WO2021059335A1 - Autonomous movement assistance device and moving body having same - Google Patents

Autonomous movement assistance device and moving body having same Download PDF

Info

Publication number
WO2021059335A1
WO2021059335A1 PCT/JP2019/037326 JP2019037326W WO2021059335A1 WO 2021059335 A1 WO2021059335 A1 WO 2021059335A1 JP 2019037326 W JP2019037326 W JP 2019037326W WO 2021059335 A1 WO2021059335 A1 WO 2021059335A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection area
moving body
traveling
log data
detection position
Prior art date
Application number
PCT/JP2019/037326
Other languages
French (fr)
Japanese (ja)
Inventor
修一 槙
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to PCT/JP2019/037326 priority Critical patent/WO2021059335A1/en
Publication of WO2021059335A1 publication Critical patent/WO2021059335A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention generally relates to supporting the control of autonomous movement.
  • a marker for example, a barcode
  • an automatic guided vehicle is an automatic guided vehicle by reading the marker on the floor surface. Estimate the current position of.
  • the automatic guided vehicle receives route information from the control device. The automatic guided vehicle travels along the route information based on the estimated current position.
  • a protective area is set for an autonomously moving moving object such as an automatic guided vehicle.
  • the "protected area” is an area determined based on the position of a moving body, and is an area where the presence of obstacles or people is prohibited. As the moving body moves, the protected area also moves. During autonomous movement, the moving body decelerates when it detects the presence of an obstacle or a person in the protected area, and stops without colliding with the obstacle or the person.
  • the information indicating the protection area of the moving body may be embedded in the marker itself so that the moving body can read it. As a result, it is expected that the protection area is automatically set on the moving body for each position of the marker.
  • the autonomous movement support device reads out log data including a plurality of log data sets acquired during traveling of a moving body equipped with a distance sensor.
  • Each of the plurality of log data sets includes information representing a time, information representing a detection position and a detection posture of a moving object at the time, and a distance data set representing a plurality of distances acquired by a distance sensor at the time. including.
  • the autonomous movement support device calculates the stop distance of the moving body for each of the plurality of detection positions by using two or more log data sets representing two or more detection positions including the detection position.
  • the autonomous movement support device is represented by a stop distance calculated for a detection position belonging to the travel position and a log data set representing the detection position included in the stop distance for each of a plurality of travel positions in the travel path of the moving body.
  • the area of protection is determined based on multiple distances.
  • the autonomous movement support device sets information representing a determined protection area on the moving body for each of the plurality of traveling positions.
  • the "interface device” may be one or more communication interface devices.
  • One or more communication interface devices may be one or more communication interface devices of the same type (for example, one or more NICs (Network Interface Cards)) or two or more different types of communication interface devices (for example, NICs). It may be HBA (Host Bus Adapter).
  • the "memory” is one or more memory devices which are an example of one or more storage devices, and may be typically a main storage device. At least one memory device in the memory may be a volatile memory device or a non-volatile memory device.
  • the "permanent storage device” may be one or more permanent storage devices which are an example of one or more storage devices.
  • the persistent storage device is typically a non-volatile storage device (for example, an auxiliary storage device), specifically, for example, HDD (Hard Disk Drive), SSD (Solid State Drive), NVMe (Non-Volatile). It may be a Memory Express) drive or an SCM (Storage Class Memory).
  • the “storage device” may be at least a memory of a memory and a persistent storage device.
  • the "processor” may be one or more processor devices.
  • the at least one processor device is typically a microprocessor device such as a CPU (Central Processing Unit), but may be another type of processor device such as a GPU (Graphics Processing Unit).
  • At least one processor device may be single-core or multi-core.
  • At least one processor device may be a processor core.
  • At least one processor device may be a processor device in a broad sense such as a hardware circuit (for example, FPGA (Field-Programmable Gate Array) or ASIC (Application Specific Integrated Circuit)) that performs a part or all of the processing.
  • FPGA Field-Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the function may be described by the expression of "yy part", but the function may be realized by executing one or more computer programs by the processor, or one. It may be realized by the above hardware circuit (for example, FPGA or ASIC), or may be realized by a combination thereof.
  • a function is realized by executing a program by a processor, the specified processing is appropriately performed using a storage device and / or an interface device, so that the function may be at least a part of the processor. Good.
  • the process described with the function as the subject may be a process performed by a processor or a device having the processor.
  • the program may be installed from the program source.
  • the program source may be, for example, a program distribution computer or a computer-readable recording medium (eg, a non-temporary recording medium).
  • the description of each function is an example, and a plurality of functions may be combined into one function, or one function may be divided into a plurality of functions.
  • a common code among reference codes may be used when explaining without distinguishing elements of the same type, and a reference code may be used when distinguishing elements of the same type.
  • protected area 500 when the protected area is not distinguished, it is referred to as "protected area 500", and when the protected area is distinguished, it is referred to as “protected area 500A” and “protected area 500B”.
  • a "data set” is a logical mass of electronic data viewed from a program such as an application program, and is, for example, any of a record, a file, a key-value pair, and a tuple. But it may be.
  • the transported object carried by the moving body is a trolley, but the transported object may be a transported object other than the trolley. Also, there may be no dolly towed or pushed by the moving body. Further, in the following description, the "traveling body" may be only a moving body, or may be a combination of a moving body and a transported object (a trolley in the following example).
  • FIG. 1 is a schematic view of the appearance of the moving body and the trolley.
  • the dolly 201 has a plurality of wheels 702 and a protrusion 701 extending toward the floor surface.
  • the connecting device 104 of the moving body 103 includes a connecting portion 711 extending rearward and having a through hole 713.
  • the insertion of the protrusion 701 of the carriage 201 into the through hole 713 of the connecting portion 711 is an example of connecting the carriage to the moving body 103.
  • the inclination (angle) of the connecting portion 711 may be input to the position detecting device 105 through the connecting device 104 and the moving controller 109, and may be controlled by the position detecting device 105 through the moving controller 109 and the connecting device 104.
  • FIG. 2 is a block diagram showing the configuration of the entire system according to the embodiment.
  • the mobile body 103 is typically an AGV (Automatic Guided Vehicle).
  • the moving body 103 includes a laser distance sensor 101 (an example of a distance sensor), a position detecting device 105, a moving controller 109, a moving mechanism 125, and a connecting device 104 (an example of a connecting device connected to a carriage).
  • the laser distance sensor 101 is connected to the position detection device 105.
  • the laser distance sensor 101 may be a component of the position detection device 105.
  • the laser distance sensor 101 measures the distance from the sensor 101 to an object within the measurement range of the laser using a laser, and outputs a distance data set which is a data set indicating the measured distance.
  • the distance data set is input to the position detector 105.
  • One distance data set represents a plurality of measured distances (a plurality of distances corresponding to a plurality of parts within the measurement range).
  • the position detection device 105 includes an interface device, a storage device, and a processor connected to them.
  • a laser distance sensor 101 is connected to the interface device. In addition, it is possible to communicate with the higher-level PC (personal computer) 251 described later via the interface device.
  • PC personal computer
  • a storage device stores data and one or more computer programs.
  • the data stored in the storage device includes route data 138, map data 135, and log data 134.
  • the collection unit 131 By executing one or more computer programs stored in the storage device in the processor, the collection unit 131, the position / orientation estimation unit 133, and the mobile output unit 151 are realized.
  • the collecting unit 131 outputs the distance data set from the laser distance sensor 101 to the receiving position / attitude estimation unit 133 periodically or irregularly.
  • the position / orientation estimation unit 133 calculates the position and orientation (direction) of the moving body 103 based on the distance data set and the map data 135 each time the distance data set is received from the laser distance sensor 101. Each time the position / orientation estimation unit 133 estimates the position / orientation of the moving body 103, the position / orientation estimation unit 133 adds a log data set, which is a data set representing the estimated position / orientation, to the log data 134, or adds an estimated position / orientation to the log data 134. Is notified to the mobile output unit 151.
  • the log data 134 is a set of one or more log data sets.
  • the position and orientation of the moving body 103 are the integrated value of the values acquired by the acceleration sensor and the gyro sensor, and the integrated value of the wheel rotation speed of the moving body 103. It may be estimated from. Further, the map data 135 may be data prepared in advance, or may be data generated based on a plurality of distance data sets received from the collection unit 131. The map data 135 is data showing an indoor map on which the moving body 103 travels.
  • the movement output unit 151 outputs information on autonomous movement control based on the position and posture of the moving body 103 and the target position and target posture.
  • Information on autonomous movement control includes, for example, at least one of the following.
  • the position and posture of the moving body 103 are estimated by the position / posture estimation unit 133.
  • the target position and the target posture are acquired from the route data 138.
  • the mobile controller 109 controls the moving mechanism 125 so that the position and posture of the moving body 103 satisfy the target position and target posture of the moving body 103 based on the information from the moving output unit 151.
  • the moving mechanism 125 includes a traveling device (for example, wheels and wheel sets) of the moving body 103 and a driving device (for example, a motor) for driving the traveling device.
  • a traveling device for example, wheels and wheel sets
  • a driving device for example, a motor
  • the connecting device 104 is a device that connects to a trolley.
  • a function corresponding to the mobile output unit 151 may be provided in the mobile controller 109.
  • the movement controller 109 may control the movement mechanism 125 based on the output from the position / orientation estimation unit 133.
  • the mobile body 103 can communicate with the upper PC (personal computer) 251.
  • the upper PC 251 has an interface device, a storage device, and a processor connected to the interface device (not shown).
  • the interface device communicates with the mobile body 103.
  • a storage device stores data and one or more computer programs.
  • the data stored in the storage device includes parameter data 239 and route data 238.
  • Parameter data 239 includes one or more parameter data sets referenced for determining the protected area.
  • the parameter dataset contains parameter items and parameter values.
  • items that affect at least one of the shape and size of the protected area for example, items that affect the stopping distance
  • at least one of the following may be adopted.
  • the size of the moving body 103 in the horizontal direction length in the front-rear direction (depth) and length in the left-right direction (width)).
  • the size of the trolley 201 (an example of a transported object) in the horizontal direction.
  • Noise of the laser distance sensor 101 The weight of autonomous movement of the moving body 103.
  • the configuration of the route data 238 is the same as the configuration of the route data 138 in the moving body 103.
  • the autonomous movement support unit 260 includes a log reading unit 261 and a protection area determination unit 262.
  • the log reading unit 261 reads the log data 134 from the mobile body 103.
  • the protection area is determined, and the plurality of protection areas determined for the plurality of traveling positions are set in the route data 238 and 138.
  • Setting a protective area in the route data 138 of the moving body 103 for each of the plurality of traveling positions means setting a protective area in the moving body 103.
  • the upper PC 251 includes such an autonomous movement support unit 260 (log reading unit 261 and protection area determination unit 262), the upper PC 251 is an example of the autonomous movement support device.
  • the autonomous movement support unit 260 may be provided in the mobile body 103 (for example, the position detection device 105) instead of the upper PC 251.
  • FIG. 3 is a diagram showing a configuration example of route data 138.
  • the route data 138 has a section data set for each of a plurality of route sections constituting the traveling route.
  • Each interval dataset contains information such as [ID], [target point], [maximum velocity], [minimum turning radius of curvature], [target point type], and [protection area].
  • attention section in the description of FIG. 3).
  • [ID] is the ID of the section data set of the section of interest.
  • [Target point] represents a position and a posture corresponding to the target point of the section of interest.
  • [Maximum speed] represents the maximum speed of the moving body 103 in the section of interest.
  • [Minimum turning radius of curvature] represents the minimum turning radius of curvature (minimum turning radius) in the section of interest of the moving body 103.
  • [Target point type] represents the type of target point (for example, passing point, pause point).
  • [Protected area] is information on the protected area set for the section of interest, and includes, for example, information representing the class of the protected area.
  • Each protected area class corresponds to a set of protective area shapes and sizes.
  • Information representing the shape and size pair of the protected area may be included in the [protected area] or may be managed in a table (not shown).
  • the route section is an example of the traveling position.
  • the head position of the route section may be the target point or the traveling position.
  • the "traveling position” is a position on the traveling path, whereas the “detection position” is a position detected by the position detecting device 105.
  • the “path section to which the detection position belongs” may be a path section having the target point closest to the detection position.
  • FIG. 4 is a diagram showing a configuration example of a log data set.
  • the log data set includes information such as [time], [detection position and detection attitude], [distance data set], and [section data set ID].
  • [Time] represents the time when the position and the posture are detected (estimated), or the acquisition time of the distance data set.
  • [Detected position and detected posture] represents the detected position and posture.
  • the [distance data set] is a distance data set corresponding to the time represented by the [time].
  • [Section data set ID] is the ID of the section data set corresponding to the route section to which the detected position belongs.
  • FIG. 5 is a diagram showing an example of a protected area.
  • FIG. 6 is a diagram showing another example of the protected area. Both FIGS. 5 and 6 are an outline of a plan view of the moving body 103 when viewed from above.
  • the shape and size of the protection region 500 are the reference position in the horizontal direction of the moving body 103 (for example, the center in the front-back and left-right directions) and the size of the moving body 103 (for example, the length in the front-back direction and the length in the left-right direction). ) And the stopping distance 510 of the moving body 103.
  • the shape and size of the protection region 500 corresponding to a certain position is the moving body 103 when the moving body 103 starts the stop operation at the certain position and then travels the stop distance 510 and stops. Covers the position of and the range occupied by the moving body 103. Therefore, when the moving body 103 starts decelerating at the certain position, the moving body 103 stops without exceeding the protection area 500. Therefore, when the laser distance sensor 101 detects that there is an obstacle 530 in the protection area 500 at the certain position, the moving body 103 collides with the obstacle 530 by starting the stop operation. You can stop without doing anything.
  • the shape and size of the protection region differ depending on the length (that is, the stop distance 510) and the shape of the locus (for example, the locus of the reference position of the moving body 103) from the deceleration of the moving body 103 to the stop.
  • the length that is, the stop distance 510
  • the shape of the locus for example, the locus of the reference position of the moving body 103 from the deceleration of the moving body 103 to the stop.
  • a rectangular protection region 500A is determined as an example.
  • a pentagonal protection region 500B is determined as an example.
  • the position and orientation of the protection area 500 are uniquely determined from the traveling direction and the reference position of the moving body 103.
  • FIG. 7 is a diagram showing a flow of automatic setting of the protected area performed in the embodiment.
  • a test run of the moving body 103 is performed (S701).
  • the test run is a run for determining the protection area 500 for each running position.
  • the moving body 103 travels on the traveling route represented by the route data 138 based on the map data 135 and the route data 138. In the running, the following is performed regularly or irregularly.
  • a plurality of log data sets are included in the log data 134 for the entire traveling route.
  • the collection unit 131 acquires the distance data set from the laser distance sensor 101.
  • the position / orientation estimation unit 133 estimates the position and orientation of the moving body 103 based on the map data 135 and the route data 138 and the acquired distance data set, and the information [detection] representing the estimated position and attitude.
  • a log data set including [position and detection posture] is added to the log data 134.
  • the log data set includes the distance data set and the ID of the section data set corresponding to the traveling section to which the position represented by [detection position and detection posture] belongs.
  • the log reading unit 261 of the autonomous movement support unit 260 reads the log data 134 including the plurality of log data sets accumulated in the test run from the moving body 103.
  • the protection area determination unit 262 determines the protection area for each of the plurality of traveling positions based on the read log data 134 and the parameter data 239 (S702).
  • Information representing a plurality of protected areas determined by the protected area determination unit 262 for a plurality of traveling positions is set in the route data 238 and 138.
  • FIG. 8 is a diagram showing an example of a part of the traveling route.
  • the black dot 801 in the figure means the detection of the moving body 103 by the laser distance sensor 101.
  • the display of the reference code is omitted, but the black dot means the detection by the laser distance sensor 101.
  • FIG. 9 is a diagram showing the flow of determining the protected area (S702 in FIG. 7).
  • the protection area determination unit 262 calculates the stop distance for each of the plurality of detection positions based on the log data 134 (S901).
  • the protection area determination unit 262 initializes. “0” is set in t, which means the detection position, and “0” is set in c, which means the number of classes (the number of classes in the protected area) (S902). Consecutive numbers (integers) starting with "0” are labeled at the plurality of detection positions in ascending order (oldest order) of [time]. The number labeled at the detection position is referred to as a "detection position number" in the description of FIG.
  • the protection area determination unit 262 specifies all the detection positions included in the stop distance of the detection position t (S903).
  • the protection area determination unit 262 determines whether or not the corresponding class (class of the protection area covering the one or more detection positions) exists (S904).
  • the protection area determination unit 262 determines the protection area of the corresponding class as the protection area for the route section to which the detection position t belongs (S905).
  • the protection area determination unit 262 sets the protection area covering one or more detection positions included in the stop distance of the detection position t and the class of the protection area. It is determined and the number of classes c is incremented by 1 (S906).
  • the protection area determination unit 262 determines whether or not the detection position t is the final number (S907). When the determination result of S907 is true (S907: Yes), the protection area determination is completed. When the determination result of S907 is false (S907: No), the protection area determination unit 262 increments the detection position t by 1 (S908) and executes S903.
  • FIG. 10 is a diagram showing an example of determining the protection region for the first detection position.
  • S901 in FIG. 9 is as follows. That is, for example, for the first detection position, the protection area determination unit 262 calculates the traveling speed (and angular velocity) of the moving body 103 based on the log data 134, and the stop distance is calculated from the calculated traveling speed (and angular velocity). Is calculated. The stop distance may be determined based on the parameter values that affect the stop distance (for example, the weights of the moving body 103 and the carriage 201) among the one or more parameter values represented by the parameter data 239. The traveling speed (and angular velocity) for the first detection position is calculated as follows.
  • the protection area determination unit 262 sets the [time] and [detection position and detection posture] represented by each of the two or more log data sets corresponding to the two or more consecutive detection positions including the first detection position. Based on this, the traveling speed (and angular velocity) at the first detection position is calculated.
  • S903 in FIG. 9 is as follows. That is, for example, for the first detection position, the protection area determination unit 262 specifies all the detection positions included in the stop distance of the first detection position.
  • the first detection position is the position X and the position different from the position X is the position Y
  • Position Y is a detection position included in the stop distance of position X.
  • the time x is the time represented by the log data set representing the position X.
  • the time y is the time represented by the log data set representing the position Y.
  • the stop time is a time calculated from the stop distance calculated for the position X and the traveling speed calculated for the position X.
  • S904 in FIG. 9 is as follows, taking the first detection position as an example.
  • S904-1 The protection area determination unit 262 traces the entire locus of the traveling body (the entire area of the traveling body in the horizontal direction) from the first detection position to the last detection position included in the stop distance of the first detection position. Identify.
  • the "running body” is a combination of the moving body 103 and the carriage 201.
  • S904-2) The protection area determination unit 262 has determined the target protection area for the first travel position to which the first detection position belongs (for example, the [target point] corresponding to the first travel section). Judge whether or not.
  • the determination of (S904-2) is as follows, for example.
  • the protection area determination unit 262 determines whether or not one or more protection areas have been determined for one or more traveling positions other than the first traveling position. When the determination result of (2-1) is false, the determination result of (S904-2) is false, and as a result, the determination result of (S904) is false. (2-2) When the determination result of (2-1) is true, the protection area determination unit 262 determines whether or not there is a target protection area in one or more determined protection areas. For each travel position, the "target protection area” covers the stop distance calculated for the detection position belonging to the travel position (specifically, covers the locus calculated in (S904-1)).
  • the example shown in FIG. 10 is an example in which the determination result of (2-1) is false because there is no determined protection area, and therefore the determination result of (S904) is false.
  • the protection area determination unit 262 determines the protection area 500A as the target protection area for the first detection position.
  • the protection area determination unit 262 associates the protection area class A with the protection area 500A (for example, the shape and size of the protection area 500A (for example, the coordinates of each vertex of the protection area 500A), and the first detection position belongs to the first.
  • Protected area class A is associated with the running position of.
  • FIG. 11 is a diagram showing an example of determining the protection region for the second detection position.
  • the differences from the explanation with reference to FIG. 10 are as follows. According to the example of FIG. 11, there is a protected area class A. Therefore, the above-mentioned determination result (2-1) is true. Further, the protection area 500A associated with the protection area class A covers the locus corresponding to the second detection position, and is contained in a plurality of distances specified for the second detection position. Therefore, the above-mentioned determination result (2-2) is also true. Therefore, the protection area determination unit 262 associates the protection area class A with the second traveling position to which the second detection position belongs.
  • FIG. 12 is a diagram showing an example of determining the protection region for the third detection position.
  • the protection area determination unit 262 determines the protection area 500B as the target protection area.
  • the protected area 500B covers, for example, a curved locus and is contained in a plurality of distances represented by an N log data set representing an N detection position included in a stop distance corresponding to a third detection position. ..
  • the protection area determination unit 262 associates the protection area class B with the protection area 500B, and associates the protection area class B with the third traveling position to which the third detection position belongs.
  • FIG. 13 is a diagram showing an example of determining the protection region for the fourth detection position.
  • the protection area determination unit 262 determines the protection area 500C as the target protection area.
  • the protected area 500C covers a curved locus and is contained within a plurality of distances represented by the N log data set representing the N detection position included in the stop distance corresponding to the third detection position.
  • the protection area determination unit 262 associates the protection area class C with the protection area 500C, and associates the protection area class C with the fourth traveling position to which the fourth detection position belongs.
  • the relationship between the plurality of protected area classes and the plurality of route portions in the traveling route is as shown in FIG. 14, for example. That is, the protection region class A is associated with the traveling position belonging to the linear traveling portion. The protection area class B is associated with the traveling position belonging to the traveling portion of the right turn. The protection area class C is associated with the traveling position belonging to the traveling portion of the left turn.
  • An autonomous movement support device including a log reading unit 261 and a protection area determination unit 262 is constructed.
  • the log reading unit 261 reads out the log data 134 including a plurality of log data sets acquired during the traveling of the moving body 103 equipped with the laser distance sensor 101 (an example of the distance sensor).
  • the protection area determination unit 262 determines the protection area 500 of the moving body 103 for each of the plurality of traveling positions in the traveling path 800 of the moving body 103 using the log data 134.
  • An example of an autonomous movement support device is an external device (for example, a calculator) capable of communicating with the mobile body 103, such as the upper PC 251. Instead of the device, the mobile body 103 (for example, the position detection device 105) may be an example of the autonomous movement support device.
  • Each of the plurality of log data sets includes [time] (information representing the time), [detection position and detection posture] (information representing the detection position and detection posture of the moving body 103 at the time), and [distance data.
  • Set] a distance data set representing a plurality of distances acquired by a distance sensor with respect to the time).
  • the protection area determination unit 262 For each of the plurality of detection positions, uses two or more log data sets representing two or more detection positions (for example, two or more consecutive detection positions) including the detection position. The stopping distance of the moving body 103 is calculated. For each of the plurality of traveling positions, the protection area determination unit 262 determines the stop distance calculated for the detection position belonging to the travel position and the plurality of distances represented by the log data set representing the detection position included in the stop distance. Based on this, the protection area is determined. The protection area determination unit 262 sets the moving body 103 with information representing the protection area determined for the traveling position for each of the plurality of traveling positions.
  • the protection area 500 of the moving body 103 is automatically set even if there is no marker on the floor on which the moving body 103 travels.
  • the moving body 103 can stop within the protection area 500 of the traveling position for each traveling position.
  • the determined protection area 500 covers the stop distance calculated for the detection position belonging to the travel position and is represented by a log data set representing the detection position included in the stop distance. It fits in multiple distances. Therefore, for each of the plurality of traveling positions, the determined protection region 500 is the locus of the traveling body from the detection position belonging to the traveling position to the last detection position included in the stop distance calculated for the detection position. It covers a plurality of distances represented by a log data set representing a detection position included in the stop distance. In this way, the appropriate protection area 500 can be determined from the stopping distance and the distance data set.
  • the locus covered by the determined protection region 500 is the locus of the traveling body from the target detection position to the detection position next to the last detection position included in the stop distance calculated for the detection position. May be good. Further, according to the above example, for each detection position, two or more log data sets representing two or more detection positions including the detection position are used to calculate the stop distance, but instead or In addition, the maximum speed of the detection position (the maximum speed represented by the section data set of the travel section to which the detection position belongs) may be used.
  • the protection area determination unit 262 determines the stopping distance for the detection position belonging to the traveling position by the weight of the traveling body including the moving body 103 or the carriage 201 of the moving body 103 (an example of a transported object).
  • the protection area 500 may be determined based on the size of the traveling body or the carriage 201 in the horizontal direction. Thereby, the appropriateness of the automatically set protection area 500 can be improved.
  • the protection area determination unit 262 may determine the protection area 500 based on the noise of the laser distance sensor 101 and the control error of the autonomous movement of the moving body 103. Thereby, the appropriateness of the automatically set protection area 500 can be improved.
  • the protection area determination unit 262 determines whether or not a protection area suitable for the traveling position has been determined for each of the plurality of traveling positions, and if the result of the determination is true, the determined corresponding item.
  • the protected area may be determined as the protected area for the traveling position. As a result, one protected area can be set for two or more traveling positions. Therefore, it is expected that the number of protected areas will be reduced. Therefore, it is expected that the storage capacity consumed and the calculation load for determining the protection area will be reduced.
  • the protection area determination unit 262 has two or more having the same shape but different stopping distances. If there is a protection area, the protection area other than the protection area having the longest stop distance among the two or more protection areas may be replaced with the protection area having the longest stop distance. Thereby, the protection area 500 can be set for all the traveling positions while suppressing the number of the protection areas 500 to the upper limit or less.

Abstract

According to the present invention, a device reads out a plurality of log data sets acquired during traveling of a moving object equipped with a distance sensor. Each log data set has information indicating a time, information indicating the detection position and detection posture of the moving body at the corresponding time, and a distance dataset representing a plurality of distances acquired by the distance sensor at the corresponding time. For each of the plurality of detection positions, the device calculates the stop distance of the moving body, by using two or more log data sets representing two or more detection positions including the corresponding detection position. The device determines a protection area, for each of a plurality of traveling positions in a traveling path of the moving body, on the basis of the stop distance calculated for the detection position belonging to the traveling position, and a plurality of distances represented by a log data set representing a detection position included in the stop distance, and sets, in the moving body, information representing the determined protection area.

Description

自律移動支援装置及び同装置を備える移動体Autonomous movement support device and mobile body equipped with the device
 本発明は、概して、自律移動の制御の支援に関する。 The present invention generally relates to supporting the control of autonomous movement.
 例えば、特許文献1(例えば段落0012)によれば、屋内の床面にマーカ(例えば、バーコード)が設置されており、無人搬送車は、床面上のマーカを読み取ることで、無人搬送車の現在位置を推定する。また、無人搬送車は、制御装置から経路情報を受信する。無人搬送車は、当該経路情報に沿った走行を、推定された現在位置を基に行う。 For example, according to Patent Document 1 (for example, paragraph 0012), a marker (for example, a barcode) is installed on an indoor floor surface, and an automatic guided vehicle is an automatic guided vehicle by reading the marker on the floor surface. Estimate the current position of. In addition, the automatic guided vehicle receives route information from the control device. The automatic guided vehicle travels along the route information based on the estimated current position.
特開2016-047744号公報Japanese Unexamined Patent Publication No. 2016-047744
 無人搬送車のような自律移動する移動体には、防護領域が設定される。「防護領域」とは、移動体の位置を基準に決定された領域であり、障害物や人の存在が禁止される領域である。移動体の移動に伴い防護領域も移動する。移動体は、自律移動中において、防護領域に障害物や人が存在することが検出したときに減速し障害物や人に衝突すること無しに停止する。 A protective area is set for an autonomously moving moving object such as an automatic guided vehicle. The "protected area" is an area determined based on the position of a moving body, and is an area where the presence of obstacles or people is prohibited. As the moving body moves, the protected area also moves. During autonomous movement, the moving body decelerates when it detects the presence of an obstacle or a person in the protected area, and stops without colliding with the obstacle or the person.
 移動体の走行経路における位置毎に手動で当該位置に適した防護領域を決定し設定することは負担である。 It is a burden to manually determine and set a protection area suitable for each position on the traveling path of the moving body.
 特許文献1に開示のマーカ毎に、マーカそれ自体に、マーカの位置を示す情報の他に、移動体の防護領域を表す情報を、移動体が読み取り可能に埋め込んでおくことが考えられる。これにより、マーカの位置毎に、移動体に防護領域を自動設定することが期待される。 For each marker disclosed in Patent Document 1, in addition to the information indicating the position of the marker, the information indicating the protection area of the moving body may be embedded in the marker itself so that the moving body can read it. As a result, it is expected that the protection area is automatically set on the moving body for each position of the marker.
 しかし、床面上にマーカの設置が必須であると、マーカ設置の負担があり、また、マーカ設置が不可能なエリアにおいては、防護領域を自動設定することはできない。 However, if the marker must be installed on the floor, there is a burden of installing the marker, and the protection area cannot be automatically set in the area where the marker cannot be installed.
 自律移動支援装置が、距離センサを備えた移動体の走行において取得された複数のログデータセットを含むログデータを読み出す。複数のログデータセットの各々は、時刻を表す情報と、当該時刻での移動体の検出位置及び検出姿勢を表す情報と、当該時刻に関し距離センサにより取得された複数の距離を表す距離データセットとを含む。自律移動支援装置は、複数の検出位置の各々について、当該検出位置を含む二つ以上の検出位置を表す二つ以上のログデータセットを用いて、移動体の停止距離を算出する。自律移動支援装置は、移動体の走行経路における複数の走行位置の各々について、当該走行位置に属する検出位置について算出された停止距離と、当該停止距離に含まれる検出位置を表すログデータセットが表す複数の距離とを基に、防護領域を決定する。自律移動支援装置が、複数の走行位置の各々について、決定された防護領域を表す情報を、移動体に設定する。 The autonomous movement support device reads out log data including a plurality of log data sets acquired during traveling of a moving body equipped with a distance sensor. Each of the plurality of log data sets includes information representing a time, information representing a detection position and a detection posture of a moving object at the time, and a distance data set representing a plurality of distances acquired by a distance sensor at the time. including. The autonomous movement support device calculates the stop distance of the moving body for each of the plurality of detection positions by using two or more log data sets representing two or more detection positions including the detection position. The autonomous movement support device is represented by a stop distance calculated for a detection position belonging to the travel position and a log data set representing the detection position included in the stop distance for each of a plurality of travel positions in the travel path of the moving body. The area of protection is determined based on multiple distances. The autonomous movement support device sets information representing a determined protection area on the moving body for each of the plurality of traveling positions.
 本発明によれば、床面上にマーカが無くても移動体の防護領域の自動設定が可能である。 According to the present invention, it is possible to automatically set the protection area of the moving body even if there is no marker on the floor surface.
実施形態に係る移動体及び台車の外観の模式図である。It is a schematic diagram of the appearance of the moving body and the carriage which concerns on embodiment. 実施形態に係るシステム全体の構成を示すブロック図である。It is a block diagram which shows the structure of the whole system which concerns on embodiment. 経路データの構成例を示す図である。It is a figure which shows the structural example of the route data. ログデータセットの構成例を示す図である。It is a figure which shows the configuration example of a log data set. 防護領域の一例を示す図である。It is a figure which shows an example of the protection area. 防護領域の別の一例を示す図である。It is a figure which shows another example of the protection area. 実施形態で行われる防護領域自動設定の流れを示す図である。It is a figure which shows the flow of the protection area automatic setting performed in an embodiment. 走行経路の一部の一例を示す図である。It is a figure which shows an example of a part of a traveling path. 防護領域決定(図7のS702)の流れを示す図である。It is a figure which shows the flow of the protection area determination (S702 of FIG. 7). 第1の検出位置について防護領域の決定の一例を示す図である。It is a figure which shows an example of the determination of the protection area about the 1st detection position. 第2の検出位置について防護領域の決定の一例を示す図である。It is a figure which shows an example of the determination of the protection area about the 2nd detection position. 第3の検出位置について防護領域の決定の一例を示す図である。It is a figure which shows an example of the determination of the protection area about the 3rd detection position. 第4の検出位置について防護領域の決定の一例を示す図である。It is a figure which shows an example of the determination of the protection area about the 4th detection position. 複数の経路部分と複数の防護領域クラスとの関係の一例を示す図である。It is a figure which shows an example of the relationship between a plurality of path portions and a plurality of protection area classes.
 以下の説明では、「インターフェース装置」は、一つ以上の通信インターフェースデバイスでよい。一つ以上の通信インターフェースデバイスは、一つ以上の同種の通信インターフェースデバイス(例えば一つ以上のNIC(Network Interface Card))であってもよいし二つ以上の異種の通信インターフェースデバイス(例えばNICとHBA(Host Bus Adapter))であってもよい。 In the following description, the "interface device" may be one or more communication interface devices. One or more communication interface devices may be one or more communication interface devices of the same type (for example, one or more NICs (Network Interface Cards)) or two or more different types of communication interface devices (for example, NICs). It may be HBA (Host Bus Adapter).
 また、以下の説明では、「メモリ」は、一つ以上の記憶デバイスの一例である一つ以上のメモリデバイスであり、典型的には主記憶デバイスでよい。メモリにおける少なくとも一つのメモリデバイスは、揮発性メモリデバイスであってもよいし不揮発性メモリデバイスであってもよい。 Further, in the following description, the "memory" is one or more memory devices which are an example of one or more storage devices, and may be typically a main storage device. At least one memory device in the memory may be a volatile memory device or a non-volatile memory device.
 また、以下の説明では、「永続記憶装置」は、一つ以上の記憶デバイスの一例である一つ以上の永続記憶デバイスでよい。永続記憶デバイスは、典型的には、不揮発性の記憶デバイス(例えば補助記憶デバイス)でよく、具体的には、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、NVMe(Non-Volatile Memory Express)ドライブ、又は、SCM(Storage Class Memory)でよい。 Further, in the following description, the "permanent storage device" may be one or more permanent storage devices which are an example of one or more storage devices. The persistent storage device is typically a non-volatile storage device (for example, an auxiliary storage device), specifically, for example, HDD (Hard Disk Drive), SSD (Solid State Drive), NVMe (Non-Volatile). It may be a Memory Express) drive or an SCM (Storage Class Memory).
 また、以下の説明では、「記憶装置」は、メモリと永続記憶装置の少なくともメモリでよい。 Further, in the following description, the "storage device" may be at least a memory of a memory and a persistent storage device.
 また、以下の説明では、「プロセッサ」は、一つ以上のプロセッサデバイスでよい。少なくとも一つのプロセッサデバイスは、典型的には、CPU(Central Processing Unit)のようなマイクロプロセッサデバイスでよいが、GPU(Graphics Processing Unit)のような他種のプロセッサデバイスでもよい。少なくとも一つのプロセッサデバイスは、シングルコアでもよいしマルチコアでもよい。少なくとも一つのプロセッサデバイスは、プロセッサコアでもよい。少なくとも一つのプロセッサデバイスは、処理の一部又は全部を行うハードウェア回路(例えばFPGA(Field-Programmable Gate Array)又はASIC(Application Specific Integrated Circuit))といった広義のプロセッサデバイスでもよい。 Further, in the following description, the "processor" may be one or more processor devices. The at least one processor device is typically a microprocessor device such as a CPU (Central Processing Unit), but may be another type of processor device such as a GPU (Graphics Processing Unit). At least one processor device may be single-core or multi-core. At least one processor device may be a processor core. At least one processor device may be a processor device in a broad sense such as a hardware circuit (for example, FPGA (Field-Programmable Gate Array) or ASIC (Application Specific Integrated Circuit)) that performs a part or all of the processing.
 また、以下の説明では、「yyy部」の表現にて機能を説明することがあるが、機能は、一つ以上のコンピュータプログラムがプロセッサによって実行されることで実現されてもよいし、一つ以上のハードウェア回路(例えばFPGA又はASIC)によって実現されてもよいし、それらの組合せによって実現されてもよい。プログラムがプロセッサによって実行されることで機能が実現される場合、定められた処理が、適宜に記憶装置及び/又はインターフェース装置等を用いながら行われるため、機能はプロセッサの少なくとも一部とされてもよい。機能を主語として説明された処理は、プロセッサあるいはそのプロセッサを有する装置が行う処理としてもよい。プログラムは、プログラムソースからインストールされてもよい。プログラムソースは、例えば、プログラム配布計算機又は計算機が読み取り可能な記録媒体(例えば非一時的な記録媒体)であってもよい。各機能の説明は一例であり、複数の機能が一つの機能にまとめられたり、一つの機能が複数の機能に分割されたりしてもよい。 Further, in the following description, the function may be described by the expression of "yy part", but the function may be realized by executing one or more computer programs by the processor, or one. It may be realized by the above hardware circuit (for example, FPGA or ASIC), or may be realized by a combination thereof. When a function is realized by executing a program by a processor, the specified processing is appropriately performed using a storage device and / or an interface device, so that the function may be at least a part of the processor. Good. The process described with the function as the subject may be a process performed by a processor or a device having the processor. The program may be installed from the program source. The program source may be, for example, a program distribution computer or a computer-readable recording medium (eg, a non-temporary recording medium). The description of each function is an example, and a plurality of functions may be combined into one function, or one function may be divided into a plurality of functions.
 また、以下の説明では、同種の要素を区別しないで説明する場合には、参照符号のうちの共通符号を使用し、同種の要素を区別する場合は、参照符号を使用することがある。例えば、防護領域を区別しない場合には、「防護領域500」と言い、防護領域を区別する場合には、「防護領域500A」、「防護領域500B」のように言う。 Further, in the following description, a common code among reference codes may be used when explaining without distinguishing elements of the same type, and a reference code may be used when distinguishing elements of the same type. For example, when the protected area is not distinguished, it is referred to as "protected area 500", and when the protected area is distinguished, it is referred to as "protected area 500A" and "protected area 500B".
 また、以下の説明では、「データセット」とは、アプリケーションプログラムのようなプログラムから見た一つの論理的な電子データの塊であり、例えば、レコード、ファイル、キーバリューペア及びタプルのうちのいずれでもよい。 Further, in the following description, a "data set" is a logical mass of electronic data viewed from a program such as an application program, and is, for example, any of a record, a file, a key-value pair, and a tuple. But it may be.
 以下、一実施形態を説明する。なお、以下の実施形態では、移動体により運搬される運搬物は、台車であるが、運搬物は、台車以外の運搬物でもよい。また、移動体によりけん引される又は押される台車は無くてもよい。また、以下の説明では、「走行体」とは、移動体のみでもよいし、移動体と運搬物(下記例では台車)との組合せでもよい。 Hereinafter, one embodiment will be described. In the following embodiment, the transported object carried by the moving body is a trolley, but the transported object may be a transported object other than the trolley. Also, there may be no dolly towed or pushed by the moving body. Further, in the following description, the "traveling body" may be only a moving body, or may be a combination of a moving body and a transported object (a trolley in the following example).
 図1は、移動体及び台車の外観の模式図である。 FIG. 1 is a schematic view of the appearance of the moving body and the trolley.
 台車201は、複数の車輪702と、床面側へ延びた突起701を有する。移動体103の連結装置104が、後方へ延び貫通孔713を有する連結部711を備える。連結部711の貫通孔713に台車201の突起701が入ることが、台車が移動体103に連結することの一例である。連結部711の傾き(角度)が、連結装置104及び移動コントローラ109を通じて位置検出装置105に入力され、位置検出装置105により移動コントローラ109及び連結装置104を通じて制御されてもよい。 The dolly 201 has a plurality of wheels 702 and a protrusion 701 extending toward the floor surface. The connecting device 104 of the moving body 103 includes a connecting portion 711 extending rearward and having a through hole 713. The insertion of the protrusion 701 of the carriage 201 into the through hole 713 of the connecting portion 711 is an example of connecting the carriage to the moving body 103. The inclination (angle) of the connecting portion 711 may be input to the position detecting device 105 through the connecting device 104 and the moving controller 109, and may be controlled by the position detecting device 105 through the moving controller 109 and the connecting device 104.
 図2は、実施形態に係るシステム全体の構成を示すブロック図である。 FIG. 2 is a block diagram showing the configuration of the entire system according to the embodiment.
 移動体103は、典型的にはAGV(Automatic Guided Vehicle)である。移動体103は、レーザ距離センサ101(距離センサの一例)と、位置検出装置105と、移動コントローラ109と、移動機構125と、連結装置104(台車に連結する連結装置の一例)とを有する。レーザ距離センサ101が、位置検出装置105に接続されている。レーザ距離センサ101が、位置検出装置105の構成要素であってもよい。 The mobile body 103 is typically an AGV (Automatic Guided Vehicle). The moving body 103 includes a laser distance sensor 101 (an example of a distance sensor), a position detecting device 105, a moving controller 109, a moving mechanism 125, and a connecting device 104 (an example of a connecting device connected to a carriage). The laser distance sensor 101 is connected to the position detection device 105. The laser distance sensor 101 may be a component of the position detection device 105.
 レーザ距離センサ101は、レーザを用いて当該センサ101からレーザの計測範囲内の物体までの距離を計測し、計測された距離を示すデータセットである距離データセットを出力する。距離データセットは、位置検出装置105に入力される。一つの距離データセットは、計測された複数の距離(計測範囲内にある複数の部位にそれぞれ対応した複数の距離)を表す。 The laser distance sensor 101 measures the distance from the sensor 101 to an object within the measurement range of the laser using a laser, and outputs a distance data set which is a data set indicating the measured distance. The distance data set is input to the position detector 105. One distance data set represents a plurality of measured distances (a plurality of distances corresponding to a plurality of parts within the measurement range).
 位置検出装置105は、図示しないが、インターフェース装置と、記憶装置と、それらに接続されたプロセッサとを有する。 Although not shown, the position detection device 105 includes an interface device, a storage device, and a processor connected to them.
 インターフェース装置には、レーザ距離センサ101が接続される。また、インターフェース装置を介して、後述の上位PC(パーソナルコンピュータ)251と通信可能である。 A laser distance sensor 101 is connected to the interface device. In addition, it is possible to communicate with the higher-level PC (personal computer) 251 described later via the interface device.
 記憶装置が、データ及び一つ以上のコンピュータプログラムを記憶する。記憶装置に格納されるデータとして、経路データ138、地図データ135及びログデータ134がある。 A storage device stores data and one or more computer programs. The data stored in the storage device includes route data 138, map data 135, and log data 134.
 記憶装置に記憶されている一つ以上のコンピュータプログラムがプロセッサに実行されることで、収集部131、位置姿勢推定部133及び移動出力部151が実現される。 By executing one or more computer programs stored in the storage device in the processor, the collection unit 131, the position / orientation estimation unit 133, and the mobile output unit 151 are realized.
 収集部131は、距離データセットをレーザ距離センサ101から定期的に又は不定期的に受け位置姿勢推定部133へ出力する。 The collecting unit 131 outputs the distance data set from the laser distance sensor 101 to the receiving position / attitude estimation unit 133 periodically or irregularly.
 位置姿勢推定部133は、レーザ距離センサ101から距離データセットを受ける都度に、当該距離データセットと、地図データ135とを基に、移動体103の位置及び姿勢(向き)を計算する。位置姿勢推定部133は、移動体103の位置及び姿勢を推定する都度に、推定された位置及び姿勢を表すデータセットであるログデータセットをログデータ134に追加したり、推定された位置及び姿勢を移動出力部151に通知したりする。ログデータ134は、一つ以上のログデータセットの集合である。なお、移動体103の位置及び姿勢は、距離データセットを用いることに代えて又は加えて、加速度センサやジャイロセンサにより取得された値の積分値や、移動体103の車輪の回転数の積分値から推定されてもよい。また、地図データ135は、予め用意されているデータでもよいし、収集部131から受けた複数の距離データセットを基に生成されたデータでもよい。地図データ135は、移動体103が走行する屋内の地図を示すデータである。 The position / orientation estimation unit 133 calculates the position and orientation (direction) of the moving body 103 based on the distance data set and the map data 135 each time the distance data set is received from the laser distance sensor 101. Each time the position / orientation estimation unit 133 estimates the position / orientation of the moving body 103, the position / orientation estimation unit 133 adds a log data set, which is a data set representing the estimated position / orientation, to the log data 134, or adds an estimated position / orientation to the log data 134. Is notified to the mobile output unit 151. The log data 134 is a set of one or more log data sets. In addition, instead of using the distance data set, or in addition to using the distance data set, the position and orientation of the moving body 103 are the integrated value of the values acquired by the acceleration sensor and the gyro sensor, and the integrated value of the wheel rotation speed of the moving body 103. It may be estimated from. Further, the map data 135 may be data prepared in advance, or may be data generated based on a plurality of distance data sets received from the collection unit 131. The map data 135 is data showing an indoor map on which the moving body 103 travels.
 移動出力部151は、移動体103の位置及び姿勢と目標位置及び目標姿勢とに基づく自律移動制御に関する情報を出力する。「自律移動制御に関する情報」は、例えば、下記のうちの少なくとも一つを含む。なお、移動体103の位置及び姿勢は、位置姿勢推定部133により推定される。目標位置及び目標姿勢は、経路データ138から取得される。
・移動体103の位置及び姿勢を表す情報。
・移動体103の目標位置及び目標姿勢を表す情報。
・移動体103の位置及び姿勢と移動体103の目標位置及び目標姿勢とに基づき決定された移動方向や速度等が指定された移動指示。
The movement output unit 151 outputs information on autonomous movement control based on the position and posture of the moving body 103 and the target position and target posture. "Information on autonomous movement control" includes, for example, at least one of the following. The position and posture of the moving body 103 are estimated by the position / posture estimation unit 133. The target position and the target posture are acquired from the route data 138.
Information indicating the position and posture of the moving body 103.
-Information representing the target position and target posture of the moving body 103.
A movement instruction in which a movement direction, speed, etc. determined based on the position and posture of the moving body 103 and the target position and target posture of the moving body 103 are specified.
 移動コントローラ109は、移動出力部151からの情報に基づき、移動体103の位置及び姿勢が移動体103の目標位置及び目標姿勢を満たすよう移動機構125を制御する。 The mobile controller 109 controls the moving mechanism 125 so that the position and posture of the moving body 103 satisfy the target position and target posture of the moving body 103 based on the information from the moving output unit 151.
 移動機構125は、移動体103の走行装置(例えば車輪や輪軸)や走行装置を駆動する駆動装置(例えばモータ)を含む。 The moving mechanism 125 includes a traveling device (for example, wheels and wheel sets) of the moving body 103 and a driving device (for example, a motor) for driving the traveling device.
 連結装置104は、台車に連結する装置である。 The connecting device 104 is a device that connects to a trolley.
 図2において、移動出力部151相当の機能が、移動コントローラ109に設けられてよい。移動コントローラ109が、位置姿勢推定部133からの出力を基に移動機構125を制御してもよい。 In FIG. 2, a function corresponding to the mobile output unit 151 may be provided in the mobile controller 109. The movement controller 109 may control the movement mechanism 125 based on the output from the position / orientation estimation unit 133.
 移動体103が、上位PC(パーソナルコンピュータ)251と通信可能である。上位PC251は、図示しないが、インターフェース装置と、記憶装置と、それらに接続されたプロセッサとを有する。インターフェース装置が、移動体103と通信する。記憶装置が、データ及び一つ以上のコンピュータプログラムを記憶する。記憶装置に格納されるデータとして、パラメータデータ239及び経路データ238がある。 The mobile body 103 can communicate with the upper PC (personal computer) 251. The upper PC 251 has an interface device, a storage device, and a processor connected to the interface device (not shown). The interface device communicates with the mobile body 103. A storage device stores data and one or more computer programs. The data stored in the storage device includes parameter data 239 and route data 238.
 パラメータデータ239は、防護領域の決定のために参照される一つ以上のパラメータデータセットを含む。パラメータデータセットは、パラメータ項目とパラメータ値とを含む。パラメータ項目としては、防護領域の形状及びサイズの少なくとも一つに影響を与える項目(例えば、停止距離に影響を与える項目)、例えば、下記のうちの少なくとも一つが採用されてよい。
・移動体103の水平方向におけるサイズ(前後方向の長さ(奥行)、及び、左右方向の長さ(幅))。
・移動体103の重量。
・台車201(運搬物の一例)の水平方向におけるサイズ。
・台車201の重量。
・レーザ距離センサ101のノイズ。
・移動体103の自律移動の制御誤差。
Parameter data 239 includes one or more parameter data sets referenced for determining the protected area. The parameter dataset contains parameter items and parameter values. As the parameter items, items that affect at least one of the shape and size of the protected area (for example, items that affect the stopping distance), for example, at least one of the following may be adopted.
The size of the moving body 103 in the horizontal direction (length in the front-rear direction (depth) and length in the left-right direction (width)).
-Weight of the moving body 103.
-The size of the trolley 201 (an example of a transported object) in the horizontal direction.
-The weight of the dolly 201.
-Noise of the laser distance sensor 101.
-Control error of autonomous movement of the moving body 103.
 経路データ238の構成は、移動体103内の経路データ138の構成と同じである。 The configuration of the route data 238 is the same as the configuration of the route data 138 in the moving body 103.
 上位PC251において、記憶装置に記憶されている一つ以上のコンピュータプログラムがプロセッサに実行されることで、移動体103の自律移動を支援する自律移動支援部260が実現される。自律移動支援部260は、ログ読出し部261及び防護領域決定部262を備える。 In the upper PC 251, one or more computer programs stored in the storage device are executed by the processor, so that the autonomous movement support unit 260 that supports the autonomous movement of the mobile body 103 is realized. The autonomous movement support unit 260 includes a log reading unit 261 and a protection area determination unit 262.
 ログ読出し部261は、移動体103からログデータ134を読み出す。 The log reading unit 261 reads the log data 134 from the mobile body 103.
 防護領域決定部262は、読み出されたログデータ134、パラメータデータ239及び経路データ238を基に、経路データ238が表す複数の走行位置(走行経路における複数の位置)の各々について移動体103の防護領域を決定し、複数の走行位置について決定した複数の防護領域を経路データ238及び138に設定する。複数の走行位置の各々について、移動体103の経路データ138に防護領域が設定することが、移動体103に防護領域を設定することである。 Based on the read log data 134, parameter data 239, and route data 238, the protection area determination unit 262 of the moving body 103 for each of the plurality of traveling positions (plural positions in the traveling route) represented by the route data 238. The protection area is determined, and the plurality of protection areas determined for the plurality of traveling positions are set in the route data 238 and 138. Setting a protective area in the route data 138 of the moving body 103 for each of the plurality of traveling positions means setting a protective area in the moving body 103.
 このような自律移動支援部260(ログ読出し部261及び防護領域決定部262)を上位PC251が備えるため、上位PC251が、自律移動支援装置の一例である。なお、自律移動支援部260は、上位PC251に代えて、移動体103(例えば、位置検出装置105)に備えられてもよい。 Since the upper PC 251 includes such an autonomous movement support unit 260 (log reading unit 261 and protection area determination unit 262), the upper PC 251 is an example of the autonomous movement support device. The autonomous movement support unit 260 may be provided in the mobile body 103 (for example, the position detection device 105) instead of the upper PC 251.
 図3は、経路データ138の構成例を示す図である。 FIG. 3 is a diagram showing a configuration example of route data 138.
 経路データ138は、走行経路を構成する複数の経路区間の各々について区間データセットを有する。各区間データセットは、[ID]、[目標点]、[最大速度]、[最小旋回曲率半径]、[目標点の種類]及び[防護領域]といった情報を含む。以下、一つの経路区間を例に取る(図3の説明において「注目区間」)。 The route data 138 has a section data set for each of a plurality of route sections constituting the traveling route. Each interval dataset contains information such as [ID], [target point], [maximum velocity], [minimum turning radius of curvature], [target point type], and [protection area]. Hereinafter, one route section will be taken as an example (“attention section” in the description of FIG. 3).
 [ID]は、注目区間の区間データセットのIDである。[目標点]は、注目区間の目標点に該当する位置及び姿勢を表す。[最大速度]は、移動体103の注目区間での最大速度を表す。[最小旋回曲率半径]は、移動体103の注目区間での最小旋回曲率半径(最小回転半径)を表す。[目標点の種類]は、目標点の種類(例えば、通過点、一時停止点)を表す。 [ID] is the ID of the section data set of the section of interest. [Target point] represents a position and a posture corresponding to the target point of the section of interest. [Maximum speed] represents the maximum speed of the moving body 103 in the section of interest. [Minimum turning radius of curvature] represents the minimum turning radius of curvature (minimum turning radius) in the section of interest of the moving body 103. [Target point type] represents the type of target point (for example, passing point, pause point).
 [防護領域]は、注目区間について設定された防護領域の情報であり、例えば、防護領域のクラスを表す情報を含む。防護領域クラス毎に、防護領域の形状とサイズの組が対応する。防護領域の形状とサイズの組を表す情報は、[防護領域]に含まれてもよいし、図示しないテーブルにて管理されてもよい。 [Protected area] is information on the protected area set for the section of interest, and includes, for example, information representing the class of the protected area. Each protected area class corresponds to a set of protective area shapes and sizes. Information representing the shape and size pair of the protected area may be included in the [protected area] or may be managed in a table (not shown).
 本実施形態において、経路区間は、走行位置の一例である。例えば、経路区間の先頭位置が、目標点でよく、走行位置でよい。「走行位置」は、走行経路上の位置であるのに対し、「検出位置」は、位置検出装置105により検出された位置である。「検出位置が属する経路区間」は、検出位置から最も近い目標点を持つ経路区間でよい。 In the present embodiment, the route section is an example of the traveling position. For example, the head position of the route section may be the target point or the traveling position. The "traveling position" is a position on the traveling path, whereas the "detection position" is a position detected by the position detecting device 105. The “path section to which the detection position belongs” may be a path section having the target point closest to the detection position.
 図4は、ログデータセットの構成例を示す図である。 FIG. 4 is a diagram showing a configuration example of a log data set.
 ログデータセットは、[時刻]、[検出位置及び検出姿勢]、[距離データセット]及び[区間データセットID]といった情報を含む。[時刻]は、位置及び姿勢が検出(推定)されたときの時刻、或いは、距離データセットの取得時刻を表す。[検出位置及び検出姿勢]は、検出された位置及び姿勢を表す。[距離データセット]は、[時刻]が表す時刻に対応した距離データセットである。[区間データセットID]は、検出された位置が属する経路区間に対応した区間データセットのIDである。 The log data set includes information such as [time], [detection position and detection attitude], [distance data set], and [section data set ID]. [Time] represents the time when the position and the posture are detected (estimated), or the acquisition time of the distance data set. [Detected position and detected posture] represents the detected position and posture. The [distance data set] is a distance data set corresponding to the time represented by the [time]. [Section data set ID] is the ID of the section data set corresponding to the route section to which the detected position belongs.
 図5は、防護領域の一例を示す図である。図6は、防護領域の別の一例を示す図である。図5及び図6のいずれも、移動体103を上からみたときの平面視の概要である。 FIG. 5 is a diagram showing an example of a protected area. FIG. 6 is a diagram showing another example of the protected area. Both FIGS. 5 and 6 are an outline of a plan view of the moving body 103 when viewed from above.
 防護領域500の形状及びサイズは、移動体103の水平方向における基準位置(例えば、前後左右方向における中心)と、移動体103のサイズ(例えば、前後方向の長さ、及び、左右方向の長さ)と、移動体103の停止距離510とに基づく。具体的には、或る位置に対応した防護領域500の形状及びサイズは、移動体103が当該或る位置で停止操作を開始してから停止距離510を走行して停止したときの移動体103の位置及び移動体103が占める範囲をカバーする。このため、移動体103は、当該或る位置で減速を開始した場合には防護領域500を超えることなく停止する。故に、当該或る位置で、防護領域500に障害物530があることがレーザ距離センサ101にて検出された場合には、移動体103は、停止操作を開始することで障害物530に衝突すること無しに停止することができる。 The shape and size of the protection region 500 are the reference position in the horizontal direction of the moving body 103 (for example, the center in the front-back and left-right directions) and the size of the moving body 103 (for example, the length in the front-back direction and the length in the left-right direction). ) And the stopping distance 510 of the moving body 103. Specifically, the shape and size of the protection region 500 corresponding to a certain position is the moving body 103 when the moving body 103 starts the stop operation at the certain position and then travels the stop distance 510 and stops. Covers the position of and the range occupied by the moving body 103. Therefore, when the moving body 103 starts decelerating at the certain position, the moving body 103 stops without exceeding the protection area 500. Therefore, when the laser distance sensor 101 detects that there is an obstacle 530 in the protection area 500 at the certain position, the moving body 103 collides with the obstacle 530 by starting the stop operation. You can stop without doing anything.
 防護領域の形状及びサイズは、移動体103の減速から停止するまでの軌跡(例えば、移動体103の基準位置の軌跡)の長さ(つまり停止距離510)及び形状によって異なる。例えば、図5に示すように、当該軌跡が直線であれば、一例として、長方形の防護領域500Aが決定される。また、図6に示すように、当該軌跡が曲線であれば、一例として、五角形の防護領域500Bが決定される。 The shape and size of the protection region differ depending on the length (that is, the stop distance 510) and the shape of the locus (for example, the locus of the reference position of the moving body 103) from the deceleration of the moving body 103 to the stop. For example, as shown in FIG. 5, if the locus is a straight line, a rectangular protection region 500A is determined as an example. Further, as shown in FIG. 6, if the locus is a curved line, a pentagonal protection region 500B is determined as an example.
 防護領域500の位置及び向きは、移動体103の進行方向及び基準位置から一義的に定まる。 The position and orientation of the protection area 500 are uniquely determined from the traveling direction and the reference position of the moving body 103.
 図7は、実施形態で行われる防護領域自動設定の流れを示す図である。 FIG. 7 is a diagram showing a flow of automatic setting of the protected area performed in the embodiment.
 移動体103の試走行が行われる(S701)。試走行は、各走行位置についての防護領域500を決定するための走行である。移動体103は、地図データ135及び経路データ138を基に、経路データ138が表す走行経路を走行する。当該走行において、定期的に又は不定期的に、下記が行われる。これにより、走行経路全体について、複数のログデータセットがログデータ134に含まれることになる。
・収集部131が、距離データセットをレーザ距離センサ101から取得する。
・位置姿勢推定部133が、地図データ135及び経路データ138と、当該取得された距離データセットとを基に、移動体103の位置及び姿勢を推定し、推定した位置及び姿勢を表す情報[検出位置及び検出姿勢]を含んだログデータセットをログデータ134に追加する。当該ログデータセットは、当該距離データセットと、[検出位置及び検出姿勢]が表す位置が属する走行区間に対応した区間データセットのIDとを含む。
A test run of the moving body 103 is performed (S701). The test run is a run for determining the protection area 500 for each running position. The moving body 103 travels on the traveling route represented by the route data 138 based on the map data 135 and the route data 138. In the running, the following is performed regularly or irregularly. As a result, a plurality of log data sets are included in the log data 134 for the entire traveling route.
-The collection unit 131 acquires the distance data set from the laser distance sensor 101.
The position / orientation estimation unit 133 estimates the position and orientation of the moving body 103 based on the map data 135 and the route data 138 and the acquired distance data set, and the information [detection] representing the estimated position and attitude. A log data set including [position and detection posture] is added to the log data 134. The log data set includes the distance data set and the ID of the section data set corresponding to the traveling section to which the position represented by [detection position and detection posture] belongs.
 上位PC251において、自律移動支援部260のログ読出し部261が、試走行において蓄積された複数のログデータセットを含むログデータ134を移動体103から読み出す。防護領域決定部262が、読み出されたログデータ134と、パラメータデータ239とを基に、複数の走行位置の各々について防護領域を決定する(S702)。 In the upper PC 251 the log reading unit 261 of the autonomous movement support unit 260 reads the log data 134 including the plurality of log data sets accumulated in the test run from the moving body 103. The protection area determination unit 262 determines the protection area for each of the plurality of traveling positions based on the read log data 134 and the parameter data 239 (S702).
 防護領域決定部262が、複数の走行位置について決定した複数の防護領域を表す情報を、経路データ238及び138に設定する。 Information representing a plurality of protected areas determined by the protected area determination unit 262 for a plurality of traveling positions is set in the route data 238 and 138.
 以下、防護領域の決定と設定の詳細を説明する。 The details of determining and setting the protection area will be explained below.
 図8は、走行経路の一部の一例を示す図である。 FIG. 8 is a diagram showing an example of a part of the traveling route.
 図8によれば、走行経路800の一部では、直進→右折→直進→左折が必要である。図中の黒点801は、移動体103のレーザ距離センサ101による検出を意味する。図10~図13では、参照符号の表示が省略されるが、黒点は、レーザ距離センサ101による検出を意味する。図示の例では、走行経路800の左右両側に連続した壁802が存在する。 According to FIG. 8, in a part of the traveling route 800, it is necessary to go straight → turn right → go straight → turn left. The black dot 801 in the figure means the detection of the moving body 103 by the laser distance sensor 101. In FIGS. 10 to 13, the display of the reference code is omitted, but the black dot means the detection by the laser distance sensor 101. In the illustrated example, there are continuous walls 802 on both the left and right sides of the traveling path 800.
 図9は、防護領域決定(図7のS702)の流れを示す図である。 FIG. 9 is a diagram showing the flow of determining the protected area (S702 in FIG. 7).
 防護領域決定部262は、ログデータ134を基に、複数の検出位置の各々について、停止距離を算出する(S901)。 The protection area determination unit 262 calculates the stop distance for each of the plurality of detection positions based on the log data 134 (S901).
 防護領域決定部262は、初期化を行う。検出位置を意味するtに“0”を設定し、クラス数(防護領域のクラスの数)を意味するcに“0”を設定する(S902)。複数の検出位置には、[時刻]の昇順(古い順)に、“0”を先頭とした連続した番号(整数)がラベリングされる。検出位置にラベリングされた番号を、図9の説明において「検出位置番号」と呼ぶ。 The protection area determination unit 262 initializes. “0” is set in t, which means the detection position, and “0” is set in c, which means the number of classes (the number of classes in the protected area) (S902). Consecutive numbers (integers) starting with "0" are labeled at the plurality of detection positions in ascending order (oldest order) of [time]. The number labeled at the detection position is referred to as a "detection position number" in the description of FIG.
 防護領域決定部262は、検出位置tの停止距離に含まれる検出位置を全て特定する(S903)。 The protection area determination unit 262 specifies all the detection positions included in the stop distance of the detection position t (S903).
 防護領域決定部262は、該当クラス(当該一つ以上の検出位置をカバーする防護領域のクラス)が存在するか否かを判定する(S904)。 The protection area determination unit 262 determines whether or not the corresponding class (class of the protection area covering the one or more detection positions) exists (S904).
 S904の判定結果が真の場合(S904:Yes)、防護領域決定部262は、該当クラスの防護領域を、検出位置tが属する経路区間についての防護領域に決定する(S905)。 When the determination result of S904 is true (S904: Yes), the protection area determination unit 262 determines the protection area of the corresponding class as the protection area for the route section to which the detection position t belongs (S905).
 S904の判定結果が偽の場合(S904:No)、防護領域決定部262は、検出位置tの停止距離に含まれる一つ以上の検出位置をカバーする防護領域と、当該防護領域のクラスとを決定し、クラス数cを1インクリメントする(S906)。 When the determination result of S904 is false (S904: No), the protection area determination unit 262 sets the protection area covering one or more detection positions included in the stop distance of the detection position t and the class of the protection area. It is determined and the number of classes c is incremented by 1 (S906).
 S905又はS906の後、防護領域決定部262は、検出位置tが最終番号か否かを判定する(S907)。S907の判定結果が真の場合(S907:Yes)、防護領域決定が終了する。S907の判定結果が偽の場合(S907:No)、防護領域決定部262は、検出位置tを1インクリメントし(S908)、S903を実行する。 After S905 or S906, the protection area determination unit 262 determines whether or not the detection position t is the final number (S907). When the determination result of S907 is true (S907: Yes), the protection area determination is completed. When the determination result of S907 is false (S907: No), the protection area determination unit 262 increments the detection position t by 1 (S908) and executes S903.
 図10は、第1の検出位置について防護領域の決定の一例を示す図である。 FIG. 10 is a diagram showing an example of determining the protection region for the first detection position.
 各検出位置について、図9のS901は、次の通りである。すなわち、例えば第1の検出位置については、防護領域決定部262は、ログデータ134を基に、移動体103の走行速度(及び角速度)を算出し、算出した走行速度(及び角速度)から停止距離を算出する。停止距離は、パラメータデータ239が表す一つ以上のパラメータ値のうち、停止距離に影響するパラメータ値(例えば、移動体103及び台車201の重量)を基に決定されてよい。第1の検出位置についての走行速度(及び角速度)は、次のように算出される。すなわち、防護領域決定部262は、第1の検出位置を含む連続した二つ以上の検出位置に対応した二つ以上のログデータセットの各々が表す[時刻]及び[検出位置及び検出姿勢]を基に、第1の検出位置での走行速度(及び角速度)を算出する。 For each detection position, S901 in FIG. 9 is as follows. That is, for example, for the first detection position, the protection area determination unit 262 calculates the traveling speed (and angular velocity) of the moving body 103 based on the log data 134, and the stop distance is calculated from the calculated traveling speed (and angular velocity). Is calculated. The stop distance may be determined based on the parameter values that affect the stop distance (for example, the weights of the moving body 103 and the carriage 201) among the one or more parameter values represented by the parameter data 239. The traveling speed (and angular velocity) for the first detection position is calculated as follows. That is, the protection area determination unit 262 sets the [time] and [detection position and detection posture] represented by each of the two or more log data sets corresponding to the two or more consecutive detection positions including the first detection position. Based on this, the traveling speed (and angular velocity) at the first detection position is calculated.
 各検出位置について、図9のS903は、次の通りである。すなわち、例えば第1の検出位置については、防護領域決定部262は、第1の検出位置の停止距離に含まれる検出位置を全て特定する。ここで、第1の検出位置を位置Xとし、位置Xとは別の位置を位置Yとした場合、時刻xと時刻yとの差分としての時間が、位置Xについての停止時間以下であれば、位置Yは、位置Xの停止距離に含まれる検出位置である。なお、時刻xは、位置Xを表すログデータセットが表す時刻である。時刻yは、位置Yを表すログデータセットが表す時刻である。停止時間は、位置Xについて算出された停止距離と、位置Xについて算出された走行速度から算出された時間である。 For each detection position, S903 in FIG. 9 is as follows. That is, for example, for the first detection position, the protection area determination unit 262 specifies all the detection positions included in the stop distance of the first detection position. Here, when the first detection position is the position X and the position different from the position X is the position Y, if the time as the difference between the time x and the time y is equal to or less than the stop time for the position X. , Position Y is a detection position included in the stop distance of position X. The time x is the time represented by the log data set representing the position X. The time y is the time represented by the log data set representing the position Y. The stop time is a time calculated from the stop distance calculated for the position X and the traveling speed calculated for the position X.
 各検出位置について、図9のS904は、第1の検出位置を例に取ると、次の通りである。
(S904-1)防護領域決定部262は、第1の検出位置から第1の検出位置の停止距離に含まれる最後の検出位置までの走行体全域(水平方向における走行体の全域)の軌跡を特定する。「走行体」とは、本実施形態では、移動体103と台車201の組合せである。
(S904-2)防護領域決定部262は、第1の検出位置が属する第1の走行位置(例えば、第1の走行区間に対応した[目標点])について、対象防護領域が決定済であるか否かを判定する。(S904-2)の判定は、具体的には、例えば以下の通りである。
(2-1)防護領域決定部262は、第1の走行位置以外の一つ以上の走行位置について一つ以上の防護領域が決定済か否かを判定する。(2-1)の判定結果が偽の場合、(S904-2)の判定結果が偽であり、結果として、(S904)の判定結果が偽である。
(2-2)(2-1)の判定結果が真の場合、防護領域決定部262は、決定済の一つ以上の防護領域に対象防護領域があるか否かを判定する。各走行位置について、「対象防護領域」とは、当該走行位置に属する検出位置について算出された停止距離をカバーし(具体的には、(S904-1)で算出された軌跡をカバーし)、且つ、当該停止距離に含まれる検出位置を表すログデータセットが表す複数の距離に収まっている防護領域である。(2-2)の判定結果が真の場合、(S904-2)の判定結果が真であり、結果として、(S904)の判定結果が真である。一方、(2-2)の判定結果が偽の場合、(S904-2)の判定結果が偽であり、結果として、(S904)の判定結果が偽である。
For each detection position, S904 in FIG. 9 is as follows, taking the first detection position as an example.
(S904-1) The protection area determination unit 262 traces the entire locus of the traveling body (the entire area of the traveling body in the horizontal direction) from the first detection position to the last detection position included in the stop distance of the first detection position. Identify. In the present embodiment, the "running body" is a combination of the moving body 103 and the carriage 201.
(S904-2) The protection area determination unit 262 has determined the target protection area for the first travel position to which the first detection position belongs (for example, the [target point] corresponding to the first travel section). Judge whether or not. Specifically, the determination of (S904-2) is as follows, for example.
(2-1) The protection area determination unit 262 determines whether or not one or more protection areas have been determined for one or more traveling positions other than the first traveling position. When the determination result of (2-1) is false, the determination result of (S904-2) is false, and as a result, the determination result of (S904) is false.
(2-2) When the determination result of (2-1) is true, the protection area determination unit 262 determines whether or not there is a target protection area in one or more determined protection areas. For each travel position, the "target protection area" covers the stop distance calculated for the detection position belonging to the travel position (specifically, covers the locus calculated in (S904-1)). Moreover, it is a protection area within a plurality of distances represented by a log data set representing a detection position included in the stop distance. When the determination result of (2-2) is true, the determination result of (S904-2) is true, and as a result, the determination result of (S904) is true. On the other hand, when the determination result of (2-2) is false, the determination result of (S904-2) is false, and as a result, the determination result of (S904) is false.
 図10が示す例は、決定済の防護領域が無いため、(2-1)の判定結果が偽となり、故に、(S904)の判定結果が偽となった例である。この場合、防護領域決定部262は、第1の検出位置について、対象防護領域として防護領域500Aを決定する。防護領域500Aは、例えば、直線状の軌跡をカバーし、且つ、第1の検出位置に対応した停止距離に含まれるNの検出位置を表すNのログデータセット(Nのログデータセット内のNの距離データセット)が表す複数の距離に収まっている(Nは自然数(例えばN=3))。防護領域500は、走行体の軌跡をカバーし複数の距離に収まっているという条件を満たす限り、移動体103の走行方向と直交する方向に沿ってなるべく狭いことが望ましい。 The example shown in FIG. 10 is an example in which the determination result of (2-1) is false because there is no determined protection area, and therefore the determination result of (S904) is false. In this case, the protection area determination unit 262 determines the protection area 500A as the target protection area for the first detection position. The protected area 500A covers, for example, a linear locus and has an N log data set (N in the N log data set) representing the N detection position included in the stop distance corresponding to the first detection position. It fits in a plurality of distances represented by (distance data set of) (N is a natural number (for example, N = 3)). It is desirable that the protection area 500 is as narrow as possible along the direction orthogonal to the traveling direction of the moving body 103 as long as it covers the trajectory of the traveling body and satisfies the condition that it is contained in a plurality of distances.
 防護領域決定部262は、防護領域500A(例えば、防護領域500Aの形状及びサイズ(例えば、防護領域500Aの各頂点の座標)に防護領域クラスAを紐付け、第1の検出位置が属する第1の走行位置に防護領域クラスAを紐付ける。 The protection area determination unit 262 associates the protection area class A with the protection area 500A (for example, the shape and size of the protection area 500A (for example, the coordinates of each vertex of the protection area 500A), and the first detection position belongs to the first. Protected area class A is associated with the running position of.
 図11は、第2の検出位置について防護領域の決定の一例を示す図である。 FIG. 11 is a diagram showing an example of determining the protection region for the second detection position.
 図10を参照した説明との相違点は、次の通りである。図11の例によれば、防護領域クラスAが存在する。このため、上述の(2-1)の判定結果は真である。また、防護領域クラスAに紐付いた防護領域500Aは、第2の検出位置に対応した軌跡をカバーし、且つ、第2の検出位置について特定された複数の距離に収まっている。このため、上述の(2-2)の判定結果も真である。故に、防護領域決定部262は、第2の検出位置が属する第2の走行位置に防護領域クラスAを紐付ける。 The differences from the explanation with reference to FIG. 10 are as follows. According to the example of FIG. 11, there is a protected area class A. Therefore, the above-mentioned determination result (2-1) is true. Further, the protection area 500A associated with the protection area class A covers the locus corresponding to the second detection position, and is contained in a plurality of distances specified for the second detection position. Therefore, the above-mentioned determination result (2-2) is also true. Therefore, the protection area determination unit 262 associates the protection area class A with the second traveling position to which the second detection position belongs.
 図12は、第3の検出位置について防護領域の決定の一例を示す図である。 FIG. 12 is a diagram showing an example of determining the protection region for the third detection position.
 図11を参照した説明との相違点は、次の通りである。図12の例によれば、防護領域クラスAが存在する。このため、上述の(2-1)の判定結果は真である。しかし、防護領域クラスAに紐付いた防護領域500Aは、第3の検出位置に対応した軌跡をカバーしていない。具体的には、当該軌跡は、走行体の右折に伴う軌跡であり、防護領域500Aにカバーされない。このため、上述の(2-2)の判定結果は偽である。故に、第3の検出位置について、防護領域決定部262は、対象防護領域として防護領域500Bを決定する。防護領域500Bは、例えば、曲線状の軌跡をカバーし、且つ、第3の検出位置に対応した停止距離に含まれるNの検出位置を表すNのログデータセットが表す複数の距離に収まっている。 The differences from the explanation with reference to FIG. 11 are as follows. According to the example of FIG. 12, there is a protected area class A. Therefore, the above-mentioned determination result (2-1) is true. However, the protection area 500A associated with the protection area class A does not cover the locus corresponding to the third detection position. Specifically, the locus is a locus that accompanies a right turn of the traveling body and is not covered by the protection area 500A. Therefore, the above-mentioned determination result (2-2) is false. Therefore, for the third detection position, the protection area determination unit 262 determines the protection area 500B as the target protection area. The protected area 500B covers, for example, a curved locus and is contained in a plurality of distances represented by an N log data set representing an N detection position included in a stop distance corresponding to a third detection position. ..
 防護領域決定部262は、防護領域500Bに防護領域クラスBを紐付け、第3の検出位置が属する第3の走行位置に防護領域クラスBを紐付ける。 The protection area determination unit 262 associates the protection area class B with the protection area 500B, and associates the protection area class B with the third traveling position to which the third detection position belongs.
 図13は、第4の検出位置について防護領域の決定の一例を示す図である。 FIG. 13 is a diagram showing an example of determining the protection region for the fourth detection position.
 図12を参照した説明との相違点は、次の通りである。図13の例によれば、防護領域クラスA及び防護領域クラスBが存在する。このため、上述の(2-1)の判定結果は真である。しかし、防護領域クラスA及びBに紐付いた防護領域500A及び500Bのいずれも、第4の検出位置に対応した軌跡をカバーしていない。具体的には、当該軌跡は、走行体の左折に伴う軌跡であり、防護領域500A及び500Bのいずれにもカバーされない。このため、上述の(2-2)の判定結果は偽である。故に、第4の検出位置について、防護領域決定部262は、対象防護領域として防護領域500Cを決定する。防護領域500Cは、曲線状の軌跡をカバーし、且つ、第3の検出位置に対応した停止距離に含まれるNの検出位置を表すNのログデータセットが表す複数の距離に収まっている。 The differences from the explanation with reference to FIG. 12 are as follows. According to the example of FIG. 13, there are a protected area class A and a protected area class B. Therefore, the above-mentioned determination result (2-1) is true. However, neither of the protected areas 500A and 500B associated with the protected area classes A and B covers the locus corresponding to the fourth detection position. Specifically, the locus is a locus that accompanies a left turn of the traveling body, and is not covered by either the protection areas 500A and 500B. Therefore, the above-mentioned determination result (2-2) is false. Therefore, for the fourth detection position, the protection area determination unit 262 determines the protection area 500C as the target protection area. The protected area 500C covers a curved locus and is contained within a plurality of distances represented by the N log data set representing the N detection position included in the stop distance corresponding to the third detection position.
 防護領域決定部262は、防護領域500Cに防護領域クラスCを紐付け、第4の検出位置が属する第4の走行位置に防護領域クラスCを紐付ける。 The protection area determination unit 262 associates the protection area class C with the protection area 500C, and associates the protection area class C with the fourth traveling position to which the fourth detection position belongs.
 以上のような防護領域決定により、複数の防護領域クラスと走行経路における複数の経路部分との関係は、例えば図14に示す通りとなる。すなわち、直線状の走行部分に属する走行位置には、防護領域クラスAが紐付く。右折の走行部分に属する走行位置には、防護領域クラスBが紐付く。左折の走行部分に属する走行位置には、防護領域クラスCが紐付く。 By determining the protected area as described above, the relationship between the plurality of protected area classes and the plurality of route portions in the traveling route is as shown in FIG. 14, for example. That is, the protection region class A is associated with the traveling position belonging to the linear traveling portion. The protection area class B is associated with the traveling position belonging to the traveling portion of the right turn. The protection area class C is associated with the traveling position belonging to the traveling portion of the left turn.
 以上の実施形態の説明を、例えば以下のように総括することができる。 The above description of the embodiment can be summarized as follows, for example.
 ログ読出し部261と防護領域決定部262とを備えた自律移動支援装置が構築される。ログ読出し部261は、レーザ距離センサ101(距離センサの一例)を備えた移動体103の走行において取得された複数のログデータセットを含むログデータ134を読み出す。防護領域決定部262は、ログデータ134を用いて移動体103の走行経路800における複数の走行位置の各々について移動体103の防護領域500を決定する。自律移動支援装置の一例が、上位PC251のような、移動体103と通信可能な外部の装置(例えば計算機)である。その装置に代えて、移動体103(例えば位置検出装置105)が、自律移動支援装置の一例でもよい。 An autonomous movement support device including a log reading unit 261 and a protection area determination unit 262 is constructed. The log reading unit 261 reads out the log data 134 including a plurality of log data sets acquired during the traveling of the moving body 103 equipped with the laser distance sensor 101 (an example of the distance sensor). The protection area determination unit 262 determines the protection area 500 of the moving body 103 for each of the plurality of traveling positions in the traveling path 800 of the moving body 103 using the log data 134. An example of an autonomous movement support device is an external device (for example, a calculator) capable of communicating with the mobile body 103, such as the upper PC 251. Instead of the device, the mobile body 103 (for example, the position detection device 105) may be an example of the autonomous movement support device.
 複数のログデータセットの各々は、[時刻](時刻を表す情報)と、[検出位置及び検出姿勢](当該時刻での移動体103の検出位置及び検出姿勢を表す情報)と、[距離データセット](当該時刻に関し距離センサにより取得された複数の距離を表す距離データセット)とを含む。 Each of the plurality of log data sets includes [time] (information representing the time), [detection position and detection posture] (information representing the detection position and detection posture of the moving body 103 at the time), and [distance data. Set] (a distance data set representing a plurality of distances acquired by a distance sensor with respect to the time).
 防護領域決定部262は、複数の検出位置の各々について、当該検出位置を含む二つ以上の検出位置(例えば連続した二つ以上の検出位置)を表す二つ以上のログデータセットを用いて、移動体103の停止距離を算出する。防護領域決定部262は、複数の走行位置の各々について、当該走行位置に属する検出位置について算出された停止距離と、当該停止距離に含まれる検出位置を表すログデータセットが表す複数の距離とを基に、防護領域を決定する。防護領域決定部262は、複数の走行位置の各々について、当該走行位置について決定された防護領域を表す情報を、移動体103に設定する。 For each of the plurality of detection positions, the protection area determination unit 262 uses two or more log data sets representing two or more detection positions (for example, two or more consecutive detection positions) including the detection position. The stopping distance of the moving body 103 is calculated. For each of the plurality of traveling positions, the protection area determination unit 262 determines the stop distance calculated for the detection position belonging to the travel position and the plurality of distances represented by the log data set representing the detection position included in the stop distance. Based on this, the protection area is determined. The protection area determination unit 262 sets the moving body 103 with information representing the protection area determined for the traveling position for each of the plurality of traveling positions.
 これにより、移動体103が一旦走行経路を走行することで、移動体103が走行する床面上にマーカが無くても移動体103の防護領域500が自動で設定される。その後の移動体103の自律走行では、各走行位置について、移動体103は、当該走行位置の防護領域500の範囲内で停止することができる。 As a result, once the moving body 103 travels on the traveling path, the protection area 500 of the moving body 103 is automatically set even if there is no marker on the floor on which the moving body 103 travels. In the subsequent autonomous travel of the moving body 103, the moving body 103 can stop within the protection area 500 of the traveling position for each traveling position.
 複数の走行位置の各々について、決定された防護領域500は、当該走行位置に属する検出位置について算出された停止距離をカバーし、且つ、当該停止距離に含まれる検出位置を表すログデータセットが表す複数の距離に収まっている。このため、複数の走行位置の各々について、決定された防護領域500は、当該走行位置に属する検出位置から、当該検出位置について算出された停止距離に含まれる最後の検出位置までの走行体の軌跡をカバーし、当該停止距離に含まれる検出位置を表すログデータセットが表す複数の距離に収まっている。このように、停止距離と距離データセットから適切な防護領域500を決定することができる。なお、決定された防護領域500がカバーする軌跡は、対象の検出位置から、当該検出位置について算出された停止距離に含まれる最後の検出位置の次の検出位置までの走行体の軌跡であってもよい。また、上述の例によれば、各検出位置について、停止距離の算出に、当該検出位置を含む二つ以上の検出位置を表す二つ以上のログデータセットが使用されるが、それに代えて又は加えて、当該検出位置の最大速度(当該検出位置が属する走行区間の区間データセットが表す最大速度)が使用されてもよい。 For each of the plurality of travel positions, the determined protection area 500 covers the stop distance calculated for the detection position belonging to the travel position and is represented by a log data set representing the detection position included in the stop distance. It fits in multiple distances. Therefore, for each of the plurality of traveling positions, the determined protection region 500 is the locus of the traveling body from the detection position belonging to the traveling position to the last detection position included in the stop distance calculated for the detection position. It covers a plurality of distances represented by a log data set representing a detection position included in the stop distance. In this way, the appropriate protection area 500 can be determined from the stopping distance and the distance data set. The locus covered by the determined protection region 500 is the locus of the traveling body from the target detection position to the detection position next to the last detection position included in the stop distance calculated for the detection position. May be good. Further, according to the above example, for each detection position, two or more log data sets representing two or more detection positions including the detection position are used to calculate the stop distance, but instead or In addition, the maximum speed of the detection position (the maximum speed represented by the section data set of the travel section to which the detection position belongs) may be used.
 複数の走行位置の各々について、防護領域決定部262は、当該走行位置に属する検出位置についての停止距離を、移動体103を含む走行体の重量又は移動体103の台車201(運搬物の一例)の重量を基に算出し、防護領域500を、走行体又は台車201の水平方向におけるサイズを基に決定してよい。これにより、自動設定される防護領域500の適切性を向上することができる。 For each of the plurality of traveling positions, the protection area determination unit 262 determines the stopping distance for the detection position belonging to the traveling position by the weight of the traveling body including the moving body 103 or the carriage 201 of the moving body 103 (an example of a transported object). The protection area 500 may be determined based on the size of the traveling body or the carriage 201 in the horizontal direction. Thereby, the appropriateness of the automatically set protection area 500 can be improved.
 複数の走行位置の各々について、防護領域決定部262は、防護領域500を、レーザ距離センサ101のノイズと、移動体103の自律移動の制御誤差とを基に決定してよい。これにより、自動設定される防護領域500の適切性を向上することができる。 For each of the plurality of traveling positions, the protection area determination unit 262 may determine the protection area 500 based on the noise of the laser distance sensor 101 and the control error of the autonomous movement of the moving body 103. Thereby, the appropriateness of the automatically set protection area 500 can be improved.
 防護領域決定部262は、複数の走行位置の各々について、当該走行位置に適した防護領域が決定済であるか否かを判定し、当該判定の結果が真の場合に、決定済の該当の防護領域を、当該走行位置についての防護領域に決定してよい。これにより、一つの防護領域が二つ以上の走行位置について設定され得ることとなる。このため、防護領域の数の低減が期待される。故に、消費される記憶容量の削減と、防護領域の決定のための計算負荷の軽減とが期待される。 The protection area determination unit 262 determines whether or not a protection area suitable for the traveling position has been determined for each of the plurality of traveling positions, and if the result of the determination is true, the determined corresponding item. The protected area may be determined as the protected area for the traveling position. As a result, one protected area can be set for two or more traveling positions. Therefore, it is expected that the number of protected areas will be reduced. Therefore, it is expected that the storage capacity consumed and the calculation load for determining the protection area will be reduced.
 以上、一実施形態を説明したが、これは本発明の説明のための例示であって、本発明の範囲をこの実施形態にのみ限定する趣旨ではない。本発明は、他の種々の形態でも実行することが可能である。例えば、防護領域決定部262は、決定済の防護領域500の数が一定数に達した場合(クラス数cが一定値に達した場合)、形状が同一であり停止距離が異なる二つ以上の防護領域があれば、当該二つ以上の防護領域のうち停止距離が最も長い防護領域以外の防護領域を、当該停止距離が最も長い防護領域に差し替えてもよい。これにより、防護領域500の数をその上限以下に抑えつつ、全ての走行位置について防護領域500を設定することができる。 Although one embodiment has been described above, this is an example for explaining the present invention, and the scope of the present invention is not limited to this embodiment. The present invention can also be practiced in various other forms. For example, when the number of determined protection areas 500 reaches a certain number (when the number of classes c reaches a certain value), the protection area determination unit 262 has two or more having the same shape but different stopping distances. If there is a protection area, the protection area other than the protection area having the longest stop distance among the two or more protection areas may be replaced with the protection area having the longest stop distance. Thereby, the protection area 500 can be set for all the traveling positions while suppressing the number of the protection areas 500 to the upper limit or less.
103:移動体 105:位置検出装置 260:自律移動支援部 261:ログ読出し部 262:防護領域決定部 103: Mobile body 105: Position detection device 260: Autonomous movement support unit 261: Log reading unit 262: Protected area determination unit

Claims (8)

  1.  距離センサを備えた移動体の走行において取得された複数のログデータセットを含むログデータを読み出すログ読出し部と、
     前記ログデータを用いて前記移動体の走行経路における複数の走行位置の各々について前記移動体の防護領域を決定する防護領域決定部と
    を備え、
     前記複数のログデータセットの各々は、時刻を表す情報と、当該時刻での移動体の検出位置及び検出姿勢を表す情報と、当該時刻に関し前記距離センサにより取得された複数の距離を表す距離データセットとを含み、
     前記防護領域決定部は、
      複数の検出位置の各々について、当該検出位置を含む二つ以上の検出位置を表す二つ以上のログデータセットを用いて、前記移動体の停止距離を算出し、
      前記複数の走行位置の各々について、当該走行位置に属する検出位置について算出された停止距離と、当該停止距離に含まれる検出位置を表すログデータセットが表す複数の距離とを基に、防護領域を決定し、
      前記複数の走行位置の各々について、前記決定された防護領域を表す情報を、前記移動体に設定する、
    自律移動支援装置。
    A log reading unit that reads log data including a plurality of log data sets acquired during traveling of a moving body equipped with a distance sensor, and a log reading unit.
    A protection area determination unit for determining a protection area of the moving body for each of a plurality of traveling positions in the traveling path of the moving body using the log data is provided.
    Each of the plurality of log data sets includes information representing a time, information representing a detection position and a detection posture of a moving object at the time, and distance data representing a plurality of distances acquired by the distance sensor at the time. Including set
    The protection area determination unit
    For each of the plurality of detection positions, the stop distance of the moving body is calculated using two or more log data sets representing two or more detection positions including the detection position.
    For each of the plurality of traveling positions, the protection area is determined based on the stop distance calculated for the detection position belonging to the travel position and the plurality of distances represented by the log data set representing the detection position included in the stop distance. Decide and
    For each of the plurality of traveling positions, information representing the determined protection region is set in the moving body.
    Autonomous movement support device.
  2.  前記複数の走行位置の各々について、前記決定された防護領域は、当該走行位置に属する検出位置について算出された停止距離をカバーし、且つ、当該停止距離に含まれる検出位置を表すログデータセットが表す複数の距離に収まっている、
    請求項1に記載の自律移動支援装置。
    For each of the plurality of travel positions, the determined protection area covers the stop distance calculated for the detection position belonging to the travel position, and a log data set representing the detection position included in the stop distance is provided. It fits in multiple distances to represent
    The autonomous movement support device according to claim 1.
  3.  前記複数の走行位置の各々について、前記防護領域決定部は、
      当該走行位置に属する検出位置についての停止距離を、前記移動体を含む走行体の重量、又は、前記移動体の運搬物の重量を基に算出し、
      前記防護領域を、前記走行体又は前記運搬物の水平方向におけるサイズを基に決定する、
    請求項2に記載の自律移動支援装置。
    For each of the plurality of traveling positions, the protection area determination unit
    The stopping distance for the detection position belonging to the traveling position is calculated based on the weight of the traveling body including the moving body or the weight of the transported object of the moving body.
    The protected area is determined based on the horizontal size of the traveling object or the transported object.
    The autonomous movement support device according to claim 2.
  4.  前記複数の走行位置の各々について、前記防護領域決定部は、
      前記防護領域を、前記距離センサのノイズと、前記移動体の自律移動の制御誤差とを基に決定する、
    請求項2に記載の自律移動支援装置。
    For each of the plurality of traveling positions, the protection area determination unit
    The protection area is determined based on the noise of the distance sensor and the control error of the autonomous movement of the moving body.
    The autonomous movement support device according to claim 2.
  5.  前記防護領域決定部は、前記複数の走行位置の各々について、
      対象防護領域が決定済であるか否かを判定し、
      当該判定の結果が真の場合、当該対象防護領域を、当該走行位置についての防護領域に決定し、
      当該判定の結果が偽の場合、当該走行経路について算出された停止距離と、当該停止距離に含まれる検出位置を表すログデータセットが表す複数の距離とを基に、防護領域を決定し、
     前記複数の走行位置の各々について、対象防護領域は、当該走行位置に属する検出位置について算出された停止距離をカバーし、且つ、当該停止距離に含まれる検出位置を表すログデータセットが表す複数の距離に収まっている防護領域である、
    請求項1に記載の自律移動支援装置。
    The protection area determination unit determines each of the plurality of traveling positions.
    Judge whether the target protection area has been decided,
    If the result of the determination is true, the target protection area is determined as the protection area for the traveling position.
    If the result of the determination is false, the protection area is determined based on the stop distance calculated for the travel route and the plurality of distances represented by the log data set representing the detection position included in the stop distance.
    For each of the plurality of travel positions, the target protection area covers the stop distance calculated for the detection position belonging to the travel position, and is represented by a log data set representing the detection position included in the stop distance. A protective area within distance,
    The autonomous movement support device according to claim 1.
  6.  前記防護領域決定部は、決定済の防護領域の数が一定数に達した場合、形状が同一であり停止距離が異なる二つ以上の防護領域があれば、当該二つ以上の防護領域のうち停止距離が最も長い防護領域以外の防護領域を、当該停止距離が最も長い防護領域に差し替える、
    請求項5に記載の自律移動支援装置。
    When the number of determined protection areas reaches a certain number, the protection area determination unit is out of the two or more protection areas if there are two or more protection areas having the same shape but different stopping distances. Replacing the protection area other than the protection area with the longest stop distance with the protection area with the longest stop distance,
    The autonomous movement support device according to claim 5.
  7.  距離センサを備えた移動体の走行において取得された複数のログデータセットを含むログデータを読み出し、
      前記複数のログデータセットの各々は、時刻を表す情報と、当該時刻での移動体の検出位置及び検出姿勢を表す情報と、当該時刻に関し前記距離センサにより取得された複数の距離を表す距離データセットとを含み、
     複数の検出位置の各々について、当該検出位置を含む二つ以上の検出位置を表す二つ以上のログデータセットを用いて、前記移動体の停止距離を算出し、
     前記移動体の走行経路における複数の走行位置の各々について、当該走行位置に属する検出位置について算出された停止距離と、当該停止距離に含まれる検出位置を表すログデータセットが表す複数の距離とを基に、防護領域を決定し、
     前記複数の走行位置の各々について、前記決定された防護領域を表す情報を、前記移動体に設定する、
    自律移動支援方法。
    Reads log data including multiple log data sets acquired during traveling of a moving object equipped with a distance sensor.
    Each of the plurality of log data sets includes information representing a time, information representing a detection position and a detection posture of a moving object at the time, and distance data representing a plurality of distances acquired by the distance sensor at the time. Including set
    For each of the plurality of detection positions, the stop distance of the moving body is calculated using two or more log data sets representing two or more detection positions including the detection position.
    For each of the plurality of travel positions in the travel path of the moving body, the stop distance calculated for the detection position belonging to the travel position and the plurality of distances represented by the log data set representing the detection position included in the stop distance are obtained. Based on, determine the protection area,
    For each of the plurality of traveling positions, information representing the determined protection region is set in the moving body.
    Autonomous movement support method.
  8.  距離センサを備えた移動体の走行において取得された複数のログデータセットを含むログデータを読み出し、
      前記複数のログデータセットの各々は、時刻を表す情報と、当該時刻での移動体の検出位置及び検出姿勢を表す情報と、当該時刻に関し前記距離センサにより取得された複数の距離を表す距離データセットとを含み、
     複数の検出位置の各々について、当該検出位置を含む二つ以上の検出位置を表す二つ以上のログデータセットを用いて、前記移動体の停止距離を算出し、
     前記移動体の走行経路における複数の走行位置の各々について、当該走行位置に属する検出位置について算出された停止距離と、当該停止距離に含まれる検出位置を表すログデータセットが表す複数の距離とを基に、防護領域を決定し、
     前記複数の走行位置の各々について、前記決定された防護領域を表す情報を、前記移動体に設定する、
    ことをコンピュータに実行させるコンピュータプログラム。
    Reads log data including multiple log data sets acquired during traveling of a moving object equipped with a distance sensor.
    Each of the plurality of log data sets includes information representing a time, information representing a detection position and a detection posture of a moving object at the time, and distance data representing a plurality of distances acquired by the distance sensor at the time. Including set
    For each of the plurality of detection positions, the stop distance of the moving body is calculated using two or more log data sets representing two or more detection positions including the detection position.
    For each of the plurality of travel positions in the travel path of the moving body, the stop distance calculated for the detection position belonging to the travel position and the plurality of distances represented by the log data set representing the detection position included in the stop distance are obtained. Based on, determine the protection area,
    For each of the plurality of traveling positions, information representing the determined protection region is set in the moving body.
    A computer program that lets a computer do things.
PCT/JP2019/037326 2019-09-24 2019-09-24 Autonomous movement assistance device and moving body having same WO2021059335A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/037326 WO2021059335A1 (en) 2019-09-24 2019-09-24 Autonomous movement assistance device and moving body having same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/037326 WO2021059335A1 (en) 2019-09-24 2019-09-24 Autonomous movement assistance device and moving body having same

Publications (1)

Publication Number Publication Date
WO2021059335A1 true WO2021059335A1 (en) 2021-04-01

Family

ID=75165156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037326 WO2021059335A1 (en) 2019-09-24 2019-09-24 Autonomous movement assistance device and moving body having same

Country Status (1)

Country Link
WO (1) WO2021059335A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140114526A1 (en) * 2012-10-22 2014-04-24 Sick Ag Safety apparatus for a vehicle
WO2015072002A1 (en) * 2013-11-15 2015-05-21 株式会社日立製作所 Mobile robot system
JP2015170284A (en) * 2014-03-10 2015-09-28 株式会社日立製作所 Forklift type unmanned carrier vehicle, control method of the same, and control device of the same
WO2018179659A1 (en) * 2017-03-28 2018-10-04 株式会社日立産機システム Map creation system
US20190193629A1 (en) * 2017-12-27 2019-06-27 X Development Llc Visually Indicating Vehicle Caution Regions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140114526A1 (en) * 2012-10-22 2014-04-24 Sick Ag Safety apparatus for a vehicle
WO2015072002A1 (en) * 2013-11-15 2015-05-21 株式会社日立製作所 Mobile robot system
JP2015170284A (en) * 2014-03-10 2015-09-28 株式会社日立製作所 Forklift type unmanned carrier vehicle, control method of the same, and control device of the same
WO2018179659A1 (en) * 2017-03-28 2018-10-04 株式会社日立産機システム Map creation system
US20190193629A1 (en) * 2017-12-27 2019-06-27 X Development Llc Visually Indicating Vehicle Caution Regions

Similar Documents

Publication Publication Date Title
CN103119398B (en) There is the machine navigation system of integrity checking
CN105555637B (en) Vehicle positioning system and its application method
EP3699052A1 (en) Method and device for eliminating steady-state lateral deviation and storage medium
EP2083340B1 (en) Inverted type movable body and control method thereof
US20220179417A1 (en) Systems and Methods for Ground Plane Estimation
KR101417659B1 (en) Apparatus for detecting narrow road on the front of vehicle and method thereof
KR20140119787A (en) Vehicle control based on perception uncertainty
CN111002346B (en) Robot trapped detection method and robot
CN113495272B (en) Method for generating dynamic occupied grid
JP7257257B2 (en) Road surface detection system, personal mobility and obstacle detection method
CN111103877A (en) Mobile robot slip early warning method, storage medium and mobile robot
JP2016197081A (en) Transport vehicle
CN110709686B (en) Tire wear detection system for automated vehicles
KR20200140003A (en) Apparatus and method for calibrating inertial measuring unit
CN108136934B (en) Moving body
WO2021059335A1 (en) Autonomous movement assistance device and moving body having same
JP2019082444A (en) Abnormality detection device, abnormality detection method and program
CN116867695A (en) Autonomous vehicle steering false action event detector
CN105378811A (en) Travel route display device, travel route display method and travel route display program
JP2020135635A (en) Obstacle detection device, obstacle detection system, and obstacle detection program
CN108557327A (en) Mobile dustbin, navigation methods and systems
WO2020175313A1 (en) Control device, moving body, and control method
CN104670222B (en) The driving path temporal voting strategy module and Ride Control System and method of sliding-modes
CN112526998A (en) Trajectory rectification method and device and automatic driving guide vehicle
JP2020154451A (en) Autonomous mobile device, program, and method for steering autonomous mobile device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP