WO2021059402A1 - Boost converter - Google Patents

Boost converter Download PDF

Info

Publication number
WO2021059402A1
WO2021059402A1 PCT/JP2019/037640 JP2019037640W WO2021059402A1 WO 2021059402 A1 WO2021059402 A1 WO 2021059402A1 JP 2019037640 W JP2019037640 W JP 2019037640W WO 2021059402 A1 WO2021059402 A1 WO 2021059402A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
switch
capacitors
circuit
Prior art date
Application number
PCT/JP2019/037640
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 久保田
正樹 金森
慶一 加藤
志剛 李
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to PCT/JP2019/037640 priority Critical patent/WO2021059402A1/en
Publication of WO2021059402A1 publication Critical patent/WO2021059402A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • An embodiment of the present invention relates to a boost converter mounted on a power supply device such as an air conditioner or a heat source machine including a refrigeration cycle, for example.
  • Boost converters installed in power supplies such as air conditioners and heat source machines that include refrigeration cycles include reactors, switches, capacitors, etc., and rectify and boost the voltage of the AC power supply by performing boost chopper switching. Output.
  • This boost converter is also referred to as a high power factor converter, a PFC (Power Factor Correction) converter, or a totem pole type PFC converter.
  • An object of the embodiment of the present invention is to provide a boost converter capable of appropriately driving each switch without increasing the power supply capacity and thus increasing the cost even if the number of drive circuits is large. ..
  • the boost converter according to claim 1 rectifies and boosts the voltage of a single-phase AC power supply by switching based on pulse width modulation according to a voltage command value, and outputs the positive side charging circuit, the negative side charging circuit, and the first. It is equipped with a fourth drive circuit and a bootstrap circuit.
  • the positive side charging circuit leads from one end of the single-phase AC power supply to one end of the series circuit of the first and second capacitors via the first switch during the positive level period of the voltage command value, and the first and first ones thereof.
  • the negative charging circuit leads from the other end of the single-phase AC power supply to one end of the series circuit of the first and second capacitors via the first diode during the negative level period of the voltage command value, and the first And the third energization path leading from the other end of the series circuit of the second capacitor to one end of the single-phase AC power supply via the second switch, and the first from the other end of the single-phase AC power supply via the first diode.
  • a fourth energizing path that leads to one end of the series circuit of the first and second capacitors, and from the interconnection point of the first and second capacitors to one end of the single-phase AC power supply via the fourth switch and the third switch.
  • the first and second capacitors are charged by repeating complementary on and off of the second and fourth switches in a state where the first switch is continuously turned off.
  • the second drive circuit operates by the voltage of the first DC power supply to drive the second switch.
  • the third and fourth drive circuits operate by the voltage of the second DC power supply to drive the third and fourth switches.
  • the bootstrap circuit includes a capacitor that is charged by the voltage of the second DC power source when the third switch is on.
  • the first drive circuit operates and operates by the charging voltage of the capacitor of the bootstrap circuit to drive the first switch.
  • One end of the series circuit of the first and second capacitors is a positive level output terminal, and the other end of the series circuit of the first and second capacitors is a negative level output terminal.
  • the figure which shows the structure of the booster circuit in one Embodiment The figure which shows the structure of the drive control circuit in one Embodiment.
  • the figure which shows the generation of the PWM signal in the controller of one Embodiment The figure which shows the capacitor voltage of the boost strap circuit in one Embodiment.
  • This boost converter is composed of the boost circuit of FIG. 1 and the drive control circuit of FIG. 2, and is mounted on a power supply device such as an air conditioner or a heat source machine including a refrigeration cycle, for example.
  • the booster circuit rectifies and boosts the voltage (called AC power supply voltage) Vc of the single-phase AC power supply 1 by switching based on pulse width modulation according to the voltage command value Vs described later, and outputs the voltage command value Vs. It includes a positive charging circuit that allows current to flow along the path indicated by the solid line arrow during the positive level period, and a negative charging circuit that allows current to flow along the path indicated by the broken line arrow during the negative level period of the voltage command value Vs.
  • the reactor 3 is inserted into the power supply line connected to one end of the single-phase AC power supply 1.
  • FIG. 3 shows the relationship between the waveform of the AC power supply voltage Vc, the voltage command value Vs, and the on / off operation of each switch element S1 to S4 in the booster circuit.
  • the reactor 3 and the switch element (first switch) S1 are connected from one end of the single-phase AC power supply 1.
  • Is passed through one end of the series circuit of the capacitors (first and second capacitors) C1 and C2 in order, and from the other end of the series circuit of the capacitors C1 and C2 via the diode (second diode) D2, a single-phase AC power supply.
  • the current-carrying circuit (first current-carrying path) L1 leading to the other end of 1 and one end of the single-phase AC power supply 1 are passed through the reactor 2, the switch element (third switch) S3, and the switch element (fourth switch) S4 in this order.
  • the switch elements S1 and S3 complement each other in different phases in a state where the switch element S2 is continuously turned off and the switch element S4 is continuously turned on, including the current-carrying circuit (second current-carrying path) L2 leading to the interconnection point of the capacitors C1 and C2.
  • the capacitors C1 and C2 are charged by repeatedly turning on and off.
  • the negative charging circuit is in the negative half-wave section Tb of the AC power supply voltage Vc in the substantially central predetermined period Tb2 where the voltage command value Vs becomes a negative level, and in the positive half-wave section Ta of the AC power supply voltage Vc.
  • the other end of the single-phase AC power supply 1 is passed through the diode (first diode) D1 to one end of the series circuit of the capacitors C1 and C2.
  • a current-carrying path (third current-carrying path) L3 that leads from the other end of the series circuit of the diodes C1 and C2 to one end of the single-phase AC power supply 1 via the switch element (second switch) S2 and the reactor 2 in order, and a single phase.
  • the other end of the AC power supply 1 is passed through the diode D1 to one end of the series circuit of the capacitors C1 and C2, and the single-phase AC is sequentially passed through the switch element S4, the switch S3 and the reactor 2 from the interconnection point of the capacitors C1 and C2.
  • the switch elements S2 and S4 are complementarily turned on and off in different phases while the switch element S1 is continuously turned off and the switch S3 is continuously turned on. By repeating the above, the diodes C1 and C2 are charged.
  • One end of the series circuit of the capacitors C1 and C2 is the positive level output terminal P
  • the other end of the series circuit of the capacitors C1 and C2 is the negative level output terminal N
  • the interconnection point of the capacitors C1 and C2 is the zero level output terminal M. It becomes.
  • a predetermined level of DC voltage Vdc is generated between the output terminals P and N
  • a DC voltage "+ Vdc / 2" which is 1/2 of the DC voltage Vdc is generated between the output terminals P and M
  • the output terminals N and M are generated.
  • a DC voltage "-Vdc / 2" which is 1/2 of the DC voltage Vdc, is generated between them.
  • the reactor 3 may be inserted into the power supply line connected to the other end of the single-phase AC power supply 1, and further, the reactor 3 may be inserted in both of the power supply lines connected to both ends of the single-phase AC power supply 1. May be good. That is, the reactor 3 may be provided in at least one of the power supply lines connected to both ends of the single-phase AC power supply 1.
  • the switch elements S1 to S4 include parasitic diodes D11 to D14 connected in antiparallel to each element body, have bidirectional current flowing in both directions between the drain and the source when on, and power loss when on.
  • the switch elements S1 and S2 are the same as each other in a state where the switch element S1 is in the forward direction toward the output terminal P and the switch element S2 is in the forward direction from the output terminal N toward the reactor 2 and the switch element S1. They are connected in series in the direction.
  • the switch elements S3 and S4 are serialized in opposite directions with each other in a state where the switch element S3 is in the forward direction toward the interconnection point A of the switch elements S1 and S2 and the switch element S4 is in the forward direction toward the output terminal M. It is connected.
  • the switch element S4 In the positive half-wave section Ta of the AC power supply voltage Vc, even if the switch element S4 is turned off, current flows through the parasitic diode D14 of the switch element S4. Therefore, if the loss of the parasitic diode D14 can be tolerated, the AC power supply voltage Vc
  • the switch element S4 may be maintained in the off state in the positive half-wave section Ta of the above.
  • the drive control circuits of these switch elements S1 to S4 are configured as shown in FIG.
  • One end and the other end of the capacitor 3 are connected to the positive and negative terminals of the DC power supply E1, and the positive and negative input ends of the drive circuit 22 are connected to one end and the other end of the capacitor 3. .. Then, the gate of the switch element S2 is connected to the positive output end of the drive circuit 22 via the resistor 32, and the source (output terminal N) of the switch element S2 is connected to the negative output end of the drive circuit 22. ..
  • the negative output end of the drive circuit 22 is conductive with the negative input end of the drive circuit 22, and is in a conductive state with the negative terminal of the DC power supply E1 through the negative input end. That is, the DC power supply E1 outputs a DC voltage based on the negative level of the output terminal N.
  • the drive circuit 22 operates by the DC voltage of the DC power supply E1 (voltage of the capacitor 3), and a pulse whose voltage changes to a high level “H” and a low level “L” according to the PWM signal X2 supplied from the controller 40.
  • Drive signal Y2 is generated and output.
  • the voltage of the drive signal Y2 is applied between the gate and source of the switch element S2 via the resistor 32.
  • the positive and negative input ends of the drive circuit 23 are connected to the positive and negative terminals of the DC power supply E2. Then, the gate of the switch element S3 is connected to the positive output end of the drive circuit 23 via the resistor 33, and the source of the switch element S3 and the source of the switch element S4 are interconnected to the negative output end of the drive circuit 23. Point C is connected.
  • the negative output end of the drive circuit 23 is conductive with the negative input end of the drive circuit 23, and is in a conductive state with the negative terminal of the DC power supply E2 through the negative input end. That is, the DC power supply E2 outputs a DC voltage with reference to the zero level of the interconnection point C.
  • the drive circuit 23 operates by the DC voltage of the DC power supply E2, and transmits a pulse-shaped drive signal Y3 whose voltage changes to a high level “H” and a low level “L” according to the PWM signal X3 supplied from the controller 40. Generate and output.
  • the voltage of the drive signal Y3 is applied between the gate and source of the switch element S3 via the resistor 33.
  • the positive and negative input ends of the drive circuit 24 are connected to the positive and negative terminals of the same DC power supply E2. Then, the gate of the switch element S4 is connected to the positive output end of the drive circuit 24 via the resistor 34, and the source of the switch element S4 and the source of the switch element S3 are interconnected to the negative output end of the drive circuit 24. Point C is connected. The negative output end of the drive circuit 24 is in a conductive state with the negative terminal of the DC power supply E2 through the negative input end of the drive circuit 24.
  • the drive circuit 24 generates and outputs a pulse-shaped drive signal Y4 whose voltage changes to a high level “H” and a low level “L” according to the PWM signal X4 supplied from the controller 40.
  • the voltage of the drive signal Y4 is applied between the gate and source of the switch element S4 via the resistor 34.
  • one end of the capacitor 12 of the bootstrap circuit 10 is connected to the positive terminal of the same DC power supply E2 via the diode 11 of the bootstrap circuit 10, and the other end of the capacitor 12 is the negative input end of the drive circuit 21.
  • the negative output end of the drive circuit 21 that conducts with the negative input end, between the drain and source of the switch element S3, the interconnection point C, the negative output end of the drive circuit 23, and the negative output end. It is connected to the negative terminal of the DC power supply E2 via the negative input end of the drive circuit 23 in order. That is, when the switch element S3 is on, the voltage of the DC power supply E2 is applied to the capacitor 12 of the bootstrap circuit 10, and the capacitor 12 is charged.
  • the positive input end and the negative input end of the drive circuit 21 are connected to both ends of the capacitor 12 of the bootstrap circuit 10, and the gate of the switch element S1 is connected to the positive output end of the drive circuit 21 via a resistor 31. It is connected, and the source of the switch element S1 is connected to the negative output end of the drive circuit 21.
  • the drive circuit 21 operates by the voltage Vbs of the capacitor 12 of the bootstrap circuit 10, and has a pulse shape in which the voltage changes to a high level “H” and a low level “L” according to the PWM signal X1 supplied from the controller 40.
  • the drive signal Y1 is generated and output.
  • the voltage of the drive signal Y1 is applied between the gate and source of the switch element S1 via the resistor 31.
  • the controller 40 is connected to these drive circuits 21 to 24.
  • the controller 40 causes the waveform of the voltage Fab generated between the interconnection point A of the switch elements S1 and S2 and the interconnection point B of the diodes D1 and D2 to reach a sinusoidal wave, and the output voltage Vdc between the output terminals P and N.
  • the voltage command value Vs for reaching the target value Vt is calculated by calculation, and as shown in FIG. 3, the carrier signal voltage K1 on the positive side of the triangular wave shape is pulse-width modulated (voltage comparison) according to the voltage command value Vs.
  • Pulse-like PWM signals X2 and X4 for S2 and S4 are generated.
  • the voltage command value Vs is set to the positive side level and the negative side level so that the waveform of the voltage Vab generated between the interconnection point A of the switch elements S1 and S2 and the interconnection point B of the diodes D1 and D2 reaches a sine wave.
  • the value changes according to the difference between the output voltage Vdc between the output terminals P and N and the target value Vt with respect to the output voltage Vdc.
  • the voltage Vb at the interconnection point B is the rectified waveform of the diodes D1 and D2 in the positive half-wave section Ta of the AC power supply voltage Vc, the voltage Vb becomes the voltage of the output terminal N on the negative side.
  • the voltage Vb is the voltage of the output terminal P on the positive side. That is, the voltage Vb at the interconnection point B is a square wave showing a negative constant value in the positive half-wave section Ta of the AC power supply voltage Vc and a positive constant value in the negative half-wave section Tb of the AC power supply voltage Vc. ..
  • the voltage Va of the interconnection point A required to bring the waveform of the voltage Vab between the interconnection points A and B to a sine wave of a predetermined level is the voltage command shown in FIG. It becomes a waveform of the value Vs.
  • the peak value (peak value) Vsp of the voltage command value Vs that becomes a positive level in the positive half-wave section Ta of the AC power supply voltage Vc is , The lower the output voltage Vdc value (measured value) between the output terminals P and N is lower than the target value Vt, the higher the value, and the higher the output voltage Vdc value (measured value) between the output terminals P and N is higher than the target value Vt. It gets lower.
  • the peak value Vsp'of the voltage command value Vs which becomes a negative level in the negative half-wave section Tb of the AC power supply voltage Vc, becomes negative as the value of the output voltage Vdc between the output terminals P and N is lower than the target value Vt. It becomes higher on the side, and the higher the value of the output voltage Vdc between the output terminals P and N is higher than the target value Vt, the lower it becomes on the negative side.
  • the calculation method of the voltage command value Vs is the same as the calculation method of the voltage command value in the conventional totem pole type PFC converter.
  • the PWM signal X1 which is the basis for generating the drive signal Y1 for the switch element S1 repeats high level "H” and low level “L” in the positive level period of the voltage command value Vs, and repeats the negative level period of the voltage command value Vs. Maintain a low level “L” at.
  • the phase of the high level "H” and the phase of the low level “L” are opposite to each other.
  • the PWM signal X2 which is the basis for generating the drive signal Y2 for the switch element S2, maintains a low level “L” during the positive level period of the voltage command value Vsb and a high level “H” during the negative level period of the voltage command value Vs. And the low level “L” are repeated.
  • the phase of the high level "H” and the phase of the low level "L” are opposite to each other.
  • the drive circuit 22 for driving the switch S2 operates by the DC voltage of the DC power supply E1
  • the drive circuits 23 and 24 for driving the switches S3 and S4 are the DC voltage of the DC power supply E2.
  • the switch S3 is on
  • the capacitor 12 of the bootstrap circuit 10 is charged by the DC voltage of the DC power supply E2
  • the drive circuit 21 for driving the switch S1 operates from the voltage Vbs of the capacitor 12.
  • FIG. 4 shows the relationship between the AC power supply voltage Vc, the input current I from the AC power supply 1 to the booster circuit, and the voltage Vbs of the capacitor 12.
  • the voltage Vbs of the capacitor 12 is shown by a solid line in FIG. It stabilizes without deterioration. As a result, a sufficient level of voltage required for the operation of the drive circuit 21 can be secured, and the switch S1 can be appropriately driven.
  • the operating voltage of the drive circuits 23 and 24 is obtained from one DC power supply E2 and the DC power supply E2 is also used for charging the bootstrap circuit 10, even if the number of drive circuits is as large as four,
  • the switches S1 to S4 can be appropriately driven without increasing the power supply capacity and thus without increasing the cost.

Abstract

Provided is a boost converter capable of driving switches appropriately without increasing power supply capacity even when the number of driving circuits is great and, consequently, without increasing cost. The boost converter rectifies, boosts, and outputs the voltage of a single-phase AC power supply by switching based on pulse width modulation corresponding to a voltage command value. A second driving circuit (22) for driving a second switch (S2) is operated by the DC voltage of a first DC power supply (E1), and third and fourth driving circuits (23, 24) for driving third and fourth switches (S3, S4) are operated by the DC voltage of a second DC power supply (E2). When the third switch (S3) is turned on, a capacitor (12) of a bootstrap circuit (10) is charged with the DC voltage of the second DC power supply (E2), and a first driving circuit (21) for driving a first switch (S1) is operated with the voltage of the capacitor of the bootstrap circuit.

Description

昇圧コンバータBoost converter
 本発明の実施形態は、例えば冷凍サイクルを含む空気調和機や熱源機等の電源装置に搭載される昇圧コンバータに関する。 An embodiment of the present invention relates to a boost converter mounted on a power supply device such as an air conditioner or a heat source machine including a refrigeration cycle, for example.
 冷凍サイクルを含む空気調和機や熱源機等の電源装置に搭載される昇圧コンバータは、リアクタ、スイッチ、コンデンサなどを含み、昇圧チョッパ方式のスイッチングを行うことにより交流電源の電圧を整流および昇圧して出力する。この昇圧コンバータは、高力率コンバータ、PFC(Power Factor Correction)コンバータ、あるいはトーテムポール型PFCコンバータとも称す。 Boost converters installed in power supplies such as air conditioners and heat source machines that include refrigeration cycles include reactors, switches, capacitors, etc., and rectify and boost the voltage of the AC power supply by performing boost chopper switching. Output. This boost converter is also referred to as a high power factor converter, a PFC (Power Factor Correction) converter, or a totem pole type PFC converter.
特開2016-330378号公報Japanese Unexamined Patent Publication No. 2016-330378
 複数のレベルの直流電圧を出力する昇圧コンバータの場合、使用するスイッチの数が多くなり、それに伴い、各スイッチを駆動する駆動回路の数も増える。駆動回路の数が多くなると、電源容量を大きくしなければならず、コストの上昇を招いてしまう。 In the case of a boost converter that outputs multiple levels of DC voltage, the number of switches used increases, and the number of drive circuits that drive each switch also increases accordingly. If the number of drive circuits is large, the power supply capacity must be increased, which leads to an increase in cost.
 本発明の実施形態の目的は、駆動回路の数が多くても、電源容量を大きくすることなく、ひいてはコストの上昇を招くことなく、各スイッチを適切に駆動できる昇圧コンバータを提供することである。 An object of the embodiment of the present invention is to provide a boost converter capable of appropriately driving each switch without increasing the power supply capacity and thus increasing the cost even if the number of drive circuits is large. ..
 請求項1の昇圧コンバータは、電圧指令値に応じたパルス幅変調に基づくスイッチングにより単相交流電源の電圧を整流および昇圧して出力するもので、正側充電回路、負側充電回路、第1~第4駆動回路、ブートストラップ回路を備える。前記正側充電回路は、前記電圧指令値の正レベル期間において、前記単相交流電源の一端から第1スイッチを介して第1および第2コンデンサの直列回路の一端に通じ、その第1および第2コンデンサの直列回路の他端から第2ダイオードを介して前記単相交流電源の他端に通じる第1通電路と、前記単相交流電源の一端から前記リアクタと第3スイッチと第4スイッチを介して前記第1および第2コンデンサの相互接続点に通じる第2通電路とを含み、前記第2スイッチが連続オフした状態で前記第1および第3スイッチが相補的なオン,オフを繰返すことにより前記第1および第2コンデンサを充電する。前記負側充電回路は、前記電圧指令値の負レベル期間において、前記単相交流電源の他端から第1ダイオードを介して前記第1および第2コンデンサの直列回路の一端に通じ、その第1および第2コンデンサの直列回路の他端から第2スイッチを介して前記単相交流電源の一端に通じる第3通電路と、前記単相交流電源の他端から前記第1ダイオードを介して前記第1および第2コンデンサの直列回路の一端に通じ、その第1および第2コンデンサの相互接続点から前記第4スイッチと前記第3スイッチを介して前記単相交流電源の一端に通じる第4通電路とを含み、前記第1スイッチが連続オフした状態で前記第2および第4スイッチが相補的なオン,オフを繰返すことにより前記第1および第2コンデンサを充電する。前記第2駆動回路は、第1直流電源の電圧により動作し前記第2スイッチを駆動する。前記第3および第4駆動回路は、第2直流電源の電圧により動作し前記第3および第4スイッチを駆動する。ブートストラップ回路は、前記第3スイッチがオンしているときに前記第2直流電源の電圧により充電されるコンデンサを含む。前記第1駆動回路は、前記ブートストラップ回路の前記コンデンサの充電電圧により動作し動作し前記第1スイッチを駆動する。前記1および第2コンデンサの直列回路の一端が正レベルの出力端子、前記第1および第2コンデンサの直列回路の他端が負レベルの出力端子となる。 The boost converter according to claim 1 rectifies and boosts the voltage of a single-phase AC power supply by switching based on pulse width modulation according to a voltage command value, and outputs the positive side charging circuit, the negative side charging circuit, and the first. It is equipped with a fourth drive circuit and a bootstrap circuit. The positive side charging circuit leads from one end of the single-phase AC power supply to one end of the series circuit of the first and second capacitors via the first switch during the positive level period of the voltage command value, and the first and first ones thereof. The first energizing path leading from the other end of the series circuit of the two capacitors to the other end of the single-phase AC power supply via the second diode, and the reactor, the third switch, and the fourth switch from one end of the single-phase AC power supply. The first and third switches repeatedly turn on and off in a complementary manner while the second switch is continuously turned off, including a second energizing path leading to the interconnection point of the first and second capacitors. Charges the first and second capacitors. The negative charging circuit leads from the other end of the single-phase AC power supply to one end of the series circuit of the first and second capacitors via the first diode during the negative level period of the voltage command value, and the first And the third energization path leading from the other end of the series circuit of the second capacitor to one end of the single-phase AC power supply via the second switch, and the first from the other end of the single-phase AC power supply via the first diode. A fourth energizing path that leads to one end of the series circuit of the first and second capacitors, and from the interconnection point of the first and second capacitors to one end of the single-phase AC power supply via the fourth switch and the third switch. The first and second capacitors are charged by repeating complementary on and off of the second and fourth switches in a state where the first switch is continuously turned off. The second drive circuit operates by the voltage of the first DC power supply to drive the second switch. The third and fourth drive circuits operate by the voltage of the second DC power supply to drive the third and fourth switches. The bootstrap circuit includes a capacitor that is charged by the voltage of the second DC power source when the third switch is on. The first drive circuit operates and operates by the charging voltage of the capacitor of the bootstrap circuit to drive the first switch. One end of the series circuit of the first and second capacitors is a positive level output terminal, and the other end of the series circuit of the first and second capacitors is a negative level output terminal.
一実施形態における昇圧回路の構成を示す図。The figure which shows the structure of the booster circuit in one Embodiment. 一実施形態における駆動制御回路の構成を示す図。The figure which shows the structure of the drive control circuit in one Embodiment. 一実施形態のコントローラにおけるPWM信号の生成を示す図。The figure which shows the generation of the PWM signal in the controller of one Embodiment. 一実施形態におけるブーストストラップ回路のコンデンサ電圧を示す図。The figure which shows the capacitor voltage of the boost strap circuit in one Embodiment.
 以下、この発明の一実施形態の昇圧コンバータについて図面を参照して説明する。この昇圧コンバータは、図1の昇圧回路および図2の駆動制御回路により構成され、例えば冷凍サイクルを含む空気調和機や熱源機等の電源装置に搭載される。 Hereinafter, a boost converter according to an embodiment of the present invention will be described with reference to the drawings. This boost converter is composed of the boost circuit of FIG. 1 and the drive control circuit of FIG. 2, and is mounted on a power supply device such as an air conditioner or a heat source machine including a refrigeration cycle, for example.
 昇圧回路は、後述の電圧指令値Vsに応じたパルス幅変調に基づくスイッチングにより単相交流電源1の電圧(交流電源電圧という)Vcを整流および昇圧して出力するもので、電圧指令値Vsの正レベル期間において実線矢印の経路で電流を流す正側充電回路、および電圧指令値Vsの負レベル期間において破線矢印の経路で電流を流す負側充電回路を含む。上記単相交流電源1の一端および他端につながる両電源ラインのうち、単相交流電源1の一端につながる電源ラインにリアクタ3が挿入されている。交流電源電圧Vcの波形、電圧指令値Vs、昇圧回路における各スイッチ素子S1~S4のオン,オフ動作の関係を図3に示す。 The booster circuit rectifies and boosts the voltage (called AC power supply voltage) Vc of the single-phase AC power supply 1 by switching based on pulse width modulation according to the voltage command value Vs described later, and outputs the voltage command value Vs. It includes a positive charging circuit that allows current to flow along the path indicated by the solid line arrow during the positive level period, and a negative charging circuit that allows current to flow along the path indicated by the broken line arrow during the negative level period of the voltage command value Vs. Of the two power supply lines connected to one end and the other end of the single-phase AC power supply 1, the reactor 3 is inserted into the power supply line connected to one end of the single-phase AC power supply 1. FIG. 3 shows the relationship between the waveform of the AC power supply voltage Vc, the voltage command value Vs, and the on / off operation of each switch element S1 to S4 in the booster circuit.
 上記正側充電回路は、交流電源電圧Vcの正側半波区間Ta(=T/2)のうち電圧指令値Vsが正レベルとなる略中央の所定期間Ta2において、かつ交流電源電圧Vcの負側半波区間Tb(=T/2)のうち電圧指令値Vsが正レベルとなる両側の所定期間Tb1,Tb3において、単相交流電源1の一端からリアクタ3とスイッチ素子(第1スイッチ)S1を順に介してコンデンサ(第1および第2コンデンサ)C1,C2の直列回路の一端に通じ、そのコンデンサC1,C2の直列回路の他端からダイオード(第2ダイオード)D2を介して単相交流電源1の他端に通じる通電路(第1通電路)L1と、単相交流電源1の一端から上記リアクタ2とスイッチ素子(第3スイッチ)S3とスイッチ素子(第4スイッチ)S4を順に介してコンデンサC1,C2の相互接続点に通じる通電路(第2通電路)L2とを含み、スイッチ素子S2が連続オフしスイッチ素子S4が連続オンした状態でスイッチ素子S1,S3が互いに異なる位相で相補的にオン,オフを繰返すことにより、コンデンサC1,C2を充電する。 The positive side charging circuit is in the positive half-wave section Ta (= T / 2) of the AC power supply voltage Vc in the substantially central predetermined period Ta2 where the voltage command value Vs becomes the positive level, and the negative of the AC power supply voltage Vc. In the side half-wave section Tb (= T / 2), during the predetermined periods Tb1 and Tb3 on both sides where the voltage command value Vs becomes a positive level, the reactor 3 and the switch element (first switch) S1 are connected from one end of the single-phase AC power supply 1. Is passed through one end of the series circuit of the capacitors (first and second capacitors) C1 and C2 in order, and from the other end of the series circuit of the capacitors C1 and C2 via the diode (second diode) D2, a single-phase AC power supply. The current-carrying circuit (first current-carrying path) L1 leading to the other end of 1 and one end of the single-phase AC power supply 1 are passed through the reactor 2, the switch element (third switch) S3, and the switch element (fourth switch) S4 in this order. The switch elements S1 and S3 complement each other in different phases in a state where the switch element S2 is continuously turned off and the switch element S4 is continuously turned on, including the current-carrying circuit (second current-carrying path) L2 leading to the interconnection point of the capacitors C1 and C2. The capacitors C1 and C2 are charged by repeatedly turning on and off.
 上記負側充電回路は、交流電源電圧Vcの負側半波区間Tbのうち電圧指令値Vsが負レベルとなる略中央の所定期間Tb2において、かつ交流電源電圧Vcの正側半波区間Taのうち電圧指令値Vsが負レベルとなる両側の所定期間Ta1,Ta3において、単相交流電源1の他端からダイオード(第1ダイオード)D1を介してコンデンサC1,C2の直列回路の一端に通じ、そのコンデンサC1,C2の直列回路の他端からスイッチ素子(第2スイッチ)S2と上記リアクタ2を順に介して単相交流電源1の一端に通じる通電路(第3通電路)L3と、単相交流電源1他端からダイオードD1を介してコンデンサC1,C2の直列回路の一端に通じ、そのコンデンサC1,C2の相互接続点から上記スイッチ素子S4とスイッチS3とリアクタ2を順に介して単相交流電源1の一端に通じる通電路(第4通電路)L4とを含み、スイッチ素子S1が連続オフしスイッチS3が連続オンした状態でスイッチ素子S2,S4が互いに異なる位相で相補的にオン,オフを繰返すことにより、コンデンサC1,C2を充電する。 The negative charging circuit is in the negative half-wave section Tb of the AC power supply voltage Vc in the substantially central predetermined period Tb2 where the voltage command value Vs becomes a negative level, and in the positive half-wave section Ta of the AC power supply voltage Vc. Of these, during the predetermined periods Ta1 and Ta3 on both sides where the voltage command value Vs becomes a negative level, the other end of the single-phase AC power supply 1 is passed through the diode (first diode) D1 to one end of the series circuit of the capacitors C1 and C2. A current-carrying path (third current-carrying path) L3 that leads from the other end of the series circuit of the diodes C1 and C2 to one end of the single-phase AC power supply 1 via the switch element (second switch) S2 and the reactor 2 in order, and a single phase. The other end of the AC power supply 1 is passed through the diode D1 to one end of the series circuit of the capacitors C1 and C2, and the single-phase AC is sequentially passed through the switch element S4, the switch S3 and the reactor 2 from the interconnection point of the capacitors C1 and C2. Including the current-carrying circuit (fourth current-carrying path) L4 leading to one end of the power supply 1, the switch elements S2 and S4 are complementarily turned on and off in different phases while the switch element S1 is continuously turned off and the switch S3 is continuously turned on. By repeating the above, the diodes C1 and C2 are charged.
 コンデンサC1,C2の直列回路の一端が正レベルの出力端子P、コンデンサC1,C2の直列回路の他端が負レベルの出力端子N、コンデンサC1,C2の相互接続点が零レベルの出力端子Mとなる。出力端子P,Nの相互間に所定レベルの直流電圧Vdcが生じ、出力端子P,Mの相互間に直流電圧Vdcの1/2の直流電圧“+Vdc/2”が生じ、出力端子N,M間に直流電圧Vdcの1/2の直流電圧“-Vdc/2”が生じる。これら3つのレベルの直流電圧が当該昇圧コンバータの出力となる。なお、単相交流電源1の他端につながる電源ラインにリアクタ3を挿入してもよく、さらには単相交流電源1の両端につながる各電源ラインの両方に分散してリアクタ3を挿入してもよい。すなわち、リアクタ3は単相交流電源1の両端につながる各電源ラインの少なくともいずれか一方に備えておけばよい。 One end of the series circuit of the capacitors C1 and C2 is the positive level output terminal P, the other end of the series circuit of the capacitors C1 and C2 is the negative level output terminal N, and the interconnection point of the capacitors C1 and C2 is the zero level output terminal M. It becomes. A predetermined level of DC voltage Vdc is generated between the output terminals P and N, and a DC voltage "+ Vdc / 2" which is 1/2 of the DC voltage Vdc is generated between the output terminals P and M, and the output terminals N and M are generated. A DC voltage "-Vdc / 2", which is 1/2 of the DC voltage Vdc, is generated between them. These three levels of DC voltage are the outputs of the boost converter. The reactor 3 may be inserted into the power supply line connected to the other end of the single-phase AC power supply 1, and further, the reactor 3 may be inserted in both of the power supply lines connected to both ends of the single-phase AC power supply 1. May be good. That is, the reactor 3 may be provided in at least one of the power supply lines connected to both ends of the single-phase AC power supply 1.
 スイッチ素子S1~S4は、それぞれの素子本体に逆並列接続された寄生ダイオードD11~D14を含み、オン時にドレイン・ソース間の双方向に電流が流れる双方向性を有するとともに、オン時の電力損失が寄生ダイオードD11~D14の順方向の電圧降下による電力損失より小さい半導体スイッチ素子たとえばMOSFETである。ここで、スイッチ素子S1,S2は、スイッチ素子S1が出力端子Pに向かって順方向となり、スイッチ素子S2が出力端子Nからリアクタ2とスイッチ素子S1に向かって順方向となる状態で、互いに同方向に直列接続されている。スイッチ素子S3,S4は、スイッチ素子S3がスイッチ素子S1,S2の相互接続点Aに向かって順方向となり、スイッチ素子S4が出力端子Mに向かって順方向となる状態で、互いに逆方向に直列接続されている。交流電源電圧Vcの正側半波区間Taにおいてはスイッチ素子S4がオフしてもスイッチ素子S4の寄生ダイオードD14を通して電流が流れるので、寄生ダイオードD14の損失を許容できるのであれば、交流電源電圧Vcの正側半波区間Taにおいてスイッチ素子S4をオフ状態に維持してもよい。同様に、交流電源電圧Vcの負側半波区間Tbにおいてはスイッチ素子S3がオフしてもスイッチ素子S3の寄生ダイオードD13を通して電流が流れるので、寄生ダイオードD13の損失を許容できるのであれば、交流電源電圧Vcの負側半波区間Tbにおいてスイッチ素子S3をオフ状態に維持してもよい。 The switch elements S1 to S4 include parasitic diodes D11 to D14 connected in antiparallel to each element body, have bidirectional current flowing in both directions between the drain and the source when on, and power loss when on. Is a semiconductor switch element, for example, a MOSFET, which is smaller than the power loss due to the forward voltage drop of the parasitic diodes D11 to D14. Here, the switch elements S1 and S2 are the same as each other in a state where the switch element S1 is in the forward direction toward the output terminal P and the switch element S2 is in the forward direction from the output terminal N toward the reactor 2 and the switch element S1. They are connected in series in the direction. The switch elements S3 and S4 are serialized in opposite directions with each other in a state where the switch element S3 is in the forward direction toward the interconnection point A of the switch elements S1 and S2 and the switch element S4 is in the forward direction toward the output terminal M. It is connected. In the positive half-wave section Ta of the AC power supply voltage Vc, even if the switch element S4 is turned off, current flows through the parasitic diode D14 of the switch element S4. Therefore, if the loss of the parasitic diode D14 can be tolerated, the AC power supply voltage Vc The switch element S4 may be maintained in the off state in the positive half-wave section Ta of the above. Similarly, in the negative half-wave section Tb of the AC power supply voltage Vc, even if the switch element S3 is turned off, a current flows through the parasitic diode D13 of the switch element S3. The switch element S3 may be maintained in the off state in the negative half-wave section Tb of the power supply voltage Vc.
 これらスイッチ素子S1~S4の駆動制御回路が図2に示すように構成されている。 The drive control circuits of these switch elements S1 to S4 are configured as shown in FIG.
 直流電源E1の正側端子および負側端子にコンデンサ3の一端および他端が接続され、そのコンデンサ3の一端および他端に駆動回路22の正側入力端および負側入力端が接続されている。そして、駆動回路22の正側出力端に抵抗器32を介してスイッチ素子S2のゲートが接続され、駆動回路22の負側出力端にスイッチ素子S2のソース(出力端子N)が接続されている。この駆動回路22の負側出力端は、同駆動回路22の負側入力端と導通し、その負側入力端を通して直流電源E1の負側端子と導通状態にある。すなわち、直流電源E1は、出力端子Nの負レベルを基準とする直流電圧を出力する。 One end and the other end of the capacitor 3 are connected to the positive and negative terminals of the DC power supply E1, and the positive and negative input ends of the drive circuit 22 are connected to one end and the other end of the capacitor 3. .. Then, the gate of the switch element S2 is connected to the positive output end of the drive circuit 22 via the resistor 32, and the source (output terminal N) of the switch element S2 is connected to the negative output end of the drive circuit 22. .. The negative output end of the drive circuit 22 is conductive with the negative input end of the drive circuit 22, and is in a conductive state with the negative terminal of the DC power supply E1 through the negative input end. That is, the DC power supply E1 outputs a DC voltage based on the negative level of the output terminal N.
 駆動回路22は、直流電源E1の直流電圧(コンデンサ3の電圧)により動作し、コントローラ40から供給されるPWM信号X2に応じて電圧が高レベル“H”と低レベル“L”に変化するパルス状の駆動信号Y2を生成し出力する。この駆動信号Y2の電圧が上記抵抗器32を介してスイッチ素子S2のゲート・ソース間に印加される。 The drive circuit 22 operates by the DC voltage of the DC power supply E1 (voltage of the capacitor 3), and a pulse whose voltage changes to a high level “H” and a low level “L” according to the PWM signal X2 supplied from the controller 40. Drive signal Y2 is generated and output. The voltage of the drive signal Y2 is applied between the gate and source of the switch element S2 via the resistor 32.
 直流電源E2の正側端子および負側端子に駆動回路23の正側入力端および負側入力端が接続されている。そして、駆動回路23の正側出力端に抵抗器33を介してスイッチ素子S3のゲートが接続され、駆動回路23の負側出力端にスイッチ素子S3のソースとスイッチ素子S4のソースとの相互接続点Cが接続されている。この駆動回路23の負側出力端は、同駆動回路23の負側入力端と導通し、その負側入力端を通して直流電源E2の負側端子と導通状態にある。すなわち、直流電源E2は、相互接続点Cの零レベルを基準とする直流電圧を出力する。 The positive and negative input ends of the drive circuit 23 are connected to the positive and negative terminals of the DC power supply E2. Then, the gate of the switch element S3 is connected to the positive output end of the drive circuit 23 via the resistor 33, and the source of the switch element S3 and the source of the switch element S4 are interconnected to the negative output end of the drive circuit 23. Point C is connected. The negative output end of the drive circuit 23 is conductive with the negative input end of the drive circuit 23, and is in a conductive state with the negative terminal of the DC power supply E2 through the negative input end. That is, the DC power supply E2 outputs a DC voltage with reference to the zero level of the interconnection point C.
 駆動回路23は、直流電源E2の直流電圧により動作し、コントローラ40から供給されるPWM信号X3に応じて電圧が高レベル“H”と低レベル“L”に変化するパルス状の駆動信号Y3を生成し出力する。この駆動信号Y3の電圧が上記抵抗器33を介してスイッチ素子S3のゲート・ソース間に印加される。 The drive circuit 23 operates by the DC voltage of the DC power supply E2, and transmits a pulse-shaped drive signal Y3 whose voltage changes to a high level “H” and a low level “L” according to the PWM signal X3 supplied from the controller 40. Generate and output. The voltage of the drive signal Y3 is applied between the gate and source of the switch element S3 via the resistor 33.
 同じ直流電源E2の正側端子および負側端子に駆動回路24の正側入力端および負側入力端が接続されている。そして、駆動回路24の正側出力端に抵抗器34を介してスイッチ素子S4のゲートが接続され、駆動回路24の負側出力端にスイッチ素子S4のソースとスイッチ素子S3のソースとの相互接続点Cが接続されている。この駆動回路24の負側出力端は、同駆動回路24の負側入力端を通して直流電源E2の負側端子と導通状態にある。 The positive and negative input ends of the drive circuit 24 are connected to the positive and negative terminals of the same DC power supply E2. Then, the gate of the switch element S4 is connected to the positive output end of the drive circuit 24 via the resistor 34, and the source of the switch element S4 and the source of the switch element S3 are interconnected to the negative output end of the drive circuit 24. Point C is connected. The negative output end of the drive circuit 24 is in a conductive state with the negative terminal of the DC power supply E2 through the negative input end of the drive circuit 24.
 駆動回路24は、コントローラ40から供給されるPWM信号X4に応じて電圧が高レベル“H”と低レベル“L”に変化するパルス状の駆動信号Y4を生成し出力する。この駆動信号Y4の電圧が上記抵抗器34を介してスイッチ素子S4のゲート・ソース間に印加される。 The drive circuit 24 generates and outputs a pulse-shaped drive signal Y4 whose voltage changes to a high level “H” and a low level “L” according to the PWM signal X4 supplied from the controller 40. The voltage of the drive signal Y4 is applied between the gate and source of the switch element S4 via the resistor 34.
 また、同じ直流電源E2の正側端子にブートストラップ回路10のダイオード11を介して同ブートストラップ回路10のコンデンサ12の一端が接続され、そのコンデンサ12の他端が駆動回路21の負側入力端、この負側入力端と導通する同駆動回路21の負側出力端、スイッチ素子S3のドレイン・ソース間、相互接続点C、駆動回路23の負側出力端、この負側出力端が導通する同駆動回路23の負側入力端を順に介して直流電源E2の負側端子に接続されている。つまり、スイッチ素子S3がオンしているとき、直流電源E2の電圧がブートストラップ回路10のコンデンサ12に加わり、コンデンサ12が充電される。 Further, one end of the capacitor 12 of the bootstrap circuit 10 is connected to the positive terminal of the same DC power supply E2 via the diode 11 of the bootstrap circuit 10, and the other end of the capacitor 12 is the negative input end of the drive circuit 21. , The negative output end of the drive circuit 21 that conducts with the negative input end, between the drain and source of the switch element S3, the interconnection point C, the negative output end of the drive circuit 23, and the negative output end. It is connected to the negative terminal of the DC power supply E2 via the negative input end of the drive circuit 23 in order. That is, when the switch element S3 is on, the voltage of the DC power supply E2 is applied to the capacitor 12 of the bootstrap circuit 10, and the capacitor 12 is charged.
 このブートストラップ回路10のコンデンサ12の両端に駆動回路21の正側入力端および負側入力端が接続され、その駆動回路21の正側出力端に抵抗器31を介してスイッチ素子S1のゲートが接続され、駆動回路21の負側出力端にスイッチ素子S1のソースが接続されている。駆動回路21は、ブートストラップ回路10のコンデンサ12の電圧Vbsにより動作し、コントローラ40から供給されるPWM信号X1に応じて電圧が高レベル“H”と低レベル“L”に変化するパルス状の駆動信号Y1を生成し出力する。この駆動信号Y1の電圧が上記抵抗器31を介してスイッチ素子S1のゲート・ソース間に印加される。 The positive input end and the negative input end of the drive circuit 21 are connected to both ends of the capacitor 12 of the bootstrap circuit 10, and the gate of the switch element S1 is connected to the positive output end of the drive circuit 21 via a resistor 31. It is connected, and the source of the switch element S1 is connected to the negative output end of the drive circuit 21. The drive circuit 21 operates by the voltage Vbs of the capacitor 12 of the bootstrap circuit 10, and has a pulse shape in which the voltage changes to a high level “H” and a low level “L” according to the PWM signal X1 supplied from the controller 40. The drive signal Y1 is generated and output. The voltage of the drive signal Y1 is applied between the gate and source of the switch element S1 via the resistor 31.
 これら駆動回路21~24にコントローラ40が接続されている。コントローラ40は、スイッチ素子S1,S2の相互接続点AとダイオードD1,D2の相互接続点Bとの間に生じる電圧Vabの波形を正弦波に至らせるとともに出力端子P,N間の出力電圧Vdcを目標値Vtに至らせるための電圧指令値Vsを演算により求め、図3に示すように、三角波状の正側のキャリア信号電圧K1をこの電圧指令値Vsに応じてパルス幅変調(電圧比較)することによりスイッチ素子S1,S3に対するパルス状のPWM信号X1,X3を生成するとともに、三角波状の負側のキャリア信号電圧K2をその電圧指令値Vsに応じてパルス幅変調することによりスイッチ素子S2,S4に対するパルス状のPWM信号X2,X4を生成する。 The controller 40 is connected to these drive circuits 21 to 24. The controller 40 causes the waveform of the voltage Fab generated between the interconnection point A of the switch elements S1 and S2 and the interconnection point B of the diodes D1 and D2 to reach a sinusoidal wave, and the output voltage Vdc between the output terminals P and N. The voltage command value Vs for reaching the target value Vt is calculated by calculation, and as shown in FIG. 3, the carrier signal voltage K1 on the positive side of the triangular wave shape is pulse-width modulated (voltage comparison) according to the voltage command value Vs. ) To generate pulse-shaped PWM signals X1 and X3 for the switch elements S1 and S3, and pulse-width-modulate the triangular wave-shaped negative carrier signal voltage K2 according to the voltage command value Vs. Pulse-like PWM signals X2 and X4 for S2 and S4 are generated.
 電圧指令値Vsは、スイッチ素子S1,S2の相互接続点AとダイオードD1,D2の相互接続点Bとの間に生じる電圧Vabの波形を正弦波に至らせるべく正側レベルと負側レベルに振れるとともに、出力端子P,N間の出力電圧Vdcとその出力電圧Vdcに対する目標値Vtとの差に応じて値が変化する。ここで、相互接続点Bの電圧Vbは、ダイオードD1,D2の整流波形であることから、交流電源電圧Vcの正側半波区間Taでは、その電圧Vbは負側の出力端子Nの電圧となり、交流電源電圧Vcの負側半波区間Tbでは、その電圧Vbは正側の出力端子Pの電圧となる。つまり、相互接続点Bの電圧Vbは、交流電源電圧Vcの正側半波区間Taでマイナスの一定値、交流電源電圧Vcの負側半波区間Tbでプラスの一定値を示す方形波となる。この方形波の電圧Vbに基づいて、相互接続点A,B間の電圧Vabの波形を所定レベルの正弦波に至らせるために必要な相互接続点Aの電圧Vaは、図3に示す電圧指令値Vsの波形となる。そして、出力端子P,N間の出力電圧Vdcを目標値Vtに一致させるべく、交流電源電圧Vcの正側半波区間Taにおいて正レベルとなる電圧指令値Vsの波高値(ピーク値)Vspは、出力端子P,N間の出力電圧Vdcの値(実測値)が目標値Vtより低いほど高くなり、出力端子P,N間の出力電圧Vdcの値(実測値)が目標値Vtより高いほど低くなる。逆に、交流電源電圧Vcの負側半波区間Tbにおいて負レベルとなる電圧指令値Vsの波高値Vsp´は、出力端子P,N間の出力電圧Vdcの値が目標値Vtより低いほど負側に高くなり、出力端子P,N間の出力電圧Vdcの値が目標値Vtより高いほど負側において低くなる。 The voltage command value Vs is set to the positive side level and the negative side level so that the waveform of the voltage Vab generated between the interconnection point A of the switch elements S1 and S2 and the interconnection point B of the diodes D1 and D2 reaches a sine wave. As it fluctuates, the value changes according to the difference between the output voltage Vdc between the output terminals P and N and the target value Vt with respect to the output voltage Vdc. Here, since the voltage Vb at the interconnection point B is the rectified waveform of the diodes D1 and D2, in the positive half-wave section Ta of the AC power supply voltage Vc, the voltage Vb becomes the voltage of the output terminal N on the negative side. In the negative half-wave section Tb of the AC power supply voltage Vc, the voltage Vb is the voltage of the output terminal P on the positive side. That is, the voltage Vb at the interconnection point B is a square wave showing a negative constant value in the positive half-wave section Ta of the AC power supply voltage Vc and a positive constant value in the negative half-wave section Tb of the AC power supply voltage Vc. .. Based on the voltage Vb of the square wave, the voltage Va of the interconnection point A required to bring the waveform of the voltage Vab between the interconnection points A and B to a sine wave of a predetermined level is the voltage command shown in FIG. It becomes a waveform of the value Vs. Then, in order to match the output voltage Vdc between the output terminals P and N with the target value Vt, the peak value (peak value) Vsp of the voltage command value Vs that becomes a positive level in the positive half-wave section Ta of the AC power supply voltage Vc is , The lower the output voltage Vdc value (measured value) between the output terminals P and N is lower than the target value Vt, the higher the value, and the higher the output voltage Vdc value (measured value) between the output terminals P and N is higher than the target value Vt. It gets lower. On the contrary, the peak value Vsp'of the voltage command value Vs, which becomes a negative level in the negative half-wave section Tb of the AC power supply voltage Vc, becomes negative as the value of the output voltage Vdc between the output terminals P and N is lower than the target value Vt. It becomes higher on the side, and the higher the value of the output voltage Vdc between the output terminals P and N is higher than the target value Vt, the lower it becomes on the negative side.
 なお、この電圧指令値Vsの算出方式は、従来のトーテムポール型PFCコンバータにおける電圧指令値の算出方式と同じである。 The calculation method of the voltage command value Vs is the same as the calculation method of the voltage command value in the conventional totem pole type PFC converter.
 スイッチ素子S1用の駆動信号Y1の生成の基になるPWM信号X1は、電圧指令値Vsの正レベル期間において高レベル“H”と低レベル“L”を繰返し、電圧指令値Vsの負レベル期間において低レベル“L”を維持する。スイッチ素子S3用の駆動信号Y3の生成の基になるPWM信号X3は、電圧指令値Vsの正レベル期間において高レベル“H”と低レベル“L”を繰返し、電圧指令値Vsの負レベル期間において低レベル“L”を維持する。このPWM信号X1,X3は、高レベル“H”の位相と低レベル“L”の位相が互いに反対の関係となる。 The PWM signal X1 which is the basis for generating the drive signal Y1 for the switch element S1 repeats high level "H" and low level "L" in the positive level period of the voltage command value Vs, and repeats the negative level period of the voltage command value Vs. Maintain a low level "L" at. The PWM signal X3, which is the basis for generating the drive signal Y3 for the switch element S3, repeats high level "H" and low level "L" in the positive level period of the voltage command value Vs, and repeats the negative level period of the voltage command value Vs. Maintain a low level "L" at. In the PWM signals X1 and X3, the phase of the high level "H" and the phase of the low level "L" are opposite to each other.
 スイッチ素子S2用の駆動信号Y2の生成の基になるPWM信号X2は、電圧指令値Vsbの正レベル期間において低レベル“L”を維持し、電圧指令値Vsの負レベル期間において高レベル“H”と低レベル“L”を繰返す。スイッチ素子S4用の駆動信号Y4の生成の基になるPWM信号X4は、電圧指令値Vsの正レベル期間において高レベル“H”を維持し、電圧指令値Vsの負レベル期間において高レベル“H”と低レベル“L”を繰返す。このPWM信号X2,X4は、高レベル“H”の位相と低レベル“L”の位相が互いに反対の関係となる。 The PWM signal X2, which is the basis for generating the drive signal Y2 for the switch element S2, maintains a low level “L” during the positive level period of the voltage command value Vsb and a high level “H” during the negative level period of the voltage command value Vs. And the low level "L" are repeated. The PWM signal X4, which is the basis for generating the drive signal Y4 for the switch element S4, maintains a high level “H” during the positive level period of the voltage command value Vs, and maintains a high level “H” during the negative level period of the voltage command value Vs. And the low level "L" are repeated. In the PWM signals X2 and X4, the phase of the high level "H" and the phase of the low level "L" are opposite to each other.
 このような構成の駆動制御回路によれば、スイッチS2を駆動する駆動回路22が直流電源E1の直流電圧により動作し、スイッチS3,S4を駆動する駆動回路23,24が直流電源E2の直流電圧により動作する。そして、スイッチS3がオンしているときに直流電源E2の直流電圧によりブートストラップ回路10のコンデンサ12が充電され、スイッチS1を駆動する駆動回路21がそのコンデンサ12の電圧Vbsより動作する。 According to the drive control circuit having such a configuration, the drive circuit 22 for driving the switch S2 operates by the DC voltage of the DC power supply E1, and the drive circuits 23 and 24 for driving the switches S3 and S4 are the DC voltage of the DC power supply E2. Works with. Then, when the switch S3 is on, the capacitor 12 of the bootstrap circuit 10 is charged by the DC voltage of the DC power supply E2, and the drive circuit 21 for driving the switch S1 operates from the voltage Vbs of the capacitor 12.
 交流電源電圧Vc、交流電源1から昇圧回路への入力電流I、コンデンサ12の電圧Vbsの関係を図4に示している。 FIG. 4 shows the relationship between the AC power supply voltage Vc, the input current I from the AC power supply 1 to the booster circuit, and the voltage Vbs of the capacitor 12.
 仮に、直流電源E1の直流電圧によってブートストラップ回路10のコンデンサ12を充電し、そのコンデンサ12の電圧Vbsによって駆動回路21を動作させる構成を採用した場合には、コンデンサ12の電圧Vbsが図3に破線で示すように低下し、駆動回路21の動作に必要な十分なレベルの電圧を確保できない。ひいては、スイッチS1を適切に駆動できない。 If a configuration is adopted in which the capacitor 12 of the bootstrap circuit 10 is charged by the DC voltage of the DC power supply E1 and the drive circuit 21 is operated by the voltage Vbs of the capacitor 12, the voltage Vbs of the capacitor 12 is shown in FIG. As shown by the broken line, the voltage drops, and a sufficient level of voltage required for the operation of the drive circuit 21 cannot be secured. As a result, the switch S1 cannot be driven properly.
 本実施形態のように、スイッチS3がオンしているときに直流電源E2の直流電圧によりブートストラップ回路10のコンデンサ12を充電する構成であれば、コンデンサ12の電圧Vbsが図3に実線で示すように低下なく安定する。これにより、駆動回路21の動作に必要な十分なレベルの電圧を確保でき、スイッチS1を適切に駆動することができる。 If the configuration is such that the capacitor 12 of the bootstrap circuit 10 is charged by the DC voltage of the DC power supply E2 when the switch S3 is on as in the present embodiment, the voltage Vbs of the capacitor 12 is shown by a solid line in FIG. It stabilizes without deterioration. As a result, a sufficient level of voltage required for the operation of the drive circuit 21 can be secured, and the switch S1 can be appropriately driven.
 駆動回路23,24の動作用電圧を1つの直流電源E2から得るようにしており、しかも直流電源E2をブートストラップ回路10の充電にも用いる構成なので、駆動回路の数が4つと多くても、電源容量を大きくすることなく、ひいてはコストの上昇を招くことなく、スイッチS1~S4を適切に駆動できる。 Since the operating voltage of the drive circuits 23 and 24 is obtained from one DC power supply E2 and the DC power supply E2 is also used for charging the bootstrap circuit 10, even if the number of drive circuits is as large as four, The switches S1 to S4 can be appropriately driven without increasing the power supply capacity and thus without increasing the cost.
 その他、上記実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Other than that, the above embodiment is presented as an example, and is not intended to limit the scope of the invention. This novel embodiment can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the gist of the invention. In these embodiments, the scope of the invention is included in the gist, and is also included in the scope of the invention described in the claims and the equivalent scope thereof.
 1…交流電源、2…リアクタ、D1,D2…ダイオード、S1~S4…スイッチ素子(第1~第4スイッチ)、C1,C2…コンデンサ(第1および第2コンデンサ)、P…正レベルの出力端子、N…負レベルの出力端子、M…零レベルの出力端子、L1~L4…通電路(第1~第4通電路)、E1,E2…直流電源(第1および第2直流電源)、10…ブートストラップ回路、11…ダイオード、12…コンデンサ、21~24…駆動回路(第1~第4駆動回路)、40…コントローラ 1 ... AC power supply, 2 ... Reactor, D1, D2 ... Diode, S1 to S4 ... Switch elements (1st to 4th switches), C1, C2 ... Capacitors (1st and 2nd capacitors), P ... Positive level output Terminals, N ... Negative level output terminals, M ... Zero level output terminals, L1 to L4 ... Energized paths (1st to 4th energized paths), E1, E2 ... DC power supplies (1st and 2nd DC power supplies), 10 ... bootstrap circuit, 11 ... diode, 12 ... capacitor, 21-24 ... drive circuit (1st to 4th drive circuits), 40 ... controller

Claims (5)

  1.  電圧指令値に応じたパルス幅変調に基づくスイッチングにより単相交流電源の電圧を整流および昇圧して出力する昇圧コンバータであって、
     前記電圧指令値の正レベル期間において、前記単相交流電源の一端から第1スイッチを介して第1および第2コンデンサの直列回路の一端に通じ、その第1および第2コンデンサの直列回路の他端から第2ダイオードを介して前記単相交流電源の他端に通じる第1通電路と、前記単相交流電源の一端から前記リアクタと第3スイッチと第4スイッチを介して前記第1および第2コンデンサの相互接続点に通じる第2通電路とを含み、前記第2スイッチが連続オフした状態で前記第1および第3スイッチが相補的なオン,オフを繰返すことにより前記第1および第2コンデンサを充電する正側充電回路と、
     前記電圧指令値の負レベル期間において、前記単相交流電源の他端から第1ダイオードを介して前記第1および第2コンデンサの直列回路の一端に通じ、その第1および第2コンデンサの直列回路の他端から第2スイッチを介して前記単相交流電源の一端に通じる第3通電路と、前記単相交流電源の他端から前記第1ダイオードを介して前記第1および第2コンデンサの直列回路の一端に通じ、その第1および第2コンデンサの相互接続点から前記第4スイッチと前記第3スイッチを介して前記単相交流電源の一端に通じる第4通電路とを含み、前記第1スイッチが連続オフした状態で前記第2および第4スイッチが相補的なオン,オフを繰返すことにより前記第1および第2コンデンサを充電する負側充電回路と、
     第1直流電源の電圧により動作し前記第2スイッチを駆動する第2駆動回路と、
     第2直流電源の電圧により動作し前記第3および第4スイッチを駆動する第3および第4駆動回路と、
     前記第3スイッチがオンしているときに前記第2直流電源の電圧により充電されるコンデンサを含むブートストラップ回路と、
     前記ブートストラップ回路の前記コンデンサの充電電圧により動作し動作し前記第1スイッチを駆動する第1駆動回路と、
     を備え、
     前記1および第2コンデンサの直列回路の一端が正レベルの出力端子、前記第1および第2コンデンサの直列回路の他端が負レベルの出力端子となる、
     ことを特徴とする昇圧コンバータ。
    A boost converter that rectifies and boosts the voltage of a single-phase AC power supply by switching based on pulse width modulation according to the voltage command value and outputs it.
    During the positive level period of the voltage command value, one end of the single-phase AC power supply is passed to one end of the series circuit of the first and second capacitors via the first switch, and the series circuit of the first and second capacitors is used. The first energization path leading from the end to the other end of the single-phase AC power supply via the second diode, and the first and first circuits from one end of the single-phase AC power supply via the reactor, the third switch, and the fourth switch. The first and second switches include a second energizing path leading to the interconnection point of the two capacitors, and the first and third switches repeatedly turn on and off in a complementary manner while the second switch is continuously turned off. A positive charging circuit that charges the capacitor,
    During the negative level period of the voltage command value, the other end of the single-phase AC power supply leads to one end of the series circuit of the first and second capacitors via the first diode, and the series circuit of the first and second capacitors thereof. A third energizing path leading from the other end of the single-phase AC power supply to one end of the single-phase AC power supply via a second switch, and a series of the first and second capacitors from the other end of the single-phase AC power supply via the first diode. The first energization path that leads to one end of the circuit and leads from the interconnection point of the first and second capacitors to one end of the single-phase AC power supply via the fourth switch and the third switch. A negative charging circuit that charges the first and second capacitors by repeating complementary on and off of the second and fourth switches while the switches are continuously turned off.
    A second drive circuit that operates by the voltage of the first DC power supply and drives the second switch,
    The third and fourth drive circuits that operate by the voltage of the second DC power supply and drive the third and fourth switches, and
    A bootstrap circuit that includes a capacitor that is charged by the voltage of the second DC power supply when the third switch is on.
    A first drive circuit that operates by the charging voltage of the capacitor of the bootstrap circuit and drives the first switch.
    With
    One end of the series circuit of the first and second capacitors is a positive level output terminal, and the other end of the series circuit of the first and second capacitors is a negative level output terminal.
    A boost converter that features that.
  2.  前記電圧指令値は、前記第1および第2スイッチの相互接続点と前記第1および第2ダイオードの相互接続点との間に生じる電圧の波形を正弦波に至らせるべく正側レベルと負側レベルに振れるとともに、当該昇圧コンバータの出力電圧とその出力電圧に対する目標値との差に応じて値が変化する、
     ことを特徴とする請求項1に記載の昇圧コンバータ。
    The voltage command value is on the positive side and the negative side so that the waveform of the voltage generated between the interconnection point of the first and second switches and the interconnection point of the first and second diodes reaches a sine wave. As it swings to the level, the value changes according to the difference between the output voltage of the boost converter and the target value with respect to the output voltage.
    The boost converter according to claim 1.
  3.  前記第1~第4スイッチは、それぞれ寄生ダイオードを含むMOSFETであり、
     前記第3および第4スイッチは、互いに逆方向に直列接続されている、
     ことを特徴とする請求項1に記載の昇圧コンバータ。
    The first to fourth switches are MOSFETs including parasitic diodes, respectively.
    The third and fourth switches are connected in series in opposite directions to each other.
    The boost converter according to claim 1.
  4.  前記正側充電回路は、前記第2スイッチが連続オフし前記第4スイッチが連続オンした状態で前記第1および第3スイッチが相補的なオン,オフを繰返すことにより前記第1および第2コンデンサを充電し、
     前記負側充電回路は、前記第1スイッチが連続オフし前記第3スイッチが連続オンした状態で前記第2および第4スイッチが相補的なオン,オフを繰返すことにより前記第1および第2コンデンサを充電する、
     ことを特徴とする請求項3に記載の昇圧コンバータ。
    In the positive charging circuit, the first and second capacitors are turned on and off repeatedly in a state where the second switch is continuously turned off and the fourth switch is continuously turned on. Charge and
    In the negative charging circuit, the first and second capacitors are formed by repeating complementary on and off of the second and fourth switches in a state where the first switch is continuously turned off and the third switch is continuously turned on. To charge,
    The boost converter according to claim 3.
  5.  前記単相交流電源の一端および他端につながる両電源ラインの少なくともいずれか一方に挿入されたリアクタを備える、
     ことを特徴とする請求項1から請求項4のいずれか一項に記載の昇圧コンバータ。
    A reactor inserted in at least one of both power supply lines connected to one end and the other end of the single-phase AC power supply.
    The boost converter according to any one of claims 1 to 4, wherein the boost converter is characterized in that.
PCT/JP2019/037640 2019-09-25 2019-09-25 Boost converter WO2021059402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/037640 WO2021059402A1 (en) 2019-09-25 2019-09-25 Boost converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/037640 WO2021059402A1 (en) 2019-09-25 2019-09-25 Boost converter

Publications (1)

Publication Number Publication Date
WO2021059402A1 true WO2021059402A1 (en) 2021-04-01

Family

ID=75164847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037640 WO2021059402A1 (en) 2019-09-25 2019-09-25 Boost converter

Country Status (1)

Country Link
WO (1) WO2021059402A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014088551A1 (en) * 2012-12-04 2014-06-12 Otis Elevator Company Gate drive power supply for multilevel converter
WO2015060255A1 (en) * 2013-10-23 2015-04-30 三菱電機株式会社 Power conversion device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014088551A1 (en) * 2012-12-04 2014-06-12 Otis Elevator Company Gate drive power supply for multilevel converter
WO2015060255A1 (en) * 2013-10-23 2015-04-30 三菱電機株式会社 Power conversion device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VALIPOUR, H. ET AL.: "A wide input voltage range PFC converter with high-efficiency", 34TH ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION, March 2019 (2019-03-01), pages 774 - 779, XP033555316, DOI: 10.1109/APEC.2019.8722293 *

Similar Documents

Publication Publication Date Title
US9819273B2 (en) Power conversion apparatus
CN101098103B (en) Self powered supply for power converter switch driver
WO2015004825A1 (en) Dc-dc converter
WO2010010711A1 (en) Electric power converter
US20130301323A1 (en) Power conversion apparatus
JP6671045B2 (en) Power conversion system
KR20150031828A (en) Dual inverter system and method for controlling the same
JP2002176778A (en) Power supply unit and air conditioner using the same
KR101066742B1 (en) Power supply circuit
KR20070042401A (en) Device for preheating compressor and method thereof
JP5678860B2 (en) AC / DC converter
JP6057017B2 (en) DC-DC converter
JP5362657B2 (en) Power converter
KR20140034065A (en) Ionizer
US9178445B2 (en) Power conversion apparatus
KR101958787B1 (en) Power transforming apparatus and air conditioner including the same
JP6156575B2 (en) Power conditioner and control method thereof
WO2021059402A1 (en) Boost converter
WO2017199299A1 (en) Dc power source, refrigeration cycle device and air-conditioner
WO2020183553A1 (en) Dc power supply device, power conversion device, and refrigeration cycle device
US10517148B2 (en) Induction heat cooking apparatus and method for driving the same
JP5699562B2 (en) Driving circuit
WO2013121687A1 (en) Interleave control circuit, and switching power circuit and air conditioner provided with same
KR102377317B1 (en) Psc with multiple voltage generation function and power factor control function and power converting device including the same
US20160374156A1 (en) Induction heat cooking apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP