WO2021059925A1 - Electroconductive paste and method for producing electronic component using same - Google Patents

Electroconductive paste and method for producing electronic component using same Download PDF

Info

Publication number
WO2021059925A1
WO2021059925A1 PCT/JP2020/033582 JP2020033582W WO2021059925A1 WO 2021059925 A1 WO2021059925 A1 WO 2021059925A1 JP 2020033582 W JP2020033582 W JP 2020033582W WO 2021059925 A1 WO2021059925 A1 WO 2021059925A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
conductive paste
less
powder
dispersant
Prior art date
Application number
PCT/JP2020/033582
Other languages
French (fr)
Japanese (ja)
Inventor
和久 大橋
Original Assignee
株式会社ノリタケカンパニーリミテド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=73993048&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2021059925(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社ノリタケカンパニーリミテド filed Critical 株式会社ノリタケカンパニーリミテド
Priority to KR1020227013562A priority Critical patent/KR20220062656A/en
Priority to CN202080067677.0A priority patent/CN114503220A/en
Publication of WO2021059925A1 publication Critical patent/WO2021059925A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • H01G4/0085Fried electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a conductive paste and a method for manufacturing an electronic component using the conductive paste.
  • a method of forming an electrode layer by applying a conductive paste on a base material to form a coating film and firing the coating film is widely used.
  • a method for manufacturing a multilayer ceramic capacitor (MLCC) first, a plurality of unfired dielectric green sheets containing a dielectric powder or the like are prepared. Next, a conductive paste containing a conductive powder and a resin binder or the like is applied onto the dielectric green sheet and dried to form a coating film. Next, a plurality of dielectric green sheets with a coating film are laminated and pressed in the stacking direction to be pressed against each other. Next, after cutting this into a predetermined size, it is fired and integrally sintered.
  • MLCC multilayer ceramic capacitor
  • each electronic component mounted on the electronic device is also required to be thinner, smaller, and have a higher density.
  • MLCCs it is required to increase the capacitance while reducing the volume of MLCCs by reducing the thickness of one layer of the internal electrode layer and increasing the number of layers.
  • the gravure printing method has come to be used instead of the screen printing method for applying the conductive paste for forming the internal electrode layer. Since the gravure printing method has a faster printing speed than the screen printing method, it is excellent in productivity and can form a thin film-like coating film with stable quality. As described above, since the printing speed of gravure printing is high, if the viscosity of the conductive paste is adjusted to the same level as that of screen printing, the surface of the coating film may become rough and the unevenness may become large. This leads to distortion of the laminated structure and may lead to defects such as short circuit defects. Therefore, the conductive paste for gravure printing needs to be adjusted to have a lower viscosity than that for screen printing.
  • the conductive paste contains inorganic powders having different particle sizes and specific gravities, for example, the conductive powder and the dielectric powder, these inorganic powders are easily separated in the conductive paste, and a homogeneous coating film is formed. Is difficult to form.
  • the present invention has been made in view of these points, and an object of the present invention is to provide a conductive paste having a low viscosity, excellent gravure printability, and capable of forming a homogeneous coating film, and an electronic component using the conductive paste.
  • the purpose is to provide a manufacturing method.
  • a conductive paste for gravure printing containing (A) a conductive powder, (B) a dielectric powder, (C) a binder resin, (D) a solvent, and (E) a dispersant.
  • the above (E) dispersant has the following formula (1): (However, A 1 and A 2 in the formula (1) are independently hydrogen, alkali metal or alkaline earth metal.); Contains a dicarboxylic acid-based dispersant having a structural portion represented by. .. In 25 ° C., the viscosity V 40 at a shear rate 40 s -1 of the conductive paste is less 5 Pa ⁇ s.
  • the dispersibility between the conductive powder and the dielectric powder is good, and a coating film having a smooth surface can be obtained. Can be formed.
  • the dispersant (E) is based on the following formula (2): (However, A 1 and A 2 in the formula (2) are independently hydrogen, alkali metal or alkaline earth metal, R has 3 to 30 carbon atoms, and is linear, branched or saturated. Alternatively, it is an unsaturated aliphatic group.); It is a compound represented by.
  • the ratio of the viscosity V 4 at a shear rate 4s -1 of the conductive paste for the viscosity V 40 (V 4 / V 40 ) is 7 or less. Thereby, the printability of the conductive paste can be improved.
  • the ratio of the average particle size D 1 of the (A) conductive powder to the average particle size D 2 of the (B) dielectric powder (D 1 / D 2 ).
  • it is 2 or more.
  • the large difference in particle size between the conductive powder and the dielectric powder tends to significantly reduce the dispersibility of the inorganic powder (particularly the dielectric powder) in the conductive paste.
  • it is particularly difficult to form a homogeneous coating. Therefore, the application of the techniques disclosed herein is highly effective.
  • the solvent (D) contains a hydrocarbon-based solvent and a solvent other than the hydrocarbon-based solvent, and the solvent other than the hydrocarbon-based solvent has a boiling point of 230 ° C. It contains a solvent having the following and a solubility parameter of Fedors of 9.9 (cal / cm 3 ) of 0.5 or less.
  • the sheet attack phenomenon in which the solvent erodes the green sheet can be suppressed at a high level.
  • the quick-drying property of the coating film can be improved to improve the productivity.
  • the solvent other than the hydrocarbon-based solvent has a boiling point of 200 ° C. or higher and a solubility parameter of 10.0 (cal / cm 3 ) 0.5 or higher.
  • a second solvent having a boiling point of 220 ° C. or lower and a solubility parameter of 9.5 (cal / cm 3 ) of 0.5 or less is included.
  • the solubility parameter of Fedors may be simply referred to as "SP value".
  • the SI unit of the SP value is (J / cm 3 ) 0.5 or (MPa) 0.5 , but (cal / cm 3 ) 0.5 , which is conventionally used in the present specification, is used. Use.
  • the unit of the SP value can be converted by the following formula: 1 (cal / cm 3 ) 0.5 ⁇ 2.05 (J / cm 3 ) 0.5 ⁇ 2.05 (MPa) 0.5 ;. ..
  • the solubility parameter of the whole solvent other than the hydrocarbon-based solvent is 9.8 (cal / cm 3 ) 0.5 or less.
  • the dispersant (E) is 0.5% by mass or less when the total amount of the conductive paste is 100% by mass. As a result, an electrode layer having excellent electrical conductivity and denseness can be suitably realized.
  • the binder resin (C) contains a polyvinyl acetal-based resin, and the weight average molecular weight of the polyvinyl acetal-based resin is 200,000 or less.
  • the conductive paste disclosed herein can be used to form an internal electrode layer of a laminated ceramic electronic component.
  • a smooth film in which the inorganic powder is homogeneously contained in the coating film can be preferably formed, and sheet attack can also be suppressed.
  • sheet attack can also be suppressed.
  • the present invention provides a method for manufacturing an electronic component, which comprises applying the above-mentioned conductive paste onto a base material and firing the paste.
  • a method for manufacturing an electronic component which comprises applying the above-mentioned conductive paste onto a base material and firing the paste.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a multilayer ceramic capacitor.
  • FIG. 2 is a cross-sectional view schematically showing the structure of the unfired laminate.
  • FIG. 3A is an SEM observation image of Comparative Example 3
  • FIG. 3B is an SEM observation image of Comparative Example 9.
  • FIG. 4 is a conceptual diagram illustrating a method of calculating the dispersion index.
  • FIG. 5 (A) is an SEM observation image of Example 5
  • FIG. 5 (B) is an SEM observation image of Comparative Example 11.
  • FIG. 6A is a cross-sectional profile of the surface roughness of Comparative Example 3
  • FIG. 6B is a cross-sectional profile of the surface roughness of Example 1.
  • FIG. 5 (A) is an SEM observation image of Example 5
  • FIG. 5 (B) is an SEM observation image of Comparative Example 11.
  • FIG. 6A is a cross-sectional profile of the surface roughness of Comparative Example 3
  • FIG. 7 is a measurement chart of TG-DTA of Example 13, Example 19, and Example 9.
  • 8 (A) is an SEM observation image of Example 19
  • FIG. 8 (B) is an SEM observation image of Example 16
  • FIG. 8 (C) is an SEM observation image of Example 9.
  • the conductive paste disclosed herein contains (A) a conductive powder, (B) a dielectric powder, (C) a binder resin, (D) a solvent, and (E) a dispersant. ..
  • a conductive powder and (B) dielectric powder are referred to as components of "inorganic powder”
  • C) binder resin, (D) solvent and (E) dispersant are referred to as "inorganic powder”.
  • organic component This conductive paste can be suitably used for gravure printing.
  • the term "coating film” refers to a conductive paste having a temperature lower than the boiling point of (C) binder resin and / or (E) dispersant, typically 200 ° C. or lower, for example 150 ° C. or lower. , Preferably a film-like body (dried product) dried at 120 ° C. or lower. When the conductive paste is dried at a temperature below the boiling point of the (C) binder resin and / or (E) dispersant, these components may remain in the coating film.
  • the coating film includes all unfired (before firing) film-like bodies.
  • the “electrode layer” refers to an inorganic powder such as (A) in which organic components in the conductive paste, for example, (C) binder resin, (D) solvent, and (E) dispersant disappear. ) A sintered body (fired product) obtained by firing a conductive powder and (B) a dielectric powder.
  • the electrode layer includes a wiring (linear body), a wiring pattern, and a solid pattern.
  • the conductive powder is a component that imparts electrical conductivity to the electrode layer.
  • the type of the conductive powder is not particularly limited, and among those conventionally known, one type can be used alone or two or more types can be appropriately used in combination depending on, for example, the use of the electrode layer.
  • Examples of the conductive powder include simple base metals such as nickel (Ni), aluminum (Al), copper (Cu), and tungsten (W), gold (Au), silver (Ag), platinum (Pt), and palladium (Palladium). Examples thereof include simple precious metals such as Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os), and mixtures and alloys thereof.
  • Examples of the alloy include nickel alloys such as nickel-copper (Ni-Cu) and nickel-aluminum (Ni-Al).
  • nickel-based particles are preferable because they are inexpensive and have an excellent balance between conductivity and cost.
  • nickel-based particles include all those containing a nickel component. Examples of nickel-based particles include a single nickel, the above-mentioned nickel alloy, and core-shell particles having nickel particles as a core, for example, core-shell particles in which the surface of nickel particles is coated with a noble metal such as silver.
  • the method for producing the conductive powder and the properties of the particles constituting the conductive powder are not particularly limited.
  • the size of the particles can be appropriately selected depending on, for example, the use of the conductive paste, the dimensions of the electrode layer, and the like.
  • the size of the particles may be selected so as to be within the minimum dimensions of the target electrode layer (for example, the internal electrode layer), for example, the thickness and / or the width, in consideration of the firing shrinkage rate.
  • the average particle size D 1 of the conductive powder may be approximately several nm to several ⁇ m, for example, 10 nm to 10 ⁇ m.
  • the "average particle size" means a particle size corresponding to a cumulative total of 50% from the smallest particle size in the number-based particle size distribution based on electron microscope observation.
  • the average particle size D 1 of the conductive powder is smaller than the thickness (length in the stacking direction) of the internal electrode layer, and is approximately 0.5 ⁇ m.
  • it may be typically 0.4 ⁇ m or less, preferably 0.3 ⁇ m or less.
  • the average particle size D 1 of the conductive powder may be approximately 0.01 ⁇ m or more, typically 0.05 ⁇ m or more, preferably 0.1 ⁇ m or more, for example 0.2 ⁇ m or more.
  • the average particle size D 1 is equal to or greater than a predetermined value, the surface energy of the particles is suppressed, and aggregation in the conductive paste is suppressed. Therefore, a more homogeneous coating film can be realized.
  • the shape of the conductive powder may be, for example, substantially spherical, flake-shaped, needle-shaped, amorphous, or the like.
  • the conductive powder may be substantially spherical in applications for forming a thin-film electrode layer.
  • substantially spherical means a form which can be regarded as a sphere (ball) as a whole, and has an average aspect ratio of about 1 to 2, for example, 1 to 1.5.
  • the "aspect ratio” is the length of the short side of the particles (a) when the particles constituting the conductive powder are observed with an electron microscope and a rectangle circumscribing the obtained observation image is drawn. ) To the ratio (b / a) of the length (b) of the long side.
  • the average aspect ratio means the arithmetic mean value of the aspect ratios of a plurality of particles (for example, 100 particles).
  • the content ratio of the conductive powder is approximately 30 to 95% by mass, typically 35 to 80% by mass, for example, 40. It may be up to 60% by mass.
  • the handleability of the paste and the workability at the time of gravure printing can be improved.
  • an electrode layer having excellent electrical conductivity and denseness can be preferably realized.
  • the dielectric powder is a component that is arranged between the conductive particles when the conductive paste is fired and relaxes the heat shrinkage of the conductive powder. Further, in the application of forming the internal electrode layer of the MLCC, it can also function as a co-material for improving the sintering bondability between the dielectric layer and the internal electrode layer.
  • the dielectric constant of the dielectric powder may be typically 100 or more, for example, about 1000 to 20000. However, the dielectric powder may have a relative permittivity of less than 100, and may be an insulating material.
  • the type of the dielectric powder is not particularly limited, and among conventionally known inorganic materials, for example, one type may be used alone or two or more types may be used in combination depending on the intended use.
  • Examples of the dielectric powder include barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, zirconium titanate, zinc titanate, barium titanate niobate, calcium zirconate, and strontium zirconate.
  • a metal oxide having a perovskite structure represented by ABO 3 and other metal oxides such as titanium dioxide, titanium pentoxide, hafnium oxide, zirconium oxide, aluminum oxide, forsterite, niobium oxide, and barium titanate.
  • barium titanate, strontium titanate, calcium zirconate and the like can be preferably used.
  • the method for producing the dielectric powder and the properties of the particles constituting the dielectric powder are not particularly limited.
  • the size of the particles can be appropriately selected depending on, for example, the use of the conductive paste, the dimensions of the electrode layer, and the like.
  • the size of the particles may be selected so as to be within the minimum dimensions of the target electrode layer (for example, the internal electrode layer), for example, the thickness and / or the width, in consideration of the firing shrinkage rate.
  • the average particle size D 2 of the dielectric powder may be approximately several nm to several ⁇ m, for example, 1 nm to 1 ⁇ m.
  • the average particle size D 2 of the dielectric powder may be approximately 5 nm or more, typically 10 nm or more, for example, 20 nm or more, 50 nm or more, and is approximately 0. It may be 5.5 ⁇ m or less, typically 0.3 ⁇ m or less, for example 0.2 ⁇ m or less, 0.1 ⁇ m or less.
  • the average particle size D 2 of the dielectric powder is smaller than the average particle size D 1 of the conductive powder. That is, D 1 and D 2 are preferably D 1 > D 2 . D 1 and D 2 preferably satisfy (D 1 / D 2 ) ⁇ 2, more preferably (D 1 / D 2 ) ⁇ 3, for example, (D 1 / D 2 ) ⁇ 4. You may be. When the average particle size is significantly different in this way, the application of the techniques disclosed herein is particularly effective. Further, D 1 and D 2 may satisfy 50 ⁇ (D 1 / D 2 ) or 20 ⁇ (D 1 / D 2 ), for example, 10 ⁇ (D 1 / D 2). ) May be satisfied.
  • the content ratio of the dielectric powder is approximately 0.2 to 20% by mass, typically 1 to 15% by mass. For example, it may be 3 to 10% by mass.
  • the content ratio of the dielectric powder to 100 parts by mass of the conductive powder may be approximately 3 to 35 parts by mass, typically 5 to 30 parts by mass, for example, 10 to 25 parts by mass.
  • the binder resin is a component that adjusts the viscosity (fluidity) of the conductive paste and imparts adhesiveness to the coating film to bring the inorganic powders into close contact with each other and the inorganic powder and the base material.
  • the binder resin is dissolved in the solvent (D) described later and can function as a vehicle.
  • the binder resin is a component that is typically lost by firing. In other words, the binder resin is a compound that burns through when the coating film is fired.
  • the binder resin may have, for example, a thermal decomposition temperature of 500 ° C. or lower.
  • the type of the binder resin is not particularly limited, and among the conventionally known organic compounds used for this type of application, for example, one type may be used alone or two or more types may be appropriately combined depending on the application. be able to.
  • the binder resin is typically a thermoplastic resin. However, it may be a thermosetting resin.
  • examples of the binder resin include cellulose-based resin, polyvinyl acetal-based resin, polyvinyl alcohol-based resin, acrylic resin, urethane-based resin, epoxy-based resin, phenol-based resin, rosin-based resin, polyester-based resin, and ethylene-based resin. Examples include organic polymer compounds.
  • (C1) a cellulosic resin as the binder resin from the viewpoint of improving the burn-through property at the time of firing and the surface smoothness of the electrode layer.
  • (C2) polyvinyl is used as the binder resin from the viewpoint of improving the adhesiveness between the coating film and the base material and the integrity of the coating film.
  • (C1) Cellulose-based resin includes a linear polymer (cellulose) containing ⁇ -glucose as a repeating unit and its derivatives in general.
  • the (C1) cellulosic resin can typically be a compound in which a part or all of the hydroxy groups in the ⁇ -glucose structure, which is a repeating unit, is replaced with an alkoxy group, and a derivative thereof (modified product, etc.).
  • the alkyl group or aryl group (R) in the alkoxy group (RO-) may be partially or wholly substituted with an ester group such as a carboxyl group, a nitro group, a halogen, or another organic group.
  • cellulose-based resin examples include methyl cellulose (MC), ethyl cellulose (EC), hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, carboxyethyl methyl cellulose, cellulose acetate, nitrocellulose and the like. Can be mentioned. Of these, MC and EC are preferable. By containing the cellulosic resin, workability during gravure printing can be improved, and a coating film having excellent surface smoothness can be stably formed.
  • the properties of the cellulosic resin are not particularly limited.
  • the weight average molecular weight (Mw) of the cellulosic resin may be approximately 10,000 or more, for example, 60,000 or more, 80,000 or more, 120,000 or more, or 200,000 or more.
  • the weight average molecular weight (Mw) of the cellulosic resin may be approximately 800,000 or less, for example, 600,000 or less, 400,000 or less, or 320,000 or less.
  • the "weight average molecular weight (Mw)" is a number-based average molecular weight, which can be measured by, for example, gel chromatography (GPC) and calculated using a standard polystyrene calibration curve.
  • the polyvinyl acetal-based resin is a resin obtained by reacting a polyvinyl alcohol-based resin with an aldehyde to acetalize it.
  • the polyvinyl acetal-based resin has a continuous vinyl alcohol structural unit having a structural unit acetalized by an aldehyde compound, and has an unreacted vinyl alcohol structural unit and acetic acid which is an unsaken portion of the polyvinyl alcohol-based resin. It includes a polymer having one or more of vinyl structural units, and a derivative thereof (modified product, etc.) in general.
  • the ratio of acetalized structural units (degree of acetalization) in the polyvinyl acetal-based resin may be, for example, 50 mol% or more.
  • Polyvinyl acetal-based resins are superior in adhesiveness and flexibility to, for example, cellulose-based resins.
  • polyvinyl acetal resin examples include polyvinyl butyral resin (PVB) having a structure in which polyvinyl alcohol is acetalized with butanol. By including PVB, the shape characteristics of the coating film can be improved.
  • the polyvinyl acetal-based resin is a copolymer (graft) in which the polyvinyl acetal-based resin is used as the main monomer (a component that occupies 50% or more of the total monomer; the same applies hereinafter) and the main monomer contains a copolymerizable submonomer. (Including copolymerization) may be used.
  • the submonomer examples include ethylene, ester, (meth) acrylate, vinyl acetate and the like.
  • the properties of the polyvinyl acetal resin are not particularly limited.
  • the weight average molecular weight (Mw) of the polyvinyl acetal-based resin may be approximately 50,000 or more, and may be, for example, 75,000 or more, 85,000 or more, 100,000 or more, or 150,000 or more.
  • the weight average molecular weight (Mw) of the polyvinyl acetal resin may be approximately 1 million or less, for example, 750,000 or less, 500,000 or less, preferably 300,000 or less, 250,000 or less, for example, 200,000 or less. You may.
  • By setting the weight average molecular weight to a predetermined value or less, an increase in paste viscosity can be suitably suppressed. Therefore, it is possible to achieve both gravure printability and the shape characteristics of the coating film at a high level.
  • the binder resin may be composed of (C2) polyvinyl acetal-based resin as the main component (the component that occupies the largest amount; the same shall apply hereinafter).
  • the (C2) polyvinyl acetal-based resin may occupy approximately 50% by mass or more, for example, 60 to 80% by mass, when the total amount of the binder resin is 100% by mass.
  • the (C2) polyvinyl acetal-based resin becomes 100% by mass when (C1) + (C2) is 100% by mass. , Approximately 10 to 90% by mass, typically 20 to 80% by mass, for example 50 to 70% by mass.
  • the content ratio of the binder resin is approximately 0.1 to 5% by mass, typically 1 to 4% by mass, for example. It may be 2 to 3% by mass.
  • the content ratio of the binder resin to 100 parts by mass of the conductive powder is approximately 0.1 to 10 parts by mass, typically 0.5 to 8 parts by mass, for example, 1 to 7 parts by mass and 2 to 5 parts by mass. There may be.
  • the solvent is a liquid medium for dispersing the inorganic powder and imparting a viscosity (fluidity) suitable for gravure printing to the conductive paste.
  • the solvent can also function as a vehicle that dissolves the above-mentioned (C) binder resin and / or (E) dispersant described later.
  • Solvents are components that are typically lost by drying and firing.
  • the solvent is a component that burns out when the conductive paste is dried and / or when the coating film is fired.
  • the type of the solvent is not particularly limited, and among the conventionally known organic solvents used for this type of application, for example, one type may be used alone or depending on the type of the (C) binder resin and the like. Two or more types can be used in combination as appropriate.
  • examples thereof include a system solvent, a hydrocarbon solvent composed of a carbon atom and a hydrogen atom, and the like.
  • alcohol-based solvents and ether-based solvents include tarpineol, texanol, dihydroterpineol, benzyl alcohol, 3-methoxy-3-methyl-1-butanol, phenoxyethanol, 1-phenoxy-2-propanol, isobornol, diethylene glycol, and diethylene glycol.
  • examples thereof include monoethyl ether, diethylene glycol monobutyl ether (butyl carbitol), propylene glycol monobutyl ether, dipropylene glycol methyl-n-propyl ether and the like.
  • ester solvent examples include 3-methoxy-3-methyl-1-butanol acetate, 3-methoxybutyl acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol diacetate, cyclohexanol acetate, and isobol.
  • Nyl acetate, carbitol acetate, ethyl diglycol acetate, butyl glycol acetate, butyl diglycol acetate, butyl cellosolve acetate, diethylene glycol monobutyl ether acetate (butyl carbitol acetate), tarpineol acetate, dihydroterpineol acetate and the like can be mentioned.
  • hydrocarbon solvent examples include aromatic hydrocarbon solvents such as toluene and xylene; paraffin solvents such as normal paraffins and isoparaffins, naphthen solvents such as monocyclic naphthenes and bicyclic naphthenes, and paraffin / paraffin / Examples thereof include naphthen mixed solvents and aliphatic hydrocarbon solvents such as mineral spirits.
  • a hydrocarbon solvent is used as the solvent from the viewpoint of suppressing a sheet attack phenomenon (a phenomenon in which the solvent erodes the green sheet). It is preferable to include, for example, a hydrocarbon solvent and a solvent other than the hydrocarbon solvent, for example, at least one of an alcohol solvent and an ester solvent are preferably used in combination.
  • the hydrocarbon solvent preferably contains a naphthenic solvent, and the hydrocarbon solvent may be composed mainly of a naphthenic solvent. When the total amount of the hydrocarbon solvent is 100% by mass, the naphthenic solvent may occupy about 50% by mass or more, for example, 60 to 80% by mass.
  • the non-hydrocarbon solvent When a hydrocarbon solvent and a non-hydrocarbon solvent are simultaneously contained as the solvent, when the total of the hydrocarbon solvent and the non-hydrocarbon solvent is 100% by mass, the non-hydrocarbon solvent is used.
  • the content of the solvent may be approximately 10 to 95% by mass, typically 20 to 90% by mass, for example 50 to 80% by mass.
  • solvents other than hydrocarbons have a boiling point of approximately 100 ° C. or higher, for example 200 ° C. or higher, from the viewpoint of improving storage stability of the conductive paste and workability during gravure printing. It may contain a high boiling point solvent. Further, from the viewpoint of rapidly drying the coating film to improve productivity, it is preferable to use a high boiling point solvent having a boiling point of about 100 to 300 ° C., for example, 200 to 250 ° C., preferably 230 ° C. or lower as a main component.
  • the high boiling point solvent may occupy approximately 50% by mass or more, for example 90% by mass or more, when the total amount of the solvent other than the hydrocarbon solvent is 100% by mass, and substantially the entire solvent (95% by mass or more). ) May be composed of a high boiling point solvent.
  • the SP value is approximately 10.5 (cal / cm 3 ) from the viewpoint of adjusting the conductive paste to properties suitable for gravure printing and achieving a well-balanced sheet attack property. 0.5 or less, for example 10 (cal / cm 3 ) 0.5 or less, preferably 9.9 (cal / cm 3 ) 0.5 or less, for example 8 to 9.9 (cal / cm 3 ) 0.5 It may contain a solvent. From the viewpoint of resin solubility, the SP value of all solvents other than hydrocarbon solvents is approximately 8 (cal / cm 3 ) 0.5 or more, for example 8.5 (cal / cm 3 ) 0.5 or more, 9 ( cal / cm 3 ) It may be 0.5 or more.
  • the SP value of the entire solvent other than the hydrocarbon system is approximately 9.8 (cal / cm 3 ) 0.5 or less, for example, 9.7 (cal / cm 3). ) It may be 0.5 or less.
  • the solvent other than the hydrocarbon solvent may contain a first solvent and a second solvent having different boiling points and / or SP values.
  • a first solvent having excellent solubility of the binder resin and a second solvent having excellent quick-drying property may be contained.
  • the first solvent has a higher SP value than the second solvent and may be approximately 10.0 (cal / cm 3 ) 0.5 or more, for example, 10 to 10.5 (cal / cm 3 ) 0.5. ..
  • the first solvent may have a boiling point of about 200 ° C. or higher, for example, 200 to 230 ° C.
  • the boiling point of the second solvent is equal to or lower than that of the first solvent, and may be approximately 220 ° C. or lower, for example 140 to 215 ° C.
  • the second solvent may have an SP value of approximately 9.5 (cal / cm 3 ) 0.5 or less, for example, 8.5 to 9.5 (cal / cm 3 ) 0.5 .
  • the content ratio of the first solvent is approximately 10 to 95% by mass, typically 20 to 90% by mass, for example, 50 to 80% by mass, when the total of the first solvent and the second solvent is 100% by mass. It may be.
  • the content ratio of the solvent is approximately 80% by mass or less, typically 10 to 70% by mass, for example, 30 to 60% by mass. May be%.
  • the dispersant is a parent for uniformly dispersing the above-mentioned inorganic powders, that is, (A) conductive powder and (B) dielectric powder in a conductive paste, and suppressing aggregation of these components. It is a medium compound.
  • the dispersant can be dissolved in the solvent (D) described above and function as a vehicle. As a result, the inorganic powder can be uniformly and stably dispersed.
  • the conductive paste disclosed herein can be used as a dispersant according to the following formula (1): It contains a dicarboxylic acid-based dispersant having a structural portion represented by.
  • a 1 and A 2 are independent of hydrogen (H); alkali metals such as sodium (Na) and potassium (K); or magnesium (Mg), calcium (Ca) and the like. Alkaline earth metal; Among them, both A 1 and A 2 are preferably hydrogen.
  • a dicarboxylic acid-based dispersant having such a structural portion another anionic dispersant (for example, a monocarboxylic acid-based dispersant, the structural portion of the above formula (1)) can be obtained.
  • the inorganic powder in the conductive paste It is considered that the uniform dispersibility of the above is specifically enhanced.
  • both of the two carboxylate groups are adsorbed on the inorganic particles, and one is adsorbed on the inorganic particles and the other is in an unadsorbed state by an equilibrium reaction.
  • the latter is stochastically predominant.
  • the dispersant disclosed herein is charged by unadsorbed carboxylate groups ( B) It is considered that it is easily adsorbed on the surface of the dielectric powder. Then, it is considered that the unadsorbed carboxylate group electrically interacts with the conductive powder (A) so that the conductive powder (A) and the dielectric powder (B) are uniformly and uniformly dispersed. ..
  • the properties of the dispersant are not particularly limited.
  • the molecular weight of the dispersant may be approximately 100 or more, and may be, for example, 150 or more, 200 or more, or 230 or more.
  • the molecular weight of the dispersant may be approximately 20,000 or less, for example, about 10,000 or less, 5000 or less, 2000 or less, 1000 or less, or 500 or less.
  • the dispersant is preferably a low molecular weight compound having a molecular weight of less than 10,000 rather than a high molecular weight compound having a molecular weight of 10,000 or more. Thereby, the above-mentioned effect can be exhibited at a higher level.
  • the term "molecular weight” simply means a value calculated from the sum of the atomic weights of each atom based on the molecular formula.
  • the molecular formula of the compound can be specified by appropriately selecting an analysis method according to the molecular structure. Examples of analysis methods include infrared spectroscopy (IR: Infrared Spectroscopy), nuclear magnetic resonance (NMR: Nuclear Magnetic Resonance), mass spectrometry (MS: Mass Spectrometry), and gas chromatography-mass spectrometry (GC-). MS: Gas Chromatography-Mass spectrometry), gas chromatography (GC: Gas Chromatography), gel permeation chromatography (GPC: Gel Permeation Chromatography), CHN element spectrometry, and the like can be mentioned.
  • IR Infrared Spectroscopy
  • NMR Nuclear Magnetic Resonance
  • MS Mass Spectrometry
  • GC- gas chromatography-mass spectrometry
  • MS Gas Chromatography-Mass spectrometry
  • the dispersant is not particularly limited except that it has a structural portion of the formula (1), and one of the conventionally known amphipathic compounds used for this kind of application may be used alone or in combination of two. The above can be used in combination as appropriate.
  • the dispersant for example, the following formula (2): Examples thereof include compounds represented by ;.
  • a 1 and A 2 are the same as those in the above formula (1).
  • R is a saturated or unsaturated aliphatic group having 3 to 30 carbon atoms. The number of carbon atoms may be, for example, 4 or more, 5 or more, 6 or more, further 7 or more, and for example, 29 or less, 28 or less, 27 or less, or even 25 or less.
  • the aliphatic group may be linear or branched chain having branches.
  • Examples of the aliphatic group include an alkyl group, an alkenyl group, an alkynyl group and the like.
  • the R portion of the formula (2) is a linear alkenyl group having 7 carbon atoms
  • the R portion of the formula (2) is a linear chain having 17 carbon atoms
  • the R moiety of the formula (2) is a linear alkenyl group having 25 carbon atoms.
  • the dispersant may be mainly composed of a compound having the structural portion of the above formula (1).
  • the compound having the structural portion of the formula (1) may occupy approximately 50% by mass or more when the total amount of the dispersant is 100% by mass, and substantially the entire dispersant (95% by mass or more) is used. It is preferable that it is composed of a compound having a structural portion of the formula (1).
  • the dispersant may supplementally contain other compounds as long as the effects of the techniques disclosed herein are not significantly reduced.
  • auxiliary dispersants include monocarboxylic acid-based dispersants, dicarboxylic acid-based dispersants that do not have the structural portion of the above formula (1), polycarboxylic acid-based dispersants, and sulfonic acid-based dispersants.
  • anionic dispersants such as agents and phosphoric acid-based dispersants, and amine-based dispersants.
  • auxiliary dispersants may be suppressed to approximately 50% by mass or less, 30% by mass or less, 10% by mass or less, for example, 5% by mass or less of the total dispersant.
  • the content ratio of the dispersant is approximately 0.01 to 5% by mass, typically 0.05 to 3% by mass, assuming that the entire conductive paste is 100% by mass.
  • it may be 0.1 to 2% by mass, preferably 0.5% by mass or less, for example, 0.3% by mass or less, 0.2% by mass or less.
  • the conductive paste disclosed here may be composed of the above four components, and can be used for a general conductive paste as long as the essence of the present invention is not significantly impaired.
  • Various known additives can be included. Examples of such additives include viscosity regulators, thickeners, defoamers, plasticizers, leveling agents, pH regulators, stabilizers, antioxidants, preservatives, colorants (pigments, dyes). Etc.) etc. These additives may be used alone or in combination of two or more, if necessary.
  • the additive can be contained in an appropriate ratio according to the purpose of addition and the like. Although not particularly limited, when the total amount of the conductive paste is 100% by mass, the content ratio of the additive is approximately 5% by mass or less, typically 3% by mass or less, for example, 1% by mass or less. It is good to suppress it to. As a result, an electrode layer having excellent electrical conductivity and denseness can be suitably realized.
  • the conductive paste disclosed here is adjusted to have a low viscosity for gravure printing having a high printing speed. Specifically, at 25 ° C., the viscosity V 40 at a shear rate of 40 s -1 is adjusted to 5 Pa ⁇ s or less. From the viewpoint of increasing the printing speed and increasing the productivity, the viscosity V 40 may be adjusted to, for example, 4.5 Pa ⁇ s or less, 4 Pa ⁇ s or less, 3.5 Pa ⁇ s or less, 3 Pa ⁇ s or less. ..
  • the viscosity V 40 may be adjusted to, for example, 0.1 Pa ⁇ s or more and 0.2 Pa ⁇ s or more.
  • the viscosity of the conductive paste is determined by, for example, the type and content ratio of the binder resin, the type and content ratio of the dispersant, the type and content ratio of the solvent, and the addition of other additives (for example, viscosity modifiers and thickeners). Can be adjusted by.
  • the viscosity V 4 at a shear rate of 4s -1 is approximately 20 Pa ⁇ s or less, 18 Pa ⁇ s or less, 15 Pa ⁇ s or less, it is adjusted to below 13 Pa ⁇ s Good.
  • the viscosity V 4 may be adjusted to, for example, 0.1 Pa ⁇ s or more, 0.2 Pa ⁇ s or more, and 0.4 Pa ⁇ s or more.
  • the ratio of viscosity V 4 to viscosity V 40 (V 4 / V 40 ) may be approximately 7 or less, typically 6 or less, for example 5.5 or less, 5 or less, 4.5 or less. As a result, the storage stability and handleability of the conductive paste can be improved.
  • a conductive paste for example, a vehicle in which (C) a binder resin and (E) a dispersant are dispersed or dissolved in (D) a solvent is prepared, and (A) a conductive powder and (B) are prepared therein. It can be suitably prepared by adding the dielectric powder and then stirring and mixing.
  • various conventionally known stirring devices and dispersing devices such as a ball mill, a bead mill, a roll mill, a magnetic stirrer, a planetary mixer, a dispenser, a high-pressure disperser, and a mortar can be appropriately used.
  • the coating film made of the conductive paste disclosed here can have less surface irregularities than the conventional ones. Although it depends on the particle size of the inorganic powder and the like, the maximum roughness Rmax of the coating film can be, for example, 0.7 ⁇ m or less, preferably 0.65 ⁇ m or less, 0.6 ⁇ m or less. Further, the coating film made of the conductive paste disclosed herein has better dispersibility of the inorganic powder than the conventional one and can have a homogeneous composition. Although it depends on the particle size of the inorganic powder and the like, the dispersity index of the inorganic powder in the coating film can be, for example, 80% or more, preferably 83% or more, 89% or more. The method for measuring the maximum roughness Rmax and the method for calculating the dispersion index will be described in Examples described later.
  • the conductive paste disclosed herein can be used to form a coating film by applying it on an arbitrary substrate by a gravure printing method and drying it, and then firing the coating film to form an electrode layer. .. Among them, it can be preferably used in applications where surface smoothness and homogeneity of the electrode layer are required. Typical uses include the formation of an internal electrode layer of a small laminated ceramic electronic component having a side of 5 mm or less, for example, 1 mm or less. In particular, it can be suitably used for forming an internal electrode layer of a small-sized and large-capacity MLCC in which the thickness of the dielectric layer is thinned to a level of 2 ⁇ m or less.
  • the "ceramic electronic component” includes a general electronic component having a crystalline ceramic base material and / or an amorphous ceramic base material.
  • ceramic capacitors including ceramic substrates, chip inductors, high-frequency filters, high-temperature co-fired ceramics (HTCC) substrates, low-temperature co-fired ceramics (LTCC).
  • the base material and the like are typical examples included in the "ceramic electronic parts" referred to here.
  • Ceramic material constituting the ceramic substrate examples include barium titanate (BaTIO 3 ), strontium titanate (SrTIO 3 ), calcium titanate (CaTIO 3 ), calcium zirconate (CaZrO 3 ), and strontium zirconate (SrZrO).
  • Zirconium oxide Zirconia: ZrO 2
  • Magnesium oxide Magnesium oxide (Magnesia: MgO), Aluminum oxide (Alumina: Al 2 O 3 ), Silicon dioxide (Silica: SiO 2 ), Zinc oxide (ZnO), Titanium oxide (Titania) : TiO 2 ), cerium oxide (Celia: CeO 2 ), Ittrium oxide (Itria: Y 2 O 3 ), gadolinium oxide (Gd 2 O 3 ) and other oxide-based materials; Cordierite ( 2 MgO ⁇ 2Al 2 O 3) ⁇ 5SiO 2), mullite (3Al 2 O 3 ⁇ 2SiO 2 ), forsterite (2MgO ⁇ SiO 2), steatite (MgO ⁇ SiO 2), sialon (Si 3 N 4 -AlN-Al 2 O 3), lead zirconate Composite oxide-based materials such as (ZrO 2 ⁇ SiO 2 ) and ferrite (M
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a multilayer ceramic capacitor (MLCC) 1.
  • the MLCC1 is a chip-type capacitor in which a large number of dielectric layers 20 and internal electrode layers 30 are alternately and integrally laminated.
  • a pair of external electrodes 40 are provided on the side surface of the laminated chip 10 composed of the dielectric layer 20 and the internal electrode layer 30.
  • the internal electrode layer 30 is connected to external electrodes 40 which are alternately different in the stacking order.
  • the capacitor structure composed of the dielectric layer 20 and the pair of internal electrode layers 30 sandwiching the dielectric layer 20 is connected in parallel, and a small-sized and large-capacity MLCC1 is constructed.
  • the dielectric layer 20 of the MLCC1 is made of, for example, a dielectric material.
  • the internal electrode layer 30 is composed of a fired body of the conductive paste disclosed herein. Such MLCC1 can be produced, for example, by the following procedure.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the unfired laminated body 10a (in other words, the unfired laminated chip 10).
  • a dielectric green sheet as a base material is prepared.
  • a ceramic powder as a dielectric material, a binder resin, a solvent, or the like is mixed to prepare a paste for forming a dielectric layer.
  • the unfired dielectric green sheet 20a is prepared by applying the prepared paste in a thin layer on the carrier sheet by a doctor blade method or the like.
  • the conductive paste disclosed here is prepared.
  • the prepared conductive paste is applied onto the dielectric green sheet 20a in a predetermined pattern so as to have a desired thickness (for example, 1 ⁇ m or less) to form the coating film 30a.
  • a desired thickness for example, 1 ⁇ m or less
  • the coating film 30a having good dispersibility of the inorganic powder, excellent surface smoothness, and good adhesion to the dielectric green sheet can be stably formed. it can.
  • a plurality of (for example, several hundred to several thousand) dielectric green sheets 20a with the prepared coating film 30a are laminated and pressure-bonded.
  • a laminated pressure-bonded body is produced.
  • the laminated pressure-bonded body is cut into a chip shape as needed. Since the surface unevenness of the coating film 30a is small, distortion of the laminated structure is unlikely to occur even when the coating film 30a is laminated or crimped. Further, since the coating film 30a has good adhesion to the dielectric green sheet 20a, problems such as cracking and peeling of the coating film 30a are unlikely to occur even if the coating film 30a is laminated, crimped, or cut. Thereby, the unfired laminated body 10a can be stably obtained.
  • the unfired laminate 10a is fired under appropriate heating conditions (for example, in a nitrogen-hydrogen-containing atmosphere, at a temperature of about 1000 to 1300 ° C.).
  • the dielectric green sheet 20a is fired to form the dielectric layer 20 (see FIG. 1).
  • the coating film 30a is fired to become an internal electrode layer 30 (see FIG. 1).
  • the dielectric layer 20 and the internal electrode layer 30 are integrally sintered, and the laminated chip 10 can be obtained.
  • the internal electrode layer 30 can be formed as electrically continuous and homogeneous.
  • the external electrode material is applied to the side surface of the laminated chip 10 and baked to form the external electrode 40. As described above, it is possible to manufacture a high-quality MLCC1 in which defects such as short-circuit defects are unlikely to occur.
  • nickel powder (Ni) having an average particle diameter of 0.2 ⁇ m was used so as to have a ratio of 50% by mass with respect to the entire conductive paste.
  • barium titanate powder (BT) having an average particle diameter of 50 nm was used at a ratio of 15 parts by mass with respect to 100 parts by mass of nickel powder.
  • binder resin (C) ethyl cellulose (EC) and polyvinyl butyral (PVB, weight average molecular weight (Mw): 85,000
  • Mw weight average molecular weight
  • EC was used so as to have a ratio of 2 parts by mass with respect to 100 parts by mass of nickel powder
  • PVB was used so as to have a ratio of 3 parts by mass with respect to 100 parts by mass of nickel powder.
  • solvent (D) a hydrocarbon solvent (naphthenic solvent), a first solvent (dihydroterpineol) which is a solvent other than the hydrocarbon solvent, and a second solvent (3-methoxy-3-methyl-1-butanol acetate)
  • Is mixed and used in a mass ratio of 1st solvent: 2nd solvent: hydrocarbon solvent 45:30:25
  • (E) The balance after subtracting the dispersant was used as the ratio of the solvent (D) in the conductive paste.
  • dispersant (E) those shown in Table 1 were used so as to have a ratio of 0.2% by mass with respect to the entire paste.
  • the "comb-shaped carboxylic acid” used in Comparative Example 4 is a polymer of hydroxystearic acid, and "N-oleic sarcosine", “malonic acid”, and “citric acid” used in Comparative Examples 5 to 8.
  • the structural formulas of "oleic acid” are as shown in the following formulas (6), (7), (8) and (9), respectively.
  • a coating film was formed by the following procedure, and the dispersibility of the inorganic powder (here, the conductive powder) in the coating film was evaluated. Specifically, first, the conductive paste of each example is applied onto a PET substrate with a thickness of about 250 ⁇ m using an applicator, and dried at 110 ° C. for about 15 minutes to form a coating film (about 50 ⁇ m). did. Then, this coating film was SEM-observed from the surface on the PET substrate side, and an SEM observation image was acquired. The acceleration voltage at the time of observation was 20 kV, and the observation magnification was 10,000 times.
  • FIG. 3 is an example of an SEM observation image
  • FIG. 3 (A) is for Comparative Example 3
  • FIG. 3 (B) is for Comparative Example 9.
  • the dispersity index of the conductive powder was calculated according to a conventionally known dispersibility evaluation method (see, for example, Japanese Patent Application Publication No. 2015-7542). That is, first, the SEM observation image was binarized with a predetermined threshold value to generate an evaluation image.
  • FIG. 4 is a conceptual diagram illustrating a method of calculating the dispersion index. Next, the evaluation image was divided into equal sizes until the number of divisions reached a predetermined number, and the evaluation image variation coefficient CVb and the complete separation variation coefficient CVa were calculated for each partition size.
  • the evaluation image coefficient of variation CVb was calculated based on the area value x and the standard deviation ⁇ of the object (for example, the white portion after binarization representing the conductive powder). Further, the coefficient of variation CVa at the time of complete separation was calculated based on the area value of the object assuming that the object and the non-object other than the object were completely separated. Further, here, the evaluation image was divided until the evaluation image variation coefficient CVb became the same value as the variation coefficient CVa at the time of complete separation. In addition, the coefficient of variation CVc at the time of complete mixing was calculated based on the area value of the object assuming that the object and the non-object other than the object were completely mixed for each section size.
  • the partition size and the evaluation image coefficient of variation CVb are plotted on the two-dimensional coordinates, and the values of the evaluation image variation coefficient CVb are connected by a straight line between the adjacent partition sizes, and the “first relationship b” in FIG. Was graphed.
  • the partition size and the coefficient of variation CVa during complete separation are plotted on the two-dimensional coordinates, and the values of the coefficient of variation CVa during complete separation are connected by a straight line between adjacent partition sizes, and the “second relationship” in FIG. a ”was graphed.
  • partition size and the coefficient of variation CVc during complete mixing are plotted on the two-dimensional coordinates, and the values of the coefficient of variation CVc during complete mixing are connected by a straight line between adjacent partition sizes, and the “third relationship c” in FIG. was graphed.
  • the first relationship b the second relationship a, and the third relationship c, from the minimum value of the partition size (that is, the maximum value of the number of divisions) to the maximum value of the partition size (that is, the minimum value of the number of divisions).
  • the integrated values in the range up to are calculated respectively. That is, as shown in FIG. 4, the area surrounded by the first relationship b and the horizontal axis is B, the area surrounded by the second relationship a and the horizontal axis is A, and the area surrounded by the third relationship c and the horizontal axis is horizontal.
  • the area surrounded by the shaft was defined as C.
  • dispersion index ⁇ [%] (1- (BC) / (AC)) ⁇ 100 ;.
  • the results are shown in the column of "Dispersity index ⁇ " in Table 1. It can be said that the closer the dispersion index ⁇ is to 100%, the better the dispersibility of the conductive powder in the coating film (that is, the higher the dispersion of the conductive powder is close to the completely mixed state).
  • a coating film was formed by the following procedure, and the surface roughness of the coating film was measured. Specifically, first, a dielectric green sheet containing barium titanate was prepared. Next, the conductive paste whose dispersity index was judged to be " ⁇ " was applied onto a dielectric green sheet with a thickness of about 1 ⁇ m by a gravure printing method, and dried at 80 ° C. for about 5 minutes to form a coating film. Formed.
  • the conditions for gravure printing are as follows. Print pattern: 1005 type (2000 ⁇ m x 500 ⁇ m) Printing speed: 30m / min Printing pressure: 0.3MPa
  • the surface roughness of the coating film was measured using a super-resolution non-contact three-dimensional surface shape measurement system (model: BW-A501) manufactured by Nikon Corporation.
  • FIG. 6 is an example of a cross-sectional profile of surface roughness
  • FIG. 6 (A) is for Comparative Example 3
  • FIG. 6 (B) is for Example 1.
  • the gravure printability of the conductive paste of each example was evaluated based on the following indexes. The results are shown in the "Gravure printability-judgment" column of Table 1.
  • the conductive pastes of Comparative Examples 1 to 3 were excellent in the dispersibility of the coating film, but had large irregularities on the surface of the coating film and lacked gravure printability. Further, the conductive pastes of Comparative Examples 4 to 9 lacked the dispersibility of the coating film. In contrast, in the conductive paste examples 1-3, it includes a predetermined dicarboxylic acid dispersant, by adjusting the viscosity V 40 below the low-viscosity 5 Pa ⁇ s, the homogeneity of the coating and the gravure printing It was compatible with sex.
  • Example II ⁇ Test Example II>
  • a first solvent dihydroterpineol
  • a hydrocarbon solvent naphthenic solvent
  • a conductive paste Example 4 was prepared in the same manner as in Example 2 except that it was used in the above manner, and evaluated in the same manner as in Test Example I. The results are shown in Table 2.
  • Example 2 As shown in Table 2, even in Example 4 in which the second solvent (3-methoxy-3-methyl-1-butanol acetate) is not used, both the homogeneity of the coating film and the gravure printability are compatible as in Example 2. It was confirmed that it could be done.
  • a conductive paste (Comparative Example 11, Examples 5 to 8) was prepared using an inorganic powder having a particle size larger than that of Test Examples I and II. Specifically, as the conductive powder (A), nickel powder (Ni) having an average particle diameter of 0.3 ⁇ m was used so as to have a ratio of 50% by mass with respect to the entire conductive paste. Further, as the (B) dielectric powder, barium titanate powder (BT) having an average particle diameter of 100 nm was used at a ratio of 25 parts by mass with respect to 100 parts by mass of the nickel powder. In Comparative Examples 11 and 5, other than this, a conductive paste was prepared in the same manner as in Comparative Examples 4 and 2, respectively.
  • Example 6 a conductive paste was prepared in the same manner as in Example 5 except that the composition of the binder resin (C) was different as shown in Table 3. Further, in Example 8, the content ratio of the conductive powder (A) was 57% by mass with respect to the entire conductive paste, and the conductive paste was prepared in the same manner as in Example 5.
  • FIG. 5 is an example of an SEM observation image
  • FIG. 5 (A) is for Example 5
  • FIG. 5 (B) is for Comparative Example 11. Since this test example uses an inorganic powder having a larger particle size than that of test examples I and II, the dispersity index was determined based on the following indexes. ⁇ : ⁇ is less than 83% ⁇ : ⁇ is 83% or more
  • the coatings were also applied in Examples 5 to 8 in which (A) the size and content ratio of the conductive powder, (B) the size and content ratio of the dielectric powder, and (C) the blending of the binder resin were different. It was confirmed that both the homogeneity of the film and the gravure printability can be achieved.
  • Example IV the solvent (D) was further investigated.
  • the solvent (D) in addition to the hydrocarbon solvent (naphthenic solvent), as the solvent other than the hydrocarbon solvent, the first solvent and the second solvent shown in Table 4 are prepared, and these are shown in Table 4.
  • Conductive pastes Examples 9 to 24 were prepared in the same manner as in Example 5 except that they were mixed and used in a blending ratio. Then, the dryness and the sheet attack property were evaluated.
  • the conductive paste was analyzed by differential thermal-Differential Thermal Analysis (TG-DTA). The measurement conditions are as follows. Sample amount: Conductive paste 5 mg Gas flow rate: Air 200 ml / min Program: Heat from room temperature to 85 ° C at 20 ° C / min and then maintain 85 ° C
  • FIG. 7 shows measurement charts of TG-DTA of Example 13, Example 19, and Example 9. Then, from the measurement chart, the time when the weight change disappeared (the weight change rate became 0.1% by mass or less) was determined as the drying time. The results are shown in the "Drying time” column of Table 4. Then, the dryness of the conductive paste of each example was evaluated based on the following indexes. The results are shown in the column of "Judgment result-dryness" in Table 1. ⁇ : Drying time is less than 15 minutes or more than 25 minutes ⁇ : Drying time is 15 minutes or more and 25 minutes or less
  • FIG. 8 is an example of an SEM observation image
  • FIG. 8 (A) is for Example 19
  • FIG. 8 (B) is for Example 16
  • FIG. 8 (C) is for Example 9.
  • the area of the black portion (resin pool) was compared based on the SEM observation image.
  • the solvent (D) contains, as the second solvent, a solvent having a boiling point of 230 ° C. or less and an SP value of 9.9 (cal / cm 3 ) of 0.5 or less.
  • the first solvent having a boiling point of 200 ° C. or higher and an SP value of 10.0 (cal / cm 3 ) 0.5 or higher and the SP value having a boiling point of 220 ° C. or lower By using a second solvent having a temperature of 9.5 (cal / cm 3 ) of 0.5 or less in combination, the sheet attack property could be further improved.
  • Example V the binder resin (C) was further examined.
  • the binder resin (C) two types of polyvinyl butyral (Sekisui Chemical's Eslek (registered trademark)) having different weight average molecular weights shown in Table 5 were used.
  • Conductive pastes (Examples 25 and 26) were prepared in the same manner as in Example 2 except for the above, and evaluated in the same manner as in Test Example I. The results are shown in Table 5.

Abstract

The present invention provides an electroconductive paste for use in gravure printing, the paste containing an electroconductive powder, a dielectric powder, a binder resin, a solvent, and a dispersant. The dispersant included in this electroconductive paste contains a prescribed dicarboxylic acid-based dispersant, and demonstrates a viscosity V40 of 5 or less at 25°C, when the shear velocity of the electroconductive paste is 40s-1.

Description

導電性ペーストとこれを用いた電子部品の製造方法Conductive paste and manufacturing method of electronic parts using it
 本発明は、導電性ペーストとこれを用いた電子部品の製造方法に関する。
 なお、本出願は、2019年9月25日に出願された日本国特許出願2019-174262号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to a conductive paste and a method for manufacturing an electronic component using the conductive paste.
This application claims priority based on Japanese Patent Application No. 2019-174262 filed on September 25, 2019, and the entire contents of the application are incorporated herein by reference. There is.
 電子部品の製造では、基材上に導電性ペーストを付与して塗膜を形成し、これを焼成することによって電極層を形成する手法が広く用いられている。例えば、積層セラミックコンデンサ(Multi-Layer Ceramic Capacitor:MLCC)の製造方法の一例では、まず、誘電体粉末等を含む未焼成の誘電体グリーンシートを複数枚用意する。次に、誘電体グリーンシートの上に、導電性粉末と樹脂バインダ等とを含む導電性ペーストを付与し、乾燥することにより、塗膜を形成する。次に、複数枚の塗膜付き誘電体グリーンシートを積層し、積層方向にプレスして相互に圧着させる。次に、これを所定のサイズに切断した後、焼成して一体焼結させる。そして、焼成後の複合体の両端面に外部電極を形成する。このようにして、誘電体粉末からなる誘電体層と、導電性ペーストの焼成体からなる内部電極層とが交互に多数積層された構造を有するMLCCが製造される(例えば特許文献1,2参照)。 In the manufacture of electronic components, a method of forming an electrode layer by applying a conductive paste on a base material to form a coating film and firing the coating film is widely used. For example, in an example of a method for manufacturing a multilayer ceramic capacitor (MLCC), first, a plurality of unfired dielectric green sheets containing a dielectric powder or the like are prepared. Next, a conductive paste containing a conductive powder and a resin binder or the like is applied onto the dielectric green sheet and dried to form a coating film. Next, a plurality of dielectric green sheets with a coating film are laminated and pressed in the stacking direction to be pressed against each other. Next, after cutting this into a predetermined size, it is fired and integrally sintered. Then, external electrodes are formed on both end faces of the composite after firing. In this way, an MLCC having a structure in which a large number of dielectric layers made of a dielectric powder and an internal electrode layer made of a fired body of a conductive paste are alternately laminated is produced (see, for example, Patent Documents 1 and 2). ).
日本国特許出願公開2014-122368号公報Japanese Patent Application Publication No. 2014-122368 日本国特許出願公開2012-174797号公報Japanese Patent Application Publication No. 2012-174977
 ところで近年、各種電子機器の高性能化に伴って、電子機器に実装される各電子部品にも薄型化や小型化、高密度化が求められている。例えばMLCCでは、内部電極層の一層分の厚みを薄くして積層数を増やすことにより、MLCCの体積を小型化しつつ静電容量を増大することが求められている。 By the way, in recent years, as the performance of various electronic devices has improved, each electronic component mounted on the electronic device is also required to be thinner, smaller, and have a higher density. For example, in MLCCs, it is required to increase the capacitance while reducing the volume of MLCCs by reducing the thickness of one layer of the internal electrode layer and increasing the number of layers.
 このような事情から、内部電極層形成用の導電性ペーストの付与では、スクリーン印刷法にかえて、グラビア印刷法が用いられるようになってきている。グラビア印刷法は、スクリーン印刷法よりも印刷速度が早いため生産性に優れ、また安定した品質で薄膜状の塗膜を形成することができる。上記の通り、グラビア印刷は印刷速度が早いため、導電性ペーストの粘度をスクリーン印刷時と同程度に調整すると、塗膜の表面が荒れて凹凸が大きくなることがある。このことが積層構造の歪みにつながり、ショート不良等の不具合の原因につながりうる。このため、グラビア印刷用の導電性ペーストは、スクリーン印刷用のものに比べて低粘度に調整する必要がある。しかし、導電性ペースト中に粒径や比重の異なる無機粉末、例えば導電性粉末と誘電体粉末とを含む場合等には、導電性ペースト中でこれら無機粉末が分離しやすくなり、均質な塗膜を形成することが難しい。 Under these circumstances, the gravure printing method has come to be used instead of the screen printing method for applying the conductive paste for forming the internal electrode layer. Since the gravure printing method has a faster printing speed than the screen printing method, it is excellent in productivity and can form a thin film-like coating film with stable quality. As described above, since the printing speed of gravure printing is high, if the viscosity of the conductive paste is adjusted to the same level as that of screen printing, the surface of the coating film may become rough and the unevenness may become large. This leads to distortion of the laminated structure and may lead to defects such as short circuit defects. Therefore, the conductive paste for gravure printing needs to be adjusted to have a lower viscosity than that for screen printing. However, when the conductive paste contains inorganic powders having different particle sizes and specific gravities, for example, the conductive powder and the dielectric powder, these inorganic powders are easily separated in the conductive paste, and a homogeneous coating film is formed. Is difficult to form.
 本発明はかかる点に鑑みてなされたものであり、その目的は、低粘度でグラビア印刷性に優れ、かつ均質な塗膜を形成することができる導電性ペーストと、これを用いた電子部品の製造方法を提供することにある。 The present invention has been made in view of these points, and an object of the present invention is to provide a conductive paste having a low viscosity, excellent gravure printability, and capable of forming a homogeneous coating film, and an electronic component using the conductive paste. The purpose is to provide a manufacturing method.
 本発明により、(A)導電性粉末と、(B)誘電体粉末と、(C)バインダ樹脂と、(D)溶剤と、(E)分散剤と、を含む、グラビア印刷用の導電性ペーストが提供される。上記(E)分散剤は、下記式(1):
Figure JPOXMLDOC01-appb-C000003
(ただし、式(1)中のA、Aは、それぞれ独立して、水素、アルカリ金属またはアルカリ土類金属である。);で表される構造部分を有するジカルボン酸系分散剤を含む。25℃において、上記導電性ペーストのせん断速度40s-1における粘度V40は、5Pa・s以下である。
According to the present invention, a conductive paste for gravure printing containing (A) a conductive powder, (B) a dielectric powder, (C) a binder resin, (D) a solvent, and (E) a dispersant. Is provided. The above (E) dispersant has the following formula (1):
Figure JPOXMLDOC01-appb-C000003
(However, A 1 and A 2 in the formula (1) are independently hydrogen, alkali metal or alkaline earth metal.); Contains a dicarboxylic acid-based dispersant having a structural portion represented by. .. In 25 ° C., the viscosity V 40 at a shear rate 40 s -1 of the conductive paste is less 5 Pa · s.
 ここに開示される技術では、上記分散剤を含み、かつ上記粘度V40に調整することで、グラビア印刷に適した性状の導電性ペーストを実現している。これにより、印刷ダレ等が生じにくく、基材上に迅速かつ安定して塗膜を形成することができる。また、例えば、他のアニオン系分散剤(例えば、モノカルボン酸系の分散剤、上記式(1)の構造部分を有しないジカルボン酸系の分散剤、ポリカルボン酸系の分散剤、スルホン酸系分散剤、リン酸系分散剤等)や、アミン系の分散剤等を用いた場合と比較して、導電性粉末と誘電体粉末との分散性が良好で、かつ表面の平滑な塗膜を形成することができる。 In the art disclosed herein, including the dispersing agent, and by adjusting to the viscosity V 40, thereby realizing a conductive paste having properties suitable for gravure printing. As a result, printing sagging and the like are less likely to occur, and a coating film can be quickly and stably formed on the base material. Further, for example, other anionic dispersants (for example, monocarboxylic acid-based dispersants, dicarboxylic acid-based dispersants having no structural portion of the above formula (1), polycarboxylic acid-based dispersants, sulfonic acid-based dispersants). Compared with the case of using a dispersant (dispersant, phosphoric acid-based dispersant, etc.) or an amine-based dispersant, the dispersibility between the conductive powder and the dielectric powder is good, and a coating film having a smooth surface can be obtained. Can be formed.
 ここに開示される導電性ペーストの好ましい一態様では、上記(E)分散剤が、下記式(2):
Figure JPOXMLDOC01-appb-C000004
(ただし、式(2)中のA、Aは、それぞれ独立して、水素、アルカリ金属またはアルカリ土類金属であり、Rは、炭素数3~30であり、直鎖または分岐、飽和または不飽和の脂肪族基である。);で表される化合物である。
In a preferred embodiment of the conductive paste disclosed herein, the dispersant (E) is based on the following formula (2):
Figure JPOXMLDOC01-appb-C000004
(However, A 1 and A 2 in the formula (2) are independently hydrogen, alkali metal or alkaline earth metal, R has 3 to 30 carbon atoms, and is linear, branched or saturated. Alternatively, it is an unsaturated aliphatic group.); It is a compound represented by.
 ここに開示される導電性ペーストの好ましい一態様では、上記粘度V40に対する上記導電性ペーストのせん断速度4s-1における粘度Vの比(V/V40)が、7以下である。これにより、導電性ペーストの印刷性を向上することができる。 In one preferred embodiment of the conductive paste disclosed herein, the ratio of the viscosity V 4 at a shear rate 4s -1 of the conductive paste for the viscosity V 40 (V 4 / V 40 ) is 7 or less. Thereby, the printability of the conductive paste can be improved.
 ここに開示される導電性ペーストの好ましい一態様では、上記(B)誘電体粉末の平均粒子径Dに対する上記(A)導電性粉末の平均粒子径Dの比(D/D)が、2以上である。このように、導電性粉末と誘電体粉末との粒径が大きく異なることで、導電性ペーストにおける無機粉末(特に誘電体粉末)の分散性が著しく低下しがちである。その結果、均質な塗膜を形成することが殊に難しい。したがって、ここに開示される技術の適用が高い効果を奏する。 In a preferred embodiment of the conductive paste disclosed herein, the ratio of the average particle size D 1 of the (A) conductive powder to the average particle size D 2 of the (B) dielectric powder (D 1 / D 2 ). However, it is 2 or more. As described above, the large difference in particle size between the conductive powder and the dielectric powder tends to significantly reduce the dispersibility of the inorganic powder (particularly the dielectric powder) in the conductive paste. As a result, it is particularly difficult to form a homogeneous coating. Therefore, the application of the techniques disclosed herein is highly effective.
 ここに開示される導電性ペーストの好ましい一態様では、上記(D)溶剤が、炭化水素系溶剤と、炭化水素系以外の溶剤とを含み、上記炭化水素系以外の溶剤が、沸点が230℃以下であり、かつ、Fedorsの溶解度パラメータが9.9(cal/cm0.5以下の溶剤を含む。これにより、溶剤がグリーンシートを浸食するシートアタック現象を高いレベルで抑制することができる。また、塗膜の速乾性を高めて、生産性を向上することができる。 In a preferred embodiment of the conductive paste disclosed herein, the solvent (D) contains a hydrocarbon-based solvent and a solvent other than the hydrocarbon-based solvent, and the solvent other than the hydrocarbon-based solvent has a boiling point of 230 ° C. It contains a solvent having the following and a solubility parameter of Fedors of 9.9 (cal / cm 3 ) of 0.5 or less. As a result, the sheet attack phenomenon in which the solvent erodes the green sheet can be suppressed at a high level. In addition, the quick-drying property of the coating film can be improved to improve the productivity.
 ここに開示される導電性ペーストの好ましい一態様では、上記炭化水素系以外の溶剤が、沸点が200℃以上であり、かつ、上記溶解度パラメータが10.0(cal/cm0.5以上である第1溶剤と、沸点が220℃以下であり、かつ、上記溶解度パラメータが9.5(cal/cm0.5以下である第2溶剤と、を含む。これにより、上記したシートアタック現象を抑制する効果と、速乾性を高める効果とを、より高いレベルで両立することができる。 In a preferred embodiment of the conductive paste disclosed herein, the solvent other than the hydrocarbon-based solvent has a boiling point of 200 ° C. or higher and a solubility parameter of 10.0 (cal / cm 3 ) 0.5 or higher. A second solvent having a boiling point of 220 ° C. or lower and a solubility parameter of 9.5 (cal / cm 3 ) of 0.5 or less is included. As a result, the above-mentioned effect of suppressing the sheet attack phenomenon and the effect of enhancing quick-drying can be achieved at a higher level.
 なお、本明細書において「Fedorsの溶解度パラメータ(Solubility Parameter:SP)」とは、R.F.Fedors, Polymer Engineering Science, 14, p147 (1974) に記載される、所謂、Fedors法で計算された溶解度パラメータをいう。Fedors法では、凝集エネルギー密度とモル分子容とが置換基の種類および数に依存していると考え、溶解度パラメータを次の式:δ=[ΣEcoh/ΣV]0.5(ここで、ΣEcohは凝集エネルギーを、ΣVはモル分子容を示す。);で表す。溶解度パラメータは、各化合物に固有の値である。なお、以下では、Fedorsの溶解度パラメータを、単に「SP値」ということがある。また、SP値のSI単位は、(J/cm0.5または(MPa)0.5であるが、本明細書では従来慣用的に使用される(cal/cm0.5を用いる。SP値の単位は、次の式:1(cal/cm0.5≒2.05(J/cm0.5≒2.05(MPa)0.5;で換算することができる。 In addition, in this specification, "Solubility Parameter (SP) of Fedors" means the so-called solubility parameter calculated by the Fedors method described in RFFedors, Polymer Engineering Science, 14, p147 (1974). .. In the Fedors method, it is considered that the aggregation energy density and the molar molecular weight depend on the type and number of substituents, and the solubility parameter is calculated by the following formula: δ = [ΣE coh / ΣV] 0.5 (here, Σ). Ecoh represents the aggregation energy, and ΣV represents the molar molecular weight.); The solubility parameter is a value unique to each compound. In the following, the solubility parameter of Fedors may be simply referred to as "SP value". The SI unit of the SP value is (J / cm 3 ) 0.5 or (MPa) 0.5 , but (cal / cm 3 ) 0.5 , which is conventionally used in the present specification, is used. Use. The unit of the SP value can be converted by the following formula: 1 (cal / cm 3 ) 0.5 ≈ 2.05 (J / cm 3 ) 0.5 ≈ 2.05 (MPa) 0.5 ;. ..
 ここに開示される導電性ペーストの好ましい一態様では、上記炭化水素系以外の溶剤全体の上記溶解度パラメータが、9.8(cal/cm0.5以下である。これにより、バインダ樹脂を好適に溶解すると共に、上記したシートアタック現象をより良く抑制することができる。 In a preferred embodiment of the conductive paste disclosed herein, the solubility parameter of the whole solvent other than the hydrocarbon-based solvent is 9.8 (cal / cm 3 ) 0.5 or less. As a result, the binder resin can be suitably dissolved, and the above-mentioned sheet attack phenomenon can be better suppressed.
 なお、溶剤全体の溶解度パラメータδallは、次の式:δall(cal/cm0.5=Σ〔各溶剤の固有の溶解度パラメータδ(cal/cm0.5×溶剤全体を基準(1)としたときの各溶剤の質量割合〕;で計算することができる。言い換えれば、まず各溶剤の固有の溶解度パラメータδ(cal/cm0.5と質量割合との積を求め、それらを合算して溶剤全体の溶解度パラメータδallとする。 The solubility parameter δ all of the entire solvent is calculated by the following formula: δ all (cal / cm 3 ) 0.5 = Σ [The unique solubility parameter δ (cal / cm 3 ) 0.5 of each solvent. The mass ratio of each solvent based on the reference (1)]; can be calculated. In other words, first, the product of the unique solubility parameter δ (cal / cm 3 ) 0.5 of each solvent and the mass ratio is obtained, and these are added up to obtain the solubility parameter δ all of the entire solvent.
 ここに開示される導電性ペーストの好ましい一態様では、上記(E)分散剤が、上記導電性ペーストの全体を100質量%としたときに、0.5質量%以下である。これにより、電気伝導性や緻密性に優れた電極層を好適に実現することができる。 In a preferred embodiment of the conductive paste disclosed herein, the dispersant (E) is 0.5% by mass or less when the total amount of the conductive paste is 100% by mass. As a result, an electrode layer having excellent electrical conductivity and denseness can be suitably realized.
 ここに開示される導電性ペーストの好ましい一態様では、上記(C)バインダ樹脂が、ポリビニルアセタール系樹脂を含み、上記ポリビニルアセタール系樹脂の重量平均分子量が20万以下である。これにより、基材に対する接着性を向上することができると共に、誘電体粉末の偏在を抑制することができる。 In a preferred embodiment of the conductive paste disclosed herein, the binder resin (C) contains a polyvinyl acetal-based resin, and the weight average molecular weight of the polyvinyl acetal-based resin is 200,000 or less. As a result, the adhesiveness to the base material can be improved, and the uneven distribution of the dielectric powder can be suppressed.
 ここに開示される導電性ペーストは、積層セラミック電子部品の内部電極層を形成するために用いることができる。これにより、塗膜中に無機粉末が均質に含まれた平滑膜を好適に形成することができ、シートアタックも抑制することができる。その結果、薄膜でも連続性が高く、かつ均質な内部電極層を形成することができる。 The conductive paste disclosed herein can be used to form an internal electrode layer of a laminated ceramic electronic component. As a result, a smooth film in which the inorganic powder is homogeneously contained in the coating film can be preferably formed, and sheet attack can also be suppressed. As a result, it is possible to form an internal electrode layer having high continuity and homogeneity even in a thin film.
 また、本発明により、上記導電性ペーストを基材上に付与して焼成することを包含する、電子部品の製造方法が提供される。上記導電性ペーストを用いることで、小型・大容量で、かつ高品質なMLCCを好適に製造することができる。 Further, the present invention provides a method for manufacturing an electronic component, which comprises applying the above-mentioned conductive paste onto a base material and firing the paste. By using the above-mentioned conductive paste, it is possible to suitably produce a small-sized, large-capacity, high-quality MLCC.
図1は、積層セラミックコンデンサの構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing the configuration of a multilayer ceramic capacitor. 図2は、未焼成積層体の構成を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the structure of the unfired laminate. 図3(A)は比較例3のSEM観察画像であり、図3(B)は比較例9のSEM観察画像である。FIG. 3A is an SEM observation image of Comparative Example 3, and FIG. 3B is an SEM observation image of Comparative Example 9. 図4は、分散度指数の算出方法を説明する概念図である。FIG. 4 is a conceptual diagram illustrating a method of calculating the dispersion index. 図5(A)は例5のSEM観察画像であり、図5(B)は比較例11のSEM観察画像である。FIG. 5 (A) is an SEM observation image of Example 5, and FIG. 5 (B) is an SEM observation image of Comparative Example 11. 図6(A)は比較例3の表面粗さの断面プロファイルであり、図6(B)は例1の表面粗さの断面プロファイルである。FIG. 6A is a cross-sectional profile of the surface roughness of Comparative Example 3, and FIG. 6B is a cross-sectional profile of the surface roughness of Example 1. 図7は、例13、例19、例9のTG-DTAの測定チャートである。FIG. 7 is a measurement chart of TG-DTA of Example 13, Example 19, and Example 9. 図8(A)は例19のSEM観察画像であり、図8(B)は例16のSEM観察画像であり、図8(C)は例9のSEM観察画像である。8 (A) is an SEM observation image of Example 19, FIG. 8 (B) is an SEM observation image of Example 16, and FIG. 8 (C) is an SEM observation image of Example 9.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば、導電性ペーストの構成やその性状)以外の事柄であって、本発明の実施に必要な事柄(例えば、導電性ペーストの調製方法や電子部品の構成等)は、本明細書により教示されている技術内容と、当該分野における当業者の一般的な技術常識とに基づいて実施することができる。なお、本明細書において数値範囲を示す「X~Y(X,Yは任意の値)」の表記は、X以上Y以下の意と共に、「好ましくはXより大きい」および「好ましくはYより小さい」の意を包含する。 Hereinafter, preferred embodiments of the present invention will be described. It should be noted that matters other than those specifically mentioned in the present specification (for example, the constitution and properties of the conductive paste) and necessary for carrying out the present invention (for example, the method for preparing the conductive paste and the electrons). The configuration of parts, etc.) can be carried out based on the technical contents taught in this specification and the general technical common knowledge of those skilled in the art in the art. In the present specification, the notation of "X to Y (X, Y are arbitrary values)" indicating a numerical range means "preferably larger than X" and "preferably smaller than Y", as well as meaning X or more and Y or less. Includes the meaning of.
[グラビア印刷用の導電性ペースト]
 ここに開示される導電性ペーストは、(A)導電性粉末と、(B)誘電体粉末と、(C)バインダ樹脂と、(D)溶剤と、(E)分散剤と、を含んでいる。なお、以下の説明では、(A)導電性粉末と(B)誘電体粉末とを「無機粉末」の成分といい、(C)バインダ樹脂と(D)溶剤と(E)分散剤とを「有機成分」ということがある。この導電性ペーストは、グラビア印刷に好適に用いることができる。
[Conductive paste for gravure printing]
The conductive paste disclosed herein contains (A) a conductive powder, (B) a dielectric powder, (C) a binder resin, (D) a solvent, and (E) a dispersant. .. In the following description, (A) conductive powder and (B) dielectric powder are referred to as components of "inorganic powder", and (C) binder resin, (D) solvent and (E) dispersant are referred to as "inorganic powder". Sometimes called "organic component". This conductive paste can be suitably used for gravure printing.
 なお、本明細書において「塗膜」とは、導電性ペーストを、(C)バインダ樹脂および/または(E)分散剤の沸点よりも低い温度、典型的には200℃以下、例えば150℃以下、好ましくは120℃以下で乾燥させた膜状体(乾燥物)をいう。導電性ペーストを(C)バインダ樹脂および/または(E)分散剤の沸点以下の温度で乾燥させた場合、塗膜には、これらの成分が残存しうる。塗膜は、未焼成(焼成前)の膜状体全般を包含する。
 また、本明細書において「電極層」とは、導電性ペースト中の有機成分、例えば(C)バインダ樹脂と(D)溶剤と(E)分散剤とが消失して、無機粉末、例えば(A)導電性粉末と(B)誘電体粉末とが焼成した焼結体(焼成物)をいう。電極層は、配線(線状体)と、配線パターンと、ベタパターンと、を包含する。以下、各成分について順に説明する。
In the present specification, the term "coating film" refers to a conductive paste having a temperature lower than the boiling point of (C) binder resin and / or (E) dispersant, typically 200 ° C. or lower, for example 150 ° C. or lower. , Preferably a film-like body (dried product) dried at 120 ° C. or lower. When the conductive paste is dried at a temperature below the boiling point of the (C) binder resin and / or (E) dispersant, these components may remain in the coating film. The coating film includes all unfired (before firing) film-like bodies.
Further, in the present specification, the “electrode layer” refers to an inorganic powder such as (A) in which organic components in the conductive paste, for example, (C) binder resin, (D) solvent, and (E) dispersant disappear. ) A sintered body (fired product) obtained by firing a conductive powder and (B) a dielectric powder. The electrode layer includes a wiring (linear body), a wiring pattern, and a solid pattern. Hereinafter, each component will be described in order.
(A)導電性粉末
 導電性粉末は、電極層に電気伝導性を付与する成分である。導電性粉末の種類は特に限定されず、従来公知のもののなかから、例えば電極層の用途等に応じて、1種類を単独で、または2種類以上を適宜組み合わせて用いることができる。導電性粉末としては、例えば、ニッケル(Ni)、アルミニウム(Al)、銅(Cu)、タングステン(W)等の卑金属の単体、金(Au)、銀(Ag)、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(Os)等の貴金属の単体、およびこれらの混合物や合金等が挙げられる。合金としては、例えば、ニッケル-銅(Ni-Cu)、ニッケル-アルミニウム(Ni-Al)等のニッケル合金が挙げられる。
(A) Conductive powder The conductive powder is a component that imparts electrical conductivity to the electrode layer. The type of the conductive powder is not particularly limited, and among those conventionally known, one type can be used alone or two or more types can be appropriately used in combination depending on, for example, the use of the electrode layer. Examples of the conductive powder include simple base metals such as nickel (Ni), aluminum (Al), copper (Cu), and tungsten (W), gold (Au), silver (Ag), platinum (Pt), and palladium (Palladium). Examples thereof include simple precious metals such as Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os), and mixtures and alloys thereof. Examples of the alloy include nickel alloys such as nickel-copper (Ni-Cu) and nickel-aluminum (Ni-Al).
 特に限定されるものではないが、例えばMLCCの内部電極層を形成する用途では、導電性粉末として、誘電体層の焼結温度(例えば約1300℃)よりも融点が低い金属種を用いることが好ましい。なかでも、低価格で導電性とコストとのバランスに優れることから、ニッケル系粒子が好ましい。なお、本明細書において「ニッケル系粒子」とは、ニッケル成分を含むもの全般を包含する。ニッケル系粒子の一例として、ニッケルの単体、上記したニッケル合金、ニッケル粒子をコアとするコアシェル粒子、例えばニッケル粒子の表面を銀等の貴金属で被覆したコアシェル粒子等が挙げられる。 Although not particularly limited, for example, in an application for forming an internal electrode layer of MLCC, a metal species having a melting point lower than the sintering temperature of the dielectric layer (for example, about 1300 ° C.) may be used as the conductive powder. preferable. Of these, nickel-based particles are preferable because they are inexpensive and have an excellent balance between conductivity and cost. In addition, in this specification, "nickel-based particles" include all those containing a nickel component. Examples of nickel-based particles include a single nickel, the above-mentioned nickel alloy, and core-shell particles having nickel particles as a core, for example, core-shell particles in which the surface of nickel particles is coated with a noble metal such as silver.
 導電性粉末の製法や導電性粉末を構成する粒子の性状、例えば粒子のサイズや形状等は特に限定されない。粒子のサイズは、例えば導電性ペーストの用途や電極層の寸法等に応じて適宜選択することができる。粒子のサイズは、焼成収縮率を考慮して、目的とする電極層(例えば内部電極層)の最小寸法、例えば厚みおよび/または幅に収まるように選択するとよい。特に限定されるものではないが、導電性粉末の平均粒子径Dは、概ね数nm~数μm、例えば10nm~10μmであってもよい。なお、本明細書において「平均粒子径」とは、電子顕微鏡観察に基づく個数基準の粒度分布において、粒径の小さい方から累積50%に相当する粒径をいう。 The method for producing the conductive powder and the properties of the particles constituting the conductive powder, such as the size and shape of the particles, are not particularly limited. The size of the particles can be appropriately selected depending on, for example, the use of the conductive paste, the dimensions of the electrode layer, and the like. The size of the particles may be selected so as to be within the minimum dimensions of the target electrode layer (for example, the internal electrode layer), for example, the thickness and / or the width, in consideration of the firing shrinkage rate. Although not particularly limited, the average particle size D 1 of the conductive powder may be approximately several nm to several μm, for example, 10 nm to 10 μm. In the present specification, the "average particle size" means a particle size corresponding to a cumulative total of 50% from the smallest particle size in the number-based particle size distribution based on electron microscope observation.
 一例として、超小型~小型のMLCCの内部電極層を形成する用途では、導電性粉末の平均粒子径Dが、内部電極層の厚み(積層方向の長さ)よりも小さく、概ね0.5μm以下、典型的には0.4μm以下、好ましくは0.3μm以下であってもよい。平均粒子径Dが所定値以下であると、薄膜状の電極層であっても、表面の凹凸を小さく抑えることができる。導電性粉末の平均粒子径Dは、概ね0.01μm以上、典型的には0.05μm以上、好ましくは0.1μm以上、例えば0.2μm以上であってもよい。平均粒子径Dが所定値以上であると、粒子の表面エネルギーが抑えられて、導電性ペースト中での凝集が抑制される。そのため、より均質な塗膜を実現することができる。 As an example, in an application for forming an internal electrode layer of an ultra-small to small MLCC, the average particle size D 1 of the conductive powder is smaller than the thickness (length in the stacking direction) of the internal electrode layer, and is approximately 0.5 μm. Hereinafter, it may be typically 0.4 μm or less, preferably 0.3 μm or less. When the average particle size D 1 is not more than a predetermined value, the surface irregularities can be suppressed to be small even in the thin film electrode layer. The average particle size D 1 of the conductive powder may be approximately 0.01 μm or more, typically 0.05 μm or more, preferably 0.1 μm or more, for example 0.2 μm or more. When the average particle size D 1 is equal to or greater than a predetermined value, the surface energy of the particles is suppressed, and aggregation in the conductive paste is suppressed. Therefore, a more homogeneous coating film can be realized.
 導電性粉末の形状は、例えば、略球状、麟片状(フレーク状)、針状、不定形等であってもよい。特に限定されるものではないが、薄膜状の電極層を形成する用途では、導電性粉末が略球状であってもよい。これにより、導電性ペーストの粘度を低めに維持して、ペーストのハンドリング性やグラビア印刷時の作業性を向上することができる。なお、本明細書において「略球状」とは、全体として概ね球体(ボール)と見なせる形態を示し、平均アスペクト比が概ね1~2、例えば1~1.5であることをいう。また、本明細書において「アスペクト比」とは、導電性粉末を構成する粒子を電子顕微鏡で観察し、得られた観察画像に外接する矩形を描いたときの、粒子短辺の長さ(a)に対する長辺の長さ(b)の比(b/a)をいう。平均アスペクト比は、複数の粒子(例えば100個の粒子)のアスペクト比の算術平均値を意味する。 The shape of the conductive powder may be, for example, substantially spherical, flake-shaped, needle-shaped, amorphous, or the like. Although not particularly limited, the conductive powder may be substantially spherical in applications for forming a thin-film electrode layer. As a result, the viscosity of the conductive paste can be kept low, and the handleability of the paste and the workability at the time of gravure printing can be improved. In addition, in this specification, "substantially spherical" means a form which can be regarded as a sphere (ball) as a whole, and has an average aspect ratio of about 1 to 2, for example, 1 to 1.5. Further, in the present specification, the "aspect ratio" is the length of the short side of the particles (a) when the particles constituting the conductive powder are observed with an electron microscope and a rectangle circumscribing the obtained observation image is drawn. ) To the ratio (b / a) of the length (b) of the long side. The average aspect ratio means the arithmetic mean value of the aspect ratios of a plurality of particles (for example, 100 particles).
 特に限定されるものではないが、導電性ペーストの全体を100質量%としたときに、導電性粉末の含有割合は、概ね30~95質量%、典型的には35~80質量%、例えば40~60質量%であってもよい。上記範囲を満たすことで、ペーストのハンドリング性や、グラビア印刷時の作業性を向上することができる。また、電気伝導性や緻密性に優れた電極層を好適に実現することができる。 Although not particularly limited, when the total content of the conductive paste is 100% by mass, the content ratio of the conductive powder is approximately 30 to 95% by mass, typically 35 to 80% by mass, for example, 40. It may be up to 60% by mass. By satisfying the above range, the handleability of the paste and the workability at the time of gravure printing can be improved. In addition, an electrode layer having excellent electrical conductivity and denseness can be preferably realized.
(B)誘電体粉末
 誘電体粉末は、導電性ペーストの焼成時に導電性粒子の間に配置され、導電性粉末の熱収縮を緩和する成分である。また、MLCCの内部電極層を形成する用途では、誘電体層と内部電極層との焼結接合性を向上させる共材としても機能しうる。特に限定されるものではないが、誘電体粉末の誘電率は、典型的には100以上、例えば1000~20000程度であってもよい。ただし、誘電体粉末は、比誘電率が100未満、ひいては絶縁性材料であってもよい。
(B) Dielectric powder The dielectric powder is a component that is arranged between the conductive particles when the conductive paste is fired and relaxes the heat shrinkage of the conductive powder. Further, in the application of forming the internal electrode layer of the MLCC, it can also function as a co-material for improving the sintering bondability between the dielectric layer and the internal electrode layer. Although not particularly limited, the dielectric constant of the dielectric powder may be typically 100 or more, for example, about 1000 to 20000. However, the dielectric powder may have a relative permittivity of less than 100, and may be an insulating material.
 誘電体粉末の種類は特に限定されず、従来公知の無機材料のなかから、例えば用途等に応じて、1種類を単独で、または2種類以上を適宜組み合わせて用いることができる。誘電体粉末としては、例えば、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ニオブ酸マグネシウム酸バリウム、ジルコン酸カルシウム、ジルコン酸ストロンチウム等のABOで表されるペロブスカイト構造を有する金属酸化物や、二酸化チタン、五酸化チタン、酸化ハフニウム、酸化ジルコニウム、酸化アルミニウム、フォルステライト、酸化ニオブ、チタン酸ネオジウム酸バリウム等のその他の金属酸化物が挙げられる。一例として、MLCCの内部電極層を形成する用途では、例えば、チタン酸バリウム、チタン酸ストロンチウム、およびジルコン酸カルシウム等を好適に用いることができる。 The type of the dielectric powder is not particularly limited, and among conventionally known inorganic materials, for example, one type may be used alone or two or more types may be used in combination depending on the intended use. Examples of the dielectric powder include barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, zirconium titanate, zinc titanate, barium titanate niobate, calcium zirconate, and strontium zirconate. A metal oxide having a perovskite structure represented by ABO 3 and other metal oxides such as titanium dioxide, titanium pentoxide, hafnium oxide, zirconium oxide, aluminum oxide, forsterite, niobium oxide, and barium titanate. Can be mentioned. As an example, in the application of forming the internal electrode layer of MLCC, for example, barium titanate, strontium titanate, calcium zirconate and the like can be preferably used.
 誘電体粉末の製法や誘電体粉末を構成する粒子の性状、例えば粒子のサイズや形状等は特に限定されない。粒子のサイズは、例えば導電性ペーストの用途や電極層の寸法等に応じて適宜選択することができる。粒子のサイズは、焼成収縮率を考慮して、目的とする電極層(例えば内部電極層)の最小寸法、例えば厚みおよび/または幅に収まるように選択するとよい。特に限定されるものではないが、誘電体粉末の平均粒子径Dは、概ね数nm~数μm、例えば1nm~1μmであってもよい。一例として、MLCCの内部電極層を形成する用途では、誘電体粉末の平均粒子径Dが、概ね5nm以上、典型的には10nm以上、例えば20nm以上、50nm以上であってもよく、概ね0.5μm以下、典型的には0.3μm以下、例えば0.2μm以下、0.1μm以下であってもよい。 The method for producing the dielectric powder and the properties of the particles constituting the dielectric powder, such as the size and shape of the particles, are not particularly limited. The size of the particles can be appropriately selected depending on, for example, the use of the conductive paste, the dimensions of the electrode layer, and the like. The size of the particles may be selected so as to be within the minimum dimensions of the target electrode layer (for example, the internal electrode layer), for example, the thickness and / or the width, in consideration of the firing shrinkage rate. Although not particularly limited, the average particle size D 2 of the dielectric powder may be approximately several nm to several μm, for example, 1 nm to 1 μm. As an example, in an application for forming an internal electrode layer of an MLCC, the average particle size D 2 of the dielectric powder may be approximately 5 nm or more, typically 10 nm or more, for example, 20 nm or more, 50 nm or more, and is approximately 0. It may be 5.5 μm or less, typically 0.3 μm or less, for example 0.2 μm or less, 0.1 μm or less.
 特に限定されるものではないが、電気伝導性に優れた電極層を形成する観点からは、誘電体粉末の平均粒子径Dが、導電性粉末の平均粒子径Dよりも小さいとよい。すなわち、DおよびDは、D>Dであるとよい。DおよびDは、(D/D)≧2を満たすことが好ましく、(D/D)≧3を満たすことがより好ましく、例えば(D/D)≧4を満たしていてもよい。このように平均粒子径が大きく異なる場合、ここに開示される技術の適用が殊に効果的である。また、DおよびDは、50≧(D/D)を満たしていてもよく、20≧(D/D)を満たしていてもよく、例えば10≧(D/D)を満たしていてもよい。 Although not particularly limited, from the viewpoint of forming an electrode layer having excellent electrical conductivity, it is preferable that the average particle size D 2 of the dielectric powder is smaller than the average particle size D 1 of the conductive powder. That is, D 1 and D 2 are preferably D 1 > D 2 . D 1 and D 2 preferably satisfy (D 1 / D 2 ) ≥ 2, more preferably (D 1 / D 2 ) ≥ 3, for example, (D 1 / D 2 ) ≥ 4. You may be. When the average particle size is significantly different in this way, the application of the techniques disclosed herein is particularly effective. Further, D 1 and D 2 may satisfy 50 ≧ (D 1 / D 2 ) or 20 ≧ (D 1 / D 2 ), for example, 10 ≧ (D 1 / D 2). ) May be satisfied.
 特に限定されるものではないが、導電性ペーストの全体を100質量%としたときに、誘電体粉末の含有割合は、概ね0.2~20質量%、典型的には1~15質量%、例えば3~10質量%であってもよい。また、導電性粉末100質量部に対する誘電体粉末の含有割合は、概ね3~35質量部、典型的には5~30質量部、例えば10~25質量部であってもよい。上記範囲を満たすことで、導電性粉末の熱収縮を好適に抑制するとともに、電気伝導性や緻密性に優れた導電層を好適に実現することができる。 Although not particularly limited, when the total content of the conductive paste is 100% by mass, the content ratio of the dielectric powder is approximately 0.2 to 20% by mass, typically 1 to 15% by mass. For example, it may be 3 to 10% by mass. The content ratio of the dielectric powder to 100 parts by mass of the conductive powder may be approximately 3 to 35 parts by mass, typically 5 to 30 parts by mass, for example, 10 to 25 parts by mass. By satisfying the above range, it is possible to suitably suppress the heat shrinkage of the conductive powder and preferably realize a conductive layer having excellent electrical conductivity and denseness.
(C)バインダ樹脂
 バインダ樹脂は、導電性ペーストの粘度(流動性)を調整すると共に、塗膜に粘着性を付与して無機粉末同士および無機粉末と基材とを密着させる成分である。バインダ樹脂は、後述する(D)溶剤に溶解され、ビヒクルとして機能しうる。バインダ樹脂は、典型的には焼成によって消失される成分である。言い換えれば、バインダ樹脂は、塗膜の焼成時に燃え抜ける化合物である。バインダ樹脂は、例えば熱分解温度が500℃以下であってもよい。
(C) Binder resin The binder resin is a component that adjusts the viscosity (fluidity) of the conductive paste and imparts adhesiveness to the coating film to bring the inorganic powders into close contact with each other and the inorganic powder and the base material. The binder resin is dissolved in the solvent (D) described later and can function as a vehicle. The binder resin is a component that is typically lost by firing. In other words, the binder resin is a compound that burns through when the coating film is fired. The binder resin may have, for example, a thermal decomposition temperature of 500 ° C. or lower.
 バインダ樹脂の種類は特に限定されず、この種の用途に使用されている従来公知の有機化合物のなかから、例えば用途等に応じて、1種類を単独で、または2種類以上を適宜組み合わせて用いることができる。バインダ樹脂は、典型的には熱可塑性樹脂である。ただし、熱硬化性樹脂であってもよい。バインダ樹脂としては、例えば、セルロース系樹脂、ポリビニルアセタール系樹脂、ポリビニルアルコール系樹脂、アクリル系樹脂、ウレタン系樹脂、エポキシ系樹脂、フェノール系樹脂、ロジン系樹脂、ポリエステル系樹脂、エチレン系樹脂等の有機高分子化合物が挙げられる。なかでも、焼成時の燃え抜け性や電極層の表面平滑性を向上する観点等から、バインダ樹脂として、(C1)セルロース系樹脂を含むことが好ましい。また、上記のように微細な粒径の無機粉末を含む導電性ペーストでは、塗膜と基材との接着性や塗膜の一体性を向上する観点等から、バインダ樹脂として、(C2)ポリビニルアセタール系樹脂を含むことが好ましく、例えば(C1)セルロース系樹脂と(C2)ポリビニルアセタール系樹脂とを組合せて用いることが好適である。 The type of the binder resin is not particularly limited, and among the conventionally known organic compounds used for this type of application, for example, one type may be used alone or two or more types may be appropriately combined depending on the application. be able to. The binder resin is typically a thermoplastic resin. However, it may be a thermosetting resin. Examples of the binder resin include cellulose-based resin, polyvinyl acetal-based resin, polyvinyl alcohol-based resin, acrylic resin, urethane-based resin, epoxy-based resin, phenol-based resin, rosin-based resin, polyester-based resin, and ethylene-based resin. Examples include organic polymer compounds. Among them, it is preferable to contain (C1) a cellulosic resin as the binder resin from the viewpoint of improving the burn-through property at the time of firing and the surface smoothness of the electrode layer. Further, in the conductive paste containing the inorganic powder having a fine particle size as described above, (C2) polyvinyl is used as the binder resin from the viewpoint of improving the adhesiveness between the coating film and the base material and the integrity of the coating film. It is preferable to contain an acetal-based resin, and for example, it is preferable to use a combination of (C1) cellulose-based resin and (C2) polyvinyl acetal-based resin.
 (C1)セルロース系樹脂は、β-グルコースを繰り返し単位として含む直鎖の重合体(セルロース)、およびその誘導体の全般を包含する。(C1)セルロース系樹脂は、典型的には、繰り返し単位であるβ-グルコース構造におけるヒドロキシ基の一部または全部をアルコキシ基に置換した化合物、およびその誘導体(変性物等)でありうる。なお、アルコキシ基(RO-)におけるアルキル基またはアリール基(R)は、その一部または全部が、カルボキシル基などのエステル基、ニトロ基、ハロゲン、他の有機基に置換されていてもよい。セルロース系樹脂としては、例えば、メチルセルロース(MC)、エチルセルロース(EC)、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、カルボキシエチルセルロース、カルボキシエチルメチルセルロース、酢酸フタル酸セルロース、ニトロセルロース等が挙げられる。なかでもMCやECが好ましい。セルロース系樹脂を含むことで、グラビア印刷時の作業性を向上すると共に、表面平滑性に優れた塗膜を安定的に形成することができる。 (C1) Cellulose-based resin includes a linear polymer (cellulose) containing β-glucose as a repeating unit and its derivatives in general. The (C1) cellulosic resin can typically be a compound in which a part or all of the hydroxy groups in the β-glucose structure, which is a repeating unit, is replaced with an alkoxy group, and a derivative thereof (modified product, etc.). The alkyl group or aryl group (R) in the alkoxy group (RO-) may be partially or wholly substituted with an ester group such as a carboxyl group, a nitro group, a halogen, or another organic group. Examples of the cellulose-based resin include methyl cellulose (MC), ethyl cellulose (EC), hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, carboxyethyl methyl cellulose, cellulose acetate, nitrocellulose and the like. Can be mentioned. Of these, MC and EC are preferable. By containing the cellulosic resin, workability during gravure printing can be improved, and a coating film having excellent surface smoothness can be stably formed.
 セルロース系樹脂の性状は特に限定されない。セルロース系樹脂の重量平均分子量(Mw)は、概ね1万以上であってもよく、例えば6万以上、8万以上、12万以上、20万以上であってもよい。また、セルロース系樹脂の重量平均分子量(Mw)は、概ね80万以下であってもよく、例えば60万以下、40万以下、32万以下であってもよい。なお、「重量平均分子量(Mw)」は、個数基準の平均分子量であり、例えば、ゲルクロマトグラフィー(Gel Permeation Chromatography:GPC)によって測定し、標準ポリスチレン検量線を用いて算出することができる。 The properties of the cellulosic resin are not particularly limited. The weight average molecular weight (Mw) of the cellulosic resin may be approximately 10,000 or more, for example, 60,000 or more, 80,000 or more, 120,000 or more, or 200,000 or more. The weight average molecular weight (Mw) of the cellulosic resin may be approximately 800,000 or less, for example, 600,000 or less, 400,000 or less, or 320,000 or less. The "weight average molecular weight (Mw)" is a number-based average molecular weight, which can be measured by, for example, gel chromatography (GPC) and calculated using a standard polystyrene calibration curve.
 (C2)ポリビニルアセタール系樹脂は、ポリビニルアルコール系樹脂にアルデヒドを反応させてアセタール化することで得られる樹脂である。ポリビニルアセタール系樹脂は、連続するビニルアルコール構造単位がアルデヒド化合物によってアセタール化された構造単位を有し、かつ、未反応のビニルアルコール構造単位、および、ポリビニルアルコール系樹脂の未ケン化部分である酢酸ビニル構造単位、のうちの1つ以上を有しうる重合体、およびその誘導体(変性物等)の全般を包含する。ポリビニルアセタール系樹脂におけるアセタール化された構造単位の割合(アセタール化度)は、例えば50モル%以上であってもよい。ポリビニルアセタール系樹脂は、例えばセルロース系樹脂に比べて、接着性や柔軟性に優れている。 (C2) The polyvinyl acetal-based resin is a resin obtained by reacting a polyvinyl alcohol-based resin with an aldehyde to acetalize it. The polyvinyl acetal-based resin has a continuous vinyl alcohol structural unit having a structural unit acetalized by an aldehyde compound, and has an unreacted vinyl alcohol structural unit and acetic acid which is an unsaken portion of the polyvinyl alcohol-based resin. It includes a polymer having one or more of vinyl structural units, and a derivative thereof (modified product, etc.) in general. The ratio of acetalized structural units (degree of acetalization) in the polyvinyl acetal-based resin may be, for example, 50 mol% or more. Polyvinyl acetal-based resins are superior in adhesiveness and flexibility to, for example, cellulose-based resins.
 ポリビニルアセタール系樹脂としては、例えば、ポリビニルアルコールをブタノールでアセタール化した構造を有するポリビニルブチラール樹脂(PVB)が挙げられる。PVBを含むことで、塗膜の形状特性を向上することができる。ポリビニルアセタール系樹脂は、ポリビニルアセタール系樹脂を主モノマー(単量体全体の50%以上を占める成分。以下同じ。)とし、当該主モノマーに共重合性を有する副モノマーを含む共重合体(グラフト共重合を含む)であってもよい。副モノマーとしては、例えば、エチレン、エステル、(メタ)アクリレート、酢酸ビニル等が挙げられる。 Examples of the polyvinyl acetal resin include polyvinyl butyral resin (PVB) having a structure in which polyvinyl alcohol is acetalized with butanol. By including PVB, the shape characteristics of the coating film can be improved. The polyvinyl acetal-based resin is a copolymer (graft) in which the polyvinyl acetal-based resin is used as the main monomer (a component that occupies 50% or more of the total monomer; the same applies hereinafter) and the main monomer contains a copolymerizable submonomer. (Including copolymerization) may be used. Examples of the submonomer include ethylene, ester, (meth) acrylate, vinyl acetate and the like.
 ポリビニルアセタール系樹脂の性状は特に限定されない。ポリビニルアセタール系樹脂の重量平均分子量(Mw)は、概ね5万以上であってもよく、例えば7.5万以上、8.5万以上、10万以上、15万以上であってもよい。また、ポリビニルアセタール系樹脂の重量平均分子量(Mw)は、概ね100万以下、例えば75万以下、50万以下であってもよく、好ましくは30万以下、25万以下、例えば20万以下であってもよい。重量平均分子量を所定値以下とすることで、ペースト粘度の上昇を好適に抑制することができる。したがって、グラビア印刷性と塗膜の形状特性とを高いレベルで両立することができる。 The properties of the polyvinyl acetal resin are not particularly limited. The weight average molecular weight (Mw) of the polyvinyl acetal-based resin may be approximately 50,000 or more, and may be, for example, 75,000 or more, 85,000 or more, 100,000 or more, or 150,000 or more. The weight average molecular weight (Mw) of the polyvinyl acetal resin may be approximately 1 million or less, for example, 750,000 or less, 500,000 or less, preferably 300,000 or less, 250,000 or less, for example, 200,000 or less. You may. By setting the weight average molecular weight to a predetermined value or less, an increase in paste viscosity can be suitably suppressed. Therefore, it is possible to achieve both gravure printability and the shape characteristics of the coating film at a high level.
 特に限定されるものではないが、バインダ樹脂は、(C2)ポリビニルアセタール系樹脂を主成分(最も多くを占める成分。以下同じ。)として構成されていてもよい。(C2)ポリビニルアセタール系樹脂は、バインダ樹脂の全体を100質量%としたときに、概ね50質量%以上、例えば60~80質量%を占めていてもよい。また、バインダ樹脂として(C1)セルロース系樹脂と(C2)ポリビニルアセタール系樹脂とを同時に含む場合は、(C1)+(C2)を100質量%としたときに、(C2)ポリビニルアセタール系樹脂が、概ね10~90質量%、典型的には20~80質量%、例えば50~70質量%であってもよい。 Although not particularly limited, the binder resin may be composed of (C2) polyvinyl acetal-based resin as the main component (the component that occupies the largest amount; the same shall apply hereinafter). The (C2) polyvinyl acetal-based resin may occupy approximately 50% by mass or more, for example, 60 to 80% by mass, when the total amount of the binder resin is 100% by mass. When (C1) cellulose-based resin and (C2) polyvinyl acetal-based resin are simultaneously contained as the binder resin, the (C2) polyvinyl acetal-based resin becomes 100% by mass when (C1) + (C2) is 100% by mass. , Approximately 10 to 90% by mass, typically 20 to 80% by mass, for example 50 to 70% by mass.
 特に限定されるものではないが、導電性ペーストの全体を100質量%としたときに、バインダ樹脂の含有割合は、概ね0.1~5質量%、典型的には1~4質量%、例えば2~3質量%であってもよい。また、導電性粉末100質量部に対するバインダ樹脂の含有割合は、概ね0.1~10質量部、典型的には0.5~8質量部、例えば1~7質量部、2~5質量部であってもよい。上記範囲を満たすことで、導電性ペーストをグラビア印刷に適した性状に調整しやすくなる。また、塗膜と基材との密着性を向上して、電気伝導性や緻密性に優れた導電層を安定して実現することができる。 Although not particularly limited, when the total amount of the conductive paste is 100% by mass, the content ratio of the binder resin is approximately 0.1 to 5% by mass, typically 1 to 4% by mass, for example. It may be 2 to 3% by mass. The content ratio of the binder resin to 100 parts by mass of the conductive powder is approximately 0.1 to 10 parts by mass, typically 0.5 to 8 parts by mass, for example, 1 to 7 parts by mass and 2 to 5 parts by mass. There may be. By satisfying the above range, it becomes easy to adjust the conductive paste to a property suitable for gravure printing. In addition, the adhesion between the coating film and the base material can be improved, and a conductive layer having excellent electrical conductivity and denseness can be stably realized.
(D)溶剤
 溶剤は、無機粉末を分散して、グラビア印刷に適した粘度(流動性)を導電性ペーストに付与するための液状媒体である。また、溶剤は、上記した(C)バインダ樹脂および/または後述する(E)分散剤を溶解するビヒクルとしても機能しうる。溶剤は、典型的には乾燥、焼成によって消失される成分である。溶剤は、導電性ペーストの乾燥時、および/または、塗膜の焼成時に燃え抜ける成分である。溶剤の種類は特に限定されず、この種の用途に使用されている従来公知の有機溶剤のなかから、例えば基材や(C)バインダ樹脂の種類等に応じて、1種類を単独で、または2種類以上を適宜組み合わせて用いることができる。溶剤としては、例えば、-OH基を有するアルコール系溶剤、エーテル結合(R-O-R’)を有するエーテル系溶剤、エステル結合(R-C(=O)-O-R’)を有するエステル系溶剤、炭素原子と水素原子とで構成される炭化水素系溶剤等が挙げられる。
(D) Solvent The solvent is a liquid medium for dispersing the inorganic powder and imparting a viscosity (fluidity) suitable for gravure printing to the conductive paste. The solvent can also function as a vehicle that dissolves the above-mentioned (C) binder resin and / or (E) dispersant described later. Solvents are components that are typically lost by drying and firing. The solvent is a component that burns out when the conductive paste is dried and / or when the coating film is fired. The type of the solvent is not particularly limited, and among the conventionally known organic solvents used for this type of application, for example, one type may be used alone or depending on the type of the (C) binder resin and the like. Two or more types can be used in combination as appropriate. Examples of the solvent include an alcohol solvent having an -OH group, an ether solvent having an ether bond (R-OR'), and an ester having an ester bond (RC (= O) -OR'). Examples thereof include a system solvent, a hydrocarbon solvent composed of a carbon atom and a hydrogen atom, and the like.
 アルコール系溶剤およびエーテル系溶剤としては、例えば、ターピネオール、テキサノール、ジヒドロターピネオール、ベンジルアルコール、3-メトキシ-3-メチル-1-ブタノール、フェノキシエタノール、1-フェノキシ-2-プロパノール、イソボルネオール、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル(ブチルカルビトール)、プロピレングリコールモノブチルエーテル、ジプロピレングリコールメチル-n-プロピルエーテル等が挙げられる。エステル系溶剤としては、例えば、3-メトキシ-3-メチル-1-ブタノールアセテート、3-メトキシブチルアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールジアセテート、シクロヘキサノールアセテート、イソボルニルアセテート、カルビトールアセテート、エチルジグリコールアセテート、ブチルグリコールアセテート、ブチルジグリコールアセテート、ブチルセロソルブアセテート、ジエチレングリコールモノブチルエーテルアセタート(ブチルカルビトールアセテート)、ターピネオールアセテート、ジヒドロターピネオールアセテート等が挙げられる。炭化水素系溶剤としては、例えば、トルエン、キシレン等の芳香族系炭化水素溶剤;ノルマルパラフィン類、イソパラフィン類等のパラフィン系溶剤、単環ナフテン類、二環ナフテン類等のナフテン系溶剤、パラフィン/ナフテン混合系溶剤、ミネラルスピリット等の脂肪族系炭化水素溶剤が挙げられる。 Examples of alcohol-based solvents and ether-based solvents include tarpineol, texanol, dihydroterpineol, benzyl alcohol, 3-methoxy-3-methyl-1-butanol, phenoxyethanol, 1-phenoxy-2-propanol, isobornol, diethylene glycol, and diethylene glycol. Examples thereof include monoethyl ether, diethylene glycol monobutyl ether (butyl carbitol), propylene glycol monobutyl ether, dipropylene glycol methyl-n-propyl ether and the like. Examples of the ester solvent include 3-methoxy-3-methyl-1-butanol acetate, 3-methoxybutyl acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol diacetate, cyclohexanol acetate, and isobol. Nyl acetate, carbitol acetate, ethyl diglycol acetate, butyl glycol acetate, butyl diglycol acetate, butyl cellosolve acetate, diethylene glycol monobutyl ether acetate (butyl carbitol acetate), tarpineol acetate, dihydroterpineol acetate and the like can be mentioned. Examples of the hydrocarbon solvent include aromatic hydrocarbon solvents such as toluene and xylene; paraffin solvents such as normal paraffins and isoparaffins, naphthen solvents such as monocyclic naphthenes and bicyclic naphthenes, and paraffin / paraffin / Examples thereof include naphthen mixed solvents and aliphatic hydrocarbon solvents such as mineral spirits.
 特に限定されるものではないが、グリーンシートの上に導電性ペーストを付与する場合は、シートアタック現象(溶剤がグリーンシートを浸食する現象)を抑える観点等から、溶剤として、炭化水素系溶剤を含むことが好ましく、例えば、炭化水素系溶剤と、炭化水素系以外の溶剤、例えばアルコール系溶剤およびエステル系溶剤のうちの少なくとも1つと、を組合せて用いることが好適である。なかでも、炭化水素系溶剤がナフテン系溶剤を含むことが好ましく、炭化水素系溶剤がナフテン系溶剤を主成分として構成されていてもよい。炭化水素系溶剤の全体を100質量%としたときに、ナフテン系溶剤は、概ね50質量%以上、例えば60~80質量%を占めていてもよい。また、溶剤として炭化水素系溶剤と、炭化水素系以外の溶剤とを同時に含む場合、炭化水素系溶剤と、炭化水素系以外の溶剤との合計を100質量%としたときに、炭化水素系以外の溶剤の含有割合は、概ね10~95質量%、典型的には20~90質量%、例えば50~80質量%であってもよい。 Although not particularly limited, when a conductive paste is applied on the green sheet, a hydrocarbon solvent is used as the solvent from the viewpoint of suppressing a sheet attack phenomenon (a phenomenon in which the solvent erodes the green sheet). It is preferable to include, for example, a hydrocarbon solvent and a solvent other than the hydrocarbon solvent, for example, at least one of an alcohol solvent and an ester solvent are preferably used in combination. Among them, the hydrocarbon solvent preferably contains a naphthenic solvent, and the hydrocarbon solvent may be composed mainly of a naphthenic solvent. When the total amount of the hydrocarbon solvent is 100% by mass, the naphthenic solvent may occupy about 50% by mass or more, for example, 60 to 80% by mass. When a hydrocarbon solvent and a non-hydrocarbon solvent are simultaneously contained as the solvent, when the total of the hydrocarbon solvent and the non-hydrocarbon solvent is 100% by mass, the non-hydrocarbon solvent is used. The content of the solvent may be approximately 10 to 95% by mass, typically 20 to 90% by mass, for example 50 to 80% by mass.
 特に限定されるものではないが、炭化水素系以外の溶剤は、導電性ペーストの保存安定性やグラビア印刷時の作業性等を向上する観点から、沸点が概ね100℃以上、例えば200℃以上の高沸点溶剤を含むとよい。また、塗膜を迅速に乾燥させて生産性を向上する観点を考慮すると、沸点が概ね100~300℃、例えば200~250℃、好ましくは230℃以下の高沸点溶剤を主成分とするとよい。高沸点溶剤は、炭化水素系以外の溶剤の全体を100質量%としたときに、概ね50質量%以上、例えば90質量%以上を占めていてもよく、実質的に溶剤全体(95質量%以上)が高沸点溶剤から構成されていてもよい。 Although not particularly limited, solvents other than hydrocarbons have a boiling point of approximately 100 ° C. or higher, for example 200 ° C. or higher, from the viewpoint of improving storage stability of the conductive paste and workability during gravure printing. It may contain a high boiling point solvent. Further, from the viewpoint of rapidly drying the coating film to improve productivity, it is preferable to use a high boiling point solvent having a boiling point of about 100 to 300 ° C., for example, 200 to 250 ° C., preferably 230 ° C. or lower as a main component. The high boiling point solvent may occupy approximately 50% by mass or more, for example 90% by mass or more, when the total amount of the solvent other than the hydrocarbon solvent is 100% by mass, and substantially the entire solvent (95% by mass or more). ) May be composed of a high boiling point solvent.
 また、炭化水素系以外の溶剤は、導電性ペーストをグラビア印刷に適した性状に調整すると共に、シートアタック性をバランス良く両立する観点から、SP値が、概ね10.5(cal/cm0.5以下、例えば10(cal/cm0.5以下、好ましくは9.9(cal/cm0.5以下、例えば8~9.9(cal/cm0.5の溶剤を含むとよい。樹脂の溶解性の観点から、炭化水素系以外の溶剤全体のSP値は、概ね8(cal/cm0.5以上、例えば8.5(cal/cm0.5以上、9(cal/cm0.5以上であってもよい。また、シートアタック現象をより良く抑制する観点等から、炭化水素系以外の溶剤全体のSP値は、概ね9.8(cal/cm0.5以下、例えば9.7(cal/cm0.5以下であってもよい。 For solvents other than hydrocarbons, the SP value is approximately 10.5 (cal / cm 3 ) from the viewpoint of adjusting the conductive paste to properties suitable for gravure printing and achieving a well-balanced sheet attack property. 0.5 or less, for example 10 (cal / cm 3 ) 0.5 or less, preferably 9.9 (cal / cm 3 ) 0.5 or less, for example 8 to 9.9 (cal / cm 3 ) 0.5 It may contain a solvent. From the viewpoint of resin solubility, the SP value of all solvents other than hydrocarbon solvents is approximately 8 (cal / cm 3 ) 0.5 or more, for example 8.5 (cal / cm 3 ) 0.5 or more, 9 ( cal / cm 3 ) It may be 0.5 or more. Further, from the viewpoint of better suppressing the sheet attack phenomenon, the SP value of the entire solvent other than the hydrocarbon system is approximately 9.8 (cal / cm 3 ) 0.5 or less, for example, 9.7 (cal / cm 3). ) It may be 0.5 or less.
 炭化水素系以外の溶剤は、沸点および/またはSP値が相互に異なる第1溶剤と第2溶剤とを含んでもよい。一例として、バインダ樹脂の溶解性に優れた第1溶剤と、速乾性に優れた第2溶剤と、を含んでもよい。第1溶剤は、SP値が第2溶剤よりも高く、概ね10.0(cal/cm0.5以上、例えば10~10.5(cal/cm0.5であってもよい。また、第1溶剤は、沸点が、概ね200℃以上、例えば200~230℃であってもよい。第2溶剤は、沸点が第1溶剤と同等かそれよりも低く、概ね220℃以下、例えば140~215℃であってもよい。また、第2溶剤は、SP値が、概ね9.5(cal/cm0.5以下、例えば8.5~9.5(cal/cm0.5であってもよい。これにより、導電性ペーストにおける無機粉末の分散性およびバインダ樹脂の溶解性と、塗膜の乾燥性と、を高いレベルで兼ね備えることができる。第1溶剤の含有割合は、第1溶剤と第2溶剤との合計を100質量%としたときに、概ね10~95質量%、典型的には20~90質量%、例えば50~80質量%であってもよい。 The solvent other than the hydrocarbon solvent may contain a first solvent and a second solvent having different boiling points and / or SP values. As an example, a first solvent having excellent solubility of the binder resin and a second solvent having excellent quick-drying property may be contained. The first solvent has a higher SP value than the second solvent and may be approximately 10.0 (cal / cm 3 ) 0.5 or more, for example, 10 to 10.5 (cal / cm 3 ) 0.5. .. Further, the first solvent may have a boiling point of about 200 ° C. or higher, for example, 200 to 230 ° C. The boiling point of the second solvent is equal to or lower than that of the first solvent, and may be approximately 220 ° C. or lower, for example 140 to 215 ° C. Further, the second solvent may have an SP value of approximately 9.5 (cal / cm 3 ) 0.5 or less, for example, 8.5 to 9.5 (cal / cm 3 ) 0.5 . Thereby, the dispersibility of the inorganic powder in the conductive paste, the solubility of the binder resin, and the dryness of the coating film can be combined at a high level. The content ratio of the first solvent is approximately 10 to 95% by mass, typically 20 to 90% by mass, for example, 50 to 80% by mass, when the total of the first solvent and the second solvent is 100% by mass. It may be.
 特に限定されるものではないが、導電性ペーストの全体を100質量%としたときに、溶剤の含有割合は、概ね80質量%以下、典型的には10~70質量%、例えば30~60質量%であってもよい。上記範囲を満たすことで、導電性ペーストに適度な流動性を付与することができ、グラビア印刷時の作業性を向上することができる。また、セルフレベリング性を向上して、高速印刷時にも表面平滑性に優れた塗膜を安定的に形成することができる。 Although not particularly limited, when the total amount of the conductive paste is 100% by mass, the content ratio of the solvent is approximately 80% by mass or less, typically 10 to 70% by mass, for example, 30 to 60% by mass. May be%. By satisfying the above range, it is possible to impart appropriate fluidity to the conductive paste, and it is possible to improve workability during gravure printing. In addition, the self-leveling property can be improved, and a coating film having excellent surface smoothness can be stably formed even during high-speed printing.
(E)分散剤
 分散剤は、上記した無機粉末、すなわち(A)導電性粉末および(B)誘電体粉末を導電性ペースト中に均一に分散させて、これら成分の凝集を抑制するための両親媒性化合物である。分散剤は、上記した(D)溶剤に溶解され、ビヒクルとして機能しうる。このことにより、無機粉末を均一かつ安定に分散させることができる。
(E) Dispersant The dispersant is a parent for uniformly dispersing the above-mentioned inorganic powders, that is, (A) conductive powder and (B) dielectric powder in a conductive paste, and suppressing aggregation of these components. It is a medium compound. The dispersant can be dissolved in the solvent (D) described above and function as a vehicle. As a result, the inorganic powder can be uniformly and stably dispersed.
 ここに開示される導電性ペーストは、分散剤として、下記式(1):
Figure JPOXMLDOC01-appb-C000005
で表される構造部分を有するジカルボン酸系分散剤を含んでいる。式(1)において、A、Aは、それぞれ独立して、水素(H);ナトリウム(Na)、カリウム(K)等のアルカリ金属;または、マグネシウム(Mg)、カルシウム(Ca)等のアルカリ土類金属;である。なかでも、A、Aは、いずれも水素であるとよい。
The conductive paste disclosed herein can be used as a dispersant according to the following formula (1):
Figure JPOXMLDOC01-appb-C000005
It contains a dicarboxylic acid-based dispersant having a structural portion represented by. In the formula (1), A 1 and A 2 are independent of hydrogen (H); alkali metals such as sodium (Na) and potassium (K); or magnesium (Mg), calcium (Ca) and the like. Alkaline earth metal; Among them, both A 1 and A 2 are preferably hydrogen.
 式(1)の構造部分において、右から第2番目および第3番目の炭素原子には、それぞれカルボキシレート基(-C(=O)O)が結合している。すなわち、カルボキシレート基が隣り合う炭素原子にそれぞれ結合している。また、第3番目の炭素原子と隣り合う第4番目の炭素原子(一番左の炭素原子)には、置換基が結合していない。すなわち、-CHで表されている。詳細は明らかではないが、このような構造部分を有するジカルボン酸系分散剤を用いることによって、他のアニオン系分散剤(例えば、モノカルボン酸系の分散剤、上記式(1)の構造部分を有しないジカルボン酸系の分散剤、ポリカルボン酸系の分散剤、スルホン酸系分散剤、リン酸系分散剤等)や、アミン系分散剤を用いる場合に比べて、導電性ペースト中の無機粉末の均一分散性が、特異的に高められると考えられる。 In structural part of formula (1), the second and third carbon atoms from the right, respectively carboxylate group (-C (= O) O -) is attached. That is, the carboxylate group is bonded to each adjacent carbon atom. Further, no substituent is bonded to the fourth carbon atom (leftmost carbon atom) adjacent to the third carbon atom. That is, it is represented by -CH 2. Although the details are not clear, by using a dicarboxylic acid-based dispersant having such a structural portion, another anionic dispersant (for example, a monocarboxylic acid-based dispersant, the structural portion of the above formula (1)) can be obtained. Compared to the case of using a dicarboxylic acid-based dispersant, a polycarboxylic acid-based dispersant, a sulfonic acid-based dispersant, a phosphoric acid-based dispersant, etc.) or an amine-based dispersant, the inorganic powder in the conductive paste It is considered that the uniform dispersibility of the above is specifically enhanced.
 すなわち、2つのカルボキシレート基が同一分子内の近くにあることで、(A)導電性粉末および(B)誘電体粉末の表面に結合する確率が高まる。このため、分散剤が無機粉末の表面により多く吸着して、無機粒子が安定化していると考えられる。また、上記式(1)の構造部分を有する分散剤では、2つのカルボキシレート基の両方が無機粒子に吸着する場合と、片方が無機粒子に吸着し、他方が平衡反応で未吸着状態になっている場合とが考えられるが、確率的には後者が支配的と考えられる。したがって、例えば(B)誘電体粉末の方が(A)導電性粉末よりも微粒である場合に、ここに開示される分散剤は、未吸着のカルボキシレート基によって電荷を帯びた状態で、(B)誘電体粉末の表面に吸着しやすいと考えられる。そして、未吸着のカルボキシレート基が(A)導電性粉末と電気的相互作用することで、(A)導電性粉末と(B)誘電体粉末とが偏りなく均一に分散されるものと考えられる。 That is, when the two carboxylate groups are close to each other in the same molecule, the probability of binding to the surfaces of the (A) conductive powder and the (B) dielectric powder increases. Therefore, it is considered that the dispersant is more adsorbed on the surface of the inorganic powder and the inorganic particles are stabilized. Further, in the dispersant having the structural portion of the above formula (1), both of the two carboxylate groups are adsorbed on the inorganic particles, and one is adsorbed on the inorganic particles and the other is in an unadsorbed state by an equilibrium reaction. However, the latter is stochastically predominant. Thus, for example, when the (B) dielectric powder is finer than the (A) conductive powder, the dispersant disclosed herein is charged by unadsorbed carboxylate groups ( B) It is considered that it is easily adsorbed on the surface of the dielectric powder. Then, it is considered that the unadsorbed carboxylate group electrically interacts with the conductive powder (A) so that the conductive powder (A) and the dielectric powder (B) are uniformly and uniformly dispersed. ..
 分散剤の性状は特に限定されない。分散剤の分子量は、概ね100以上であってもよく、例えば150以上、200以上、230以上であってもよい。また、分散剤の分子量は、概ね2万以下、例えば約1万以下、5000以下、2000以下、1000以下、500以下であってもよい。分子量を所定値以上とすることで、上記した無機粉末の均一分散性を高める効果をより良く発揮することができる。また、分子量を所定値以下とすることで、ペースト粘度の上昇を好適に抑制することができる。分散剤は、分子量が1万以上である高分子化合物よりも、分子量が1万未満である低分子化合物であることが好ましい。これにより、上述の効果をより高いレベルで発揮することができる。 The properties of the dispersant are not particularly limited. The molecular weight of the dispersant may be approximately 100 or more, and may be, for example, 150 or more, 200 or more, or 230 or more. The molecular weight of the dispersant may be approximately 20,000 or less, for example, about 10,000 or less, 5000 or less, 2000 or less, 1000 or less, or 500 or less. By setting the molecular weight to a predetermined value or more, the effect of enhancing the uniform dispersibility of the above-mentioned inorganic powder can be better exhibited. Further, by setting the molecular weight to a predetermined value or less, an increase in paste viscosity can be suitably suppressed. The dispersant is preferably a low molecular weight compound having a molecular weight of less than 10,000 rather than a high molecular weight compound having a molecular weight of 10,000 or more. Thereby, the above-mentioned effect can be exhibited at a higher level.
 なお、本明細書において、単に「分子量」というときは、分子式に基づく各原子の原子量の総和から計算によって算出される値をいう。なお、化合物の分子式は、分子構造に応じた分析方法を適宜選択することにより特定することができる。分析方法の一例としては、赤外分光法(IR:Infrared Spectroscopy)、核磁気共鳴法(NMR:Nuclear Magnetic Resonance)、質量分析法(MS:Mass Spectrometry)、ガスクロマトグラフィー-質量分析法(GC-MS:Gas Chromatography - Mass spectrometry)、ガスクロマトグラフィー法(GC:Gas Chromatography)、ゲル浸透クロマトグラフィー法(GPC:Gel Permeation Chromatography)、CHN元素分析、等が挙げられる。 In the present specification, the term "molecular weight" simply means a value calculated from the sum of the atomic weights of each atom based on the molecular formula. The molecular formula of the compound can be specified by appropriately selecting an analysis method according to the molecular structure. Examples of analysis methods include infrared spectroscopy (IR: Infrared Spectroscopy), nuclear magnetic resonance (NMR: Nuclear Magnetic Resonance), mass spectrometry (MS: Mass Spectrometry), and gas chromatography-mass spectrometry (GC-). MS: Gas Chromatography-Mass spectrometry), gas chromatography (GC: Gas Chromatography), gel permeation chromatography (GPC: Gel Permeation Chromatography), CHN element spectrometry, and the like can be mentioned.
 分散剤は、式(1)の構造部分を有すること以外、特に限定されず、この種の用途に使用されている従来公知の両親媒性化合物のなかから、1種類を単独で、または2種類以上を適宜組み合わせて用いることができる。分散剤の一例としては、例えば、下記式(2):
Figure JPOXMLDOC01-appb-C000006
;で表される化合物が挙げられる。式(2)において、A、Aは、上記式(1)と同様である。また、Rは、炭素数3~30の飽和または不飽和の脂肪族基である。炭素数は、例えば4以上、5以上、6以上、さらには7以上であってもよく、例えば29以下、28以下、27以下、さらには25以下であってもよい。脂肪族基は、直鎖状であってもよく、分岐を有する分岐鎖状であってもよい。脂肪族基としては、アルキル基、アルケニル基、アルキニル基等が挙げられる。脂肪族基は、ビニレン基(-CH=CH-)を含んでいてもよい。
The dispersant is not particularly limited except that it has a structural portion of the formula (1), and one of the conventionally known amphipathic compounds used for this kind of application may be used alone or in combination of two. The above can be used in combination as appropriate. As an example of the dispersant, for example, the following formula (2):
Figure JPOXMLDOC01-appb-C000006
Examples thereof include compounds represented by ;. In the formula (2), A 1 and A 2 are the same as those in the above formula (1). In addition, R is a saturated or unsaturated aliphatic group having 3 to 30 carbon atoms. The number of carbon atoms may be, for example, 4 or more, 5 or more, 6 or more, further 7 or more, and for example, 29 or less, 28 or less, 27 or less, or even 25 or less. The aliphatic group may be linear or branched chain having branches. Examples of the aliphatic group include an alkyl group, an alkenyl group, an alkynyl group and the like. The aliphatic group may contain a vinylene group (-CH = CH-).
 上記式(2)で表される分散剤の具体例として、例えば、下記式(3)で表されるオクタテニルブタン二酸(C1220:分子量=228)、下記式(4)で表されるオクタデセニルブタン二酸(C2240:分子量=368)、下記式(5)で表されるヘキサコセニルブタン二酸(C3056:分子量=480)等が挙げられる。なお、下記式(3)では、式(2)R部分が炭素数7の直鎖状のアルケニル基であり、下記式(4)では、式(2)R部分が炭素数17の直鎖状のアルケニル基であり、下記式(5)では、式(2)R部分が炭素数25の直鎖状のアルケニル基である。 Specific examples of the dispersing agent represented by the above formula (2), for example, octa polybutenyl butane diacid represented by the following formula (3) (C 12 H 20 O 4: molecular weight = 228), the following equation (4) in octadecenyl Seni butane diacid represented (C 22 H 40 O 4: molecular weight = 368), the following equation hexamethylene co Seni butane diacid represented by (5) (C 30 H 56 O 4: molecular weight = 480) And so on. In the following formula (3), the R portion of the formula (2) is a linear alkenyl group having 7 carbon atoms, and in the following formula (4), the R portion of the formula (2) is a linear chain having 17 carbon atoms. In the following formula (5), the R moiety of the formula (2) is a linear alkenyl group having 25 carbon atoms.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 分散剤は、上記した式(1)の構造部分を有する化合物を主成分とするとよい。式(1)の構造部分を有する化合物は、分散剤の全体を100質量%としたときに、概ね50質量%以上を占めているとよく、実質的に分散剤全体(95質量%以上)が式(1)の構造部分を有する化合物から構成されているとよい。ただし、分散剤は、ここに開示される技術の効果を著しく低下させない限りにおいて、他の化合物を補助的に含んでもよい。補助的に含まれうる分散剤の一例として、モノカルボン酸系の分散剤、上記式(1)の構造部分を有しないジカルボン酸系の分散剤、ポリカルボン酸系の分散剤、スルホン酸系分散剤、リン酸系分散剤等のアニオン系分散剤や、アミン系の分散剤が挙げられる。これら補助的な分散剤は、分散剤全体の概ね50質量%以下、30質量%以下、10質量%以下、例えば5質量%以下に抑えるとよい。 The dispersant may be mainly composed of a compound having the structural portion of the above formula (1). The compound having the structural portion of the formula (1) may occupy approximately 50% by mass or more when the total amount of the dispersant is 100% by mass, and substantially the entire dispersant (95% by mass or more) is used. It is preferable that it is composed of a compound having a structural portion of the formula (1). However, the dispersant may supplementally contain other compounds as long as the effects of the techniques disclosed herein are not significantly reduced. Examples of auxiliary dispersants include monocarboxylic acid-based dispersants, dicarboxylic acid-based dispersants that do not have the structural portion of the above formula (1), polycarboxylic acid-based dispersants, and sulfonic acid-based dispersants. Examples thereof include anionic dispersants such as agents and phosphoric acid-based dispersants, and amine-based dispersants. These auxiliary dispersants may be suppressed to approximately 50% by mass or less, 30% by mass or less, 10% by mass or less, for example, 5% by mass or less of the total dispersant.
 特に限定されるものではないが、導電性ペーストの全体を100質量%としたときに、分散剤の含有割合は、概ね0.01~5質量%、典型的には0.05~3質量%、例えば0.1~2質量%、好ましくは0.5質量%以下、例えば0.3質量%以下、0.2質量%以下であってもよい。分散剤の含有割合を所定値以上とすることで、微細な無機粉末に対して分散剤を十分に作用させることができる。また、分散剤の含有割合を所定値以下とすることで、電気伝導性や緻密性に優れた電極層を好適に実現することができる。 Although not particularly limited, the content ratio of the dispersant is approximately 0.01 to 5% by mass, typically 0.05 to 3% by mass, assuming that the entire conductive paste is 100% by mass. For example, it may be 0.1 to 2% by mass, preferably 0.5% by mass or less, for example, 0.3% by mass or less, 0.2% by mass or less. By setting the content ratio of the dispersant to a predetermined value or more, the dispersant can be sufficiently acted on the fine inorganic powder. Further, by setting the content ratio of the dispersant to a predetermined value or less, an electrode layer having excellent electrical conductivity and denseness can be suitably realized.
(F)その他添加剤
 ここに開示される導電性ペーストは、上記4成分で構成されていてもよく、本願発明の本質を著しく損なわない範囲において、一般的な導電性ペーストに使用しうることが知られている各種の添加剤を含むことができる。このような添加剤の一例としては、例えば、粘度調整剤、増粘剤、消泡剤、可塑剤、レベリング剤、pH調整剤、安定剤、酸化防止剤、防腐剤、着色剤(顔料、染料等)等が挙げられる。これらの添加剤は、必要に応じて、1種類を単独で、または2種類以上を適宜組み合わせて用いることができる。
(F) Other Additives The conductive paste disclosed here may be composed of the above four components, and can be used for a general conductive paste as long as the essence of the present invention is not significantly impaired. Various known additives can be included. Examples of such additives include viscosity regulators, thickeners, defoamers, plasticizers, leveling agents, pH regulators, stabilizers, antioxidants, preservatives, colorants (pigments, dyes). Etc.) etc. These additives may be used alone or in combination of two or more, if necessary.
 添加剤は、添加の目的等に応じて適切な割合で含有することができる。特に限定されるものではないが、導電性ペーストの全体を100質量%としたときに、添加剤の含有割合は、概ね5質量%以下、典型的には3質量%以下、例えば1質量%以下に抑えるとよい。これにより、電気伝導性や緻密性に優れた電極層を好適に実現することができる。 The additive can be contained in an appropriate ratio according to the purpose of addition and the like. Although not particularly limited, when the total amount of the conductive paste is 100% by mass, the content ratio of the additive is approximately 5% by mass or less, typically 3% by mass or less, for example, 1% by mass or less. It is good to suppress it to. As a result, an electrode layer having excellent electrical conductivity and denseness can be suitably realized.
(G)導電性ペーストの性状
 ここに開示される導電ペーストは、印刷速度の速いグラビア印刷用として低粘度に調整されている。具体的には、25℃において、せん断速度40s-1における粘度V40が、5Pa・s以下に調整されている。印刷速度を迅速化して生産性を高める観点からは、粘度V40が、例えば4.5Pa・s以下、4Pa・s以下、3.5Pa・s以下、3Pa・s以下に調整されていてもよい。印刷ダレ等を抑制して作業性を向上する観点からは、粘度V40が、例えば0.1Pa・s以上、0.2Pa・s以上に調整されていてもよい。なお、導電性ペーストの粘度は、例えば、バインダ樹脂の種類や含有割合、分散剤の種類や含有割合、溶剤の種類や含有割合、その他添加剤(例えば粘度調整剤、増粘剤)の添加等によって調整することができる。
(G) Properties of Conductive Paste The conductive paste disclosed here is adjusted to have a low viscosity for gravure printing having a high printing speed. Specifically, at 25 ° C., the viscosity V 40 at a shear rate of 40 s -1 is adjusted to 5 Pa · s or less. From the viewpoint of increasing the printing speed and increasing the productivity, the viscosity V 40 may be adjusted to, for example, 4.5 Pa · s or less, 4 Pa · s or less, 3.5 Pa · s or less, 3 Pa · s or less. .. From the viewpoint of suppressing print sagging and improving workability, the viscosity V 40 may be adjusted to, for example, 0.1 Pa · s or more and 0.2 Pa · s or more. The viscosity of the conductive paste is determined by, for example, the type and content ratio of the binder resin, the type and content ratio of the dispersant, the type and content ratio of the solvent, and the addition of other additives (for example, viscosity modifiers and thickeners). Can be adjusted by.
 特に限定されるものではないが、25℃において、せん断速度4s-1における粘度Vは、概ね20Pa・s以下、18Pa・s以下、15Pa・s以下、13Pa・s以下に調整されていてもよい。粘度Vは、例えば0.1Pa・s以上、0.2Pa・s以上、0.4Pa・s以上に調整されていてもよい。また、粘度V40に対する粘度Vの比(V/V40)は、概ね7以下、典型的には6以下、例えば5.5以下、5以下、4.5以下であってもよい。これにより、導電性ペーストの保存安定性やハンドリング性を向上することができる。 Although not particularly limited, at 25 ° C., the viscosity V 4 at a shear rate of 4s -1 is approximately 20 Pa · s or less, 18 Pa · s or less, 15 Pa · s or less, it is adjusted to below 13 Pa · s Good. The viscosity V 4 may be adjusted to, for example, 0.1 Pa · s or more, 0.2 Pa · s or more, and 0.4 Pa · s or more. The ratio of viscosity V 4 to viscosity V 40 (V 4 / V 40 ) may be approximately 7 or less, typically 6 or less, for example 5.5 or less, 5 or less, 4.5 or less. As a result, the storage stability and handleability of the conductive paste can be improved.
 このような導電ペーストは、例えば、(C)バインダ樹脂と(E)分散剤とを(D)溶剤中に分散または溶解させたビヒクルを調製し、そこに(A)導電性粉末と(B)誘電体粉末とを加えたのち、撹拌混合することによって好適に調製することができる。導電ペーストの調製に際しては、従来公知の種々の撹拌装置や分散装置、例えば、ボールミル、ビーズミル、ロールミル、マグネチックスターラー、プラネタリーミキサー、ディスパー、高圧分散機、乳鉢等を適宜用いることができる。 For such a conductive paste, for example, a vehicle in which (C) a binder resin and (E) a dispersant are dispersed or dissolved in (D) a solvent is prepared, and (A) a conductive powder and (B) are prepared therein. It can be suitably prepared by adding the dielectric powder and then stirring and mixing. In preparing the conductive paste, various conventionally known stirring devices and dispersing devices such as a ball mill, a bead mill, a roll mill, a magnetic stirrer, a planetary mixer, a dispenser, a high-pressure disperser, and a mortar can be appropriately used.
(H)塗膜の性状
 ここに開示される導電ペーストを用いてなる塗膜は、従来よりも表面の凹凸が小さく抑えられうる。無機粉末の粒径等にもよるが、塗膜の最大粗さRmaxは、例えば0.7μm以下、好ましくは0.65μm以下、0.6μm以下でありうる。また、ここに開示される導電ペーストを用いてなる塗膜は、従来よりも無機粉末の分散性に優れ、均質な組成を有しうる。無機粉末の粒径等にもよるが、塗膜における無機粉末の分散度指数は、例えば80%以上、好ましくは83%以上、89%以上でありうる。なお、最大粗さRmaxの測定方法および分散度指数の算出方法については、後述する実施例で述べる。
(H) Properties of the coating film The coating film made of the conductive paste disclosed here can have less surface irregularities than the conventional ones. Although it depends on the particle size of the inorganic powder and the like, the maximum roughness Rmax of the coating film can be, for example, 0.7 μm or less, preferably 0.65 μm or less, 0.6 μm or less. Further, the coating film made of the conductive paste disclosed herein has better dispersibility of the inorganic powder than the conventional one and can have a homogeneous composition. Although it depends on the particle size of the inorganic powder and the like, the dispersity index of the inorganic powder in the coating film can be, for example, 80% or more, preferably 83% or more, 89% or more. The method for measuring the maximum roughness Rmax and the method for calculating the dispersion index will be described in Examples described later.
[導電性ペーストの用途]
 ここに開示される導電性ペーストは、任意の基材上にグラビア印刷法で付与して乾燥することで塗膜を形成し、これを焼成することによって電極層を形成するために用いることができる。なかでも、電極層の表面平滑性や均質性が求められる用途において好ましく用いることができる。代表的な使用用途としては、各辺が5mm以下、例えば1mm以下である小型の積層セラミック電子部品の内部電極層の形成が挙げられる。とりわけ、誘電体層の厚みが2μm以下のレベルにまで薄層化された小型・大容量のMLCCの内部電極層の形成に好適に用いることができる。
[Use of conductive paste]
The conductive paste disclosed herein can be used to form a coating film by applying it on an arbitrary substrate by a gravure printing method and drying it, and then firing the coating film to form an electrode layer. .. Among them, it can be preferably used in applications where surface smoothness and homogeneity of the electrode layer are required. Typical uses include the formation of an internal electrode layer of a small laminated ceramic electronic component having a side of 5 mm or less, for example, 1 mm or less. In particular, it can be suitably used for forming an internal electrode layer of a small-sized and large-capacity MLCC in which the thickness of the dielectric layer is thinned to a level of 2 μm or less.
 なお、本明細書において「セラミック電子部品」とは、結晶質のセラミック基材および/または非晶質のセラミック基材を有する電子部品一般を包含する。例えば、セラミック製の基材を含むセラミックコンデンサ、チップインダクタ、高周波フィルター、高温焼成積層セラミック基材(High Temperature Co-fired Ceramics:HTCC)基材、低温焼成積層セラミック(Low Temperature Co-fired Ceramics:LTCC)基材等は、ここでいう「セラミック電子部品」に包含される典型例である。 In the present specification, the "ceramic electronic component" includes a general electronic component having a crystalline ceramic base material and / or an amorphous ceramic base material. For example, ceramic capacitors including ceramic substrates, chip inductors, high-frequency filters, high-temperature co-fired ceramics (HTCC) substrates, low-temperature co-fired ceramics (LTCC). ) The base material and the like are typical examples included in the "ceramic electronic parts" referred to here.
 セラミック基材を構成するセラミック材料としては、例えば、チタン酸バリウム(BaTiO)、チタン酸ストロンチウム(SrTiO)、チタン酸カルシウム(CaTiO)、ジルコン酸カルシウム(CaZrO)、ジルコン酸ストロンチウム(SrZrO)、酸化ジルコニウム(ジルコニア:ZrO)、酸化マグネシウム(マグネシア:MgO)、酸化アルミニウム(アルミナ:Al)、二酸化ケイ素(シリカ:SiO)、酸化亜鉛(ZnO)、酸化チタン(チタニア:TiO)、酸化セリウム(セリア:CeO)、酸化イットリウム(イットリア:Y)、酸化ガドリニウム(Gd)等の酸化物系材料;コーディエライト(2MgO・2Al・5SiO)、ムライト(3Al・2SiO)、フォルステライト(2MgO・SiO)、ステアタイト(MgO・SiO)、サイアロン(Si-AlN-Al)、ジルコン(ZrO・SiO)、フェライト(MO・Fe)等の複合酸化物系材料;窒化ケイ素(シリコンナイトライド:Si)、窒化アルミニウム(アルミナイトライド:AlN)、窒化ホウ素(ボロンナイトライド:BN)等の窒化物系材料;炭化ケイ素(シリコンカーバイド:SiC)、炭化ホウ素(ボロンカーバイド:BC)等の炭化物系材料;ハイドロキシアパタイト等の水酸化物系材料;等が挙げられる。これらは1種類を単独で含んでもよいし、2種類以上を混合した混合物、あるいは2種類以上を複合化した複合体として、含んでもよい。 Examples of the ceramic material constituting the ceramic substrate include barium titanate (BaTIO 3 ), strontium titanate (SrTIO 3 ), calcium titanate (CaTIO 3 ), calcium zirconate (CaZrO 3 ), and strontium zirconate (SrZrO). 3 ), Zirconium oxide (Zirconia: ZrO 2 ), Magnesium oxide (Magnesia: MgO), Aluminum oxide (Alumina: Al 2 O 3 ), Silicon dioxide (Silica: SiO 2 ), Zinc oxide (ZnO), Titanium oxide (Titania) : TiO 2 ), cerium oxide (Celia: CeO 2 ), Ittrium oxide (Itria: Y 2 O 3 ), gadolinium oxide (Gd 2 O 3 ) and other oxide-based materials; Cordierite ( 2 MgO ・ 2Al 2 O 3) · 5SiO 2), mullite (3Al 2 O 3 · 2SiO 2 ), forsterite (2MgO · SiO 2), steatite (MgO · SiO 2), sialon (Si 3 N 4 -AlN-Al 2 O 3), lead zirconate Composite oxide-based materials such as (ZrO 2 · SiO 2 ) and ferrite (M 2 O · Fe 2 O 3 ); silicon nitride (silicon nitride: Si 3 N 4 ), aluminum nitride (aluminum nitride: AlN), boron nitride hydroxide-based material hydroxyapatite and the like;:;:: (B 4 C , boron carbide) carbide-based material such as (boron nitride BN) nitride material such as silicon carbide (silicon carbide SiC), boron carbide ; Etc. can be mentioned. These may be contained alone, as a mixture of two or more types, or as a composite of two or more types.
[積層セラミックコンデンサ]
 図1は、積層セラミックコンデンサ(MLCC)1の構成を模式的に示す断面図である。MLCC1は、多数の誘電体層20と内部電極層30とが、交互にかつ一体的に積層されて構成された、チップタイプのコンデンサである。誘電体層20と内部電極層30とからなる積層チップ10の側面には、一対の外部電極40が設けられている。一例として、内部電極層30は、積層順で交互に異なる外部電極40に接続される。このことにより、誘電体層20とこれを挟む一対の内部電極層30とからなるコンデンサ構造が並列に接続され、小型・大容量のMLCC1が構築される。MLCC1の誘電体層20は、例えば誘電体材料により構成されている。内部電極層30は、ここに開示される導電性ペーストの焼成体によって構成されている。このようなMLCC1は、例えば、以下の手順で製造することができる。
[Multilayer ceramic capacitor]
FIG. 1 is a cross-sectional view schematically showing the configuration of a multilayer ceramic capacitor (MLCC) 1. The MLCC1 is a chip-type capacitor in which a large number of dielectric layers 20 and internal electrode layers 30 are alternately and integrally laminated. A pair of external electrodes 40 are provided on the side surface of the laminated chip 10 composed of the dielectric layer 20 and the internal electrode layer 30. As an example, the internal electrode layer 30 is connected to external electrodes 40 which are alternately different in the stacking order. As a result, the capacitor structure composed of the dielectric layer 20 and the pair of internal electrode layers 30 sandwiching the dielectric layer 20 is connected in parallel, and a small-sized and large-capacity MLCC1 is constructed. The dielectric layer 20 of the MLCC1 is made of, for example, a dielectric material. The internal electrode layer 30 is composed of a fired body of the conductive paste disclosed herein. Such MLCC1 can be produced, for example, by the following procedure.
 図2は、未焼成積層体10a(言い換えれば、未焼成の積層チップ10)の構成を模式的に示す断面図である。MLCC1の製造に際しては、まず、基材としての誘電体グリーンシートを用意する。ここでは、例えば、誘電体材料としてのセラミック粉末と、バインダ樹脂と、溶剤等とを混合して、誘電体層形成用のペーストを調製する。次に、調製したペーストをドクターブレード法等によってキャリアシート上に薄層状に付与することで、未焼成の誘電体グリーンシート20aを用意する。次に、ここに開示される導電性ペーストを用意する。そして、誘電体グリーンシート20a上に、用意した導電性ペーストを、所定のパターンで、所望の厚み(例えば、1μm以下)になるように付与して、塗膜30aを形成する。ここに開示される導電性ペーストによれば、無機粉末の分散性が良好で、表面平滑性に優れ、かつ誘電体グリーンシートとの密着性が良好な塗膜30aを安定して形成することができる。 FIG. 2 is a cross-sectional view schematically showing the configuration of the unfired laminated body 10a (in other words, the unfired laminated chip 10). In the production of MLCC1, first, a dielectric green sheet as a base material is prepared. Here, for example, a ceramic powder as a dielectric material, a binder resin, a solvent, or the like is mixed to prepare a paste for forming a dielectric layer. Next, the unfired dielectric green sheet 20a is prepared by applying the prepared paste in a thin layer on the carrier sheet by a doctor blade method or the like. Next, the conductive paste disclosed here is prepared. Then, the prepared conductive paste is applied onto the dielectric green sheet 20a in a predetermined pattern so as to have a desired thickness (for example, 1 μm or less) to form the coating film 30a. According to the conductive paste disclosed herein, the coating film 30a having good dispersibility of the inorganic powder, excellent surface smoothness, and good adhesion to the dielectric green sheet can be stably formed. it can.
 次に、用意した塗膜30a付きの誘電体グリーンシート20aを、複数枚(例えば、数百~数千枚)積層して、圧着する。これにより、積層圧着体を作製する。積層圧着体は、必要に応じてチップ形状に切断する。塗膜30aは、表面の凹凸が小さいことから、積層したり圧着したりしても、積層構造の歪みが生じにくい。また、塗膜30aは、誘電体グリーンシート20aとの密着性が良好であることから、積層したり圧着したり切断したりしても、塗膜30aの割れや剥がれ等の問題が生じにくい。これにより、未焼成積層体10aを安定して得ることができる。 Next, a plurality of (for example, several hundred to several thousand) dielectric green sheets 20a with the prepared coating film 30a are laminated and pressure-bonded. As a result, a laminated pressure-bonded body is produced. The laminated pressure-bonded body is cut into a chip shape as needed. Since the surface unevenness of the coating film 30a is small, distortion of the laminated structure is unlikely to occur even when the coating film 30a is laminated or crimped. Further, since the coating film 30a has good adhesion to the dielectric green sheet 20a, problems such as cracking and peeling of the coating film 30a are unlikely to occur even if the coating film 30a is laminated, crimped, or cut. Thereby, the unfired laminated body 10a can be stably obtained.
 次に、未焼成積層体10aを適当な加熱条件(例えば、窒素水素含有雰囲気中、1000~1300℃程度の温度)で焼成する。これにより、誘電体グリーンシート20aは焼成されて、誘電体層20(図1参照)となる。また、塗膜30aは、焼成されて内部電極層30(図1参照)となる。このように、誘電体層20と内部電極層30とは一体的に焼結され、積層チップ10を得ることができる。ここに開示される技術によれば、内部電極層30を電気的に連続でかつ均質なものとして形成することができる。その後、積層チップ10の側面に外部電極材料を塗布して焼き付けることにより、外部電極40を形成する。以上のようにして、ショート不良等の不具合が生じにくい高品質なMLCC1を製造することができる。 Next, the unfired laminate 10a is fired under appropriate heating conditions (for example, in a nitrogen-hydrogen-containing atmosphere, at a temperature of about 1000 to 1300 ° C.). As a result, the dielectric green sheet 20a is fired to form the dielectric layer 20 (see FIG. 1). Further, the coating film 30a is fired to become an internal electrode layer 30 (see FIG. 1). In this way, the dielectric layer 20 and the internal electrode layer 30 are integrally sintered, and the laminated chip 10 can be obtained. According to the technique disclosed herein, the internal electrode layer 30 can be formed as electrically continuous and homogeneous. Then, the external electrode material is applied to the side surface of the laminated chip 10 and baked to form the external electrode 40. As described above, it is possible to manufacture a high-quality MLCC1 in which defects such as short-circuit defects are unlikely to occur.
 以下、本発明に関するいくつかの実施例を説明するが、本発明を係る実施例に示すものに限定することを意図したものではない。 Hereinafter, some examples of the present invention will be described, but the present invention is not intended to be limited to those shown in the examples.
<試験例I>
[導電性ペーストの調製]
 本試験例では、(A)導電性粉末と、(B)誘電体粉末と、(C)バインダ樹脂と、(D)溶剤と、(E)分散剤と、を撹拌混合することにより、(E)分散剤の種類のみを異ならせた導電性ペースト(比較例1~9、例1~3)を調製した。
<Test Example I>
[Preparation of conductive paste]
In this test example, (E) is obtained by stirring and mixing (A) a conductive powder, (B) a dielectric powder, (C) a binder resin, (D) a solvent, and (E) a dispersant. ) Conductive pastes (Comparative Examples 1 to 9, Examples 1 to 3) in which only the types of dispersants were different were prepared.
 (A)導電性粉末としては、平均粒子径が0.2μmのニッケル粉末(Ni)を、導電性ペースト全体に対して50質量%の割合となるように用いた。
 (B)誘電体粉末としては、平均粒子径が50nmのチタン酸バリウム粉末(BT)を、ニッケル粉末100質量部に対して15質量部の割合となるように用いた。
 (C)バインダ樹脂としては、エチルセルロース(EC)と、ポリビニルブチラール(PVB、重量平均分子量(Mw):8.5万)とを、混合して用いた。なお、比較例1,2では、高分子量のエチルセルロースを一部使用することで、高粘度に調整した。ECは、ニッケル粉末100質量部に対して2質量部の割合となるように用い、PVBは、ニッケル粉末100質量部に対して3質量部の割合となるように用いた。
 (D)溶剤としては、炭化水素系溶剤(ナフテン系溶剤)と、炭化水素系以外の溶剤である第1溶剤(ジヒドロターピネオール)および第2溶剤(3-メトキシ-3-メチル-1-ブタノールアセテート)とを、第1溶剤:第2溶剤:炭化水素系溶剤=45:30:25の質量比率で混合して用い、(A)導電性粉末、(B)誘電体粉末、(C)バインダ樹脂、(E)分散剤を差し引いた残部を、導電性ペースト中の(D)溶剤の割合とした。
 
As the conductive powder, nickel powder (Ni) having an average particle diameter of 0.2 μm was used so as to have a ratio of 50% by mass with respect to the entire conductive paste.
As the dielectric powder, barium titanate powder (BT) having an average particle diameter of 50 nm was used at a ratio of 15 parts by mass with respect to 100 parts by mass of nickel powder.
As the binder resin (C), ethyl cellulose (EC) and polyvinyl butyral (PVB, weight average molecular weight (Mw): 85,000) were mixed and used. In Comparative Examples 1 and 2, the viscosity was adjusted to high by using a part of high molecular weight ethyl cellulose. EC was used so as to have a ratio of 2 parts by mass with respect to 100 parts by mass of nickel powder, and PVB was used so as to have a ratio of 3 parts by mass with respect to 100 parts by mass of nickel powder.
As the solvent (D), a hydrocarbon solvent (naphthenic solvent), a first solvent (dihydroterpineol) which is a solvent other than the hydrocarbon solvent, and a second solvent (3-methoxy-3-methyl-1-butanol acetate) ) Is mixed and used in a mass ratio of 1st solvent: 2nd solvent: hydrocarbon solvent = 45:30:25, (A) conductive powder, (B) dielectric powder, (C) binder resin. , (E) The balance after subtracting the dispersant was used as the ratio of the solvent (D) in the conductive paste.
 (E)分散剤としては、それぞれ表1に示すものを、ペースト全体に対して0.2質量%の割合となるように用いた。なお、比較例4で使用した「くし型カルボン酸」は、ヒドロキシステアリン酸の重合体であり、比較例5~8で使用した「N-オレオイルサルコシン」、「マロン酸」、「クエン酸」、「オレイン酸」の構造式は、それぞれ、下記式(6)、式(7)、式(8)、式(9)の通りである。 As the dispersant (E), those shown in Table 1 were used so as to have a ratio of 0.2% by mass with respect to the entire paste. The "comb-shaped carboxylic acid" used in Comparative Example 4 is a polymer of hydroxystearic acid, and "N-oleic sarcosine", "malonic acid", and "citric acid" used in Comparative Examples 5 to 8. , The structural formulas of "oleic acid" are as shown in the following formulas (6), (7), (8) and (9), respectively.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[ペースト粘度の測定]
 HAAKE社製の回転振動型レオメーターMARS IIIを用いて、上記導電性ペーストの粘度を測定した。測定条件は以下の通りである。せん断速度40s-1のときの粘度V40(Pa・s)、および、せん断速度4s-1のときの粘度V(Pa・s)を、表1の「粘度」の欄に示す。また、粘度V40に対する粘度Vの比(V/V40)を、表1の「粘度比」の欄に示す。
  測定モード:せん断速度依存性測定
  センサー :コーンプレート(φ20mm、角度1°)
  測定温度 :25℃
  ギャップ :0.052mm
  せん断速度:10000~0.01s-1
  測定時間 :3分
[Measurement of paste viscosity]
The viscosity of the conductive paste was measured using a rotary vibration rheometer MARS III manufactured by HAAKE. The measurement conditions are as follows. The viscosity V 40 at a shear rate of 40s -1 (Pa · s), and the viscosity V 4 at a shear rate of 4s -1 a (Pa · s), shown in the column "Viscosity" of Table 1. The ratio of viscosity V 4 to viscosity V 40 (V 4 / V 40 ) is shown in the “Viscosity ratio” column of Table 1.
Measurement mode: Shear velocity dependence measurement Sensor: Cone plate (φ20 mm, angle 1 °)
Measurement temperature: 25 ° C
Gap: 0.052 mm
Shear velocity: 10000-0.01s -1
Measurement time: 3 minutes
[分散度指数の評価]
 以下の手順で塗膜を形成し、塗膜における無機粉末(ここでは導電性粉末)の分散性を評価した。具体的には、まず、各例の導電性ペーストを、アプリケーターを用いてPET基材上に約250μmの厚みで付与し、110℃で約15分間乾燥させることで塗膜(約50μm)を形成した。そしてこの塗膜をPET基材側の面からSEM観察して、SEM観察画像取得した。なお、観察時の加速電圧は20kV、観察倍率は1万倍とした。図3は、SEM観察画像の一例であり、図3(A)は比較例3、図3(B)は比較例9のものである。
[Evaluation of dispersion index]
A coating film was formed by the following procedure, and the dispersibility of the inorganic powder (here, the conductive powder) in the coating film was evaluated. Specifically, first, the conductive paste of each example is applied onto a PET substrate with a thickness of about 250 μm using an applicator, and dried at 110 ° C. for about 15 minutes to form a coating film (about 50 μm). did. Then, this coating film was SEM-observed from the surface on the PET substrate side, and an SEM observation image was acquired. The acceleration voltage at the time of observation was 20 kV, and the observation magnification was 10,000 times. FIG. 3 is an example of an SEM observation image, FIG. 3 (A) is for Comparative Example 3, and FIG. 3 (B) is for Comparative Example 9.
 次に、得られたSEM観察画像に基づき、従来公知の分散性評価方法(例えば、日本国特許出願公開2015-7542号公報を参照)に従って、導電性粉末の分散度指数を算出した。すなわち、まず、SEM観察画像を予め定められた閾値で2値化し、評価用画像を生成した。図4は、分散度指数の算出方法を説明する概念図である。次に、評価用画像を、所定の分割数になるまで、均等なサイズに区画し、区画サイズ毎に、評価画像変動係数CVbと完全分離時変動係数CVaとを算出した。なお、評価画像変動係数CVbは、対象物(例えば、導電性粉末を表す二値化後の白色部分)の面積値xと標準偏差σとに基づいて算出した。また、完全分離時変動係数CVaは、対象物と対象物以外の非対象物とが完全に分離されたと仮定した場合の対象物の面積値に基づいて算出した。また、ここでは評価画像変動係数CVbが完全分離時変動係数CVaと同じ数値になるまで、評価用画像を分割した。また、区画サイズ毎に、対象物と対象物以外の非対象物とが完全に混合されたと仮定した場合の対象物の面積値に基づいて、完全混合時変動係数CVcを算出した。 Next, based on the obtained SEM observation image, the dispersity index of the conductive powder was calculated according to a conventionally known dispersibility evaluation method (see, for example, Japanese Patent Application Publication No. 2015-7542). That is, first, the SEM observation image was binarized with a predetermined threshold value to generate an evaluation image. FIG. 4 is a conceptual diagram illustrating a method of calculating the dispersion index. Next, the evaluation image was divided into equal sizes until the number of divisions reached a predetermined number, and the evaluation image variation coefficient CVb and the complete separation variation coefficient CVa were calculated for each partition size. The evaluation image coefficient of variation CVb was calculated based on the area value x and the standard deviation σ of the object (for example, the white portion after binarization representing the conductive powder). Further, the coefficient of variation CVa at the time of complete separation was calculated based on the area value of the object assuming that the object and the non-object other than the object were completely separated. Further, here, the evaluation image was divided until the evaluation image variation coefficient CVb became the same value as the variation coefficient CVa at the time of complete separation. In addition, the coefficient of variation CVc at the time of complete mixing was calculated based on the area value of the object assuming that the object and the non-object other than the object were completely mixed for each section size.
 次に、区画サイズと評価画像変動係数CVbとを二次元座標上にプロットし、隣接する区画サイズ間で評価画像変動係数CVbの値を直線で結んで、図4の「第1の関係b」をグラフ化した。同様に、区画サイズと完全分離時変動係数CVaとを二次元座標上にプロットし、隣接する区画サイズ間で完全分離時変動係数CVaの値を直線で結んで、図4の「第2の関係a」をグラフ化した。また、区画サイズと完全混合時変動係数CVcとを二次元座標上にプロットし、隣接する区画サイズ間で完全混合時変動係数CVcの値を直線で結んで、図4の「第3の関係c」をグラフ化した。 Next, the partition size and the evaluation image coefficient of variation CVb are plotted on the two-dimensional coordinates, and the values of the evaluation image variation coefficient CVb are connected by a straight line between the adjacent partition sizes, and the “first relationship b” in FIG. Was graphed. Similarly, the partition size and the coefficient of variation CVa during complete separation are plotted on the two-dimensional coordinates, and the values of the coefficient of variation CVa during complete separation are connected by a straight line between adjacent partition sizes, and the “second relationship” in FIG. a ”was graphed. Further, the partition size and the coefficient of variation CVc during complete mixing are plotted on the two-dimensional coordinates, and the values of the coefficient of variation CVc during complete mixing are connected by a straight line between adjacent partition sizes, and the “third relationship c” in FIG. Was graphed.
 次に、第1の関係b、第2の関係a、および第3の関係cにおいて、区画サイズの最小値(すなわち分割数の最大値)から区画サイズの最大値(すなわち分割数の最小値)までの範囲における積分値をそれぞれ算出した。つまり、図4に示すように、第1の関係bと横軸で囲まれた面積をBとし、第2の関係aと横軸で囲まれた面積をAとし、第3の関係cと横軸で囲まれた面積をCとした。そして、次の式:分散度指数α[%]=(1-(B-C)/(A-C))×100;に基づいて、分散度指数を算出した。結果を、表1の「分散度指数α」の欄に示す。なお、この分散度指数αが100%に近い程、塗膜中の導電性粉末の分散性が良好である(すなわち、導電性粉末が完全混合状態に近い高分散である)といえる。 Next, in the first relationship b, the second relationship a, and the third relationship c, from the minimum value of the partition size (that is, the maximum value of the number of divisions) to the maximum value of the partition size (that is, the minimum value of the number of divisions). The integrated values in the range up to are calculated respectively. That is, as shown in FIG. 4, the area surrounded by the first relationship b and the horizontal axis is B, the area surrounded by the second relationship a and the horizontal axis is A, and the area surrounded by the third relationship c and the horizontal axis is horizontal. The area surrounded by the shaft was defined as C. Then, the dispersion index was calculated based on the following equation: dispersion index α [%] = (1- (BC) / (AC)) × 100 ;. The results are shown in the column of "Dispersity index α" in Table 1. It can be said that the closer the dispersion index α is to 100%, the better the dispersibility of the conductive powder in the coating film (that is, the higher the dispersion of the conductive powder is close to the completely mixed state).
 そして、以下の指標に基づいて、各例の塗膜の分散性を評価した。結果を、表1の「分散度指数-判定」の欄に示す。
  ×:αが89%未満
  ○:αが89%以上
Then, the dispersibility of the coating film of each example was evaluated based on the following indexes. The results are shown in the "Dispersity Index-Judgment" column of Table 1.
×: α is less than 89% ○: α is 89% or more
[グラビア印刷性の評価]
 以下の手順で塗膜を形成し、塗膜の表面粗さを測定した。具体的には、まず、チタン酸バリウムを含む誘電体グリーンシートを用意した。次に、分散度指数の判定が「〇」だった導電性ペーストを、グラビア印刷法で誘電体グリーンシート上に約1μmの厚みで付与し、80℃で約5分間乾燥させることで塗膜を形成した。なお、グラビア印刷の条件は以下の通りである。
  印刷パターン:1005type(2000μm×500μm)
  印刷速度:30m/min
  印刷圧力:0.3MPa
[Evaluation of gravure printability]
A coating film was formed by the following procedure, and the surface roughness of the coating film was measured. Specifically, first, a dielectric green sheet containing barium titanate was prepared. Next, the conductive paste whose dispersity index was judged to be "○" was applied onto a dielectric green sheet with a thickness of about 1 μm by a gravure printing method, and dried at 80 ° C. for about 5 minutes to form a coating film. Formed. The conditions for gravure printing are as follows.
Print pattern: 1005 type (2000 μm x 500 μm)
Printing speed: 30m / min
Printing pressure: 0.3MPa
 次に、株式会社ニコン製の超分解能非接触三次元表面形状計測システム(型式:BW-A501)を用いて、塗膜の表面粗さを測定した。測定条件は以下の通りである。そして、塗膜の高さ画像を取り込み、その画像を解析して、断面プロファイルを得た。断面プロファイルは、各サンプルにつき5箇所分を(n=5で)準備した。そして、得られた断面プロファイルの最も高い点と最も低い点との差分をそれぞれ求め、n=5の算術平均値を「最大粗さRmax」とした。結果を、表1の「Rmax」の欄に示す。
・光学顕微鏡:株式会社ニコン製の干渉顕微鏡(型式:ECLIPSE LV150)
・対物レンズ倍率:10倍
・測定範囲:50μm×1000μm
Next, the surface roughness of the coating film was measured using a super-resolution non-contact three-dimensional surface shape measurement system (model: BW-A501) manufactured by Nikon Corporation. The measurement conditions are as follows. Then, the height image of the coating film was captured and the image was analyzed to obtain a cross-sectional profile. Five cross-sectional profiles were prepared (at n = 5) for each sample. Then, the difference between the highest point and the lowest point of the obtained cross-sectional profile was obtained, and the arithmetic mean value of n = 5 was defined as "maximum roughness Rmax". The results are shown in the "Rmax" column of Table 1.
・ Optical microscope: Interference microscope manufactured by Nikon Corporation (model: ECLIPSE LV150)
-Objective lens magnification: 10 times-Measurement range: 50 μm x 1000 μm
 図6は、表面粗さの断面プロファイルの一例であり、図6(A)は比較例3、図6(B)は例1のものである。そして、以下の指標に基づいて、各例の導電性ペーストのグラビア印刷性を評価した。結果を、表1の「グラビア印刷性-判定」の欄に示す。
  ×:Rmaxが0.7μmを超える
  ○:Rmaxが0.7μm以下
FIG. 6 is an example of a cross-sectional profile of surface roughness, FIG. 6 (A) is for Comparative Example 3, and FIG. 6 (B) is for Example 1. Then, the gravure printability of the conductive paste of each example was evaluated based on the following indexes. The results are shown in the "Gravure printability-judgment" column of Table 1.
X: Rmax exceeds 0.7 μm ○: Rmax is 0.7 μm or less
[総合判定]
 また、上記の分散度指数の評価結果とグラビア印刷性の評価結果とに基づいて、総合評価を行った。総合評価は、上記2つの評価結果が両方とも○である場合に「○」とし、一つでも×を含む場合に「×」とした。結果を、表1の「総合判定」の欄に示す。
[Comprehensive judgment]
In addition, a comprehensive evaluation was performed based on the evaluation result of the dispersion index and the evaluation result of the gravure printability. The overall evaluation was given as "○" when both of the above two evaluation results were ○, and as "x" when even one of them contained x. The results are shown in the "Comprehensive Judgment" column of Table 1.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表1に示すように、比較例1~3の導電性ペーストは、塗膜の分散性には優れていたものの、塗膜の表面の凹凸が大きく、グラビア印刷性に欠けていた。また、比較例4~9の導電性ペーストは、塗膜の分散性が不足していた。これに対して、例1~3の導電性ペーストでは、所定のジカルボン酸系分散剤を含み、粘度V40を5Pa・s以下と低粘度に調整することで、塗膜の均質性とグラビア印刷性とが両立されていた。 As shown in Table 1, the conductive pastes of Comparative Examples 1 to 3 were excellent in the dispersibility of the coating film, but had large irregularities on the surface of the coating film and lacked gravure printability. Further, the conductive pastes of Comparative Examples 4 to 9 lacked the dispersibility of the coating film. In contrast, in the conductive paste examples 1-3, it includes a predetermined dicarboxylic acid dispersant, by adjusting the viscosity V 40 below the low-viscosity 5 Pa · s, the homogeneity of the coating and the gravure printing It was compatible with sex.
<試験例II>
 本試験例では、(D)溶剤として、第1溶剤(ジヒドロターピネオール)と、炭化水素系溶剤(ナフテン系溶剤)とを、第1溶剤:炭化水素系溶剤=75:25の質量比率で混合して用いたこと以外は例2と同様にして、導電性ペースト(例4)を調製し、試験例Iと同様に評価を行った。結果を表2に示す。
<Test Example II>
In this test example, as the solvent (D), a first solvent (dihydroterpineol) and a hydrocarbon solvent (naphthenic solvent) are mixed at a mass ratio of first solvent: hydrocarbon solvent = 75:25. A conductive paste (Example 4) was prepared in the same manner as in Example 2 except that it was used in the above manner, and evaluated in the same manner as in Test Example I. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表2に示すように、第2溶剤(3-メトキシ-3-メチル-1-ブタノールアセテート)を使用しない例4においても、例2と同様に、塗膜の均質性とグラビア印刷性とを両立できることが確認された。 As shown in Table 2, even in Example 4 in which the second solvent (3-methoxy-3-methyl-1-butanol acetate) is not used, both the homogeneity of the coating film and the gravure printability are compatible as in Example 2. It was confirmed that it could be done.
<試験例III>
 本試験例では、試験例I、IIよりも粒径の大きな無機粉末を使用し、導電性ペースト(比較例11、例5~8)を調製した。具体的には、(A)導電性粉末として、平均粒子径が0.3μmのニッケル粉末(Ni)を、導電性ペースト全体に対して50質量%の割合となるように用いた。また、(B)誘電体粉末として、平均粒子径が100nmのチタン酸バリウム粉末(BT)を、ニッケル粉末100質量部に対して25質量部の割合となるように用いた。比較例11および例5では、このこと以外、比較例4、例2とそれぞれ同様にして、導電性ペーストを調製した。また、例6,7では、表3に示すように(C)バインダ樹脂の配合を異ならせたこと以外は例5と同様にして、導電性ペーストを調製した。また、例8では、(A)導電性粉末の含有割合を、導電性ペースト全体に対して57質量%としたことは例5と同様にして、導電性ペーストを調製した。
<Test Example III>
In this test example, a conductive paste (Comparative Example 11, Examples 5 to 8) was prepared using an inorganic powder having a particle size larger than that of Test Examples I and II. Specifically, as the conductive powder (A), nickel powder (Ni) having an average particle diameter of 0.3 μm was used so as to have a ratio of 50% by mass with respect to the entire conductive paste. Further, as the (B) dielectric powder, barium titanate powder (BT) having an average particle diameter of 100 nm was used at a ratio of 25 parts by mass with respect to 100 parts by mass of the nickel powder. In Comparative Examples 11 and 5, other than this, a conductive paste was prepared in the same manner as in Comparative Examples 4 and 2, respectively. Further, in Examples 6 and 7, a conductive paste was prepared in the same manner as in Example 5 except that the composition of the binder resin (C) was different as shown in Table 3. Further, in Example 8, the content ratio of the conductive powder (A) was 57% by mass with respect to the entire conductive paste, and the conductive paste was prepared in the same manner as in Example 5.
 そして、試験例Iと同様に評価を行った。結果を表3に示す。図5は、SEM観察画像の一例であり、図5(A)は例5、図5(B)は比較例11のものである。なお、本試験例では、試験例I、IIよりも大粒径の無機粉末を使用しているため、以下の指標に基づいて分散度指数の判定を行った。
  ×:αが83%未満
  ○:αが83%以上
Then, the evaluation was performed in the same manner as in Test Example I. The results are shown in Table 3. FIG. 5 is an example of an SEM observation image, FIG. 5 (A) is for Example 5, and FIG. 5 (B) is for Comparative Example 11. Since this test example uses an inorganic powder having a larger particle size than that of test examples I and II, the dispersity index was determined based on the following indexes.
×: α is less than 83% ○: α is 83% or more
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表3に示すように、(A)導電性粉末のサイズおよび含有割合、(B)誘電体粉末のサイズおよび含有割合、(C)バインダ樹脂の配合を異ならせた例5~8においても、塗膜の均質性とグラビア印刷性とを両立できることが確認された。 As shown in Table 3, the coatings were also applied in Examples 5 to 8 in which (A) the size and content ratio of the conductive powder, (B) the size and content ratio of the dielectric powder, and (C) the blending of the binder resin were different. It was confirmed that both the homogeneity of the film and the gravure printability can be achieved.
<試験例IV>
 本試験例では、(D)溶剤について、さらに検討を行った。(D)溶剤としては、炭化水素系溶剤(ナフテン系溶剤)に加え、炭化水素系溶剤以外の溶剤として、表4に示す第1溶剤と第2溶剤とを用意し、これらを表4に示す配合比率で混合して用いたこと以外、例5と同様にして、導電性ペースト(例9~24)を調製した。そして、乾燥性とシートアタック性とを評価した。なお、表4の第1溶剤と第2溶剤との合計のSP値δallは、下記式:
  δall=(第1溶剤のSP値×第1溶剤の含有割合(%)+第2溶剤のSP値×第2溶剤の含有割合(%)/(第1溶剤の含有割合(%)+第2溶剤の含有割合(%));
から算出した。
<Test Example IV>
In this test example, the solvent (D) was further investigated. As the solvent (D), in addition to the hydrocarbon solvent (naphthenic solvent), as the solvent other than the hydrocarbon solvent, the first solvent and the second solvent shown in Table 4 are prepared, and these are shown in Table 4. Conductive pastes (Examples 9 to 24) were prepared in the same manner as in Example 5 except that they were mixed and used in a blending ratio. Then, the dryness and the sheet attack property were evaluated. The total SP value δ all of the first solvent and the second solvent in Table 4 is calculated by the following formula:
δ all = (SP value of first solvent x content ratio of first solvent (%) + SP value of second solvent x content ratio of second solvent (%) / (content ratio of first solvent (%) + first 2 Solvent content (%));
Calculated from.
[乾燥性の評価]
 導電性ペーストを、示差熱-熱重量測定(Thermogravimetry-Differential Thermal Analysis:TG-DTA)で分析した。測定条件は以下の通りである。
  試料量:導電性ペースト 5mg
  ガス流量:Air 200ml/min
  プログラム:室温から85℃まで20℃/minで昇温した後、85℃を保持
[Evaluation of dryness]
The conductive paste was analyzed by differential thermal-Differential Thermal Analysis (TG-DTA). The measurement conditions are as follows.
Sample amount: Conductive paste 5 mg
Gas flow rate: Air 200 ml / min
Program: Heat from room temperature to 85 ° C at 20 ° C / min and then maintain 85 ° C
 一例として、図7に、例13、例19、例9のTG-DTAの測定チャートを示す。そして、測定チャートから、重量変化がなくなった(重量変化率が0.1質量%以下となった)時間を、乾燥時間として求めた。結果を、表4の「乾燥時間」の欄に示す。そして、以下の指標に基づいて、各例の導電性ペーストの乾燥性を評価した。結果を、表1の「判定結果-乾燥性」の欄に示す。
  △:乾燥時間が15分未満、または、25分を超える
  ○:乾燥時間が15分以上25分以下
As an example, FIG. 7 shows measurement charts of TG-DTA of Example 13, Example 19, and Example 9. Then, from the measurement chart, the time when the weight change disappeared (the weight change rate became 0.1% by mass or less) was determined as the drying time. The results are shown in the "Drying time" column of Table 4. Then, the dryness of the conductive paste of each example was evaluated based on the following indexes. The results are shown in the column of "Judgment result-dryness" in Table 1.
Δ: Drying time is less than 15 minutes or more than 25 minutes ○: Drying time is 15 minutes or more and 25 minutes or less
[シートアタック性の評価]
 試験例Iと同様に、チタン酸バリウムを含む誘電体グリーンシート上に、各例の導電性ペーストをグラビア印刷し、80℃で約5分間乾燥させることで塗膜を形成した。そしてこの塗膜を誘電体グリーンシートの側からSEM観察して、SEM観察画像取得した。なお、加速電圧は20kV、観察倍率は1000倍とした。図8は、SEM観察画像の一例であり、図8(A)は例19、図8(B)は例16、図8(C)は例9のものである。次に、SEM観察画像に基づいて、黒色部(樹脂だまり)の面積を比較した。そして、以下の指標に基づいて、シートアタック性を評価した。結果を、表1の「判定結果-シートアタック性」の欄に示す。
  △:黒色部の面積が20%以上
  ○:黒色部の面積が5%以上20%未満
  ◎:黒色部の面積が5%未満
[Evaluation of seat attack]
Similar to Test Example I, the conductive paste of each example was gravure-printed on a dielectric green sheet containing barium titanate and dried at 80 ° C. for about 5 minutes to form a coating film. Then, this coating film was SEM-observed from the side of the dielectric green sheet, and an SEM observation image was acquired. The acceleration voltage was 20 kV and the observation magnification was 1000 times. FIG. 8 is an example of an SEM observation image, FIG. 8 (A) is for Example 19, FIG. 8 (B) is for Example 16, and FIG. 8 (C) is for Example 9. Next, the area of the black portion (resin pool) was compared based on the SEM observation image. Then, the seat attack property was evaluated based on the following indexes. The results are shown in the column of "Judgment result-Sheet attackability" in Table 1.
Δ: Area of black part is 20% or more ○: Area of black part is 5% or more and less than 20% ◎: Area of black part is less than 5%
[総合判定]
 また、上記の乾燥性の評価結果とシートアタック性の評価結果とに基づいて、総合評価を行った。総合評価は、上記2つの評価結果で、「◎」を2点、「○」を1点、「△」を0点とし、合計の得点が0点の場合を「△」、1点の場合を「○」、2点の場合を「〇」、3点の場合を「◎」とした。結果を、表4の「判定-総合」の欄に示す。
[Comprehensive judgment]
In addition, a comprehensive evaluation was performed based on the above-mentioned evaluation results of dryness and sheet attackability. In the overall evaluation, in the above two evaluation results, "◎" is 2 points, "○" is 1 point, "△" is 0 points, and the total score is 0 points, "△", and 1 point. Was "○", the case of 2 points was "○", and the case of 3 points was "◎". The results are shown in the "Judgment-Comprehensive" column of Table 4.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表4に示すように、第2溶剤としてテキサノールまたはデカノールを用いた例12,例13では、その他の例に比べて、相対的に乾燥性とシートアタック性とが共に悪かった。これに対し、(D)溶剤が、第2溶剤として、沸点が230℃以下でかつSP値が9.9(cal/cm0.5以下である溶剤を含むことで、例12,例13に比べて、乾燥性およびシートアタック性のうちの少なくとも一方を向上することができた。なかでも、例17~例24のように、沸点が200℃以上でSP値が10.0(cal/cm0.5以上である第1溶剤と、沸点が220℃以下でSP値が9.5(cal/cm0.5以下である第2溶剤と、を併用することで、シートアタック性を一層向上することができた。 As shown in Table 4, in Examples 12 and 13 in which texanol or decanol was used as the second solvent, both the drying property and the sheet attack property were relatively poor as compared with the other examples. On the other hand, the solvent (D) contains, as the second solvent, a solvent having a boiling point of 230 ° C. or less and an SP value of 9.9 (cal / cm 3 ) of 0.5 or less. Compared with 13, at least one of drying property and sheet attack property could be improved. Among them, as in Examples 17 to 24, the first solvent having a boiling point of 200 ° C. or higher and an SP value of 10.0 (cal / cm 3 ) 0.5 or higher and the SP value having a boiling point of 220 ° C. or lower By using a second solvent having a temperature of 9.5 (cal / cm 3 ) of 0.5 or less in combination, the sheet attack property could be further improved.
<試験例V>
 本試験例では、(C)バインダ樹脂について、さらに検討を行った。(C)バインダ樹脂としては、表5に示す重量平均分子量の異なる2種類のポリビニルブチラール(積水化学工業のエスレック(登録商標))を用いた。それ以外は例2と同様にして、導電性ペースト(例25,26)を調製し、試験例Iと同様に評価を行った。結果を表5に示す。
<Test Example V>
In this test example, the binder resin (C) was further examined. As the binder resin (C), two types of polyvinyl butyral (Sekisui Chemical's Eslek (registered trademark)) having different weight average molecular weights shown in Table 5 were used. Conductive pastes (Examples 25 and 26) were prepared in the same manner as in Example 2 except for the above, and evaluated in the same manner as in Test Example I. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表5に示すように、(C2)PVBの重量平均分子量が10~20万である例25,26においても、例2と同様に、塗膜の均質性とグラビア印刷性とを両立できることが確認された。 As shown in Table 5, it was confirmed that in Examples 25 and 26 in which the weight average molecular weight of (C2) PVB is 100,000 to 200,000, both the homogeneity of the coating film and the gravure printability can be achieved as in Example 2. Was done.
 以上、本発明の好適な実施形態について説明した。しかし、上述の実施形態は例示に過ぎず、本発明は他の種々の形態で実施することができる。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。請求の範囲に記載の技術には、上記に例示した実施形態を様々に変形、変更したものが含まれる。例えば、上記した実施形態の一部を組み合わせたり、他の変形態様に置き換えたりすることも可能である。また、その技術的特徴が必須なものとして説明されていなければ、適宜削除することも可能である。 The preferred embodiment of the present invention has been described above. However, the above embodiments are merely examples, and the present invention can be implemented in various other embodiments. The present invention can be carried out based on the contents disclosed in the present specification and common general technical knowledge in the art. The techniques described in the claims include various modifications and modifications of the embodiments illustrated above. For example, it is possible to combine some of the above-described embodiments or replace them with other modifications. Further, if the technical feature is not explained as essential, it can be deleted as appropriate.
1   積層セラミックコンデンサ(MLCC)
10  積層チップ
10a 未焼成積層体
20  誘電体層
20a 誘電体グリーンシート
30  内部電極層
30a 塗膜
40  外部電極
1 Multilayer ceramic capacitor (MLCC)
10 Laminated chip 10a Unfired laminated body 20 Dielectric layer 20a Dielectric green sheet 30 Internal electrode layer 30a Coating film 40 External electrode

Claims (11)

  1.  (A)導電性粉末と、(B)誘電体粉末と、(C)バインダ樹脂と、(D)溶剤と、(E)分散剤と、を含む、グラビア印刷用の導電性ペーストであって、
     前記(E)分散剤は、下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (ただし、式(1)中のA、Aは、それぞれ独立して、水素、アルカリ金属またはアルカリ土類金属である。);で表される構造部分を有するジカルボン酸系分散剤を含み、
     25℃において、前記導電性ペーストのせん断速度40s-1における粘度V40は、5Pa・s以下である、グラビア印刷用の導電性ペースト。
    A conductive paste for gravure printing containing (A) a conductive powder, (B) a dielectric powder, (C) a binder resin, (D) a solvent, and (E) a dispersant.
    The dispersant (E) has the following formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (However, A 1 and A 2 in the formula (1) are independently hydrogen, alkali metal or alkaline earth metal.); Contains a dicarboxylic acid-based dispersant having a structural portion represented by. ,
    A conductive paste for gravure printing, wherein the viscosity V 40 at a shear rate of 40 s -1 of the conductive paste at 25 ° C. is 5 Pa · s or less.
  2.  前記(E)分散剤が、下記式(2):
    Figure JPOXMLDOC01-appb-C000002
    (ただし、式(2)中のA、Aは、それぞれ独立して、水素、アルカリ金属またはアルカリ土類金属であり、Rは、炭素数3~30であり、直鎖または分岐、飽和または不飽和の脂肪族基である。);で表される化合物である、
    請求項1に記載の導電性ペースト。
    The dispersant (E) has the following formula (2):
    Figure JPOXMLDOC01-appb-C000002
    (However, A 1 and A 2 in the formula (2) are independently hydrogen, alkali metal or alkaline earth metal, and R has 3 to 30 carbon atoms and is linear, branched or saturated. Or an unsaturated aliphatic group.); A compound represented by;
    The conductive paste according to claim 1.
  3.  前記粘度V40に対する前記導電性ペーストのせん断速度4s-1における粘度Vの比(V/V40)が、7以下である、
    請求項1または2に記載の導電性ペースト。
    The ratio of the viscosity V 4 at a shear rate 4s -1 of the conductive paste for the viscosity V 40 (V 4 / V 40 ) is 7 or less,
    The conductive paste according to claim 1 or 2.
  4.  前記(B)誘電体粉末の平均粒子径Dに対する前記(A)導電性粉末の平均粒子径Dの比(D/D)が、2以上である、
    請求項1~3のいずれか1項に記載の導電性ペースト。
    The ratio (D 1 / D 2 ) of the average particle size D 1 of the (A) conductive powder to the average particle size D 2 of the (B) dielectric powder is 2 or more.
    The conductive paste according to any one of claims 1 to 3.
  5.  前記(D)溶剤が、炭化水素系溶剤と、炭化水素系以外の溶剤とを含み、
     前記炭化水素系以外の溶剤が、沸点が230℃以下であり、かつ、Fedorsの溶解度パラメータが9.9(cal/cm0.5以下の溶剤を含む、
    請求項1~4のいずれか1項に記載の導電性ペースト。
    The solvent (D) contains a hydrocarbon-based solvent and a solvent other than the hydrocarbon-based solvent.
    The solvent other than the hydrocarbon-based solvent contains a solvent having a boiling point of 230 ° C. or lower and a solubility parameter of Fedors of 9.9 (cal / cm 3 ) of 0.5 or less.
    The conductive paste according to any one of claims 1 to 4.
  6.  前記炭化水素系以外の溶剤が、
      沸点が200℃以上であり、かつ、前記溶解度パラメータが10.0(cal/cm0.5以上である第1溶剤と、
      沸点が220℃以下であり、かつ、前記溶解度パラメータが9.5(cal/cm0.5以下である第2溶剤と、
    を含む、
    請求項5に記載の導電性ペースト。
    Solvents other than the hydrocarbon type
    A first solvent having a boiling point of 200 ° C. or higher and a solubility parameter of 10.0 (cal / cm 3 ) of 0.5 or higher.
    A second solvent having a boiling point of 220 ° C. or lower and a solubility parameter of 9.5 (cal / cm 3 ) of 0.5 or lower.
    including,
    The conductive paste according to claim 5.
  7.  前記炭化水素系以外の溶剤全体の前記溶解度パラメータが、9.8(cal/cm0.5以下である、
    請求項5または6に記載の導電性ペースト。
    The solubility parameter of the whole solvent other than the hydrocarbon system is 9.8 (cal / cm 3 ) 0.5 or less.
    The conductive paste according to claim 5 or 6.
  8.  前記(E)分散剤が、前記導電性ペーストの全体を100質量%としたときに、0.5質量%以下である、
    請求項1~7のいずれか1項に記載の導電性ペースト。
    The dispersant (E) is 0.5% by mass or less when the total amount of the conductive paste is 100% by mass.
    The conductive paste according to any one of claims 1 to 7.
  9.  前記(C)バインダ樹脂が、ポリビニルアセタール系樹脂を含み、
     前記ポリビニルアセタール系樹脂の重量平均分子量が20万以下である、
    請求項1~8のいずれか1項に記載の導電性ペースト。
    The binder resin (C) contains a polyvinyl acetal-based resin.
    The weight average molecular weight of the polyvinyl acetal resin is 200,000 or less.
    The conductive paste according to any one of claims 1 to 8.
  10.  積層セラミック電子部品の内部電極層を形成するために用いられる、
    請求項1~9のいずれか1項に記載の導電性ペースト。
    Used to form the internal electrode layer of laminated ceramic electronic components,
    The conductive paste according to any one of claims 1 to 9.
  11.  請求項1~10のいずれか1項に記載の導電性ペーストを基材上に付与して焼成することを包含する、電子部品の製造方法。 A method for manufacturing an electronic component, which comprises applying the conductive paste according to any one of claims 1 to 10 onto a base material and firing the paste.
PCT/JP2020/033582 2019-09-25 2020-09-04 Electroconductive paste and method for producing electronic component using same WO2021059925A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227013562A KR20220062656A (en) 2019-09-25 2020-09-04 Conductive paste and manufacturing method of electronic component using same
CN202080067677.0A CN114503220A (en) 2019-09-25 2020-09-04 Conductive paste and method for manufacturing electronic component using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019174262A JP6810778B1 (en) 2019-09-25 2019-09-25 Conductive paste and manufacturing method of electronic parts using it
JP2019-174262 2019-09-25

Publications (1)

Publication Number Publication Date
WO2021059925A1 true WO2021059925A1 (en) 2021-04-01

Family

ID=73993048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033582 WO2021059925A1 (en) 2019-09-25 2020-09-04 Electroconductive paste and method for producing electronic component using same

Country Status (4)

Country Link
JP (1) JP6810778B1 (en)
KR (1) KR20220062656A (en)
CN (1) CN114503220A (en)
WO (1) WO2021059925A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033163A1 (en) * 2021-09-03 2023-03-09 住友金属鉱山株式会社 Conductive paste for gravure printing, electronic component, and multilayer ceramic capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100503A1 (en) * 2021-12-01 2023-06-08 株式会社村田製作所 Paste for electronic components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466769B2 (en) * 2010-11-01 2014-04-09 Dowaエレクトロニクス株式会社 Low-temperature sinterable conductive paste, conductive film using the same, and method for forming conductive film
JP2019036435A (en) * 2017-08-10 2019-03-07 株式会社ノリタケカンパニーリミテド Conductive paste
JP2019046782A (en) * 2017-08-30 2019-03-22 住友金属鉱山株式会社 Conductive paste and methods for manufacturing electronic component and multilayer ceramic capacitor
JP2019071214A (en) * 2017-10-10 2019-05-09 株式会社ノリタケカンパニーリミテド Conductive paste

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569747B2 (en) 2011-02-18 2014-08-13 住友金属鉱山株式会社 Gravure printing conductive paste used for multilayer ceramic capacitor internal electrode
JP6151017B2 (en) 2012-12-20 2017-06-21 Jfeミネラル株式会社 Nickel ultrafine powder, conductive paste, and method for producing nickel ultrafine powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466769B2 (en) * 2010-11-01 2014-04-09 Dowaエレクトロニクス株式会社 Low-temperature sinterable conductive paste, conductive film using the same, and method for forming conductive film
JP2019036435A (en) * 2017-08-10 2019-03-07 株式会社ノリタケカンパニーリミテド Conductive paste
JP2019046782A (en) * 2017-08-30 2019-03-22 住友金属鉱山株式会社 Conductive paste and methods for manufacturing electronic component and multilayer ceramic capacitor
JP2019071214A (en) * 2017-10-10 2019-05-09 株式会社ノリタケカンパニーリミテド Conductive paste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033163A1 (en) * 2021-09-03 2023-03-09 住友金属鉱山株式会社 Conductive paste for gravure printing, electronic component, and multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP2021051916A (en) 2021-04-01
JP6810778B1 (en) 2021-01-06
KR20220062656A (en) 2022-05-17
CN114503220A (en) 2022-05-13
TW202112731A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
TWI479510B (en) A method for producing conductor film using high speed sintering
JP6511109B2 (en) Conductive paste
CN111868842B (en) Conductive paste with stable viscosity over time
TWI609059B (en) Inorganic particle dispersion paste, adhesive resin and inorganic particle dispersion paste
WO2021059925A1 (en) Electroconductive paste and method for producing electronic component using same
JP2015216244A (en) Conductive paste and ceramic electronic part
JP2010067418A (en) Conductive paste and method of manufacturing the same
TWI754671B (en) conductive paste
TWI819103B (en) Conductive glue
CN111937089B (en) Conductive paste
TWI838578B (en) Conductive paste and method for producing electronic parts using the same
JP6856701B2 (en) Manufacturing method of paste for internal electrodes and laminated ceramic electronic components
JP2023145047A (en) Conductive paste and method for manufacturing electronic component using the same
JP2021108294A (en) Conductive paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227013562

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20867827

Country of ref document: EP

Kind code of ref document: A1