WO2021059630A1 - Active material holding member, electrode, lead acid storage battery, and electric vehicle - Google Patents

Active material holding member, electrode, lead acid storage battery, and electric vehicle Download PDF

Info

Publication number
WO2021059630A1
WO2021059630A1 PCT/JP2020/024467 JP2020024467W WO2021059630A1 WO 2021059630 A1 WO2021059630 A1 WO 2021059630A1 JP 2020024467 W JP2020024467 W JP 2020024467W WO 2021059630 A1 WO2021059630 A1 WO 2021059630A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
active material
base material
end portion
holding member
Prior art date
Application number
PCT/JP2020/024467
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 鈴木
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2021548345A priority Critical patent/JPWO2021059630A1/ja
Priority to CN202080081939.9A priority patent/CN114930573B/en
Publication of WO2021059630A1 publication Critical patent/WO2021059630A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/76Containers for holding the active material, e.g. tubes, capsules

Definitions

  • the present invention relates to an active material holding member, an electrode, a lead storage battery, and an electric vehicle.
  • Lead-acid batteries are widely used as secondary batteries for industrial or consumer use, and in particular, lead-acid batteries for electric vehicles (for example, lead-acid batteries for automobiles, so-called batteries), UPS (Uninterruptable Power Supply), and disaster prevention (emergency). ) There is a great demand for lead-acid batteries for backup such as wireless power supplies and telephone power supplies.
  • an active material holding member having a plurality of tubes adjacent to each other may be used as a tube capable of holding (accommodating) the active material.
  • a lead-acid battery has an active material holding member provided with a tube, a core metal (current collector) inserted in the tube, and an electrode material (electrode material containing an active material) filled between the tube and the core metal. ) Is provided (see, for example, Patent Document 1 below).
  • a tube formed by winding a base material may be used as the tube of the active material holding member.
  • the winding end of the base material is fixed on the surface of the tube at the end of the tube in the axial direction of the tube, but the base material is wound due to the external stress applied to the base material.
  • the active material may leak from the tube due to fraying (peeling from the surface of the tube) starting from. Therefore, the active material holding member provided with the tube is required to suppress the leakage of the active material from the viewpoint of improving the battery characteristics.
  • One aspect of the present invention is to provide an active material holding member capable of suppressing leakage of an active material.
  • Another aspect of the present invention is to provide an electrode having the active material holding member, a lead storage battery provided with the electrode, and an electric vehicle provided with the lead storage battery.
  • a first embodiment of one aspect of the present invention is an active material holding member including a first tube and a second tube juxtaposed with each other, wherein the first tube has at least a base material counterclockwise.
  • the wound end portion of the base material at one end of the first tube is formed by being wound around the first tube in the axial direction of the first tube from the one end side of the first tube.
  • the direction in which the second tube is attached to the first tube is 0 °, and 0 ° or more on the surface of the first tube with respect to the central axis of the first tube.
  • an active material holding member located in the range of + 90 ° or less.
  • a second embodiment of one aspect of the present invention is an active material holding member including a first tube and a second tube adjacent to each other, wherein the first tube has a base material at least once in a clockwise direction.
  • the wound end portion of the base material at one end of the first tube is formed by being wound around the first tube from the one end side of the first tube in the axial direction of the first tube.
  • the direction in which the second tube is attached to the first tube is 0 °, and ⁇ 90 ° or more on the surface of the first tube with respect to the central axis of the first tube.
  • an active material holding member located in a range of 0 ° or less.
  • the active material holding member including the first tube and the second tube adjacent to each other, when the first tube is formed by winding the base material, at least one of the first tubes.
  • a load is applied to a portion (extending portion) of the base material extending from between the first tube and the second tube along the surface of the first tube in the circumferential direction of the first tube. Due to external stress, the base material tends to fray easily starting from the winding end.
  • the first tube is formed by winding the base material counterclockwise at least once, and the base material at one end of the first tube is formed.
  • the winding end portion looks at the first tube from one end side of the first tube in the axial direction of the first tube, the first tube is set to 0 ° with respect to the direction in which the second tube is attached to the first tube. It is located in the range of 0 ° or more and + 90 ° or less on the surface of the first tube with respect to the central axis of the tube.
  • the length of the portion) is shorter than that in the case where the winding end portion is located in a range exceeding + 90 ° on the surface of the first tube.
  • the first tube is formed by winding the base material clockwise at least once, and the winding end portion of the base material at one end of the first tube.
  • the direction in which the second tube is attached to the first tube is set to 0 °
  • the first tube It is located in the range of ⁇ 90 ° or more and 0 ° or less on the surface of the first tube with respect to the central axis.
  • a portion (extending) extending from between the first tube and the second tube in the base material along the surface of the first tube in the circumferential direction of the first tube.
  • the length of the portion is shorter than that in the case where the winding end portion is located in a range of less than ⁇ 90 ° on the surface of the first tube.
  • Another aspect of the present invention provides an electrode having the above-mentioned active material holding member and the active material held in the first tube and the second tube of the active material holding member.
  • Another aspect of the present invention provides a lead-acid battery comprising a positive electrode and a negative electrode, wherein at least one selected from the group consisting of the positive electrode and the negative electrode is the above-mentioned electrode.
  • Another aspect of the present invention provides an electric vehicle equipped with the lead-acid battery described above.
  • an active material holding member capable of suppressing leakage of the active material.
  • an electrode having the active material holding member, a lead storage battery provided with the electrode, and an electric vehicle provided with the lead storage battery.
  • the drawings may show a Cartesian coordinate system defined by the X, Y and Z axes that are orthogonal to each other.
  • the numerical range indicated by using “-” indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step.
  • “A or B” may include either A or B, or both.
  • the materials exemplified in the present specification may be used alone or in combination of two or more.
  • the term "process” is included in this term not only in an independent process but also in the case where the desired action of the process is achieved even if it cannot be clearly distinguished from other processes.
  • Axial direction of the tube means the axial direction (longitudinal direction) of the central axis of the tube.
  • One end and the other end of the tube mean one end and the other end of the tube in the axial direction.
  • At least one means one or more.
  • At least part means part or all.
  • the lead-acid battery according to the present embodiment includes a positive electrode and a negative electrode, and at least one selected from the group consisting of the positive electrode and the negative electrode is the electrode according to the present embodiment.
  • the electrode according to the present embodiment has an active material holding member according to the present embodiment and an active material held in a tube (first tube, second tube, etc., which will be described later) of the active material holding member. ..
  • the lead-acid battery according to the present embodiment may include a separator arranged between the positive electrode and the negative electrode, and may not include the separator.
  • the lead storage battery according to the present embodiment may include an electrolytic solution.
  • the electrolytic solution may contain sulfuric acid.
  • the lead-acid battery according to the present embodiment may be a liquid-type lead-acid battery, a control valve-type lead-acid battery, or the like, and may be a closed-type lead-acid battery, an open-type lead-acid battery, or the like.
  • the active material holding member according to the present embodiment includes a first tube and a second tube adjacent to each other. Be prepared. That is, the active material holding member according to the present embodiment is a group of active material holding tubes having a plurality of tubes adjacent to each other.
  • the active material holding member according to the present embodiment may include three or more tubes.
  • the active material holding member is a member for holding the active material of the battery, and can hold (accommodate) the active material inside the tube (internal space).
  • the "active material” includes both the post-chemical active material and the raw material of the pre-chemical active material.
  • the first tube is formed by winding the base material counterclockwise at least once.
  • the wound end portion of the base material at one end of the first tube is the first tube with respect to the first tube when the first tube is viewed from one end side of the first tube in the axial direction of the first tube. It is located in an angle range (0 to ⁇ / 2 radians) of 0 ° or more and + 90 ° or less on the surface of the first tube with respect to the central axis of the first tube, where 0 ° is the side-by-side direction of the two tubes.
  • the first tube is formed by winding the base material clockwise at least once.
  • the winding end of the base material at one end of the first tube is a second with respect to the first tube when the first tube is viewed from one end side of the first tube in the axial direction of the first tube. It is located in an angle range (3 ⁇ / 2 to 2 ⁇ radians) of ⁇ 90 ° or more and 0 ° or less on the surface of the first tube with respect to the central axis of the first tube, where 0 ° is the side-by-side direction of the tubes.
  • the angle (position) of the winding end portion is 0 ° at the winding end portion of the first tube.
  • the angle with respect to the side-by-side direction of the second tube with respect to the first tube when the second tube is arranged on the right side of the first tube while being located in the angle range (0 to ⁇ radian) of + 180 ° or more is used. ..
  • the angle (position) of the winding end portion is -180 ° at the winding end portion of the first tube.
  • the angle with respect to the side-by-side direction of the second tube with respect to the first tube when the second tube is arranged on the right side of the first tube while being located in the angle range ( ⁇ to 2 ⁇ radians) of 0 ° or more is used. ..
  • the tube attachment portion satisfying the above-mentioned angle range of the first to fourth embodiments is the article.
  • the tube-attached portion of the article corresponds to the active material holding member according to the first to fourth embodiments.
  • the electrode according to the present embodiment may have at least one of the active material holding members according to the first to fourth embodiments as at least one active material holding member. That is, the electrode according to the present embodiment may have a single type of active material holding member, or may have a plurality of types of active material holding member.
  • the winding end portion of the base material at the other end of the first tube is the first tube.
  • the surface of the first tube with respect to the central axis of the first tube is set to 0 ° with respect to the first tube. It may be located in an angle range of 0 ° or more and + 90 ° or less in.
  • the winding end portion of the base material at the other end of the first tube is the first tube.
  • the surface of the first tube with respect to the central axis of the first tube is set to 0 ° with respect to the first tube. It may be located in an angle range of ⁇ 90 ° or more and 0 ° or less.
  • the first tube is formed by spirally winding the base material counterclockwise at least once from the other end to one end of the first tube. Has been done.
  • the first tube is formed by winding the base material counterclockwise in a spiral shape at least once.
  • the first tube is formed by spirally winding the base material clockwise at least once from the other end to one end of the first tube. ing.
  • the first tube is formed by winding the base material clockwise at least once in a spiral shape.
  • the base material may be wound at least once, may be wound more than one round, and may be wound a plurality of times.
  • the “spiral” means traveling in the extending direction of the central axis while orbiting around the central axis extending in a predetermined direction.
  • "Swirl” means to orbit in the same plane as shown in FIG. 1 (b).
  • the winding direction (counterclockwise and clockwise) in the spiral case means the direction of rotation of the base material with respect to the central axis.
  • the winding direction (counterclockwise and clockwise) in the case of a spiral means the winding direction when the base material is wound from the inner layer to the outer layer of the tube.
  • the tube has, for example, end faces perpendicular to the axial direction of the tube at one end and the other end.
  • a spiral shape for example, a strip-shaped base material can be spirally wound to form a tube.
  • both ends of the tube may be cut perpendicular to the axial direction of the tube, and a base material having a shape that can obtain an end face perpendicular to the axial direction of the tube without cutting the ends is used. May be good.
  • the base materials When the base materials are rotated in a spiral shape, the base materials may overlap each other (the overlapping portions of the base materials may be formed), and the base materials do not have to overlap each other.
  • a rectangular base material can be wound along one side of the base material to form a tube.
  • the means for joining the base materials include welding (for example, ultrasonic welding), an adhesive, and the like.
  • welding for example, ultrasonic welding
  • an adhesive for example, an adhesive
  • the length of the tube can be easily adjusted by adjusting the number of windings of a base material having a constant width.
  • FIGS. 2 and 3 are schematic cross-sectional views showing an example of a lead storage battery.
  • positive electrodes and negative electrodes are alternately arranged via separators from the front side to the back side of the drawing.
  • FIG. 2B is an enlarged view showing the region P of FIG. 2A.
  • FIG. 2A the details inside the tubes and the details of the portions where the tubes are adjacent to each other are omitted.
  • the lead-acid batteries shown in FIGS. 2 and 3 are provided with an electric tank extending in the vertical direction, and FIG. 3 shows a positive electrode when the lead-acid battery is viewed from above in the vertical direction (above in the height direction of the electric tank). , The laminated structure of the negative electrode and the separator is shown.
  • the lead-acid battery 100 shown in FIGS. 2 and 3 is connected to an electrode group 110, an electric tank 120 accommodating the electrode group 110, connecting members 130a and 130b connected to the electrode group 110, and connecting members 130a and 130b.
  • the electrode columns 140a and 140b are provided, a liquid port plug 150 for closing the liquid injection port of the electric tank 120, and a support member 160 connected to the electric tank 120.
  • the electrode group 110 includes a plurality of positive electrodes 10, a plurality of negative electrodes 20, and a plurality of separators 30.
  • the positive electrode 10 and the negative electrode 20 are alternately arranged via the separator 30.
  • the space around the positive electrode 10 between the separators 30 is filled with the electrolytic solution 40.
  • the electrolytic solution 40 may contain sulfuric acid.
  • the electrolytic solution 40 may contain aluminum ions, sodium ions and the like.
  • the positive electrode 10 is, for example, a plate-shaped electrode (positive electrode plate), and includes a plurality of tubes 10a for holding an active material, a core metal (current collector) 10b, a positive electrode material 10c, a lower joint 10d, and an upper joint. It has 10e and an ear portion 10f.
  • the tube 10a of the positive electrode 10 is formed of a tubular portion capable of accommodating the positive electrode material 10c containing an active material.
  • the plurality of tubes 10a are arranged side by side with each other to form the active material holding member 50. That is, the positive electrode 10 has an active material holding member 50. Each tube 10a extends in the height direction (vertical direction) of the electric tank 120.
  • the core metal 10b extends in the axial direction of the tube 10a at the center of the tube 10a.
  • the constituent material of the core metal 10b may be any conductive material, and examples thereof include lead alloys such as lead-calcium-tin alloys and lead-antimony-arsenic alloys.
  • the cross-sectional shape of the core metal 10b perpendicular to the axial direction (longitudinal direction) may be circular, elliptical, or the like.
  • the length of the core metal 10b is, for example, 160 to 650 mm.
  • the diameter of the core metal 10b is, for example, 2.0 to 4.0 mm.
  • the positive electrode material 10c is filled between the tube 10a and the core metal 10b.
  • the positive electrode material 10c contains a positive electrode active material after chemical conversion.
  • the chemicalized positive electrode material can be obtained, for example, by chemicalizing an unchemicald positive electrode material containing a raw material for the positive electrode active material. Examples of the raw material for the positive electrode active material include lead powder and lead tan. Examples of the positive electrode active material in the positive electrode material after chemical conversion include lead dioxide and the like.
  • the positive electrode material 10c can further contain an additive if necessary. Examples of the additive for the positive electrode material 10c include short reinforcing fibers. Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers (PET fibers) and the like.
  • the lower punishment 10d is connected to one end of the tube 10a (lower end in the figure), and the upper punishment 10e is connected to the other end of the tube 10a (upper end in the figure).
  • the lower joint 10d and the upper joint 10e are in contact with the tube 10a and the core metal 10b and the positive electrode material 10c arranged in the tube 10a, and hold the tube 10a, the core metal 10b, and the positive electrode material 10c.
  • the lower collective punishment 10d is attached to the bottom end of the battery case 120 in the tube 10a (the end on one end of the tube 10a).
  • the lower joint 10d is fitted to the end of the tube 10a, and has a base extending in a direction orthogonal to the axial direction of the tube 10a and a plurality of fittings connected to the base and fitted to the end of the tube 10a. It has a joint part.
  • the fitting portion is formed with a recess into which the end portion of the core metal 10b is inserted.
  • the upper collective punishment 10e is attached to the upper end of the electric tank 120 in the tube 10a (the other end of the tube 10a).
  • the core metal 10b housed in the tube 10a is electrically connected to the pole pillar 140a via the upper connecting seat 10e, the selvage portion 10f, and the connecting member 130a.
  • the support member 160 has a plurality of protrusions 160a extending in the axial direction (longitudinal direction, for example, the height direction of the electric tank 120) of the tube 10a, and the lower joint 10d is fixed in contact with the plurality of protrusions 160a. ing. That is, the support member 160 supports the bottom surface side portion of the electric tank 120 in the lower collective punishment 10d by each protrusion 160a.
  • the negative electrode 20 is, for example, a plate-shaped negative electrode plate, for example, a paste type negative electrode plate.
  • the negative electrode 20 has a negative electrode current collector and a negative electrode material held by the negative electrode current collector.
  • As the negative electrode current collector a plate-shaped current collector can be used.
  • the composition of the negative electrode current collector and the core metal 10b of the positive electrode 10 may be the same or different from each other.
  • the negative electrode 20 is electrically connected to the pole pillar 140b via the connecting member 130b.
  • the negative electrode material contains the negative electrode active material after chemical conversion.
  • the chemical negative electrode material can be obtained, for example, by chemicalizing an unchemicald negative electrode material containing a raw material for the negative electrode active material.
  • the raw material for the negative electrode active material include lead powder and the like.
  • Examples of the negative electrode active material in the negative electrode material after chemical conversion include porous spongy lead and the like.
  • the negative electrode material can further contain an additive if necessary.
  • the additive for the negative electrode material include barium sulfate, reinforcing short fibers, and a carbon material (carbonaceous conductive material).
  • the reinforcing short fiber the same reinforcing short fiber as the positive electrode material can be used.
  • the carbon material include carbon black and graphite. Examples of carbon black include furnace black (Ketjen black (registered trademark), etc.), channel black, acetylene black, thermal black, and the like.
  • the material of the separator 30 is not particularly limited as long as it is a material that blocks the electrical connection between the positive electrode 10 and the negative electrode 20 and allows the electrolytic solution to permeate.
  • Examples of the material of the separator 30 include microporous polyethylene; a mixture of glass fiber and synthetic resin.
  • FIGS. 4 to 7. are views showing an example of the active material holding member according to the first embodiment.
  • 6 and 7 are views showing an example of the active material holding member according to the third embodiment.
  • 4 and 6 are schematic side views showing the active material holding member.
  • 5 and 7 are schematic plan views of the active material holding member when viewed from the axial direction of the tube.
  • 5 (a) is a schematic plan view when viewed from the arrow Va in FIG. 4
  • FIG. 5 (b) is a schematic plan view when viewed from the arrow Vb in FIG.
  • FIG. 7A is a schematic plan view when viewed from the arrow VIIa in FIG. 6, and FIG.
  • FIG. 7B is a schematic plan view when viewed from the arrow VIIb in FIG.
  • the thickness of the base material constituting the tube is not shown.
  • the active material holding member may include five or more tubes.
  • the active material holding member 50a shown in FIGS. 4 and 5 includes a first tube 60, a second tube 61, a third tube 62, and a fourth tube 63 that are adjacent to each other.
  • the first tube 60 has one end 60a and the other end 60b.
  • the first tube 60 is formed by spirally winding the base material 64 a plurality of times counterclockwise from the other end 60b toward one end 60a.
  • the first tube 60 is formed, for example, by winding the base material 64 from the other end 60b to one end 60a of the first tube 60.
  • the base material 64 is spirally wound a plurality of times counterclockwise around the central axis 60c of the first tube 60.
  • the base material having the first side and the second side facing each other is wound n + 1 times around the first side located on the other end 60b side at the time of the nth winding. It can be obtained by winding so that the second sides overlap at the time of turning.
  • the cross section of the first tube 60 perpendicular to the axial direction of the first tube 60 is, for example, a perfect circle.
  • the second tube 61 is adjacent to the first tube 60.
  • the third tube 62 is adjacent to the second tube 61.
  • the fourth tube 63 is adjacent to the first tube 60 and is attached to the first tube 60 on the opposite side of the first tube 60 from the second tube 61.
  • the second tube 61, the third tube 62, and the fourth tube 63 have the same configuration as, for example, the first tube 60.
  • the second tube 61 has one end 61a (the end located on the one end 60a side of the first tube 60 attached to the second tube 61) and the other end 61b.
  • the second tube 61 is formed by spirally winding the base material 65a a plurality of times counterclockwise from the other end 61b toward one end 61a.
  • the base material 65a is spirally wound a plurality of times counterclockwise around the central axis 61c of the second tube 61.
  • the winding end portion 66a (for example, the winding end portion) of the base material 64 at one end 60a of the first tube 60 is the first tube 60 when the first tube 60 is viewed from the one end 60a side in the axial direction of the first tube 60.
  • the winding end portion 66a may be, for example, a portion of the base material 64 located at one end 60a side.
  • the position of the winding end portion 66a has an angle ⁇ 111 with respect to the side-by-side direction of the second tube 61 with respect to the first tube 60.
  • the winding end portion 66a is a surface of the first tube 60 at one end 60a of the first tube 60 in the circumferential direction of the first tube 60 from between the first tube 60 and the second tube 61 on the base material 64. It is located at the tip of the extending portion 66b extending along the.
  • the winding end portion 66a is fixed at a position in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the first tube 60.
  • the side-by-side direction of the second tube 61 with respect to the first tube 60 is, for example, the arrangement direction of the central axis 61c of the second tube 61 with respect to the central axis 60c of the first tube 60.
  • the winding end portion 66a is located in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the first tube 60, so that the extending portion is formed at one end 60a of the first tube 60.
  • the length of 66b is shorter than the case where the winding end 66a is located in an angle range exceeding + 90 ° on the surface of the first tube 60.
  • the winding end portion 66a is preferably located in the following angle range with respect to the side-by-side direction of the second tube 61 with respect to the first tube 60.
  • the upper limit of the angle range is less than + 90 °, + 80 ° or less, + 70 ° or less, + 60 ° or less, from the viewpoint that the base material 64 is less likely to fray from the winding end 66a and the leakage of the active material is further suppressed. It is preferably + 50 ° or less, + 45 ° or less, + 40 ° or less, + 30 ° or less, + 20 ° or less, + 10 ° or less, or + 5 ° or less.
  • the angular range may exceed 0 ° and may be 0 ° or + 90 °.
  • the winding end portion 67a (for example, the winding start portion) of the base material 64 on the other end 60b of the first tube 60 is viewed from the other end 60b side in the axial direction of the first tube 60, the first tube 60 is viewed.
  • the direction in which the second tube 61 is attached to the first tube 60 (the positive direction of the X axis in FIG. 5B) is 0 °, and the first tube 60 is connected to the central axis of the first tube 60. It is preferably located in an angle range (0 to ⁇ / 2 radians) of 0 ° or more and + 90 ° or less on the surface.
  • the winding end portion 67a may be, for example, a portion of the base material 64 located on the farthest end 60b side.
  • the position of the winding end portion 67a has an angle ⁇ 112 with respect to the side-by-side direction of the second tube 61 with respect to the first tube 60.
  • the winding end portion 67a is formed on the other end 60b of the first tube 60 from between the first tube 60 and the second tube 61 on the base material 64 in the circumferential direction of the first tube 60. It is located at the tip of the extending portion 67b extending along the surface.
  • the winding end portion 67a is fixed at a position in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the first tube 60.
  • the length of the extending portion 67b at the other end 60b of the first tube 60 is increased. It is shorter than the case where the winding end portion 67a is located in an angle range exceeding + 90 ° on the surface of the first tube 60.
  • the base material 64 is unlikely to fray starting from the winding end portion 67a. Therefore, in the active material holding member 50a, the base material 64 is less likely to fray starting from the winding end portion 66a and the winding end portion 67a, so that the leakage of the active material is further suppressed.
  • the winding end portion 67a is preferably located in the following angle range with respect to the side-by-side direction of the second tube 61 with respect to the first tube 60.
  • the upper limit of the angle range is less than + 90 °, + 80 ° or less, + 70 ° or less, + 60 ° or less, from the viewpoint that the base material 64 is more difficult to fray from the winding end 67a and the leakage of the active material is further suppressed. It is preferably + 50 ° or less, + 45 ° or less, + 40 ° or less, + 30 ° or less, + 20 ° or less, + 10 ° or less, or + 5 ° or less.
  • the angular range may exceed 0 ° and may be 0 ° or + 90 °.
  • the wound end portion 68a of the base material 65a at one end 61a of the second tube 61 is a second tube 60 with respect to the first tube 60 when the second tube 61 is viewed from the one end 61a side in the axial direction of the second tube 61.
  • the side-by-side direction of the second tube 61 (the positive direction of the X-axis in FIG. 5A; the side-by-side direction of the third tube 62 with respect to the second tube 61) is 0 ° with respect to the central axis of the second tube 61. It is preferable that the tube 61 is located in an angle range (0 to ⁇ / 2 radians) of 0 ° or more and + 90 ° or less on the surface of the second tube 61.
  • the preferable range of the angle range is the same as the angle range described above with respect to the winding end portion 66a.
  • the position of the winding end portion 68a is the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 5 (a).
  • the winding end portion 68a is a surface of the second tube 61 at one end 61a of the second tube 61 in the circumferential direction of the second tube 61 from between the second tube 61 and the third tube 62 on the base material 65a.
  • the winding end portion 68a is fixed at a position in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the second tube 61.
  • the length of the extending portion 68b at one end 61a of the second tube 61 is increased. It is shorter than the case where the winding end portion 68a is located in an angle range exceeding + 90 ° on the surface of the tube 61 of 2. As a result, since the frequency of external stress being applied to the extending portion 68b is low, the base material 65a is less likely to fray starting from the winding end portion 68a.
  • the base material 64 is less likely to fray from the winding end portion 66a, and the base material 65a is less likely to fray from the winding end portion 68a, so that leakage of the active material is further suppressed.
  • the wound end portion 69a of the base material 65a at the other end 61b of the second tube 61 is the first tube 60 when the second tube 61 is viewed from the other end 61b side in the axial direction of the second tube 61.
  • the central axis of the second tube 61 where 0 ° is the side-by-side direction of the second tube 61 with respect to (the positive direction of the X-axis in FIG. 5B; the side-by-side direction of the third tube 62 with respect to the second tube 61). It is preferably located in an angle range (0 to ⁇ / 2 radians) of 0 ° or more and + 90 ° or less on the surface of the second tube 61.
  • the preferred range of the angle range is the same as the above-mentioned angle range with respect to the winding end portion 67a.
  • the position of the winding end portion 69a is the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 5B.
  • the winding end portion 69a is formed on the second tube 61 in the circumferential direction of the second tube 61 from between the second tube 61 and the third tube 62 on the base material 65a.
  • the winding end portion 69a is fixed at a position in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the second tube 61.
  • the length of the extending portion 69b at the other end 61b of the second tube 61 is increased. It is shorter than the case where the winding end portion 69a is located in an angle range exceeding + 90 ° on the surface of the second tube 61. As a result, since the frequency of external stress being applied to the extending portion 69b is low, the base material 65a is less likely to fray starting from the winding end portion 69a.
  • the base material 64 is hard to fray from the winding end portion 66a as the starting point, and the base material 65a is hard to fray from the winding end portion 69a as the starting point, so that the leakage of the active material is further suppressed.
  • An example of the active material holding member according to the second embodiment is the above-mentioned active material except that the base material 64 is formed by being spirally wound a plurality of times in a counterclockwise direction in the first tube 60. It is an active material holding member having the same structure as the holding member 50a. With such an active material holding member, it is possible to obtain the same effect as the active material holding member 50a, and a preferred embodiment is the same as that of the active material holding member 50a.
  • the active material holding member 50b shown in FIGS. 6 and 7 includes a first tube 70, a second tube 71, a third tube 72, and a fourth tube 73 that are adjacent to each other.
  • the first tube 70 has one end 70a and the other end 70b.
  • the first tube 70 is formed by spirally winding the base material 74 a plurality of times clockwise from the other end 70b toward one end 70a.
  • the first tube 70 is formed, for example, by winding the base material 74 from the other end 70b to one end 70a of the first tube 70.
  • the base material 74 is spirally wound a plurality of times clockwise around the central axis 70c of the first tube 70.
  • the base material having the first side and the second side facing each other is wound n + 1 times around the first side located on the other end 70b side at the time of the nth winding. It can be obtained by winding so that the second sides overlap at the time of turning.
  • the cross section of the first tube 70 perpendicular to the axial direction of the first tube 70 is, for example, a perfect circle.
  • the second tube 71 is adjacent to the first tube 70.
  • the third tube 72 is adjacent to the second tube 71.
  • the fourth tube 73 is adjacent to the first tube 70 and is attached to the first tube 70 on the opposite side of the first tube 70 from the second tube 71.
  • the second tube 71, the third tube 72, and the fourth tube 73 have the same configuration as, for example, the first tube 70.
  • the second tube 71 has one end 71a (the end located on the one end 70a side of the first tube 70 attached to the second tube 71) and the other end 71b.
  • the second tube 71 is formed by spirally winding the base material 75a a plurality of times clockwise from the other end 70b toward one end 70a.
  • the base material 75a is spirally wound a plurality of times clockwise around the central axis 71c of the second tube 71.
  • the winding end portion 76a (for example, the winding end portion) of the base material 74 at one end 70a of the first tube 70 is the first tube 70 when the first tube 70 is viewed from the one end 70a side in the axial direction of the first tube 70.
  • the winding end portion 76a may be, for example, a portion of the base material 74 located at one end 70a side.
  • the position of the winding end portion 76a has an angle ⁇ 211 with respect to the side-by-side direction of the second tube 71 with respect to the first tube 70.
  • the winding end portion 76a is a surface of the first tube 70 at one end 70a of the first tube 70 in the circumferential direction of the first tube 70 from between the first tube 70 and the second tube 71 on the base material 74. It is located at the tip of the extending portion 76b extending along the.
  • the winding end portion 76a is fixed at a position in the above-mentioned angle range of ⁇ 90 ° or more and 0 ° or less on the surface of the first tube 70.
  • the side-by-side direction of the second tube 71 with respect to the first tube 70 is, for example, the arrangement direction of the central axis 71c of the second tube 71 with respect to the central axis 70c of the first tube 70.
  • the winding end portion 76a extends at one end 70a of the first tube 70 by being located in the above-mentioned angle range of ⁇ 90 ° or more and 0 ° or less on the surface of the first tube 70.
  • the length of the portion 76b is shorter than the case where the winding end portion 76a is located in an angle range of less than ⁇ 90 ° on the surface of the first tube 70.
  • the winding end portion 76a is preferably located in the following angle range with respect to the side-by-side direction of the second tube 71 with respect to the first tube 70.
  • the upper limit of the angle range is more than -90 °, -80 ° or more, -70 ° or more, from the viewpoint that the base material 74 is more difficult to fray from the winding end 76a and the leakage of the active material is further suppressed.
  • -60 ° or higher, ⁇ 50 ° or higher, ⁇ 45 ° or higher, ⁇ 40 ° or higher, ⁇ 30 ° or higher, ⁇ 20 ° or higher, ⁇ 10 ° or higher, or ⁇ 5 ° or higher is preferable.
  • the angular range may be less than 0 ° and may be 0 ° or ⁇ 90 °.
  • the winding end portion 77a (for example, the winding start portion) of the base material 74 on the other end 70b of the first tube 70 is viewed from the other end 70b side in the axial direction of the first tube 70, the first tube 70 is viewed.
  • the direction in which the second tube 71 is juxtaposed with respect to the first tube 70 is 0 °, and the first tube 70 with respect to the central axis of the first tube 70. It is preferably located in an angle range (3 ⁇ / 2 to 2 ⁇ radians) of ⁇ 90 ° or more and 0 ° or less on the surface.
  • the winding end portion 77a may be, for example, a portion of the base material 74 located on the farthest end 70b side.
  • the position of the winding end portion 77a has an angle ⁇ 212 with respect to the side-by-side direction of the second tube 71 with respect to the first tube 70.
  • the winding end portion 77a is formed on the other end 70b of the first tube 70 from between the first tube 70 and the second tube 71 on the base material 74 in the circumferential direction of the first tube 70. It is located at the tip of the extending portion 77b extending along the surface.
  • the winding end portion 77a is fixed at a position in the above-mentioned angle range of ⁇ 90 ° or more and 0 ° or less on the surface of the first tube 70.
  • the length of the extending portion 77b at the other end 70b of the first tube 70 becomes longer.
  • the base material 74 is less likely to fray starting from the winding end portion 77a. Therefore, in the active material holding member 50b, the base material 74 is unlikely to fray starting from the winding end portion 76a and the winding end portion 77a, so that the leakage of the active material is further suppressed.
  • the winding end portion 77a is preferably located in the following angle range with respect to the side-by-side direction of the second tube 71 with respect to the first tube 70.
  • the upper limit of the angle range is more than -90 °, -80 ° or more, -70 ° or more, from the viewpoint that the base material 74 is more difficult to fray from the winding end 77a and the leakage of the active material is further suppressed.
  • -60 ° or higher, ⁇ 50 ° or higher, ⁇ 45 ° or higher, ⁇ 40 ° or higher, ⁇ 30 ° or higher, ⁇ 20 ° or higher, ⁇ 10 ° or higher, or ⁇ 5 ° or higher is preferable.
  • the angular range may be less than 0 ° and may be 0 ° or ⁇ 90 °.
  • the wound end portion 78a of the base material 75a at one end 71a of the second tube 71 is a second tube 70 with respect to the first tube 70 when the second tube 71 is viewed from the one end 71a side in the axial direction of the second tube 71.
  • the side-by-side direction of the second tube 71 (the positive direction of the X-axis in FIG. 7 (a). It is preferable that the tube 71 is located in an angle range (3 ⁇ / 2 to 2 ⁇ radians) of ⁇ 90 ° or more and 0 ° or less on the surface of the second tube 71.
  • the preferred range of the angle range is the same as the above-mentioned angle range with respect to the winding end portion 76a.
  • the winding end 78a is a surface of the second tube 71 at one end 71a of the second tube 71 in the circumferential direction of the second tube 71 from between the second tube 71 and the third tube 72 on the base material 75a. It is located at the tip of the extending portion 78b extending along the.
  • the winding end portion 78a is fixed at a position in the above-mentioned angle range of ⁇ 90 ° or more and 0 ° or less on the surface of the second tube 71.
  • the length of the extending portion 78b at one end 71a of the second tube 71 is increased. It is shorter than the case where the winding end 78a is located in the angle range below ⁇ 90 ° on the surface of the second tube 71. As a result, since the frequency of external stress being applied to the extending portion 78b is low, the base material 75a is less likely to fray starting from the winding end portion 78a.
  • the base material 74 is hard to fray from the winding end portion 76a as the starting point, and the base material 75a is hard to fray from the winding end portion 78a, so that the leakage of the active material is further suppressed.
  • the wound end portion 79a of the base material 75a on the other end 71b of the second tube 71 is the first tube 70 when the second tube 71 is viewed from the other end 71b side in the axial direction of the second tube 71.
  • the central axis of the second tube 71 where 0 ° is the side-by-side direction of the second tube 71 with respect to (the positive direction of the X-axis in FIG. 7B; the side-by-side direction of the third tube 62 with respect to the second tube 61). It is preferably located in an angle range (3 ⁇ / 2 to 2 ⁇ radians) of ⁇ 90 ° or more and 0 ° or less on the surface of the second tube 71.
  • the preferable range of the angle range is the same as the angle range described above with respect to the winding end portion 77a.
  • the winding end portion 79a is formed on the second tube 71 in the circumferential direction of the second tube 71 from between the second tube 71 and the third tube 72 on the base material 75a. It is located at the tip of the extending portion 79b extending along the surface.
  • the winding end portion 79a is fixed at a position in the above-mentioned angle range of ⁇ 90 ° or more and 0 ° or less on the surface of the second tube 71.
  • the length of the extending portion 79b at the other end 71b of the second tube 71 becomes longer. It is shorter than the case where the winding end portion 79a is located in the angle range below ⁇ 90 ° on the surface of the second tube 71. As a result, since the frequency of external stress being applied to the extending portion 79b is low, the base material 75a is less likely to fray starting from the winding end portion 79a.
  • the base material 74 is hard to fray from the winding end portion 76a as the starting point, and the base material 75a is hard to fray from the winding end portion 79a as the starting point, so that the leakage of the active material is further suppressed.
  • the active material holding member according to the fourth embodiment is described above, except that the base material 74 is formed by being spirally wound a plurality of times in a clockwise direction in the first tube 70. It is an active material holding member having the same structure as the member 50b. With such an active material holding member, it is possible to obtain the same effect as the active material holding member 50b, and a preferred embodiment is the same as that of the active material holding member 50b.
  • the mode of the active material holding member is not limited to the above-mentioned mode, and various modified modes are possible.
  • the configuration (winding direction of the base material, the position of the winding end, etc.) of the tubes other than the first tube (for example, the second tube) may be the same as or different from the configuration of the first tube. May be good.
  • the active material holding member and the electrode having the active material holding member are preferably used in a liquid lead-acid battery (active material holding member and electrode for a liquid lead-acid battery), and the lead-acid battery is a liquid lead-acid battery.
  • the lead-acid battery is a liquid lead-acid battery.
  • the entire electrode tends to be immersed in the electrolytic solution, and the amount of the electrolytic solution tends to be larger than that of a control valve type lead-acid battery or the like. In this case, since the discharge capacity is not easily regulated by the amount of the electrolytic solution, the discharge capacity tends to be increased.
  • the stratification of the electrolytic solution increases the concentration of sulfuric acid in the region below the electrode, and the base material below the tube in the electrode tends to deteriorate.
  • the active material for example, the positive electrode active material
  • the active material becomes muddy, and the active material easily leaks out. Become. If the base material of the tube is frayed in these states, the active material leaks significantly.
  • the advantages of the liquid lead-acid battery should be utilized while suppressing the leakage of the active material. Can be done.
  • the active material holding member may be in the mode shown in FIGS. 8 to 11.
  • 8 to 11 are schematic plan views of the active material holding member when viewed from the axial direction of the tube. In FIGS. 8 to 11, for convenience, the thickness of the base material constituting the tube is not shown. Although only four tubes are shown in FIGS. 8 to 11 for convenience, the active material holding member may include five or more tubes.
  • the active material holding members 50c to 50e shown in FIGS. 8 and 9 are the same as the active material holding members 50a shown in FIG. 5, except that the configuration of the second tube 61 is different.
  • the second tube 61 is located at one end 61a (one end 60a side of the first tube 60 attached to the second tube 61). It has an end) and the other end 61b.
  • the second tube 61 is formed by spirally winding the base material 65b a plurality of times counterclockwise from the other end 61b toward one end 61a.
  • the base material 65b is spirally wound a plurality of times counterclockwise around the central axis 61c of the second tube 61.
  • the winding end portion 68c of the base material 65b at one end 61a of the second tube 61 saw the second tube 61 from the one end 61a side in the axial direction of the second tube 61.
  • the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 8A; the side-by-side direction of the third tube 62 with respect to the second tube 61) is set to 0 °. It is preferably located in an angle range ( ⁇ to 3 ⁇ / 2 radians) of ⁇ 180 ° or more and ⁇ 90 ° or less on the surface of the second tube 61 with respect to the central axis of the second tube 61.
  • the position of the winding end portion 68c is the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 8A.
  • the winding end portion 68c is a surface of the second tube 61 at one end 61a of the second tube 61 in the circumferential direction of the second tube 61 from between the first tube 60 and the second tube 61 on the base material 65b. It is located at the tip of the extending portion 68d extending along the.
  • the winding end portion 68c is fixed at a position in the above-mentioned angle range of ⁇ 180 ° or more and ⁇ 90 ° or less on the surface of the second tube 61.
  • the winding end portion 68c Since the winding end portion 68c is located in the above-mentioned angle range of ⁇ 180 ° or more and ⁇ 90 ° or less on the surface of the second tube 61, the length of the extending portion 68d at one end 61a of the second tube 61 becomes longer. , It is shorter than the case where the winding end portion 68c is located in an angle range exceeding ⁇ 90 ° on the surface of the second tube 61. As a result, since the frequency of external stress being applied to the extending portion 68d is low, the base material 65b is less likely to fray starting from the winding end portion 68c.
  • the base material 64 is less likely to fray from the winding end portion 66a, and the base material 65b is less likely to fray from the winding end portion 68c, so that leakage of the active material is further suppressed.
  • the winding end portion 68c is preferably located in the following angle range with respect to the side-by-side direction of the second tube 61 with respect to the first tube 60.
  • the upper limit of the angle range is less than -90 °, -100 ° or less, -110 ° or less, and-from the viewpoint that the base material 65b is more difficult to fray starting from the winding end 68c and the leakage of the active material is further suppressed. It is preferably 120 ° or less, -130 ° or less, -135 ° or less, -140 ° or less, -150 ° or less, -160 ° or less, -170 ° or less, or -175 ° or less.
  • the angular range may exceed ⁇ 180 ° and may be ⁇ 180 ° or ⁇ 90 °.
  • the winding end portion 69c of the base material 65b at the other end 61b of the second tube 61 is a second tube 61 from the other end 61b side in the axial direction of the second tube 61.
  • the side-by-side direction of the second tube 61 with respect to the first tube 60 is 0 °.
  • the position of the winding end portion 69c is the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 9A.
  • the winding end portion 69c is formed of the second tube 61 in the circumferential direction of the second tube 61 from between the first tube 60 and the second tube 61 on the base material 65b. It is located at the tip of the extending portion 69d extending along the surface.
  • the winding end portion 69c is fixed at a position in the above-mentioned angle range of ⁇ 180 ° or more and ⁇ 90 ° or less on the surface of the second tube 61.
  • the length of the extending portion 69d at the other end 61b of the second tube 61 is shorter than the case where the winding end portion 69c is located in an angle range exceeding ⁇ 90 ° on the surface of the second tube 61.
  • the base material 65b is less likely to fray starting from the winding end portion 69c.
  • the base material 64 is less likely to fray from the winding end portion 66a, and the base material 65b is less likely to fray from the winding end portion 69c, so that leakage of the active material is further suppressed.
  • the winding end portion 69c is preferably located in the following angle range with respect to the side-by-side direction of the second tube 61 with respect to the first tube 60.
  • the upper limit of the angle range is less than -90 °, -100 ° or less, -110 ° or less, and-from the viewpoint that the base material 65b is more difficult to fray starting from the winding end 69c and the leakage of the active material is further suppressed. It is preferably 120 ° or less, -130 ° or less, -135 ° or less, -140 ° or less, -150 ° or less, -160 ° or less, -170 ° or less, or -175 ° or less.
  • the angular range may exceed ⁇ 180 ° and may be ⁇ 180 ° or ⁇ 90 °.
  • the second tube 61 is located at one end 61a (one end 60a side of the first tube 60 attached to the second tube 61). It has an end) and the other end 61b.
  • the second tube 61 is formed by spirally winding the base material 65c a plurality of times clockwise from the other end 61b toward one end 61a.
  • the base material 65c is spirally wound a plurality of times clockwise around the central axis 61c of the second tube 61.
  • the winding end portion 68e of the base material 65c at one end 61a of the second tube 61 saw the second tube 61 from the one end 61a side in the axial direction of the second tube 61.
  • the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 8B; the side-by-side direction of the third tube 62 with respect to the second tube 61) is set to 0 °. It is preferably located in an angle range ( ⁇ / 2 to ⁇ radians) of + 90 ° or more and + 180 ° or less on the surface of the second tube 61 with respect to the central axis of the second tube 61.
  • the position of the winding end portion 68e is the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 8B.
  • the winding end portion 68e is a surface of the second tube 61 at one end 61a of the second tube 61 in the circumferential direction of the second tube 61 from between the first tube 60 and the second tube 61 on the base material 65c. It is located at the tip of the extending portion 68f extending along the.
  • the winding end portion 68e is fixed at a position in the above-mentioned angle range of + 90 ° or more and + 180 ° or less on the surface of the second tube 61.
  • the length of the extending portion 68f at one end 61a of the second tube 61 becomes the second. It is shorter than the case where the winding end portion 68e is located in the angle range below + 90 ° on the surface of the tube 61 of 2. As a result, since the frequency of external stress being applied to the extending portion 68f is low, the base material 65c is less likely to fray starting from the winding end portion 68e.
  • the base material 64 is hard to fray from the winding end portion 66a as the starting point, and the base material 65c is hard to fray from the winding end portion 68e, so that the leakage of the active material is further suppressed.
  • the winding end portion 68e is preferably located in the following angle range with respect to the side-by-side direction of the second tube 61 with respect to the first tube 60.
  • the upper limit of the angle range is more than + 90 °, + 100 ° or more, + 110 ° or more, + 120 ° or more from the viewpoint that the base material 65c is more difficult to fray starting from the winding end portion 68e and the leakage of the active material is further suppressed.
  • + 130 ° or more, + 135 ° or more, + 140 ° or more, + 150 ° or more, + 160 ° or more, + 170 ° or more, or + 175 ° or more are preferable.
  • the angular range may be less than + 180 ° and may be + 90 ° or + 180 °.
  • the winding end portion 69e of the base material 65c at the other end 61b of the second tube 61 connects the second tube 61 from the other end 61b side in the axial direction of the second tube 61.
  • the side-by-side direction of the second tube 61 with respect to the first tube 60 is 0 °.
  • the second tube 61 is located in an angle range ( ⁇ / 2 to ⁇ radians) of + 90 ° or more and + 180 ° or less on the surface of the second tube 61 with respect to the central axis.
  • the position of the winding end portion 69e is the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 9B.
  • the winding end portion 69e is formed of the second tube 61 in the circumferential direction of the second tube 61 from between the first tube 60 and the second tube 61 in the base material 65c. It is located at the tip of the extending portion 69f extending along the surface.
  • the winding end portion 69e is fixed at a position in the above-mentioned angle range of + 90 ° or more and + 180 ° or less on the surface of the second tube 61.
  • the length of the extending portion 69f at the other end 61b of the second tube 61 is increased. It is shorter than the case where the winding end portion 69e is located in the angle range below + 90 ° on the surface of the second tube 61. As a result, since the frequency of external stress being applied to the extending portion 69f is low, the base material 65c is less likely to fray starting from the winding end portion 69e.
  • the base material 64 is less likely to fray from the winding end portion 66a, and the base material 65c is less likely to fray from the winding end portion 69e, so that leakage of the active material is further suppressed.
  • the winding end portion 69e is preferably located in the following angle range with respect to the side-by-side direction of the second tube 61 with respect to the first tube 60.
  • the upper limit of the angle range is more than + 90 °, + 100 ° or more, + 110 ° or more, + 120 ° or more from the viewpoint that the base material 65c is more difficult to fray starting from the winding end portion 69e and the leakage of the active material is further suppressed.
  • + 130 ° or more, + 135 ° or more, + 140 ° or more, + 150 ° or more, + 160 ° or more, + 170 ° or more, or + 175 ° or more are preferable.
  • the angular range may be less than + 180 ° and may be + 90 ° or + 180 °.
  • the second tube 61 is located at one end 61a (one end 60a side of the first tube 60 attached to the second tube 61). It has an end) and the other end 61b.
  • the second tube 61 is formed by spirally winding the base material 65d a plurality of times clockwise from the other end 61b toward one end 61a.
  • the base material 65d is spirally wound a plurality of times clockwise around the central axis 61c of the second tube 61.
  • the wound end portion 68 g of the base material 65d at one end 61a of the second tube 61 saw the second tube 61 from the one end 61a side in the axial direction of the second tube 61.
  • the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 8C; the side-by-side direction of the third tube 62 with respect to the second tube 61) is set to 0 °. It is preferably located in an angle range (3 ⁇ / 2 to 2 ⁇ radians) of ⁇ 90 ° or more and 0 ° or less on the surface of the second tube 61 with respect to the central axis of the second tube 61.
  • the preferable range of the angle range is the same as the angle range described above with respect to the winding end portion 77a.
  • the position of the winding end portion 68 g is the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 8C.
  • the winding end portion 68g is a surface of the second tube 61 in the circumferential direction of the second tube 61 from between the second tube 61 and the third tube 62 on the base material 65d.
  • the winding end portion 68 g is fixed at a position in the above-mentioned angle range of ⁇ 90 ° or more and 0 ° or less on the surface of the second tube 61.
  • the length of the extending portion 68h at one end 61a of the second tube 61 is increased. It is shorter than the case where the winding end portion 68 g is located in the angle range below ⁇ 90 ° on the surface of the second tube 61. As a result, since the frequency of external stress being applied to the extending portion 68h is low, the base material 65d is less likely to fray starting from the winding end portion 68g.
  • the base material 64 is less likely to fray from the winding end portion 66a, and the base material 65d is less likely to fray from the winding end portion 68g, so that leakage of the active material is further suppressed.
  • the winding end portion 69g of the base material 65d at the other end 61b of the second tube 61 is a second tube 61 from the other end 61b side in the axial direction of the second tube 61.
  • the side-by-side direction of the second tube 61 with respect to the first tube 60 is 0 °.
  • an angle range (3 ⁇ / 2 to 2 ⁇ radians) of ⁇ 90 ° or more and 0 ° or less on the surface of the second tube 61 with respect to the central axis of the second tube 61.
  • the preferable range of the angle range is the same as the angle range described above with respect to the winding end portion 77a.
  • the position of the winding end portion 69g is the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 9C.
  • the side-by-side direction of the third tube 62 with respect to the second tube 61 It has an angle ⁇ 122d with respect to.
  • the winding end portion 69g is formed on the second tube 61 in the circumferential direction of the second tube 61 from between the second tube 61 and the third tube 62 on the base material 65d. It is located at the tip of the extending portion 69h extending along the surface.
  • the winding end portion 69 g is fixed at a position in the above-mentioned angle range of ⁇ 90 ° or more and 0 ° or less on the surface of the second tube 61.
  • the length of the extending portion 69h at the other end 61b of the second tube 61 becomes longer. It is shorter than the case where the winding end portion 69g is located in the angle range below ⁇ 90 ° on the surface of the second tube 61. As a result, since the frequency of external stress being applied to the extending portion 69h is low, the base material 65d is less likely to fray starting from the winding end portion 69g.
  • the base material 64 is less likely to fray from the winding end 66a as the starting point, and the base material 65d is less likely to fray starting from the winding end 69g, so that the leakage of the active material is further suppressed.
  • the active material holding members 50f to 50h shown in FIGS. 10 and 11 are the same as the active material holding member 50b shown in FIG. 7, except that the configuration of the second tube 71 is different.
  • the second tube 71 is located at one end 71a (one end 70a side of the first tube 70 attached to the second tube 71). It has an end) and the other end 71b.
  • the second tube 71 is formed by spirally winding the base material 75b a plurality of times clockwise from the other end 71b toward one end 71a.
  • the base material 75b is spirally wound a plurality of times clockwise around the central axis 71c of the second tube 71.
  • the winding end portion 78c of the base material 75b at one end 71a of the second tube 71 saw the second tube 71 from the one end 71a side in the axial direction of the second tube 71.
  • the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 10A; the side-by-side direction of the third tube 72 with respect to the second tube 71) is set to 0 °. It is preferably located in an angle range ( ⁇ / 2 to ⁇ radians) of + 90 ° or more and + 180 ° or less on the surface of the second tube 71 with respect to the central axis of the second tube 71.
  • the preferable range of the angle range is the same as the angle range described above with respect to the winding end portion 68e.
  • the position of the winding end 78c is the direction in which the second tube 71 is attached to the first tube 70 (the positive direction of the X-axis in FIG. 10 (a).
  • the winding end 78c is a surface of the second tube 71 at one end 71a of the second tube 71 in the circumferential direction of the second tube 71 from between the first tube 70 and the second tube 71 on the base material 75b. It is located at the tip of the extending portion 78d extending along the.
  • the winding end 78c is fixed at a position on the surface of the second tube 71 in the above-mentioned angle range of + 90 ° or more and + 180 ° or less.
  • the winding end portion 78c Since the winding end portion 78c is located in the above-mentioned angle range of + 90 ° or more and + 180 ° or less on the surface of the second tube 71, the length of the extending portion 78d at one end 71a of the second tube 71 is increased. It is shorter than the case where the winding end 78c is located in the angle range below + 90 ° on the surface of the tube 71 of 2. As a result, since the frequency of external stress being applied to the extending portion 78d is low, the base material 75b is less likely to fray starting from the winding end portion 78c.
  • the base material 74 is hard to fray starting from the winding end portion 76a, and the base material 75b is hard to fray starting from the winding end portion 78c, so that the leakage of the active material is further suppressed.
  • the winding end portion 79c of the base material 75b at the other end 71b of the second tube 71 is a second tube 71 from the other end 71b side in the axial direction of the second tube 71.
  • the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 11A; the side-by-side direction of the third tube 72 with respect to the second tube 71) is 0 °. Therefore, it is preferably located in an angle range ( ⁇ / 2 to ⁇ radians) of + 90 ° or more and + 180 ° or less on the surface of the second tube 71 with respect to the central axis of the second tube 71.
  • the preferable range of the angle range is the same as the angle range described above with respect to the winding end portion 69e.
  • the position of the winding end portion 79c is the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 11A.
  • the winding end portion 79c is formed on the second tube 71 in the circumferential direction of the second tube 71 from between the first tube 70 and the second tube 71 on the base material 75b.
  • the winding end portion 79c is fixed at a position in the above-mentioned angle range of + 90 ° or more and + 180 ° or less on the surface of the second tube 71.
  • the length of the extending portion 79d at the other end 71b of the second tube 71 is increased. It is shorter than the case where the winding end portion 79c is located in the angle range below + 90 ° on the surface of the second tube 71. As a result, since the frequency of external stress being applied to the extending portion 79d is low, the base material 75b is less likely to fray starting from the winding end portion 79c.
  • the base material 74 is hard to fray starting from the winding end portion 76a, and the base material 75b is hard to fray starting from the winding end portion 79c, so that the leakage of the active material is further suppressed.
  • the second tube 71 is located at one end 71a (one end 70a side of the first tube 70 attached to the second tube 71). It has an end) and the other end 71b.
  • the second tube 71 is formed by spirally winding the base material 75c a plurality of times counterclockwise from the other end 71b toward one end 71a.
  • the base material 75c is spirally wound a plurality of times counterclockwise around the central axis 71c of the second tube 71.
  • the winding end portion 78e of the base material 75c at one end 71a of the second tube 71 saw the second tube 71 from the one end 71a side in the axial direction of the second tube 71.
  • the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 10B; the side-by-side direction of the third tube 72 with respect to the second tube 71) is set to 0 °. It is preferably located in an angle range ( ⁇ to 3 ⁇ / 2 radians) of ⁇ 180 ° or more and ⁇ 90 ° or less on the surface of the second tube 71 with respect to the central axis of the second tube 71.
  • the preferred range of the angle range is the same as the above-mentioned angle range with respect to the winding end portion 68c.
  • the position of the winding end portion 78e is the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 10B.
  • the winding end 78e is a surface of the second tube 71 at one end 71a of the second tube 71 in the circumferential direction of the second tube 71 from between the first tube 70 and the second tube 71 in the base material 75c.
  • the winding end 78e is fixed at a position on the surface of the second tube 71 in the above-mentioned angle range of ⁇ 180 ° or more and ⁇ 90 ° or less.
  • the length of the extending portion 78f at one end 71a of the second tube 71 becomes longer.
  • the winding end 78e is shorter than the case where the winding end 78e is located in an angle range exceeding ⁇ 90 ° on the surface of the second tube 71.
  • the base material 74 is hard to fray from the winding end portion 76a as the starting point, and the base material 75c is hard to fray from the winding end portion 78e, so that the leakage of the active material is further suppressed.
  • the winding end portion 79e of the base material 75c at the other end 71b of the second tube 71 connects the second tube 71 from the other end 71b side in the axial direction of the second tube 71.
  • the side-by-side direction of the second tube 71 with respect to the first tube 70 is 0 °.
  • an angle range ( ⁇ to 3 ⁇ / 2 radians) of ⁇ 180 ° or more and ⁇ 90 ° or less on the surface of the second tube 71 with respect to the central axis of the second tube 71.
  • the preferred range of the angle range is the same as the above-mentioned angle range with respect to the winding end portion 69c.
  • the position of the winding end portion 79e is the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 11B.
  • the side-by-side direction of the third tube 72 with respect to the second tube 71 It has an angle ⁇ 222c with respect to.
  • the winding end portion 79e is formed of the second tube 71 in the circumferential direction of the second tube 71 from between the first tube 70 and the second tube 71 in the base material 75c. It is located at the tip of the extending portion 79f extending along the surface.
  • the winding end portion 79e is fixed at a position in the above-mentioned angle range of ⁇ 180 ° or more and ⁇ 90 ° or less on the surface of the second tube 71.
  • the length of the extending portion 79f at the other end 71b of the second tube 71 is shorter than the case where the winding end portion 79e is located in an angle range exceeding ⁇ 90 ° on the surface of the second tube 71.
  • the base material 75c is less likely to fray starting from the winding end portion 79e.
  • the base material 74 is hard to fray from the winding end portion 76a as the starting point, and the base material 75c is hard to fray from the winding end portion 79e, so that the leakage of the active material is further suppressed.
  • the second tube 71 is located at one end 71a (one end 70a side of the first tube 70 attached to the second tube 71). It has an end) and the other end 71b.
  • the second tube 71 is formed by spirally winding the base material 75d a plurality of times counterclockwise from the other end 71b toward one end 71a.
  • the base material 75d is spirally wound a plurality of times counterclockwise around the central axis 71c of the second tube 71.
  • the winding end portion 78g of the base material 75d at one end 71a of the second tube 71 saw the second tube 71 from the one end 71a side in the axial direction of the second tube 71.
  • the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 10C; the side-by-side direction of the third tube 72 with respect to the second tube 71) is set to 0 °. It is preferably located in an angle range (0 to ⁇ / 2 radians) of 0 ° or more and + 90 ° or less on the surface of the second tube 71 with respect to the central axis of the second tube 71.
  • the preferable range of the angle range is the same as the angle range described above with respect to the winding end portion 66a.
  • the position of the winding end portion 78g is the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 10C.
  • the winding end portion 78g is formed on the surface of the second tube 71 in the circumferential direction of the second tube 71 from between the second tube 71 and the third tube 72 on the base material 75d.
  • the winding end portion 78 g is fixed at a position in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the second tube 71.
  • the length of the extending portion 78h at one end 71a of the second tube 71 becomes the second. It is shorter than the case where the winding end portion 78g is located in an angle range exceeding + 90 ° on the surface of the tube 71 of 2. As a result, since the frequency of external stress being applied to the extending portion 78h is low, the base material 75d is less likely to fray starting from the winding end portion 78g.
  • the base material 74 is hard to fray starting from the winding end portion 76a, and the base material 75d is hard to fray starting from the winding end portion 78g, so that the leakage of the active material is further suppressed.
  • the winding end portion 79g of the base material 75d at the other end 71b of the second tube 71 is a second tube 71 from the other end 71b side in the axial direction of the second tube 71.
  • the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 11C; the side-by-side direction of the third tube 72 with respect to the second tube 71) is 0 °. Therefore, it is preferably located in an angle range (0 to ⁇ / 2 radians) of 0 ° or more and + 90 ° or less on the surface of the second tube 71 with respect to the central axis of the second tube 71.
  • the preferred range of the angle range is the same as the above-mentioned angle range with respect to the winding end portion 67a.
  • the position of the winding end portion 79g is the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 11C.
  • the winding end portion 79g is formed on the second tube 71 in the circumferential direction of the second tube 71 from between the second tube 71 and the third tube 72 on the base material 75d.
  • the winding end portion 79 g is fixed at a position in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the second tube 71.
  • the length of the extending portion 79h at the other end 71b of the second tube 71 is increased. It is shorter than the case where the winding end portion 79 g is located in an angle range exceeding + 90 ° on the surface of the second tube 71. As a result, since the frequency of external stress being applied to the extending portion 79h is low, the base material 75d is less likely to fray starting from the winding end portion 79g.
  • the base material 74 is hard to fray starting from the winding end portion 76a, and the base material 75d is hard to fray starting from the winding end portion 79g, so that the leakage of the active material is further suppressed.
  • the cross section of the tube perpendicular to the axial direction of the tube may be a perfect circle as in the above-described embodiment, or may be an ellipse or the like.
  • the center of gravity in the cross section of the tube may be used.
  • the base material may include a non-woven fabric, a woven fabric, and the like, and includes, for example, a non-woven fabric.
  • the base material can contain a resin material.
  • the resin material include polyester (for example, polyalkylene terephthalate such as polyethylene terephthalate), polyolefin (polyethylene, polypropylene, etc.), polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polycarbonate and the like.
  • the base material can contain, for example, polyester, and can include a non-woven fabric containing polyester.
  • the fibers may be oriented.
  • the non-woven fabric may have an MD direction (mechanical direction) in manufacturing the non-woven fabric and a CD direction (width direction) orthogonal to the MD direction. Since the fibers are easily oriented in the MD direction, the MD direction tends to have higher mechanical strength than the CD direction. Therefore, a resin sheet having high mechanical strength in the CD direction is a sheet having high mechanical strength even in a direction in which the mechanical strength is relatively low (CD direction).
  • the base material contains a non-woven fabric
  • at least one tube (for example, the first tube and the first tube) in the active material holding member is easily suppressed from the viewpoint that the influence of mechanical strength due to the fiber orientation is easily suppressed and the leakage of the active material is easily suppressed.
  • the MD direction and the CD direction of the non-woven fabric are inclined with respect to the axial direction of the tube.
  • the inclination angle in the MD direction or the CD direction with respect to the axial direction of the tube is preferably in the following range from the viewpoint that the influence of the mechanical strength due to the fiber orientation is easily suppressed and the leakage of the active material is easily suppressed.
  • the inclination angle is preferably more than 0 °, more preferably 10 ° or more, further preferably 20 ° or more, particularly preferably 30 ° or more, extremely preferably 40 ° or more, and very preferably 43 ° or more.
  • the inclination angle is preferably less than 90 °, more preferably 80 ° or less, further preferably 70 ° or less, particularly preferably 60 ° or less, extremely preferably 50 ° or less, and very preferably 47 ° or less. From these viewpoints, the inclination angle is preferably more than 0 ° and less than 90 °, more preferably 10 to 80 °, still more preferably 43 to 47 °.
  • the inclination angle is 45 °, it is presumed that the influence of mechanical strength due to fiber orientation is most easily suppressed.
  • the base material may be a porous body having pores.
  • the base material preferably includes a portion having an average pore diameter in the following range.
  • the average pore diameter of the base material is preferably 60 ⁇ m or less, more preferably 50 ⁇ m or less, further preferably 45 ⁇ m or less, and particularly preferably 40 ⁇ m or less, from the viewpoint of easily suppressing the outflow of the electrode material.
  • the average pore diameter of the base material is preferably more than 2 ⁇ m, more preferably 5 ⁇ m or more, further preferably 10 ⁇ m or more, particularly preferably 20 ⁇ m or more, extremely preferably 30 ⁇ m or more, and 35 ⁇ m or more from the viewpoint of easily reducing electrical resistance. Is very preferable.
  • the average pore diameter of the base material is preferably more than 2 ⁇ m and 60 ⁇ m or less.
  • the average pore diameter can be measured with a pore distribution measuring device (for example, AUTO PORE IV 9520 manufactured by Shimadzu Corporation).
  • At least one tube (for example, at least one selected from the group consisting of a first tube and a second tube) in the active material holding member has a thickness in the following range (wall thickness. Thickness of the wall portion constituting the tube). It may be provided with a portion having (the same applies hereinafter).
  • the thickness of the tube may be in the following range.
  • the thickness of the tube may be 0.05 mm or more, 0.1 mm or more, or 0.2 mm or more.
  • the thickness of the tube may be 1 mm or less, 0.8 mm or less, 0.6 mm or less, or 0.4 mm or less. From these viewpoints, the thickness of the tube may be 0.05 to 1 mm.
  • the length of at least one tube (for example, at least one selected from the group consisting of the first tube and the second tube) in the active material holding member may be in the following range.
  • the length of the tube may be 50 mm or more, 100 mm or more, 120 mm or more, 160 mm or more, or 200 mm or more.
  • the length of the tube may be 800 mm or less, 750 mm or less, 700 mm or less, 650 mm or less, 600 mm or less, or 580 mm or less. From these points of view, the length of the tube may be 50-800 mm.
  • the method for manufacturing a lead-acid battery according to the present embodiment includes an assembly step of assembling a component including an electrode having an active material holding member to obtain a lead-acid battery.
  • a non-chemical positive electrode and a non-chemical negative electrode are laminated, and the current collecting portions of electrodes having the same polarity are welded with a strap to obtain an electrode group.
  • This group of electrodes is arranged in the battery case to produce an unchemical battery.
  • the unchemical positive electrode and the unchemical negative electrode may be laminated via a separator.
  • the lead-acid battery manufacturing method may include an active material holding member manufacturing step for manufacturing an active material holding member before the assembling step.
  • the active material holding member manufacturing process includes a process of forming a tube by spirally winding a base material counterclockwise or clockwise, and a process of arranging a plurality of tubes in a direction orthogonal to the axial direction of the tube. May have.
  • the lead-acid battery manufacturing method may include an electrode manufacturing step of manufacturing an electrode having an active material holding member.
  • the electrode manufacturing step includes a positive electrode manufacturing step and a negative electrode manufacturing step.
  • a case where the positive electrode has an active material holding member will be described.
  • a positive electrode having a core metal inserted in the tube of the active material holding member and a positive electrode material filled between the tube and the core metal is obtained.
  • a raw material for the positive electrode active material or the like is filled between the core metal and the tube, and the lower end of the tube is closed with a lower joint to form a non-chemical electrode.
  • a positive electrode having the above positive electrode material can be obtained.
  • the upper end of the tube may be closed with an upper joint.
  • a negative electrode material paste containing a raw material for a negative electrode active material is filled in a negative electrode current collector (for example, a current collector lattice (cast lattice body, expanded lattice body, etc.)), and then aged and dried. Therefore, a negative electrode having a non-chemical negative electrode material can be obtained.
  • a negative electrode current collector for example, a current collector lattice (cast lattice body, expanded lattice body, etc.
  • the lead-acid battery manufacturing method may include a chemical conversion treatment step of performing a chemical conversion treatment of a positive electrode and a negative electrode.
  • the chemical conversion treatment step may be carried out after the assembling step, or may be carried out in the electrode manufacturing step before the assembling step (tank chemical conversion).
  • the chemical conversion treatment is performed by energizing a direct current while the positive electrode and the negative electrode are in contact with the electrolytic solution.
  • a lead storage battery can be obtained by adjusting the specific gravity of the electrolytic solution after chemical conversion to an appropriate specific gravity.
  • the electric vehicle (for example, an electric vehicle) or the power supply device according to the present embodiment includes the lead storage battery according to the present embodiment.
  • the method for manufacturing an electric vehicle or a power supply device according to the present embodiment includes a step of obtaining a lead-acid battery by the method for manufacturing a lead-acid battery according to the present embodiment.
  • the method for manufacturing an electric vehicle or a power supply device according to the present embodiment is, for example, a step of obtaining a lead-acid battery by the method for manufacturing a lead-acid battery according to the present embodiment and an electric vehicle or a power supply device by assembling a component including the lead-acid battery. It has a process to obtain.
  • Examples of the electric vehicle include a forklift and a golf cart.
  • Examples of the power supply device include UPS, disaster prevention (emergency) wireless power supply, telephone power supply, and the like.
  • a lead-acid battery for an electric vehicle for example, a lead-acid battery for an electric vehicle
  • a lead-acid battery for a forklift is provided.
  • a lead storage battery for a power supply device is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

An active material holding member 50a which is provided with a first tube 60 and second tube 61 arranged side by side, wherein: the first tube 60 is formed by having a base material 64 rolled up at least once in a counterclockwise direction; and a roll end part 66a of the base material 64 at one end of the first tube 60 is positioned within the range of from 0° to +90° on the surface of the first tube 60 with respect to the central axis of the first tube 60 if the direction in which the second tube 61 is arranged with respect to the first tube 60 is taken as 0° when the first tube 60 is viewed from the above-described one end side of the first tube 60 in the axial direction of the first tube 60.

Description

活物質保持部材、電極、鉛蓄電池及び電動車Active material holding members, electrodes, lead-acid batteries and electric vehicles
 本発明は、活物質保持部材、電極、鉛蓄電池及び電動車に関する。 The present invention relates to an active material holding member, an electrode, a lead storage battery, and an electric vehicle.
 鉛蓄電池は、産業用又は民生用の二次電池として広く用いられており、特に、電動車用鉛蓄電池(例えば自動車用鉛蓄電池。いわゆるバッテリー)、又は、UPS(Uninterruptible Power Supply)、防災(非常)無線用電源、電話用電源等のバックアップ用鉛蓄電池の需要が多い。 Lead-acid batteries are widely used as secondary batteries for industrial or consumer use, and in particular, lead-acid batteries for electric vehicles (for example, lead-acid batteries for automobiles, so-called batteries), UPS (Uninterruptable Power Supply), and disaster prevention (emergency). ) There is a great demand for lead-acid batteries for backup such as wireless power supplies and telephone power supplies.
 鉛蓄電池では、活物質を保持(収容)可能なチューブとして、互いに併設された複数のチューブを備える活物質保持部材が用いられることがある。例えば、鉛蓄電池は、チューブを備える活物質保持部材と、チューブ内に挿入された芯金(集電体)と、チューブ及び芯金の間に充填された電極材(活物質を含有する電極材)とを有する電極を備えている(例えば、下記特許文献1参照)。 In a lead-acid battery, an active material holding member having a plurality of tubes adjacent to each other may be used as a tube capable of holding (accommodating) the active material. For example, a lead-acid battery has an active material holding member provided with a tube, a core metal (current collector) inserted in the tube, and an electrode material (electrode material containing an active material) filled between the tube and the core metal. ) Is provided (see, for example, Patent Document 1 below).
特開平8-203506号公報Japanese Unexamined Patent Publication No. 8-203506
 ところで、活物質保持部材のチューブとしては、基材が巻き回されることにより形成されたチューブが用いられる場合がある。このようなチューブでは、チューブの軸方向におけるチューブの端において基材の巻き端部がチューブの表面で固定されているものの、基材に負荷される外部応力に起因して基材が巻き端部を起点にほつれる(チューブの表面からはがれる)ことにより活物質がチューブから漏出する場合がある。そのため、チューブを備える活物質保持部材に対しては、電池特性を向上させる観点から、活物質の漏出を抑制することが求められる。 By the way, as the tube of the active material holding member, a tube formed by winding a base material may be used. In such a tube, the winding end of the base material is fixed on the surface of the tube at the end of the tube in the axial direction of the tube, but the base material is wound due to the external stress applied to the base material. The active material may leak from the tube due to fraying (peeling from the surface of the tube) starting from. Therefore, the active material holding member provided with the tube is required to suppress the leakage of the active material from the viewpoint of improving the battery characteristics.
 本発明の一側面は、活物質の漏出を抑制可能な活物質保持部材を提供することを目的とする。本発明の他の一側面は、前記活物質保持部材を有する電極、当該電極を備える鉛蓄電池、及び、当該鉛蓄電池を備える電動車を提供することを目的とする。 One aspect of the present invention is to provide an active material holding member capable of suppressing leakage of an active material. Another aspect of the present invention is to provide an electrode having the active material holding member, a lead storage battery provided with the electrode, and an electric vehicle provided with the lead storage battery.
 本発明の一側面の第1実施形態は、互いに併設された第1のチューブ及び第2のチューブを備える活物質保持部材であって、前記第1のチューブが、基材が反時計回りに少なくとも一周巻き回されることにより形成されており、前記第1のチューブの一端における前記基材の巻き端部が、前記第1のチューブの軸方向に前記第1のチューブの前記一端側から前記第1のチューブを見たときに、前記第1のチューブに対する前記第2のチューブの併設方向を0°として、前記第1のチューブの中心軸に対して前記第1のチューブの表面における0°以上+90°以下の範囲に位置する、活物質保持部材を提供する。 A first embodiment of one aspect of the present invention is an active material holding member including a first tube and a second tube juxtaposed with each other, wherein the first tube has at least a base material counterclockwise. The wound end portion of the base material at one end of the first tube is formed by being wound around the first tube in the axial direction of the first tube from the one end side of the first tube. When looking at the first tube, the direction in which the second tube is attached to the first tube is 0 °, and 0 ° or more on the surface of the first tube with respect to the central axis of the first tube. Provided is an active material holding member located in the range of + 90 ° or less.
 本発明の一側面の第2実施形態は、互いに併設された第1のチューブ及び第2のチューブを備える活物質保持部材であって、前記第1のチューブが、基材が時計回りに少なくとも一周巻き回されることにより形成されており、前記第1のチューブの一端における前記基材の巻き端部が、前記第1のチューブの軸方向に前記第1のチューブの前記一端側から前記第1のチューブを見たときに、前記第1のチューブに対する前記第2のチューブの併設方向を0°として、前記第1のチューブの中心軸に対して前記第1のチューブの表面における-90°以上0°以下の範囲に位置する、活物質保持部材を提供する。 A second embodiment of one aspect of the present invention is an active material holding member including a first tube and a second tube adjacent to each other, wherein the first tube has a base material at least once in a clockwise direction. The wound end portion of the base material at one end of the first tube is formed by being wound around the first tube from the one end side of the first tube in the axial direction of the first tube. When the tube is viewed, the direction in which the second tube is attached to the first tube is 0 °, and −90 ° or more on the surface of the first tube with respect to the central axis of the first tube. Provided is an active material holding member located in a range of 0 ° or less.
 互いに併設された第1のチューブ及び第2のチューブを備える活物質保持部材において第1のチューブが、基材が巻き回されることにより形成されている場合には、第1のチューブの少なくとも一方の端部において、基材における第1のチューブ及び第2のチューブの間から第1のチューブの周方向に第1のチューブの表面に沿って延在する部分(延在部)に負荷される外部応力に起因して基材が巻き端部を起点にほつれやすい傾向がある。 In the active material holding member including the first tube and the second tube adjacent to each other, when the first tube is formed by winding the base material, at least one of the first tubes. At the end of the substrate, a load is applied to a portion (extending portion) of the base material extending from between the first tube and the second tube along the surface of the first tube in the circumferential direction of the first tube. Due to external stress, the base material tends to fray easily starting from the winding end.
 一方、第1実施形態に係る活物質保持部材では、第1のチューブが、基材が反時計回りに少なくとも一周巻き回されることにより形成されており、第1のチューブの一端における基材の巻き端部が、第1のチューブの軸方向に第1のチューブの一端側から第1のチューブを見たときに、第1のチューブに対する第2のチューブの併設方向を0°として、第1のチューブの中心軸に対して第1のチューブの表面における0°以上+90°以下の範囲に位置する。この場合、第1のチューブの一端において、基材における第1のチューブ及び第2のチューブの間から第1のチューブの周方向に第1のチューブの表面に沿って延在する部分(延在部)の長さが、第1のチューブの表面における+90°を上回る範囲に巻き端部が位置する場合と比較して短い。これにより、延在部に外部応力が負荷される頻度が低いため、基材が巻き端部を起点にほつれにくいことから、活物質の漏出が抑制される。 On the other hand, in the active material holding member according to the first embodiment, the first tube is formed by winding the base material counterclockwise at least once, and the base material at one end of the first tube is formed. When the winding end portion looks at the first tube from one end side of the first tube in the axial direction of the first tube, the first tube is set to 0 ° with respect to the direction in which the second tube is attached to the first tube. It is located in the range of 0 ° or more and + 90 ° or less on the surface of the first tube with respect to the central axis of the tube. In this case, at one end of the first tube, a portion (extending) extending from between the first tube and the second tube in the base material along the surface of the first tube in the circumferential direction of the first tube. The length of the portion) is shorter than that in the case where the winding end portion is located in a range exceeding + 90 ° on the surface of the first tube. As a result, since the frequency of external stress being applied to the extending portion is low, the base material is less likely to fray from the winding end portion, and the leakage of the active material is suppressed.
 第2実施形態に係る活物質保持部材では、第1のチューブが、基材が時計回りに少なくとも一周巻き回されることにより形成されており、第1のチューブの一端における基材の巻き端部が、第1のチューブの軸方向に第1のチューブの一端側から第1のチューブを見たときに、第1のチューブに対する第2のチューブの併設方向を0°として、第1のチューブの中心軸に対して第1のチューブの表面における-90°以上0°以下の範囲に位置する。この場合、第1のチューブの一端において、基材における第1のチューブ及び第2のチューブの間から第1のチューブの周方向に第1のチューブの表面に沿って延在する部分(延在部)の長さが、第1のチューブの表面における-90°を下回る範囲に巻き端部が位置する場合と比較して短い。これにより、延在部に外部応力が負荷される頻度が低いため、基材が巻き端部を起点にほつれにくいことから、活物質の漏出が抑制される。 In the active material holding member according to the second embodiment, the first tube is formed by winding the base material clockwise at least once, and the winding end portion of the base material at one end of the first tube. However, when the first tube is viewed from one end side of the first tube in the axial direction of the first tube, the direction in which the second tube is attached to the first tube is set to 0 °, and the first tube It is located in the range of −90 ° or more and 0 ° or less on the surface of the first tube with respect to the central axis. In this case, at one end of the first tube, a portion (extending) extending from between the first tube and the second tube in the base material along the surface of the first tube in the circumferential direction of the first tube. The length of the portion) is shorter than that in the case where the winding end portion is located in a range of less than −90 ° on the surface of the first tube. As a result, since the frequency of external stress being applied to the extending portion is low, the base material is less likely to fray from the winding end portion, and the leakage of the active material is suppressed.
 本発明の他の一側面は、上述の活物質保持部材と、当該活物質保持部材の第1のチューブ及び第2のチューブに保持された活物質と、を有する、電極を提供する。 Another aspect of the present invention provides an electrode having the above-mentioned active material holding member and the active material held in the first tube and the second tube of the active material holding member.
 本発明の他の一側面は、正極及び負極を備え、正極及び負極からなる群より選ばれる少なくとも一種が上述の電極である、鉛蓄電池を提供する。 Another aspect of the present invention provides a lead-acid battery comprising a positive electrode and a negative electrode, wherein at least one selected from the group consisting of the positive electrode and the negative electrode is the above-mentioned electrode.
 本発明の他の一側面は、上述の鉛蓄電池を備える、電動車を提供する。 Another aspect of the present invention provides an electric vehicle equipped with the lead-acid battery described above.
 本発明の一側面によれば、活物質の漏出を抑制可能な活物質保持部材を提供することができる。本発明の他の一側面によれば、前記活物質保持部材を有する電極、当該電極を備える鉛蓄電池、及び、当該鉛蓄電池を備える電動車を提供することができる。 According to one aspect of the present invention, it is possible to provide an active material holding member capable of suppressing leakage of the active material. According to another aspect of the present invention, it is possible to provide an electrode having the active material holding member, a lead storage battery provided with the electrode, and an electric vehicle provided with the lead storage battery.
チューブの例を示す模式斜視図である。It is a schematic perspective view which shows the example of a tube. 本発明の一実施形態に係る鉛蓄電池を示す模式断面図である。It is a schematic cross-sectional view which shows the lead-acid battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る鉛蓄電池を示す模式断面図である。It is a schematic cross-sectional view which shows the lead-acid battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る活物質保持部材を示す模式側面図である。It is a schematic side view which shows the active material holding member which concerns on one Embodiment of this invention. 本発明の一実施形態に係る活物質保持部材を示す模式平面図である。It is a schematic plan view which shows the active material holding member which concerns on one Embodiment of this invention. 本発明の他の一実施形態に係る活物質保持部材を示す模式側面図である。It is a schematic side view which shows the active material holding member which concerns on another Embodiment of this invention. 本発明の他の一実施形態に係る活物質保持部材を示す模式平面図である。It is a schematic plan view which shows the active material holding member which concerns on another Embodiment of this invention. 本発明の他の実施形態に係る活物質保持部材を示す模式平面図である。It is a schematic plan view which shows the active material holding member which concerns on other embodiment of this invention. 本発明の他の実施形態に係る活物質保持部材を示す模式平面図である。It is a schematic plan view which shows the active material holding member which concerns on other embodiment of this invention. 本発明の他の実施形態に係る活物質保持部材を示す模式平面図である。It is a schematic plan view which shows the active material holding member which concerns on other embodiment of this invention. 本発明の他の実施形態に係る活物質保持部材を示す模式平面図である。It is a schematic plan view which shows the active material holding member which concerns on other embodiment of this invention.
 以下、適宜図面を参照しつつ、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。図面には、互いに直交するX軸、Y軸及びZ軸により規定される直交座標系を示す場合がある。 Hereinafter, a mode for carrying out the present invention will be described in detail with reference to the drawings as appropriate. However, the present invention is not limited to the following embodiments. The drawings may show a Cartesian coordinate system defined by the X, Y and Z axes that are orthogonal to each other.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。「チューブの軸方向」は、チューブの中心軸の軸方向(長手方向)を意味する。チューブの一端及び他端は、チューブの軸方向における一端及び他端を意味する。「少なくとも一つ」とは、一つ又は複数を意味する。「少なくとも一部」とは、一部又は全部を意味する。 In the present specification, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step. "A or B" may include either A or B, or both. Unless otherwise specified, the materials exemplified in the present specification may be used alone or in combination of two or more. The term "process" is included in this term not only in an independent process but also in the case where the desired action of the process is achieved even if it cannot be clearly distinguished from other processes. "Axial direction of the tube" means the axial direction (longitudinal direction) of the central axis of the tube. One end and the other end of the tube mean one end and the other end of the tube in the axial direction. "At least one" means one or more. "At least part" means part or all.
 本実施形態に係る鉛蓄電池は、正極及び負極を備え、正極及び負極からなる群より選ばれる少なくとも一種が、本実施形態に係る電極である。本実施形態に係る電極は、本実施形態に係る活物質保持部材と、当該活物質保持部材のチューブ(後述する第1のチューブ及び第2のチューブ等)に保持された活物質と、を有する。本実施形態に係る鉛蓄電池は、正極及び負極間に配置されたセパレータを備えてよく、セパレータを備えていなくてもよい。本実施形態に係る鉛蓄電池は、電解液を備えてよい。電解液は、硫酸を含んでよい。本実施形態に係る鉛蓄電池は、液式鉛蓄電池、制御弁式鉛蓄電池等であってよく、密閉型鉛蓄電池、開放型鉛蓄電池等であってよい。 The lead-acid battery according to the present embodiment includes a positive electrode and a negative electrode, and at least one selected from the group consisting of the positive electrode and the negative electrode is the electrode according to the present embodiment. The electrode according to the present embodiment has an active material holding member according to the present embodiment and an active material held in a tube (first tube, second tube, etc., which will be described later) of the active material holding member. .. The lead-acid battery according to the present embodiment may include a separator arranged between the positive electrode and the negative electrode, and may not include the separator. The lead storage battery according to the present embodiment may include an electrolytic solution. The electrolytic solution may contain sulfuric acid. The lead-acid battery according to the present embodiment may be a liquid-type lead-acid battery, a control valve-type lead-acid battery, or the like, and may be a closed-type lead-acid battery, an open-type lead-acid battery, or the like.
 本実施形態(第1実施形態~第4実施形態、及び、その他の実施形態を包含する。以下も同様)に係る活物質保持部材は、互いに併設された第1のチューブ及び第2のチューブを備える。すなわち、本実施形態に係る活物質保持部材は、互いに併設された複数のチューブを有する活物質保持用チューブ群である。本実施形態に係る活物質保持部材は、3つ以上のチューブを備えてよい。活物質保持部材は、電池の活物質を保持するための部材であり、チューブの内部(内部空間)に活物質を保持(収容)することができる。「活物質」には、化成後の活物質及び化成前の活物質の原料の双方が包含される。 The active material holding member according to the present embodiment (including the first to fourth embodiments and other embodiments; the same applies hereinafter) includes a first tube and a second tube adjacent to each other. Be prepared. That is, the active material holding member according to the present embodiment is a group of active material holding tubes having a plurality of tubes adjacent to each other. The active material holding member according to the present embodiment may include three or more tubes. The active material holding member is a member for holding the active material of the battery, and can hold (accommodate) the active material inside the tube (internal space). The "active material" includes both the post-chemical active material and the raw material of the pre-chemical active material.
 第1実施形態及び第2実施形態に係る活物質保持部材において、活物質の漏出を抑制する観点から、第1のチューブは、基材が反時計回りに少なくとも一周巻き回されることにより形成されており、第1のチューブの一端における基材の巻き端部は、第1のチューブの軸方向に第1のチューブの一端側から第1のチューブを見たときに、第1のチューブに対する第2のチューブの併設方向を0°として、第1のチューブの中心軸に対して第1のチューブの表面における0°以上+90°以下の角度範囲(0~π/2ラジアン)に位置する。第3実施形態及び第4実施形態に係る活物質保持部材において、活物質の漏出を抑制する観点から、第1のチューブは、基材が時計回りに少なくとも一周巻き回されることにより形成されており、第1のチューブの一端における基材の巻き端部は、第1のチューブの軸方向に第1のチューブの一端側から第1のチューブを見たときに、第1のチューブに対する第2のチューブの併設方向を0°として、第1のチューブの中心軸に対して第1のチューブの表面における-90°以上0°以下の角度範囲(3π/2~2πラジアン)に位置する。 In the active material holding member according to the first embodiment and the second embodiment, from the viewpoint of suppressing leakage of the active material, the first tube is formed by winding the base material counterclockwise at least once. The wound end portion of the base material at one end of the first tube is the first tube with respect to the first tube when the first tube is viewed from one end side of the first tube in the axial direction of the first tube. It is located in an angle range (0 to π / 2 radians) of 0 ° or more and + 90 ° or less on the surface of the first tube with respect to the central axis of the first tube, where 0 ° is the side-by-side direction of the two tubes. In the active material holding member according to the third embodiment and the fourth embodiment, from the viewpoint of suppressing leakage of the active material, the first tube is formed by winding the base material clockwise at least once. The winding end of the base material at one end of the first tube is a second with respect to the first tube when the first tube is viewed from one end side of the first tube in the axial direction of the first tube. It is located in an angle range (3π / 2 to 2π radians) of −90 ° or more and 0 ° or less on the surface of the first tube with respect to the central axis of the first tube, where 0 ° is the side-by-side direction of the tubes.
 評価対象の第1のチューブが、基材が反時計回りに巻き回されることにより形成されている場合、巻き端部の角度(位置)としては、第1のチューブの巻き端部が0°以上+180°以下の角度範囲(0~πラジアン)に位置する状態で第1のチューブの右側に第2のチューブを配置した場合における第1のチューブに対する第2のチューブの併設方向に対する角度を用いる。評価対象の第1のチューブが、基材が時計回りに巻き回されることにより形成されている場合、巻き端部の角度(位置)としては、第1のチューブの巻き端部が-180°以上0°以下の角度範囲(π~2πラジアン)に位置する状態で第1のチューブの右側に第2のチューブを配置した場合における第1のチューブに対する第2のチューブの併設方向に対する角度を用いる。互いに併設された複数のチューブを有する物品について、互いに併設された二つのチューブから構成されるチューブ併設部として、第1実施形態~第4実施形態の上述の角度範囲を満たすチューブ併設部を当該物品が少なくとも一部の箇所において有する際には、当該物品の当該チューブ併設部は第1実施形態~第4実施形態に係る活物質保持部材に該当する。 When the first tube to be evaluated is formed by winding the base material counterclockwise, the angle (position) of the winding end portion is 0 ° at the winding end portion of the first tube. The angle with respect to the side-by-side direction of the second tube with respect to the first tube when the second tube is arranged on the right side of the first tube while being located in the angle range (0 to π radian) of + 180 ° or more is used. .. When the first tube to be evaluated is formed by winding the base material clockwise, the angle (position) of the winding end portion is -180 ° at the winding end portion of the first tube. The angle with respect to the side-by-side direction of the second tube with respect to the first tube when the second tube is arranged on the right side of the first tube while being located in the angle range (π to 2π radians) of 0 ° or more is used. .. For an article having a plurality of tubes attached to each other, as a tube attachment portion composed of two tubes attached to each other, the tube attachment portion satisfying the above-mentioned angle range of the first to fourth embodiments is the article. When the article is held in at least a part of the article, the tube-attached portion of the article corresponds to the active material holding member according to the first to fourth embodiments.
 本実施形態に係る電極は、少なくとも一つの活物質保持部材として、第1実施形態~第4実施形態に係る活物質保持部材のうちの少なくとも一種を有してよい。すなわち、本実施形態に係る電極は、単一種の活物質保持部材を有してよく、複数種の活物質保持部材を有してよい。 The electrode according to the present embodiment may have at least one of the active material holding members according to the first to fourth embodiments as at least one active material holding member. That is, the electrode according to the present embodiment may have a single type of active material holding member, or may have a plurality of types of active material holding member.
 第1実施形態及び第2実施形態に係る活物質保持部材において、活物質の漏出が更に抑制される観点から、第1のチューブの他端における基材の巻き端部は、第1のチューブの軸方向に他端側から第1のチューブを見たときに、第1のチューブに対する第2のチューブの併設方向を0°として、第1のチューブの中心軸に対して第1のチューブの表面における0°以上+90°以下の角度範囲に位置してよい。第3実施形態及び第4実施形態に係る活物質保持部材において、活物質の漏出が更に抑制される観点から、第1のチューブの他端における基材の巻き端部は、第1のチューブの軸方向に他端側から第1のチューブを見たときに、第1のチューブに対する第2のチューブの併設方向を0°として、第1のチューブの中心軸に対して第1のチューブの表面における-90°以上0°以下の角度範囲に位置してよい。 In the active material holding member according to the first embodiment and the second embodiment, from the viewpoint of further suppressing the leakage of the active material, the winding end portion of the base material at the other end of the first tube is the first tube. When the first tube is viewed from the other end side in the axial direction, the surface of the first tube with respect to the central axis of the first tube is set to 0 ° with respect to the first tube. It may be located in an angle range of 0 ° or more and + 90 ° or less in. In the active material holding member according to the third embodiment and the fourth embodiment, from the viewpoint of further suppressing the leakage of the active material, the winding end portion of the base material at the other end of the first tube is the first tube. When the first tube is viewed from the other end side in the axial direction, the surface of the first tube with respect to the central axis of the first tube is set to 0 ° with respect to the first tube. It may be located in an angle range of −90 ° or more and 0 ° or less.
 第1実施形態に係る活物質保持部材において、第1のチューブは、当該第1のチューブの他端から一端に向けて基材が反時計回りに螺旋状に少なくとも一周巻き回されることにより形成されている。第2実施形態に係る活物質保持部材において、第1のチューブは、基材が反時計回りに渦巻状に少なくとも一周巻き回されることにより形成されている。第3実施形態に係る活物質保持部材において、第1のチューブは、当該第1のチューブの他端から一端に向けて基材が時計回りに螺旋状に少なくとも一周巻き回されることにより形成されている。第4実施形態に係る活物質保持部材において、第1のチューブは、基材が時計回りに渦巻状に少なくとも一周巻き回されることにより形成されている。 In the active material holding member according to the first embodiment, the first tube is formed by spirally winding the base material counterclockwise at least once from the other end to one end of the first tube. Has been done. In the active material holding member according to the second embodiment, the first tube is formed by winding the base material counterclockwise in a spiral shape at least once. In the active material holding member according to the third embodiment, the first tube is formed by spirally winding the base material clockwise at least once from the other end to one end of the first tube. ing. In the active material holding member according to the fourth embodiment, the first tube is formed by winding the base material clockwise at least once in a spiral shape.
 基材は、少なくとも一周巻き回されていればよく、一周を超えて巻き回されていてよく、複数回巻き回されていてよい。「螺旋状」とは、図1(a)に示すように、所定方向に延在する中心軸の周囲を周回しながら当該中心軸の延在方向に進行することを意味する。「渦巻状」とは、図1(b)に示すように、同一平面内で周回することを意味する。例えば、螺旋状の場合、基材が巻き回されるに伴いチューブが伸長するのに対し、渦巻状の場合、基材が巻き回されるに伴いチューブが厚くなるもののチューブは伸長しない。螺旋状の場合における巻き回し方向(反時計回り及び時計回り)は、中心軸に対する基材の回転方向を意味する。渦巻状の場合における巻き回し方向(反時計回り及び時計回り)は、チューブの内層から外層に向かって基材が巻き回される際の巻き回し方向を意味する。 The base material may be wound at least once, may be wound more than one round, and may be wound a plurality of times. As shown in FIG. 1A, the “spiral” means traveling in the extending direction of the central axis while orbiting around the central axis extending in a predetermined direction. "Swirl" means to orbit in the same plane as shown in FIG. 1 (b). For example, in the case of a spiral shape, the tube expands as the base material is wound, whereas in the spiral shape, the tube becomes thicker as the base material is wound, but the tube does not expand. The winding direction (counterclockwise and clockwise) in the spiral case means the direction of rotation of the base material with respect to the central axis. The winding direction (counterclockwise and clockwise) in the case of a spiral means the winding direction when the base material is wound from the inner layer to the outer layer of the tube.
 チューブは、例えば、一端及び他端においてチューブの軸方向に垂直な端面を有している。螺旋状の場合、例えば、短冊状の基材を螺旋状に巻き回してチューブを形成できる。この場合、チューブを形成した後にチューブの軸方向に垂直にチューブの両端部を切断してよく、端部を切断することなくチューブの軸方向に垂直な端面が得られる形状の基材を用いてもよい。基材を螺旋状に周回させる場合、基材同士が重なりあってよく(基材同士の重なり部が形成されてよく)、基材同士が重ならなくてよい。渦巻状の場合、例えば、矩形状の基材を基材の一辺に沿って巻き回してチューブを形成できる。基材同士の接合手段としては、溶着(例えば超音波溶着)、接着剤等が挙げられる。螺旋状の場合、基材同士の接合部が螺旋状に形成されることから、接合部の一部が開裂した場合であっても、渦巻状の場合と比較して開裂部が拡張しがたいことから活物質の漏出を抑制しやすい。また、螺旋状の場合、一定の幅の基材の巻き回数等を調整することによりチューブの長さを容易に調整できる。 The tube has, for example, end faces perpendicular to the axial direction of the tube at one end and the other end. In the case of a spiral shape, for example, a strip-shaped base material can be spirally wound to form a tube. In this case, after forming the tube, both ends of the tube may be cut perpendicular to the axial direction of the tube, and a base material having a shape that can obtain an end face perpendicular to the axial direction of the tube without cutting the ends is used. May be good. When the base materials are rotated in a spiral shape, the base materials may overlap each other (the overlapping portions of the base materials may be formed), and the base materials do not have to overlap each other. In the case of a spiral shape, for example, a rectangular base material can be wound along one side of the base material to form a tube. Examples of the means for joining the base materials include welding (for example, ultrasonic welding), an adhesive, and the like. In the case of the spiral shape, since the joint portion between the base materials is formed in a spiral shape, even if a part of the joint portion is cleaved, it is difficult for the cleaved portion to expand as compared with the case of the spiral shape. Therefore, it is easy to suppress the leakage of active material. Further, in the case of a spiral shape, the length of the tube can be easily adjusted by adjusting the number of windings of a base material having a constant width.
 図2及び図3を用いて、本実施形態に係る鉛蓄電池の一例を説明する。図2及び図3は、鉛蓄電池の一例を示す模式断面図である。図2では、図面の手前側から奥側にかけて、セパレータを介して正極及び負極が交互に配置されている。図2(b)は、図2(a)の領域Pを示す拡大図である。図2(a)では、チューブ内の詳細、及び、チューブ同士が隣接する部分の詳細の図示を省略している。図2及び図3に示される鉛蓄電池は、鉛直方向に伸びる電槽を備えており、図3は、鉛直方向の上方(電槽の高さ方向の上方)から鉛蓄電池を見た際の正極、負極及びセパレータの積層構造を示している。 An example of the lead storage battery according to the present embodiment will be described with reference to FIGS. 2 and 3. 2 and 3 are schematic cross-sectional views showing an example of a lead storage battery. In FIG. 2, positive electrodes and negative electrodes are alternately arranged via separators from the front side to the back side of the drawing. FIG. 2B is an enlarged view showing the region P of FIG. 2A. In FIG. 2A, the details inside the tubes and the details of the portions where the tubes are adjacent to each other are omitted. The lead-acid batteries shown in FIGS. 2 and 3 are provided with an electric tank extending in the vertical direction, and FIG. 3 shows a positive electrode when the lead-acid battery is viewed from above in the vertical direction (above in the height direction of the electric tank). , The laminated structure of the negative electrode and the separator is shown.
 図2及び図3に示される鉛蓄電池100は、電極群110と、電極群110を収容する電槽120と、電極群110に接続された連結部材130a,130bと、連結部材130a,130bに接続された極柱140a,140bと、電槽120の注液口を閉塞する液口栓150と、電槽120に接続された支持部材160と、を備えている。 The lead-acid battery 100 shown in FIGS. 2 and 3 is connected to an electrode group 110, an electric tank 120 accommodating the electrode group 110, connecting members 130a and 130b connected to the electrode group 110, and connecting members 130a and 130b. The electrode columns 140a and 140b are provided, a liquid port plug 150 for closing the liquid injection port of the electric tank 120, and a support member 160 connected to the electric tank 120.
 電極群110は、複数の正極10と、複数の負極20と、複数のセパレータ30とを備えている。正極10及び負極20は、セパレータ30を介して交互に配置されている。セパレータ30間における正極10の周囲の空間には、電解液40が充填されている。電解液40は、硫酸を含んでよい。電解液40は、アルミニウムイオン、ナトリウムイオン等を含んでいてよい。 The electrode group 110 includes a plurality of positive electrodes 10, a plurality of negative electrodes 20, and a plurality of separators 30. The positive electrode 10 and the negative electrode 20 are alternately arranged via the separator 30. The space around the positive electrode 10 between the separators 30 is filled with the electrolytic solution 40. The electrolytic solution 40 may contain sulfuric acid. The electrolytic solution 40 may contain aluminum ions, sodium ions and the like.
 正極10は、例えば、板状の電極(正極板)であり、活物質保持用の複数のチューブ10aと、芯金(集電体)10bと、正極材10cと、下部連座10dと、上部連座10eと、耳部10fと、を有している。正極10のチューブ10aは、活物質を含む正極材10cを収容可能な筒状部からなる。 The positive electrode 10 is, for example, a plate-shaped electrode (positive electrode plate), and includes a plurality of tubes 10a for holding an active material, a core metal (current collector) 10b, a positive electrode material 10c, a lower joint 10d, and an upper joint. It has 10e and an ear portion 10f. The tube 10a of the positive electrode 10 is formed of a tubular portion capable of accommodating the positive electrode material 10c containing an active material.
 複数のチューブ10aは、互いに並設されており、活物質保持部材50を構成している。すなわち、正極10は、活物質保持部材50を有している。各チューブ10aは、電槽120の高さ方向(鉛直方向)に伸びている。 The plurality of tubes 10a are arranged side by side with each other to form the active material holding member 50. That is, the positive electrode 10 has an active material holding member 50. Each tube 10a extends in the height direction (vertical direction) of the electric tank 120.
 芯金10bは、チューブ10aの中心部においてチューブ10aの軸方向に伸びている。芯金10bの構成材料としては、導電性材料であればよく、例えば、鉛-カルシウム-錫系合金、鉛-アンチモン-ヒ素系合金等の鉛合金が挙げられる。芯金10bの軸方向(長手方向)に垂直な断面形状は、円形、楕円形等であってよい。芯金10bの長さは、例えば160~650mmである。芯金10bの直径は、例えば2.0~4.0mmである。 The core metal 10b extends in the axial direction of the tube 10a at the center of the tube 10a. The constituent material of the core metal 10b may be any conductive material, and examples thereof include lead alloys such as lead-calcium-tin alloys and lead-antimony-arsenic alloys. The cross-sectional shape of the core metal 10b perpendicular to the axial direction (longitudinal direction) may be circular, elliptical, or the like. The length of the core metal 10b is, for example, 160 to 650 mm. The diameter of the core metal 10b is, for example, 2.0 to 4.0 mm.
 正極材10cは、チューブ10a及び芯金10bの間に充填されている。正極材10cは、化成後において正極活物質を含有している。化成後の正極材は、例えば、正極活物質の原料を含む未化成の正極材を化成することで得ることができる。正極活物質の原料としては、鉛粉、鉛丹等が挙げられる。化成後の正極材における正極活物質としては、二酸化鉛等が挙げられる。正極材10cは、必要に応じて添加剤を更に含有することができる。正極材10cの添加剤としては、補強用短繊維等が挙げられる。補強用短繊維としては、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維(PET繊維)等が挙げられる。 The positive electrode material 10c is filled between the tube 10a and the core metal 10b. The positive electrode material 10c contains a positive electrode active material after chemical conversion. The chemicalized positive electrode material can be obtained, for example, by chemicalizing an unchemicald positive electrode material containing a raw material for the positive electrode active material. Examples of the raw material for the positive electrode active material include lead powder and lead tan. Examples of the positive electrode active material in the positive electrode material after chemical conversion include lead dioxide and the like. The positive electrode material 10c can further contain an additive if necessary. Examples of the additive for the positive electrode material 10c include short reinforcing fibers. Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers (PET fibers) and the like.
 下部連座10dは、チューブ10aの一端(図中、下側の端部)に接続されており、上部連座10eは、チューブ10aの他端(図中、上側の端部)に接続されている。下部連座10d及び上部連座10eは、チューブ10aと、チューブ10a内に配置された芯金10b及び正極材10cとに接しており、チューブ10aと芯金10bと正極材10cとを保持している。下部連座10dは、チューブ10aにおける電槽120の底部側の端部(チューブ10aの一端側の末端)に取り付けられている。下部連座10dは、チューブ10aの端部に嵌合しており、チューブ10aの軸方向に直交する方向に伸びる基部と、当該基部に接続されると共にチューブ10aの端部に嵌合する複数の嵌合部とを有している。嵌合部には、芯金10bの端部が差し込まれる凹部が形成されている。上部連座10eは、チューブ10aにおける電槽120の上部側の端部(チューブ10aの他端側の末端)に取り付けられている。 The lower punishment 10d is connected to one end of the tube 10a (lower end in the figure), and the upper punishment 10e is connected to the other end of the tube 10a (upper end in the figure). The lower joint 10d and the upper joint 10e are in contact with the tube 10a and the core metal 10b and the positive electrode material 10c arranged in the tube 10a, and hold the tube 10a, the core metal 10b, and the positive electrode material 10c. The lower collective punishment 10d is attached to the bottom end of the battery case 120 in the tube 10a (the end on one end of the tube 10a). The lower joint 10d is fitted to the end of the tube 10a, and has a base extending in a direction orthogonal to the axial direction of the tube 10a and a plurality of fittings connected to the base and fitted to the end of the tube 10a. It has a joint part. The fitting portion is formed with a recess into which the end portion of the core metal 10b is inserted. The upper collective punishment 10e is attached to the upper end of the electric tank 120 in the tube 10a (the other end of the tube 10a).
 耳部10fの一端(図中、下側の端部)は上部連座10eに接続され、耳部10fの他端(図中、上側の端部)は連結部材130aに接続されている。チューブ10a内に収容された芯金10bは、上部連座10e、耳部10f及び連結部材130aを介して極柱140aに電気的に接続されている。 One end of the selvage 10f (lower end in the figure) is connected to the upper collective punishment 10e, and the other end of the selvage 10f (upper end in the figure) is connected to the connecting member 130a. The core metal 10b housed in the tube 10a is electrically connected to the pole pillar 140a via the upper connecting seat 10e, the selvage portion 10f, and the connecting member 130a.
 支持部材160はチューブ10aの軸方向(長手方向。例えば電槽120の高さ方向)に伸びる複数の突起部160aを有しており、下部連座10dは複数の突起部160aに当接して固定されている。すなわち、支持部材160は、下部連座10dにおける電槽120の底面側の部分を各突起部160aによって支持している。 The support member 160 has a plurality of protrusions 160a extending in the axial direction (longitudinal direction, for example, the height direction of the electric tank 120) of the tube 10a, and the lower joint 10d is fixed in contact with the plurality of protrusions 160a. ing. That is, the support member 160 supports the bottom surface side portion of the electric tank 120 in the lower collective punishment 10d by each protrusion 160a.
 負極20は、例えば板状であり、例えばペースト式負極板である。負極20は、負極集電体と、当該負極集電体に保持された負極材と、を有する。負極集電体としては、板状の集電体を用いることができる。負極集電体、及び、正極10の芯金10bの組成は、互いに同一であってよく、互いに異なっていてよい。負極20は、連結部材130bを介して極柱140bに電気的に接続されている。 The negative electrode 20 is, for example, a plate-shaped negative electrode plate, for example, a paste type negative electrode plate. The negative electrode 20 has a negative electrode current collector and a negative electrode material held by the negative electrode current collector. As the negative electrode current collector, a plate-shaped current collector can be used. The composition of the negative electrode current collector and the core metal 10b of the positive electrode 10 may be the same or different from each other. The negative electrode 20 is electrically connected to the pole pillar 140b via the connecting member 130b.
 負極材は、化成後において負極活物質を含有している。化成後の負極材は、例えば、負極活物質の原料を含む未化成の負極材を化成することで得ることができる。負極活物質の原料としては、鉛粉等が挙げられる。化成後の負極材における負極活物質としては、多孔質の海綿状鉛(Spongy Lead)等が挙げられる。負極材は、必要に応じて添加剤を更に含有することができる。負極材の添加剤としては、硫酸バリウム、補強用短繊維、炭素材料(炭素質導電材)等が挙げられる。補強用短繊維としては、正極材と同様の補強用短繊維を用いることができる。炭素材料としては、カーボンブラック、黒鉛等が挙げられる。カーボンブラックとしては、ファーネスブラック(ケッチェンブラック(登録商標)等)、チャンネルブラック、アセチレンブラック、サーマルブラックなどが挙げられる。 The negative electrode material contains the negative electrode active material after chemical conversion. The chemical negative electrode material can be obtained, for example, by chemicalizing an unchemicald negative electrode material containing a raw material for the negative electrode active material. Examples of the raw material for the negative electrode active material include lead powder and the like. Examples of the negative electrode active material in the negative electrode material after chemical conversion include porous spongy lead and the like. The negative electrode material can further contain an additive if necessary. Examples of the additive for the negative electrode material include barium sulfate, reinforcing short fibers, and a carbon material (carbonaceous conductive material). As the reinforcing short fiber, the same reinforcing short fiber as the positive electrode material can be used. Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black (Ketjen black (registered trademark), etc.), channel black, acetylene black, thermal black, and the like.
 セパレータ30の材料としては、正極10と負極20との電気的な接続を阻止し、電解液を透過させる材料であれば特に限定されない。セパレータ30の材料としては、微多孔性ポリエチレン;ガラス繊維及び合成樹脂の混合物等が挙げられる。 The material of the separator 30 is not particularly limited as long as it is a material that blocks the electrical connection between the positive electrode 10 and the negative electrode 20 and allows the electrolytic solution to permeate. Examples of the material of the separator 30 include microporous polyethylene; a mixture of glass fiber and synthetic resin.
 次に、図4~図7を用いて活物質保持部材の各種態様について説明する。図4及び図5は、第1実施形態に係る活物質保持部材の一例を示す図である。図6及び図7は、第3実施形態に係る活物質保持部材の一例を示す図である。図4及び図6は、活物質保持部材を示す模式側面図である。図5及び図7は、活物質保持部材をチューブの軸方向から見たときの模式平面図である。図5(a)は、図4における矢印Vaから見た際の模式平面図であり、図5(b)は、図4における矢印Vbから見た際の模式平面図である。図7(a)は、図6における矢印VIIaから見た際の模式平面図であり、図7(b)は、図6における矢印VIIbから見た際の模式平面図である。図5及び図7では、便宜上、チューブを構成する基材の厚みの図示を省略している。図4~図7では、便宜上、4つのチューブのみを図示しているが、活物質保持部材は5つ以上のチューブを備えてよい。 Next, various aspects of the active material holding member will be described with reference to FIGS. 4 to 7. 4 and 5 are views showing an example of the active material holding member according to the first embodiment. 6 and 7 are views showing an example of the active material holding member according to the third embodiment. 4 and 6 are schematic side views showing the active material holding member. 5 and 7 are schematic plan views of the active material holding member when viewed from the axial direction of the tube. 5 (a) is a schematic plan view when viewed from the arrow Va in FIG. 4, and FIG. 5 (b) is a schematic plan view when viewed from the arrow Vb in FIG. FIG. 7A is a schematic plan view when viewed from the arrow VIIa in FIG. 6, and FIG. 7B is a schematic plan view when viewed from the arrow VIIb in FIG. In FIGS. 5 and 7, for convenience, the thickness of the base material constituting the tube is not shown. Although only four tubes are shown in FIGS. 4 to 7 for convenience, the active material holding member may include five or more tubes.
 図4及び図5に示す活物質保持部材50aは、互いに併設された第1のチューブ60、第2のチューブ61、第3のチューブ62及び第4のチューブ63を備える。第1のチューブ60は、一端60a及び他端60bを有している。第1のチューブ60は、他端60bから一端60aに向けて基材64が反時計回りに螺旋状に複数回巻き回されることにより形成されている。第1のチューブ60は、例えば、基材64が第1のチューブ60の他端60bから一端60aにかけて巻き回されることにより形成されている。基材64は、第1のチューブ60の中心軸60cを中心として反時計回りに螺旋状に複数回巻き回されている。第1のチューブ60は、例えば、互いに対向する第1の辺及び第2の辺を有する基材を、n回目の巻き回し時に他端60b側に位置する第1の辺に、n+1回目の巻き回し時に第2の辺が重なるように巻き回すことにより得ることができる。第1のチューブ60における第1のチューブ60の軸方向に垂直な断面は例えば真円状である。 The active material holding member 50a shown in FIGS. 4 and 5 includes a first tube 60, a second tube 61, a third tube 62, and a fourth tube 63 that are adjacent to each other. The first tube 60 has one end 60a and the other end 60b. The first tube 60 is formed by spirally winding the base material 64 a plurality of times counterclockwise from the other end 60b toward one end 60a. The first tube 60 is formed, for example, by winding the base material 64 from the other end 60b to one end 60a of the first tube 60. The base material 64 is spirally wound a plurality of times counterclockwise around the central axis 60c of the first tube 60. In the first tube 60, for example, the base material having the first side and the second side facing each other is wound n + 1 times around the first side located on the other end 60b side at the time of the nth winding. It can be obtained by winding so that the second sides overlap at the time of turning. The cross section of the first tube 60 perpendicular to the axial direction of the first tube 60 is, for example, a perfect circle.
 第2のチューブ61は、第1のチューブ60に隣接している。第3のチューブ62は、第2のチューブ61に隣接している。第4のチューブ63は、第1のチューブ60に隣接しており、第1のチューブ60に対する第2のチューブ61とは反対側において第1のチューブ60に併設されている。第2のチューブ61、第3のチューブ62及び第4のチューブ63は、例えば、第1のチューブ60と同様の構成を有している。第2のチューブ61は、一端61a(第2のチューブ61に併設された第1のチューブ60の一端60a側に位置する端部)及び他端61bを有している。第2のチューブ61は、他端61bから一端61aに向けて基材65aが反時計回りに螺旋状に複数回巻き回されることにより形成されている。基材65aは、第2のチューブ61の中心軸61cを中心として反時計回りに螺旋状に複数回巻き回されている。 The second tube 61 is adjacent to the first tube 60. The third tube 62 is adjacent to the second tube 61. The fourth tube 63 is adjacent to the first tube 60 and is attached to the first tube 60 on the opposite side of the first tube 60 from the second tube 61. The second tube 61, the third tube 62, and the fourth tube 63 have the same configuration as, for example, the first tube 60. The second tube 61 has one end 61a (the end located on the one end 60a side of the first tube 60 attached to the second tube 61) and the other end 61b. The second tube 61 is formed by spirally winding the base material 65a a plurality of times counterclockwise from the other end 61b toward one end 61a. The base material 65a is spirally wound a plurality of times counterclockwise around the central axis 61c of the second tube 61.
 第1のチューブ60の一端60aにおける基材64の巻き端部66a(例えば巻き終わり部)は、第1のチューブ60の軸方向に一端60a側から第1のチューブ60を見たときに、第1のチューブ60に対する第2のチューブ61の併設方向(図5(a)のX軸の正方向)を0°として、第1のチューブ60の中心軸に対して第1のチューブ60の表面における0°以上+90°以下の角度範囲(0~π/2ラジアン)に位置する。巻き端部66aは、例えば、基材64における最も一端60a側に位置する部分であってよい。巻き端部66aの位置は、第1のチューブ60に対する第2のチューブ61の併設方向に対して角度θ111を有している。巻き端部66aは、第1のチューブ60の一端60aにおいて、基材64における第1のチューブ60及び第2のチューブ61の間から第1のチューブ60の周方向に第1のチューブ60の表面に沿って延在する延在部66bの先端に位置する。巻き端部66aは、第1のチューブ60の表面における上述の0°以上+90°以下の角度範囲の位置において固定されている。第1のチューブ60に対する第2のチューブ61の併設方向は、例えば、第1のチューブ60の中心軸60cに対する第2のチューブ61の中心軸61cの配置方向である。 The winding end portion 66a (for example, the winding end portion) of the base material 64 at one end 60a of the first tube 60 is the first tube 60 when the first tube 60 is viewed from the one end 60a side in the axial direction of the first tube 60. On the surface of the first tube 60 with respect to the central axis of the first tube 60, where the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X axis in FIG. 5A) is 0 °. It is located in an angle range (0 to π / 2 radians) of 0 ° or more and + 90 ° or less. The winding end portion 66a may be, for example, a portion of the base material 64 located at one end 60a side. The position of the winding end portion 66a has an angle θ 111 with respect to the side-by-side direction of the second tube 61 with respect to the first tube 60. The winding end portion 66a is a surface of the first tube 60 at one end 60a of the first tube 60 in the circumferential direction of the first tube 60 from between the first tube 60 and the second tube 61 on the base material 64. It is located at the tip of the extending portion 66b extending along the. The winding end portion 66a is fixed at a position in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the first tube 60. The side-by-side direction of the second tube 61 with respect to the first tube 60 is, for example, the arrangement direction of the central axis 61c of the second tube 61 with respect to the central axis 60c of the first tube 60.
 活物質保持部材50aでは、巻き端部66aが第1のチューブ60の表面における上述の0°以上+90°以下の角度範囲に位置することにより、第1のチューブ60の一端60aにおいて、延在部66bの長さが、第1のチューブ60の表面における+90°を上回る角度範囲に巻き端部66aが位置する場合と比較して短い。これにより、延在部66bに外部応力が負荷される頻度が低いため、基材64が巻き端部66aを起点にほつれにくいことから、活物質の漏出が抑制される。 In the active material holding member 50a, the winding end portion 66a is located in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the first tube 60, so that the extending portion is formed at one end 60a of the first tube 60. The length of 66b is shorter than the case where the winding end 66a is located in an angle range exceeding + 90 ° on the surface of the first tube 60. As a result, since the frequency of external stress being applied to the extending portion 66b is low, the base material 64 is less likely to fray starting from the winding end portion 66a, and thus leakage of the active material is suppressed.
 巻き端部66aは、第1のチューブ60に対する第2のチューブ61の併設方向に対して下記の角度範囲に位置することが好ましい。角度範囲の上限は、基材64が巻き端部66aを起点に更にほつれにくいことから活物質の漏出が更に抑制される観点から、+90°未満、+80°以下、+70°以下、+60°以下、+50°以下、+45°以下、+40°以下、+30°以下、+20°以下、+10°以下、又は、+5°以下が好ましい。角度範囲は、0°を超えてよく、0°又は+90°であってもよい。 The winding end portion 66a is preferably located in the following angle range with respect to the side-by-side direction of the second tube 61 with respect to the first tube 60. The upper limit of the angle range is less than + 90 °, + 80 ° or less, + 70 ° or less, + 60 ° or less, from the viewpoint that the base material 64 is less likely to fray from the winding end 66a and the leakage of the active material is further suppressed. It is preferably + 50 ° or less, + 45 ° or less, + 40 ° or less, + 30 ° or less, + 20 ° or less, + 10 ° or less, or + 5 ° or less. The angular range may exceed 0 ° and may be 0 ° or + 90 °.
 第1のチューブ60の他端60bにおける基材64の巻き端部67a(例えば巻き始め部)は、第1のチューブ60の軸方向に他端60b側から第1のチューブ60を見たときに、第1のチューブ60に対する第2のチューブ61の併設方向(図5(b)のX軸の正方向)を0°として、第1のチューブ60の中心軸に対して第1のチューブ60の表面における0°以上+90°以下の角度範囲(0~π/2ラジアン)に位置することが好ましい。巻き端部67aは、例えば、基材64における最も他端60b側に位置する部分であってよい。巻き端部67aの位置は、第1のチューブ60に対する第2のチューブ61の併設方向に対して角度θ112を有している。巻き端部67aは、第1のチューブ60の他端60bにおいて、基材64における第1のチューブ60及び第2のチューブ61の間から第1のチューブ60の周方向に第1のチューブ60の表面に沿って延在する延在部67bの先端に位置する。巻き端部67aは、第1のチューブ60の表面における上述の0°以上+90°以下の角度範囲の位置において固定されている。 When the winding end portion 67a (for example, the winding start portion) of the base material 64 on the other end 60b of the first tube 60 is viewed from the other end 60b side in the axial direction of the first tube 60, the first tube 60 is viewed. , The direction in which the second tube 61 is attached to the first tube 60 (the positive direction of the X axis in FIG. 5B) is 0 °, and the first tube 60 is connected to the central axis of the first tube 60. It is preferably located in an angle range (0 to π / 2 radians) of 0 ° or more and + 90 ° or less on the surface. The winding end portion 67a may be, for example, a portion of the base material 64 located on the farthest end 60b side. The position of the winding end portion 67a has an angle θ 112 with respect to the side-by-side direction of the second tube 61 with respect to the first tube 60. The winding end portion 67a is formed on the other end 60b of the first tube 60 from between the first tube 60 and the second tube 61 on the base material 64 in the circumferential direction of the first tube 60. It is located at the tip of the extending portion 67b extending along the surface. The winding end portion 67a is fixed at a position in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the first tube 60.
 巻き端部67aが第1のチューブ60の表面における0°以上+90°以下の上述の角度範囲に位置することにより、第1のチューブ60の他端60bにおいて、延在部67bの長さが、第1のチューブ60の表面における+90°を上回る角度範囲に巻き端部67aが位置する場合と比較して短い。この場合、延在部67bに外部応力が負荷される頻度が低いため、基材64が巻き端部67aを起点にほつれにくい。そのため、活物質保持部材50aでは、基材64が巻き端部66a及び巻き端部67aを起点にほつれにくいことから、活物質の漏出が更に抑制される。 By locating the winding end portion 67a in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the first tube 60, the length of the extending portion 67b at the other end 60b of the first tube 60 is increased. It is shorter than the case where the winding end portion 67a is located in an angle range exceeding + 90 ° on the surface of the first tube 60. In this case, since the frequency of external stress being applied to the extending portion 67b is low, the base material 64 is unlikely to fray starting from the winding end portion 67a. Therefore, in the active material holding member 50a, the base material 64 is less likely to fray starting from the winding end portion 66a and the winding end portion 67a, so that the leakage of the active material is further suppressed.
 巻き端部67aは、第1のチューブ60に対する第2のチューブ61の併設方向に対して下記の角度範囲に位置することが好ましい。角度範囲の上限は、基材64が巻き端部67aを起点に更にほつれにくいことから活物質の漏出が更に抑制される観点から、+90°未満、+80°以下、+70°以下、+60°以下、+50°以下、+45°以下、+40°以下、+30°以下、+20°以下、+10°以下、又は、+5°以下が好ましい。角度範囲は、0°を超えてよく、0°又は+90°であってもよい。 The winding end portion 67a is preferably located in the following angle range with respect to the side-by-side direction of the second tube 61 with respect to the first tube 60. The upper limit of the angle range is less than + 90 °, + 80 ° or less, + 70 ° or less, + 60 ° or less, from the viewpoint that the base material 64 is more difficult to fray from the winding end 67a and the leakage of the active material is further suppressed. It is preferably + 50 ° or less, + 45 ° or less, + 40 ° or less, + 30 ° or less, + 20 ° or less, + 10 ° or less, or + 5 ° or less. The angular range may exceed 0 ° and may be 0 ° or + 90 °.
 第2のチューブ61の一端61aにおける基材65aの巻き端部68aは、第2のチューブ61の軸方向に一端61a側から第2のチューブ61を見たときに、第1のチューブ60に対する第2のチューブ61の併設方向(図5(a)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)を0°として、第2のチューブ61の中心軸に対して第2のチューブ61の表面における0°以上+90°以下の角度範囲(0~π/2ラジアン)に位置することが好ましい。当該角度範囲の好ましい範囲は、巻き端部66aに関して上述した角度範囲と同様である。巻き端部68aの位置は、第1のチューブ60に対する第2のチューブ61の併設方向(図5(a)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)に対して角度θ121aを有している。巻き端部68aは、第2のチューブ61の一端61aにおいて、基材65aにおける第2のチューブ61及び第3のチューブ62の間から第2のチューブ61の周方向に第2のチューブ61の表面に沿って延在する延在部68bの先端に位置する。巻き端部68aは、第2のチューブ61の表面における上述の0°以上+90°以下の角度範囲の位置において固定されている。 The wound end portion 68a of the base material 65a at one end 61a of the second tube 61 is a second tube 60 with respect to the first tube 60 when the second tube 61 is viewed from the one end 61a side in the axial direction of the second tube 61. The side-by-side direction of the second tube 61 (the positive direction of the X-axis in FIG. 5A; the side-by-side direction of the third tube 62 with respect to the second tube 61) is 0 ° with respect to the central axis of the second tube 61. It is preferable that the tube 61 is located in an angle range (0 to π / 2 radians) of 0 ° or more and + 90 ° or less on the surface of the second tube 61. The preferable range of the angle range is the same as the angle range described above with respect to the winding end portion 66a. The position of the winding end portion 68a is the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 5 (a). The side-by-side direction of the third tube 62 with respect to the second tube 61). It has an angle θ 121a with respect to. The winding end portion 68a is a surface of the second tube 61 at one end 61a of the second tube 61 in the circumferential direction of the second tube 61 from between the second tube 61 and the third tube 62 on the base material 65a. It is located at the tip of the extending portion 68b extending along the. The winding end portion 68a is fixed at a position in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the second tube 61.
 巻き端部68aが第2のチューブ61の表面における上述の0°以上+90°以下の角度範囲に位置することにより、第2のチューブ61の一端61aにおいて、延在部68bの長さが、第2のチューブ61の表面における+90°を上回る角度範囲に巻き端部68aが位置する場合と比較して短い。これにより、延在部68bに外部応力が負荷される頻度が低いため、基材65aが巻き端部68aを起点にほつれにくい。そのため、活物質保持部材50aでは、基材64が巻き端部66aを起点にほつれにくいことに加え、基材65aが巻き端部68aを起点にほつれにくいことから、活物質の漏出が更に抑制される。 By locating the winding end portion 68a in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the second tube 61, the length of the extending portion 68b at one end 61a of the second tube 61 is increased. It is shorter than the case where the winding end portion 68a is located in an angle range exceeding + 90 ° on the surface of the tube 61 of 2. As a result, since the frequency of external stress being applied to the extending portion 68b is low, the base material 65a is less likely to fray starting from the winding end portion 68a. Therefore, in the active material holding member 50a, the base material 64 is less likely to fray from the winding end portion 66a, and the base material 65a is less likely to fray from the winding end portion 68a, so that leakage of the active material is further suppressed. To.
 第2のチューブ61の他端61bにおける基材65aの巻き端部69aは、第2のチューブ61の軸方向に他端61b側から第2のチューブ61を見たときに、第1のチューブ60に対する第2のチューブ61の併設方向(図5(b)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)を0°として、第2のチューブ61の中心軸に対して第2のチューブ61の表面における0°以上+90°以下の角度範囲(0~π/2ラジアン)に位置することが好ましい。当該角度範囲の好ましい範囲は、巻き端部67aに関して上述した角度範囲と同様である。巻き端部69aの位置は、第1のチューブ60に対する第2のチューブ61の併設方向(図5(b)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)に対して角度θ122aを有している。巻き端部69aは、第2のチューブ61の他端61bにおいて、基材65aにおける第2のチューブ61及び第3のチューブ62の間から第2のチューブ61の周方向に第2のチューブ61の表面に沿って延在する延在部69bの先端に位置する。巻き端部69aは、第2のチューブ61の表面における上述の0°以上+90°以下の角度範囲の位置において固定されている。 The wound end portion 69a of the base material 65a at the other end 61b of the second tube 61 is the first tube 60 when the second tube 61 is viewed from the other end 61b side in the axial direction of the second tube 61. The central axis of the second tube 61, where 0 ° is the side-by-side direction of the second tube 61 with respect to (the positive direction of the X-axis in FIG. 5B; the side-by-side direction of the third tube 62 with respect to the second tube 61). It is preferably located in an angle range (0 to π / 2 radians) of 0 ° or more and + 90 ° or less on the surface of the second tube 61. The preferred range of the angle range is the same as the above-mentioned angle range with respect to the winding end portion 67a. The position of the winding end portion 69a is the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 5B. The side-by-side direction of the third tube 62 with respect to the second tube 61). It has an angle θ 122a with respect to. At the other end 61b of the second tube 61, the winding end portion 69a is formed on the second tube 61 in the circumferential direction of the second tube 61 from between the second tube 61 and the third tube 62 on the base material 65a. It is located at the tip of the extending portion 69b extending along the surface. The winding end portion 69a is fixed at a position in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the second tube 61.
 巻き端部69aが第2のチューブ61の表面における上述の0°以上+90°以下の角度範囲に位置することにより、第2のチューブ61の他端61bにおいて、延在部69bの長さが、第2のチューブ61の表面における+90°を上回る角度範囲に巻き端部69aが位置する場合と比較して短い。これにより、延在部69bに外部応力が負荷される頻度が低いため、基材65aが巻き端部69aを起点にほつれにくい。そのため、活物質保持部材50aでは、基材64が巻き端部66aを起点にほつれにくいことに加え、基材65aが巻き端部69aを起点にほつれにくいことから、活物質の漏出が更に抑制される。 By locating the winding end portion 69a on the surface of the second tube 61 in the above-mentioned angle range of 0 ° or more and + 90 ° or less, the length of the extending portion 69b at the other end 61b of the second tube 61 is increased. It is shorter than the case where the winding end portion 69a is located in an angle range exceeding + 90 ° on the surface of the second tube 61. As a result, since the frequency of external stress being applied to the extending portion 69b is low, the base material 65a is less likely to fray starting from the winding end portion 69a. Therefore, in the active material holding member 50a, the base material 64 is hard to fray from the winding end portion 66a as the starting point, and the base material 65a is hard to fray from the winding end portion 69a as the starting point, so that the leakage of the active material is further suppressed. To.
 第2実施形態に係る活物質保持部材の一例は、第1のチューブ60において基材64が反時計回りに渦巻状に複数回巻き回されることにより形成されていることを除き上述の活物質保持部材50aと同様の構成を有する活物質保持部材である。このような活物質保持部材では、活物質保持部材50aと同様の効果を得ることが可能であり、好ましい態様は活物質保持部材50aと同様である。 An example of the active material holding member according to the second embodiment is the above-mentioned active material except that the base material 64 is formed by being spirally wound a plurality of times in a counterclockwise direction in the first tube 60. It is an active material holding member having the same structure as the holding member 50a. With such an active material holding member, it is possible to obtain the same effect as the active material holding member 50a, and a preferred embodiment is the same as that of the active material holding member 50a.
 図6及び図7に示す活物質保持部材50bは、互いに併設された第1のチューブ70、第2のチューブ71、第3のチューブ72及び第4のチューブ73を備える。第1のチューブ70は、一端70a及び他端70bを有している。第1のチューブ70は、他端70bから一端70aに向けて基材74が時計回りに螺旋状に複数回巻き回されることにより形成されている。第1のチューブ70は、例えば、基材74が第1のチューブ70の他端70bから一端70aにかけて巻き回されることにより形成されている。基材74は、第1のチューブ70の中心軸70cを中心として時計回りに螺旋状に複数回巻き回されている。第1のチューブ70は、例えば、互いに対向する第1の辺及び第2の辺を有する基材を、n回目の巻き回し時に他端70b側に位置する第1の辺に、n+1回目の巻き回し時に第2の辺が重なるように巻き回すことにより得ることができる。第1のチューブ70における第1のチューブ70の軸方向に垂直な断面は例えば真円状である。 The active material holding member 50b shown in FIGS. 6 and 7 includes a first tube 70, a second tube 71, a third tube 72, and a fourth tube 73 that are adjacent to each other. The first tube 70 has one end 70a and the other end 70b. The first tube 70 is formed by spirally winding the base material 74 a plurality of times clockwise from the other end 70b toward one end 70a. The first tube 70 is formed, for example, by winding the base material 74 from the other end 70b to one end 70a of the first tube 70. The base material 74 is spirally wound a plurality of times clockwise around the central axis 70c of the first tube 70. In the first tube 70, for example, the base material having the first side and the second side facing each other is wound n + 1 times around the first side located on the other end 70b side at the time of the nth winding. It can be obtained by winding so that the second sides overlap at the time of turning. The cross section of the first tube 70 perpendicular to the axial direction of the first tube 70 is, for example, a perfect circle.
 第2のチューブ71は、第1のチューブ70に隣接している。第3のチューブ72は、第2のチューブ71に隣接している。第4のチューブ73は、第1のチューブ70に隣接しており、第1のチューブ70に対する第2のチューブ71とは反対側において第1のチューブ70に併設されている。第2のチューブ71、第3のチューブ72及び第4のチューブ73は、例えば、第1のチューブ70と同様の構成を有している。第2のチューブ71は、一端71a(第2のチューブ71に併設された第1のチューブ70の一端70a側に位置する端部)及び他端71bを有している。第2のチューブ71は、他端70bから一端70aに向けて基材75aが時計回りに螺旋状に複数回巻き回されることにより形成されている。基材75aは、第2のチューブ71の中心軸71cを中心として時計回りに螺旋状に複数回巻き回されている。 The second tube 71 is adjacent to the first tube 70. The third tube 72 is adjacent to the second tube 71. The fourth tube 73 is adjacent to the first tube 70 and is attached to the first tube 70 on the opposite side of the first tube 70 from the second tube 71. The second tube 71, the third tube 72, and the fourth tube 73 have the same configuration as, for example, the first tube 70. The second tube 71 has one end 71a (the end located on the one end 70a side of the first tube 70 attached to the second tube 71) and the other end 71b. The second tube 71 is formed by spirally winding the base material 75a a plurality of times clockwise from the other end 70b toward one end 70a. The base material 75a is spirally wound a plurality of times clockwise around the central axis 71c of the second tube 71.
 第1のチューブ70の一端70aにおける基材74の巻き端部76a(例えば巻き終わり部)は、第1のチューブ70の軸方向に一端70a側から第1のチューブ70を見たときに、第1のチューブ70に対する第2のチューブ71の併設方向(図7(a)のX軸の正方向)を0°として、第1のチューブ70の中心軸に対して第1のチューブ70の表面における-90°以上0°以下の角度範囲(3π/2~2πラジアン)に位置する。巻き端部76aは、例えば、基材74における最も一端70a側に位置する部分であってよい。巻き端部76aの位置は、第1のチューブ70に対する第2のチューブ71の併設方向に対して角度θ211を有している。巻き端部76aは、第1のチューブ70の一端70aにおいて、基材74における第1のチューブ70及び第2のチューブ71の間から第1のチューブ70の周方向に第1のチューブ70の表面に沿って延在する延在部76bの先端に位置する。巻き端部76aは、第1のチューブ70の表面における上述の-90°以上0°以下の角度範囲の位置において固定されている。第1のチューブ70に対する第2のチューブ71の併設方向は、例えば、第1のチューブ70の中心軸70cに対する第2のチューブ71の中心軸71cの配置方向である。 The winding end portion 76a (for example, the winding end portion) of the base material 74 at one end 70a of the first tube 70 is the first tube 70 when the first tube 70 is viewed from the one end 70a side in the axial direction of the first tube 70. On the surface of the first tube 70 with respect to the central axis of the first tube 70, where the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X axis in FIG. 7A) is 0 °. It is located in an angle range (3π / 2 to 2π radians) of −90 ° or more and 0 ° or less. The winding end portion 76a may be, for example, a portion of the base material 74 located at one end 70a side. The position of the winding end portion 76a has an angle θ 211 with respect to the side-by-side direction of the second tube 71 with respect to the first tube 70. The winding end portion 76a is a surface of the first tube 70 at one end 70a of the first tube 70 in the circumferential direction of the first tube 70 from between the first tube 70 and the second tube 71 on the base material 74. It is located at the tip of the extending portion 76b extending along the. The winding end portion 76a is fixed at a position in the above-mentioned angle range of −90 ° or more and 0 ° or less on the surface of the first tube 70. The side-by-side direction of the second tube 71 with respect to the first tube 70 is, for example, the arrangement direction of the central axis 71c of the second tube 71 with respect to the central axis 70c of the first tube 70.
 活物質保持部材50bでは、巻き端部76aが第1のチューブ70の表面における上述の-90°以上0°以下の角度範囲に位置することにより、第1のチューブ70の一端70aにおいて、延在部76bの長さが、第1のチューブ70の表面における-90°を下回る角度範囲に巻き端部76aが位置する場合と比較して短い。これにより、延在部76bに外部応力が負荷される頻度が低いため、基材74が巻き端部76aを起点にほつれにくいことから、活物質の漏出が抑制される。 In the active material holding member 50b, the winding end portion 76a extends at one end 70a of the first tube 70 by being located in the above-mentioned angle range of −90 ° or more and 0 ° or less on the surface of the first tube 70. The length of the portion 76b is shorter than the case where the winding end portion 76a is located in an angle range of less than −90 ° on the surface of the first tube 70. As a result, since the frequency of external stress being applied to the extending portion 76b is low, the base material 74 is unlikely to fray starting from the winding end portion 76a, and thus leakage of the active material is suppressed.
 巻き端部76aは、第1のチューブ70に対する第2のチューブ71の併設方向に対して下記の角度範囲に位置することが好ましい。角度範囲の上限は、基材74が巻き端部76aを起点に更にほつれにくいことから活物質の漏出が更に抑制される観点から、-90°を超え、-80°以上、-70°以上、-60°以上、-50°以上、-45°以上、-40°以上、-30°以上、-20°以上、-10°以上、又は、-5°以上が好ましい。角度範囲は、0°未満であってよく、0°又は-90°であってもよい。 The winding end portion 76a is preferably located in the following angle range with respect to the side-by-side direction of the second tube 71 with respect to the first tube 70. The upper limit of the angle range is more than -90 °, -80 ° or more, -70 ° or more, from the viewpoint that the base material 74 is more difficult to fray from the winding end 76a and the leakage of the active material is further suppressed. -60 ° or higher, −50 ° or higher, −45 ° or higher, −40 ° or higher, −30 ° or higher, −20 ° or higher, −10 ° or higher, or −5 ° or higher is preferable. The angular range may be less than 0 ° and may be 0 ° or −90 °.
 第1のチューブ70の他端70bにおける基材74の巻き端部77a(例えば巻き始め部)は、第1のチューブ70の軸方向に他端70b側から第1のチューブ70を見たときに、第1のチューブ70に対する第2のチューブ71の併設方向(図7(b)のX軸の正方向)を0°として、第1のチューブ70の中心軸に対して第1のチューブ70の表面における-90°以上0°以下の角度範囲(3π/2~2πラジアン)に位置することが好ましい。巻き端部77aは、例えば、基材74における最も他端70b側に位置する部分であってよい。巻き端部77aの位置は、第1のチューブ70に対する第2のチューブ71の併設方向に対して角度θ212を有している。巻き端部77aは、第1のチューブ70の他端70bにおいて、基材74における第1のチューブ70及び第2のチューブ71の間から第1のチューブ70の周方向に第1のチューブ70の表面に沿って延在する延在部77bの先端に位置する。巻き端部77aは、第1のチューブ70の表面における上述の-90°以上0°以下の角度範囲の位置において固定されている。 When the winding end portion 77a (for example, the winding start portion) of the base material 74 on the other end 70b of the first tube 70 is viewed from the other end 70b side in the axial direction of the first tube 70, the first tube 70 is viewed. , The direction in which the second tube 71 is juxtaposed with respect to the first tube 70 (the positive direction of the X axis in FIG. 7B) is 0 °, and the first tube 70 with respect to the central axis of the first tube 70. It is preferably located in an angle range (3π / 2 to 2π radians) of −90 ° or more and 0 ° or less on the surface. The winding end portion 77a may be, for example, a portion of the base material 74 located on the farthest end 70b side. The position of the winding end portion 77a has an angle θ 212 with respect to the side-by-side direction of the second tube 71 with respect to the first tube 70. The winding end portion 77a is formed on the other end 70b of the first tube 70 from between the first tube 70 and the second tube 71 on the base material 74 in the circumferential direction of the first tube 70. It is located at the tip of the extending portion 77b extending along the surface. The winding end portion 77a is fixed at a position in the above-mentioned angle range of −90 ° or more and 0 ° or less on the surface of the first tube 70.
 巻き端部77aが第1のチューブ70の表面における-90°以上0°以下の上述の角度範囲に位置することにより、第1のチューブ70の他端70bにおいて、延在部77bの長さが、第1のチューブ70の表面における-90°を下回る角度範囲に巻き端部77aが位置する場合と比較して短い。これにより、延在部77bに外部応力が負荷される頻度が低いため、基材74が巻き端部77aを起点にほつれにくい。そのため、活物質保持部材50bでは、基材74が巻き端部76a及び巻き端部77aを起点にほつれにくいことから、活物質の漏出が更に抑制される。 By locating the winding end portion 77a in the above-mentioned angle range of −90 ° or more and 0 ° or less on the surface of the first tube 70, the length of the extending portion 77b at the other end 70b of the first tube 70 becomes longer. , Shorter than the case where the winding end 77a is located in an angle range below −90 ° on the surface of the first tube 70. As a result, since the frequency of external stress being applied to the extending portion 77b is low, the base material 74 is less likely to fray starting from the winding end portion 77a. Therefore, in the active material holding member 50b, the base material 74 is unlikely to fray starting from the winding end portion 76a and the winding end portion 77a, so that the leakage of the active material is further suppressed.
 巻き端部77aは、第1のチューブ70に対する第2のチューブ71の併設方向に対して下記の角度範囲に位置することが好ましい。角度範囲の上限は、基材74が巻き端部77aを起点に更にほつれにくいことから活物質の漏出が更に抑制される観点から、-90°を超え、-80°以上、-70°以上、-60°以上、-50°以上、-45°以上、-40°以上、-30°以上、-20°以上、-10°以上、又は、-5°以上が好ましい。角度範囲は、0°未満であってよく、0°又は-90°であってもよい。 The winding end portion 77a is preferably located in the following angle range with respect to the side-by-side direction of the second tube 71 with respect to the first tube 70. The upper limit of the angle range is more than -90 °, -80 ° or more, -70 ° or more, from the viewpoint that the base material 74 is more difficult to fray from the winding end 77a and the leakage of the active material is further suppressed. -60 ° or higher, −50 ° or higher, −45 ° or higher, −40 ° or higher, −30 ° or higher, −20 ° or higher, −10 ° or higher, or −5 ° or higher is preferable. The angular range may be less than 0 ° and may be 0 ° or −90 °.
 第2のチューブ71の一端71aにおける基材75aの巻き端部78aは、第2のチューブ71の軸方向に一端71a側から第2のチューブ71を見たときに、第1のチューブ70に対する第2のチューブ71の併設方向(図7(a)のX軸の正方向。第2のチューブ71に対する第3のチューブ72の併設方向)を0°として、第2のチューブ71の中心軸に対して第2のチューブ71の表面における-90°以上0°以下の角度範囲(3π/2~2πラジアン)に位置することが好ましい。当該角度範囲の好ましい範囲は、巻き端部76aに関して上述した角度範囲と同様である。巻き端部78aは、第2のチューブ71の一端71aにおいて、基材75aにおける第2のチューブ71及び第3のチューブ72の間から第2のチューブ71の周方向に第2のチューブ71の表面に沿って延在する延在部78bの先端に位置する。巻き端部78aは、第2のチューブ71の表面における上述の-90°以上0°以下の角度範囲の位置において固定されている。 The wound end portion 78a of the base material 75a at one end 71a of the second tube 71 is a second tube 70 with respect to the first tube 70 when the second tube 71 is viewed from the one end 71a side in the axial direction of the second tube 71. With respect to the central axis of the second tube 71, the side-by-side direction of the second tube 71 (the positive direction of the X-axis in FIG. 7 (a). It is preferable that the tube 71 is located in an angle range (3π / 2 to 2π radians) of −90 ° or more and 0 ° or less on the surface of the second tube 71. The preferred range of the angle range is the same as the above-mentioned angle range with respect to the winding end portion 76a. The winding end 78a is a surface of the second tube 71 at one end 71a of the second tube 71 in the circumferential direction of the second tube 71 from between the second tube 71 and the third tube 72 on the base material 75a. It is located at the tip of the extending portion 78b extending along the. The winding end portion 78a is fixed at a position in the above-mentioned angle range of −90 ° or more and 0 ° or less on the surface of the second tube 71.
 巻き端部78aが第2のチューブ71の表面における上述の-90°以上0°以下の角度範囲に位置することにより、第2のチューブ71の一端71aにおいて、延在部78bの長さが、第2のチューブ71の表面における-90°を下回る角度範囲に巻き端部78aが位置する場合と比較して短い。これにより、延在部78bに外部応力が負荷される頻度が低いため、基材75aが巻き端部78aを起点にほつれにくい。そのため、活物質保持部材50bでは、基材74が巻き端部76aを起点にほつれにくいことに加え、基材75aが巻き端部78aを起点にほつれにくいことから、活物質の漏出が更に抑制される。 By locating the winding end portion 78a in the above-mentioned angle range of −90 ° or more and 0 ° or less on the surface of the second tube 71, the length of the extending portion 78b at one end 71a of the second tube 71 is increased. It is shorter than the case where the winding end 78a is located in the angle range below −90 ° on the surface of the second tube 71. As a result, since the frequency of external stress being applied to the extending portion 78b is low, the base material 75a is less likely to fray starting from the winding end portion 78a. Therefore, in the active material holding member 50b, the base material 74 is hard to fray from the winding end portion 76a as the starting point, and the base material 75a is hard to fray from the winding end portion 78a, so that the leakage of the active material is further suppressed. To.
 第2のチューブ71の他端71bにおける基材75aの巻き端部79aは、第2のチューブ71の軸方向に他端71b側から第2のチューブ71を見たときに、第1のチューブ70に対する第2のチューブ71の併設方向(図7(b)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)を0°として、第2のチューブ71の中心軸に対して第2のチューブ71の表面における-90°以上0°以下の角度範囲(3π/2~2πラジアン)に位置することが好ましい。当該角度範囲の好ましい範囲は、巻き端部77aに関して上述した角度範囲と同様である。巻き端部79aは、第2のチューブ71の他端71bにおいて、基材75aにおける第2のチューブ71及び第3のチューブ72の間から第2のチューブ71の周方向に第2のチューブ71の表面に沿って延在する延在部79bの先端に位置する。巻き端部79aは、第2のチューブ71の表面における上述の-90°以上0°以下の角度範囲の位置において固定されている。 The wound end portion 79a of the base material 75a on the other end 71b of the second tube 71 is the first tube 70 when the second tube 71 is viewed from the other end 71b side in the axial direction of the second tube 71. The central axis of the second tube 71, where 0 ° is the side-by-side direction of the second tube 71 with respect to (the positive direction of the X-axis in FIG. 7B; the side-by-side direction of the third tube 62 with respect to the second tube 61). It is preferably located in an angle range (3π / 2 to 2π radians) of −90 ° or more and 0 ° or less on the surface of the second tube 71. The preferable range of the angle range is the same as the angle range described above with respect to the winding end portion 77a. At the other end 71b of the second tube 71, the winding end portion 79a is formed on the second tube 71 in the circumferential direction of the second tube 71 from between the second tube 71 and the third tube 72 on the base material 75a. It is located at the tip of the extending portion 79b extending along the surface. The winding end portion 79a is fixed at a position in the above-mentioned angle range of −90 ° or more and 0 ° or less on the surface of the second tube 71.
 巻き端部79aが第2のチューブ71の表面における上述の-90°以上0°以下の角度範囲に位置することにより、第2のチューブ71の他端71bにおいて、延在部79bの長さが、第2のチューブ71の表面における-90°を下回る角度範囲に巻き端部79aが位置する場合と比較して短い。これにより、延在部79bに外部応力が負荷される頻度が低いため、基材75aが巻き端部79aを起点にほつれにくい。そのため、活物質保持部材50bでは、基材74が巻き端部76aを起点にほつれにくいことに加え、基材75aが巻き端部79aを起点にほつれにくいことから、活物質の漏出が更に抑制される。 By locating the winding end portion 79a on the surface of the second tube 71 in the above-mentioned angle range of −90 ° or more and 0 ° or less, the length of the extending portion 79b at the other end 71b of the second tube 71 becomes longer. , It is shorter than the case where the winding end portion 79a is located in the angle range below −90 ° on the surface of the second tube 71. As a result, since the frequency of external stress being applied to the extending portion 79b is low, the base material 75a is less likely to fray starting from the winding end portion 79a. Therefore, in the active material holding member 50b, the base material 74 is hard to fray from the winding end portion 76a as the starting point, and the base material 75a is hard to fray from the winding end portion 79a as the starting point, so that the leakage of the active material is further suppressed. To.
 第4実施形態に係る活物質保持部材の一例は、第1のチューブ70において基材74が時計回りに渦巻状に複数回巻き回されることにより形成されていることを除き上述の活物質保持部材50bと同様の構成を有する活物質保持部材である。このような活物質保持部材では、活物質保持部材50bと同様の効果を得ることが可能であり、好ましい態様は活物質保持部材50bと同様である。 An example of the active material holding member according to the fourth embodiment is described above, except that the base material 74 is formed by being spirally wound a plurality of times in a clockwise direction in the first tube 70. It is an active material holding member having the same structure as the member 50b. With such an active material holding member, it is possible to obtain the same effect as the active material holding member 50b, and a preferred embodiment is the same as that of the active material holding member 50b.
 活物質保持部材の態様は、上述の態様に限られず、様々な変形態様が可能である。例えば、第1のチューブ以外のチューブ(例えば第2のチューブ)の構成(基材の巻き方向、巻き端部の位置等)は、第1のチューブの構成と同一であってよく、異なっていてもよい。 The mode of the active material holding member is not limited to the above-mentioned mode, and various modified modes are possible. For example, the configuration (winding direction of the base material, the position of the winding end, etc.) of the tubes other than the first tube (for example, the second tube) may be the same as or different from the configuration of the first tube. May be good.
 活物質保持部材、及び、当該活物質保持部材を有する電極は、液式鉛蓄電池において用いられること(液式鉛蓄電池用の活物質保持部材及び電極)が好ましく、鉛蓄電池は、液式鉛蓄電池であることが好ましい。一般に、液式鉛蓄電池では、電極の全体が電解液中に浸漬される傾向があり、制御弁式鉛蓄電池等と比較して電解液の量が多い傾向がある。この場合、電解液量によって放電容量が規制されにくいため、放電容量を大きくしやすい傾向がある。しかしながら、液式鉛蓄電池では、電解液の成層化によって電極の下方の領域における硫酸の濃度が高まり、電極におけるチューブの下方の基材が劣化しやすい。また、液式鉛蓄電池では、経年劣化(充放電サイクルに起因する劣化を包含する)が進むことによって活物質(例えば正極活物質)の泥状化が進行し、活物質が漏出しやすい状態となる。これらの状態でチューブの基材にほつれが生じると、活物質が顕著に漏出する。一方、上述の各態様及びその変形態様に係る活物質保持部材においては、基材が巻き端部を起点にほつれにくいことから、活物質の漏出を抑制しつつ液式鉛蓄電池の長所を活かすことができる。 The active material holding member and the electrode having the active material holding member are preferably used in a liquid lead-acid battery (active material holding member and electrode for a liquid lead-acid battery), and the lead-acid battery is a liquid lead-acid battery. Is preferable. Generally, in a liquid-type lead-acid battery, the entire electrode tends to be immersed in the electrolytic solution, and the amount of the electrolytic solution tends to be larger than that of a control valve type lead-acid battery or the like. In this case, since the discharge capacity is not easily regulated by the amount of the electrolytic solution, the discharge capacity tends to be increased. However, in a liquid lead-acid battery, the stratification of the electrolytic solution increases the concentration of sulfuric acid in the region below the electrode, and the base material below the tube in the electrode tends to deteriorate. Further, in a liquid lead-acid battery, as the deterioration over time (including deterioration due to the charge / discharge cycle) progresses, the active material (for example, the positive electrode active material) becomes muddy, and the active material easily leaks out. Become. If the base material of the tube is frayed in these states, the active material leaks significantly. On the other hand, in the active material holding member according to each of the above-described embodiments and the modified embodiments thereof, since the base material is unlikely to fray from the winding end, the advantages of the liquid lead-acid battery should be utilized while suppressing the leakage of the active material. Can be done.
 活物質保持部材は、図8~図11に示される態様であってよい。図8~図11は、活物質保持部材をチューブの軸方向から見たときの模式平面図である。図8~図11では、便宜上、チューブを構成する基材の厚みの図示を省略している。図8~図11では、便宜上、4つのチューブのみを図示しているが、活物質保持部材は5つ以上のチューブを備えてよい。 The active material holding member may be in the mode shown in FIGS. 8 to 11. 8 to 11 are schematic plan views of the active material holding member when viewed from the axial direction of the tube. In FIGS. 8 to 11, for convenience, the thickness of the base material constituting the tube is not shown. Although only four tubes are shown in FIGS. 8 to 11 for convenience, the active material holding member may include five or more tubes.
 図8及び図9に示す活物質保持部材50c~50eは、第2のチューブ61の構成が異なることを除き、図5に示す活物質保持部材50aと同一である。 The active material holding members 50c to 50e shown in FIGS. 8 and 9 are the same as the active material holding members 50a shown in FIG. 5, except that the configuration of the second tube 61 is different.
 図8(a)及び図9(a)に示す活物質保持部材50cにおいて、第2のチューブ61は、一端61a(第2のチューブ61に併設された第1のチューブ60の一端60a側に位置する端部)及び他端61bを有している。第2のチューブ61は、他端61bから一端61aに向けて基材65bが反時計回りに螺旋状に複数回巻き回されることにより形成されている。基材65bは、第2のチューブ61の中心軸61cを中心として反時計回りに螺旋状に複数回巻き回されている。 In the active material holding member 50c shown in FIGS. 8A and 9A, the second tube 61 is located at one end 61a (one end 60a side of the first tube 60 attached to the second tube 61). It has an end) and the other end 61b. The second tube 61 is formed by spirally winding the base material 65b a plurality of times counterclockwise from the other end 61b toward one end 61a. The base material 65b is spirally wound a plurality of times counterclockwise around the central axis 61c of the second tube 61.
 図8(a)に示すように、第2のチューブ61の一端61aにおける基材65bの巻き端部68cは、第2のチューブ61の軸方向に一端61a側から第2のチューブ61を見たときに、第1のチューブ60に対する第2のチューブ61の併設方向(図8(a)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)を0°として、第2のチューブ61の中心軸に対して第2のチューブ61の表面における-180°以上-90°以下の角度範囲(π~3π/2ラジアン)に位置することが好ましい。巻き端部68cの位置は、第1のチューブ60に対する第2のチューブ61の併設方向(図8(a)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)に対して角度θ121bを有している。巻き端部68cは、第2のチューブ61の一端61aにおいて、基材65bにおける第1のチューブ60及び第2のチューブ61の間から第2のチューブ61の周方向に第2のチューブ61の表面に沿って延在する延在部68dの先端に位置する。巻き端部68cは、第2のチューブ61の表面における上述の-180°以上-90°以下の角度範囲の位置において固定されている。 As shown in FIG. 8A, the winding end portion 68c of the base material 65b at one end 61a of the second tube 61 saw the second tube 61 from the one end 61a side in the axial direction of the second tube 61. Occasionally, the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 8A; the side-by-side direction of the third tube 62 with respect to the second tube 61) is set to 0 °. It is preferably located in an angle range (π to 3π / 2 radians) of −180 ° or more and −90 ° or less on the surface of the second tube 61 with respect to the central axis of the second tube 61. The position of the winding end portion 68c is the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 8A. The side-by-side direction of the third tube 62 with respect to the second tube 61). It has an angle θ 121b with respect to. The winding end portion 68c is a surface of the second tube 61 at one end 61a of the second tube 61 in the circumferential direction of the second tube 61 from between the first tube 60 and the second tube 61 on the base material 65b. It is located at the tip of the extending portion 68d extending along the. The winding end portion 68c is fixed at a position in the above-mentioned angle range of −180 ° or more and −90 ° or less on the surface of the second tube 61.
 巻き端部68cが第2のチューブ61の表面における上述の-180°以上-90°以下の角度範囲に位置することにより、第2のチューブ61の一端61aにおいて、延在部68dの長さが、第2のチューブ61の表面における-90°を上回る角度範囲に巻き端部68cが位置する場合と比較して短い。これにより、延在部68dに外部応力が負荷される頻度が低いため、基材65bが巻き端部68cを起点にほつれにくい。そのため、活物質保持部材50cでは、基材64が巻き端部66aを起点にほつれにくいことに加え、基材65bが巻き端部68cを起点にほつれにくいことから、活物質の漏出が更に抑制される。 Since the winding end portion 68c is located in the above-mentioned angle range of −180 ° or more and −90 ° or less on the surface of the second tube 61, the length of the extending portion 68d at one end 61a of the second tube 61 becomes longer. , It is shorter than the case where the winding end portion 68c is located in an angle range exceeding −90 ° on the surface of the second tube 61. As a result, since the frequency of external stress being applied to the extending portion 68d is low, the base material 65b is less likely to fray starting from the winding end portion 68c. Therefore, in the active material holding member 50c, the base material 64 is less likely to fray from the winding end portion 66a, and the base material 65b is less likely to fray from the winding end portion 68c, so that leakage of the active material is further suppressed. To.
 巻き端部68cは、第1のチューブ60に対する第2のチューブ61の併設方向に対して下記の角度範囲に位置することが好ましい。角度範囲の上限は、基材65bが巻き端部68cを起点に更にほつれにくいことから活物質の漏出が更に抑制される観点から、-90°未満、-100°以下、-110°以下、-120°以下、-130°以下、-135°以下、-140°以下、-150°以下、-160°以下、-170°以下、又は、-175°以下が好ましい。角度範囲は、-180°を超えてよく、-180°又は-90°であってもよい。 The winding end portion 68c is preferably located in the following angle range with respect to the side-by-side direction of the second tube 61 with respect to the first tube 60. The upper limit of the angle range is less than -90 °, -100 ° or less, -110 ° or less, and-from the viewpoint that the base material 65b is more difficult to fray starting from the winding end 68c and the leakage of the active material is further suppressed. It is preferably 120 ° or less, -130 ° or less, -135 ° or less, -140 ° or less, -150 ° or less, -160 ° or less, -170 ° or less, or -175 ° or less. The angular range may exceed −180 ° and may be −180 ° or −90 °.
 図9(a)に示すように、第2のチューブ61の他端61bにおける基材65bの巻き端部69cは、第2のチューブ61の軸方向に他端61b側から第2のチューブ61を見たときに、第1のチューブ60に対する第2のチューブ61の併設方向(図9(a)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)を0°として、第2のチューブ61の中心軸に対して第2のチューブ61の表面における-180°以上-90°以下の角度範囲(π~3π/2ラジアン)に位置することが好ましい。巻き端部69cの位置は、第1のチューブ60に対する第2のチューブ61の併設方向(図9(a)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)に対して角度θ122bを有している。巻き端部69cは、第2のチューブ61の他端61bにおいて、基材65bにおける第1のチューブ60及び第2のチューブ61の間から第2のチューブ61の周方向に第2のチューブ61の表面に沿って延在する延在部69dの先端に位置する。巻き端部69cは、第2のチューブ61の表面における上述の-180°以上-90°以下の角度範囲の位置において固定されている。 As shown in FIG. 9A, the winding end portion 69c of the base material 65b at the other end 61b of the second tube 61 is a second tube 61 from the other end 61b side in the axial direction of the second tube 61. When viewed, the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 9A; the side-by-side direction of the third tube 62 with respect to the second tube 61) is 0 °. Therefore, it is preferable to be located in an angle range (π to 3π / 2 radians) of −180 ° or more and −90 ° or less on the surface of the second tube 61 with respect to the central axis of the second tube 61. The position of the winding end portion 69c is the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 9A. The side-by-side direction of the third tube 62 with respect to the second tube 61). It has an angle θ 122b with respect to. At the other end 61b of the second tube 61, the winding end portion 69c is formed of the second tube 61 in the circumferential direction of the second tube 61 from between the first tube 60 and the second tube 61 on the base material 65b. It is located at the tip of the extending portion 69d extending along the surface. The winding end portion 69c is fixed at a position in the above-mentioned angle range of −180 ° or more and −90 ° or less on the surface of the second tube 61.
 巻き端部69cが第2のチューブ61の表面における上述の-180°以上-90°以下の角度範囲に位置することにより、第2のチューブ61の他端61bにおいて、延在部69dの長さが、第2のチューブ61の表面における-90°を上回る角度範囲に巻き端部69cが位置する場合と比較して短い。これにより、延在部69dに外部応力が負荷される頻度が低いため、基材65bが巻き端部69cを起点にほつれにくい。そのため、活物質保持部材50cでは、基材64が巻き端部66aを起点にほつれにくいことに加え、基材65bが巻き端部69cを起点にほつれにくいことから、活物質の漏出が更に抑制される。 By locating the winding end portion 69c in the above-mentioned angle range of −180 ° or more and −90 ° or less on the surface of the second tube 61, the length of the extending portion 69d at the other end 61b of the second tube 61 However, it is shorter than the case where the winding end portion 69c is located in an angle range exceeding −90 ° on the surface of the second tube 61. As a result, since the frequency of external stress being applied to the extending portion 69d is low, the base material 65b is less likely to fray starting from the winding end portion 69c. Therefore, in the active material holding member 50c, the base material 64 is less likely to fray from the winding end portion 66a, and the base material 65b is less likely to fray from the winding end portion 69c, so that leakage of the active material is further suppressed. To.
 巻き端部69cは、第1のチューブ60に対する第2のチューブ61の併設方向に対して下記の角度範囲に位置することが好ましい。角度範囲の上限は、基材65bが巻き端部69cを起点に更にほつれにくいことから活物質の漏出が更に抑制される観点から、-90°未満、-100°以下、-110°以下、-120°以下、-130°以下、-135°以下、-140°以下、-150°以下、-160°以下、-170°以下、又は、-175°以下が好ましい。角度範囲は、-180°を超えてよく、-180°又は-90°であってもよい。 The winding end portion 69c is preferably located in the following angle range with respect to the side-by-side direction of the second tube 61 with respect to the first tube 60. The upper limit of the angle range is less than -90 °, -100 ° or less, -110 ° or less, and-from the viewpoint that the base material 65b is more difficult to fray starting from the winding end 69c and the leakage of the active material is further suppressed. It is preferably 120 ° or less, -130 ° or less, -135 ° or less, -140 ° or less, -150 ° or less, -160 ° or less, -170 ° or less, or -175 ° or less. The angular range may exceed −180 ° and may be −180 ° or −90 °.
 図8(b)及び図9(b)に示す活物質保持部材50dにおいて、第2のチューブ61は、一端61a(第2のチューブ61に併設された第1のチューブ60の一端60a側に位置する端部)及び他端61bを有している。第2のチューブ61は、他端61bから一端61aに向けて基材65cが時計回りに螺旋状に複数回巻き回されることにより形成されている。基材65cは、第2のチューブ61の中心軸61cを中心として時計回りに螺旋状に複数回巻き回されている。 In the active material holding member 50d shown in FIGS. 8 (b) and 9 (b), the second tube 61 is located at one end 61a (one end 60a side of the first tube 60 attached to the second tube 61). It has an end) and the other end 61b. The second tube 61 is formed by spirally winding the base material 65c a plurality of times clockwise from the other end 61b toward one end 61a. The base material 65c is spirally wound a plurality of times clockwise around the central axis 61c of the second tube 61.
 図8(b)に示すように、第2のチューブ61の一端61aにおける基材65cの巻き端部68eは、第2のチューブ61の軸方向に一端61a側から第2のチューブ61を見たときに、第1のチューブ60に対する第2のチューブ61の併設方向(図8(b)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)を0°として、第2のチューブ61の中心軸に対して第2のチューブ61の表面における+90°以上+180°以下の角度範囲(π/2~πラジアン)に位置することが好ましい。巻き端部68eの位置は、第1のチューブ60に対する第2のチューブ61の併設方向(図8(b)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)に対して角度θ121cを有している。巻き端部68eは、第2のチューブ61の一端61aにおいて、基材65cにおける第1のチューブ60及び第2のチューブ61の間から第2のチューブ61の周方向に第2のチューブ61の表面に沿って延在する延在部68fの先端に位置する。巻き端部68eは、第2のチューブ61の表面における上述の+90°以上+180°以下の角度範囲の位置において固定されている。 As shown in FIG. 8B, the winding end portion 68e of the base material 65c at one end 61a of the second tube 61 saw the second tube 61 from the one end 61a side in the axial direction of the second tube 61. Occasionally, the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 8B; the side-by-side direction of the third tube 62 with respect to the second tube 61) is set to 0 °. It is preferably located in an angle range (π / 2 to π radians) of + 90 ° or more and + 180 ° or less on the surface of the second tube 61 with respect to the central axis of the second tube 61. The position of the winding end portion 68e is the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 8B. The side-by-side direction of the third tube 62 with respect to the second tube 61). It has an angle θ 121c with respect to. The winding end portion 68e is a surface of the second tube 61 at one end 61a of the second tube 61 in the circumferential direction of the second tube 61 from between the first tube 60 and the second tube 61 on the base material 65c. It is located at the tip of the extending portion 68f extending along the. The winding end portion 68e is fixed at a position in the above-mentioned angle range of + 90 ° or more and + 180 ° or less on the surface of the second tube 61.
 巻き端部68eが第2のチューブ61の表面における上述の+90°以上+180°以下の角度範囲に位置することにより、第2のチューブ61の一端61aにおいて、延在部68fの長さが、第2のチューブ61の表面における+90°を下回る角度範囲に巻き端部68eが位置する場合と比較して短い。これにより、延在部68fに外部応力が負荷される頻度が低いため、基材65cが巻き端部68eを起点にほつれにくい。そのため、活物質保持部材50dでは、基材64が巻き端部66aを起点にほつれにくいことに加え、基材65cが巻き端部68eを起点にほつれにくいことから、活物質の漏出が更に抑制される。 By locating the winding end portion 68e in the above-mentioned angle range of + 90 ° or more and + 180 ° or less on the surface of the second tube 61, the length of the extending portion 68f at one end 61a of the second tube 61 becomes the second. It is shorter than the case where the winding end portion 68e is located in the angle range below + 90 ° on the surface of the tube 61 of 2. As a result, since the frequency of external stress being applied to the extending portion 68f is low, the base material 65c is less likely to fray starting from the winding end portion 68e. Therefore, in the active material holding member 50d, the base material 64 is hard to fray from the winding end portion 66a as the starting point, and the base material 65c is hard to fray from the winding end portion 68e, so that the leakage of the active material is further suppressed. To.
 巻き端部68eは、第1のチューブ60に対する第2のチューブ61の併設方向に対して下記の角度範囲に位置することが好ましい。角度範囲の上限は、基材65cが巻き端部68eを起点に更にほつれにくいことから活物質の漏出が更に抑制される観点から、+90°を超え、+100°以上、+110°以上、+120°以上、+130°以上、+135°以上、+140°以上、+150°以上、+160°以上、+170°以上、又は、+175°以上が好ましい。角度範囲は、+180°未満であってよく、+90°又は+180°であってもよい。 The winding end portion 68e is preferably located in the following angle range with respect to the side-by-side direction of the second tube 61 with respect to the first tube 60. The upper limit of the angle range is more than + 90 °, + 100 ° or more, + 110 ° or more, + 120 ° or more from the viewpoint that the base material 65c is more difficult to fray starting from the winding end portion 68e and the leakage of the active material is further suppressed. , + 130 ° or more, + 135 ° or more, + 140 ° or more, + 150 ° or more, + 160 ° or more, + 170 ° or more, or + 175 ° or more are preferable. The angular range may be less than + 180 ° and may be + 90 ° or + 180 °.
 図9(b)に示すように、第2のチューブ61の他端61bにおける基材65cの巻き端部69eは、第2のチューブ61の軸方向に他端61b側から第2のチューブ61を見たときに、第1のチューブ60に対する第2のチューブ61の併設方向(図9(b)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)を0°として、第2のチューブ61の中心軸に対して第2のチューブ61の表面における+90°以上+180°以下の角度範囲(π/2~πラジアン)に位置することが好ましい。巻き端部69eの位置は、第1のチューブ60に対する第2のチューブ61の併設方向(図9(b)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)に対して角度θ122cを有している。巻き端部69eは、第2のチューブ61の他端61bにおいて、基材65cにおける第1のチューブ60及び第2のチューブ61の間から第2のチューブ61の周方向に第2のチューブ61の表面に沿って延在する延在部69fの先端に位置する。巻き端部69eは、第2のチューブ61の表面における上述の+90°以上+180°以下の角度範囲の位置において固定されている。 As shown in FIG. 9B, the winding end portion 69e of the base material 65c at the other end 61b of the second tube 61 connects the second tube 61 from the other end 61b side in the axial direction of the second tube 61. When viewed, the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 9B; the side-by-side direction of the third tube 62 with respect to the second tube 61) is 0 °. As a result, it is preferable that the second tube 61 is located in an angle range (π / 2 to π radians) of + 90 ° or more and + 180 ° or less on the surface of the second tube 61 with respect to the central axis. The position of the winding end portion 69e is the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 9B. The side-by-side direction of the third tube 62 with respect to the second tube 61). It has an angle θ 122c with respect to. At the other end 61b of the second tube 61, the winding end portion 69e is formed of the second tube 61 in the circumferential direction of the second tube 61 from between the first tube 60 and the second tube 61 in the base material 65c. It is located at the tip of the extending portion 69f extending along the surface. The winding end portion 69e is fixed at a position in the above-mentioned angle range of + 90 ° or more and + 180 ° or less on the surface of the second tube 61.
 巻き端部69eが第2のチューブ61の表面における上述の+90°以上+180°以下の角度範囲に位置することにより、第2のチューブ61の他端61bにおいて、延在部69fの長さが、第2のチューブ61の表面における+90°を下回る角度範囲に巻き端部69eが位置する場合と比較して短い。これにより、延在部69fに外部応力が負荷される頻度が低いため、基材65cが巻き端部69eを起点にほつれにくい。そのため、活物質保持部材50dでは、基材64が巻き端部66aを起点にほつれにくいことに加え、基材65cが巻き端部69eを起点にほつれにくいことから、活物質の漏出が更に抑制される。 By locating the winding end portion 69e in the above-mentioned angle range of + 90 ° or more and + 180 ° or less on the surface of the second tube 61, the length of the extending portion 69f at the other end 61b of the second tube 61 is increased. It is shorter than the case where the winding end portion 69e is located in the angle range below + 90 ° on the surface of the second tube 61. As a result, since the frequency of external stress being applied to the extending portion 69f is low, the base material 65c is less likely to fray starting from the winding end portion 69e. Therefore, in the active material holding member 50d, the base material 64 is less likely to fray from the winding end portion 66a, and the base material 65c is less likely to fray from the winding end portion 69e, so that leakage of the active material is further suppressed. To.
 巻き端部69eは、第1のチューブ60に対する第2のチューブ61の併設方向に対して下記の角度範囲に位置することが好ましい。角度範囲の上限は、基材65cが巻き端部69eを起点に更にほつれにくいことから活物質の漏出が更に抑制される観点から、+90°を超え、+100°以上、+110°以上、+120°以上、+130°以上、+135°以上、+140°以上、+150°以上、+160°以上、+170°以上、又は、+175°以上が好ましい。角度範囲は、+180°未満であってよく、+90°又は+180°であってもよい。 The winding end portion 69e is preferably located in the following angle range with respect to the side-by-side direction of the second tube 61 with respect to the first tube 60. The upper limit of the angle range is more than + 90 °, + 100 ° or more, + 110 ° or more, + 120 ° or more from the viewpoint that the base material 65c is more difficult to fray starting from the winding end portion 69e and the leakage of the active material is further suppressed. , + 130 ° or more, + 135 ° or more, + 140 ° or more, + 150 ° or more, + 160 ° or more, + 170 ° or more, or + 175 ° or more are preferable. The angular range may be less than + 180 ° and may be + 90 ° or + 180 °.
 図8(c)及び図9(c)に示す活物質保持部材50eにおいて、第2のチューブ61は、一端61a(第2のチューブ61に併設された第1のチューブ60の一端60a側に位置する端部)及び他端61bを有している。第2のチューブ61は、他端61bから一端61aに向けて基材65dが時計回りに螺旋状に複数回巻き回されることにより形成されている。基材65dは、第2のチューブ61の中心軸61cを中心として時計回りに螺旋状に複数回巻き回されている。 In the active material holding member 50e shown in FIGS. 8 (c) and 9 (c), the second tube 61 is located at one end 61a (one end 60a side of the first tube 60 attached to the second tube 61). It has an end) and the other end 61b. The second tube 61 is formed by spirally winding the base material 65d a plurality of times clockwise from the other end 61b toward one end 61a. The base material 65d is spirally wound a plurality of times clockwise around the central axis 61c of the second tube 61.
 図8(c)に示すように、第2のチューブ61の一端61aにおける基材65dの巻き端部68gは、第2のチューブ61の軸方向に一端61a側から第2のチューブ61を見たときに、第1のチューブ60に対する第2のチューブ61の併設方向(図8(c)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)を0°として、第2のチューブ61の中心軸に対して第2のチューブ61の表面における-90°以上0°以下の角度範囲(3π/2~2πラジアン)に位置することが好ましい。当該角度範囲の好ましい範囲は、巻き端部77aに関して上述した角度範囲と同様である。巻き端部68gの位置は、第1のチューブ60に対する第2のチューブ61の併設方向(図8(c)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)に対して角度θ121dを有している。巻き端部68gは、第2のチューブ61の一端61aにおいて、基材65dにおける第2のチューブ61及び第3のチューブ62の間から第2のチューブ61の周方向に第2のチューブ61の表面に沿って延在する延在部68hの先端に位置する。巻き端部68gは、第2のチューブ61の表面における上述の-90°以上0°以下の角度範囲の位置において固定されている。 As shown in FIG. 8C, the wound end portion 68 g of the base material 65d at one end 61a of the second tube 61 saw the second tube 61 from the one end 61a side in the axial direction of the second tube 61. Occasionally, the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 8C; the side-by-side direction of the third tube 62 with respect to the second tube 61) is set to 0 °. It is preferably located in an angle range (3π / 2 to 2π radians) of −90 ° or more and 0 ° or less on the surface of the second tube 61 with respect to the central axis of the second tube 61. The preferable range of the angle range is the same as the angle range described above with respect to the winding end portion 77a. The position of the winding end portion 68 g is the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 8C. The side-by-side direction of the third tube 62 with respect to the second tube 61). It has an angle θ 121d with respect to. At one end 61a of the second tube 61, the winding end portion 68g is a surface of the second tube 61 in the circumferential direction of the second tube 61 from between the second tube 61 and the third tube 62 on the base material 65d. It is located at the tip of the extending portion 68h extending along the line. The winding end portion 68 g is fixed at a position in the above-mentioned angle range of −90 ° or more and 0 ° or less on the surface of the second tube 61.
 巻き端部68gが第2のチューブ61の表面における上述の-90°以上0°以下の角度範囲に位置することにより、第2のチューブ61の一端61aにおいて、延在部68hの長さが、第2のチューブ61の表面における-90°を下回る角度範囲に巻き端部68gが位置する場合と比較して短い。これにより、延在部68hに外部応力が負荷される頻度が低いため、基材65dが巻き端部68gを起点にほつれにくい。そのため、活物質保持部材50eでは、基材64が巻き端部66aを起点にほつれにくいことに加え、基材65dが巻き端部68gを起点にほつれにくいことから、活物質の漏出が更に抑制される。 By locating the winding end portion 68g on the surface of the second tube 61 in the above-mentioned angle range of −90 ° or more and 0 ° or less, the length of the extending portion 68h at one end 61a of the second tube 61 is increased. It is shorter than the case where the winding end portion 68 g is located in the angle range below −90 ° on the surface of the second tube 61. As a result, since the frequency of external stress being applied to the extending portion 68h is low, the base material 65d is less likely to fray starting from the winding end portion 68g. Therefore, in the active material holding member 50e, the base material 64 is less likely to fray from the winding end portion 66a, and the base material 65d is less likely to fray from the winding end portion 68g, so that leakage of the active material is further suppressed. To.
 図9(c)に示すように、第2のチューブ61の他端61bにおける基材65dの巻き端部69gは、第2のチューブ61の軸方向に他端61b側から第2のチューブ61を見たときに、第1のチューブ60に対する第2のチューブ61の併設方向(図9(c)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)を0°として、第2のチューブ61の中心軸に対して第2のチューブ61の表面における-90°以上0°以下の角度範囲(3π/2~2πラジアン)に位置することが好ましい。当該角度範囲の好ましい範囲は、巻き端部77aに関して上述した角度範囲と同様である。巻き端部69gの位置は、第1のチューブ60に対する第2のチューブ61の併設方向(図9(c)のX軸の正方向。第2のチューブ61に対する第3のチューブ62の併設方向)に対して角度θ122dを有している。巻き端部69gは、第2のチューブ61の他端61bにおいて、基材65dにおける第2のチューブ61及び第3のチューブ62の間から第2のチューブ61の周方向に第2のチューブ61の表面に沿って延在する延在部69hの先端に位置する。巻き端部69gは、第2のチューブ61の表面における上述の-90°以上0°以下の角度範囲の位置において固定されている。 As shown in FIG. 9C, the winding end portion 69g of the base material 65d at the other end 61b of the second tube 61 is a second tube 61 from the other end 61b side in the axial direction of the second tube 61. When viewed, the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 9C; the side-by-side direction of the third tube 62 with respect to the second tube 61) is 0 °. Therefore, it is preferable to be located in an angle range (3π / 2 to 2π radians) of −90 ° or more and 0 ° or less on the surface of the second tube 61 with respect to the central axis of the second tube 61. The preferable range of the angle range is the same as the angle range described above with respect to the winding end portion 77a. The position of the winding end portion 69g is the side-by-side direction of the second tube 61 with respect to the first tube 60 (the positive direction of the X-axis in FIG. 9C. The side-by-side direction of the third tube 62 with respect to the second tube 61). It has an angle θ 122d with respect to. At the other end 61b of the second tube 61, the winding end portion 69g is formed on the second tube 61 in the circumferential direction of the second tube 61 from between the second tube 61 and the third tube 62 on the base material 65d. It is located at the tip of the extending portion 69h extending along the surface. The winding end portion 69 g is fixed at a position in the above-mentioned angle range of −90 ° or more and 0 ° or less on the surface of the second tube 61.
 巻き端部69gが第2のチューブ61の表面における上述の-90°以上0°以下の角度範囲に位置することにより、第2のチューブ61の他端61bにおいて、延在部69hの長さが、第2のチューブ61の表面における-90°を下回る角度範囲に巻き端部69gが位置する場合と比較して短い。これにより、延在部69hに外部応力が負荷される頻度が低いため、基材65dが巻き端部69gを起点にほつれにくい。そのため、活物質保持部材50eでは、基材64が巻き端部66aを起点にほつれにくいことに加え、基材65dが巻き端部69gを起点にほつれにくいことから、活物質の漏出が更に抑制される。 By locating the winding end portion 69g on the surface of the second tube 61 in the above-mentioned angle range of −90 ° or more and 0 ° or less, the length of the extending portion 69h at the other end 61b of the second tube 61 becomes longer. , It is shorter than the case where the winding end portion 69g is located in the angle range below −90 ° on the surface of the second tube 61. As a result, since the frequency of external stress being applied to the extending portion 69h is low, the base material 65d is less likely to fray starting from the winding end portion 69g. Therefore, in the active material holding member 50e, the base material 64 is less likely to fray from the winding end 66a as the starting point, and the base material 65d is less likely to fray starting from the winding end 69g, so that the leakage of the active material is further suppressed. To.
 図10及び図11に示す活物質保持部材50f~50hは、第2のチューブ71の構成が異なることを除き、図7に示す活物質保持部材50bと同一である。 The active material holding members 50f to 50h shown in FIGS. 10 and 11 are the same as the active material holding member 50b shown in FIG. 7, except that the configuration of the second tube 71 is different.
 図10(a)及び図11(a)に示す活物質保持部材50fにおいて、第2のチューブ71は、一端71a(第2のチューブ71に併設された第1のチューブ70の一端70a側に位置する端部)及び他端71bを有している。第2のチューブ71は、他端71bから一端71aに向けて基材75bが時計回りに螺旋状に複数回巻き回されることにより形成されている。基材75bは、第2のチューブ71の中心軸71cを中心として時計回りに螺旋状に複数回巻き回されている。 In the active material holding member 50f shown in FIGS. 10A and 11A, the second tube 71 is located at one end 71a (one end 70a side of the first tube 70 attached to the second tube 71). It has an end) and the other end 71b. The second tube 71 is formed by spirally winding the base material 75b a plurality of times clockwise from the other end 71b toward one end 71a. The base material 75b is spirally wound a plurality of times clockwise around the central axis 71c of the second tube 71.
 図10(a)に示すように、第2のチューブ71の一端71aにおける基材75bの巻き端部78cは、第2のチューブ71の軸方向に一端71a側から第2のチューブ71を見たときに、第1のチューブ70に対する第2のチューブ71の併設方向(図10(a)のX軸の正方向。第2のチューブ71に対する第3のチューブ72の併設方向)を0°として、第2のチューブ71の中心軸に対して第2のチューブ71の表面における+90°以上+180°以下の角度範囲(π/2~πラジアン)に位置することが好ましい。当該角度範囲の好ましい範囲は、巻き端部68eに関して上述した角度範囲と同様である。巻き端部78cの位置は、第1のチューブ70に対する第2のチューブ71の併設方向(図10(a)のX軸の正方向。第2のチューブ71に対する第3のチューブ72の併設方向)に対して角度θ221bを有している。巻き端部78cは、第2のチューブ71の一端71aにおいて、基材75bにおける第1のチューブ70及び第2のチューブ71の間から第2のチューブ71の周方向に第2のチューブ71の表面に沿って延在する延在部78dの先端に位置する。巻き端部78cは、第2のチューブ71の表面における上述の+90°以上+180°以下の角度範囲の位置において固定されている。 As shown in FIG. 10A, the winding end portion 78c of the base material 75b at one end 71a of the second tube 71 saw the second tube 71 from the one end 71a side in the axial direction of the second tube 71. Occasionally, the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 10A; the side-by-side direction of the third tube 72 with respect to the second tube 71) is set to 0 °. It is preferably located in an angle range (π / 2 to π radians) of + 90 ° or more and + 180 ° or less on the surface of the second tube 71 with respect to the central axis of the second tube 71. The preferable range of the angle range is the same as the angle range described above with respect to the winding end portion 68e. The position of the winding end 78c is the direction in which the second tube 71 is attached to the first tube 70 (the positive direction of the X-axis in FIG. 10 (a). The direction in which the third tube 72 is attached to the second tube 71). It has an angle θ 221b with respect to. The winding end 78c is a surface of the second tube 71 at one end 71a of the second tube 71 in the circumferential direction of the second tube 71 from between the first tube 70 and the second tube 71 on the base material 75b. It is located at the tip of the extending portion 78d extending along the. The winding end 78c is fixed at a position on the surface of the second tube 71 in the above-mentioned angle range of + 90 ° or more and + 180 ° or less.
 巻き端部78cが第2のチューブ71の表面における上述の+90°以上+180°以下の角度範囲に位置することにより、第2のチューブ71の一端71aにおいて、延在部78dの長さが、第2のチューブ71の表面における+90°を下回る角度範囲に巻き端部78cが位置する場合と比較して短い。これにより、延在部78dに外部応力が負荷される頻度が低いため、基材75bが巻き端部78cを起点にほつれにくい。そのため、活物質保持部材50fでは、基材74が巻き端部76aを起点にほつれにくいことに加え、基材75bが巻き端部78cを起点にほつれにくいことから、活物質の漏出が更に抑制される。 Since the winding end portion 78c is located in the above-mentioned angle range of + 90 ° or more and + 180 ° or less on the surface of the second tube 71, the length of the extending portion 78d at one end 71a of the second tube 71 is increased. It is shorter than the case where the winding end 78c is located in the angle range below + 90 ° on the surface of the tube 71 of 2. As a result, since the frequency of external stress being applied to the extending portion 78d is low, the base material 75b is less likely to fray starting from the winding end portion 78c. Therefore, in the active material holding member 50f, the base material 74 is hard to fray starting from the winding end portion 76a, and the base material 75b is hard to fray starting from the winding end portion 78c, so that the leakage of the active material is further suppressed. To.
 図11(a)に示すように、第2のチューブ71の他端71bにおける基材75bの巻き端部79cは、第2のチューブ71の軸方向に他端71b側から第2のチューブ71を見たときに、第1のチューブ70に対する第2のチューブ71の併設方向(図11(a)のX軸の正方向。第2のチューブ71に対する第3のチューブ72の併設方向)を0°として、第2のチューブ71の中心軸に対して第2のチューブ71の表面における+90°以上+180°以下の角度範囲(π/2~πラジアン)に位置することが好ましい。当該角度範囲の好ましい範囲は、巻き端部69eに関して上述した角度範囲と同様である。巻き端部79cの位置は、第1のチューブ70に対する第2のチューブ71の併設方向(図11(a)のX軸の正方向。第2のチューブ71に対する第3のチューブ72の併設方向)に対して角度θ222bを有している。巻き端部79cは、第2のチューブ71の他端71bにおいて、基材75bにおける第1のチューブ70及び第2のチューブ71の間から第2のチューブ71の周方向に第2のチューブ71の表面に沿って延在する延在部79dの先端に位置する。巻き端部79cは、第2のチューブ71の表面における上述の+90°以上+180°以下の角度範囲の位置において固定されている。 As shown in FIG. 11A, the winding end portion 79c of the base material 75b at the other end 71b of the second tube 71 is a second tube 71 from the other end 71b side in the axial direction of the second tube 71. When viewed, the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 11A; the side-by-side direction of the third tube 72 with respect to the second tube 71) is 0 °. Therefore, it is preferably located in an angle range (π / 2 to π radians) of + 90 ° or more and + 180 ° or less on the surface of the second tube 71 with respect to the central axis of the second tube 71. The preferable range of the angle range is the same as the angle range described above with respect to the winding end portion 69e. The position of the winding end portion 79c is the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 11A. The side-by-side direction of the third tube 72 with respect to the second tube 71). It has an angle θ 222b with respect to. At the other end 71b of the second tube 71, the winding end portion 79c is formed on the second tube 71 in the circumferential direction of the second tube 71 from between the first tube 70 and the second tube 71 on the base material 75b. It is located at the tip of the extending portion 79d extending along the surface. The winding end portion 79c is fixed at a position in the above-mentioned angle range of + 90 ° or more and + 180 ° or less on the surface of the second tube 71.
 巻き端部79cが第2のチューブ71の表面における上述の+90°以上+180°以下の角度範囲に位置することにより、第2のチューブ71の他端71bにおいて、延在部79dの長さが、第2のチューブ71の表面における+90°を下回る角度範囲に巻き端部79cが位置する場合と比較して短い。これにより、延在部79dに外部応力が負荷される頻度が低いため、基材75bが巻き端部79cを起点にほつれにくい。そのため、活物質保持部材50fでは、基材74が巻き端部76aを起点にほつれにくいことに加え、基材75bが巻き端部79cを起点にほつれにくいことから、活物質の漏出が更に抑制される。 By locating the winding end portion 79c in the above-mentioned angle range of + 90 ° or more and + 180 ° or less on the surface of the second tube 71, the length of the extending portion 79d at the other end 71b of the second tube 71 is increased. It is shorter than the case where the winding end portion 79c is located in the angle range below + 90 ° on the surface of the second tube 71. As a result, since the frequency of external stress being applied to the extending portion 79d is low, the base material 75b is less likely to fray starting from the winding end portion 79c. Therefore, in the active material holding member 50f, the base material 74 is hard to fray starting from the winding end portion 76a, and the base material 75b is hard to fray starting from the winding end portion 79c, so that the leakage of the active material is further suppressed. To.
 図10(b)及び図11(b)に示す活物質保持部材50gにおいて、第2のチューブ71は、一端71a(第2のチューブ71に併設された第1のチューブ70の一端70a側に位置する端部)及び他端71bを有している。第2のチューブ71は、他端71bから一端71aに向けて基材75cが反時計回りに螺旋状に複数回巻き回されることにより形成されている。基材75cは、第2のチューブ71の中心軸71cを中心として反時計回りに螺旋状に複数回巻き回されている。 In the active material holding member 50g shown in FIGS. 10B and 11B, the second tube 71 is located at one end 71a (one end 70a side of the first tube 70 attached to the second tube 71). It has an end) and the other end 71b. The second tube 71 is formed by spirally winding the base material 75c a plurality of times counterclockwise from the other end 71b toward one end 71a. The base material 75c is spirally wound a plurality of times counterclockwise around the central axis 71c of the second tube 71.
 図10(b)に示すように、第2のチューブ71の一端71aにおける基材75cの巻き端部78eは、第2のチューブ71の軸方向に一端71a側から第2のチューブ71を見たときに、第1のチューブ70に対する第2のチューブ71の併設方向(図10(b)のX軸の正方向。第2のチューブ71に対する第3のチューブ72の併設方向)を0°として、第2のチューブ71の中心軸に対して第2のチューブ71の表面における-180°以上-90°以下の角度範囲(π~3π/2ラジアン)に位置することが好ましい。当該角度範囲の好ましい範囲は、巻き端部68cに関して上述した角度範囲と同様である。巻き端部78eの位置は、第1のチューブ70に対する第2のチューブ71の併設方向(図10(b)のX軸の正方向。第2のチューブ71に対する第3のチューブ72の併設方向)に対して角度θ221cを有している。巻き端部78eは、第2のチューブ71の一端71aにおいて、基材75cにおける第1のチューブ70及び第2のチューブ71の間から第2のチューブ71の周方向に第2のチューブ71の表面に沿って延在する延在部78fの先端に位置する。巻き端部78eは、第2のチューブ71の表面における上述の-180°以上-90°以下の角度範囲の位置において固定されている。 As shown in FIG. 10B, the winding end portion 78e of the base material 75c at one end 71a of the second tube 71 saw the second tube 71 from the one end 71a side in the axial direction of the second tube 71. Occasionally, the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 10B; the side-by-side direction of the third tube 72 with respect to the second tube 71) is set to 0 °. It is preferably located in an angle range (π to 3π / 2 radians) of −180 ° or more and −90 ° or less on the surface of the second tube 71 with respect to the central axis of the second tube 71. The preferred range of the angle range is the same as the above-mentioned angle range with respect to the winding end portion 68c. The position of the winding end portion 78e is the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 10B. The side-by-side direction of the third tube 72 with respect to the second tube 71). It has an angle θ 221c with respect to. The winding end 78e is a surface of the second tube 71 at one end 71a of the second tube 71 in the circumferential direction of the second tube 71 from between the first tube 70 and the second tube 71 in the base material 75c. It is located at the tip of the extending portion 78f extending along the line. The winding end 78e is fixed at a position on the surface of the second tube 71 in the above-mentioned angle range of −180 ° or more and −90 ° or less.
 巻き端部78eが第2のチューブ71の表面における上述の-180°以上-90°以下の角度範囲に位置することにより、第2のチューブ71の一端71aにおいて、延在部78fの長さが、第2のチューブ71の表面における-90°を上回る角度範囲に巻き端部78eが位置する場合と比較して短い。これにより、延在部78fに外部応力が負荷される頻度が低いため、基材75cが巻き端部78eを起点にほつれにくい。そのため、活物質保持部材50gでは、基材74が巻き端部76aを起点にほつれにくいことに加え、基材75cが巻き端部78eを起点にほつれにくいことから、活物質の漏出が更に抑制される。 By locating the winding end portion 78e in the above-mentioned angle range of −180 ° or more and −90 ° or less on the surface of the second tube 71, the length of the extending portion 78f at one end 71a of the second tube 71 becomes longer. , The winding end 78e is shorter than the case where the winding end 78e is located in an angle range exceeding −90 ° on the surface of the second tube 71. As a result, since the frequency of external stress being applied to the extending portion 78f is low, the base material 75c is less likely to fray starting from the winding end portion 78e. Therefore, in the active material holding member 50g, the base material 74 is hard to fray from the winding end portion 76a as the starting point, and the base material 75c is hard to fray from the winding end portion 78e, so that the leakage of the active material is further suppressed. To.
 図11(b)に示すように、第2のチューブ71の他端71bにおける基材75cの巻き端部79eは、第2のチューブ71の軸方向に他端71b側から第2のチューブ71を見たときに、第1のチューブ70に対する第2のチューブ71の併設方向(図11(b)のX軸の正方向。第2のチューブ71に対する第3のチューブ72の併設方向)を0°として、第2のチューブ71の中心軸に対して第2のチューブ71の表面における-180°以上-90°以下の角度範囲(π~3π/2ラジアン)に位置することが好ましい。当該角度範囲の好ましい範囲は、巻き端部69cに関して上述した角度範囲と同様である。巻き端部79eの位置は、第1のチューブ70に対する第2のチューブ71の併設方向(図11(b)のX軸の正方向。第2のチューブ71に対する第3のチューブ72の併設方向)に対して角度θ222cを有している。巻き端部79eは、第2のチューブ71の他端71bにおいて、基材75cにおける第1のチューブ70及び第2のチューブ71の間から第2のチューブ71の周方向に第2のチューブ71の表面に沿って延在する延在部79fの先端に位置する。巻き端部79eは、第2のチューブ71の表面における上述の-180°以上-90°以下の角度範囲の位置において固定されている。 As shown in FIG. 11B, the winding end portion 79e of the base material 75c at the other end 71b of the second tube 71 connects the second tube 71 from the other end 71b side in the axial direction of the second tube 71. When viewed, the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 11B; the side-by-side direction of the third tube 72 with respect to the second tube 71) is 0 °. Therefore, it is preferable to be located in an angle range (π to 3π / 2 radians) of −180 ° or more and −90 ° or less on the surface of the second tube 71 with respect to the central axis of the second tube 71. The preferred range of the angle range is the same as the above-mentioned angle range with respect to the winding end portion 69c. The position of the winding end portion 79e is the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 11B. The side-by-side direction of the third tube 72 with respect to the second tube 71). It has an angle θ 222c with respect to. At the other end 71b of the second tube 71, the winding end portion 79e is formed of the second tube 71 in the circumferential direction of the second tube 71 from between the first tube 70 and the second tube 71 in the base material 75c. It is located at the tip of the extending portion 79f extending along the surface. The winding end portion 79e is fixed at a position in the above-mentioned angle range of −180 ° or more and −90 ° or less on the surface of the second tube 71.
 巻き端部79eが第2のチューブ71の表面における上述の-180°以上-90°以下の角度範囲に位置することにより、第2のチューブ71の他端71bにおいて、延在部79fの長さが、第2のチューブ71の表面における-90°を上回る角度範囲に巻き端部79eが位置する場合と比較して短い。これにより、延在部79fに外部応力が負荷される頻度が低いため、基材75cが巻き端部79eを起点にほつれにくい。そのため、活物質保持部材50gでは、基材74が巻き端部76aを起点にほつれにくいことに加え、基材75cが巻き端部79eを起点にほつれにくいことから、活物質の漏出が更に抑制される。 By locating the winding end portion 79e in the above-mentioned angle range of −180 ° or more and −90 ° or less on the surface of the second tube 71, the length of the extending portion 79f at the other end 71b of the second tube 71 However, it is shorter than the case where the winding end portion 79e is located in an angle range exceeding −90 ° on the surface of the second tube 71. As a result, since the frequency of external stress being applied to the extending portion 79f is low, the base material 75c is less likely to fray starting from the winding end portion 79e. Therefore, in the active material holding member 50g, the base material 74 is hard to fray from the winding end portion 76a as the starting point, and the base material 75c is hard to fray from the winding end portion 79e, so that the leakage of the active material is further suppressed. To.
 図10(c)及び図11(c)に示す活物質保持部材50hにおいて、第2のチューブ71は、一端71a(第2のチューブ71に併設された第1のチューブ70の一端70a側に位置する端部)及び他端71bを有している。第2のチューブ71は、他端71bから一端71aに向けて基材75dが反時計回りに螺旋状に複数回巻き回されることにより形成されている。基材75dは、第2のチューブ71の中心軸71cを中心として反時計回りに螺旋状に複数回巻き回されている。 In the active material holding member 50h shown in FIGS. 10 (c) and 11 (c), the second tube 71 is located at one end 71a (one end 70a side of the first tube 70 attached to the second tube 71). It has an end) and the other end 71b. The second tube 71 is formed by spirally winding the base material 75d a plurality of times counterclockwise from the other end 71b toward one end 71a. The base material 75d is spirally wound a plurality of times counterclockwise around the central axis 71c of the second tube 71.
 図10(c)に示すように、第2のチューブ71の一端71aにおける基材75dの巻き端部78gは、第2のチューブ71の軸方向に一端71a側から第2のチューブ71を見たときに、第1のチューブ70に対する第2のチューブ71の併設方向(図10(c)のX軸の正方向。第2のチューブ71に対する第3のチューブ72の併設方向)を0°として、第2のチューブ71の中心軸に対して第2のチューブ71の表面における0°以上+90°以下の角度範囲(0~π/2ラジアン)に位置することが好ましい。当該角度範囲の好ましい範囲は、巻き端部66aに関して上述した角度範囲と同様である。巻き端部78gの位置は、第1のチューブ70に対する第2のチューブ71の併設方向(図10(c)のX軸の正方向。第2のチューブ71に対する第3のチューブ72の併設方向)に対して角度θ221dを有している。巻き端部78gは、第2のチューブ71の一端71aにおいて、基材75dにおける第2のチューブ71及び第3のチューブ72の間から第2のチューブ71の周方向に第2のチューブ71の表面に沿って延在する延在部78hの先端に位置する。巻き端部78gは、第2のチューブ71の表面における上述の0°以上+90°以下の角度範囲の位置において固定されている。 As shown in FIG. 10C, the winding end portion 78g of the base material 75d at one end 71a of the second tube 71 saw the second tube 71 from the one end 71a side in the axial direction of the second tube 71. Occasionally, the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 10C; the side-by-side direction of the third tube 72 with respect to the second tube 71) is set to 0 °. It is preferably located in an angle range (0 to π / 2 radians) of 0 ° or more and + 90 ° or less on the surface of the second tube 71 with respect to the central axis of the second tube 71. The preferable range of the angle range is the same as the angle range described above with respect to the winding end portion 66a. The position of the winding end portion 78g is the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 10C. The side-by-side direction of the third tube 72 with respect to the second tube 71). It has an angle θ 221d with respect to. At one end 71a of the second tube 71, the winding end portion 78g is formed on the surface of the second tube 71 in the circumferential direction of the second tube 71 from between the second tube 71 and the third tube 72 on the base material 75d. It is located at the tip of the extending portion 78h extending along the line. The winding end portion 78 g is fixed at a position in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the second tube 71.
 巻き端部78gが第2のチューブ71の表面における上述の0°以上+90°以下の角度範囲に位置することにより、第2のチューブ71の一端71aにおいて、延在部78hの長さが、第2のチューブ71の表面における+90°を上回る角度範囲に巻き端部78gが位置する場合と比較して短い。これにより、延在部78hに外部応力が負荷される頻度が低いため、基材75dが巻き端部78gを起点にほつれにくい。そのため、活物質保持部材50hでは、基材74が巻き端部76aを起点にほつれにくいことに加え、基材75dが巻き端部78gを起点にほつれにくいことから、活物質の漏出が更に抑制される。 By locating the winding end portion 78g in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the second tube 71, the length of the extending portion 78h at one end 71a of the second tube 71 becomes the second. It is shorter than the case where the winding end portion 78g is located in an angle range exceeding + 90 ° on the surface of the tube 71 of 2. As a result, since the frequency of external stress being applied to the extending portion 78h is low, the base material 75d is less likely to fray starting from the winding end portion 78g. Therefore, in the active material holding member 50h, the base material 74 is hard to fray starting from the winding end portion 76a, and the base material 75d is hard to fray starting from the winding end portion 78g, so that the leakage of the active material is further suppressed. To.
 図11(c)に示すように、第2のチューブ71の他端71bにおける基材75dの巻き端部79gは、第2のチューブ71の軸方向に他端71b側から第2のチューブ71を見たときに、第1のチューブ70に対する第2のチューブ71の併設方向(図11(c)のX軸の正方向。第2のチューブ71に対する第3のチューブ72の併設方向)を0°として、第2のチューブ71の中心軸に対して第2のチューブ71の表面における0°以上+90°以下の角度範囲(0~π/2ラジアン)に位置することが好ましい。当該角度範囲の好ましい範囲は、巻き端部67aに関して上述した角度範囲と同様である。巻き端部79gの位置は、第1のチューブ70に対する第2のチューブ71の併設方向(図11(c)のX軸の正方向。第2のチューブ71に対する第3のチューブ72の併設方向)に対して角度θ222dを有している。巻き端部79gは、第2のチューブ71の他端71bにおいて、基材75dにおける第2のチューブ71及び第3のチューブ72の間から第2のチューブ71の周方向に第2のチューブ71の表面に沿って延在する延在部79hの先端に位置する。巻き端部79gは、第2のチューブ71の表面における上述の0°以上+90°以下の角度範囲の位置において固定されている。 As shown in FIG. 11C, the winding end portion 79g of the base material 75d at the other end 71b of the second tube 71 is a second tube 71 from the other end 71b side in the axial direction of the second tube 71. When viewed, the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 11C; the side-by-side direction of the third tube 72 with respect to the second tube 71) is 0 °. Therefore, it is preferably located in an angle range (0 to π / 2 radians) of 0 ° or more and + 90 ° or less on the surface of the second tube 71 with respect to the central axis of the second tube 71. The preferred range of the angle range is the same as the above-mentioned angle range with respect to the winding end portion 67a. The position of the winding end portion 79g is the side-by-side direction of the second tube 71 with respect to the first tube 70 (the positive direction of the X-axis in FIG. 11C. The side-by-side direction of the third tube 72 with respect to the second tube 71). It has an angle θ 222d with respect to. At the other end 71b of the second tube 71, the winding end portion 79g is formed on the second tube 71 in the circumferential direction of the second tube 71 from between the second tube 71 and the third tube 72 on the base material 75d. It is located at the tip of the extending portion 79h extending along the surface. The winding end portion 79 g is fixed at a position in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the second tube 71.
 巻き端部79gが第2のチューブ71の表面における上述の0°以上+90°以下の角度範囲に位置することにより、第2のチューブ71の他端71bにおいて、延在部79hの長さが、第2のチューブ71の表面における+90°を上回る角度範囲に巻き端部79gが位置する場合と比較して短い。これにより、延在部79hに外部応力が負荷される頻度が低いため、基材75dが巻き端部79gを起点にほつれにくい。そのため、活物質保持部材50hでは、基材74が巻き端部76aを起点にほつれにくいことに加え、基材75dが巻き端部79gを起点にほつれにくいことから、活物質の漏出が更に抑制される。 By locating the winding end portion 79g in the above-mentioned angle range of 0 ° or more and + 90 ° or less on the surface of the second tube 71, the length of the extending portion 79h at the other end 71b of the second tube 71 is increased. It is shorter than the case where the winding end portion 79 g is located in an angle range exceeding + 90 ° on the surface of the second tube 71. As a result, since the frequency of external stress being applied to the extending portion 79h is low, the base material 75d is less likely to fray starting from the winding end portion 79g. Therefore, in the active material holding member 50h, the base material 74 is hard to fray starting from the winding end portion 76a, and the base material 75d is hard to fray starting from the winding end portion 79g, so that the leakage of the active material is further suppressed. To.
 チューブにおけるチューブの軸方向に垂直な断面は、上述の態様のように真円状であってよく、楕円状等であってもよい。チューブの中心軸としては、チューブの断面における重心を用いてよい。 The cross section of the tube perpendicular to the axial direction of the tube may be a perfect circle as in the above-described embodiment, or may be an ellipse or the like. As the central axis of the tube, the center of gravity in the cross section of the tube may be used.
 本実施形態に係る活物質保持部材において基材は、不織布、織布等を含んでよく、例えば不織布を含む。基材は、樹脂材料を含有することができる。樹脂材料としては、ポリエステル(例えば、ポリエチレンテレフタレート等のポリアルキレンテレフタレート)、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリカーボネートなどが挙げられる。基材は、例えばポリエステルを含有することが可能であり、ポリエステルを含有する不織布を含むことができる。 In the active material holding member according to the present embodiment, the base material may include a non-woven fabric, a woven fabric, and the like, and includes, for example, a non-woven fabric. The base material can contain a resin material. Examples of the resin material include polyester (for example, polyalkylene terephthalate such as polyethylene terephthalate), polyolefin (polyethylene, polypropylene, etc.), polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polycarbonate and the like. The base material can contain, for example, polyester, and can include a non-woven fabric containing polyester.
 基材が繊維を含む場合、繊維は配向していてよい。例えば、不織布は、不織布の製造におけるMD方向(機械方向)と、MD方向と直交するCD方向(幅方向)と、を有してよい。繊維がMD方向に配向しやすいことから、MD方向はCD方向よりも機械強度が高い傾向がある。そのため、CD方向における機械強度が高い樹脂シートは、機械強度が相対的に低い方向(CD方向)においても機械強度が高いシートである。基材が不織布を含む場合、繊維配向に起因する機械強度の影響を抑制しやすいため活物質の漏出が抑制されやすい観点から、活物質保持部材における少なくとも一つのチューブ(例えば、第1のチューブ及び第2のチューブからなる群より選ばれる少なくとも一種)において、チューブの軸方向に対して不織布のMD方向及びCD方向が傾斜していることが好ましい。チューブの軸方向に対するMD方向又はCD方向の傾斜角度は、繊維配向に起因する機械強度の影響を抑制しやすいため活物質の漏出が抑制されやすい観点から、下記の範囲が好ましい。傾斜角度は、0°を超えることが好ましく、10°以上がより好ましく、20°以上が更に好ましく、30°以上が特に好ましく、40°以上が極めて好ましく、43°以上が非常に好ましい。傾斜角度は、90°未満が好ましく、80°以下がより好ましく、70°以下が更に好ましく、60°以下が特に好ましく、50°以下が極めて好ましく、47°以下が非常に好ましい。これらの観点から、傾斜角度は、0°を超え90°未満が好ましく、10~80°がより好ましく、43~47°が更に好ましい。傾斜角度が45°である場合には、繊維配向に起因する機械強度の影響を最も抑制しやすいと推測される。 If the base material contains fibers, the fibers may be oriented. For example, the non-woven fabric may have an MD direction (mechanical direction) in manufacturing the non-woven fabric and a CD direction (width direction) orthogonal to the MD direction. Since the fibers are easily oriented in the MD direction, the MD direction tends to have higher mechanical strength than the CD direction. Therefore, a resin sheet having high mechanical strength in the CD direction is a sheet having high mechanical strength even in a direction in which the mechanical strength is relatively low (CD direction). When the base material contains a non-woven fabric, at least one tube (for example, the first tube and the first tube) in the active material holding member is easily suppressed from the viewpoint that the influence of mechanical strength due to the fiber orientation is easily suppressed and the leakage of the active material is easily suppressed. In at least one selected from the group consisting of the second tube), it is preferable that the MD direction and the CD direction of the non-woven fabric are inclined with respect to the axial direction of the tube. The inclination angle in the MD direction or the CD direction with respect to the axial direction of the tube is preferably in the following range from the viewpoint that the influence of the mechanical strength due to the fiber orientation is easily suppressed and the leakage of the active material is easily suppressed. The inclination angle is preferably more than 0 °, more preferably 10 ° or more, further preferably 20 ° or more, particularly preferably 30 ° or more, extremely preferably 40 ° or more, and very preferably 43 ° or more. The inclination angle is preferably less than 90 °, more preferably 80 ° or less, further preferably 70 ° or less, particularly preferably 60 ° or less, extremely preferably 50 ° or less, and very preferably 47 ° or less. From these viewpoints, the inclination angle is preferably more than 0 ° and less than 90 °, more preferably 10 to 80 °, still more preferably 43 to 47 °. When the inclination angle is 45 °, it is presumed that the influence of mechanical strength due to fiber orientation is most easily suppressed.
 基材は、細孔を有する多孔質体であってよい。基材は、下記範囲の平均細孔径を有する部分を備えることが好ましい。基材の平均細孔径は、電極材の流出を抑制しやすい観点から、60μm以下が好ましく、50μm以下がより好ましく、45μm以下が更に好ましく、40μm以下が特に好ましい。基材の平均細孔径は、電気抵抗が減少しやすい観点から、2μmを超えることが好ましく、5μm以上がより好ましく、10μm以上が更に好ましく、20μm以上が特に好ましく、30μm以上が極めて好ましく、35μm以上が非常に好ましい。これらの観点から、基材の平均細孔径は、2μmを超え60μm以下が好ましい。平均細孔径は、細孔分布測定装置(例えば、株式会社島津製作所製、AUTO PORE IV 9520)により測定できる。 The base material may be a porous body having pores. The base material preferably includes a portion having an average pore diameter in the following range. The average pore diameter of the base material is preferably 60 μm or less, more preferably 50 μm or less, further preferably 45 μm or less, and particularly preferably 40 μm or less, from the viewpoint of easily suppressing the outflow of the electrode material. The average pore diameter of the base material is preferably more than 2 μm, more preferably 5 μm or more, further preferably 10 μm or more, particularly preferably 20 μm or more, extremely preferably 30 μm or more, and 35 μm or more from the viewpoint of easily reducing electrical resistance. Is very preferable. From these viewpoints, the average pore diameter of the base material is preferably more than 2 μm and 60 μm or less. The average pore diameter can be measured with a pore distribution measuring device (for example, AUTO PORE IV 9520 manufactured by Shimadzu Corporation).
 活物質保持部材における少なくとも一つのチューブ(例えば、第1のチューブ及び第2のチューブからなる群より選ばれる少なくとも一種)は、下記範囲の厚さ(肉厚。チューブを構成する壁部の厚さ。以下も同様)を有する部分を備えてよい。チューブの厚さは、下記の範囲であってよい。チューブの厚さは、0.05mm以上、0.1mm以上、又は、0.2mm以上であってよい。チューブの厚さは、1mm以下、0.8mm以下、0.6mm以下、又は、0.4mm以下であってよい。これらの観点から、チューブの厚さは、0.05~1mmであってよい。 At least one tube (for example, at least one selected from the group consisting of a first tube and a second tube) in the active material holding member has a thickness in the following range (wall thickness. Thickness of the wall portion constituting the tube). It may be provided with a portion having (the same applies hereinafter). The thickness of the tube may be in the following range. The thickness of the tube may be 0.05 mm or more, 0.1 mm or more, or 0.2 mm or more. The thickness of the tube may be 1 mm or less, 0.8 mm or less, 0.6 mm or less, or 0.4 mm or less. From these viewpoints, the thickness of the tube may be 0.05 to 1 mm.
 活物質保持部材における少なくとも一つのチューブ(例えば、第1のチューブ及び第2のチューブからなる群より選ばれる少なくとも一種)の長さは、下記の範囲であってよい。チューブの長さは、50mm以上、100mm以上、120mm以上、160mm以上、又は、200mm以上であってよい。チューブの長さは、800mm以下、750mm以下、700mm以下、650mm以下、600mm以下、又は、580mm以下であってよい。これらの観点から、チューブの長さは、50~800mmであってよい。 The length of at least one tube (for example, at least one selected from the group consisting of the first tube and the second tube) in the active material holding member may be in the following range. The length of the tube may be 50 mm or more, 100 mm or more, 120 mm or more, 160 mm or more, or 200 mm or more. The length of the tube may be 800 mm or less, 750 mm or less, 700 mm or less, 650 mm or less, 600 mm or less, or 580 mm or less. From these points of view, the length of the tube may be 50-800 mm.
 本実施形態に係る鉛蓄電池の製造方法は、活物質保持部材を有する電極を含む構成部材を組み立てて鉛蓄電池を得る組み立て工程を備える。組み立て工程では、例えば、未化成の正極及び未化成の負極を積層すると共に、同極性の電極の集電部をストラップで溶接させて電極群を得る。この電極群を電槽内に配置して未化成の電池を作製する。未化成の正極及び未化成の負極は、セパレータを介して積層してよい。 The method for manufacturing a lead-acid battery according to the present embodiment includes an assembly step of assembling a component including an electrode having an active material holding member to obtain a lead-acid battery. In the assembling step, for example, a non-chemical positive electrode and a non-chemical negative electrode are laminated, and the current collecting portions of electrodes having the same polarity are welded with a strap to obtain an electrode group. This group of electrodes is arranged in the battery case to produce an unchemical battery. The unchemical positive electrode and the unchemical negative electrode may be laminated via a separator.
 本実施形態に係る鉛蓄電池の製造方法は、組み立て工程の前に、活物質保持部材を作製する活物質保持部材作製工程を備えてよい。活物質保持部材作製工程は、基材を反時計回り又は時計回りに螺旋状に巻き回すことによりチューブを形成する工程と、チューブの軸方向に直交する方向に複数のチューブを併設する工程と、を有してよい。 The lead-acid battery manufacturing method according to the present embodiment may include an active material holding member manufacturing step for manufacturing an active material holding member before the assembling step. The active material holding member manufacturing process includes a process of forming a tube by spirally winding a base material counterclockwise or clockwise, and a process of arranging a plurality of tubes in a direction orthogonal to the axial direction of the tube. May have.
 本実施形態に係る鉛蓄電池の製造方法は、活物質保持部材を有する電極を作製する電極作製工程を備えてよい。電極作製工程は、正極作製工程及び負極作製工程を有している。以下では、正極が活物質保持部材を有する場合について説明する。 The lead-acid battery manufacturing method according to the present embodiment may include an electrode manufacturing step of manufacturing an electrode having an active material holding member. The electrode manufacturing step includes a positive electrode manufacturing step and a negative electrode manufacturing step. Hereinafter, a case where the positive electrode has an active material holding member will be described.
 正極作製工程では、活物質保持部材のチューブ内に挿入された芯金と、チューブ及び芯金の間に充填された正極材と、を有する正極を得る。正極作製工程では、例えば、チューブ内に芯金を配置した後、芯金及びチューブの間に正極活物質の原料等を充填し、さらに、チューブの下部末端を下部連座で塞ぐことにより、未化成の正極材を有する正極を得ることができる。正極作製工程では、チューブの上部末端を上部連座で塞いでもよい。 In the positive electrode manufacturing step, a positive electrode having a core metal inserted in the tube of the active material holding member and a positive electrode material filled between the tube and the core metal is obtained. In the positive electrode manufacturing step, for example, after arranging the core metal in the tube, a raw material for the positive electrode active material or the like is filled between the core metal and the tube, and the lower end of the tube is closed with a lower joint to form a non-chemical electrode. A positive electrode having the above positive electrode material can be obtained. In the positive electrode manufacturing step, the upper end of the tube may be closed with an upper joint.
 負極作製工程では、例えば、負極活物質の原料等を含む負極材ペーストを負極集電体(例えば集電体格子(鋳造格子体、エキスパンド格子体等))に充填した後に熟成及び乾燥を行うことにより、未化成の負極材を有する負極を得ることができる。 In the negative electrode manufacturing step, for example, a negative electrode material paste containing a raw material for a negative electrode active material is filled in a negative electrode current collector (for example, a current collector lattice (cast lattice body, expanded lattice body, etc.)), and then aged and dried. Therefore, a negative electrode having a non-chemical negative electrode material can be obtained.
 本実施形態に係る鉛蓄電池の製造方法は、正極及び負極の化成処理を行う化成処理工程を備えてよい。化成処理工程は、組み立て工程の後に実施されてよく、組み立て工程前の電極作製工程において実施されてもよい(タンク化成)。化成処理工程では、例えば、正極及び負極が電解液に接触した状態で直流電流を通電することにより化成処理を行う。化成後の電解液の比重を適切な比重に調整することにより鉛蓄電池を得ることができる。 The lead-acid battery manufacturing method according to the present embodiment may include a chemical conversion treatment step of performing a chemical conversion treatment of a positive electrode and a negative electrode. The chemical conversion treatment step may be carried out after the assembling step, or may be carried out in the electrode manufacturing step before the assembling step (tank chemical conversion). In the chemical conversion treatment step, for example, the chemical conversion treatment is performed by energizing a direct current while the positive electrode and the negative electrode are in contact with the electrolytic solution. A lead storage battery can be obtained by adjusting the specific gravity of the electrolytic solution after chemical conversion to an appropriate specific gravity.
 本実施形態に係る電動車(例えば電気車)又は電源装置は、本実施形態に係る鉛蓄電池を備える。本実施形態に係る電動車又は電源装置の製造方法は、本実施形態に係る鉛蓄電池の製造方法により鉛蓄電池を得る工程を備える。本実施形態に係る電動車又は電源装置の製造方法は、例えば、本実施形態に係る鉛蓄電池の製造方法により鉛蓄電池を得る工程と、前記鉛蓄電池を含む構成部材を組み立てて電動車又は電源装置を得る工程とを備えている。電動車としては、フォークリフト、ゴルフカート等が挙げられる。電源装置としては、UPS、防災(非常)無線用電源、電話用電源等が挙げられる。本実施形態によれば、電動車用の鉛蓄電池(例えば電気車用の鉛蓄電池)が提供され、例えば、フォークリフト用の鉛蓄電池が提供される。本実施形態によれば、電源装置用の鉛蓄電池が提供される。 The electric vehicle (for example, an electric vehicle) or the power supply device according to the present embodiment includes the lead storage battery according to the present embodiment. The method for manufacturing an electric vehicle or a power supply device according to the present embodiment includes a step of obtaining a lead-acid battery by the method for manufacturing a lead-acid battery according to the present embodiment. The method for manufacturing an electric vehicle or a power supply device according to the present embodiment is, for example, a step of obtaining a lead-acid battery by the method for manufacturing a lead-acid battery according to the present embodiment and an electric vehicle or a power supply device by assembling a component including the lead-acid battery. It has a process to obtain. Examples of the electric vehicle include a forklift and a golf cart. Examples of the power supply device include UPS, disaster prevention (emergency) wireless power supply, telephone power supply, and the like. According to the present embodiment, a lead-acid battery for an electric vehicle (for example, a lead-acid battery for an electric vehicle) is provided, and for example, a lead-acid battery for a forklift is provided. According to this embodiment, a lead storage battery for a power supply device is provided.
 電動車用の鉛蓄電池では、電池の高さ方向に電極の高さを大きく設計されやすい。そのため、電解液中の硫酸が下方に沈降しやすいことから、成層化を防止するためのメンテナンスが重要である。そこで、充電末期に過充電をかけることによりガッシングさせて電解液を撹拌させる場合がある。この場合、チューブの基材がほつれて活物質が漏出していると、このガッシングによって活物質が舞い上がって電極(例えば負極)上に堆積することにより短絡が生じやすい。一方、本実施形態に係る鉛蓄電池は、活物質の漏出を抑制できることから、ガッシングに起因する短絡を抑制できるため、電動車においても好適に用いることができる。 In lead-acid batteries for electric vehicles, it is easy to design a large electrode height in the battery height direction. Therefore, since sulfuric acid in the electrolytic solution tends to settle downward, maintenance for preventing stratification is important. Therefore, there is a case where the electrolytic solution is agitated by gassing by overcharging at the end of charging. In this case, if the base material of the tube is frayed and the active material is leaking, the active material is soared by this gassing and deposited on the electrode (for example, the negative electrode), so that a short circuit is likely to occur. On the other hand, since the lead storage battery according to the present embodiment can suppress the leakage of the active material, it can suppress the short circuit caused by the gassing, and therefore can be suitably used in the electric vehicle.
 10…正極、20…負極、30…セパレータ、50,50a,50b,50c,50d,50e,50f,50g,50h…活物質保持部材、60,70…第1のチューブ、60a,70a…一端、60b,70b…他端、60c,70c…中心軸(第1のチューブの中心軸)、61,71…第2のチューブ、62,72…第3のチューブ、63,73…第4のチューブ、64,74…基材(第1のチューブの基材)、66a,67a,76a,77a…巻き端部(第1のチューブの基材の巻き端部)、100…鉛蓄電池。

 
10 ... Positive electrode, 20 ... Negative electrode, 30 ... Separator, 50, 50a, 50b, 50c, 50d, 50e, 50f, 50g, 50h ... Active material holding member, 60, 70 ... First tube, 60a, 70a ... One end, 60b, 70b ... other end, 60c, 70c ... central axis (central axis of first tube), 61, 71 ... second tube, 62, 72 ... third tube, 63, 73 ... fourth tube, 64, 74 ... Base material (base material of the first tube), 66a, 67a, 76a, 77a ... Winding end portion (winding end portion of the base material of the first tube), 100 ... Lead storage battery.

Claims (15)

  1.  互いに併設された第1のチューブ及び第2のチューブを備える活物質保持部材であって、
     前記第1のチューブが、基材が反時計回りに少なくとも一周巻き回されることにより形成されており、
     前記第1のチューブの一端における前記基材の巻き端部が、前記第1のチューブの軸方向に前記第1のチューブの前記一端側から前記第1のチューブを見たときに、前記第1のチューブに対する前記第2のチューブの併設方向を0°として、前記第1のチューブの中心軸に対して前記第1のチューブの表面における0°以上+90°以下の範囲に位置する、活物質保持部材。
    An active material holding member having a first tube and a second tube attached to each other.
    The first tube is formed by winding the base material counterclockwise at least once.
    When the wound end portion of the base material at one end of the first tube looks at the first tube from the one end side of the first tube in the axial direction of the first tube, the first tube is viewed. The active material retention is located in the range of 0 ° or more and + 90 ° or less on the surface of the first tube with respect to the central axis of the first tube, where the direction in which the second tube is attached to the tube is 0 °. Element.
  2.  前記第1のチューブが、当該第1のチューブの他端から前記一端に向けて前記基材が反時計回りに螺旋状に少なくとも一周巻き回されることにより形成されている、請求項1に記載の活物質保持部材。 The first aspect of claim 1, wherein the first tube is formed by spirally winding the base material counterclockwise at least once from the other end of the first tube toward the one end. Active material holding member.
  3.  前記第1のチューブの前記他端における前記基材の巻き端部が、前記第1のチューブの軸方向に前記他端側から前記第1のチューブを見たときに、前記第1のチューブに対する前記第2のチューブの併設方向を0°として、前記第1のチューブの中心軸に対して前記第1のチューブの表面における0°以上+90°以下の範囲に位置する、請求項2に記載の活物質保持部材。 When the winding end portion of the base material at the other end of the first tube is viewed from the other end side in the axial direction of the first tube, the winding end portion with respect to the first tube The second aspect of the present invention, wherein the second tube is located in a range of 0 ° or more and + 90 ° or less on the surface of the first tube with respect to the central axis of the first tube, with the side-by-side direction of the second tube as 0 °. Active material holding member.
  4.  前記第1のチューブが、前記基材が反時計回りに渦巻状に少なくとも一周巻き回されることにより形成されている、請求項1に記載の活物質保持部材。 The active material holding member according to claim 1, wherein the first tube is formed by winding the base material counterclockwise in a spiral shape at least once.
  5.  互いに併設された第1のチューブ及び第2のチューブを備える活物質保持部材であって、
     前記第1のチューブが、基材が時計回りに少なくとも一周巻き回されることにより形成されており、
     前記第1のチューブの一端における前記基材の巻き端部が、前記第1のチューブの軸方向に前記第1のチューブの前記一端側から前記第1のチューブを見たときに、前記第1のチューブに対する前記第2のチューブの併設方向を0°として、前記第1のチューブの中心軸に対して前記第1のチューブの表面における-90°以上0°以下の範囲に位置する、活物質保持部材。
    An active material holding member having a first tube and a second tube attached to each other.
    The first tube is formed by winding the base material clockwise at least once.
    When the wound end portion of the base material at one end of the first tube looks at the first tube from the one end side of the first tube in the axial direction of the first tube, the first tube is viewed. The active material is located in the range of −90 ° or more and 0 ° or less on the surface of the first tube with respect to the central axis of the first tube, where the direction in which the second tube is attached to the tube is 0 °. Holding member.
  6.  前記第1のチューブが、当該第1のチューブの他端から前記一端に向けて前記基材が時計回りに螺旋状に少なくとも一周巻き回されることにより形成されている、請求項5に記載の活物質保持部材。 The fifth aspect of claim 5, wherein the first tube is formed by winding the base material clockwise at least once in a spiral shape from the other end of the first tube toward the one end. Active material holding member.
  7.  前記第1のチューブの前記他端における前記基材の巻き端部が、前記第1のチューブの軸方向に前記他端側から前記第1のチューブを見たときに、前記第1のチューブに対する前記第2のチューブの併設方向を0°として、前記第1のチューブの中心軸に対して前記第1のチューブの表面における-90°以上0°以下の範囲に位置する、請求項6に記載の活物質保持部材。 When the winding end portion of the base material at the other end of the first tube is viewed from the other end side in the axial direction of the first tube, the winding end portion with respect to the first tube The sixth aspect of the present invention, wherein the second tube is located in a range of −90 ° or more and 0 ° or less on the surface of the first tube with respect to the central axis of the first tube, with the side-by-side direction of the second tube as 0 °. Active material holding member.
  8.  前記第1のチューブが、前記基材が時計回りに渦巻状に少なくとも一周巻き回されることにより形成されている、請求項5に記載の活物質保持部材。 The active material holding member according to claim 5, wherein the first tube is formed by winding the base material clockwise at least once in a spiral shape.
  9.  前記基材が不織布を含む、請求項1~8のいずれか一項に記載の活物質保持部材。 The active material holding member according to any one of claims 1 to 8, wherein the base material contains a non-woven fabric.
  10.  前記基材がポリエステルを含有する、請求項1~9のいずれか一項に記載の活物質保持部材。 The active material holding member according to any one of claims 1 to 9, wherein the base material contains polyester.
  11.  前記第1のチューブに対する前記第2のチューブとは反対側において前記第1のチューブに併設されたチューブを更に備える、請求項1~10のいずれか一項に記載の活物質保持部材。 The active material holding member according to any one of claims 1 to 10, further comprising a tube attached to the first tube on the side opposite to the second tube with respect to the first tube.
  12.  請求項1~11のいずれか一項に記載の活物質保持部材と、当該活物質保持部材の前記第1のチューブ及び前記第2のチューブに保持された活物質と、を有する、電極。 An electrode having the active material holding member according to any one of claims 1 to 11 and the active material held in the first tube and the second tube of the active material holding member.
  13.  正極及び負極を備え、
     前記正極及び前記負極からなる群より選ばれる少なくとも一種が、請求項12に記載の電極である、鉛蓄電池。
    Equipped with positive and negative electrodes
    The lead-acid battery, wherein at least one selected from the group consisting of the positive electrode and the negative electrode is the electrode according to claim 12.
  14.  前記正極及び前記負極の間に配置されたセパレータを更に備える、請求項13に記載の鉛蓄電池。 The lead-acid battery according to claim 13, further comprising a separator arranged between the positive electrode and the negative electrode.
  15.  請求項13又は14に記載の鉛蓄電池を備える、電動車。

     
    An electric vehicle comprising the lead-acid battery according to claim 13 or 14.

PCT/JP2020/024467 2019-09-27 2020-06-22 Active material holding member, electrode, lead acid storage battery, and electric vehicle WO2021059630A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021548345A JPWO2021059630A1 (en) 2019-09-27 2020-06-22
CN202080081939.9A CN114930573B (en) 2019-09-27 2020-06-22 Active material holding member, electrode, lead storage battery, and electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/038377 WO2021059532A1 (en) 2019-09-27 2019-09-27 Active material holding member, electrode, and lead acid storage battery
JPPCT/JP2019/038377 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021059630A1 true WO2021059630A1 (en) 2021-04-01

Family

ID=75166882

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/038377 WO2021059532A1 (en) 2019-09-27 2019-09-27 Active material holding member, electrode, and lead acid storage battery
PCT/JP2020/024467 WO2021059630A1 (en) 2019-09-27 2020-06-22 Active material holding member, electrode, lead acid storage battery, and electric vehicle

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038377 WO2021059532A1 (en) 2019-09-27 2019-09-27 Active material holding member, electrode, and lead acid storage battery

Country Status (3)

Country Link
JP (1) JPWO2021059630A1 (en)
CN (1) CN114930573B (en)
WO (2) WO2021059532A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156340A (en) * 1976-06-23 1977-12-26 Japan Vilene Co Ltd Clad tube for battery and method of producing same
JPS5381920U (en) * 1976-12-10 1978-07-07
JPS5795078A (en) * 1980-12-03 1982-06-12 Matsushita Electric Ind Co Ltd Manufacture of fiber clad sleeve for storage battery
JPH07320771A (en) * 1994-05-19 1995-12-08 Japan Storage Battery Co Ltd Sealed lead-acid battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS287734Y1 (en) * 1952-11-15 1953-08-15
JPS5335791Y2 (en) * 1977-05-12 1978-09-01
KR101787645B1 (en) * 2010-03-02 2017-10-23 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156340A (en) * 1976-06-23 1977-12-26 Japan Vilene Co Ltd Clad tube for battery and method of producing same
JPS5381920U (en) * 1976-12-10 1978-07-07
JPS5795078A (en) * 1980-12-03 1982-06-12 Matsushita Electric Ind Co Ltd Manufacture of fiber clad sleeve for storage battery
JPH07320771A (en) * 1994-05-19 1995-12-08 Japan Storage Battery Co Ltd Sealed lead-acid battery

Also Published As

Publication number Publication date
CN114930573B (en) 2024-05-31
JPWO2021059630A1 (en) 2021-04-01
CN114930573A (en) 2022-08-19
WO2021059532A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US9209478B2 (en) Elongated mandrel for a winding device
KR100626510B1 (en) Lithium ion secondary battery and method for manufacturing the same
CN112262491A (en) Secondary battery
CN111406338B (en) Electrode assembly and secondary battery including the same
JP2016085912A (en) Power storage device
US20140322577A1 (en) Energy storage device with spiral electrode group
WO2021059630A1 (en) Active material holding member, electrode, lead acid storage battery, and electric vehicle
JP6940025B1 (en) Lead-acid battery
JP7037858B2 (en) Active material holding tubes, electrodes and lead-acid batteries
JP2014060062A (en) Electricity storage element and electrode body
WO2021059629A1 (en) Active material holding member, electrode, lead acid storage battery, and electric car
WO2021166573A1 (en) Active material retaining member and method for manufacturing the same, electrode, lead storage battery, micro hybrid vehicle, and electric vehicle
WO2021019958A1 (en) Resin member, active material retaining member, electrode, lead storage battery, and electric car
WO2019130507A1 (en) Active material holding tube, active material holding tube group, electrode, and lead storage battery
EP4177996A1 (en) Electrode assembly, battery cell, battery and electric device
JP6950840B2 (en) Lead-acid battery
WO2022145381A1 (en) Electrode and lead storage battery
JP7446271B2 (en) Non-aqueous electrolyte secondary battery
JP2022103939A (en) Active material holding member, electrode, and lead-acid battery
JP2023096374A (en) Electrode and lead accumulator battery
KR101472878B1 (en) Winder Using for Secondary Battery of Novel Structure
JP2001068164A (en) Wound secondary battery
JP2023096377A (en) Lead accumulator battery
JP2022103976A (en) Lead-acid battery
JP2022103974A (en) Electrode and lead-acid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548345

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870087

Country of ref document: EP

Kind code of ref document: A1