WO2021060031A1 - Polyamide resin composition for sliding components, and sliding component - Google Patents
Polyamide resin composition for sliding components, and sliding component Download PDFInfo
- Publication number
- WO2021060031A1 WO2021060031A1 PCT/JP2020/034552 JP2020034552W WO2021060031A1 WO 2021060031 A1 WO2021060031 A1 WO 2021060031A1 JP 2020034552 W JP2020034552 W JP 2020034552W WO 2021060031 A1 WO2021060031 A1 WO 2021060031A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyamide resin
- resin composition
- thermoplastic elastomer
- reactive functional
- sliding parts
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/26—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
Definitions
- the present invention relates to a polyamide resin composition, and more particularly to a polyamide resin composition suitably used for molding sliding parts.
- Polyamide resin is a molding material with excellent slidability due to its crystallinity, but in order to obtain better sliding properties, solid lubricants such as molybdenum disulfide, graphite and fluororesin, various lubricating oils, or silicones It is known to blend liquid lubricants such as oil.
- Patent Document 1 a method of blending a modified styrene polymer and a modified high-density polyethylene having a specific range of molecular weight (Patent Document 1), and a high-viscosity crystalline polyamide resin are used.
- Patent Document 2 a method of blending a modified polyolefin resin has been proposed.
- Such a polyamide resin composition has made it possible to provide a molded product having excellent sliding characteristics without the above-mentioned drawbacks, but in recent years, trends such as weight reduction of the molded product and complication of the shape of the molded product have been made. Therefore, higher levels of characteristics such as improved moldability, improved heat stability, and improved sliding characteristics are required.
- the present invention provides a polyamide resin composition that is suitably used for molding sliding parts that are required to have excellent moldability, heat stability, and toughness, as well as excellent wear resistance and sliding stability.
- the purpose is.
- the present inventors have made that the antioxidants and mold release agents added to improve moldability and heat resistance improve the sliding characteristics, and further solid lubrication.
- the sliding characteristics are improved by adding an agent to a polyamide resin composition to maintain toughness, and have reached the present invention.
- the present invention has the following configuration.
- the modified polyolefin resin (B) having a reactive functional group capable of reacting with the terminal group and / or the main chain amide group of the polyamide resin (A) and / or the polyamide resin (A).
- a thermoplastic elastomer (C) having a reactive functional group capable of reacting with a terminal group and / or a main chain amide group, an antioxidant (D), a mold release agent (E), and a solid lubricant (F).
- the modified polyolefin resin (B) and / or the thermoplastic elastomer (C) is a polyamide resin composition for sliding parts dispersed in a matrix of the polyamide resin (A) in a domain having a particle size of 5 ⁇ m or less.
- the antioxidant (D) and the release agent (E) are compounds that suppress the deactivation of the reactive functional group of the modified polyolefin resin (B) and the thermoplastic elastomer (C).
- the polyamide resin composition of the present invention is not only excellent in moldability, heat stability and toughness, but also has improved wear resistance and further improved sliding characteristics such as a small change in friction coefficient. Further, the polyamide resin composition of the present invention can achieve both low wear resistance and low frictional property.
- the polyamide resin composition for sliding parts of the present invention is a modified polyolefin resin having a crystalline polyamide resin (A), a reactive functional group capable of reacting with a terminal group and / or a main chain amide group of the polyamide resin (A).
- B (hereinafter, also referred to as modified polyolefin resin (B)) and / or a thermoplastic elastomer (C) having a reactive functional group capable of reacting with a terminal group and / or a main chain amide group of the polyamide resin (A).
- a thermoplastic elastomer (C) (Hereinafter, also referred to as a thermoplastic elastomer (C)), an antioxidant (D), a mold release agent (E), and a solid lubricant (F).
- the blending amount of each component is when the total of all the resin components of the crystalline polyamide resin (A), the modified polyolefin resin (B), the thermoplastic elastomer (C), and the solid lubricant (F) is 100 parts by mass. Expressed in parts by mass.
- the blending amount is the content in the polyamide resin composition as it is.
- the crystalline polyamide resin (A) is not particularly limited as long as it is a crystalline polymer having an amide bond (-NHCO-) in the main chain, and for example, polyamide 6 (NY6), polyamide 66 (NY66), and polyamide. 46 (NY46), Polyamide 11 (NY11), Polyamide 12 (NY12), Polyamide 610 (NY610), Polyamide 612 (NY612), Polymethaxylylene adipamide (MXD6), Hexamethylenediamine-terephthalic acid polymer (6T) , Hexamethylenediamine-terephthalic acid and adipic acid polymer (66T), hexamethylenediamine-terephthalic acid and ⁇ -caprolactam copolymer (6T / 6), trimethylhexamethylenediamine-terephthalic acid polymer (TMD-T), Metaxylylene diamine and adipic acid and isophthalic acid copolymer (MXD-6 / I), trihexamethylened
- the relative viscosity of the crystalline polyamide resin (A) is not particularly limited, but is measured in a 96% sulfuric acid solution (polyamide resin concentration 1 g / dl, temperature 25 ° C.), and is preferably 2.0 to 5.0. , More preferably 2.0 to 3.5.
- the modified polyolefin resin (B) is a modified polyolefin resin.
- the polyolefin resin include high-density polyethylene, low-density polyethylene, ultra-high molecular weight polyethylene, linear low-density polyethylene, polypropylene, poly (1-butene), poly (4-methylpentene) and the like. These may be used alone or in combination of two or more. Of these, it is preferable to use high-density polyethylene.
- the modified polyolefin resin (B) has a terminal group (amino group or carboxy group) and / or a main chain amide group of the polyamide resin (A) in order to improve compatibility with the crystalline polyamide resin (A). It has a reactive functional group that can react. Examples of the reactive functional group include a carboxy group, an acid anhydride group, an epoxy group, an oxazoline group, an amino group, an isocyanate group and the like. Of these, an acid anhydride group is preferable from the viewpoint of high reactivity with the polyamide resin (A).
- the content of the reactive functional group is preferably 0.05 to 8% by mass, more preferably 0.1 to 5% by mass in the modified polyolefin resin (B).
- the method for producing the modified polyolefin resin (B) having the reactive functional group is not particularly limited, but a method for reacting the compound having the reactive functional group in the step of producing the polyolefin resin, the pellet of the polyolefin resin and the reactivity. Examples thereof include a method in which a compound having a functional group and the like are mixed and kneaded with an extruder or the like to cause a reaction.
- the blending amount of the modified polyolefin resin (B) is not particularly limited as long as the modified polyolefin resin (B) can be dispersed in the matrix of the polyamide resin (A) in a domain having a particle size of 5 ⁇ m or less, but is usually all. It is 0.5 to 10% by mass, preferably 1 to 8% by mass, and more preferably 2 to 6% by mass with respect to 100% by mass of the resin component.
- thermoplastic elastomer (C) is not particularly limited, and examples thereof include styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polyester-based thermoplastic elastomers, and polyurethane-based thermoplastic elastomers. These may be used alone or in combination of two or more.
- the styrene-based thermoplastic elastomer is not particularly limited, and for example, styrene / butadiene / styrene block copolymer (SBS), styrene / ethylene-butylene / styrene block copolymer (SEBS) which is a hydrogenated product thereof, styrene / butadiene.
- SBS styrene / butadiene / styrene block copolymer
- SEBS styrene / ethylene-butylene / styrene block copolymer
- SBR Styrene
- HBR hydrogenated styrene / ethylene / butylene copolymer
- SIS styrene block copolymer
- SEPS styrene block copolymer
- the olefin-based thermoplastic elastomer is not particularly limited, and for example, rubbers such as ethylene / propylene / diene rubber (EPDM), ethylene / propylene rubber (EPR), and butyl rubber (IIR), dynamically crosslinked olefin-based thermoplastic elastomers, and flexibility. Examples thereof include ethylene-based copolymers having a certain content.
- the polyamide-based thermoplastic elastomer is not particularly limited, and examples thereof include a polyether ester amide and a polyester amide having a crystalline polyamide having a high melting temperature as a hard segment and a polyether having a low glass transition temperature or a polyester as a soft segment. Be done.
- the polyester-based thermoplastic elastomer is not particularly limited, and for example, the block common weight of the polyether polyester and the polyester polyester having a crystalline polyester having a high melting temperature as a hard segment and a polyether having a low glass transition temperature or a polyester as a soft segment. Coalescence and the like can be mentioned.
- the polyurethane-based thermoplastic elastomer is not particularly limited, and examples thereof include polyether polyurethane and polyester polyurethane having a polyester having a high crystalline and high melting temperature as a hard segment and a polyether having a low glass transition temperature or a polyester as a soft segment. ..
- thermoplastic elastomers styrene-based and / or olefin-based thermoplastic elastomers are preferable, more preferably styrene-based thermoplastic elastomers, and even more preferably SEBS, from the viewpoint of the balance between the toughness improving effect and the elastic modulus. is there.
- the thermoplastic elastomer (C) may be combined with a terminal group (amino group or carboxy group) and / or a main chain amide group of the polyamide resin (A) in order to improve compatibility with the crystalline polyamide resin (A). It has a reactive functional group that can react. Examples of the reactive functional group include a carboxy group, an acid anhydride group, an epoxy group, an oxazoline group, an amino group, an isocyanate group and the like. Of these, an acid anhydride group is preferable from the viewpoint of high reactivity with the polyamide resin (A).
- the content of the reactive functional group is preferably 0.05 to 8% by mass, more preferably 0.1 to 5% by mass in the thermoplastic elastomer (C).
- the method for producing the thermoplastic elastomer (C) having the reactive functional group is not particularly limited, but a method for reacting the compound having the reactive functional group in the step of producing the thermoplastic elastomer, the pellet of the thermoplastic elastomer and the above. Examples thereof include a method in which a compound having a reactive functional group or the like is mixed and kneaded with an extruder or the like to react.
- the blending amount of the thermoplastic elastomer (C) is not particularly limited as long as the thermoplastic elastomer (C) can be dispersed in the matrix of the polyamide resin (A) in a domain having a particle size of 5 ⁇ m or less, but is usually all. It is 0.1 to 10% by mass, preferably 1 to 7% by mass with respect to 100% by mass of the resin component.
- the antioxidant (D) is preferably a compound that suppresses the deactivation of the reactive functional group of the modified polyolefin resin (B) and the thermoplastic elastomer (C). "Suppressing the inactivation of a reactive functional group” means “does not react with a reactive functional group”. That is, the antioxidant (D) is a compound that does not prevent the modified polyolefin resin (B) and the thermoplastic elastomer (C) from being finely dispersed in the matrix of the polyamide resin (A).
- the antioxidant (D) is not particularly limited, and for example, when the reactive functional group of the modified polyolefin resin (B) and the thermoplastic elastomer (C) is an acid anhydride group, it reacts with the acid anhydride group.
- examples thereof include organic antioxidants such as hindered phenolic antioxidants, sulfur-based antioxidants and phosphorus-based antioxidants, and thermal stabilizers, which do not have functional groups, and are preferably hindered phenolic oxidation. It is an inhibitor. These may be used alone or in combination of two or more.
- Examples of the functional group that reacts with the acid anhydride group include an amino group and a hydroxyl group.
- the phenolic hydroxyl group having a hindered phenol structure does not correspond to a functional group that reacts with an acid anhydride group.
- Amine-based antioxidants are not preferable because they react with the reactive functional groups to inactivate them.
- the blending amount of the antioxidant (D) is preferably 0.01 to 1 part by mass, and more preferably 0.1 to 0.5 part by mass with respect to 100 parts by mass of the total resin component.
- the blending amount of the antioxidant (D) is within the above range, it not only contributes to the improvement of the slidability and toughness of the polyamide resin composition, but also as an appropriate prescription amount according to the amount of the polyamide resin composition. , It is possible to prevent oxidative deterioration over time.
- the release agent (E) is preferably a compound that suppresses the deactivation of the reactive functional group of the modified polyolefin resin (B) and the thermoplastic elastomer (C). "Suppressing the inactivation of a reactive functional group” means “does not react with a reactive functional group”. That is, the release agent (E) is a compound that does not prevent the modified polyolefin resin (B) and the thermoplastic elastomer (C) from being finely dispersed in the matrix of the polyamide resin (A).
- the release agent (E) is not particularly limited, and examples thereof include higher fatty acid ester compounds, amide compounds, polyethylene wax, silicone, and polyethylene oxide. These may be used alone or in combination of two or more.
- the release agent (E) is preferably a higher fatty acid ester compound.
- the higher fatty acid is a fatty acid having more than 10 carbon atoms, preferably a fatty acid having 11 to 30 carbon atoms.
- the metal salt compound is not preferable because it reacts with the reactive functional group to inactivate it.
- the blending amount of the release agent (E) is preferably 0.05 to 1 part by mass, and more preferably 0.1 to 0.8 parts by mass with respect to 100 parts by mass of the total resin component.
- the blending amount of the release agent (E) is within the above range, not only the slidability and toughness of the polyamide resin composition can be improved, but also an appropriate release property can be ensured.
- the antioxidant (D) and the mold release agent (E) do not prevent the modified polyolefin resin (B) and the thermoplastic elastomer (C) from being finely dispersed in the matrix of the polyamide resin (A). Therefore, the modified polyolefin resin (B) and the thermoplastic elastomer (C) efficiently react with the polyamide resin (A) and are finely dispersed in the matrix of the polyamide resin (A) in domains having a particle size of 5 ⁇ m or less. .. As a result, it is considered that the slidability improving effect of the modified polyolefin resin (B) and the toughness improving effect of the thermoplastic elastomer (C) work effectively, and the unique effect of the present invention is exhibited.
- the particle size is preferably 4 ⁇ m or less, more preferably 3.5 ⁇ m or less.
- the lower limit of the particle size is not particularly limited, but from the viewpoint of fluidity, it is preferably 1 ⁇ m or more, and more preferably 2 ⁇ m or more.
- the solid lubricant (F) contributes to the improvement of surface friction characteristics and has the effect of suppressing the decrease in toughness.
- the solid lubricant (F) is unique to the present invention. It is considered that the effect is exhibited.
- the solid lubricant (F) is not particularly limited, but a fluorine-based lubricant and an acrylic-modified polyorganosiloxane are preferable. These may be used alone or in combination of two or more.
- fluorine-based lubricant examples include tetrafluoroethylene resin (PTFE), perfluoro-alkoxy resin (PFA), tetrafluoroethylene-propylene hexafluoride copolymer resin (FEP), and tetrafluoroethylene-ethylene.
- PTFE tetrafluoroethylene resin
- PFA perfluoro-alkoxy resin
- FEP tetrafluoroethylene-propylene hexafluoride copolymer resin
- tetrafluoroethylene-ethylene examples include a copolymer resin (ETFE), a vinylidene fluoride resin (PVDF), and an ethylene trifluorochloride resin (PCTFE).
- PTFE is preferable from the viewpoint of heat resistance, sliding characteristics, and the like.
- the average particle size of the fluorine-based lubricant is preferably 1 to 200 ⁇ m, more preferably 7 to 100 ⁇ m, and even more preferably 10 to 50 ⁇ m.
- the average particle size exceeds 200 ⁇ m, the dispersibility of the fluorine-based lubricant in the matrix of the polyamide resin (A) deteriorates, and the mechanical strength of the molded product tends to decrease.
- the average particle size is less than 1 ⁇ m, the particles of the fluorine-based lubricant tend to cause secondary agglutination, it becomes difficult to mix them uniformly, and the mechanical strength of the molded product tends to decrease.
- acrylic-modified polyorganosiloxane examples include polyorganosiloxane obtained by graft-copolymerizing at least a (meth) acrylic acid ester.
- a mixture of 70% by mass or more of the (meth) acrylic acid ester and 30% by mass or less of other copolymerizable monomers is grafted onto the polyorganosiloxane at a mass ratio of 5/95 to 95/5.
- a polymer is preferable.
- Examples of the (meth) acrylic acid ester include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-propyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, and isooctyl acrylate.
- Acrylic acid esters such as n-octyl acrylate, 2-hydroxyethyl acrylate, 2-methoxyethyl acrylate; methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, methacrylic
- methacrylic acid esters such as isobutyl acid acid, n-hexyl methacrylate, 2-ethylhexyl methacrylate, n-lauryl methacrylate, 2-hydroxyethyl methacrylate and 2-ethoxyethyl methacrylate. These may be used alone or in combination of two or more. Of these, it is preferable to use methyl methacrylate as at least one component.
- Examples of the other copolymerizable monomer include styrene compounds such as styrene, vinyltoluene and ⁇ -methylstyrene; unsaturated nitriles such as acrylonitrile and methacrylic nitrile; halogenated compounds such as vinyl chloride and vinylidene chloride.
- Olefin Olefin; Vinyl esters such as vinyl acetate and vinyl propionate; Unsaturated amides such as acrylamide, methacrylic acid and N-methylol acrylamide; Double bonds such as unsaturated carboxylic acids such as acrylic acid, methacrylic acid and maleic anhydride Examples thereof include polyunsaturated monomers such as ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, allyl methacrylate, triallyl cyanurate, and triallyl isocyanurate. These may be used alone or in combination of two or more.
- the average particle size of the acrylic-modified polyorganosiloxane is preferably 1 to 500 ⁇ m, more preferably 10 to 400 ⁇ m, and even more preferably 30 to 350 ⁇ m.
- the average particle size exceeds 500 ⁇ m, the dispersibility of the acrylic-modified polyorganosiloxane in the matrix of the polyamide resin (A) deteriorates, and the mechanical strength of the molded product tends to decrease.
- the average particle size is less than 1 ⁇ m, the particles of the acrylic-modified polyorganosiloxane tend to cause secondary agglutination, it becomes difficult to mix them uniformly, and the mechanical strength of the molded product tends to decrease.
- the blending amount of the solid lubricant (F) is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, based on 100% by mass of the total resin components. When it is 0.1% by mass or more, wear resistance, sliding stability, and surface lubricity are effectively improved. On the other hand, if it is 20% by mass or less, the mechanical properties of the polyamide resin composition, particularly the toughness, are effectively improved.
- the polyamide resin composition of the present invention as long as it does not prevent the modified polyolefin resin (B) and the thermoplastic elastomer (C) from being finely dispersed in the matrix of the polyamide resin (A), it is described above (A). )-(F)
- carbon black, copper oxide, alkali metal halide, light or heat stabilizer, crystal nucleating agent, and charge, which are weather resistance improvers which are blended in the conventional polyamide resin composition.
- Additives such as inhibitors, pigments, dyes and coupling agents may be added. Further, by blending the filler within the range that does not impair the toughness of the polyamide resin composition, the strength and rigidity of the molded product can be significantly improved.
- Fillers include, for example, glass fiber, carbon fiber, metal fiber, aramid fiber, asbestos, potassium titanate whisker, wallastnite, glass flakes, glass beads, talc, mica, clay, calcium carbonate, barium sulfate, titanium oxide. , Aluminum oxide and the like.
- the polyamide resin composition of the present invention preferably occupies 70% by mass or more, more preferably 80% by mass or more, and occupies 90% by mass or more in total of the above-mentioned components (A) to (F). Is even more preferable.
- the polyamide resin composition of the present invention is produced, for example, by kneading each component using a kneading device such as a single-screw extruder, a twin-screw extruder, or a pressure kneader.
- the kneading device is preferably a twin-screw extruder.
- the components (A) to (F) and, depending on the application, pigments and the like are mixed and charged into a twin-screw extruder.
- a polyamide resin composition having excellent slidability can be produced by uniformly kneading with a twin-screw extruder.
- the kneading temperature of the twin-screw extruder is preferably 220 to 300 ° C., and the kneading time is preferably about 2 to 15 minutes.
- the polyamide resin composition of the present invention can be widely used as a raw material for sliding parts such as electric / electronic parts, automobile parts, building parts, and industrial parts, which are required to have slidability.
- sliding parts include bearings, gears, door checkers, chain guide parts, and the like.
- the raw materials used in the examples and comparative examples are as follows.
- (A1) to (A3) were used as the crystalline polyamide resin (A).
- (A1) Polyamide 66 (RV 3.4): EPR34W (manufactured by Shanghai Shinma Plastics Technology Co., Ltd.), melting point 265 ° C.
- (A2) Polyamide 66 (RV 2.8): Vydyne 21FSR (manufactured by Ascend), melting point 265 ° C.
- Polyamide 66 (RV 2.4): EPR24 (manufactured by Shanghai Shinma Plastics Technology Co., Ltd.), melting point 265 ° C.
- (B1) and (B2) were used as the modified polyolefin resin (B).
- thermoplastic elastomer (C1) and (C2) were used as the thermoplastic elastomer (C).
- (D1) and (D2) were used as the antioxidants (D).
- (E1) to (E3) were used as the release agent (E).
- (F1) to (F3) were used as the solid lubricant (F).
- the average particle size was measured by the following method. Each solid lubricant was observed and photographed with a differential interference microscope. Ten particles were arbitrarily selected from the particles in the micrograph, the major axis of the selected particles was measured, and the average value was taken as the average particle size.
- each raw material was weighed at the blending ratios of the polyamide resin compositions shown in Tables 1 and 2, mixed with a tumbler, and then put into a twin-screw extruder.
- the set temperature of the twin-screw extruder was 250 ° C. to 300 ° C., and the kneading time was 5 to 10 minutes.
- various evaluation samples were molded by an injection molding machine.
- the cylinder temperature of the injection molding machine was 250 ° C. to 290 ° C., and the mold temperature was 80 ° C.
- a molded evaluation sample was cut out and a cross section was prepared using a microtome equipped with a glass knife. The prepared cross section was observed with a differential interference microscope and photographed.
- 10 domains having the largest dispersion diameter are arbitrarily selected, the major axis of the selected domain is measured, and the average value is measured as a grain. The diameter was set.
- Examples 1 to 13 a polyamide resin composition having a Charpy impact strength of 6 kJ / m 2 or more, a low amount of wear and a low coefficient of dynamic friction, and both toughness and slidability has been obtained. In addition, the tensile elastic modulus and tensile elongation are not significantly impaired. In Comparative Examples 1 to 3, brittle surface fracture during sliding cannot be suppressed only by the polyolefin resin alloy due to lack of toughness, and the amount of wear is large. In Comparative Examples 4 to 7, although the toughness is sufficient, the tensile elastic modulus is not sufficient, the dust is sunk into the material surface, and is also easily worn, and the sliding modification effect of the polyolefin resin is difficult to work.
- Comparative Example 8 or 12 is not suitable because it is formulated with an unmodified polyolefin resin or an unmodified thermoplastic elastomer, so that it is difficult to form a finely dispersed domain and the particle size is such that it is difficult to develop excellent physical properties. .. Since Comparative Examples 9 to 11 each use an amine-based antioxidant or a fatty acid metal salt, they react with the reactive functional groups of the polyolefin resin or the thermoplastic elastomer to inactivate the reactive functional groups. Therefore, it is not possible to form a finely dispersed domain.
- Comparative Example 13 contains a solid lubricant, since it is a simple silicone powder, agglomerates are likely to be formed in the polyamide resin composition, which causes brittle fracture at the interface between the silicone powder and the polyamide resin. It becomes easier and the amount of wear is large.
- a solid lubricant was blended, but since a polyolefin resin or a thermoplastic elastomer was not blended, although the coefficient of dynamic friction was low, brittle fracture could not be suppressed and the amount of wear could not be reduced.
- FIG. 1 is an image obtained by observing the cross section of Example 2 with a differential interference microscope. It can be seen that the polyolefin resin and the thermoplastic elastomer are uniformly finely dispersed in the domain of the polyamide resin in the domain having a particle size of 5 ⁇ m or less.
- FIG. 2 is an image obtained by observing the cross section of Comparative Example 10 with a differential interference microscope.
- the above two modifiers are non-uniformly dispersed in the matrix of the polyamide resin, and fine dispersion cannot be formed. In addition, it exists in a coarse domain, where stress is concentrated during wear and can be the starting point of wear.
- the polyamide resin composition of the present invention is a molding material having both excellent toughness and sliding properties. It is particularly suitable for sliding parts that are required to have excellent wear resistance and sliding stability, and is expected to greatly contribute to the industrial world as an engineering plastic that can be used in a wide range of fields.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The purpose of the present invention is to provide a polyamide resin composition which can be used suitable for the molding of a sliding component for which excellent moldability, stability of heat resistance and toughness and excellent wear resistance and sliding stability are required. A polyamide resin composition for sliding components of the present invention comprises a crystalline polyamide resin (A), a modified polyolefin resin (B) having a reactive functional group capable of reacting with a terminal group and/or a main-chain amide group in the polyamide resin (A) and/or a thermoplastic elastomer (C) having a reactive functional group capable of reacting with a terminal group and/or a main-chain amide group in the polyamide resin (A), an antioxidant agent (D), a mold release agent (E) and a solid lubricant agent (F), wherein the modified polyolefin resin (B) and/or the thermoplastic elastomer (C) is dispersed in the form of domains having a particle diameter of 5 μm or less in a matrix of the polyamide resin (A).
Description
本発明は、ポリアミド樹脂組成物に関し、詳しくは、摺動部品の成形に好適に用いられるポリアミド樹脂組成物に関する。
The present invention relates to a polyamide resin composition, and more particularly to a polyamide resin composition suitably used for molding sliding parts.
ポリアミド樹脂は結晶性のため摺動性に優れる成形材料であるが、より優れた摺動特性を得るために、二硫化モリブデン、グラファイトおよびフッ素樹脂等の固形潤滑剤、各種の潤滑オイル、あるいはシリコーンオイル等の液体潤滑剤等を配合することが知られている。
Polyamide resin is a molding material with excellent slidability due to its crystallinity, but in order to obtain better sliding properties, solid lubricants such as molybdenum disulfide, graphite and fluororesin, various lubricating oils, or silicones It is known to blend liquid lubricants such as oil.
これらの摺動改良剤のうち、固体潤滑剤は大量に配合する必要があり、ベースとなるポリアミド樹脂の靭性を著しく低下させる欠点がある。液体潤滑剤は比較的少量で、効果の高い摺動性を付与できるが、多くの場合、ベースとなるポリアミド樹脂との相容性が悪く、成形品の表面が液体潤滑剤で汚染されやすく、用途が制限される欠点がある。
Of these sliding improvers, a large amount of solid lubricant needs to be blended, which has the drawback of significantly reducing the toughness of the base polyamide resin. A relatively small amount of liquid lubricant can provide highly effective slidability, but in many cases, it is incompatible with the base polyamide resin, and the surface of the molded product is easily contaminated with the liquid lubricant. It has the drawback of limiting its use.
このような各種潤滑剤の配合による欠点を改善する方法として、変性スチレン系重合体と特定範囲の分子量の変性高密度ポリエチレンを配合する方法(特許文献1)、高粘度の結晶性ポリアミド樹脂を使用すると共に、変性ポリオレフィン樹脂を配合する方法などが提案されている(特許文献2)。
As a method for improving the drawbacks caused by blending various lubricants, a method of blending a modified styrene polymer and a modified high-density polyethylene having a specific range of molecular weight (Patent Document 1), and a high-viscosity crystalline polyamide resin are used. At the same time, a method of blending a modified polyolefin resin has been proposed (Patent Document 2).
かかるポリアミド樹脂組成物によって、上述のような欠点がなく、摺動特性に優れた成形品の提供が可能になったが、近年、成形品の軽量化、成形品形状の複雑化などの動向のため、成形性の向上、耐熱安定性の向上、及び摺動特性の向上など、より高いレベルの特性が求められている。
Such a polyamide resin composition has made it possible to provide a molded product having excellent sliding characteristics without the above-mentioned drawbacks, but in recent years, trends such as weight reduction of the molded product and complication of the shape of the molded product have been made. Therefore, higher levels of characteristics such as improved moldability, improved heat stability, and improved sliding characteristics are required.
本発明は、成形性、耐熱安定性、及び靭性に優れるとともに、耐摩耗性、及び摺動安定性に優れることが要求される摺動部品の成形に好適に用いられるポリアミド樹脂組成物を提供することを目的とする。
The present invention provides a polyamide resin composition that is suitably used for molding sliding parts that are required to have excellent moldability, heat stability, and toughness, as well as excellent wear resistance and sliding stability. The purpose is.
本発明者らは、上記課題を達成するために鋭意検討した結果、成形性や耐熱性の向上のために添加する酸化防止剤及び離型剤が、摺動特性を向上させること、さらに固体潤滑剤をポリアミド樹脂組成物に添加して靭性を保持することによって摺動特性が向上することを見出し、本発明に到達した。
As a result of diligent studies to achieve the above problems, the present inventors have made that the antioxidants and mold release agents added to improve moldability and heat resistance improve the sliding characteristics, and further solid lubrication. We have found that the sliding characteristics are improved by adding an agent to a polyamide resin composition to maintain toughness, and have reached the present invention.
すなわち、本発明は、以下の構成からなる。
[1]
結晶性ポリアミド樹脂(A)、前記ポリアミド樹脂(A)の末端基および/または主鎖アミド基と反応しうる反応性官能基を有する変性ポリオレフィン樹脂(B)および/または前記ポリアミド樹脂(A)の末端基および/または主鎖アミド基と反応しうる反応性官能基を有する熱可塑性エラストマー(C)、酸化防止剤(D)、離型剤(E)、及び固体潤滑剤(F)を含有し、
前記変性ポリオレフィン樹脂(B)および/または前記熱可塑性エラストマー(C)は、前記ポリアミド樹脂(A)のマトリックス中に粒径5μm以下のドメインで分散している摺動部品用ポリアミド樹脂組成物。
[2]
前記酸化防止剤(D)と前記離型剤(E)は、前記変性ポリオレフィン樹脂(B)と前記熱可塑性エラストマー(C)とが有する前記反応性官能基の失活を抑制する化合物である、[1]に記載の摺動部品用ポリアミド樹脂組成物。
[3]
前記反応性官能基は、酸無水物基である、[1]又は[2]に記載のポリアミド樹脂組成物。
[4]
前記酸化防止剤(D)は、ヒンダードフェノール系酸化防止剤である、[1]~[3]のいずれかに記載の摺動部品用ポリアミド樹脂組成物。
[5]
前記離型剤(E)は、高級脂肪酸エステル系化合物である、[1]~[4]のいずれかに記載の摺動部品用ポリアミド樹脂組成物。
[6]
前記熱可塑性エラストマー(C)は、スチレン系および/またはオレフィン系熱可塑性エラストマーである、[1]~[5]のいずれかに記載の摺動部品用ポリアミド樹脂組成物。
[7]
前記固体潤滑剤(F)は、フッ素系潤滑剤および/またはアクリル変性ポリオルガノシロキサンである、[1]~[6]のいずれかに記載の摺動部品用ポリアミド樹脂組成物。
[8]
[1]~[7]のいずれかに記載の摺動部品用ポリアミド樹脂組成物から得られる摺動部品。 That is, the present invention has the following configuration.
[1]
Of the crystalline polyamide resin (A), the modified polyolefin resin (B) having a reactive functional group capable of reacting with the terminal group and / or the main chain amide group of the polyamide resin (A) and / or the polyamide resin (A). Contains a thermoplastic elastomer (C) having a reactive functional group capable of reacting with a terminal group and / or a main chain amide group, an antioxidant (D), a mold release agent (E), and a solid lubricant (F). ,
The modified polyolefin resin (B) and / or the thermoplastic elastomer (C) is a polyamide resin composition for sliding parts dispersed in a matrix of the polyamide resin (A) in a domain having a particle size of 5 μm or less.
[2]
The antioxidant (D) and the release agent (E) are compounds that suppress the deactivation of the reactive functional group of the modified polyolefin resin (B) and the thermoplastic elastomer (C). The polyamide resin composition for sliding parts according to [1].
[3]
The polyamide resin composition according to [1] or [2], wherein the reactive functional group is an acid anhydride group.
[4]
The polyamide resin composition for sliding parts according to any one of [1] to [3], wherein the antioxidant (D) is a hindered phenolic antioxidant.
[5]
The polyamide resin composition for sliding parts according to any one of [1] to [4], wherein the release agent (E) is a higher fatty acid ester compound.
[6]
The polyamide resin composition for sliding parts according to any one of [1] to [5], wherein the thermoplastic elastomer (C) is a styrene-based and / or olefin-based thermoplastic elastomer.
[7]
The polyamide resin composition for sliding parts according to any one of [1] to [6], wherein the solid lubricant (F) is a fluorine-based lubricant and / or an acrylic-modified polyorganosiloxane.
[8]
A sliding component obtained from the polyamide resin composition for a sliding component according to any one of [1] to [7].
[1]
結晶性ポリアミド樹脂(A)、前記ポリアミド樹脂(A)の末端基および/または主鎖アミド基と反応しうる反応性官能基を有する変性ポリオレフィン樹脂(B)および/または前記ポリアミド樹脂(A)の末端基および/または主鎖アミド基と反応しうる反応性官能基を有する熱可塑性エラストマー(C)、酸化防止剤(D)、離型剤(E)、及び固体潤滑剤(F)を含有し、
前記変性ポリオレフィン樹脂(B)および/または前記熱可塑性エラストマー(C)は、前記ポリアミド樹脂(A)のマトリックス中に粒径5μm以下のドメインで分散している摺動部品用ポリアミド樹脂組成物。
[2]
前記酸化防止剤(D)と前記離型剤(E)は、前記変性ポリオレフィン樹脂(B)と前記熱可塑性エラストマー(C)とが有する前記反応性官能基の失活を抑制する化合物である、[1]に記載の摺動部品用ポリアミド樹脂組成物。
[3]
前記反応性官能基は、酸無水物基である、[1]又は[2]に記載のポリアミド樹脂組成物。
[4]
前記酸化防止剤(D)は、ヒンダードフェノール系酸化防止剤である、[1]~[3]のいずれかに記載の摺動部品用ポリアミド樹脂組成物。
[5]
前記離型剤(E)は、高級脂肪酸エステル系化合物である、[1]~[4]のいずれかに記載の摺動部品用ポリアミド樹脂組成物。
[6]
前記熱可塑性エラストマー(C)は、スチレン系および/またはオレフィン系熱可塑性エラストマーである、[1]~[5]のいずれかに記載の摺動部品用ポリアミド樹脂組成物。
[7]
前記固体潤滑剤(F)は、フッ素系潤滑剤および/またはアクリル変性ポリオルガノシロキサンである、[1]~[6]のいずれかに記載の摺動部品用ポリアミド樹脂組成物。
[8]
[1]~[7]のいずれかに記載の摺動部品用ポリアミド樹脂組成物から得られる摺動部品。 That is, the present invention has the following configuration.
[1]
Of the crystalline polyamide resin (A), the modified polyolefin resin (B) having a reactive functional group capable of reacting with the terminal group and / or the main chain amide group of the polyamide resin (A) and / or the polyamide resin (A). Contains a thermoplastic elastomer (C) having a reactive functional group capable of reacting with a terminal group and / or a main chain amide group, an antioxidant (D), a mold release agent (E), and a solid lubricant (F). ,
The modified polyolefin resin (B) and / or the thermoplastic elastomer (C) is a polyamide resin composition for sliding parts dispersed in a matrix of the polyamide resin (A) in a domain having a particle size of 5 μm or less.
[2]
The antioxidant (D) and the release agent (E) are compounds that suppress the deactivation of the reactive functional group of the modified polyolefin resin (B) and the thermoplastic elastomer (C). The polyamide resin composition for sliding parts according to [1].
[3]
The polyamide resin composition according to [1] or [2], wherein the reactive functional group is an acid anhydride group.
[4]
The polyamide resin composition for sliding parts according to any one of [1] to [3], wherein the antioxidant (D) is a hindered phenolic antioxidant.
[5]
The polyamide resin composition for sliding parts according to any one of [1] to [4], wherein the release agent (E) is a higher fatty acid ester compound.
[6]
The polyamide resin composition for sliding parts according to any one of [1] to [5], wherein the thermoplastic elastomer (C) is a styrene-based and / or olefin-based thermoplastic elastomer.
[7]
The polyamide resin composition for sliding parts according to any one of [1] to [6], wherein the solid lubricant (F) is a fluorine-based lubricant and / or an acrylic-modified polyorganosiloxane.
[8]
A sliding component obtained from the polyamide resin composition for a sliding component according to any one of [1] to [7].
本発明のポリアミド樹脂組成物は、成形性、耐熱安定性、及び靭性に優れるのみならず、耐摩耗性の向上、及び摩擦係数の変化が少ないなどの摺動特性の更なる向上が認められる。また、本発明のポリアミド樹脂組成物は、低摩耗性と低摩擦性を両立することができる。
The polyamide resin composition of the present invention is not only excellent in moldability, heat stability and toughness, but also has improved wear resistance and further improved sliding characteristics such as a small change in friction coefficient. Further, the polyamide resin composition of the present invention can achieve both low wear resistance and low frictional property.
以下、本発明を具体的に説明する。本発明の摺動部品用ポリアミド樹脂組成物は、結晶性ポリアミド樹脂(A)、前記ポリアミド樹脂(A)の末端基および/または主鎖アミド基と反応しうる反応性官能基を有する変性ポリオレフィン樹脂(B)(以下、変性ポリオレフィン樹脂(B)ともいう。)および/または前記ポリアミド樹脂(A)の末端基および/または主鎖アミド基と反応しうる反応性官能基を有する熱可塑性エラストマー(C)(以下、熱可塑性エラストマー(C)ともいう。)、酸化防止剤(D)、離型剤(E)、及び固体潤滑剤(F)を含有する。
Hereinafter, the present invention will be specifically described. The polyamide resin composition for sliding parts of the present invention is a modified polyolefin resin having a crystalline polyamide resin (A), a reactive functional group capable of reacting with a terminal group and / or a main chain amide group of the polyamide resin (A). (B) (hereinafter, also referred to as modified polyolefin resin (B)) and / or a thermoplastic elastomer (C) having a reactive functional group capable of reacting with a terminal group and / or a main chain amide group of the polyamide resin (A). ) (Hereinafter, also referred to as a thermoplastic elastomer (C)), an antioxidant (D), a mold release agent (E), and a solid lubricant (F).
各成分の配合量は、結晶性ポリアミド樹脂(A)、変性ポリオレフィン樹脂(B)、熱可塑性エラストマー(C)、及び固体潤滑剤(F)の全樹脂成分の合計を100質量部とした時の質量部で表す。本発明のポリアミド樹脂組成物においては、配合量がそのままポリアミド樹脂組成物中の含有量となる。
The blending amount of each component is when the total of all the resin components of the crystalline polyamide resin (A), the modified polyolefin resin (B), the thermoplastic elastomer (C), and the solid lubricant (F) is 100 parts by mass. Expressed in parts by mass. In the polyamide resin composition of the present invention, the blending amount is the content in the polyamide resin composition as it is.
結晶性ポリアミド樹脂(A)は、主鎖中にアミド結合(-NHCO-)を有する結晶性の重合体であれば特に限定されず、例えば、ポリアミド6(NY6)、ポリアミド66(NY66)、ポリアミド46(NY46)、ポリアミド11(NY11)、ポリアミド12(NY12)、ポリアミド610(NY610)、ポリアミド612(NY612)、ポリメタキシリレンアジパミド(MXD6)、ヘキサメチレンジアミン-テレフタル酸重合体(6T)、ヘキサメチレンジアミン-テレフタル酸およびアジピン酸重合体(66T)、ヘキサメチレンジアミン-テレフタル酸およびε-カプロラクタム共重合体(6T/6)、トリメチルヘキサメチレンジアミン-テレフタル酸重合体(TMD-T)、メタキシリレンジアミンとアジピン酸およびイソフタル酸共重合体(MXD-6/I)、トリヘキサメチレンジアミンとテレフタル酸およびε-カプロラクタム共重合体(TMD-T/6)、ジアミノジシクロヘキシレンメタン(CA)とイソフタル酸およびラウリルラクタム共重合体等が挙げられる。これらは1種用いてもよく、2種以上をブレンドして用いてもよい。これらのうち、ポリアミド6(NY6)、及びポリアミド66(NY66)を用いることが好ましい。
The crystalline polyamide resin (A) is not particularly limited as long as it is a crystalline polymer having an amide bond (-NHCO-) in the main chain, and for example, polyamide 6 (NY6), polyamide 66 (NY66), and polyamide. 46 (NY46), Polyamide 11 (NY11), Polyamide 12 (NY12), Polyamide 610 (NY610), Polyamide 612 (NY612), Polymethaxylylene adipamide (MXD6), Hexamethylenediamine-terephthalic acid polymer (6T) , Hexamethylenediamine-terephthalic acid and adipic acid polymer (66T), hexamethylenediamine-terephthalic acid and ε-caprolactam copolymer (6T / 6), trimethylhexamethylenediamine-terephthalic acid polymer (TMD-T), Metaxylylene diamine and adipic acid and isophthalic acid copolymer (MXD-6 / I), trihexamethylenediamine and terephthalic acid and ε-caprolactam copolymer (TMD-T / 6), diaminodicyclohexylenemethane (CA) ), Isophthalic acid, lauryl lactam copolymer and the like. These may be used alone or in combination of two or more. Of these, polyamide 6 (NY6) and polyamide 66 (NY66) are preferably used.
結晶性ポリアミド樹脂(A)の相対粘度は特に限定されないが、96%硫酸溶液(ポリアミド樹脂濃度1g/dl、温度25℃)で測定されたもので、好ましくは2.0~5.0であり、より好ましくは2.0~3.5である。
The relative viscosity of the crystalline polyamide resin (A) is not particularly limited, but is measured in a 96% sulfuric acid solution (polyamide resin concentration 1 g / dl, temperature 25 ° C.), and is preferably 2.0 to 5.0. , More preferably 2.0 to 3.5.
変性ポリオレフィン樹脂(B)は、ポリオレフィン樹脂を変性したものである。ポリオレフィン樹脂としては、例えば、高密度ポリエチレン、低密度ポリエチレン、超高分子量ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、ポリ(1-ブテン)、ポリ(4-メチルペンテン)等が挙げられる。これらは1種用いてもよく、2種以上をブレンドして用いてもよい。これらのうち、高密度ポリエチレンを用いることが好ましい。
The modified polyolefin resin (B) is a modified polyolefin resin. Examples of the polyolefin resin include high-density polyethylene, low-density polyethylene, ultra-high molecular weight polyethylene, linear low-density polyethylene, polypropylene, poly (1-butene), poly (4-methylpentene) and the like. These may be used alone or in combination of two or more. Of these, it is preferable to use high-density polyethylene.
変性ポリオレフィン樹脂(B)は、結晶性ポリアミド樹脂(A)との相容性を向上させるために、前記ポリアミド樹脂(A)の末端基(アミノ基又はカルボキシ基)および/または主鎖アミド基と反応しうる反応性官能基を有する。前記反応性官能基としては、例えば、カルボキシ基、酸無水物基、エポキシ基、オキサゾリン基、アミノ基、イソシアネート基等が挙げられる。これらのうち、前記ポリアミド樹脂(A)との反応性が高いという観点から、酸無水物基が好ましい。
The modified polyolefin resin (B) has a terminal group (amino group or carboxy group) and / or a main chain amide group of the polyamide resin (A) in order to improve compatibility with the crystalline polyamide resin (A). It has a reactive functional group that can react. Examples of the reactive functional group include a carboxy group, an acid anhydride group, an epoxy group, an oxazoline group, an amino group, an isocyanate group and the like. Of these, an acid anhydride group is preferable from the viewpoint of high reactivity with the polyamide resin (A).
前記反応性官能基の含有量は、変性ポリオレフィン樹脂(B)中に0.05~8質量%であることが好ましく、より好ましくは0.1~5質量%である。前記反応性官能基を有する変性ポリオレフィン樹脂(B)の製造方法は特に限定されないが、ポリオレフィン樹脂を製造する工程で前記反応性官能基を持つ化合物を反応させる方法、ポリオレフィン樹脂のペレットと前記反応性官能基を持つ化合物等を混合し、押出機等で混錬して反応させる方法等が挙げられる。
The content of the reactive functional group is preferably 0.05 to 8% by mass, more preferably 0.1 to 5% by mass in the modified polyolefin resin (B). The method for producing the modified polyolefin resin (B) having the reactive functional group is not particularly limited, but a method for reacting the compound having the reactive functional group in the step of producing the polyolefin resin, the pellet of the polyolefin resin and the reactivity. Examples thereof include a method in which a compound having a functional group and the like are mixed and kneaded with an extruder or the like to cause a reaction.
変性ポリオレフィン樹脂(B)の配合量は、変性ポリオレフィン樹脂(B)が前記ポリアミド樹脂(A)のマトリックス中に粒径5μm以下のドメインで分散できる量であれば特に限定されないが、通常は、全樹脂成分100質量%に対して、0.5~10質量%であり、好ましくは1~8質量%、より好ましくは2~6質量%である。
The blending amount of the modified polyolefin resin (B) is not particularly limited as long as the modified polyolefin resin (B) can be dispersed in the matrix of the polyamide resin (A) in a domain having a particle size of 5 μm or less, but is usually all. It is 0.5 to 10% by mass, preferably 1 to 8% by mass, and more preferably 2 to 6% by mass with respect to 100% by mass of the resin component.
熱可塑性エラストマー(C)は特に限定されず、例えば、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなどが挙げられる。これらは1種用いてもよく、2種以上をブレンドして用いてもよい。
The thermoplastic elastomer (C) is not particularly limited, and examples thereof include styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polyester-based thermoplastic elastomers, and polyurethane-based thermoplastic elastomers. These may be used alone or in combination of two or more.
スチレン系熱可塑性エラストマーは特に限定されず、例えば、スチレン/ブタジエン/スチレンブロック共重合体(SBS)、その水素添加物であるスチレン/エチレン・ブチレン/スチレンブロック共重合体(SEBS)、スチレン/ブタジエン共重合体(SBR)、その水素添加物であるスチレン/エチレン/ブチレン共重合体(HSBR)、スチレン/イソプレン/スチレンブロック共重合体(SIS)、その水素添加物であるスチレン/エチレン・プロピレン/スチレンブロック共重合体(SEPS)等が挙げられる。
The styrene-based thermoplastic elastomer is not particularly limited, and for example, styrene / butadiene / styrene block copolymer (SBS), styrene / ethylene-butylene / styrene block copolymer (SEBS) which is a hydrogenated product thereof, styrene / butadiene. Styrene (SBR), its hydrogenated styrene / ethylene / butylene copolymer (HSBR), styrene / isoprene / styrene block copolymer (SIS), its hydrogenated styrene / ethylene / propylene / Examples thereof include styrene block copolymer (SEPS).
オレフィン系熱可塑性エラストマーは特に限定されず、例えば、エチレン/プロピレン/ジエンゴム(EPDM)、エチレン/プロピレンゴム(EPR)、ブチルゴム(IIR)等のゴム、動的架橋したオレフィン系熱可塑性エラストマー、柔軟性のあるエチレン系共重合体等が挙げられる。
The olefin-based thermoplastic elastomer is not particularly limited, and for example, rubbers such as ethylene / propylene / diene rubber (EPDM), ethylene / propylene rubber (EPR), and butyl rubber (IIR), dynamically crosslinked olefin-based thermoplastic elastomers, and flexibility. Examples thereof include ethylene-based copolymers having a certain content.
ポリアミド系熱可塑性エラストマーは特に限定されず、例えば、結晶性で溶融温度の高いポリアミドをハードセグメントとし、ガラス転移温度の低いポリエーテル又はポリエステルをソフトセグメントとするポリエーテルエステルアミド及びポリエステルアミド等が挙げられる。
The polyamide-based thermoplastic elastomer is not particularly limited, and examples thereof include a polyether ester amide and a polyester amide having a crystalline polyamide having a high melting temperature as a hard segment and a polyether having a low glass transition temperature or a polyester as a soft segment. Be done.
ポリエステル系熱可塑性エラストマーは特に限定されず、例えば、結晶性で溶融温度の高いポリエステルをハードセグメントとし、ガラス転移温度の低いポリエーテル又はポリエステルをソフトセグメントとするポリエーテルポリエステル及びポリエステルポリエステルのブロック共重合体等が挙げられる。
The polyester-based thermoplastic elastomer is not particularly limited, and for example, the block common weight of the polyether polyester and the polyester polyester having a crystalline polyester having a high melting temperature as a hard segment and a polyether having a low glass transition temperature or a polyester as a soft segment. Coalescence and the like can be mentioned.
ポリウレタン系熱可塑性エラストマーは特に限定されず、例えば、結晶性で溶融温度の高いポリエステルをハードセグメントとし、ガラス転移温度の低いポリエーテル又はポリエステルをソフトセグメントとするポリエーテルポリウレタン及びポリエステルポリウレタン等が挙げられる。
The polyurethane-based thermoplastic elastomer is not particularly limited, and examples thereof include polyether polyurethane and polyester polyurethane having a polyester having a high crystalline and high melting temperature as a hard segment and a polyether having a low glass transition temperature or a polyester as a soft segment. ..
これらの熱可塑性エラストマーの中で、靱性改良効果と弾性率のバランスの観点から、スチレン系および/またはオレフィン系熱可塑性エラストマーが好ましく、より好ましくはスチレン系熱可塑性エラストマーであり、更に好ましくはSEBSである。
Among these thermoplastic elastomers, styrene-based and / or olefin-based thermoplastic elastomers are preferable, more preferably styrene-based thermoplastic elastomers, and even more preferably SEBS, from the viewpoint of the balance between the toughness improving effect and the elastic modulus. is there.
熱可塑性エラストマー(C)は、結晶性ポリアミド樹脂(A)との相容性を向上させるために、前記ポリアミド樹脂(A)の末端基(アミノ基又はカルボキシ基)および/または主鎖アミド基と反応しうる反応性官能基を有する。前記反応性官能基としては、例えば、カルボキシ基、酸無水物基、エポキシ基、オキサゾリン基、アミノ基、イソシアネート基等が挙げられる。これらのうち、前記ポリアミド樹脂(A)との反応性が高いという観点から、酸無水物基が好ましい。
The thermoplastic elastomer (C) may be combined with a terminal group (amino group or carboxy group) and / or a main chain amide group of the polyamide resin (A) in order to improve compatibility with the crystalline polyamide resin (A). It has a reactive functional group that can react. Examples of the reactive functional group include a carboxy group, an acid anhydride group, an epoxy group, an oxazoline group, an amino group, an isocyanate group and the like. Of these, an acid anhydride group is preferable from the viewpoint of high reactivity with the polyamide resin (A).
前記反応性官能基の含有量は、熱可塑性エラストマー(C)中に0.05~8質量%であることが好ましく、より好ましくは0.1~5質量%である。前記反応性官能基を有する熱可塑性エラストマー(C)の製造方法は特に限定されないが、熱可塑性エラストマーを製造する工程で前記反応性官能基を持つ化合物を反応させる方法、熱可塑性エラストマーのペレットと前記反応性官能基を持つ化合物等を混合し、押出機等で混錬して反応させる方法等が挙げられる。
The content of the reactive functional group is preferably 0.05 to 8% by mass, more preferably 0.1 to 5% by mass in the thermoplastic elastomer (C). The method for producing the thermoplastic elastomer (C) having the reactive functional group is not particularly limited, but a method for reacting the compound having the reactive functional group in the step of producing the thermoplastic elastomer, the pellet of the thermoplastic elastomer and the above. Examples thereof include a method in which a compound having a reactive functional group or the like is mixed and kneaded with an extruder or the like to react.
熱可塑性エラストマー(C)の配合量は、熱可塑性エラストマー(C)が前記ポリアミド樹脂(A)のマトリックス中に粒径5μm以下のドメインで分散できる量であれば特に限定されないが、通常は、全樹脂成分100質量%に対して、0.1~10質量%であり、好ましくは1~7質量%である。
The blending amount of the thermoplastic elastomer (C) is not particularly limited as long as the thermoplastic elastomer (C) can be dispersed in the matrix of the polyamide resin (A) in a domain having a particle size of 5 μm or less, but is usually all. It is 0.1 to 10% by mass, preferably 1 to 7% by mass with respect to 100% by mass of the resin component.
酸化防止剤(D)は、変性ポリオレフィン樹脂(B)と熱可塑性エラストマー(C)とが有する前記反応性官能基の失活を抑制する化合物であるであることが好ましい。「反応性官能基の失活を抑制する」とは、「反応性官能基と反応しない」ことを意味する。すなわち、酸化防止剤(D)は、変性ポリオレフィン樹脂(B)と熱可塑性エラストマー(C)が、前記ポリアミド樹脂(A)のマトリックス中に微分散することを阻害しない化合物である。
The antioxidant (D) is preferably a compound that suppresses the deactivation of the reactive functional group of the modified polyolefin resin (B) and the thermoplastic elastomer (C). "Suppressing the inactivation of a reactive functional group" means "does not react with a reactive functional group". That is, the antioxidant (D) is a compound that does not prevent the modified polyolefin resin (B) and the thermoplastic elastomer (C) from being finely dispersed in the matrix of the polyamide resin (A).
酸化防止剤(D)は特に限定されず、例えば、変性ポリオレフィン樹脂(B)と熱可塑性エラストマー(C)とが有する前記反応性官能基が酸無水物基である場合、酸無水物基と反応する官能基を持たない、ヒンダードフェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤などの有機系酸化防止剤、及び熱安定剤などが挙げられ、好ましくはヒンダードフェノール系酸化防止剤である。これらは1種用いてもよく、2種以上をブレンドして用いてもよい。酸無水物基と反応する官能基としては、例えば、アミノ基や水酸基などが挙げられる。なお、ヒンダードフェノール構造のフェノール性水酸基は、酸無水物基と反応する官能基には該当しない。アミン系酸化防止剤は、前記反応性官能基と反応して失活させるため好ましくない。
The antioxidant (D) is not particularly limited, and for example, when the reactive functional group of the modified polyolefin resin (B) and the thermoplastic elastomer (C) is an acid anhydride group, it reacts with the acid anhydride group. Examples thereof include organic antioxidants such as hindered phenolic antioxidants, sulfur-based antioxidants and phosphorus-based antioxidants, and thermal stabilizers, which do not have functional groups, and are preferably hindered phenolic oxidation. It is an inhibitor. These may be used alone or in combination of two or more. Examples of the functional group that reacts with the acid anhydride group include an amino group and a hydroxyl group. The phenolic hydroxyl group having a hindered phenol structure does not correspond to a functional group that reacts with an acid anhydride group. Amine-based antioxidants are not preferable because they react with the reactive functional groups to inactivate them.
酸化防止剤(D)の配合量は、全樹脂成分100質量部に対して、0.01~1質量部であることが好ましく、より好ましくは0.1~0.5質量部である。酸化防止剤(D)の配合量が前記範囲内であれば、ポリアミド樹脂組成物の摺動性と靱性の向上に寄与するだけでなく、ポリアミド樹脂組成物の量に応じた適切な処方量として、経時的な酸化劣化を防止することができる。
The blending amount of the antioxidant (D) is preferably 0.01 to 1 part by mass, and more preferably 0.1 to 0.5 part by mass with respect to 100 parts by mass of the total resin component. When the blending amount of the antioxidant (D) is within the above range, it not only contributes to the improvement of the slidability and toughness of the polyamide resin composition, but also as an appropriate prescription amount according to the amount of the polyamide resin composition. , It is possible to prevent oxidative deterioration over time.
離型剤(E)は、変性ポリオレフィン樹脂(B)と熱可塑性エラストマー(C)とが有する前記反応性官能基の失活を抑制する化合物であるであることが好ましい。「反応性官能基の失活を抑制する」とは、「反応性官能基と反応しない」ことを意味する。すなわち、離型剤(E)は、変性ポリオレフィン樹脂(B)と熱可塑性エラストマー(C)が、前記ポリアミド樹脂(A)のマトリックス中に微分散することを阻害しない化合物である。
The release agent (E) is preferably a compound that suppresses the deactivation of the reactive functional group of the modified polyolefin resin (B) and the thermoplastic elastomer (C). "Suppressing the inactivation of a reactive functional group" means "does not react with a reactive functional group". That is, the release agent (E) is a compound that does not prevent the modified polyolefin resin (B) and the thermoplastic elastomer (C) from being finely dispersed in the matrix of the polyamide resin (A).
離型剤(E)は特に限定されず、例えば、高級脂肪酸エステル系化合物、アマイド系化合物、ポリエチレンワックス、シリコーン、ポリエチレンオキシドなどが挙げられる。これらは1種用いてもよく、2種以上をブレンドして用いてもよい。変性ポリオレフィン樹脂(B)と熱可塑性エラストマー(C)とが有する前記反応性官能基が酸無水物基である場合、離型剤(E)は、高級脂肪酸エステル系化合物であることが好ましい。なお、高級脂肪酸とは、炭素数が10を超える脂肪酸であり、好ましくは炭素数が11~30の脂肪酸である。金属塩化合物は、前記反応性官能基と反応して失活させるため好ましくない。
The release agent (E) is not particularly limited, and examples thereof include higher fatty acid ester compounds, amide compounds, polyethylene wax, silicone, and polyethylene oxide. These may be used alone or in combination of two or more. When the reactive functional group of the modified polyolefin resin (B) and the thermoplastic elastomer (C) is an acid anhydride group, the release agent (E) is preferably a higher fatty acid ester compound. The higher fatty acid is a fatty acid having more than 10 carbon atoms, preferably a fatty acid having 11 to 30 carbon atoms. The metal salt compound is not preferable because it reacts with the reactive functional group to inactivate it.
離型剤(E)の配合量は、全樹脂成分100質量部に対して、0.05~1質量部であることが好ましく、より好ましくは0.1~0.8質量部である。離型剤(E)の配合量が前記範囲内であれば、ポリアミド樹脂組成物の摺動性と靱性の向上に寄与するだけでなく、適切な離型性が確保できる。
The blending amount of the release agent (E) is preferably 0.05 to 1 part by mass, and more preferably 0.1 to 0.8 parts by mass with respect to 100 parts by mass of the total resin component. When the blending amount of the release agent (E) is within the above range, not only the slidability and toughness of the polyamide resin composition can be improved, but also an appropriate release property can be ensured.
酸化防止剤(D)と離型剤(E)は、変性ポリオレフィン樹脂(B)と熱可塑性エラストマー(C)が前記ポリアミド樹脂(A)のマトリックス中に微分散することを阻害しない。そのため、変性ポリオレフィン樹脂(B)と熱可塑性エラストマー(C)が、前記ポリアミド樹脂(A)と効率的に反応し、前記ポリアミド樹脂(A)のマトリックス中に粒径5μm以下のドメインに微分散する。その結果、変性ポリオレフィン樹脂(B)による摺動性向上効果と、熱可塑性エラストマー(C)による靱性向上効果が効果的に作用し、本発明の特有な効果が発現すると考えられる。前記粒径は、好ましくは4μm以下であり、より好ましくは3.5μm以下である。前記粒径の下限値は特に限定されないが、流動性の観点から、好ましくは1μm以上であり、より好ましくは2μm以上である。
The antioxidant (D) and the mold release agent (E) do not prevent the modified polyolefin resin (B) and the thermoplastic elastomer (C) from being finely dispersed in the matrix of the polyamide resin (A). Therefore, the modified polyolefin resin (B) and the thermoplastic elastomer (C) efficiently react with the polyamide resin (A) and are finely dispersed in the matrix of the polyamide resin (A) in domains having a particle size of 5 μm or less. .. As a result, it is considered that the slidability improving effect of the modified polyolefin resin (B) and the toughness improving effect of the thermoplastic elastomer (C) work effectively, and the unique effect of the present invention is exhibited. The particle size is preferably 4 μm or less, more preferably 3.5 μm or less. The lower limit of the particle size is not particularly limited, but from the viewpoint of fluidity, it is preferably 1 μm or more, and more preferably 2 μm or more.
固体潤滑剤(F)は、表面摩擦特性の向上に寄与すると共に、靭性低下を抑制する効果を有し、固体潤滑剤(F)をポリアミド樹脂組成物に添加することにより、本発明の特有な効果が発現すると考えられる。
The solid lubricant (F) contributes to the improvement of surface friction characteristics and has the effect of suppressing the decrease in toughness. By adding the solid lubricant (F) to the polyamide resin composition, the solid lubricant (F) is unique to the present invention. It is considered that the effect is exhibited.
固体潤滑剤(F)は特に限定されないが、フッ素系潤滑剤、及びアクリル変性ポリオルガノシロキサンが好ましい。これらは1種用いてもよく、2種以上をブレンドして用いてもよい。
The solid lubricant (F) is not particularly limited, but a fluorine-based lubricant and an acrylic-modified polyorganosiloxane are preferable. These may be used alone or in combination of two or more.
前記フッ素系潤滑剤としては、例えば、四フッ化エチレン樹脂(PTFE)、パーフルオロ-アルコキシ樹脂(PFA)、四フッ化エチレン-六フッ化プロピレン共重合樹脂(FEP)、四フッ化エチレン-エチレン共重合樹脂(ETFE)、フッ化ビニリデン樹脂(PVDF)、三フッ化塩化エチレン樹脂(PCTFE)等が挙げられる。これらのうち、耐熱性、摺動特性などの観点から、PTFEが好ましい。
Examples of the fluorine-based lubricant include tetrafluoroethylene resin (PTFE), perfluoro-alkoxy resin (PFA), tetrafluoroethylene-propylene hexafluoride copolymer resin (FEP), and tetrafluoroethylene-ethylene. Examples thereof include a copolymer resin (ETFE), a vinylidene fluoride resin (PVDF), and an ethylene trifluorochloride resin (PCTFE). Of these, PTFE is preferable from the viewpoint of heat resistance, sliding characteristics, and the like.
前記フッ素系潤滑剤の平均粒径は、好ましくは1~200μm、より好ましくは7~100μm、更に好ましくは10~50μmである。平均粒径が200μmを越えると、前記ポリアミド樹脂(A)のマトリックス中での前記フッ素系潤滑剤の分散性が悪くなり、成形体としての機械的強度が低下しやすくなる。一方、平均粒径が1μm未満になると、前記フッ素系潤滑剤の粒子が二次凝集を起こし易くなり、均一に混合することが困難となり、成形体としての機械的強度が低下しやすくなる。
The average particle size of the fluorine-based lubricant is preferably 1 to 200 μm, more preferably 7 to 100 μm, and even more preferably 10 to 50 μm. When the average particle size exceeds 200 μm, the dispersibility of the fluorine-based lubricant in the matrix of the polyamide resin (A) deteriorates, and the mechanical strength of the molded product tends to decrease. On the other hand, when the average particle size is less than 1 μm, the particles of the fluorine-based lubricant tend to cause secondary agglutination, it becomes difficult to mix them uniformly, and the mechanical strength of the molded product tends to decrease.
前記アクリル変性ポリオルガノシロキサンとしては、例えば、ポリオルガノシロキサンに、少なくとも(メタ)アクリル酸エステルをグラフト共重合させたものが挙げられる。特に、ポリオルガノシロキサンに、(メタ)アクリル酸エステル70質量%以上とその他の共重合可能な単量体30質量%以下との混合物を、質量比5/95~95/5の割合でグラフト共重合させたものが好ましい。
Examples of the acrylic-modified polyorganosiloxane include polyorganosiloxane obtained by graft-copolymerizing at least a (meth) acrylic acid ester. In particular, a mixture of 70% by mass or more of the (meth) acrylic acid ester and 30% by mass or less of other copolymerizable monomers is grafted onto the polyorganosiloxane at a mass ratio of 5/95 to 95/5. A polymer is preferable.
前記(メタ)アクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n-プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸2-エチルヘキシル、アクリル酸イソオクチル、アクリル酸n-オクチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-メトキシエチルなどのアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n-プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸n-へキシル、メタクリル酸2-エチルヘキシル、メタクリル酸n-ラウリル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-エトキシエチルなどのメタクリル酸エステルなどが挙げられる。これらは1種用いてもよく、2種以上をブレンドして用いてもよい。これらのうち、メタクリル酸メチルを少なくとも一成分として使用することが好ましい。
Examples of the (meth) acrylic acid ester include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-propyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, and isooctyl acrylate. Acrylic acid esters such as n-octyl acrylate, 2-hydroxyethyl acrylate, 2-methoxyethyl acrylate; methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, methacrylic Examples thereof include methacrylic acid esters such as isobutyl acid acid, n-hexyl methacrylate, 2-ethylhexyl methacrylate, n-lauryl methacrylate, 2-hydroxyethyl methacrylate and 2-ethoxyethyl methacrylate. These may be used alone or in combination of two or more. Of these, it is preferable to use methyl methacrylate as at least one component.
前記その他の共重合可能な単量体としては、例えば、スチレン、ビニルトルエン、α-メチルスチレンなどのスチレン系化合物;アクリロニトリル、メタクリロニトリルなどの不飽和ニトリル;塩化ビニル、塩化ビニリデンなどのハロゲン化オレフィン;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル;アクリルアミド、メタクリルアミド、N-メチロールアクリルアミドなどの不飽和アミド;アクリル酸、メタクリル酸、無水マレイン酸などの不飽和カルボン酸などの二重結合を1個有する単量体;エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、1,4-ブタンジオールジメタクリレート、アリルメタクリレート、トリアリルシアヌレート、トリアリルイソシアヌレートなどの多不飽和単量体などが挙げられる。これらは1種用いてもよく、2種以上をブレンドして用いてもよい。
Examples of the other copolymerizable monomer include styrene compounds such as styrene, vinyltoluene and α-methylstyrene; unsaturated nitriles such as acrylonitrile and methacrylic nitrile; halogenated compounds such as vinyl chloride and vinylidene chloride. Olefin; Vinyl esters such as vinyl acetate and vinyl propionate; Unsaturated amides such as acrylamide, methacrylic acid and N-methylol acrylamide; Double bonds such as unsaturated carboxylic acids such as acrylic acid, methacrylic acid and maleic anhydride Examples thereof include polyunsaturated monomers such as ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, allyl methacrylate, triallyl cyanurate, and triallyl isocyanurate. These may be used alone or in combination of two or more.
前記アクリル変性ポリオルガノシロキサンの平均粒径は、好ましくは1~500μm、より好ましくは10~400μm、更に好ましくは30~350μmである。平均粒径が500μmを越えると、前記ポリアミド樹脂(A)のマトリックス中での前記アクリル変性ポリオルガノシロキサンの分散性が悪くなり、成形体としての機械的強度が低下しやすくなる。一方、平均粒径が1μm未満になると、前記アクリル変性ポリオルガノシロキサンの粒子が二次凝集を起こし易くなり、均一に混合することが困難となり、成形体としての機械的強度が低下しやすくなる。
The average particle size of the acrylic-modified polyorganosiloxane is preferably 1 to 500 μm, more preferably 10 to 400 μm, and even more preferably 30 to 350 μm. When the average particle size exceeds 500 μm, the dispersibility of the acrylic-modified polyorganosiloxane in the matrix of the polyamide resin (A) deteriorates, and the mechanical strength of the molded product tends to decrease. On the other hand, when the average particle size is less than 1 μm, the particles of the acrylic-modified polyorganosiloxane tend to cause secondary agglutination, it becomes difficult to mix them uniformly, and the mechanical strength of the molded product tends to decrease.
固体潤滑剤(F)の配合量は、全樹脂成分100質量%に対して0.1~20質量%であることが好ましく、より好ましくは0.5~10質量%である。0.1質量%以上であれば、耐摩耗性、摺動安定性、及び表面潤滑性が効果的に改善する。一方、20質量%以下であれば、ポリアミド樹脂組成物の機械的物性、特に靭性が効果的に改善する。
The blending amount of the solid lubricant (F) is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, based on 100% by mass of the total resin components. When it is 0.1% by mass or more, wear resistance, sliding stability, and surface lubricity are effectively improved. On the other hand, if it is 20% by mass or less, the mechanical properties of the polyamide resin composition, particularly the toughness, are effectively improved.
本発明のポリアミド樹脂組成物には、変性ポリオレフィン樹脂(B)と熱可塑性エラストマー(C)が前記ポリアミド樹脂(A)のマトリックス中に微分散することを阻害しない範囲であれば、上述した(A)~(F)成分の他に、従来のポリアミド樹脂組成物に配合される、耐候性改良剤であるカーボンブラック、銅酸化物、ハロゲン化アルカリ金属、光又は熱安定剤、結晶核剤、帯電防止剤、顔料、染料、カップリング剤等の添加剤を配合してもよい。さらに、ポリアミド樹脂組成物の靭性を損なわない範囲で充填材を配合することにより、成形品の強度、剛性を大幅に向上させることができる。充填材としては、例えば、ガラス繊維、炭素繊維、金属繊維、アラミド繊維、アスベスト、チタン酸カリウムウィスカ、ワラストナイト、ガラスフレーク、ガラスビーズ、タルク、マイカ、クレー、炭酸カルシウム、硫酸バリウム、酸化チタン、酸化アルミニウムなどが挙げられる。本発明のポリアミド樹脂組成物は、上述した(A)~(F)成分の合計で、70質量%以上を占めることが好ましく、80質量%以上を占めることがより好ましく、90質量%以上を占めることが更に好ましい。
In the polyamide resin composition of the present invention, as long as it does not prevent the modified polyolefin resin (B) and the thermoplastic elastomer (C) from being finely dispersed in the matrix of the polyamide resin (A), it is described above (A). )-(F) In addition to the components (F), carbon black, copper oxide, alkali metal halide, light or heat stabilizer, crystal nucleating agent, and charge, which are weather resistance improvers, which are blended in the conventional polyamide resin composition. Additives such as inhibitors, pigments, dyes and coupling agents may be added. Further, by blending the filler within the range that does not impair the toughness of the polyamide resin composition, the strength and rigidity of the molded product can be significantly improved. Fillers include, for example, glass fiber, carbon fiber, metal fiber, aramid fiber, asbestos, potassium titanate whisker, wallastnite, glass flakes, glass beads, talc, mica, clay, calcium carbonate, barium sulfate, titanium oxide. , Aluminum oxide and the like. The polyamide resin composition of the present invention preferably occupies 70% by mass or more, more preferably 80% by mass or more, and occupies 90% by mass or more in total of the above-mentioned components (A) to (F). Is even more preferable.
本発明のポリアミド樹脂組成物は、例えば、各成分を単軸押出機、二軸押出機、加圧ニーダー等の混練装置を用いて混練することにより製造される。混練装置は、好ましくは二軸押出機である。一実施様態として、前記(A)~(F)成分、及び用途によっては顔料等を混合し、二軸押出機に投入する。二軸押出機で均一に混練することにより摺動性に優れるポリアミド樹脂組成物を製造することができる。二軸押出機の混練温度は、好ましくは220~300℃であり、混練時間は、好ましくは2~15分程度である。
The polyamide resin composition of the present invention is produced, for example, by kneading each component using a kneading device such as a single-screw extruder, a twin-screw extruder, or a pressure kneader. The kneading device is preferably a twin-screw extruder. As one embodiment, the components (A) to (F) and, depending on the application, pigments and the like are mixed and charged into a twin-screw extruder. A polyamide resin composition having excellent slidability can be produced by uniformly kneading with a twin-screw extruder. The kneading temperature of the twin-screw extruder is preferably 220 to 300 ° C., and the kneading time is preferably about 2 to 15 minutes.
本発明のポリアミド樹脂組成物は、摺動性が求められる電気・電子部品、自動車部品、建築部品、及び工業用部品などの摺動部品の原料として幅広く利用することができる。摺動部品としては、具体的に、ベアリング、ギア、ドアチェッカー、チェーンガイド部品などが挙げられる。
The polyamide resin composition of the present invention can be widely used as a raw material for sliding parts such as electric / electronic parts, automobile parts, building parts, and industrial parts, which are required to have slidability. Specific examples of the sliding parts include bearings, gears, door checkers, chain guide parts, and the like.
以下、本発明を実施例を用いて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の各例において得られたポリアミド樹脂成形品の各物性は、下記の試験方法に基づいて測定した。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The physical characteristics of the polyamide resin molded product obtained in each of the following examples were measured based on the following test method.
実施例及び比較例で使用した原材料は以下のとおりである。
結晶性ポリアミド樹脂(A)として、(A1)~(A3)を用いた。
(A1)ポリアミド66(RV=3.4):EPR34W(上海神馬塑料科技術有限公司製)、融点265℃
(A2)ポリアミド66(RV=2.8):Vydyne 21FSR(Ascend社製)、融点265℃
(A3)ポリアミド66(RV=2.4):EPR24(上海神馬塑料科技術有限公司製)、融点265℃ The raw materials used in the examples and comparative examples are as follows.
(A1) to (A3) were used as the crystalline polyamide resin (A).
(A1) Polyamide 66 (RV = 3.4): EPR34W (manufactured by Shanghai Shinma Plastics Technology Co., Ltd.), melting point 265 ° C.
(A2) Polyamide 66 (RV = 2.8): Vydyne 21FSR (manufactured by Ascend), melting point 265 ° C.
(A3) Polyamide 66 (RV = 2.4): EPR24 (manufactured by Shanghai Shinma Plastics Technology Co., Ltd.), melting point 265 ° C.
結晶性ポリアミド樹脂(A)として、(A1)~(A3)を用いた。
(A1)ポリアミド66(RV=3.4):EPR34W(上海神馬塑料科技術有限公司製)、融点265℃
(A2)ポリアミド66(RV=2.8):Vydyne 21FSR(Ascend社製)、融点265℃
(A3)ポリアミド66(RV=2.4):EPR24(上海神馬塑料科技術有限公司製)、融点265℃ The raw materials used in the examples and comparative examples are as follows.
(A1) to (A3) were used as the crystalline polyamide resin (A).
(A1) Polyamide 66 (RV = 3.4): EPR34W (manufactured by Shanghai Shinma Plastics Technology Co., Ltd.), melting point 265 ° C.
(A2) Polyamide 66 (RV = 2.8): Vydyne 21FSR (manufactured by Ascend), melting point 265 ° C.
(A3) Polyamide 66 (RV = 2.4): EPR24 (manufactured by Shanghai Shinma Plastics Technology Co., Ltd.), melting point 265 ° C.
変性ポリオレフィン樹脂(B)として、(B1)及び(B2)を用いた。
(B1)無水マレイン酸変性ポリエチレン:モディックDH0200(三菱化学(株)製)
(B2)未変性ポリエチレン:ハイゼックス 6203B(プライムポリマー株式会社製) (B1) and (B2) were used as the modified polyolefin resin (B).
(B1) Maleic anhydride-modified polyethylene: Modic DH0200 (manufactured by Mitsubishi Chemical Corporation)
(B2) Unmodified polyethylene: Hi-Zex 6203B (manufactured by Prime Polymer Co., Ltd.)
(B1)無水マレイン酸変性ポリエチレン:モディックDH0200(三菱化学(株)製)
(B2)未変性ポリエチレン:ハイゼックス 6203B(プライムポリマー株式会社製) (B1) and (B2) were used as the modified polyolefin resin (B).
(B1) Maleic anhydride-modified polyethylene: Modic DH0200 (manufactured by Mitsubishi Chemical Corporation)
(B2) Unmodified polyethylene: Hi-Zex 6203B (manufactured by Prime Polymer Co., Ltd.)
熱可塑性エラストマー(C)として、(C1)及び(C2)を用いた。
(C1)無水マレイン酸変性SEBS:タフテック M-1943(旭化成株式会社製)
(C2)未変性SEBS:タフテック H-1221(旭化成株式会社製) (C1) and (C2) were used as the thermoplastic elastomer (C).
(C1) Maleic anhydride-modified SEBS: Tough Tech M-1943 (manufactured by Asahi Kasei Corporation)
(C2) Unmodified SEBS: Tough Tech H-1221 (manufactured by Asahi Kasei Corporation)
(C1)無水マレイン酸変性SEBS:タフテック M-1943(旭化成株式会社製)
(C2)未変性SEBS:タフテック H-1221(旭化成株式会社製) (C1) and (C2) were used as the thermoplastic elastomer (C).
(C1) Maleic anhydride-modified SEBS: Tough Tech M-1943 (manufactured by Asahi Kasei Corporation)
(C2) Unmodified SEBS: Tough Tech H-1221 (manufactured by Asahi Kasei Corporation)
酸化防止剤(D)として、(D1)及び(D2)を用いた。
(D1)ヒンダードフェノール系酸化防止剤:トリエチレングリコール-ビス-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート(SONGWON社製、SONGNOX2450)
(D2)アミン系酸化防止剤:ノンフレックスDCD(精工化学株式会社製) (D1) and (D2) were used as the antioxidants (D).
(D1) Hindered Phenolic Antioxidant: Triethylene Glycol-Bis-3- (3-t-Butyl-4-Hydroxy-5-Methylphenyl) Propionate (SONGNOX2450, manufactured by SONGWON)
(D2) Amine-based antioxidant: Non-flex DCD (manufactured by Seiko Kagaku Co., Ltd.)
(D1)ヒンダードフェノール系酸化防止剤:トリエチレングリコール-ビス-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート(SONGWON社製、SONGNOX2450)
(D2)アミン系酸化防止剤:ノンフレックスDCD(精工化学株式会社製) (D1) and (D2) were used as the antioxidants (D).
(D1) Hindered Phenolic Antioxidant: Triethylene Glycol-Bis-3- (3-t-Butyl-4-Hydroxy-5-Methylphenyl) Propionate (SONGNOX2450, manufactured by SONGWON)
(D2) Amine-based antioxidant: Non-flex DCD (manufactured by Seiko Kagaku Co., Ltd.)
離型剤(E)として、(E1)~(E3)を用いた。
(E1)脂肪族エステル:リコルブ WE-40(クラリアントジャパン株式会社製)
(E2)ステアリン酸マグネシウム:N.P.1500-S(淡南化学工業株式会社製)
(E3)モンタン酸カルシウム:リコモント Cav102(クラリアントジャパン株式会社製) (E1) to (E3) were used as the release agent (E).
(E1) Aliphatic ester: Recolve WE-40 (manufactured by Clariant Japan Co., Ltd.)
(E2) Magnesium stearate: N. P. 1500-S (manufactured by Tannan Chemical Industry Co., Ltd.)
(E3) Calcium montanate: Recommon Cav102 (manufactured by Clariant Japan Co., Ltd.)
(E1)脂肪族エステル:リコルブ WE-40(クラリアントジャパン株式会社製)
(E2)ステアリン酸マグネシウム:N.P.1500-S(淡南化学工業株式会社製)
(E3)モンタン酸カルシウム:リコモント Cav102(クラリアントジャパン株式会社製) (E1) to (E3) were used as the release agent (E).
(E1) Aliphatic ester: Recolve WE-40 (manufactured by Clariant Japan Co., Ltd.)
(E2) Magnesium stearate: N. P. 1500-S (manufactured by Tannan Chemical Industry Co., Ltd.)
(E3) Calcium montanate: Recommon Cav102 (manufactured by Clariant Japan Co., Ltd.)
固体潤滑剤(F)として、(F1)~(F3)を用いた。
(F1)PTFE:KT-300M(株式会社喜多村製)、平均粒径15μm
(F2)アクリル変性ポリオルガノシロキサン:シャリーヌR-170S(日信化学工業株式会社製)、平均粒径30μm
(F3)シリコーンパウダー:KMP―590(信越シリコーン株式会社製)、平均粒径2μm
なお、平均粒径は以下の方法で測定した。微分干渉顕微鏡で各固体潤滑剤を観察し、写真撮影した。その顕微鏡写真中の粒子のうち10個の粒子を任意で選び、選んだ粒子の長径を測定し、その平均値を平均粒径とした。 (F1) to (F3) were used as the solid lubricant (F).
(F1) PTFE: KT-300M (manufactured by Kitamura Co., Ltd.), average particle size 15 μm
(F2) Acrylic-modified polyorganosiloxane: Charine R-170S (manufactured by Nisshin Kagaku Kogyo Co., Ltd.), average particle size 30 μm
(F3) Silicone powder: KMP-590 (manufactured by Shinetsu Silicone Co., Ltd.), average particle size 2 μm
The average particle size was measured by the following method. Each solid lubricant was observed and photographed with a differential interference microscope. Ten particles were arbitrarily selected from the particles in the micrograph, the major axis of the selected particles was measured, and the average value was taken as the average particle size.
(F1)PTFE:KT-300M(株式会社喜多村製)、平均粒径15μm
(F2)アクリル変性ポリオルガノシロキサン:シャリーヌR-170S(日信化学工業株式会社製)、平均粒径30μm
(F3)シリコーンパウダー:KMP―590(信越シリコーン株式会社製)、平均粒径2μm
なお、平均粒径は以下の方法で測定した。微分干渉顕微鏡で各固体潤滑剤を観察し、写真撮影した。その顕微鏡写真中の粒子のうち10個の粒子を任意で選び、選んだ粒子の長径を測定し、その平均値を平均粒径とした。 (F1) to (F3) were used as the solid lubricant (F).
(F1) PTFE: KT-300M (manufactured by Kitamura Co., Ltd.), average particle size 15 μm
(F2) Acrylic-modified polyorganosiloxane: Charine R-170S (manufactured by Nisshin Kagaku Kogyo Co., Ltd.), average particle size 30 μm
(F3) Silicone powder: KMP-590 (manufactured by Shinetsu Silicone Co., Ltd.), average particle size 2 μm
The average particle size was measured by the following method. Each solid lubricant was observed and photographed with a differential interference microscope. Ten particles were arbitrarily selected from the particles in the micrograph, the major axis of the selected particles was measured, and the average value was taken as the average particle size.
[実施例1~13、比較例1~15]
評価サンプルの製造は、表1及び表2に示したポリアミド樹脂組成物の配合割合で各原料を計量し、タンブラーで混合した後、二軸押出機に投入した。二軸押出機の設定温度は250℃~300℃、混錬時間は5~10分とした。得られたペレットを用いて、射出成形機で各種の評価サンプルを成形した。射出成形機のシリンダー温度は、250℃~290℃、金型温度は80℃とした。 [Examples 1 to 13, Comparative Examples 1 to 15]
In the production of the evaluation sample, each raw material was weighed at the blending ratios of the polyamide resin compositions shown in Tables 1 and 2, mixed with a tumbler, and then put into a twin-screw extruder. The set temperature of the twin-screw extruder was 250 ° C. to 300 ° C., and the kneading time was 5 to 10 minutes. Using the obtained pellets, various evaluation samples were molded by an injection molding machine. The cylinder temperature of the injection molding machine was 250 ° C. to 290 ° C., and the mold temperature was 80 ° C.
評価サンプルの製造は、表1及び表2に示したポリアミド樹脂組成物の配合割合で各原料を計量し、タンブラーで混合した後、二軸押出機に投入した。二軸押出機の設定温度は250℃~300℃、混錬時間は5~10分とした。得られたペレットを用いて、射出成形機で各種の評価サンプルを成形した。射出成形機のシリンダー温度は、250℃~290℃、金型温度は80℃とした。 [Examples 1 to 13, Comparative Examples 1 to 15]
In the production of the evaluation sample, each raw material was weighed at the blending ratios of the polyamide resin compositions shown in Tables 1 and 2, mixed with a tumbler, and then put into a twin-screw extruder. The set temperature of the twin-screw extruder was 250 ° C. to 300 ° C., and the kneading time was 5 to 10 minutes. Using the obtained pellets, various evaluation samples were molded by an injection molding machine. The cylinder temperature of the injection molding machine was 250 ° C. to 290 ° C., and the mold temperature was 80 ° C.
各種の評価、測定方法は以下の通りである。評価、測定結果を表1及び表2に示した。
1.ポリアミド樹脂の相対粘度(96%硫酸溶液法)
ウベローデ粘度管を用い、25℃において96質量%硫酸溶液で、ポリアミド樹脂濃度1g/dlで測定した。 Various evaluation and measurement methods are as follows. The evaluation and measurement results are shown in Tables 1 and 2.
1. 1. Relative viscosity of polyamide resin (96% sulfuric acid solution method)
The measurement was carried out using a Ubbelohde viscous tube at 25 ° C. with a 96 mass% sulfuric acid solution at a polyamide resin concentration of 1 g / dl.
1.ポリアミド樹脂の相対粘度(96%硫酸溶液法)
ウベローデ粘度管を用い、25℃において96質量%硫酸溶液で、ポリアミド樹脂濃度1g/dlで測定した。 Various evaluation and measurement methods are as follows. The evaluation and measurement results are shown in Tables 1 and 2.
1. 1. Relative viscosity of polyamide resin (96% sulfuric acid solution method)
The measurement was carried out using a Ubbelohde viscous tube at 25 ° C. with a 96 mass% sulfuric acid solution at a polyamide resin concentration of 1 g / dl.
2.ポリアミド樹脂の融点
示差走査熱量計(セイコーインスツルメンツ株式会社、EXSTAR 6000)を用いて、昇温速度20℃/分で測定し、吸熱ピーク温度を求めた。 2. Melting point of polyamide resin Using a differential scanning calorimeter (Seiko Instruments Co., Ltd., EXSTAR 6000), the temperature was measured at a heating rate of 20 ° C./min to determine the endothermic peak temperature.
示差走査熱量計(セイコーインスツルメンツ株式会社、EXSTAR 6000)を用いて、昇温速度20℃/分で測定し、吸熱ピーク温度を求めた。 2. Melting point of polyamide resin Using a differential scanning calorimeter (Seiko Instruments Co., Ltd., EXSTAR 6000), the temperature was measured at a heating rate of 20 ° C./min to determine the endothermic peak temperature.
3.引張強度、引張弾性率、引張伸度
ISO178に準じて測定した。 3. 3. Tensile strength, tensile elastic modulus, and tensile elongation were measured according to ISO178.
ISO178に準じて測定した。 3. 3. Tensile strength, tensile elastic modulus, and tensile elongation were measured according to ISO178.
4.耐衝撃性
ISO179-1に準じて測定した。 4. Impact resistance Measured according to ISO179-1.
ISO179-1に準じて測定した。 4. Impact resistance Measured according to ISO179-1.
5.摺動性
スラスト式磨耗試験機を用いて、二硫化モリブデン配合のグリースとケイ砂と火山灰の質量比率が1:1:1となるように混合して作成されたダストを、表面に一様に一定量塗布したポリアミド樹脂平板と、ポリオキシメチレン(POM)製の円筒成形品を接触させて30分間、負荷荷重30kgf/cm2、速度40mm/secの条件で連続的に摺動させた。その後、磨耗前後の重量差と摩擦試験時の収束した磨耗荷重の値から動摩擦係数を算出した。 5. Using a slidable thrust type abrasion tester, dust created by mixing grease containing molybdenum disulfide and silica sand and volcanic ash so that the mass ratio is 1: 1: 1 is uniformly applied to the surface. The polyamide resin flat plate coated in a certain amount was brought into contact with a cylindrical molded product made of polyoxymethylene (POM) and continuously slid for 30 minutes under the conditions of a load of 30 kgf / cm 2 and a speed of 40 mm / sec. After that, the dynamic friction coefficient was calculated from the weight difference before and after wear and the value of the converged wear load during the friction test.
スラスト式磨耗試験機を用いて、二硫化モリブデン配合のグリースとケイ砂と火山灰の質量比率が1:1:1となるように混合して作成されたダストを、表面に一様に一定量塗布したポリアミド樹脂平板と、ポリオキシメチレン(POM)製の円筒成形品を接触させて30分間、負荷荷重30kgf/cm2、速度40mm/secの条件で連続的に摺動させた。その後、磨耗前後の重量差と摩擦試験時の収束した磨耗荷重の値から動摩擦係数を算出した。 5. Using a slidable thrust type abrasion tester, dust created by mixing grease containing molybdenum disulfide and silica sand and volcanic ash so that the mass ratio is 1: 1: 1 is uniformly applied to the surface. The polyamide resin flat plate coated in a certain amount was brought into contact with a cylindrical molded product made of polyoxymethylene (POM) and continuously slid for 30 minutes under the conditions of a load of 30 kgf / cm 2 and a speed of 40 mm / sec. After that, the dynamic friction coefficient was calculated from the weight difference before and after wear and the value of the converged wear load during the friction test.
6.粒径
成形した評価サンプルを切り出し、ガラスナイフを装着したミクロトームを用いて断面を作成した。作成した断面を微分干渉顕微鏡で観察し、写真撮影した。その顕微鏡写真中の変性ポリオレフィン樹脂(B)及び熱可塑性エラストマー(C)のドメインにおいて、最も分散径が大きい10個のドメインを任意で選び、選んだドメインの長径を測定し、その平均値を粒径とした。 6. A molded evaluation sample was cut out and a cross section was prepared using a microtome equipped with a glass knife. The prepared cross section was observed with a differential interference microscope and photographed. Among the domains of the modified polyolefin resin (B) and the thermoplastic elastomer (C) in the micrograph, 10 domains having the largest dispersion diameter are arbitrarily selected, the major axis of the selected domain is measured, and the average value is measured as a grain. The diameter was set.
成形した評価サンプルを切り出し、ガラスナイフを装着したミクロトームを用いて断面を作成した。作成した断面を微分干渉顕微鏡で観察し、写真撮影した。その顕微鏡写真中の変性ポリオレフィン樹脂(B)及び熱可塑性エラストマー(C)のドメインにおいて、最も分散径が大きい10個のドメインを任意で選び、選んだドメインの長径を測定し、その平均値を粒径とした。 6. A molded evaluation sample was cut out and a cross section was prepared using a microtome equipped with a glass knife. The prepared cross section was observed with a differential interference microscope and photographed. Among the domains of the modified polyolefin resin (B) and the thermoplastic elastomer (C) in the micrograph, 10 domains having the largest dispersion diameter are arbitrarily selected, the major axis of the selected domain is measured, and the average value is measured as a grain. The diameter was set.
実施例1~13は、シャルピー衝撃強度が6kJ/m2以上であり、かつ磨耗量と動摩擦係数が低く、靭性と摺動性を両立したポリアミド樹脂組成物が得られている。加えて、引張弾性率及び引張伸度を大きく損なっていない。比較例1~3は、靭性の不足から摺動時の脆性的な表面破壊をポリオレフィン樹脂のアロイのみでは抑制できておらず、磨耗量が大きくなっている。比較例4~7は、靭性は十分であるものの、引張弾性率が十分ではなく、ダストの材料表面へのめり込みが進み、やはり磨耗しやすく、ポリオレフィン樹脂の摺動改質効果が働きにくい。比較例8又は12は、未変性のポリオレフィン樹脂、又は未変性の熱可塑性エラストマーで処方されているため、微分散のドメインを形成しにくく、優れた物性が発現しにくい粒子径となるため適さない。比較例9~11は、それぞれアミン系酸化防止剤、又は脂肪酸金属塩を用いているため、ポリオレフィン樹脂や熱可塑性エラストマーの反応性官能基と反応し、反応性官能基を失活させる作用が生じるために、微分散のドメインを形成できない。比較例13は、固体潤滑剤が配合されているが、単純なシリコーンパウダーであるため、凝集物がポリアミド樹脂組成物中に形成されやすく、それによりシリコーンパウダーとポリアミド樹脂の界面において脆性破壊が起こりやすくなり、磨耗量が大きくなっている。比較例14及び15は、固体潤滑剤が配合されているが、ポリオレフィン樹脂又は熱可塑性エラストマーが配合されていないため、動摩擦係数が低いものの脆性破壊を抑制できず、磨耗量を低減できていない。
In Examples 1 to 13, a polyamide resin composition having a Charpy impact strength of 6 kJ / m 2 or more, a low amount of wear and a low coefficient of dynamic friction, and both toughness and slidability has been obtained. In addition, the tensile elastic modulus and tensile elongation are not significantly impaired. In Comparative Examples 1 to 3, brittle surface fracture during sliding cannot be suppressed only by the polyolefin resin alloy due to lack of toughness, and the amount of wear is large. In Comparative Examples 4 to 7, although the toughness is sufficient, the tensile elastic modulus is not sufficient, the dust is sunk into the material surface, and is also easily worn, and the sliding modification effect of the polyolefin resin is difficult to work. Comparative Example 8 or 12 is not suitable because it is formulated with an unmodified polyolefin resin or an unmodified thermoplastic elastomer, so that it is difficult to form a finely dispersed domain and the particle size is such that it is difficult to develop excellent physical properties. .. Since Comparative Examples 9 to 11 each use an amine-based antioxidant or a fatty acid metal salt, they react with the reactive functional groups of the polyolefin resin or the thermoplastic elastomer to inactivate the reactive functional groups. Therefore, it is not possible to form a finely dispersed domain. Although Comparative Example 13 contains a solid lubricant, since it is a simple silicone powder, agglomerates are likely to be formed in the polyamide resin composition, which causes brittle fracture at the interface between the silicone powder and the polyamide resin. It becomes easier and the amount of wear is large. In Comparative Examples 14 and 15, a solid lubricant was blended, but since a polyolefin resin or a thermoplastic elastomer was not blended, although the coefficient of dynamic friction was low, brittle fracture could not be suppressed and the amount of wear could not be reduced.
図1は、実施例2の断面を微分干渉顕微鏡で観察した画像である。ポリアミド樹脂のマトリックス中にポリオレフィン樹脂および熱可塑性エラストマーが粒径5μm以下のドメインで均一に微分散している様子がわかる。一方、図2は、比較例10の断面を微分干渉顕微鏡で観察した画像である。上記2つの改質材がポリアミド樹脂のマトリックス中に不均一に分散しており、微分散を形成できていない。加えて粗大なドメインで存在しており、磨耗時に応力が集中し、磨耗の起点となる可能性がある。
FIG. 1 is an image obtained by observing the cross section of Example 2 with a differential interference microscope. It can be seen that the polyolefin resin and the thermoplastic elastomer are uniformly finely dispersed in the domain of the polyamide resin in the domain having a particle size of 5 μm or less. On the other hand, FIG. 2 is an image obtained by observing the cross section of Comparative Example 10 with a differential interference microscope. The above two modifiers are non-uniformly dispersed in the matrix of the polyamide resin, and fine dispersion cannot be formed. In addition, it exists in a coarse domain, where stress is concentrated during wear and can be the starting point of wear.
本発明のポリアミド樹脂組成物は、優れた靭性と摺動特性を併せ持つ成形材料である。特に耐摩耗性、摺動安定性に優れることが要求される摺動部品用に好適であり、幅広い分野で使用することができるエンジニアリングプラスチックとして、産業界に大きく寄与すると期待できる。
The polyamide resin composition of the present invention is a molding material having both excellent toughness and sliding properties. It is particularly suitable for sliding parts that are required to have excellent wear resistance and sliding stability, and is expected to greatly contribute to the industrial world as an engineering plastic that can be used in a wide range of fields.
Claims (8)
- 結晶性ポリアミド樹脂(A)、前記ポリアミド樹脂(A)の末端基および/または主鎖アミド基と反応しうる反応性官能基を有する変性ポリオレフィン樹脂(B)および/または前記ポリアミド樹脂(A)の末端基および/または主鎖アミド基と反応しうる反応性官能基を有する熱可塑性エラストマー(C)、酸化防止剤(D)、離型剤(E)、及び固体潤滑剤(F)を含有し、
前記変性ポリオレフィン樹脂(B)および/または前記熱可塑性エラストマー(C)は、前記ポリアミド樹脂(A)のマトリックス中に粒径5μm以下のドメインで分散している摺動部品用ポリアミド樹脂組成物。 Of the crystalline polyamide resin (A), the modified polyolefin resin (B) having a reactive functional group capable of reacting with the terminal group and / or the main chain amide group of the polyamide resin (A) and / or the polyamide resin (A). Contains a thermoplastic elastomer (C) having a reactive functional group capable of reacting with a terminal group and / or a main chain amide group, an antioxidant (D), a mold release agent (E), and a solid lubricant (F). ,
The modified polyolefin resin (B) and / or the thermoplastic elastomer (C) is a polyamide resin composition for sliding parts dispersed in a matrix of the polyamide resin (A) in a domain having a particle size of 5 μm or less. - 前記酸化防止剤(D)と前記離型剤(E)は、前記変性ポリオレフィン樹脂(B)と前記熱可塑性エラストマー(C)とが有する前記反応性官能基の失活を抑制する化合物である請求項1に記載の摺動部品用ポリアミド樹脂組成物。 Claimed that the antioxidant (D) and the mold release agent (E) are compounds that suppress the deactivation of the reactive functional group of the modified polyolefin resin (B) and the thermoplastic elastomer (C). Item 2. The polyamide resin composition for sliding parts according to Item 1.
- 前記反応性官能基は、酸無水物基である請求項1又は2に記載の摺動部品用ポリアミド樹脂組成物。 The polyamide resin composition for sliding parts according to claim 1 or 2, wherein the reactive functional group is an acid anhydride group.
- 前記酸化防止剤(D)は、ヒンダードフェノール系酸化防止剤である請求項1~3のいずれかに記載の摺動部品用ポリアミド樹脂組成物。 The polyamide resin composition for sliding parts according to any one of claims 1 to 3, wherein the antioxidant (D) is a hindered phenolic antioxidant.
- 前記離型剤(E)は、高級脂肪酸エステル系化合物である請求項1~4のいずれかに記載の摺動部品用ポリアミド樹脂組成物。 The polyamide resin composition for sliding parts according to any one of claims 1 to 4, wherein the release agent (E) is a higher fatty acid ester compound.
- 前記熱可塑性エラストマー(C)は、スチレン系および/またはオレフィン系熱可塑性エラストマーである請求項1~5のいずれかに記載の摺動部品用ポリアミド樹脂組成物。 The polyamide resin composition for sliding parts according to any one of claims 1 to 5, wherein the thermoplastic elastomer (C) is a styrene-based and / or olefin-based thermoplastic elastomer.
- 前記固体潤滑剤(F)は、フッ素系潤滑剤および/またはアクリル変性ポリオルガノシロキサンである請求項1~6のいずれかに記載の摺動部品用ポリアミド樹脂組成物。 The polyamide resin composition for sliding parts according to any one of claims 1 to 6, wherein the solid lubricant (F) is a fluorine-based lubricant and / or an acrylic-modified polyorganosiloxane.
- 請求項1~7のいずれかに記載の摺動部品用ポリアミド樹脂組成物から得られる摺動部品。 Sliding parts obtained from the polyamide resin composition for sliding parts according to any one of claims 1 to 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021548804A JPWO2021060031A1 (en) | 2019-09-27 | 2020-09-11 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019177711 | 2019-09-27 | ||
JP2019-177711 | 2019-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021060031A1 true WO2021060031A1 (en) | 2021-04-01 |
Family
ID=75166645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/034552 WO2021060031A1 (en) | 2019-09-27 | 2020-09-11 | Polyamide resin composition for sliding components, and sliding component |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2021060031A1 (en) |
TW (1) | TWI845761B (en) |
WO (1) | WO2021060031A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007297581A (en) * | 2006-04-06 | 2007-11-15 | Toyobo Co Ltd | Polyamide resin composition excellent in rigidity and molded article therefrom |
JP2014218574A (en) * | 2013-05-08 | 2014-11-20 | 株式会社クラレ | Polyamide resin composition |
WO2019098210A1 (en) * | 2017-11-16 | 2019-05-23 | ユニチカ株式会社 | Sliding member |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101553535B (en) * | 2006-12-20 | 2012-05-23 | 东洋纺织株式会社 | Crystalline polyamide based resin composition |
US20160002419A1 (en) * | 2013-03-11 | 2016-01-07 | Toyobo Co., Ltd. | Biaxially oriented polyamide-based resin film |
-
2020
- 2020-09-11 WO PCT/JP2020/034552 patent/WO2021060031A1/en active Application Filing
- 2020-09-11 JP JP2021548804A patent/JPWO2021060031A1/ja active Pending
- 2020-09-15 TW TW109131609A patent/TWI845761B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007297581A (en) * | 2006-04-06 | 2007-11-15 | Toyobo Co Ltd | Polyamide resin composition excellent in rigidity and molded article therefrom |
JP2014218574A (en) * | 2013-05-08 | 2014-11-20 | 株式会社クラレ | Polyamide resin composition |
WO2019098210A1 (en) * | 2017-11-16 | 2019-05-23 | ユニチカ株式会社 | Sliding member |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021060031A1 (en) | 2021-04-01 |
TWI845761B (en) | 2024-06-21 |
TW202116899A (en) | 2021-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3647036B2 (en) | Elastomer toughened wear resistant composition | |
US7658387B2 (en) | Reinforced elastomeric seal | |
US20070190284A1 (en) | Melt-processable adhesives for bonding pervious fluoropolymeric layers in multilayer composites | |
KR20040039369A (en) | Thermoplastic Elastomer Composition And Process For Producing The Same | |
JPWO2003022920A1 (en) | Polyethylene resin composition | |
JP6800890B2 (en) | Hardness setting of thermoplastic elastomer composition by combination of thermoplastic and thermoplastic elastomer | |
KR100300162B1 (en) | Polyacetal Resin Compositions and Sliding Members | |
KR100620475B1 (en) | Olefinic Thermoplastic Elastomer, Process for Production Thereof, Olefinic Thermoplastic Elastomer Compositions, Process for Producing the Same and Moldings thereof | |
US5683818A (en) | Method for improving the friction and wear properties of a polyamide and polyproyplene blend | |
WO2021060031A1 (en) | Polyamide resin composition for sliding components, and sliding component | |
WO2021038974A1 (en) | Thermoplastic elastomer composition, bonding member and method for producing same | |
JP2000351889A (en) | Thermoplastic elastomer composition and joint boot made thereof | |
JP6872155B1 (en) | Polyamide resin composition for sliding parts and sliding parts | |
JP2019131722A (en) | Thermoplastic elastomer composition and joining member | |
JPWO2005005538A1 (en) | Vinyl chloride thermoplastic elastomer composition | |
JP2019127528A (en) | Thermoplastic elastomer composition | |
JP4799763B2 (en) | Refrigerator seal | |
JP2980929B2 (en) | Lubricant rubber molding | |
JP2009270024A (en) | Thermoplastic resin composition improved in sliding property | |
KR100554822B1 (en) | Physical Character Improved PP/NBR Blend Thermoplast Elastometer | |
JP5290653B2 (en) | Sliding composition and sliding product | |
JPH09316255A (en) | Rubber composition having low hardness | |
JP2006117744A (en) | Vibration-damping material | |
JP4042192B2 (en) | Resin composition | |
JP3257115B2 (en) | Thermoplastic elastomer composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20868390 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021548804 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20868390 Country of ref document: EP Kind code of ref document: A1 |