WO2021060005A1 - Powder material for spraying, and method for manufacturing sprayed film - Google Patents

Powder material for spraying, and method for manufacturing sprayed film Download PDF

Info

Publication number
WO2021060005A1
WO2021060005A1 PCT/JP2020/034374 JP2020034374W WO2021060005A1 WO 2021060005 A1 WO2021060005 A1 WO 2021060005A1 JP 2020034374 W JP2020034374 W JP 2020034374W WO 2021060005 A1 WO2021060005 A1 WO 2021060005A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
powder material
thermal
spraying
volume
Prior art date
Application number
PCT/JP2020/034374
Other languages
French (fr)
Japanese (ja)
Inventor
芙美 篠田
伸映 加藤
博之 伊部
和人 佐藤
拓弥 諌山
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Publication of WO2021060005A1 publication Critical patent/WO2021060005A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/24Heat or noise insulation

Definitions

  • the present invention relates to a thermal spraying powder material and a method for producing a thermal spray coating using the same. More specifically, the present invention is for thermal spraying capable of forming a thermal spray coating having both extremely high abrasion resistance and low thermal conductivity as compared with conventional products in a thermal spray coating of a heat resistant material used in a high temperature environment.
  • the present invention relates to a powder material and a thermal spray coating using the powder material.
  • heat-resistant members are coated with a heat-shielding coating to protect them from high temperatures.
  • the coating film is, for example, laminated with an undercoat layer and a topcoat layer above the undercoat layer, and the topcoat layer is a porous structure having many pores in order to reduce the thermal conductivity of the coating film.
  • thermal spraying is one of the surface modification techniques that have been put into practical use together with the physical vapor deposition method and the chemical vapor deposition method.
  • thermal spraying there are no restrictions on the size of the base material, a uniform sprayed coating can be formed even on a base material over a wide area, the film formation speed is high, on-site construction is easy, and it is relatively easy. Since it has features such as the ability to form a thick film, its application has expanded to various industries in recent years, and it has become an extremely important surface modification technology.
  • Patent Document 1 a thermal spray material composed of a mixed powder of a ceramic powder and a resin powder is sprayed onto an undercoat layer to form a topcoat layer, and then heat treatment is performed to vaporize the resin powder in the topcoat layer. A method of forming pores in the topcoat layer has been proposed.
  • an object of the present invention is to provide a thermal spraying powder material for forming a thermal spray coating having both low thermal conductivity and high abrasion resistance, and a method for producing a thermal spray coating using the same.
  • the present invention is a powder material for thermal spraying, which includes composite particles formed by coating the surface of resin particles with ceramic particles, and the content of the resin particles is 10% by volume or more.
  • a powder material for thermal spraying having a volume of 50% by volume or less.
  • a uniform porous structure can be formed in the topcoat layer, whereby a thermal spray coating having both low thermal conductivity and high abrasion resistance can be obtained. Can be formed.
  • FIG. 1A is a scanning electron microscope (SEM) photograph of ceramic (YSZ) particles having a Dv of 50% of 3 ⁇ m, (b) of ceramic (YSZ) particles having a Dv of 50% of 33 ⁇ m, and (c) of resin (PE) particles.
  • FIG. 2A shows composite particles constituting the thermal spraying powder material of the present invention
  • FIG. 2B shows mixed particles of ceramic (YSZ) particles and resin (PE) particles constituting the conventional thermal spraying powder material.
  • c) shows a scanning electron microscope (SEM) photograph of a cross section of the composite particles constituting the thermal spray powder material of the present invention.
  • SEM scanning electron microscope
  • SEM scanning electron microscope
  • One embodiment of the present invention is a powder material for thermal spraying, which comprises composite particles formed by coating the surface of resin particles with ceramic particles, and the content of the resin particles is 10% by volume or more and 50% by volume or less. A certain spraying powder material is provided.
  • ceramic particles and resin powder are mixed at a predetermined ratio, and the slurry is prepared by dispersing the mixed powder and an appropriate amount of binder resin in a solvent such as a mixed solution of water and alcohol. ..
  • the prepared slurry is granulated into droplets using a granulator such as a spray granulator and then dried. Thereby, composite particles in which the resin particles are coated with the ceramic particles can be obtained.
  • the type of ceramic that forms the ceramic particles is not particularly limited, and is ittium oxide (Y 2 O 3 ), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), and oxidation.
  • a metal oxide such as zirconium (ZrO 2 ) can be preferably used, but zirconia oxide (zirconia) is preferable.
  • yttria (Y 2 O 3 ) stabilized zirconia (YSZ), ittervia (Yb 2 O 3 ) stabilized zirconia (YbSZ), dyspria (Dy 2 O 3 ) stabilized zirconia (DySZ), and elvia ( Er 2 O 3 ) Stabilized zirconia (ErSZ), SmYbZr 2 O 7 is particularly preferable.
  • yttria-stabilized zirconia 8% by mass yttria-stabilized zirconia (5YSZ) is more preferable.
  • the volume-based median diameter of the ceramic particles is not particularly limited, but may be 1 ⁇ m or more and 10 ⁇ m or less, preferably 1 ⁇ m or more and 5 ⁇ m or less. If it is less than 1 ⁇ m, the flow of thermal spraying tends to be poor when the thermal spray coating is formed, and if it exceeds 10 ⁇ m, it tends to be difficult to form composite particles in which ceramic particles are coated on the surface of the resin particles.
  • FIG. 1 (a) shows a scanning electron microscope (SEM) photograph of particles of stabilized zirconia (YSZ) having a volume-based median diameter Dv of 50% of 3 ⁇ m
  • FIG. 1 (b) shows a scanning electron microscope (SEM) photograph.
  • a scanning electron microscope (SEM) photograph of stabilized zirconia (YSZ) particles with a volume-based median diameter Dv of 50% of 33 ⁇ m is shown.
  • the YSZ particles are formed on the surface of the PE particles.
  • the particles of stabilized zirconia (YSZ) shown in FIG. 1 (b) and the polyester (PE) resin particles shown in FIG. 1 (c) are mixed to produce a powder material for thermal spraying.
  • the type of resin forming the resin particles is not particularly limited as long as it is a resin that is thermally decomposed and vaporized by heating, but a resin having a thermal decomposition temperature in air of 200 ° C. or higher is preferable.
  • the thermal decomposition temperature in air can be measured, for example, by thermogravimetric differential thermal analysis (TG-DTA). If the 5% weight loss temperature due to TG-DTA in air is 200 ° C. or higher, it can be determined that the thermal decomposition temperature in air is 200 ° C. or higher.
  • Examples of the resin having a thermal decomposition temperature of 200 ° C. or higher in air include aliphatic polyamide, aromatic polyamide, polyimide, polyetherimide, polyamideimide, polysulfone, polyethersulfone, polyphenylene sulfide, and polyetheretherketone.
  • Examples thereof include polyarylate, polycarbonate, fluororesin, liquid crystal polymer, phenol resin, urea resin, silicon resin, epoxy resin, aromatic polyester, polyacetal, polybutylene terephthalate and the like.
  • the content of the resin particles is 10 to 50% by volume with respect to the entire powder material for thermal spraying. Preferably, it is 15 to 40% by volume. If it is less than 10% by volume, the porosity becomes low, so that the thermal conductivity does not become sufficiently low. On the other hand, if it exceeds 50%, sufficient wear resistance cannot be obtained.
  • the volume-based median diameter of the resin particles is not limited, but is preferably larger than the volume-based median diameter of the ceramic particles. When the volume-based median diameter of the resin particles is larger than the volume-based median diameter of the ceramic particles, it becomes easy to form composite particles in which the surface of the resin particles is coated with the ceramic particles.
  • FIG. 1 (c) shows a scanning electron microscope (SEM) photograph of polyester (PE) particle powder.
  • SEM scanning electron microscope
  • the volume-based median diameter of the resin particles may be 10 ⁇ m or more and 50 ⁇ m or less. If it is less than 10 ⁇ m, it tends to be difficult to form composite particles in which ceramic particles are coated on the surface of the resin particles, and if it exceeds 50 ⁇ m, the pore diameter tends to be large and the abrasion resistance tends to be deteriorated.
  • the volume-based median diameter is a cumulative particle size of 50% from the fine grain side (or coarse grain side) of the volume-based cumulative particle size distribution, and can be measured by, for example, a laser diffraction type particle size distribution measuring device. Specifically, as the laser diffraction type particle size distribution measuring device, Malvern Panalytical's laser diffraction type particle size distribution measuring device Mastersizer 3000 or the like can be used.
  • the method for producing the spray powder material of the present invention is not particularly limited, but in general, spherical granule powder obtained by mixing and granulating each raw material powder is degreased, sintered, crushed, and classified.
  • a spherical powder having a uniform particle size that can be obtained is preferable.
  • it can be produced by a granulation sintering method, a sintering crushing method, a melt crushing method, or the like.
  • the granulation sintering method is a method in which raw material particles are granulated in the form of secondary particles and then sintered to firmly bond (sinter) the raw material particles to each other.
  • granulation can be carried out by using, for example, a granulation method such as dry granulation or wet granulation.
  • a granulation method such as dry granulation or wet granulation.
  • Specific examples of the granulation method include rolling granulation method, fluidized bed granulation method, stirring frame granulation method, crushing granulation method, melt granulation method, spray granulation method, and microemulsion granulation method. Law etc. can be mentioned.
  • a spray granulation method is mentioned as a preferable granulation method.
  • a molded product is first formed by mixing a plurality of raw material powders and compression molding. Next, the molded body is sintered to form a sintered body. Subsequently, the sintered body is crushed and classified to obtain the desired thermal spraying powder material.
  • the melt pulverization method first, a plurality of raw material powders are mixed, heated and melted, and then cooled to form a solidified product (ingot). Next, the solidified product is pulverized and classified to obtain the desired thermal spraying powder material.
  • the method of forming a thermal spray coating using the thermal spraying powder material of the present invention is a method of forming ceramic particles by spraying the thermal spraying powder material formed by the above method onto a base material.
  • the thermal spraying method is not particularly limited, but for example, atmospheric spraying (APS: atmospheric plasma spraying), suspension plasma spraying (SPS: suspension plasma spraying), reduced pressure plasma spraying (LPS: low pressure plasma spraying), and pressurized plasma spraying (high).
  • Plasma spraying method such as pressure plasma spraying, oxygen-supported high-speed frame (HVOP: High Velocity Oxygen Flame) spraying method, warm spray spraying method and air-supported high-speed frame spraying method (HVAF: High Velocity Air flame), etc.
  • High-speed frame thermal spraying and the like can be preferably used.
  • the thermal spraying powder material produced by the above method can be supplied to the thermal spraying apparatus in the form of powder, or may be supplied to the thermal spraying apparatus in the form of a slurry.
  • the thermal spray material when it is in the form of a slurry, it can be prepared by using a dispersion medium.
  • the dispersion medium include alcohols such as methanol and ethanol, toluene, hexane, kerosene and the like.
  • the slurry-like sprayed material may further contain other additives such as a dispersant, a coagulant, a viscosity modifier and the like.
  • the type of base material for which the thermal spray coating is formed is not particularly limited.
  • examples thereof include metal materials such as alloys, simple ceramic materials, composite ceramic materials, and ceramic matrix composites.
  • Specific examples of the metal material include alloys containing iron, nickel, cobalt and the like.
  • stainless steel, Hasteroy (manufactured by Haynes) which is an alloy in which molybdenum, chromium, etc. are added to a nickel group
  • Inconel manufactured by Special Metals
  • stellite manufactured by Delorosterite Group
  • Inver which is an alloy in which nickel, manganese, carbon and the like are added to iron.
  • ceramic materials include monolithic ceramics such as zirconia and alumina, and ceramic matrix composite materials (CMC).
  • the volume-based median diameter is using ZrO 2 -8 wt% Y 2 O 3 of 3 [mu] m (YSZ), volume-based median diameter as the resin particles to a polyester (PE) of 22 .mu.m, as a binder 2% by mass of polyvinyl alcohol (PVA) was added, and these were blended in the proportions shown in Table 1, mixed and granulated to prepare the spraying powder materials of Examples 1 to 3.
  • the ceramic particles and the resin particles are mixed in a predetermined composition, and are dispersed in a solvent consisting of a mixed solution of water and alcohol together with 2% by mass of PVA with respect to 100% by mass of the mixed powder.
  • Slurry was prepared.
  • this slurry was granulated into droplets using a spray granulator and then dried to produce a powder material for thermal spraying according to Examples 1 to 3 containing composite particles in which resin particles were coated with ceramic particles.
  • the volume-based median diameter is using ZrO 2 -8 wt% Y 2 O 3 (YSZ) of 33 .mu.m, median diameter on a volume basis as the resin particles to a polyester (PE) of 22 .mu.m, these
  • the powder materials for thermal spraying of Comparative Examples 1 to 4 were produced by mixing, stirring, and then drying at the volume ratios shown in Table 1.
  • Incidentally ceramic particles used in Comparative Example median diameter on a volume basis is prepared by granulation sintering ZrO 2 -8 wt% Y 2 O 3 (YSZ) of 3 [mu] m.
  • FIG. 2A shows a scanning electron microscope (SEM) photograph of the thermal spraying powder material of Example 1
  • FIG. 2C shows a scanning electron microscope (SEM) of a cross section of the thermal spraying powder material of Example 1. SEM) Photo is shown. As shown in FIG. 2C, it can be seen that the polyester (PE) resin particles have a composite particle structure in which the periphery is coated with YSZ particles.
  • FIG. 2B shows a scanning electron microscope (SEM) photograph of the thermal spraying powder material of Comparative Example 2, in which YSZ particles and PE particles are mixed. I understand.
  • thermal spray coatings of Examples 1 to 3 and Comparative Examples 1 to 4 produced by the above method were used to form a thermal spray coating under the following conditions, and then pores were formed in the thermal spray coating by heat treatment.
  • Thermal spraying conditions SG-100 plasma manufactured by PRAXAIR was used as the thermal sprayer. The thermal spraying conditions are shown below.
  • Base material Stainless steel 316 blasted with alumina # 40
  • Thermal spraying distance 90 mm Film thickness: 500-600 ⁇ m
  • Example 3 (a) of Example 2 has a more uniform porous shape. It can be seen that the tissue is formed. Similarly, when FIG. 3 (b) of Example 3 and FIG. 3 (d) of Comparative Example 4 having the same PE resin content of 42 vol% are compared, FIG. 3 (b) of Example 3 is more. It can be seen that a uniform porous structure is formed.
  • the specific heat capacity Cp (J ⁇ kg -1 ⁇ K -1 ) of the sprayed coating formed under the above thermal spraying conditions and the above heat treatment conditions was measured by the DSC Q100 of TA instrument, and the thermal diffusivity (m 2 ⁇ S -1 ). Was measured using Netch's Flash analyzer LF447.
  • (3) Evaluation of Abrasion Characteristics The thermal spray coating formed under the above thermal spraying conditions and the above heat treatment conditions was subjected to a load of 1 kgf with # 180 abrasive paper using a Suga abrasion resistance tester, and the thermal spray coating due to abrasion was applied. The decrease in thickness was measured.
  • the sprayed coatings of Examples 1 to 3 are excellent in both thermal conductivity and abrasion resistance, but in Comparative Examples in which the content of the resin particles exceeds 50% by volume, they are produced by granulation. However, the wear rate is high and the wear resistance is reduced. Further, in Comparative Examples 2 to 4 produced by mixing the thermal spray powder material, both low thermal conductivity and abrasion resistance are not achieved at the same time.
  • a uniform porous structure can be formed in the topcoat layer as a thermal spray coating, whereby industrial applicability that achieves both low thermal conductivity and high abrasion resistance can be achieved. Can provide a high sprayed coating.

Abstract

Provided are: a powder material for spraying, the powder material being used for forming a sprayed film that has both low thermal conductivity and high abrasion resistance; and a method for manufacturing a sprayed film in which the powder material for spraying is used. A powder material for spraying, the powder material including composite particles configured by the surface of resin particles being coated with ceramic particles, and being such that the resin particle content is 10-50 vol% (inclusive).

Description

溶射用粉末材および溶射皮膜の製造方法Method for manufacturing thermal spray powder and thermal spray coating
 本発明は、溶射用粉末材、それを用いた溶射皮膜の製造方法に関する。更に詳しくは、本発明は、高温環境下で使用される耐熱材料の耐熱性皮膜において、従来品に比べ極めて高い耐磨耗性と低熱伝導率を両立した溶射皮膜を形成することができる溶射用粉末材およびそれを用いた溶射皮膜に関する。 The present invention relates to a thermal spraying powder material and a method for producing a thermal spray coating using the same. More specifically, the present invention is for thermal spraying capable of forming a thermal spray coating having both extremely high abrasion resistance and low thermal conductivity as compared with conventional products in a thermal spray coating of a heat resistant material used in a high temperature environment. The present invention relates to a powder material and a thermal spray coating using the powder material.
 ガスタービンエンジンの静翼、動翼、燃焼器の壁材等の高温化で使用される材料においては、耐熱性の部材を遮熱性の被膜で被覆して高温から保護することが行われている。コーティング皮膜は、例えば、アンダーコート層とその上層のトップコート層とを積層し、トップコート層は、コーティング皮膜の熱伝導率を低下させるために、気孔を多く有するポーラス組織とされる。 In materials used for high temperature such as stationary blades, moving blades, and wall materials of combustors of gas turbine engines, heat-resistant members are coated with a heat-shielding coating to protect them from high temperatures. .. The coating film is, for example, laminated with an undercoat layer and a topcoat layer above the undercoat layer, and the topcoat layer is a porous structure having many pores in order to reduce the thermal conductivity of the coating film.
 これらのコーティング皮膜は溶射法によって形成されることが多い。溶射法は、物理的蒸着法や化学的蒸着法などとともに、実用化されている表面改質技術の一つである。溶射は、基材の寸法に制限がなく、広い面積の基材に対しても一様な溶射皮膜を形成できること、皮膜の形成速度が大きいこと、現場施工が容易であること、比較的容易に厚膜が形成できることなどの特徴を有するため、近年、各種の産業にその適用が拡大し、極めて重要な表面改質技術となっている。 These coating films are often formed by thermal spraying. The thermal spraying method is one of the surface modification techniques that have been put into practical use together with the physical vapor deposition method and the chemical vapor deposition method. In thermal spraying, there are no restrictions on the size of the base material, a uniform sprayed coating can be formed even on a base material over a wide area, the film formation speed is high, on-site construction is easy, and it is relatively easy. Since it has features such as the ability to form a thick film, its application has expanded to various industries in recent years, and it has become an extremely important surface modification technology.
 特許文献1では、セラミック粉末と樹脂粉末との混合粉末からなる溶射材料をアンダーコート層上に溶射してトップコート層を形成し、その後加熱処理することにより、トップコート層中の樹脂粉末を気化させて、トップコート層中に気孔を形成する方法が提案されている。 In Patent Document 1, a thermal spray material composed of a mixed powder of a ceramic powder and a resin powder is sprayed onto an undercoat layer to form a topcoat layer, and then heat treatment is performed to vaporize the resin powder in the topcoat layer. A method of forming pores in the topcoat layer has been proposed.
特開2013-181192号公報Japanese Unexamined Patent Publication No. 2013-181192
 しかしながら、上記溶射用粉末材を用いて形成された溶射皮膜は、遮熱性を高めるためにポーラス組織とすると、皮膜の耐磨耗性が低下する。このため、本発明の目的は、低熱伝導率と高耐磨耗性を両立した溶射皮膜を形成するための溶射用粉末材、及びそれを用いた溶射皮膜の製造方法を提供することにある。 However, if the thermal spray coating formed by using the above-mentioned thermal spray powder material has a porous structure in order to enhance the heat shielding property, the abrasion resistance of the coating is lowered. Therefore, an object of the present invention is to provide a thermal spraying powder material for forming a thermal spray coating having both low thermal conductivity and high abrasion resistance, and a method for producing a thermal spray coating using the same.
 上記の課題を解決するために、本発明は、溶射用粉末材であって、樹脂粒子の表面にセラミック粒子が被覆されて構成される複合粒子を含み、樹脂粒子の含有量が10体積%以上50体積%以下である溶射用粉末材を提供する。 In order to solve the above problems, the present invention is a powder material for thermal spraying, which includes composite particles formed by coating the surface of resin particles with ceramic particles, and the content of the resin particles is 10% by volume or more. Provided is a powder material for thermal spraying having a volume of 50% by volume or less.
 本発明の溶射用粉末材により溶射皮膜を形成することにより、トップコート層中に均一なポーラス組織を形成することができ、これにより、低熱伝導率と高耐磨耗性を両立した溶射皮膜を形成することができる。 By forming a thermal spray coating with the thermal spray powder material of the present invention, a uniform porous structure can be formed in the topcoat layer, whereby a thermal spray coating having both low thermal conductivity and high abrasion resistance can be obtained. Can be formed.
図1の(a)はDv50%が3μmのセラミック(YSZ)粒子、(b)はDv50%が33μmのセラミック(YSZ)粒子、(c)は樹脂(PE)粒子の走査電子顕微鏡(SEM)写真を示す。FIG. 1A is a scanning electron microscope (SEM) photograph of ceramic (YSZ) particles having a Dv of 50% of 3 μm, (b) of ceramic (YSZ) particles having a Dv of 50% of 33 μm, and (c) of resin (PE) particles. Is shown. 図2の(a)は本発明の溶射用粉末材を構成する複合粒子、(b)は従来例の溶射用粉末材を構成するセラミック(YSZ)粒子と樹脂(PE)粒子の混合粒子、(c)は本発明の溶射用粉末材を構成する複合粒子の断面の走査電子顕微鏡(SEM)写真を示す。FIG. 2A shows composite particles constituting the thermal spraying powder material of the present invention, and FIG. 2B shows mixed particles of ceramic (YSZ) particles and resin (PE) particles constituting the conventional thermal spraying powder material. c) shows a scanning electron microscope (SEM) photograph of a cross section of the composite particles constituting the thermal spray powder material of the present invention. 図3の(a)および(b)は本発明の実施例により形成された溶射皮膜の断面ミクロ組織の走査電子顕微鏡(SEM)写真を示し、(c)および(d)は比較例により形成された溶射皮膜の断面ミクロ組織の走査電子顕微鏡(SEM)写真を示す。(A) and (b) of FIG. 3 show scanning electron microscope (SEM) photographs of the cross-sectional microstructure of the sprayed coating formed by the examples of the present invention, and (c) and (d) are formed by the comparative examples. A scanning electron microscope (SEM) photograph of the cross-sectional microstructure of the sprayed coating is shown.
 本発明の一実施形態について詳細に説明する。なお、以下の実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、以下の実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 本発明の一実施形態は、溶射用粉末材であって、樹脂粒子の表面にセラミック粒子が被覆されて構成される複合粒子を含み、樹脂粒子の含有量が10体積%以上50体積%以下である溶射用粉末材を提供する。
An embodiment of the present invention will be described in detail. The following embodiments show an example of the present invention, and the present invention is not limited to the present embodiment. In addition, various changes or improvements can be added to the following embodiments, and the modified or improved forms may be included in the present invention.
One embodiment of the present invention is a powder material for thermal spraying, which comprises composite particles formed by coating the surface of resin particles with ceramic particles, and the content of the resin particles is 10% by volume or more and 50% by volume or less. A certain spraying powder material is provided.
 複合粒子を形成するためには、セラミック粒子と樹脂粉末とを所定の割合で混合し、この混合粉末と適量のバインダー樹脂を水およびアルコールの混合溶液などの溶媒に分散させることによりスラリーを調整する。調整されたスラリーを、噴霧造粒機などの造粒機を用いて液滴状に造粒した後乾燥する。これによって、樹脂粒子がセラミック粒子により被覆された複合粒子を得ることができる。 In order to form composite particles, ceramic particles and resin powder are mixed at a predetermined ratio, and the slurry is prepared by dispersing the mixed powder and an appropriate amount of binder resin in a solvent such as a mixed solution of water and alcohol. .. The prepared slurry is granulated into droplets using a granulator such as a spray granulator and then dried. Thereby, composite particles in which the resin particles are coated with the ceramic particles can be obtained.
<セラミック粒子>
 セラミック粒子を形成するセラミックの種類は特に限定されるものではなく、酸化イットリウム(Y23)、酸化アルミニウム(Al23)、酸化ケイ素(SiO2)、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)等の金属酸化物を好適に用いることができるが、酸化ジルコニウム(ジルコニア)が好ましい。また、ジルコニアの中でも、イットリア(Y23)安定化ジルコニア(YSZ)、イッテルビア(Yb23)安定化ジルコニア(YbSZ)、ジスプロシア(Dy23)安定化ジルコニア(DySZ)、エルビア(Er23)安定化ジルコニア(ErSZ)、SmYbZr27が特に好ましい。イットリア安定化ジルコニアの中では、8質量%のイットリアで安定化されたジルコニア(5YSZ)がより好ましい。
<Ceramic particles>
The type of ceramic that forms the ceramic particles is not particularly limited, and is ittium oxide (Y 2 O 3 ), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), and oxidation. A metal oxide such as zirconium (ZrO 2 ) can be preferably used, but zirconia oxide (zirconia) is preferable. Among the zirconia, yttria (Y 2 O 3 ) stabilized zirconia (YSZ), ittervia (Yb 2 O 3 ) stabilized zirconia (YbSZ), dyspria (Dy 2 O 3 ) stabilized zirconia (DySZ), and elvia ( Er 2 O 3 ) Stabilized zirconia (ErSZ), SmYbZr 2 O 7 is particularly preferable. Among the yttria-stabilized zirconia, 8% by mass yttria-stabilized zirconia (5YSZ) is more preferable.
 セラミック粒子の体積基準のメディアン径は特に限定されないが、1μm以上10μm以下、好ましくは1μm以上5μm以下であってもよい。1μm未満であると溶射皮膜形成の際に溶射の流れが悪くなる傾向にあり、10μmを超えると樹脂粒子の表面にセラミック粒子が被覆された複合粒子を形成しにくくなる傾向にある。 The volume-based median diameter of the ceramic particles is not particularly limited, but may be 1 μm or more and 10 μm or less, preferably 1 μm or more and 5 μm or less. If it is less than 1 μm, the flow of thermal spraying tends to be poor when the thermal spray coating is formed, and if it exceeds 10 μm, it tends to be difficult to form composite particles in which ceramic particles are coated on the surface of the resin particles.
 図1の(a)には、体積基準のメディアン径Dv50%が3μmの安定化ジルコニア(YSZ)の粒子の走査電子顕微鏡(SEM)写真が示されており、図1の(b)には、体積基準のメディアン径Dv50%が33μmの安定化ジルコニア(YSZ)の粒子の走査電子顕微鏡(SEM)写真が示されている。例えば、図1の(a)に示される安定化ジルコニア(YSZ)の粒子と図1の(c)に示されるポリエステル(PE)樹脂粒子を使用して造粒すると、PE粒子の表面にYSZ粒子が被覆された複合粒子を形成することができる。また、従来は、例えば、図1の(b)に示される安定化ジルコニア(YSZ)の粒子と図1の(c)に示されるポリエステル(PE)樹脂粒子を混合して溶射用粉末材を製造していた。 FIG. 1 (a) shows a scanning electron microscope (SEM) photograph of particles of stabilized zirconia (YSZ) having a volume-based median diameter Dv of 50% of 3 μm, and FIG. 1 (b) shows a scanning electron microscope (SEM) photograph. A scanning electron microscope (SEM) photograph of stabilized zirconia (YSZ) particles with a volume-based median diameter Dv of 50% of 33 μm is shown. For example, when granulated using the stabilized zirconia (YSZ) particles shown in FIG. 1 (a) and the polyester (PE) resin particles shown in FIG. 1 (c), the YSZ particles are formed on the surface of the PE particles. Can form composite particles coated with. Conventionally, for example, the particles of stabilized zirconia (YSZ) shown in FIG. 1 (b) and the polyester (PE) resin particles shown in FIG. 1 (c) are mixed to produce a powder material for thermal spraying. Was.
<樹脂粒子>
 樹脂粒子を形成する樹脂の種類は、加熱により熱分解して気化する樹脂であれば、特に限定されるものではないが、空気中での熱分解温度が200℃以上である樹脂が好ましい。空気中での熱分解温度は、例えば熱重量示差熱同時分析(TG-DTA)で測定することができる。空気中でのTG-DTAによる5%重量減少温度が200℃以上であれば、空気中での熱分解温度が200℃以上であると判断することができる。
<Resin particles>
The type of resin forming the resin particles is not particularly limited as long as it is a resin that is thermally decomposed and vaporized by heating, but a resin having a thermal decomposition temperature in air of 200 ° C. or higher is preferable. The thermal decomposition temperature in air can be measured, for example, by thermogravimetric differential thermal analysis (TG-DTA). If the 5% weight loss temperature due to TG-DTA in air is 200 ° C. or higher, it can be determined that the thermal decomposition temperature in air is 200 ° C. or higher.
 空気中での熱分解温度が200℃以上である樹脂としては、例えば、脂肪族ポリアミド、芳香族ポリアミド、ポリイミド、ポリエーテルイミド、ポリアミドイミド、ポリスルホン、ポリエーテルスルホン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリアリレート、ポリカーボネート、フッ素樹脂、液晶ポリマー、フェノール樹脂、ユリア樹脂、シリコン樹脂、エポキシ樹脂、芳香族ポリエステル、ポリアセタール、ポリブチレンテレフタレート等を挙げることができる。 Examples of the resin having a thermal decomposition temperature of 200 ° C. or higher in air include aliphatic polyamide, aromatic polyamide, polyimide, polyetherimide, polyamideimide, polysulfone, polyethersulfone, polyphenylene sulfide, and polyetheretherketone. Examples thereof include polyarylate, polycarbonate, fluororesin, liquid crystal polymer, phenol resin, urea resin, silicon resin, epoxy resin, aromatic polyester, polyacetal, polybutylene terephthalate and the like.
 樹脂粒子の含有量は、溶射用粉末材全体に対して10~50体積%を有する。好ましくは、15~40体積%である。10体積%未満では気孔率が低くなるため熱伝導率が十分に低くならない。また、50%を超えると、十分な耐磨耗性が得られない。
 また、樹脂粒子の体積基準のメディアン径は限定されるものではないが、セラミック粒子の体積基準のメディアン径より大きいことが好ましい。樹脂粒子の体積基準のメディアン径がセラミック粒子の体積基準のメディアン径より大きいと、樹脂粒子の表面にセラミック粒子が被覆された複合粒子を形成しやすくなる。
The content of the resin particles is 10 to 50% by volume with respect to the entire powder material for thermal spraying. Preferably, it is 15 to 40% by volume. If it is less than 10% by volume, the porosity becomes low, so that the thermal conductivity does not become sufficiently low. On the other hand, if it exceeds 50%, sufficient wear resistance cannot be obtained.
The volume-based median diameter of the resin particles is not limited, but is preferably larger than the volume-based median diameter of the ceramic particles. When the volume-based median diameter of the resin particles is larger than the volume-based median diameter of the ceramic particles, it becomes easy to form composite particles in which the surface of the resin particles is coated with the ceramic particles.
 図1の(c)には、ポリエステル(PE)粒子粉末の走査電子顕微鏡(SEM)写真が示されている。例えば、図1の(a)に示される安定化ジルコニア(YSZ)の粒子粉末と図1の(c)に示されるポリエステル(PE)樹脂粒子を使用して造粒すると、PE粒子の表面にYSZ粒子が被覆された複合粒子を形成することができる。 FIG. 1 (c) shows a scanning electron microscope (SEM) photograph of polyester (PE) particle powder. For example, when granulated using the stabilized zirconia (YSZ) particle powder shown in FIG. 1 (a) and the polyester (PE) resin particles shown in FIG. 1 (c), YSZ is formed on the surface of the PE particles. Composite particles coated with particles can be formed.
 樹脂粒子の体積基準のメディアン径は10μm以上50μm以下であってもよい。10μm未満では樹脂粒子の表面にセラミック粒子が被覆された複合粒子を形成しにくくなる傾向にあり、50μmを超えると気孔径が大きくなり耐磨耗性が劣化する傾向にある。
 体積基準のメディアン径は、体積基準の累積粒度分布の微粒側(または粗粒側)から累積50%の粒径であり、たとえば、レーザ回折式粒度分布測定装置により測定できる。具体的にはレーザ回折式粒度分布測定装置としてはMalvern Panalytical社のレーザ回折式粒度分布測定装置Mastersizer 3000などを使用することができる。
The volume-based median diameter of the resin particles may be 10 μm or more and 50 μm or less. If it is less than 10 μm, it tends to be difficult to form composite particles in which ceramic particles are coated on the surface of the resin particles, and if it exceeds 50 μm, the pore diameter tends to be large and the abrasion resistance tends to be deteriorated.
The volume-based median diameter is a cumulative particle size of 50% from the fine grain side (or coarse grain side) of the volume-based cumulative particle size distribution, and can be measured by, for example, a laser diffraction type particle size distribution measuring device. Specifically, as the laser diffraction type particle size distribution measuring device, Malvern Panalytical's laser diffraction type particle size distribution measuring device Mastersizer 3000 or the like can be used.
<溶射用粉末材の製造方法>
 本発明の溶射用粉末材は、その製造方法には特に制限はないが、一般的には、各原料粉末を混合、造粒した球形の顆粒粉末を、脱脂、焼結、解砕、分級して得ることができる粒径の揃った球形の粉末が好ましい。具体的には、造粒焼結法、焼結粉砕法、溶融粉砕法などによって製造することができる。
 造粒焼結法とは、原料粒子を二次粒子の形態に造粒した後、焼結して、原料粒子同士を強固に結合(焼結)させる手法である。この造粒焼結法において、造粒は、例えば、乾式造粒あるいは湿式造粒等の造粒方法を利用して実施することができる。造粒方法としては、具体的には、例えば、転動造粒法、流動層造粒法、撹枠造粒法、破砕造粒法、溶融造粒法、噴霧造粒法、マイクロエマルション造粒法等が挙げられる。なかでも好適な造粒方法として、噴霧造粒法が挙げられる。
<Manufacturing method of powder material for thermal spraying>
The method for producing the spray powder material of the present invention is not particularly limited, but in general, spherical granule powder obtained by mixing and granulating each raw material powder is degreased, sintered, crushed, and classified. A spherical powder having a uniform particle size that can be obtained is preferable. Specifically, it can be produced by a granulation sintering method, a sintering crushing method, a melt crushing method, or the like.
The granulation sintering method is a method in which raw material particles are granulated in the form of secondary particles and then sintered to firmly bond (sinter) the raw material particles to each other. In this granulation sintering method, granulation can be carried out by using, for example, a granulation method such as dry granulation or wet granulation. Specific examples of the granulation method include rolling granulation method, fluidized bed granulation method, stirring frame granulation method, crushing granulation method, melt granulation method, spray granulation method, and microemulsion granulation method. Law etc. can be mentioned. Among them, a spray granulation method is mentioned as a preferable granulation method.
 焼結粉砕法では、まず、複数の原料粉末を混合して圧縮成形することにより成形体が形成される。次に、その成形体が焼結されて焼結体が形成される。続いて、その焼結体が粉砕されて分級されることによって、目的の溶射用粉末材が得られる。溶融粉砕法では、まず、複数の原料粉末を混合して加熱溶融した後に冷却することにより固化物(インゴット)が形成される。次に、その固化物が粉砕されて分級されることによって、目的の溶射用粉末材が得られる。 In the sintering and crushing method, a molded product is first formed by mixing a plurality of raw material powders and compression molding. Next, the molded body is sintered to form a sintered body. Subsequently, the sintered body is crushed and classified to obtain the desired thermal spraying powder material. In the melt pulverization method, first, a plurality of raw material powders are mixed, heated and melted, and then cooled to form a solidified product (ingot). Next, the solidified product is pulverized and classified to obtain the desired thermal spraying powder material.
<溶射皮膜の形成方法>
 本発明の溶射用粉末材を使用して溶射皮膜を形成する方法は、上記方法により形成した溶射用粉末材を基材に溶射することによりセラミック粒子を形成するセラミックからなる母相中に樹脂粒子が分散した海島構造を有する溶射皮膜を形成する工程と、溶射皮膜に加熱処理を施して溶射皮膜のセラミック母相中の樹脂粒子を気化させ、溶射皮膜中に気孔を形成する加熱工程と、を備える。
<Method of forming a thermal spray coating>
The method of forming a thermal spray coating using the thermal spraying powder material of the present invention is a method of forming ceramic particles by spraying the thermal spraying powder material formed by the above method onto a base material. A step of forming a sprayed coating having a sea-island structure in which is dispersed, and a heating step of heat-treating the sprayed coating to vaporize the resin particles in the ceramic matrix of the sprayed coating to form pores in the sprayed coating. Be prepared.
 上記方法によって製造された溶射用粉末材を使用して各種の溶射法により溶射することで、各種の基材に溶射皮膜を形成することができる。溶射方法は特に制限されないが、例えば、大気プラズマ溶射(APS:atmospheric plasma spraying)、サスペンションプラズマ溶射(SPS:suspension plasma spraying)、減圧プラズマ溶射(LPS:low pressure plasma spraying)、加圧プラズマ溶射(high pressure plasma spraying)等のプラズマ溶射法、酸素支燃型高速フレーム(HVOP:High Velocity Oxygen Flame)溶射法、ウォームスプレー溶射法および空気支燃型高速フレーム溶射法(HVAF : High Velocity Air flame)等の高速フレーム溶射等を好適に利用することができる。 By using the thermal spraying powder material produced by the above method and spraying by various thermal spraying methods, it is possible to form a thermal spray coating on various base materials. The thermal spraying method is not particularly limited, but for example, atmospheric spraying (APS: atmospheric plasma spraying), suspension plasma spraying (SPS: suspension plasma spraying), reduced pressure plasma spraying (LPS: low pressure plasma spraying), and pressurized plasma spraying (high). Plasma spraying method such as pressure plasma spraying, oxygen-supported high-speed frame (HVOP: High Velocity Oxygen Flame) spraying method, warm spray spraying method and air-supported high-speed frame spraying method (HVAF: High Velocity Air flame), etc. High-speed frame thermal spraying and the like can be preferably used.
 上記の方法により製造された溶射用粉末材は粉末の状態で溶射装置に供給することもできるし、スラリーの形態として溶射装置に供給してもよい。溶射材料がスラリー状の形態の場合、分散媒を用いて調製することができる。分散媒として、例えばメタノール、エタノール等のアルコール類、トルエン、ヘキサン、灯油等が挙げられる。スラリー状の溶射材料は、その他の添加剤、例えば分散剤、凝集剤、粘度調整剤等をさらに含有してもよい。 The thermal spraying powder material produced by the above method can be supplied to the thermal spraying apparatus in the form of powder, or may be supplied to the thermal spraying apparatus in the form of a slurry. When the thermal spray material is in the form of a slurry, it can be prepared by using a dispersion medium. Examples of the dispersion medium include alcohols such as methanol and ethanol, toluene, hexane, kerosene and the like. The slurry-like sprayed material may further contain other additives such as a dispersant, a coagulant, a viscosity modifier and the like.
 溶射皮膜形成の対象となる基材の種類は特に制限されない。例えば合金等の金属材料、単純セラミック材料、複合セラミック材料、セラミックスマトリックスコンポジット等が挙げられる。金属材料の具体例としては、鉄、ニッケル、コバルト等を含む合金が挙げられる。例えばステンレス鋼や、ニッケル基にモリブデン、クロム等を加えた合金であるハステロイ(ヘインズ社製)、ニッケル基に鉄、クロム、ニオブ、モリブデン等を加えた合金であるインコネル(スペシャルメタルズ社製)、コバルトを主成分とし、クロム、タングステン等を加えた合金であるステライト(デロロステライトグループ社製)、鉄にニッケル、マンガン、炭素等を加えた合金であるインバー等が挙げられる。また、セラミック系材料としては、ジルコニア、アルミナ等のモノシリックセラミックス、セラミックマトリックス複合材(CMC)等が挙げられる。 The type of base material for which the thermal spray coating is formed is not particularly limited. Examples thereof include metal materials such as alloys, simple ceramic materials, composite ceramic materials, and ceramic matrix composites. Specific examples of the metal material include alloys containing iron, nickel, cobalt and the like. For example, stainless steel, Hasteroy (manufactured by Haynes), which is an alloy in which molybdenum, chromium, etc. are added to a nickel group, Inconel (manufactured by Special Metals), which is an alloy in which iron, chromium, niobium, molybdenum, etc. are added to a nickel group, Examples thereof include stellite (manufactured by Delorosterite Group), which is an alloy containing cobalt as a main component and chromium, tungsten and the like, and Inver, which is an alloy in which nickel, manganese, carbon and the like are added to iron. Examples of ceramic materials include monolithic ceramics such as zirconia and alumina, and ceramic matrix composite materials (CMC).
 以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
<溶射用粉末材の調整>
 セラミック粒子として、体積基準のメディアン径が3μmのZrO-8質量%Y(YSZ)を使用し、樹脂粒子として体積基準のメディアン径が22μmのポリエステル(PE)を使用し、バインダーとして2質量%のポリビニルアルコール(PVA)を加え、これらを、表1に示す割合で配合し、混合、造粒して実施例1~3の溶射用粉末材を調製した。具体的には、まず、セラミック粒子と樹脂粒子とを所定の配合で混合し、この混合粉末100質量%に対して2質量%のPVAと共に水およびアルコールの混合溶液からなる溶媒に分散させることで、スラリーを調製した。次いで、このスラリーを、噴霧造粒機を用い、液滴状に造粒したのち乾燥させ樹脂粒子がセラミック粒子に被覆された複合粒子を含む実施例1~3の溶射用粉末材を製造した。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
<Adjustment of powder material for thermal spraying>
As ceramic particles, the volume-based median diameter is using ZrO 2 -8 wt% Y 2 O 3 of 3 [mu] m (YSZ), volume-based median diameter as the resin particles to a polyester (PE) of 22 .mu.m, as a binder 2% by mass of polyvinyl alcohol (PVA) was added, and these were blended in the proportions shown in Table 1, mixed and granulated to prepare the spraying powder materials of Examples 1 to 3. Specifically, first, the ceramic particles and the resin particles are mixed in a predetermined composition, and are dispersed in a solvent consisting of a mixed solution of water and alcohol together with 2% by mass of PVA with respect to 100% by mass of the mixed powder. , Slurry was prepared. Next, this slurry was granulated into droplets using a spray granulator and then dried to produce a powder material for thermal spraying according to Examples 1 to 3 containing composite particles in which resin particles were coated with ceramic particles.
 セラミック粒子として、体積基準のメディアン径が33μmのZrO-8質量%Y(YSZ)を使用し、樹脂粒子として体積基準のメディアン径が22μmのポリエステル(PE)を使用し、これらを表1に示す体積割合で、混合、撹拌した後乾燥することで比較例1~4の溶射用粉末材を製造した。なお比較例で用いたセラミック粒子は体積基準のメディアン径が3μmのZrO-8質量%Y(YSZ)を造粒焼結することによって製造した。 As ceramic particles, the volume-based median diameter is using ZrO 2 -8 wt% Y 2 O 3 (YSZ) of 33 .mu.m, median diameter on a volume basis as the resin particles to a polyester (PE) of 22 .mu.m, these The powder materials for thermal spraying of Comparative Examples 1 to 4 were produced by mixing, stirring, and then drying at the volume ratios shown in Table 1. Incidentally ceramic particles used in Comparative Example median diameter on a volume basis is prepared by granulation sintering ZrO 2 -8 wt% Y 2 O 3 (YSZ) of 3 [mu] m.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、粒子径はMalvern Panalytical社のレーザ回折式粒度分布測定装置Mastersizer 3000を使用して測定した。
 図2の(a)には実施例1の溶射用粉末材の走査電子顕微鏡(SEM)写真が示されており、(c)には実施例1の溶射用粉末材の断面の走査電子顕微鏡(SEM)写真が示されている。図2の(c)に示されるように、ポリエステル(PE)樹脂粒子の周囲がYSZ粒子に被覆された複合粒子構造となっていることがわかる。これに対して、図2の(b)には比較例2の溶射用粉末材の走査電子顕微鏡(SEM)写真が示されているが、YSZ粒子とPE粒子が混合されている状態であることがわかる。
The particle size was measured using a laser diffraction type particle size distribution measuring device Mastersizer 3000 manufactured by Malvern Panalytical.
FIG. 2A shows a scanning electron microscope (SEM) photograph of the thermal spraying powder material of Example 1, and FIG. 2C shows a scanning electron microscope (SEM) of a cross section of the thermal spraying powder material of Example 1. SEM) Photo is shown. As shown in FIG. 2C, it can be seen that the polyester (PE) resin particles have a composite particle structure in which the periphery is coated with YSZ particles. On the other hand, FIG. 2B shows a scanning electron microscope (SEM) photograph of the thermal spraying powder material of Comparative Example 2, in which YSZ particles and PE particles are mixed. I understand.
<溶射皮膜の形成>
 上記方法により製造した実施例1~3および比較例1~4の溶射用粉末材を使用して以下の条件で溶射皮膜を形成し、次いで熱処理により溶射皮膜中に気孔を形成した。
(1)溶射条件
 溶射機にはPRAXAIR社製SG-100プラズマを用いた。溶射条件を以下に示す。
Ar分圧:50psi
He分圧:50psi
粉末流量:100g/min
基材:アルミナ#40でブラスト処理されたステンレス鋼316
溶射距離:90mm
被膜厚さ:500~600μm
<Formation of thermal spray coating>
The thermal spray coatings of Examples 1 to 3 and Comparative Examples 1 to 4 produced by the above method were used to form a thermal spray coating under the following conditions, and then pores were formed in the thermal spray coating by heat treatment.
(1) Thermal spraying conditions SG-100 plasma manufactured by PRAXAIR was used as the thermal sprayer. The thermal spraying conditions are shown below.
Ar partial pressure: 50 psi
He partial pressure: 50 psi
Powder flow rate: 100 g / min
Base material: Stainless steel 316 blasted with alumina # 40
Thermal spraying distance: 90 mm
Film thickness: 500-600 μm
(2)熱処理
 上記溶射条件で形成した溶射皮膜が形成された基材を大気雰囲気中で熱処理を施すことにより溶射皮膜中の樹脂を気化させ気孔を形成する。熱処理は、大気炉により、加熱温度750℃で、2時間保持することにより行った。
 図3の(a)および(b)にはそれぞれ実施例2及び3により形成した溶射皮膜の断面の走査電子顕微鏡(SEM)写真が示されている。また、図3の(c)および(d)にはそれぞれ比較例3及び4により形成した溶射皮膜の断面電子顕微鏡写真が示されている。PE樹脂含有率が同じ31vol%である実施例2の図3(a)と比較例3の図3(c)を比較すると、実施例2である図3(a)の方がより均一なポーラス組織が形成されていることがわかる。同様に、PE樹脂含有率が同じ42vol%である実施例3の図3(b)と比較例4の図3(d)を比較すると、実施例3である図3(b)の方がより均一なポーラス組織が形成されていることがわかる。
(2) Heat treatment By heat-treating the base material on which the thermal spray coating formed under the above thermal spraying conditions is formed in an air atmosphere, the resin in the thermal spray coating is vaporized to form pores. The heat treatment was carried out by holding in an air furnace at a heating temperature of 750 ° C. for 2 hours.
(A) and (b) of FIG. 3 show scanning electron microscope (SEM) photographs of the cross section of the sprayed coating formed by Examples 2 and 3, respectively. Further, (c) and (d) of FIG. 3 show cross-sectional electron micrographs of the thermal spray coating formed by Comparative Examples 3 and 4, respectively. Comparing FIG. 3 (a) of Example 2 and FIG. 3 (c) of Comparative Example 3 in which the PE resin content is the same 31 vol%, FIG. 3 (a) of Example 2 has a more uniform porous shape. It can be seen that the tissue is formed. Similarly, when FIG. 3 (b) of Example 3 and FIG. 3 (d) of Comparative Example 4 having the same PE resin content of 42 vol% are compared, FIG. 3 (b) of Example 3 is more. It can be seen that a uniform porous structure is formed.
<溶射皮膜特性の測定>
 上記方法により製造した実施例1~3および比較例1~4の溶射皮膜について、以下の方法により気孔率、熱伝導率、磨耗特性を測定した。
<Measurement of thermal spray coating characteristics>
The porosity, thermal conductivity, and abrasion characteristics of the sprayed coatings of Examples 1 to 3 and Comparative Examples 1 to 4 produced by the above methods were measured by the following methods.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(1)気孔率
 上記溶射条件及び上記熱処理条件で形成された溶射皮膜を切断し、断面を研磨により鏡面加工し、断面を顕微鏡観察し、単位断面積中に占める気孔の割合(%)を測定した。
(2)熱伝導率
 溶射皮膜の熱伝導率λは以下の式を使用して計算することができる。
 λ=Cp×a×ρ
 上記式において、Cpは比熱容量(J・kg-1・K-1)、aは熱拡散係数(m2・S-1)、ρ(kg・m-3)は密度である。
 上記溶射条件及び上記熱処理条件で形成された溶射皮膜の比熱容量Cp(J・kg-1・K-1)はTA instrument社のDSC Q100により測定し、熱拡散係数(m2・S-1)はNetch社のFlash analyzer LF447を使用して測定した。
(3)摩耗特性の評価
 上記溶射条件及び上記熱処理条件で形成された溶射皮膜について、Suga耐磨耗性試験機を使用して、#180研磨紙による1kgfの荷重をかけて、磨耗による溶射皮膜の厚みの減少を測定した。
(1) Porosity The thermal spray coating formed under the above thermal spraying conditions and the above heat treatment conditions is cut, the cross section is mirror-finished by polishing, the cross section is observed under a microscope, and the ratio (%) of pores in the unit cross-sectional area is measured. did.
(2) Thermal conductivity The thermal conductivity λ of the sprayed coating can be calculated using the following formula.
λ = Cp × a × ρ
In the above formula, Cp is the specific heat capacity (J · kg -1 · K -1 ), a is the thermal diffusivity (m 2 · S -1 ), and ρ (kg · m -3 ) is the density.
The specific heat capacity Cp (J · kg -1 · K -1 ) of the sprayed coating formed under the above thermal spraying conditions and the above heat treatment conditions was measured by the DSC Q100 of TA instrument, and the thermal diffusivity (m 2 · S -1 ). Was measured using Netch's Flash analyzer LF447.
(3) Evaluation of Abrasion Characteristics The thermal spray coating formed under the above thermal spraying conditions and the above heat treatment conditions was subjected to a load of 1 kgf with # 180 abrasive paper using a Suga abrasion resistance tester, and the thermal spray coating due to abrasion was applied. The decrease in thickness was measured.
 表2から分かるように、実施例1~3の溶射皮膜は熱伝導率及び耐磨耗性共に優れているが、樹脂粒子の含有量が50体積%を超える比較例では造粒により製造されているが磨耗率が高く耐磨耗性が低下する。また、溶射用粉末材を混合により製造した比較例2~4では、低熱伝導率と耐磨耗性の両立がなされていない。 As can be seen from Table 2, the sprayed coatings of Examples 1 to 3 are excellent in both thermal conductivity and abrasion resistance, but in Comparative Examples in which the content of the resin particles exceeds 50% by volume, they are produced by granulation. However, the wear rate is high and the wear resistance is reduced. Further, in Comparative Examples 2 to 4 produced by mixing the thermal spray powder material, both low thermal conductivity and abrasion resistance are not achieved at the same time.
 本発明の溶射用粉末材によれば、溶射皮膜としてトップコート層中に均一なポーラス組織を形成することができ、これにより、低熱伝導率と高耐磨耗性を両立した産業上の利用性が高い溶射皮膜を提供することができる。 According to the thermal spray powder material of the present invention, a uniform porous structure can be formed in the topcoat layer as a thermal spray coating, whereby industrial applicability that achieves both low thermal conductivity and high abrasion resistance can be achieved. Can provide a high sprayed coating.

Claims (6)

  1.  溶射用粉末材であって、樹脂粒子の表面にセラミック粒子が被覆されて構成される複合粒子を含み、前記樹脂粒子の含有量が10体積%以上50体積%以下である、溶射用粉末材。 A powder material for thermal spraying, which comprises composite particles formed by coating the surface of resin particles with ceramic particles, and the content of the resin particles is 10% by volume or more and 50% by volume or less.
  2.  前記樹脂粒子の体積基準のメディアン径が前記セラミック粒子の体積基準のメディアン径よりも大きい請求項1に記載の溶射用粉末材。 The powder material for thermal spraying according to claim 1, wherein the volume-based median diameter of the resin particles is larger than the volume-based median diameter of the ceramic particles.
  3.  前記セラミック粒子の体積基準のメディアン径が1μm以上10μm以下である請求項1又は2に記載の溶射用粉末材。 The powder material for thermal spraying according to claim 1 or 2, wherein the median diameter based on the volume of the ceramic particles is 1 μm or more and 10 μm or less.
  4.  前記樹脂粒子の体積基準のメディアン径が10μm以上40μm以下である請求項1~3のいずれか一項に記載の溶射用粉末材。 The powder material for thermal spraying according to any one of claims 1 to 3, wherein the median diameter based on the volume of the resin particles is 10 μm or more and 40 μm or less.
  5.  前記樹脂粒子を形成する樹脂の空気中での熱分解温度が200℃以上である請求項1~4のいずれか一項に記載の溶射用粉末材。 The powder material for thermal spraying according to any one of claims 1 to 4, wherein the thermal decomposition temperature of the resin forming the resin particles in the air is 200 ° C. or higher.
  6.  請求項1~5のいずれか一項に記載の溶射用粉末材を基材に溶射することによりセラミック粒子を含む母相中に樹脂粒子が分散した海島構造を有する溶射皮膜を形成する工程と、
     前記溶射皮膜に加熱処理を施して前記溶射皮膜のセラミック母相中の樹脂粒子を気化させ、溶射皮膜中に気孔を形成する加熱工程と、
    を備える溶射皮膜の製造方法。
    A step of forming a thermal spray coating having a sea-island structure in which resin particles are dispersed in a matrix containing ceramic particles by spraying the thermal spraying powder material according to any one of claims 1 to 5 onto a base material.
    A heating step in which the thermal spray coating is heat-treated to vaporize the resin particles in the ceramic matrix of the thermal spray coating to form pores in the thermal spray coating.
    A method for producing a thermal spray coating.
PCT/JP2020/034374 2019-09-27 2020-09-10 Powder material for spraying, and method for manufacturing sprayed film WO2021060005A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019177587 2019-09-27
JP2019-177587 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021060005A1 true WO2021060005A1 (en) 2021-04-01

Family

ID=75166671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034374 WO2021060005A1 (en) 2019-09-27 2020-09-10 Powder material for spraying, and method for manufacturing sprayed film

Country Status (1)

Country Link
WO (1) WO2021060005A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102580A (en) * 1979-09-06 1981-08-17 Gen Motors Corp Abrasion resistant ceramic seal and method
JP2007327139A (en) * 2006-06-08 2007-12-20 Sulzer Metco Us Inc Dysprosia-stabilized zirconia with abrasion property
JP2014181348A (en) * 2013-03-18 2014-09-29 Tocalo Co Ltd Composite powder material for forming spray coating film and method for producing the same and composite spray coating film
JP2016156046A (en) * 2015-02-24 2016-09-01 株式会社フジミインコーポレーテッド Powder for spray coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102580A (en) * 1979-09-06 1981-08-17 Gen Motors Corp Abrasion resistant ceramic seal and method
JP2007327139A (en) * 2006-06-08 2007-12-20 Sulzer Metco Us Inc Dysprosia-stabilized zirconia with abrasion property
JP2014181348A (en) * 2013-03-18 2014-09-29 Tocalo Co Ltd Composite powder material for forming spray coating film and method for producing the same and composite spray coating film
JP2016156046A (en) * 2015-02-24 2016-09-01 株式会社フジミインコーポレーテッド Powder for spray coating

Similar Documents

Publication Publication Date Title
US6723674B2 (en) Multi-component ceramic compositions and method of manufacture thereof
Wu et al. Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ
JP4463472B2 (en) Pre-alloyed stabilized zirconia powder and improved thermal barrier coating
US6482534B2 (en) Spray powder, thermal spraying process using it, and sprayed coating
RU2451043C2 (en) Strontium and titanium oxides and abrasive coatings obtained on their basis
JP2004515649A5 (en) Pre-alloyed stabilized zirconia powder and improved thermal barrier coating
US20110123431A1 (en) Thermally sprayed al2o3 layers having a high content of corundum without any property-reducing additives, and method for the production thereof
Bian et al. Preparation of nanostructured alumina–titania composite powders by spray drying, heat treatment and plasma treatment
Wang et al. Preparation and characterization of nanostructured La2Zr2O7 feedstock used for plasma spraying
CN110668812B (en) Nano zirconium oxide spraying powder and preparation method thereof
US6007926A (en) Phase stablization of zirconia
CA2576319C (en) Partially-alloyed zirconia powder
US20080241475A1 (en) Graphite-silicon carbide composite and making method
Puranen et al. Characterization of high-velocity solution precursor flame-sprayed manganese cobalt oxide spinel coatings for metallic SOFC interconnectors
Gao et al. A novel plasma-sprayed nanostructured coating with agglomerated-unsintered feedstock
WO2015079906A1 (en) Thermal-spray material and thermal-spray coating film
WO2021060005A1 (en) Powder material for spraying, and method for manufacturing sprayed film
Shojai et al. Effect of sintering temperature and holding time on the properties of 3Y-ZrO2 microfiltration membranes
JP7393166B2 (en) Method for producing thermal spray powder, thermal spray slurry, and thermal barrier coating
Gadow et al. Introduction to high-velocity suspension flame spraying (HVSFS)
Garcia et al. Mullite and mullite/ZrO 2-7wt.% Y 2 O 3 powders for thermal spraying of environmental barrier coatings
JP2022156183A (en) Powder material for thermal spraying and method for producing coating
Iqbal et al. A relationship of porosity and mechanical properties of spark plasma sintered scandia stabilized zirconia thermal barrier coating
RU2634864C1 (en) Powder material for gas-thermal spraying of coatings
Liu et al. Microstructure of plasma sprayed La 2 O 3-modified YSZ coatings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP