difference of approximately 1/4 wavelength is provided at all wavelengths in the visible light region.
(第1及び第2光学異方性層)
 本発明に係る第1光学異方性層は実質的に1/2波長の面内位相差値(Re)を有し、λ/2板として機能する。本発明の位相差板が円偏光板用に適する限りにおいて、前記Reは完全に1/2波長でなくてもよい。例えば、±20%、15%、10%、5%、2%、又は1%の数値範囲を含む。
 本発明に係る第2光学異方性層は実質的に1/4波長の面内位相差値(Re)を有し、λ/4板として機能する。用語「実質的」については上記と同様である。
(First and second optically anisotropic layers)
The first optically anisotropic layer according to the present invention has an in-plane retardation value (Re) of substantially 1/2 wavelength, and functions as a λ / 2 plate. As long as the retardation plate of the present invention is suitable for a circular polarizing plate, the Re does not have to be completely 1/2 wavelength. For example, it includes a numerical range of ± 20%, 15%, 10%, 5%, 2%, or 1%.
The second optically anisotropic layer according to the present invention has an in-plane retardation value (Re) of substantially 1/4 wavelength, and functions as a λ / 4 plate. The term "substantial" is the same as above.
 第1及び第2光学異方性層を形成する液晶化合物は、一般的に、その形状から棒状タイプ(棒状液晶化合物)と円盤状タイプ(ディスコティック液晶化合物)に大別される。本発明は、棒状液晶化合物を用い、ツイストネマティック(TN)液晶層を形成することが好ましい。TN液晶層は、棒状の細長い形をした分子がおおよそ一定方向にそろって並んでいるネマティック液晶が、カイラリティにより当該分子方向が捩れた螺旋状に連続的に変化した液晶層である。
 TN液晶層は、重合性基を有する棒状液晶化合物等が重合等によって固定されて形成された層であることが好ましく、この場合、層となった後は液晶性を示す必要はない。棒状液晶化合物に含まれる重合性基の種類は特に制限されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基または環重合性基が好ましい。より具体的には、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基などが好ましく挙げられ、(メタ)アクリロイル基がより好ましい。本発明では、公知のTN液晶材料を使用できる。また、TN液晶層を形成する際に、必要に応じて、上記液晶化合物とともに、所望によりカイラル剤を使用していてもよい。カイラル剤は、液晶化合物を捩れ配向させるために添加される。
The liquid crystal compounds forming the first and second optically anisotropic layers are generally roughly classified into a rod-shaped type (rod-shaped liquid crystal compound) and a disk-shaped type (discotic liquid crystal compound) according to their shapes. In the present invention, it is preferable to form a twisted nematic (TN) liquid crystal layer using a rod-shaped liquid crystal compound. The TN liquid crystal layer is a liquid crystal layer in which nematic liquid crystals in which rod-shaped elongated molecules are lined up in substantially a certain direction are continuously changed in a spiral shape in which the molecular directions are twisted by chirality.
The TN liquid crystal layer is preferably a layer formed by fixing a rod-shaped liquid crystal compound or the like having a polymerizable group by polymerization or the like, and in this case, it is not necessary to exhibit liquid crystal property after the layer is formed. The type of the polymerizable group contained in the rod-shaped liquid crystal compound is not particularly limited, and a functional group capable of an addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring-polymerizable group is preferable. More specifically, a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group and the like are preferably mentioned, and a (meth) acryloyl group is more preferable. In the present invention, known TN liquid crystal materials can be used. Further, when forming the TN liquid crystal layer, a chiral agent may be used together with the above liquid crystal compound, if necessary. Chiral agents are added to twist the liquid crystal compounds.
 また、位相差板に上述のような重合性液晶材料を用いることによって、一般に、50μm~100μmの膜厚を有するフィルム状の位相差板に比べ、当該厚みを5μm~20μmと薄型化をすることができる。 Further, by using the above-mentioned polymerizable liquid crystal material for the retardation plate, the thickness is generally reduced to 5 μm to 20 μm as compared with the film-like retardation plate having a film thickness of 50 μm to 100 μm. Can be done.
 本発明の位相差板中の第1及び第2光学異方性層は、厚み方向を螺旋軸とする捩れ配向している。また、両液晶層の捩れ方向は同じである。また、第1光学異方性層の第3光学異方性層側の面内遅相軸は、第2光学異方性層の第3光学異方性層側の面内遅相軸と平行である。すなわち、第2光学異方性層の捩れ角は、第1光学異方性層の捩れ角を基準に配置される。当該捩れ角の正及び負(マイナス:-)は、偏光素子の吸収軸方向を0°とし、円偏光板の偏光素子が視認側のとき、当該吸収軸から反時計周りの方向を正、及び当該吸収軸から時計周りの方向を負で示す。 The first and second optically anisotropic layers in the retardation plate of the present invention are twist-oriented with the spiral axis in the thickness direction. Further, the twisting directions of both liquid crystal layers are the same. The in-plane slow-phase axis of the first optically anisotropic layer on the third optically anisotropic layer side is parallel to the in-plane slow-phase axis of the second optically anisotropic layer on the third optically anisotropic layer side. Is. That is, the twist angle of the second optically anisotropic layer is arranged with reference to the twist angle of the first optically anisotropic layer. For positive and negative (minus:-) twist angles, the absorption axis direction of the polarizing element is 0 °, and when the polarizing element of the circularly polarizing plate is on the visual side, the direction counterclockwise from the absorption axis is positive and negative. The clockwise direction from the absorption axis is shown as negative.
 本発明の位相差板で使用される第1光学異方性層の捩れ角度は、一態様において実質的に26°である。より具体的には、26±10°が好ましく、26±7°がより好ましく、26±5°がさらに好ましい。この場合、第2光学異方性層の捩れ角度は実質的に78°である。より具体的には、78±10°が好ましく、78±7°がより好ましく、78±5°がさらに好ましい。または、第1光学異方性層の捩れ角度は、他の態様において実質的に-26°である。より具体的には、-26±10°が好ましく、-26±7°がより好ましく、-26±5°がさらに好ましい。この場合、第2光学異方性層の捩れ角度は実質的に-78°である。より具体的には、-78±10°が好ましく、-78±7°がより好ましく、-78±5°がさらに好ましい。上記捩れ角度はフィルム検査装置(RETS-1100A、大塚電子社製)を用いて測定される。 The twist angle of the first optically anisotropic layer used in the retardation plate of the present invention is substantially 26 ° in one aspect. More specifically, 26 ± 10 ° is preferable, 26 ± 7 ° is more preferable, and 26 ± 5 ° is further preferable. In this case, the twist angle of the second optically anisotropic layer is substantially 78 °. More specifically, 78 ± 10 ° is preferable, 78 ± 7 ° is more preferable, and 78 ± 5 ° is further preferable. Alternatively, the twist angle of the first optically anisotropic layer is substantially −26 ° in other embodiments. More specifically, −26 ± 10 ° is preferable, −26 ± 7 ° is more preferable, and −26 ± 5 ° is further preferable. In this case, the twist angle of the second optically anisotropic layer is substantially −78 °. More specifically, −78 ± 10 ° is preferable, −78 ± 7 ° is more preferable, and −78 ± 5 ° is further preferable. The twist angle is measured using a film inspection device (RETS-1100A, manufactured by Otsuka Electronics Co., Ltd.).
 本発明の位相差板で使用される第1光学異方性層において、波長550nmにおける屈折率異方性Δn1と当該液晶層の厚みd1の積(Δn1・d1)である面債位相差値(Re)は、実質的に275nmであり、より具体的には、前記積(Δn1・d1)は275±30nmが好ましく、275±20nmがより好ましく、275±10nmがさらに好ましい。 In the first optically anisotropic layer used in the retardation plate of the present invention, the face bond retardation value (Δn1 · d1) which is the product (Δn1 · d1) of the refractive index anisotropy Δn1 at a wavelength of 550 nm and the thickness d1 of the liquid crystal layer. Re) is substantially 275 nm, and more specifically, the product (Δn1 · d1) is preferably 275 ± 30 nm, more preferably 275 ± 20 nm, and even more preferably 275 ± 10 nm.
 また、本発明の位相差板で使用される第2光学異方性層において、波長550nmにおける屈折率異方性Δn2と当該液晶層の厚みd2の積(Δn2・d2)である面債位相差値(Re)は実質的に137.5nmであり、より具体的には、前記積(Δn2・d2)は137.5±15nmが好ましく、137.5±10nmが好ましく、137.5±5nmがさらに好ましい。上記Δn1・d1及びΔn2・d2はフィルム検査装置(RETS-1100A、大塚電子社製)を用いて測定される。 Further, in the second optically anisotropic layer used in the retardation plate of the present invention, the face bond phase difference which is the product (Δn2 · d2) of the refractive index anisotropy Δn2 at a wavelength of 550 nm and the thickness d2 of the liquid crystal layer. The value (Re) is substantially 137.5 nm, and more specifically, the product (Δn2 · d2) is preferably 137.5 ± 15 nm, preferably 137.5 ± 10 nm, and 137.5 ± 5 nm. More preferred. The above Δn1 · d1 and Δn2 · d2 are measured using a film inspection device (RETS-1100A, manufactured by Otsuka Electronics Co., Ltd.).
(第3光学異方性層)
 本発明の位相差板が備える第3光学異方性層は、正Cプレートと称する位相差板の一種であり、プレート平面上にxy直交軸を、プレート平面に対して垂直方向にz軸を設定した際、各軸方向の屈折率n、n、nが、n≒n<nとなる位相差板を意味する。なお、「n≒n」はnとnが実質的に等しいことを表し、完全に等しい場合も含む。前記「nとnが実質的に等しい」とは、正Cプレートとして機能する限りにおいてnとnは異なってもよく、例えば、一方から見てもう一方が20%、15%、10%、5%、2%、又は1%の差異があってもよい。なお、「≒」の代わりに
Figure JPOXMLDOC01-appb-M000001

等の記号を用いてもよい。本発明では、公知の正Cプレートを使用できる。一態様において、本発明の位相差板が備える第3光学異方性層は、例えば、棒状液晶化合物が厚み方向(プレート平面)に対して垂直配向した液晶層である。前記垂直とは、当該液晶化合物の配向角がプレート平面に対して90°及びほぼ90°(影響を無視できる程度の差異、例えば±10°、±5°、±3°、又は±1°以内の差異を含む)の方向を含む。第3光学異方性層は、重合性基を有する棒状液晶化合物等が重合等によって固定されて形成された層であることが好ましく、この場合、層となった後は液晶性を示す必要はない。棒状液晶化合物に含まれる重合性基の種類は特に制限されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基または環重合性基が好ましい。より具体的には、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基などが好ましく挙げられ、(メタ)アクリロイル基がより好ましい。
 また、当該液晶層の厚さ方向位相差(Rth)の調整は、当該膜厚の調整によって行うことができる。当該膜厚は、特に限定されないが、一般に、好ましくは0.1μm~3μm、より好ましくは0.5μm~2μmの範囲で設けることができる。
 他の態様においては、特開2016-108536号公報に記載のセルロース系樹脂材料を使用することができる。薄型化及び生産性の観点においては、前述の液晶化合物を用いることが好ましい。
(Third optically anisotropic layer)
The third optically anisotropic layer included in the retardation plate of the present invention is a kind of retardation plate called a positive C plate, and has an xy orthogonal axis on the plate plane and a z-axis perpendicular to the plate plane. When set, it means a retardation plate in which the refractive indexes n x , n y , and n z in each axial direction are n x ≈ n y <n z. In addition, "n x ≈ n y " means that n x and ny are substantially equal, and includes the case where they are completely equal. The above-mentioned "n x and ny are substantially equal" means that n x and ny may be different as long as they function as a positive C plate. For example, when viewed from one side, the other side is 20%, 15%, and so on. There may be a difference of 10%, 5%, 2%, or 1%. In addition, instead of "≒"
Figure JPOXMLDOC01-appb-M000001

Etc. may be used. In the present invention, a known positive C plate can be used. In one aspect, the third optically anisotropic layer included in the retardation plate of the present invention is, for example, a liquid crystal layer in which a rod-shaped liquid crystal compound is vertically oriented in the thickness direction (plate plane). The vertical means that the orientation angle of the liquid crystal compound is 90 ° and approximately 90 ° with respect to the plate plane (differences to which the influence is negligible, for example, within ± 10 °, ± 5 °, ± 3 °, or ± 1 °). Includes the direction of). The third optically anisotropic layer is preferably a layer formed by fixing a rod-shaped liquid crystal compound or the like having a polymerizable group by polymerization or the like. In this case, it is necessary to exhibit liquid crystallinity after the layer is formed. Absent. The type of the polymerizable group contained in the rod-shaped liquid crystal compound is not particularly limited, and a functional group capable of an addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring-polymerizable group is preferable. More specifically, a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group and the like are preferably mentioned, and a (meth) acryloyl group is more preferable.
Further, the phase difference (Rth) in the thickness direction of the liquid crystal layer can be adjusted by adjusting the film thickness. The film thickness is not particularly limited, but is generally preferably set in the range of 0.1 μm to 3 μm, more preferably 0.5 μm to 2 μm.
In another aspect, the cellulosic resin material described in JP-A-2016-108536 can be used. From the viewpoint of thinning and productivity, it is preferable to use the above-mentioned liquid crystal compound.
 本発明の第3光学異方性層の厚さ方向位相差(Rth)は、ポアンカレ球理論に基づき決定される。ポアンカレ球上において直線偏光を示す赤道上の座標から北極または南極上の円偏光を示す座標への移動の軌跡を最小限とするため最適な値の範囲を設けることが好ましく、具体的には-150~-80nmの範囲が好ましく、-132~-112nmの範囲がより好ましく、-126~-120nmの範囲がさらにより好ましい。さらに、第3光学異方性層は、上述の第1光学異方性層と第2光学異方性層との間に配置することが好ましい。これにより、本発明の位相差板により生成される各波長の円偏光は、ポアンカレ球において北極あるいは南極上の円偏光を示す座標に集約され、各波長において理想に近い円偏光を形成することになる。従って、本発明の円偏光板が実装される表示装置等においては斜め方向から見た際の色づきを抑制することができる。 The thickness direction retardation (Rth) of the third optically anisotropic layer of the present invention is determined based on Poincare sphere theory. It is preferable to set a range of optimum values in order to minimize the trajectory of movement from the coordinates on the equator showing linearly polarized light to the coordinates showing circularly polarized light on the North Pole or South Pole on the Poancare sphere. The range of 150 to -80 nm is preferable, the range of -132 to -112 nm is more preferable, and the range of -126 to -120 nm is even more preferable. Further, the third optically anisotropic layer is preferably arranged between the above-mentioned first optically anisotropic layer and the second optically anisotropic layer. As a result, the circular polarization of each wavelength generated by the retardation plate of the present invention is aggregated at the coordinates indicating the circular polarization on the north pole or the south pole in the Poancare sphere, and the circular polarization close to the ideal is formed at each wavelength. Become. Therefore, in a display device or the like on which the circular polarizing plate of the present invention is mounted, it is possible to suppress coloring when viewed from an oblique direction.
(配向処理)
 本発明の第1及び第2光学異方性層は、基材上に液晶化合物を配向させるための処理、または配向膜を設ける。液晶配向は、前記光学異方性層の配向方向を適切に規定し、本発明が所望の性能を奏することを妨げなければ、特に制限は無く、本分野で公知の配向技術を使用できる。基材の搬送方向に対して約0~50°方向に回転するラビングロールを用いて基材表面を物理的に異方性を形成させてもよいし、特開2003―014935号公報に開示された基材上に設けた樹脂層を前記ラビング処理する方法を用いてもよいし、高分子膜上に直線偏光の紫外線により異方性を持たせ配向膜を形成する光配向膜でもよい。
(Orientation treatment)
The first and second optically anisotropic layers of the present invention are provided with a treatment for aligning a liquid crystal compound or an alignment film on a substrate. The liquid crystal orientation is not particularly limited as long as the orientation direction of the optically anisotropic layer is appropriately defined and the present invention does not prevent the desired performance from being achieved, and an orientation technique known in the art can be used. A rubbing roll that rotates in a direction of about 0 to 50 ° with respect to the transport direction of the base material may be used to physically form anisotropy on the surface of the base material, which is disclosed in Japanese Patent Application Laid-Open No. 2003-014935. The method of rubbing the resin layer provided on the base material may be used, or a photoalignment film may be used in which an anisotropy is formed on the polymer film by linearly polarized ultraviolet rays to form an alignment film.
(偏光素子)
 本発明の円偏光板、液晶表示装置、及び有機EL表示装置を得るために用いられる偏光素子(偏光子又は偏光膜と称することもある)としては、特に制限はなく、用途に応じて公知の偏光素子を適切に選択し使用できる。例えば、水溶性の二色性染料及び/又は多ヨウ素イオン等の二色性色素を含浸させたポリビニルアルコール(PVA)系フィルムをホウ酸温水浴中で一軸延伸することにより得られる偏光素子や、ポリビニルアルコールフィルムを一軸延伸し、次いで脱水反応により、ポリエン構造を形成させて得られる偏光素子や、基材膜上に二色性色素を含む溶液を塗布して二色性色素を配向させて得られる偏光素子や、保護膜上にポリビニルアルコール層を設け、基材膜と共に一軸延伸後、二色性色素を含浸させて得られる基材一体型偏光素子等が挙げられる。加工性や光学特性の観点からは、代表的には、PVA系フィルムを一軸延伸し二色性色素を吸着配向させた偏光素子を好適に用いることができる。市販のPVA系フィルムとして、例えば、クラレ製VF-PS(厚さ75μm)が挙げられ、この場合、一般に、二色性色素を吸着配向後、25μm~35μmの厚さとなるまで一軸延伸して偏光素子を得る。
(Polarizing element)
The polarizing element (sometimes referred to as a polarizer or a polarizing film) used to obtain the circular polarizing plate, the liquid crystal display device, and the organic EL display device of the present invention is not particularly limited and is known depending on the application. The polarizing element can be appropriately selected and used. For example, a polarizing element obtained by uniaxially stretching a polyvinyl alcohol (PVA) -based film impregnated with a water-soluble dichroic dye and / or a dichroic dye such as polyiodine ion in a boric acid warm water bath. Obtained by uniaxially stretching a polyvinyl alcohol film and then applying a solution containing a dichroic dye on a polarizing element obtained by forming a polyene structure by a dehydration reaction or a base film to orient the dichroic dye. Examples thereof include a polarizing element integrated with a base material obtained by providing a polyvinyl alcohol layer on a protective film, uniaxially stretching the base film together with the base material film, and then impregnating with a dichroic dye. From the viewpoint of processability and optical characteristics, a polarizing element obtained by uniaxially stretching a PVA-based film and adsorbing and orienting a dichroic dye can be preferably used. Examples of commercially available PVA-based films include VF-PS (thickness 75 μm) manufactured by Kuraray. In this case, in general, a dichroic dye is adsorbed and oriented, then uniaxially stretched to a thickness of 25 μm to 35 μm and polarized. Get the element.
 二色性色素は、好ましくは、ヨウ素イオン又は二色性染料であり、いずれも本発明用の偏光素子を得るために用いることができる。二色性染料としては、アゾ系染料、アントラキノン系染料、及びテトラジン系染料などが挙げられ、色相設計および熱に対する耐久性の観点においては、2~3種以上のアゾ系染料を配合し用いることが好ましい。また、いずれの二色性色素を用いた場合において、偏光素子の光学特性は、実装する表示装置において反射防止能と優れた黒表示性を得る観点から、高透過率及び高偏光度(高い二色性ともいう)を有していることが好ましく、より詳細には、視感度補正単体透過率(Ys)は40%~45%、及び視感度補正偏光度(Py)は99%以上であることが好ましい。 The dichroic dye is preferably an iodine ion or a dichroic dye, both of which can be used to obtain a polarizing element for the present invention. Examples of the dichroic dye include an azo dye, an anthraquinone dye, and a tetrazine dye. From the viewpoint of hue design and heat durability, two or three or more kinds of azo dyes should be blended and used. Is preferable. Further, when any dichroic dye is used, the optical characteristics of the polarizing element are high transmittance and high polarization degree (high two) from the viewpoint of obtaining antireflection ability and excellent black display property in the display device to be mounted. It is preferable to have chromaticity), and more specifically, the visible sensitivity correction single transmittance (Ys) is 40% to 45%, and the visual sensitivity correction polarization degree (Py) is 99% or more. Is preferable.
 本発明の一態様において、無彩色な色相を有していることが好ましく、すなわち、当該偏光素子の単体透過率(Ts)が、可視光域(波長400nm~700nm、より好ましくは380nm~780nm)に亘ってほぼ均一であることが好ましい。L*a*b*表色系におけるa*及びb*値の絶対値が、偏光素子単体で測定したときにいずれも1以下であり、前記偏光素子2枚を吸収軸方向が互いに直交となるように重ねて測定したときに、a*値の絶対値が4以下、b*値の絶対値が8以下となる色相もまた、当該無彩色の具体的態様として好ましい。これにより、例えば、本発明の広帯域化された位相差板を備えた円偏光板により、表示装置からの反射光を可視光域に亘って色づきを抑えるだけでなく、偏光素子表面由来の反射光に対しても、可視光域に亘って色づきを抑えることができる。 In one aspect of the present invention, it is preferable to have an achromatic hue, that is, the simple substance transmittance (Ts) of the polarizing element is in the visible light region (wavelength 400 nm to 700 nm, more preferably 380 nm to 780 nm). It is preferable that the color is substantially uniform. The absolute values of the a * and b * values in the L * a * b * color system are 1 or less when measured by the polarizing element alone, and the absorption axis directions of the two polarizing elements are orthogonal to each other. A hue in which the absolute value of the a * value is 4 or less and the absolute value of the b * value is 8 or less when measured in an overlapping manner is also preferable as a specific embodiment of the achromatic color. As a result, for example, the circularly polarizing plate provided with the widebanded retardation plate of the present invention not only suppresses the coloring of the reflected light from the display device over the visible light region, but also suppresses the coloration of the reflected light derived from the surface of the polarizing element. However, it is possible to suppress coloring over the visible light region.
 二色性を有するアゾ染料としては、例えば、C.I.Direct Yellow 12、C.I.Direct Yellow 28、 C.I.Direct Yellow 44、C.I.Direct Yellow 142、C.I.Direct Orange 26、C.I.Direct Orange 39、C.I.Direct Orange 71、C.I.Direct Orange 107、C.I.Direct Red 2、C.I.Direct Red 31、C.I.Direct Red 79、C.I.Direct Red 81、C.I.Direct Red 117、C.I.Direct Red 247、C.I.Direct Green 80、C.I.Direct Green 59、C.I.Direct Blue 71、C.I.Direct Blue 78、C.I.Direct Blue 168、C.I.Direct Blue 202、C.I.Direct Violet 9、C.I.Direct Violet 51、C.I.Direct Brown 106、C.I.Direct Brown 223等が挙げられる。その他に、公知の方法によって製造できる染料を使用してもよく、公知の方法としては、例えば、特開平3-12606号公報に記載の方法、又は特開昭59-145255号公報の記載の方法などが挙げられる。また、市販染料ではKayafect Violet P Liquid、KayafectYellow Y及びKayafect Orange G、Kayafect Blue KW及びKayafect Blue Liquid 400(全て日本化薬社製)等を挙げることができる。これらのアゾ染料を可視光域における各透過率が均一となるように2~3種以上配合して用いる。さらに、本発明に係る偏光素子においては、高透過率及び高偏光度の無彩色な偏光素子を得るためには、国際公開WO2017/146212号公報、国際公開WO2019/117131号公報等に開示されている無彩色な偏光素子の設計のために二色性が改善されたアゾ染料を好適に用いることができる。 Examples of the azo dye having dichroism include C.I. I. Direct Yellow 12, C.I. I. Direct Yellow 28, C.I. I. Direct Yellow 44, C.I. I. Direct Yellow 142, C.I. I. Direct Orange 26, C.I. I. Direct Orange 39, C.I. I. Direct Orange 71, C.I. I. Direct Orange 107, C.I. I. Direct Red 2, C.I. I. Direct Red 31, C.I. I. Direct Red 79, C.I. I. Direct Red 81, C.I. I. Direct Red 117, C.I. I. Direct Red 247, C.I. I. Direct Green 80, C.I. I. Direct Green 59, C.I. I. Direct Blue 71, C.I. I. Direct Blue 78, C.I. I. Direct Blue 168, C.I. I. Direct Blue 202, C.I. I. Direct Violet 9, C.I. I. Direct Violet 51, C.I. I. Direct Brown 106, C.I. I. Direct Brown 223 and the like can be mentioned. In addition, a dye that can be produced by a known method may be used, and examples of the known method include the method described in JP-A No. 3-12606 or the method described in JP-A-59-14255. And so on. Examples of commercially available dyes include Kayafect Violet P Liquid, Kayafect Yellow Y, Kayafect Orange G, Kayafect Blue KW, and Kayafect Blue Liquid 400 (all manufactured by Nippon Kayaku Co., Ltd.). Two or three kinds of these azo dyes are blended and used so that each transmittance in the visible light region becomes uniform. Further, in the polarizing element according to the present invention, in order to obtain an achromatic polarizing element having high transmittance and high degree of polarization, it is disclosed in International Publication WO2017 / 146212, International Publication WO2019 / 117131 and the like. Azo dyes with improved dichroism can be preferably used for the design of achromatic polarizing elements.
 偏光素子は、偏光素子を保護するための基材(支持体、支持フィルムともいう)を含むことが好ましい。基材は、偏光素子の片面のみに配置されていてもよく、2枚の同一または異なる基材が偏光素子を挟持するように偏光素子の両面に配置されていてもよい。偏光素子に基材を有する構成を偏光板という。偏光素子に後述する基材を備える場合は、偏光素子と表示装置との間に配置される基材は、面内位相差値(Re)及び厚み方向位相差(Rth)は、0、またはほぼ0(数値として影響を無視できる程度、例えば-5nm~5nmの範囲)であることが好ましい。 The polarizing element preferably contains a base material (also referred to as a support or a support film) for protecting the polarizing element. The base material may be arranged on only one side of the polarizing element, or may be arranged on both sides of the polarizing element so that two identical or different base materials sandwich the polarizing element. A structure in which a polarizing element has a base material is called a polarizing plate. When the polarizing element is provided with a base material described later, the base material arranged between the polarizing element and the display device has an in-plane retardation value (Re) and a thickness direction retardation (Rth) of 0 or almost. It is preferably 0 (a numerical value in which the influence can be ignored, for example, in the range of -5 nm to 5 nm).
(基材)
 本発明の位相差板、円偏光板(以後、本発明の物品ともいう)は基材を備えてもよい。基材として、所望の機械的強度や熱安定性などを有し、本発明が所望の性能を奏することを妨げなければ、特に制限は無く、本分野で公知の基材を使用できる。基材の厚さは適宜設計することができるが、50~200μmが好ましく、10~100μmがより好ましく、20~80μmがさらに好ましい。
(Base material)
The retardation plate and circular polarizing plate of the present invention (hereinafter, also referred to as the article of the present invention) may include a base material. The base material is not particularly limited as long as it has desired mechanical strength, thermal stability, and the like and does not prevent the present invention from exhibiting desired performance, and a base material known in the art can be used. The thickness of the base material can be appropriately designed, but is preferably 50 to 200 μm, more preferably 10 to 100 μm, and even more preferably 20 to 80 μm.
 また、偏光素子と表示装置との間に基材を配置する場合、当該基材の面内位相差値(Re)及び厚み方向位相差値(Rth)は、0、またはほぼ0であることが好ましい。市販の前記位相差値を有する基材としては、例えば、トリアセチルセルロース系樹脂フィルムZ-TAC(富士フイルム社製)、アクリル系樹脂フィルムOXISシリーズ(大倉工業社製)等が挙げられる。 When a base material is arranged between the polarizing element and the display device, the in-plane retardation value (Re) and the thickness direction retardation value (Rth) of the base material may be 0 or almost 0. preferable. Examples of commercially available base materials having the retardation value include triacetyl cellulose-based resin film Z-TAC (manufactured by Fujifilm Co., Ltd.), acrylic resin film OXIS series (manufactured by Okura Industrial Co., Ltd.), and the like.
(粘着剤及び/又は接着剤)
 本発明の物品において、ある層上に次の層を設けることにより積層を形成してもよく、複数の層を粘着剤及び/又は接着剤により貼り合わせることにより積層を形成してもよい。粘着剤又は接着剤としての機能を奏し、本発明が所望の性能を奏することを妨げなければ、特に制限は無く、本分野で公知の粘着剤又は接着剤を使用できる。粘着剤としては、代表的には、アクリル系樹脂が挙げられる。当該厚さは適宜設計することができるが、1~50μmが好ましく、層間の密着性及び粘着剤塗工及び積層の加工性の観点から5~25μmがより好ましい。接着剤としては、例えば、PVA系樹脂を主成分とする水系接着剤、熱硬化型または光硬化型樹脂を含む接着剤、プラズマ接合による方法等が挙げられる。
(Adhesive and / or adhesive)
In the article of the present invention, a laminate may be formed by providing the next layer on a certain layer, or a plurality of layers may be bonded by an adhesive and / or an adhesive to form a laminate. As long as it functions as a pressure-sensitive adhesive or an adhesive and does not prevent the present invention from exhibiting the desired performance, there is no particular limitation, and a pressure-sensitive adhesive or an adhesive known in the art can be used. Acrylic resin is a typical example of the pressure-sensitive adhesive. The thickness can be appropriately designed, but is preferably 1 to 50 μm, and more preferably 5 to 25 μm from the viewpoint of adhesion between layers and processability of adhesive coating and lamination. Examples of the adhesive include a water-based adhesive containing a PVA-based resin as a main component, an adhesive containing a thermosetting or photo-curable resin, and a method using plasma bonding.
 本発明の光学異方性層の位相差値や捩れ角の値は、光学的に良好の効果を得る値である。それらの値は、実際の液晶化合物の配向特性や製品加工性を考慮すれば、限定されるものではなく、公差やマージンを含むものであってよい。 The phase difference value and the twist angle value of the optically anisotropic layer of the present invention are values that obtain a good optical effect. These values are not limited in consideration of the orientation characteristics of the actual liquid crystal compound and the product processability, and may include tolerances and margins.
(円偏光板)
 本発明の円偏光板は広帯域円偏光板であり、偏光素子及び本発明の位相差板を備え、詳細には、偏光素子(または偏光板)、第1光学異方性層、第3光学異方性層、及び第2光学異方性層をこの順に備える。また、円偏光板の各光軸は、一態様において、偏光素子の吸収軸が0°の方向にあり、第1光学異方性層の捩れ角は、前記偏光素子の吸収軸に対して、実質的に26°の方向にあり、第2光学異方性層の捩れ角は、第1光学異方性層の捩れ角から実質的に78°の方向(すなわち、前記偏光素子の吸収軸に対して104°の方向)である。
(Circular polarizing plate)
The circular polarizing plate of the present invention is a wideband circular polarizing plate, and includes a polarizing element and a retardation plate of the present invention. A rectangular layer and a second optically anisotropic layer are provided in this order. Further, in one aspect of each optical axis of the circular polarizing plate, the absorption axis of the polarizing element is in the direction of 0 °, and the twist angle of the first optically anisotropic layer is relative to the absorption axis of the polarizing element. It is substantially in the direction of 26 °, and the twist angle of the second optically anisotropic layer is substantially 78 ° from the twist angle of the first optically anisotropic layer (that is, in the absorption axis of the polarizing element. In contrast, the direction is 104 °).
 本発明の円偏光板の作製方法は特に限定されず、例えば、上述の各層のフィルムまたはシートを枚葉ごとに積層してもよいし、ロール状に作製された上述の各層をロール・トゥ・ロールにより連続して積層してもよい。特に、本発明の円偏光板は、位相差板を所定の光軸角度に合わせて切り出す必要がないため、後者のロール・トゥ・ロールによる積層を容易に実施することができる。従って、例えばCOP系フィルムのような一軸延伸フィルムを積層する従来の広帯域円偏光板の製造方法よりも生産性を向上させることができる。   The method for producing the circular polarizing plate of the present invention is not particularly limited, and for example, the films or sheets of the above-mentioned layers may be laminated for each sheet, or the above-mentioned layers produced in a roll shape may be rolled-to-roll. It may be continuously laminated by a roll. In particular, in the circular polarizing plate of the present invention, since it is not necessary to cut out the retardation plate in accordance with a predetermined optical axis angle, the latter roll-to-roll lamination can be easily carried out. Therefore, the productivity can be improved as compared with the conventional method for producing a broadband circular polarizing plate in which a uniaxially stretched film such as a COP-based film is laminated.
(円偏光板の製造方法)
 本発明に係る位相差板及び円偏光板の製造方法は、以下第1~第2の態様例を挙げて説明するが、これらに限定されるものではない。また、各光学異方性層は、硬化後において液晶層と基材と剥離可能な基材上に形成し、後述の逐次積層する工程おいて、各基材を取り除いて円偏光板を形成してもよい。
(Manufacturing method of circularly polarizing plate)
The method for manufacturing the retardation plate and the circularly polarizing plate according to the present invention will be described below with reference to the first and second embodiments, but the present invention is not limited thereto. Further, each optically anisotropic layer is formed on a base material that can be peeled off from the liquid crystal layer and the base material after curing, and each base material is removed to form a circular polarizing plate in a step of sequentially laminating, which will be described later. You may.
(第1の態様例)
 第1の工程として、0°の方向(搬送方向)にラビング処理した基材のラビング面に、重合性を有するネマティック液晶相を示す液晶化合物とカイラル剤と光重合開始剤と希釈溶剤とを含む塗布用組成物を塗布し、その後乾燥工程を経て溶剤を除去し、光照射して塗膜を硬化することで、0°方向に配向軸を有し、捩れ角が26°、当該位相差値(Re@550nm)が275nmである第1の光学異方性層を得る。
 第2の工程として、重合性を有するネマティック液晶相を示す液晶化合物と光重合開始剤と希釈溶剤とを含む組成物の塗布用組成物を基材に塗布し、その後乾燥工程を得て溶剤を除去し、光照射して塗膜を硬化することで、基材に対して垂直方向に配向した第3光学異方性層を得る。
 第3の工程では、搬送方向に対して26°の方向にラビング処理した基材のラビング面に、TN液晶材料とカイラル剤と光重合開始剤と希釈溶剤とを含む塗布用組成物を塗布し、その後乾燥工程を得て溶剤を除去し、光照射して塗膜を硬化することで、26°の方向に配向軸を有し、捩れ角が78°、当該位相差値(Re@550nm)が137.5nmである第2光学異方性層を得る。
 第4の工程として、図3に示す光軸関係となるように、偏光素子(または偏光板)、第1光学異方性層、第3光学異方性層及び第2光学異方性層を逐次積層することで本発明の円偏光板を得る。
(Example of the first aspect)
As the first step, a liquid crystal compound showing a nematic liquid crystal phase having polymerizable properties, a chiral agent, a photopolymerization initiator, and a diluting solvent are contained on the rubbing surface of the base material rubbed in the direction of 0 ° (transportation direction). The coating composition is applied, then the solvent is removed through a drying step, and the coating film is cured by irradiating with light to have an orientation axis in the 0 ° direction, a twist angle of 26 °, and the retardation value. A first optically anisotropic layer having (Re @ 550 nm) of 275 nm is obtained.
As a second step, a coating composition of a composition containing a liquid crystal compound showing a nematic liquid crystal phase having polymerizable properties, a photopolymerization initiator and a diluting solvent is applied to a base material, and then a drying step is obtained to obtain a solvent. By removing and curing the coating film by irradiating with light, a third optically anisotropic layer oriented in the direction perpendicular to the substrate is obtained.
In the third step, a coating composition containing a TN liquid crystal material, a chiral agent, a photopolymerization initiator, and a diluting solvent is applied to the rubbing surface of the base material that has been rubbed in a direction of 26 ° with respect to the transport direction. After that, a drying step is obtained to remove the solvent, and the coating film is cured by irradiating with light to have an orientation axis in the direction of 26 °, a twist angle of 78 °, and the retardation value (Re @ 550 nm). A second optically anisotropic layer having a thickness of 137.5 nm is obtained.
As a fourth step, the polarizing element (or polarizing plate), the first optically anisotropic layer, the third optically anisotropic layer, and the second optically anisotropic layer are formed so as to have the optical axis relationship shown in FIG. The circular polarizing plate of the present invention is obtained by sequentially laminating.
(第2の態様例)
 前記第2の工程において、重合性を有するネマティック液晶相を示す液晶化合物と光重合開始剤と希釈溶剤とを含む組成物の塗布用組成物を前記第1の工程で得た第1光学異方性層の液晶面に塗布し、その後乾燥工程を経て溶剤を除去し、光照射して塗膜を硬化することで、当該液晶面に対して垂直方向に配向した第3光学異方性層を得る。その後、図3に示す光軸関係となるように、偏光素子(または偏光板)、第3光学異方性層が積層された第1光学異方性層、及び第2光学異方性層を逐次積層することで本発明の円偏光板を得ること以外は、第1の態様例と同じである。
(Example of the second aspect)
In the second step, a coating composition for a composition containing a liquid crystal compound showing a nematic liquid crystal phase having polymerizable properties, a photopolymerization initiator, and a diluting solvent was obtained in the first step. The third optically anisotropic layer oriented in the direction perpendicular to the liquid crystal surface is formed by applying the layer to the liquid crystal surface, then removing the solvent through a drying step, and irradiating with light to cure the coating film. obtain. After that, the polarizing element (or polarizing plate), the first optically anisotropic layer on which the third optically anisotropic layer is laminated, and the second optically anisotropic layer are formed so as to have the optical axis relationship shown in FIG. It is the same as the first embodiment except that the circular polarizing plate of the present invention is obtained by sequentially laminating.
(表示装置)
 本発明の円偏光板は、液晶表示装置(LCD)、有機エレクトロルミネッセンス(EL)表示装置(有機発光ダイオード(OLED)表示装置)等の種々の表示装置の視認側に好ましく適用できる。さらに、当該表示装置は、設計に応じて、タッチパネル、防眩層や反射防止層、透光カバー(前面板ともいう)等を含む構成でもよい。また、前記透光カバーは、平面形状でもよいし、曲面形状を有してもよい。本発明の表示装置の作製方法は特に限定されず、公知の方法で作製できる。
(Display device)
The circularly polarizing plate of the present invention can be preferably applied to the visual side of various display devices such as a liquid crystal display device (LCD) and an organic electroluminescence (EL) display device (organic light emitting diode (OLED) display device). Further, the display device may be configured to include a touch panel, an antiglare layer, an antireflection layer, a translucent cover (also referred to as a front plate), and the like, depending on the design. Further, the translucent cover may have a planar shape or a curved surface shape. The method for producing the display device of the present invention is not particularly limited, and the display device can be produced by a known method.
 本発明の液晶表示装置は、透過型または半透過型と称する液晶パネルとバックライトユニットを備える構成でもよいし、反射型と称する液晶パネルと反射層を備える構成でもよい。 The liquid crystal display device of the present invention may be configured to include a liquid crystal panel and a backlight unit referred to as a transmissive type or a transflective type, or may be configured to include a liquid crystal panel and a reflective layer referred to as a reflective type.
 また、有機EL表示装置は、一般に、当該表示パネル部に金属電極を備えるため、OLED(有機EL表示装置)そのものは、液晶パネルよりも高い反射率を有する。これは、例えば、日中の屋外等の外光が多い環境で使用した場合では、当該電極からの外光反射により表示性を損ねてしまう原因となる。そのため、有機EL表示装置の視認側には、外光反射を抑制するため、一般に、円偏光板が付される。従って、有機EL表示装置の表示特性は、円偏光板の光学特性にも依存することになる。本発明の円偏光板は従来の円偏光板よりも広い視野角特性を有しているから、広い視聴角を必要とする有機EL表示装置に好適に用いることができる。 Further, since an organic EL display device generally includes a metal electrode on the display panel portion, the OLED (organic EL display device) itself has a higher reflectance than a liquid crystal panel. This causes, for example, when used in an environment with a lot of outside light such as outdoors in the daytime, impairs the displayability due to the reflection of the outside light from the electrode. Therefore, a circularly polarizing plate is generally attached to the visible side of the organic EL display device in order to suppress reflection of external light. Therefore, the display characteristics of the organic EL display device also depend on the optical characteristics of the circular polarizing plate. Since the circular polarizing plate of the present invention has a wider viewing angle characteristic than the conventional circular polarizing plate, it can be suitably used for an organic EL display device that requires a wide viewing angle.
 ここまで本発明の実施形態について述べたが、本発明は以上の実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。 Although the embodiments of the present invention have been described so far, the present invention is not limited to the above embodiments, and various modifications and modifications can be made based on the technical idea of the present invention.
 以下、実施例により、本発明を具体的に説明するが、本発明はこれら実施例によって限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
 円偏光板を理想的な反射板に貼ったと仮定して、下記方位角及び傾斜角(極角度)における黒輝度(単位は規格化された値)を、液晶シミュレーションソフトLCDmaster(シンテック社製)を用いて計算を行った。円偏光板の構成及び計算条件は次の通りである。表1は以下の計算条件と光学異方性層の配置関係の一覧を示す。面内位相差値(Re)及び厚み方向位相差値(Rth)は、波長550nmにおける値を示す。また、表1において、配置した光学異方性層は、入射光側から順に、第1層、第2層及び第3層の欄に示す。
 円偏光板の構造:
   実施例1:(入射光側から順に)偏光素子、第1光学異方性層、第3光学異方性層1、第2光学異方性層、反射板
   実施例2:(入射光側から順に)偏光素子、第1光学異方性層、第3光学異方性層2、第2光学異方性層、反射板
   実施例3:(入射光側から順に)偏光素子、第1光学異方性層、第3光学異方性層3、第2光学異方性層、反射板
   実施例4:(入射光側から順に)偏光素子、第1光学異方性層、第3光学異方性層4、第2光学異方性層、反射板
   実施例5:(入射光側から順に)偏光素子、第1光学異方性層、第3光学異方性層5、第2光学異方性層、反射板
比較例1:(入射光側から順に)偏光素子、第1光学異方性層、第2光学異方性層、第3光学異方性層1、反射板
   比較例2:(入射光側から順に)偏光素子、第3光学異方性層1、第1光学異方性層、第2光学異方性層、反射板
   比較例3:(入射光側から順に)偏光素子、第1光学異方性層、第2光学異方性層、反射板
   比較例4:(入射光側から順に)偏光素子、一般的な1/2波長板1、第3光学異方性層6、一般的な1/4波長板1、反射板
   比較例5:(入射光側から順に)偏光素子、一般的な1/2波長板2、第3光学異方性層7、一般的な1/4波長板2、反射板
   比較例6:(入射光側から順に)偏光素子、一般的な1/2波長板1、一般的な1/4波長板1、第3光学異方性層8、反射板
     第1光学異方性層:
       液晶層:ZLI-4792(メルク社製)
       生じる位相差=1/2λ
       Δn1・d1=275nm
       プレツイスト角度=0°
       ツイスト角度=-26°
       液晶層の厚み=2.136μm
     第2光学異方性層:
       液晶層:ZLI-4792(メルク社製)
       生じる位相差=λ/4
       Δn2・d2=137.5nm
       プレツイスト角度=-26°
       ツイスト角度=-78°
       液晶層の厚み=1.068μm
     第3光学異方性層:
       液晶層:重合性垂直配向型液晶化合物(メルク社製)
       n=1.5283
       n=1.5283
       n=1.6725
       液晶層の厚み=0.60μm~1.45μm
       Rth:以下当該1~8に記載
     第3光学異方性層1:
       Rth=-120nm
     第3光学異方性層2:
       Rth=-115nm
第3光学異方性層3:
       Rth=-130nm
     第3光学異方性層4:
       Rth=-80nm
第3光学異方性層5:
       Rth=-150nm
第3光学異方性層6:
       Rth=-174nm
     第3光学異方性層7:
       Rth=-209nm
     第3光学異方性層8:
       Rth=-133nm
     偏光素子:JET-12(ポラテクノ社製、視感度補正単体透過率Ys=41.5%及び視感度補正偏光度Py=99.99%である分光データを使用、支持体層は有しない)
     反射板:
       材質:理想的な反射板
     一般的な1/2波長板(HWP)1:
       材質:シクロオレフィンポリマー(COP)
       Nz係数=1.0
     一般的な1/4波長板(QWP)1:
       材質:シクロオレフィンポリマー(COP)
       Nz係数=1.0
     一般的な1/2波長板(HWP)2:
       材質:シクロオレフィンポリマー(COP)
       Nz係数=1.5
     一般的な1/4波長板(QWP)2:
       材質:シクロオレフィンポリマー(COP)
       Nz係数=1.5
 入射光:自然光(波長範囲:380nm~780nm)
 傾斜角(極角度)θ=40°、50°、及び60°)
 方位角Φ=0°~360°(各5°刻み)
Assuming that the circular polarizing plate is attached to an ideal reflector, the black brightness (unit is a standardized value) at the following azimuth and inclination angles (polar angles) can be determined by using the liquid crystal simulation software LCDmaster (manufactured by Shintech). The calculation was performed using. The configuration and calculation conditions of the circular polarizing plate are as follows. Table 1 shows a list of the following calculation conditions and the arrangement relationship of the optically anisotropic layer. The in-plane retardation value (Re) and the thickness direction retardation value (Rth) indicate values at a wavelength of 550 nm. Further, in Table 1, the arranged optically anisotropic layers are shown in the columns of the first layer, the second layer, and the third layer in order from the incident light side.
Structure of circularly polarizing plate:
Example 1: Polarizing element (in order from the incident light side), first optically anisotropic layer, third optically anisotropic layer 1, second optically anisotropic layer, reflector Example 2: (from the incident light side) (In order) Polarizing element, first optically anisotropic layer, third optically anisotropic layer 2, second optically anisotropic layer, reflecting plate Example 3: (in order from the incident light side) polarizing element, first optical different Square layer, 3rd optical anisotropic layer 3, 2nd optically anisotropic layer, reflector Example 4: Polarizing element (in order from the incident light side), 1st optically anisotropic layer, 3rd optical heterogeneous Sex layer 4, second optically anisotropic layer, reflector Example 5: Polarizing element, first optically anisotropic layer, third optically anisotropic layer 5, second optical heterogeneity (in order from the incident light side) Sexual layer, reflector Comparative example 1: Polarizing element, first optically anisotropic layer, second optically anisotropic layer, third optically anisotropic layer 1, reflective plate Comparative Example 2: (in order from the incident light side): Polarizing element (in order from the incident light side), third optically anisotropic layer 1, first optically anisotropic layer, second optically anisotropic layer, reflector Comparative Example 3: Polarizing element (in order from the incident light side) , 1st optical anisotropic layer, 2nd optical anisotropic layer, reflector Comparative example 4: (in order from the incident light side) polarizing element, general 1/2 wavelength plate 1, 3rd optical anisotropic layer 6. General 1/4 wavelength plate 1, Reflector Comparative Example 5: Polarizing element (in order from the incident light side), general 1/2 wavelength plate 2, third optically anisotropic layer 7, general 1/4 wavelength plate 2, reflector Comparative example 6: (in order from the incident light side) polarizing element, general 1/2 wavelength plate 1, general 1/4 wavelength plate 1, third optical anisotropic layer 8. Reflector 1st optically anisotropic layer:
Liquid crystal layer: ZLI-4792 (manufactured by Merck & Co., Ltd.)
The resulting phase difference = 1 / 2λ
Δn1 · d1 = 275 nm
Pre-twist angle = 0 °
Twist angle = -26 °
Liquid crystal layer thickness = 2.136 μm
Second optically anisotropic layer:
Liquid crystal layer: ZLI-4792 (manufactured by Merck & Co., Ltd.)
The resulting phase difference = λ / 4
Δn2 · d2 = 137.5 nm
Pre-twist angle = -26 °
Twist angle = -78 °
Liquid crystal layer thickness = 1.068 μm
Third optically anisotropic layer:
Liquid crystal layer: Polymerizable vertically oriented liquid crystal compound (manufactured by Merck & Co., Inc.)
n x = 1.5283
n y = 1.5283
n z = 1.6725
Liquid crystal layer thickness = 0.60 μm to 1.45 μm
Rth: Hereinafter described in the above 1 to 8 Third optically anisotropic layer 1:
Rth = -120nm
Third optically anisotropic layer 2:
Rth = -115nm
Third optically anisotropic layer 3:
Rth = -130nm
Third optically anisotropic layer 4:
Rth = -80nm
Third optically anisotropic layer 5:
Rth = -150nm
Third optically anisotropic layer 6:
Rth = -174nm
Third optically anisotropic layer 7:
Rth = -209nm
Third optically anisotropic layer 8:
Rth = -133nm
Polarizing element: JET-12 (manufactured by Polatechno Co., Ltd., using spectroscopic data with luminous efficiency correction single transmittance Ys = 41.5% and luminous efficiency correction polarization degree Py = 99.99%, no support layer)
reflector:
Material: Ideal reflector General 1/2 wave plate (HWP) 1:
Material: Cycloolefin polymer (COP)
Nz coefficient = 1.0
General 1/4 wave plate (QWP) 1:
Material: Cycloolefin polymer (COP)
Nz coefficient = 1.0
General 1/2 wave plate (HWP) 2:
Material: Cycloolefin polymer (COP)
Nz coefficient = 1.5
General 1/4 wave plate (QWP) 2:
Material: Cycloolefin polymer (COP)
Nz coefficient = 1.5
Incident light: Natural light (wavelength range: 380 nm to 780 nm)
Tilt angle (polar angle) θ = 40 °, 50 °, and 60 °)
Azimuth Φ = 0 ° to 360 ° (in 5 ° increments)
 上記試験条件において、Nz係数は、屈折率成分n、n及びnの大小関係を示す指標の一つとして、以下の式(2)によって示される値である。
Figure JPOXMLDOC01-appb-M000002
Under the above test conditions, the Nz coefficient is a value represented by the following equation (2) as one of the indexes indicating the magnitude relationship between the refractive index components n x , n y and n z.
Figure JPOXMLDOC01-appb-M000002
 上記計算条件において、ZLI-4792(メルク社製)及びシクロオレフィンポリマー(COP)は、LCDmasterに付属する標準データを用いた。また、重合性垂直配向型液晶化合物(メルク社製)を用いた第3光学異方性層のn、n、及びnは、当該液晶化合物を製膜して得た試験片をアッベ屈折計(DR-M2 ATAGO社製)により測定した。
Figure JPOXMLDOC01-appb-T000003
Under the above calculation conditions, ZLI-4792 (manufactured by Merck & Co., Inc.) and cycloolefin polymer (COP) used the standard data attached to the LCD master. Further, n x , ny , and n z of the third optically anisotropic layer using the polymerizable vertically oriented liquid crystal compound (manufactured by Merck Co., Ltd.) are test pieces obtained by forming a film of the liquid crystal compound. It was measured with a refractometer (manufactured by DR-M2 ATAGO).
Figure JPOXMLDOC01-appb-T000003
 表2は、実施例1~5及び比較例1~6の黒輝度値の評価結果を示す。
 実施例1~5及び比較例1~6の計算において、極角度θ=0°(head-on)における黒輝度値は0.1以下を示しており、偏光素子から入射した光は、円偏光板によって反射板からの反射を十分に抑制していることを確認した。この極角度θ=0°における黒輝度値を基準に評価を行った。なお、この黒輝度値が0またはほぼ0であることは、円偏光板が入射光の反射を抑え、理想的に機能していることを示す。
Table 2 shows the evaluation results of the black luminance values of Examples 1 to 5 and Comparative Examples 1 to 6.
In the calculations of Examples 1 to 5 and Comparative Examples 1 to 6, the black luminance value at the polar angle θ = 0 ° (head-on) is 0.1 or less, and the light incident from the polarizing element is circularly polarized. It was confirmed that the plate sufficiently suppressed the reflection from the reflector. The evaluation was performed based on the black luminance value at this polar angle θ = 0 °. When the black luminance value is 0 or almost 0, it indicates that the circularly polarizing plate suppresses the reflection of the incident light and functions ideally.
 上記の計算結果を用いて、中心が極角度θ=0°(head-on)とし、極角度θ=0°~80°の範囲に対する方位角Φ=0°~360°の黒輝度の分布を等値線図(コンター図)で示した。このとき、黒輝度は、最小0の値から最大10の値の範囲に固定して示した。図4~6は実施例1~3、及び図7~12は比較例1~6のコンター図をそれぞれ示す。実施例1~3のコンター図は、極角度θが0°から80°へ(図の円中心から外円端へ)シフトさせた際の最大輝度値を示す等値線は1.6~1.8であり、これは各比較例よりも小さい値であることから、より広い視野角を示すことが分かった。なお、比較例5の場合では、最大輝度値は10を超えていた。 Using the above calculation results, the center is set to the polar angle θ = 0 ° (head-on), and the distribution of black brightness with an azimuth angle Φ = 0 ° to 360 ° with respect to the range of the polar angle θ = 0 ° to 80 ° is obtained. It is shown in the contour diagram. At this time, the black brightness is fixedly shown in the range of a minimum value of 0 to a maximum value of 10. 4 to 6 show contour diagrams of Examples 1 to 3, and FIGS. 7 to 12 show contour diagrams of Comparative Examples 1 to 6, respectively. In the contour diagrams of Examples 1 to 3, the contour lines showing the maximum luminance values when the polar angle θ is shifted from 0 ° to 80 ° (from the center of the circle to the end of the outer circle in the figure) are 1.6 to 1. It was .8, which was smaller than that of each comparative example, and thus it was found that the viewing angle was wider. In the case of Comparative Example 5, the maximum luminance value exceeded 10.
 さらに斜め方向から見たときの黒輝度の改善効果を定量的に比較するために、上記の計算結果から、以下の記載する極角度θ及び方位角Φの条件で黒輝度値を抽出した。このときの黒輝度値を方位角Φに対してプロットした結果を図13~21に示す。
   極角度θ=θ=40°、50°、60°
   方位角Φ=0°~360°(45°刻み)
Further, in order to quantitatively compare the effect of improving the black brightness when viewed from an oblique direction, the black brightness value was extracted from the above calculation results under the conditions of the polar angle θ and the azimuth angle Φ described below. The results of plotting the black luminance value at this time with respect to the azimuth angle Φ are shown in FIGS. 13 to 21.
Polar angles θ = θ = 40 °, 50 °, 60 °
Azimuth Φ = 0 ° to 360 ° (in 45 ° increments)
 実施例1~3について前記条件でプロットした結果を図13~15に示す。詳細には、第3光学異方性層のRthの範囲が-130nm~-115nmである実施例1~3において、それぞれ、極角度θ=40°、50°、及び60°の黒輝度値には差が殆どなく、前記の各極角度における方位角Φ=0°~360°(45°刻み)の黒輝度の平均値(B)は、0.26~0.68であった。これは、黒輝度が極角度θ=0°(A)に対して、極角度θ=40°、50°、及び60°の斜め方向から見たときの黒輝度が2.7倍~7.6倍に増加すると見積ることができた。また、第3光学異方性層のRthの範囲が-80nm及び-150nmである実施例4及び5の場合について上記同様に計算を行ったところ、黒輝度の増加は、3.2倍~10.0倍であった。このことから、第3光学異方性層のRthの範囲は、好ましくは-130nm~-115nmとすることで斜め方向から見たときの黒輝度をより低下させることできることが分かった。 The results of plotting Examples 1 to 3 under the above conditions are shown in FIGS. 13 to 15. Specifically, in Examples 1 to 3 in which the Rth range of the third optically anisotropic layer is −130 nm to -115 nm, the black luminance values of the polar angles θ = 40 °, 50 °, and 60 °, respectively. There was almost no difference, and the average value (B) of the black luminance of the azimuth angle Φ = 0 ° to 360 ° (in 45 ° increments) at each of the polar angles was 0.26 to 0.68. This is because the black brightness is 2.7 times to 7. when viewed from the polar angles θ = 40 °, 50 °, and 60 ° diagonally with respect to the polar angle θ = 0 ° (A). It could be estimated that it would increase 6 times. Further, when the same calculation as above was performed for the cases of Examples 4 and 5 in which the Rth range of the third optically anisotropic layer was −80 nm and −150 nm, the increase in black brightness was 3.2 times to 10 times. It was 0.0 times. From this, it was found that the black brightness when viewed from an oblique direction can be further reduced by setting the Rth range of the third optically anisotropic layer to preferably −130 nm to -115 nm.
 比較例1~3について前記条件でプロットした結果を図16~18に示す。第3光学異方性層のRthを-120nmに固定し、当該第3光学異方性層の配置を第2光学異方性層の後、あるいは第1光学異方性層の前に配置し、または当該第3光学異方性層を無しとした比較例1~3において、それぞれ、極角度θ=40°、50°、及び60°の黒輝度値は、実施例1~5の場合よりも、いずれも大きい値を示した。また、前記と同様に求めた各極角度における方位角の黒輝度の平均値(B)は、比較例1~2では0.59~1.72、比較例3では1.27~3.88であった。これは、黒輝度が極角度θ=0°(A)に対して、極角度θ=40°、50°、及び60°の斜め方向からの見たときの黒輝度が、比較例1~2は6.3倍~18.2倍、比較例3は13.4倍~41.1倍に増加すると見積ることができた。この結果より、実施例1~5の構成は、従来の比較例1~3よりも視野角特性が向上することが示された。 The results of plotting Comparative Examples 1 to 3 under the above conditions are shown in FIGS. 16 to 18. The Rth of the third optically anisotropic layer is fixed at −120 nm, and the third optically anisotropic layer is arranged after the second optically anisotropic layer or before the first optically anisotropic layer. Or, in Comparative Examples 1 to 3 without the third optically anisotropic layer, the black brightness values at the polar angles θ = 40 °, 50 °, and 60 ° are higher than those in Examples 1 to 5, respectively. Both showed large values. Further, the average value (B) of the black brightness of the azimuth angle at each polar angle obtained in the same manner as described above is 0.59 to 1.72 in Comparative Examples 1 and 2, and 1.27 to 3.88 in Comparative Example 3. Met. This is because the black brightness is the polar angle θ = 0 ° (A), and the black brightness when viewed from the oblique directions of the polar angles θ = 40 °, 50 °, and 60 ° is Comparative Examples 1 and 2. Was estimated to increase from 6.3 times to 18.2 times, and Comparative Example 3 was estimated to increase from 13.4 times to 41.1 times. From this result, it was shown that the configurations of Examples 1 to 5 have improved viewing angle characteristics as compared with the conventional Comparative Examples 1 to 3.
 比較例4~6において、当該条件の位相差板を備えた円偏光板を備えた表示体が最も広視野角化するときのRth値(比較例4:-174nm、比較例5:-209nm、及び比較例6:-133nm)を有する第3光学異方性層を用いた。実施例1~5と同様に、それぞれ、極角度θ=40°、50°、及び60°の黒輝度値を求め、プロットした結果を図19~21に示す。いずれの条件において、黒輝度値は、実施例1~5だけでなく比較例1~3に対しても、大きい値を示しており、従来のCOP系フィルムを用いる比較例4~6の構成では、第3光学異方性層を配置しても広視野角化を図ることができなかった。 In Comparative Examples 4 to 6, the Rth value when the display body provided with the circular polarizing plate provided with the retardation plate under the relevant conditions has the widest viewing angle (Comparative Example 4: -174 nm, Comparative Example 5: -209 nm, And Comparative Example 6: -133 nm), a third optically anisotropic layer was used. Similar to Examples 1 to 5, black luminance values at polar angles θ = 40 °, 50 °, and 60 ° were obtained and plotted, and the plotted results are shown in FIGS. 19 to 21. Under any condition, the black luminance value shows a large value not only in Examples 1 to 5 but also in Comparative Examples 1 to 3, and in the configuration of Comparative Examples 4 to 6 using the conventional COP-based film, the black luminance value shows a large value. Even if the third optically anisotropic layer was arranged, the wide viewing angle could not be achieved.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上の結果より、本発明の円偏光板の構成において、円偏光板の広帯域化は、第3光学異方性層の有無及びそのRth値の最適化だけでなく、第1光学異方性層と第2光学異方性層とに対する第3光学異方性層の配置を選定することにより、従来構成の円偏光板よりも広帯域化することができる。そのため、本発明により、例えば、有機EL表示装置等の黒表示において斜め方向から見たときの光抜けの少ない黒表示を得ることができる。 From the above results, in the configuration of the circularly polarizing plate of the present invention, widening the bandwidth of the circularly polarizing plate not only optimizes the presence or absence of the third optically anisotropic layer and its Rth value, but also optimizes the first optically anisotropic layer. By selecting the arrangement of the third optically anisotropic layer with respect to the second optically anisotropic layer and the second optically anisotropic layer, it is possible to widen the bandwidth as compared with the conventional circular polarizing plate. Therefore, according to the present invention, for example, in a black display of an organic EL display device or the like, it is possible to obtain a black display with less light leakage when viewed from an oblique direction.
 また、本発明の位相差板は、極角度0°における黒輝度をさらに低下させるために、最適な波長分散特性(位相差の波長依存性を意味する)を有する第1及び第2光学異方性層を備えてもよい。同様に、第3光学異方性層においては、当該波長分散特性を負の分散(逆波長分散)とすることで、斜め方向から見たときの黒表示における黒輝度をさらに低減することができる。 Further, the retardation plate of the present invention has first and second optical anisotropy having optimum wavelength dispersion characteristics (meaning the wavelength dependence of the phase difference) in order to further reduce the black brightness at a polar angle of 0 °. It may have a sex layer. Similarly, in the third optically anisotropic layer, by setting the wavelength dispersion characteristic to negative dispersion (reverse wavelength dispersion), it is possible to further reduce the black brightness in the black display when viewed from an oblique direction. ..
 本願は、斜め方向から見た時の黒表示における色付き又は反射率を低減する位相差板、それを備えた円偏光板、並びに前記円偏光板を備える液晶表示装置及び有機EL表示装置を提供できる。例えば、有機EL表示装置は、より広い視聴角を与えることができるから、表示装置の設置と視聴場所が固定される車載等に好適に用いることができる。また、ロール・トゥ・ロールの貼りあわせのみで円偏光板を作製可能とする製造方法を提供できるから、大型の表示装置用の円偏光板の製造にも対応することができる。 The present application can provide a retardation plate that reduces coloring or reflectance in a black display when viewed from an oblique direction, a circular polarizing plate provided with the retarding plate, and a liquid crystal display device and an organic EL display device provided with the circular polarizing plate. .. For example, since the organic EL display device can provide a wider viewing angle, it can be suitably used in an in-vehicle environment where the display device is installed and the viewing place is fixed. Further, since it is possible to provide a manufacturing method capable of manufacturing a circularly polarizing plate only by laminating roll-to-roll, it is possible to support the manufacturing of a circularly polarizing plate for a large-sized display device.
101     本発明の位相差板
102     第1光学異方性層
103     第2光学異方性層
104     第3光学異方性層
105     本発明の円偏光板
106     偏光素子(偏光板)
107     捩れネマティック液晶
108     基材1(配向膜)
109     基材2(配向膜)
201     吸収軸方向(0°)
202     ラビング方向(配向方向)(0°)
203     捩れ角方向(26°)
204     ラビング方向(配向方向)(26°)
205     捩れ角方向(104°)
206     201に平行を示す
101 Phase difference plate 102 of the present invention 102 First optically anisotropic layer 103 Second optically anisotropic layer 104 Third optically anisotropic layer 105 Circularly polarizing plate 106 of the present invention Polarizing element (polarizing plate)
107 Twisted nematic liquid crystal 108 Base material 1 (alignment film)
109 Base material 2 (alignment film)
201 Absorption axis direction (0 °)
202 Rubbing direction (orientation direction) (0 °)
203 Twist angle direction (26 °)
204 Rubbing direction (orientation direction) (26 °)
205 Twist angle direction (104 °)
206 Parallel to 201

Claims (7)

  1.  棒状液晶化合物が厚み方向を螺旋軸に配向し、実質的に1/2波長の面内位相差値(Re)を有する第1光学異方性層と、
     棒状液晶化合物が厚み方向を螺旋軸に配向し、実質的に1/4波長の面内位相差値(Re)を有する第2光学異方性層と
    を備える位相差板であって、
     前記第1及び第2光学異方性層の間に下記式(1):
     
       n≒n<n     (1)
     
    (式中n及びnは直交するプレート平面方向の屈折率、nはプレート平面方向に対して垂直方向の屈折率を示す)
    を満足する第3光学異方性層を備える、
     ことを特徴とする位相差板。
    A first optically anisotropic layer in which the rod-shaped liquid crystal compound is oriented in the thickness direction along the spiral axis and has an in-plane retardation value (Re) of substantially 1/2 wavelength.
    A retardation plate in which a rod-shaped liquid crystal compound is oriented in a spiral axis in the thickness direction and includes a second optically anisotropic layer having an in-plane retardation value (Re) of substantially 1/4 wavelength.
    Between the first and second optically anisotropic layers, the following equation (1):

    n x ≈ n y <n z (1)

    (In the equation, n x and ny indicate the refractive index in the plate plane direction orthogonal to each other, and nz indicates the refractive index in the direction perpendicular to the plate plane direction).
    The third optically anisotropic layer satisfying the above is provided.
    A retardation plate characterized by that.
  2.  前記第1光学異方性層の捩れ角が実質的に26°又は実質的に-26°であり、前記第2光学異方性層の捩れ角が、前記第1光学異方性層の捩れ角から実質的に78°又は実質的に-78°にある、請求項1に記載の位相差板。 The twist angle of the first optically anisotropic layer is substantially 26 ° or substantially −26 °, and the twist angle of the second optically anisotropic layer is the twist of the first optically anisotropic layer. The retardation plate according to claim 1, which is substantially 78 ° or substantially −78 ° from an angle.
  3.  前記第3光学異方性層は垂直配向型液晶化合物を有する層であり、当該厚み方向位相差値(Rth)が-150~-80nmである、請求項1又は2に記載の位相差板。 The retardation plate according to claim 1 or 2, wherein the third optically anisotropic layer is a layer having a vertically oriented liquid crystal compound and has a thickness direction retardation value (Rth) of −150 to −80 nm.
  4.  偏光素子及び請求項1~3のいずれかに記載の位相差板を備えた円偏光板。 A circular polarizing plate provided with a polarizing element and a retardation plate according to any one of claims 1 to 3.
  5.  前記偏光素子は二色性のアゾ染料を含み、その色相が無彩色である、請求項4に記載の円偏光板。 The circular polarizing plate according to claim 4, wherein the polarizing element contains a dichroic azo dye and its hue is achromatic.
  6.  請求項4又は5に記載の円偏光板を備えた有機EL表示装置。 An organic EL display device provided with the circular polarizing plate according to claim 4 or 5.
  7.  請求項4又は5に記載の円偏光板を備えた液晶表示装置。 A liquid crystal display device provided with the circular polarizing plate according to claim 4 or 5.
PCT/JP2020/035704 2019-09-27 2020-09-23 Retardation plate, and circular polarization plate, liquid crystal display device, and organic el display device including retardation plate WO2021060247A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080062441.8A CN114341684A (en) 2019-09-27 2020-09-23 Retardation plate, and circularly polarizing plate, liquid crystal display device and organic EL display device each having the retardation plate
KR1020227008838A KR20220067538A (en) 2019-09-27 2020-09-23 A retardation plate, and a circularly polarizing plate provided with the same, a liquid crystal display device, and an organic electroluminescent display device
JP2021548915A JPWO2021060247A1 (en) 2019-09-27 2020-09-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-177691 2019-09-27
JP2019177691 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021060247A1 true WO2021060247A1 (en) 2021-04-01

Family

ID=75166162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035704 WO2021060247A1 (en) 2019-09-27 2020-09-23 Retardation plate, and circular polarization plate, liquid crystal display device, and organic el display device including retardation plate

Country Status (4)

Country Link
JP (1) JPWO2021060247A1 (en)
KR (1) KR20220067538A (en)
CN (1) CN114341684A (en)
WO (1) WO2021060247A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188033A (en) * 2005-12-16 2007-07-26 Nitto Denko Corp Elliptically polarizing plate and image display device using the same
JP2007286141A (en) * 2006-04-13 2007-11-01 Sony Corp Circularly polarizing element, liquid crystal panel and electronic equipment
JP2014209220A (en) * 2013-03-25 2014-11-06 富士フイルム株式会社 Retardation plate for circularly polarizing plate, circularly polarizing plate, and organic el (electroluminescence) display device
JP2015040904A (en) * 2013-08-20 2015-03-02 大日本印刷株式会社 Optical film, image display device, transfer body for optical film, manufacturing method of optical film, and manufacturing method of transfer body for optical film
JP2015079230A (en) * 2013-09-10 2015-04-23 住友化学株式会社 Manufacturing method for laminate
WO2016043219A1 (en) * 2014-09-19 2016-03-24 富士フイルム株式会社 Optical film, illuminaction device, and image display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5876440B2 (en) 2013-04-25 2016-03-02 大日本印刷株式会社 Image display device
JP2015210459A (en) * 2014-04-30 2015-11-24 日東電工株式会社 Circularly polarizing plate for organic el display device, and organic el display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188033A (en) * 2005-12-16 2007-07-26 Nitto Denko Corp Elliptically polarizing plate and image display device using the same
JP2007286141A (en) * 2006-04-13 2007-11-01 Sony Corp Circularly polarizing element, liquid crystal panel and electronic equipment
JP2014209220A (en) * 2013-03-25 2014-11-06 富士フイルム株式会社 Retardation plate for circularly polarizing plate, circularly polarizing plate, and organic el (electroluminescence) display device
JP2015040904A (en) * 2013-08-20 2015-03-02 大日本印刷株式会社 Optical film, image display device, transfer body for optical film, manufacturing method of optical film, and manufacturing method of transfer body for optical film
JP2015079230A (en) * 2013-09-10 2015-04-23 住友化学株式会社 Manufacturing method for laminate
WO2016043219A1 (en) * 2014-09-19 2016-03-24 富士フイルム株式会社 Optical film, illuminaction device, and image display device

Also Published As

Publication number Publication date
CN114341684A (en) 2022-04-12
TW202131031A (en) 2021-08-16
JPWO2021060247A1 (en) 2021-04-01
KR20220067538A (en) 2022-05-24

Similar Documents

Publication Publication Date Title
CN110192130B (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP5330529B2 (en) Liquid crystal display
US20160291373A1 (en) Liquid crystal panel and liquid crystal display
WO2010087058A1 (en) Liquid crystal display apparatus
WO2011067993A1 (en) Liquid crystal display device
WO2010137372A1 (en) Liquid crystal display device
JP2004318060A (en) Optical element, polarizing element, lighting device, and liquid crystal display device
JP2010152374A (en) Polarizer, optical film using the same, and image display device using them
KR20040010316A (en) Optical film and liquid crystal display device using the same
CN111201484B (en) Stacked body and liquid crystal display device including the same
WO2012133137A1 (en) Liquid crystal display device
KR20120055129A (en) Antireflective polarizing plate and image display apparatus comprising the same
JP2003270443A (en) Elliptically polarizing plate and liquid crystal display device
WO2013111867A1 (en) Liquid crystal display device
JP2017138401A (en) Optical film and image display device
KR20190138428A (en) Laminate and liquid crystal display comprising the same
WO2020203316A1 (en) Phase difference film, polarizing plate, and image display device
JP2002139623A (en) Optical sheet, polarization plate and liquid crystal display
US9618795B2 (en) Liquid crystal panel and liquid crystal display
WO2021060247A1 (en) Retardation plate, and circular polarization plate, liquid crystal display device, and organic el display device including retardation plate
WO2020115977A1 (en) Polarizing plate with retardation layer and image display device using same
JP6756112B2 (en) Optical film and image display device
KR102290943B1 (en) A set of polarizing plates and an IPS mode liquid crystal display using the same
US20190302520A1 (en) Color filter substrate and liquid crystal display device
WO2012133155A1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548915

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869678

Country of ref document: EP

Kind code of ref document: A1