WO2021057799A1 - 一种基于联合时频分集的免授权上行传输方法 - Google Patents

一种基于联合时频分集的免授权上行传输方法 Download PDF

Info

Publication number
WO2021057799A1
WO2021057799A1 PCT/CN2020/117165 CN2020117165W WO2021057799A1 WO 2021057799 A1 WO2021057799 A1 WO 2021057799A1 CN 2020117165 W CN2020117165 W CN 2020117165W WO 2021057799 A1 WO2021057799 A1 WO 2021057799A1
Authority
WO
WIPO (PCT)
Prior art keywords
data packet
time
diversity
probability
frequency diversity
Prior art date
Application number
PCT/CN2020/117165
Other languages
English (en)
French (fr)
Inventor
王熠晨
赵书玉
谢云聪
徐东阳
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2021057799A1 publication Critical patent/WO2021057799A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity

Definitions

  • the invention belongs to the technical field of uplink transmission of machine equipment communication services, and in particular relates to an unauthorized uplink transmission method based on joint time-frequency diversity.
  • 5G mobile communication technology is a new generation of mobile communication technology that is being developed to meet the rapid popularization of smart terminals and the rapid development of mobile Internet following 4G.
  • Ultra-reliable and low-latency communications URLLC is one of the three main application scenarios of 5G.
  • Its service quality requirements include the following two aspects: one is ultra-short end-to-end (end-to-end) -end, E2E) Delay, the requirement is not more than 1ms; the other is transmission reliability, which is not less than 99.999%.
  • the uplink transmission process can adopt a contention-based authorization-free mode.
  • the user equipment does not need to wait for resource allocation information or transmission authorization before sending data packets, but can Send data packets as soon as they come.
  • the unlicensed transmission mode based on contention there may be two or more user equipment trying to send data packets on the same shared channel at the same time, so there may be collisions between data packets.
  • the present invention provides an unlicensed uplink transmission method based on joint time-frequency diversity to improve system reliability.
  • the same data packet is repeatedly sent to increase the probability of successful data packet transmission, while satisfying
  • the ultra-reliable and low-latency service quality requirements of URLLC services maximize the number of user devices that the system can support.
  • the technical solution adopted by the present invention is an unlicensed uplink transmission method based on joint time-frequency diversity, which includes the following steps:
  • the data packet transmission system including M single-antenna user equipment and a base station, the base station is equipped with N t antennas, and N shared sub-channels are set in the system;
  • S2 Based on the system established by S1, the total delay of the uplink transmission process is equally divided into ⁇ time slots. In each time slot, the user equipment randomly selects several of all sub-channels provided by the system to transmit the same one A copy of the data packet; and the data packet is based on the Slotted-Aloha protocol and an authorization-free transmission mode;
  • the instantaneous channel gains on the N sub-channels described in S1 are independent of each other, that is, the frequency spacing of the N sub-channels exceeds the channel coherence bandwidth W c ; the total system bandwidth is W max , and the bandwidth allocated to each shared sub-channel is Each shared sub-channel is flat fading.
  • P acc is the probability that the data packet sent by any other user equipment does not select the same sub-channel as the target data packet
  • P ran is the packet sending probability of each device in the total delay of the uplink transmission process
  • represents the number of packets arriving D u
  • average packet arrival time is ⁇
  • the probability that any other user equipment does not collide with the target data packet is:
  • the target data packet When the data packets sent by all other user equipment do not collide with the target data packet, the target data packet will not collide; the probability of no collision is:
  • the probability of the target UE's transmission failure is:
  • P FD is the transmission failure probability of a data packet sent by the target device UE in a time slot
  • P t is the packet loss probability of the data packet on a certain channel.
  • the particle swarm algorithm Given the value of the frequency diversity times, the particle swarm algorithm is applied to optimize the length of the time slot, and the optimal solution of the time diversity frequency is obtained according to the relationship between the length of the time slot and the number of time diversity, and the corresponding maximum value of the supported device is obtained. ;
  • T is the length of each time slot
  • Du is the total delay of the uplink transmission process
  • represents the number of frequency diversity
  • the optimal solution T * is obtained, and the obtained optimal solution corresponding to the number of time diversity is expressed as ⁇ * , and the maximum value of the user equipment corresponding to the optimal solution of the number of time diversity is expressed as M * ;
  • the maximum number of user devices M opt The maximum number of user devices M opt .
  • the present invention has at least the following beneficial effects:
  • the present invention adopts a competition-based authorization-free transmission mode.
  • the user equipment does not need to wait for resource allocation information or transmission authorization before sending data packets, but can send data packets on arrival, which can effectively reduce System delay;
  • the invention is based on the Slotted-Aloha model, which combines time diversity and frequency diversity technology, that is, the uplink transmission time is equally divided into several mini-slots of equal length. The length of each slot is equal to the length of the system TTI.
  • TTI the user equipment randomly selects several copies of the same data packet among all the sub-channels provided by the system; in this transmission mode, two or more user equipments may try to share the same channel.
  • Data packets are sent at the same time on the Internet, so there may be collisions between data packets.
  • the probability of successful data packet transmission is greatly improved, which is beneficial to improve the reliability of the system.
  • the present invention optimizes the number of data packet copy transmissions in the time domain and frequency domain at the same time, so as to maximize the number of user equipment that the system can support.
  • Figure 1 shows a diagram of the system model considered by the present invention.
  • Figure 2 is a diagram of the time frame structure considered by the present invention.
  • Fig. 3 is a diagram of the data packet transmission model proposed by the present invention.
  • Fig. 4 shows the change curve of the value of the optimal solution of the time domain repetition times and the optimal solution of the frequency domain repetition times of the data packet with the lower bound T min of the TTI length.
  • Figure 5 shows the change curve of the maximum number of user equipment that the system can support when the time domain repetition times and frequency domain repetition times of the data packet are both optimized under different values of the TTI length lower bound T min. .
  • an unauthorized uplink transmission method based on joint time-frequency diversity includes the following steps:
  • the data packet transmission system including M single-antenna user equipment and a base station, the base station is equipped with N t antennas, and N shared sub-channels are set in the system;
  • S2 Based on the system established by S1, the total delay of the uplink transmission process is equally divided into ⁇ time slots. In each time slot, the user equipment randomly selects several of all sub-channels provided by the system to transmit the same one A copy of the data packet; and the data packet is based on the Slotted-Aloha protocol and an authorization-free transmission mode;
  • Ultra-reliable low-latency communication is one of the three major application scenarios of the fifth-generation mobile communication system, requiring millisecond-level delay and ultra-high reliability; in order to meet the ultra-reliability and low-latency requirements of URLLC at the same time, the present invention proposes An authorization-free uplink transmission method based on joint time-frequency diversity is presented.
  • competition-based authorization-free transmission in response to the low latency requirement of URLLC, the present invention adopts a competition-based authorization-free transmission mode.
  • the user equipment does not need to wait for resource allocation information or transmission authorization before sending data packets. , But can send data packets on arrival, which can effectively reduce system delay.
  • the present invention In response to the ultra-high reliability requirements of URLLC, the present invention combines time diversity and frequency diversity technology based on the Slotted-Aloha model, that is, the uplink transmission time is equally divided into several mini-slots of equal length ( mini-slot).
  • the user equipment randomly selects several copies of the same data packet among all the sub-channels provided by the system.
  • two or more user equipments may try to send data packets on the same shared channel at the same time. Therefore, collisions between data packets may occur.
  • this scheme greatly increases the probability of successful data packet transmission by randomly selecting channels and repeatedly transmitting data packet copies, thereby helping to improve the reliability of the system.
  • the present invention optimizes the number of data packet copies transmitted in the time domain and the frequency domain at the same time, so as to maximize the number of user equipment that the system can support.
  • the data packet transmission system of the present invention includes M single-antenna user equipment (User Equipment, UE) and a base station, and the base station is equipped with N t Antennas.
  • User equipment uses resources randomly for data transmission; for each user equipment, the data packet arrival process is modeled as a Poisson process, and the M Poisson processes are independent of each other, and because the uplink transmission process of the user equipment is unauthorized, it is necessary
  • the device that sends the data packet does not need to send a scheduling request, so it does not have to wait for transmission authorization or resource allocation information.
  • the Slotted-Aloha protocol is a typical competition-based transmission model, which is used in this article.
  • the system provides N shared sub-channels for M user equipments; in each time slot, the device randomly selects ⁇ pieces of the shared sub-channels to transmit data packet copies, in order to maximize the frequency diversity Gain, the instantaneous channel gains on the N sub-channels are independent of each other, that is, the frequency spacing of the N sub-channels should exceed the channel coherence bandwidth W c ; set the total system bandwidth as W max , then the bandwidth allocated to each shared sub-channel is for It is assumed that the allocated bandwidth B of each shared sub-channel is less than the effective channel bandwidth W c , therefore, each shared sub-channel has a flat fading.
  • the large-scale fading coefficient is ⁇ m and the instantaneous channel gain is g i ; because it is an unlicensed transmission, the channel state information is unknown at the device, so
  • the maximum transmission power of each user equipment is equally divided among ⁇ sub-channels. Assuming that the maximum transmission power of each device is P max , the transmission power allocated to each sub-channel is
  • the Susoushu data packet transmission mechanism of the present invention In an authorization-free uplink transmission scenario based on competition of the present invention, the user equipment can use an "immediate arrival" mode without sending a scheduling request and without receiving transmission authorization and resource allocation information. Data packets are transmitted in the "Send” mode; in order to improve the reliability of the system, both time diversity and frequency diversity technologies are applied in the data packet transmission process.
  • the total delay Du of the uplink transmission process is equally divided into ⁇ time slots, and the time frame structure is shown in Figure 2.
  • the length of each time slot is Among them, ⁇ represents the number of time diversity, that is, the number of data packet copies transmitted in the time domain.
  • the system provides N shared sub-channels for M user equipments.
  • the user equipment that needs to send packets randomly selects ⁇ ( ⁇ N) channels from the N shared sub-channels provided by the system for Transmit ⁇ data packet copies, where ⁇ represents the number of frequency diversity, that is, the number of data packet copies transmitted in the frequency domain.
  • the data packets that select the same sub-channel will collide, and all the data packets that select the channel will fail to be transmitted; In the case of being selected by a data packet, the data packet on the channel may be successfully transmitted.
  • Each user equipment will send a total of ⁇ data packet copies, and as long as it is ensured that at least one data packet in the data packet copies does not collide with any other data packets, then it can be considered that there is no collision with other data packets.
  • the data packet of may be sent successfully, that is, the user equipment sending the data packet may be successfully transmitted.
  • the data packet transmission model is shown in Figure 3.
  • a two-state channel transmission model is applied; the meaning of the two-states means that data packets can only be successfully transmitted on sub-channels whose instantaneous channel gain is greater than or equal to the set threshold, and on channels whose instantaneous channel gain is less than the threshold, Think that the packet is lost. Therefore, the data packet can only be sent successfully if it does not collide with other packets and the instantaneous channel gain of the selected sub-channel is not less than the required channel gain threshold.
  • the packet sending probability of each device is:
  • represents the number of packets arriving D u. Assuming that the average inter-arrival time of data packets is ⁇ , then there is
  • the target data packet does not collide with the data packet sent by any user device: one is that any user device does not send the packet, only the device to which the target data packet belongs Data packets will be sent, and data packets from the same device will not collide. Therefore, if the device to which the target data packet belongs will send the data packet, the target data packet will not collide; the second case is, although any A user equipment will also send a data packet, but the data packet sent by the user equipment does not select the same sub-channel as the target data packet, so that it can also ensure that the target data packet will not collide; therefore, any other user equipment does not
  • the probability of collision of the target data packet is:
  • P acc is the probability that the data packet sent by any other user equipment does not select the same subchannel as the target data packet; then, when the data packets sent by all other user equipment do not collide with the target data packet, the target data The bag will not collide; the probability of not colliding is:
  • the probability that the data packet sent by any other user equipment does not select the same sub-channel as the target data packet is:
  • the probability of collision of the target data packet is:
  • each user equipment will send a total of ⁇ data packet copies; for any user equipment, it is only necessary to ensure that at least one data packet in the data packet copy is sent successfully , Then it can be considered that the user equipment that sent the data packet has successfully transmitted.
  • the successful transmission of a data packet requires two conditions to be met at the same time:
  • the first condition is that when randomly selecting sub-channels, the selected sub-channel is selected by only one data packet of the target data packet, that is, the data packet cannot collide.
  • the second condition is that the channel performance of the selected sub-channel of the data packet needs to meet the transmission condition under the premise of no collision, that is, the instantaneous channel gain of the selected channel should not be less than the required channel gain threshold; if The instantaneous channel gain is greater than or equal to the channel gain threshold (g i ⁇ g th ), then the data packet can be Probability of successful transmission, where Indicates the bit error rate; if the instantaneous channel gain is less than the channel gain threshold (g i ⁇ g th ), the data packet is considered to be lost.
  • the maximum number of bits transmitted by the m-th device on the i-th subchannel is,
  • i 1, 2..., ⁇
  • T is the length of the time slot
  • B is the bandwidth allocated to each sub-channel
  • ⁇ m is the large-scale fading coefficient of device m
  • P max is the maximum transmission power of each device
  • G i is the instantaneous channel gain
  • N 0 is the unilateral power spectral density
  • em ,i is the bit error rate
  • the channel gain threshold can be solved for:
  • the data packet can be The probability that the transmission is successful; if the instantaneous channel gain is less than the channel gain threshold (g i ⁇ g th ), the data packet is considered to be lost. Then the packet loss probability on the i-th channel is:
  • N t is the number of antennas.
  • the packet loss probability of the data packet on the i-th channel is P t
  • the transmission failure probability of the target data packet on the channel is:
  • the transmission failure probability of the data packet sent by the target device UE (that is, the probability that all transmission failures of the selected ⁇ channels) are:
  • Each user equipment has to repeatedly send packets in ⁇ time slots.
  • the probability of the target UE's transmission failure (that is, the transmission failure of all ⁇ data packets) is:
  • the constraint condition of expression (13) ensures that the length of the time slot cannot exceed the value interval during the optimization process;
  • the constraint condition of expression (14) reflects the relationship between the number of time diversity and the length of the time slot, where [ ⁇ ] represents Round down the value in the square brackets and pass;
  • the constraint condition of expression (15) is used to limit the number of frequency diversity;
  • the constraint condition of expression (16) guarantees the URLLC reliability requirements of the system, and P rel is a constant ;
  • the constraint condition of expression (17) constrains the number of user equipment to a positive integer.
  • Step 1 Optimize the number of time diversity
  • the particle swarm algorithm is used to optimize the length of the time slot, and the optimal solution of the number of time diversity can be obtained according to the relationship between the length of the time slot and the number of time diversity (14), and the corresponding support can be obtained
  • the maximum value of the device and because the packet transmission error probability increases with the increase in the number of user devices, in order to obtain the maximum number of user devices that can be supported, we directly substitute the maximum value of the packet transmission error probability into the optimization problem ( 12) Solve.
  • the positive integer restriction condition of the number of devices M is not considered first, and only the maximum value of M obtained is rounded down at the end; therefore, the original optimization problem is It can be simplified as follows:
  • the constraint condition of expression (19) is that the particle swarm algorithm solves the entire search space of the slot length; the constraint condition of expression (20) expresses the relationship between the slot length and the number of time diversity; the constraint of expression (21) The condition guarantees the system reliability requirements; the optimal solution obtained by the optimization problem is expressed as T * , the corresponding optimal solution for the number of time diversity is expressed as ⁇ * , and the optimal solution for the number of time diversity is corresponding The maximum value of user equipment is denoted as M * .
  • the lower bound T min of the value range of the time slot length in the optimization problem also affects the value of the optimal solution.
  • Figure 4 shows the value of the optimal solution of the optimization problem under different values of the lower bound T min of the slot length. It can be seen from the figure that as the lower bound of the time slot length increases, the optimal solution for the number of time-domain repetitions decreases, and the optimal solution for the number of frequency-domain repetitions increases.
  • Figure 6 shows the changes in the number of user equipment that the system can support under different frequency domain repetition times and time domain repetition times. It can be seen from the figure that no matter what value the time-domain re-engraving times take, as the frequency-domain re-engraving times increases, the number of user equipment that the system can support will always increase first and then decrease. On the one hand, the increase in the number of frequency domain repetitions means that in each time slot, the number of sub-channels that the user equipment can select to transmit data packet copies increases, which will reduce the probability of collisions between data packets.
  • the maximum transmission power allocated by each device is limited, when the frequency domain re-engraving times increase, the transmission power allocated to each sub-channel will be reduced, resulting in the occurrence of the channel
  • the packet loss rate increases.
  • the impact of the reduction of collision probability is greater than the impact of the increase of the packet loss rate, so the number of devices that the system can support shows an upward trend; when the frequency domain repetition times exceeds a certain threshold, the loss The impact of the increase in the packet rate has become the dominant factor affecting the number of devices that can be supported, resulting in a downward trend in the number of user devices that meet the QoS requirements.
  • Figure 6 also shows the relationship between the number of devices that can be supported and the number of time-domain replicas. It is not difficult to see from the figure that within a certain range, the more time domain re-engraving times, the more user equipment the system can support. This is because by increasing the number of time-domain repetitions, the collision probability between data packets is greatly reduced, thereby greatly increasing the number of user equipment that can be supported.
  • Figure 7 shows the relationship between the number of devices that can be supported and the data packet arrival rate when the optimal solution is taken for the joint diversity scheme, the time-domain replica-only scheme, and the frequency-domain replica-only scheme.
  • the number of repetitions in the frequency domain is 10, and the number of repetitions in the frequency domain is 2.
  • the frequency-domain repetition times are 1, and the number of time-domain repetitions is 10;
  • the number of engravings is 16, and the number of time-domain re-engravings is 1.
  • Figure 8 shows the relationship between the number of devices that can be supported and the total number of shared sub-channels when the joint diversity scheme, the time-domain replica-only scheme, and the frequency-domain replica-only scheme respectively take the optimal solutions.
  • the bandwidth allocated for each sub-channel remains unchanged, the more shared sub-channels provided by the system, the greater the number of devices that can be supported. Because the greater the number of shared channels, the greater the probability of data packets selecting different sub-channels, and the lower the probability of collisions between data packets, which will increase the number of devices that can be supported.
  • the performance gain of the joint diversity scheme is the best, followed by the time-domain re-engraving scheme, and only the frequency-domain re-engraving scheme has the smallest performance gain. It can be seen that the performance advantage of the joint diversity scheme proposed by the present invention mainly comes from the optimization of the time slot length and the data packet copy can randomly select different sub-channels for data packet transmission in each time slot.
  • the unauthorized URLLC uplink transmission scheme based on joint time-frequency diversity proposed by the present invention can not only meet the delay and reliability requirements of URLLC services, but also can select the optimal packet time domain repetition times and Frequency domain re-engraving times to maximize the number of devices that the system can support.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于联合时频分集的免授权上行传输方法,基于Slotted-Aloha模型联合应用了时间分集与频率分集技术,将上行传输时间等分为若干个长度相等的迷你时隙,在每个时隙内,用户设备在系统提供的所有子信道中随机挑选若干个用以传输同一个数据包的副本;在这种传输模式下,可能会出现两个甚至多个用户设备试图在同一条共享信道上同时发送数据包的情况,因此数据包之间可能会发生碰撞,本发明通过随机选择信道并将数据包进行多次重复传输,大大降低了数据包之间的碰撞概率,从而有利于提高系统的可靠性;基于本发明传输方案,在同时满足URLLC超可靠与低时延要求下,同时优化了在时域与频域上的数据包副本个数,以最大化系统可支持的用户设备数量。

Description

一种基于联合时频分集的免授权上行传输方法 技术领域
本发明属于机器设备类通信业务上行传输技术领域,具体涉及一种基于联合时频分集的免授权上行传输方法。
背景技术
5G移动通信技术是继4G之后,为了满足智能终端的快速普及和移动互联网的高速发展而正在研发的新一代移动通信技术。超可靠低时延通信(Ultra-Reliable and Low-latency Communications,URLLC)是5G的三大主要应用场景之一,其服务质量要求包括以下两个方面:一个是超短端对端(end-to-end,E2E)时延,要求不超过1ms;另一个是传输可靠性,要求不低于99.999%。根据现有研究成果,为了减小系统时延,上行传输过程可以采用基于竞争的免授权模式,在这种模式下,用户设备在发送数据包之前无需等待资源分配信息或者传输授权,而是可以对数据包进行即来即发。在基于竞争的免授权传输模式下,可能会出现两个甚至多个用户设备试图在同一条共享信道上同时发送数据包的情况,因此数据包之间可能会发生碰撞。
发明内容
为了解决现有技术中存在的问题,本发明提供一种基于联合时频分集的免授权上行传输方法,提高系统可靠性,通过重复发送同一个数据包以提高数据包传输成功的概率,同时满足URLLC业务的超可靠与低时延的服务质量要求,最大化系统可支持的用户设备数量。
为了实现上述目的,本发明采用的技术方案是,一种基于联合时频分集的免授权上行传输方法,包括以下步骤:
S1,建立数据包传输系统,所述数据包传输系统包括M个单天线的用户设备以及一个基站,所述基站配备N t个天线,系统中设置有N个共享子信道;
S2,基于S1所建立的系统,将上行传输过程的总时延等分为Γ个时隙,每个时隙内,用户设备在系统提供的所有子信道中随机挑选若干个用以传输同一个数据包的副本;并且对所述数据包采用基于Slotted-Aloha协议和免授权传输模式;
S3,计算出在一个时隙内S2所述目标设备数据包传输失败的概率;
S4,同时满足URLLC时延要求与可靠性要求的条件下,最大化使S1所述系统所能支持的设备数量,并且求得与之相应的时间分集与频率分集次数的一系列最优解,通过所述最优解求出可支持设备的最大值。
S1所述N个子信道上的瞬时信道增益相互独立,即,N个子信道的频率间隔超过信道相干带宽W c;系统总带宽为W max,分配给每个共享子信道的带宽为
Figure PCTCN2020117165-appb-000001
每条共享子信道都是平坦衰落。
数据包在瞬时信道增益大于或等于设定阈值的子信道上能传输成功,在信道瞬时增益小于该阈值的信道上,认为该数据包丢失,即,数据包在不与其他包发生碰撞,并且所选子信道的瞬时信道增益不小于所求信道增益阈值的情况下发送成功。
S3中,其他任意一个用户设备不与目标数据包发生碰撞的概率为:
P 0=(1-P ran)+P ranP acc
其中,P acc为其他任意一个用户设备所发数据包不与目标数据包选择同一条子信道的概率;P ran是在上行传输过程总时延中,每个设备的发包概率;
P ran=1-e
Figure PCTCN2020117165-appb-000002
其中,λ表示D u内到达的数据包数量,数据包平均到达间隔时间为μ,则
Figure PCTCN2020117165-appb-000003
其他任意一个用户设备不与目标数据包发生碰撞的概率为:
P 0=(1-P ran)+P ranP acc
其他所有用户设备发送数据包都不与目标数据包发生碰撞时,所述目标数据包便不会发生碰撞;所述不发生碰撞的概率为:
P succ=P 0 M-1=[(1-P ran)+P ranP acc] M-1
则得到在一个时隙中,目标数据包发生碰撞的概率,即为:
Figure PCTCN2020117165-appb-000004
在重复Γ个时隙中,目标UE传输失败的概率为:
Figure PCTCN2020117165-appb-000005
其中,P FD为一个时隙中目标设备UE所发数据包的传输失败概率,
Figure PCTCN2020117165-appb-000006
在一个时隙中,目标数据包发生碰撞的概率,P t为数据包在某一个信道上的丢包概率。
S4中,求得与之相应的时间分集与频率分集次数的最优解具体如下:
给定频率分集次数的取值,应用粒子群算法优化时隙的长度,根据时隙长度与时间分集次数的关系求解得到时间分集次数的最优解,并且求出对应的可支持设备的最大值;
将所述联合优化时间分集次数与频率分集次数转换为计算模型,具体如下:
Figure PCTCN2020117165-appb-000007
T是每个时隙的长度,D u是上行传输过程的总时延,β表示频率分集次数,
将St.T∈[T min,D u]作为约束条件确保求解过程中时隙长度不超出所述取值区间,
Figure PCTCN2020117165-appb-000008
表示时间分集次数与时隙长度的关系,通过优化TTI的长度来约束时间分集的次数,
β∈[1,N],
Figure PCTCN2020117165-appb-000009
P≤1-P rel
最终求得最优解T *,将所求得的对应的时间分集次数最优解表示为Γ *,将时间分集次数最优解对应的用户设备最大值表示为M *
优化频率分集次数,β∈{1,2,3,…,N};对β取值区间的所有可能取值进行一维搜索,得到N组关于时隙长度与设备数量的最优解,即{T * 1,M * 1},{T * 2,M * 2},{T * 3,M * 3},…,{T * N,M * N},从这些最优解中找出最大的用户设备数M opt
与现有技术相比,本发明至少具有以下有益效果:
本发明采用基于竞争的免授权传输模式,在这种模式下,用户设备在发送数据包之前无需等待资源分配信息或者传输授权,而是可以对数据包进行即到即发,这样可以有效减小系统时延;发明基于Slotted-Aloha模型联合应用了时间分集与频率分集技术,即将上行传输时间等分为若干个长度相等的迷你时隙,每个时隙的长度等于系统TTI长度,在每个TTI内,用户设备在系统提供的所有子信道中随机挑选若干个用以传输同一个数据包的副本;在这种传输模式下,可能会出现两个甚至多个用户设备试图在同一条共享信道上同时发送数据包的情况,因此数据包之间可能会发生碰撞,通过随机选择信道并将数据包进行多次重复传输,大大提高了数据包的传输成功概率,从而有利于提高系统的可靠性;基于以上传输方案,在同时满足URLLC超可靠与低时延的要求下,本发明同时优化了在时域与频域上的数据包副本传输次数,以最大化系统可支持的用户设备数量。
附图说明
图1所示为本发明考虑的系统模型图。
图2所示为本发明考虑的时间帧结构图。
图3所示为本发明提出的数据包传输模型图。
图4所示为数据包时域复刻次数最优解与频域复刻次数最优解的取值随TTI长度下界T min的变化曲线。
图5所示为在TTI长度下界T min的不同取值下,数据包时域复刻次数与频域复刻次数分别都取最优解时,系统可支持的用户设备数量最大值的变化曲线。
图6所示为当T min=0.1ms时,系统可支持的设备数量与时域复刻次数以及频域复刻次数之间的三维关系图像。
图7所示为当T min=0.1ms时,在联合时频分集(Γ=10,β=2)、仅时域复刻(Γ=10,β=1)以及仅频域复刻(Γ=1,β=16)这三种方案下,可支持的设备数量与数据包到达率之间的关系曲线。
图8所示为当T min=0.1ms时,在联合时频分集(Γ=10,β=2)、仅时域复刻(Γ=10,β=1)以及仅频域复刻(Γ=1,β=16)这三种方案下,可支持设备数量与共享子信道总数之间的关系曲线。
具体实施方式
下面结合附图对本发明进行详细阐述。
参考图1~图3,一种基于联合时频分集的免授权上行传输方法,包括以下步骤:
S1,建立数据包传输系统,所述数据包传输系统包括M个单天线的用户设备以及一个基站,所述基站配备N t个天线,系统中设置有N个共享子信道;
S2,基于S1所建立的系统,将上行传输过程的总时延等分为Γ个时隙,每个时隙内,用户设备在系统提供的所有子信道中随机挑选若干个用以传输同一个数据包的副本;并且对所述数据包采用基于Slotted-Aloha协议和免授权传输模式;
S3,计算出在一个时隙内S2所述目标设备数据包传输失败的概率;
S4,同时满足URLLC时延要求与可靠性要求的条件下,最大化使S1所述系统所能支持的设备数量,并且求得与之相应的时间分集与频率分集次数的最优解。
超可靠低延迟通信是第五代移动通信系统的三大应用场景之一,要求具有毫秒级的时延与超高的可靠性;为了同时满足URLLC的超可靠与低时延要求,本发明提出了一种基于联合时频分集的免授权上行传输方法。
第一,基于竞争的免授权传输:针对URLLC的低时延要求,本发明采用基于竞争的免授权传输模式,在这种模式下,用户设备在发送数据包之前无需等待资源分配信息或者传输授权,而是可以对数据包进行即到即发,这样可以有效减小系统时延。
第二,联合时频分集:针对URLLC的超高可靠性要求,本发明基于Slotted-Aloha模型联合应用了时间分集与频率分集技术,即将上行传输时间等分为若干个长度相等的迷你时隙(mini-slot),在每个时隙内,用户设备在系统提供的所有子信道中随机挑选若干个用以传输同一个数据包的副本。在这种传输模式下,可能会出现两个甚至多个用户设备试图在同一条共享信道上同时发送数据包的情况,因此数据包之间可能会发生碰撞。而该方案通过随机选择信道并将数据包副本进行多次重复传输,大大提高了数据包的传输成功概率,从而有利于提高系统的可靠性。
基于以上传输方案,在同时满足URLLC超可靠与低时延的要求下,本发明同时优化了在时域与频域上传输的数据包副本个数,以最大化系统可支持的用户设备数量。
系统模型:考虑基于竞争的免授权上行传输场景,如图1所示,本发明所述数据包传输系统包含M个单天线用户设备(User Equipment,UE)以及一个基站,所述基站配备N t个天线。用户设备通过随机使用资源进行数据传输;对于每个用户设备,数据包到达过程建模为泊松过程,M个泊松过程相互独立,又因为用户设备的上行传输过程是免授权的,因此需要发送数据包的设备无需发送调度请求,故而也不必等待传输授权或者资源分配信息,Slotted-Aloha协议 是典型的基于竞争的传输模型,在本文中使用的便是该竞争模型。
为了应用频率分集,系统为M个用户设备提供了N个共享子信道;在每一个时隙内,设备在所述共享子信道中随机选择β条来传送数据包副本,为了最大化频率分集的增益,N个子信道上的瞬时信道增益是相互独立的,即,N个子信道的频率间隔应该超过信道相干带宽W c;设系统总带宽为W max,那么分配给每个共享子信道的带宽则为
Figure PCTCN2020117165-appb-000010
假设每条共享子信道分配的带宽B小于信道有效带宽W c,因此,每条共享子信道都是平坦衰落。
设对于第m,m=1,2…,N个设备而言,大尺度衰落系数为α m,瞬时信道增益为g i;由于是免授权传输,信道状态信息在设备处是未知的,因此每个用户设备的最大传输功率均分到β条子信道上,设每个设备的最大发射功率为P max,则分配到每个子信道上的发射功率为
Figure PCTCN2020117165-appb-000011
基于联合时频分集的数据包传输方案
本发明苏搜书数据包传输机制:本发明基于竞争的免授权的上行传输场景中,用户设备可以在不发送调度请求且无需接收传输授权与资源分配信息的情况下,以一种“即来即发”的方式传送数据包;为了提高系统的可靠性,在数据包传输过程中同时应用了时间分集与频率分集技术。
上行传输过程的总时延D u,将上行传输过程的总时延等分为Γ个时隙,时间帧结构如图2所示。每个时隙的长度则为
Figure PCTCN2020117165-appb-000012
其中,Γ表示时间分集次数,即在时域上传输的数据包副本的个数。另外,系统为M个用户设备提供N条共享子信道,在每一个时隙内,需要发包的用户设备在系统提供的N条共享子信道中随机挑选β(β≤N)条信道,用于传输β个数据包副本,其中,β表示频率分集次数,即在频域上传输的数据包副本的个数。如果两个或两个以上的数据包选择了同一条子信道,那么所述选择同一条子信道的数据包之间便会发生碰撞,则选择该信道的所有数据包都传输失败;只有在一条信道只被一个数据包选择的情况下,该信道上 的数据包才有可能成功传输。每个用户设备一共会发送Γ×β个数据包副本,而只要保证所述数据包副本中的至少一个数据包不与其他任何数据包发生碰撞,那么可以认为所述没有与其他数据包发送碰撞的数据包有可能成功发送,即发送所述数据包的用户设备有可能传输成功。数据包传输模型如图3所示。
即使有某个数据包足够幸运地选择了一个不会发生碰撞的子信道,所述数据包还是有可能由于信道性能不佳的原因而导致发送失败。应用一种两状态信道传输模型;所述两状态的含义是指:数据包只有在瞬时信道增益大于或等于设定阈值的子信道上才能传输成功,在信道瞬时增益小于该阈值的信道上,认为该数据包丢失。因此,数据包只有在不与其他包发生碰撞,并且所选子信道的瞬时信道增益不小于所求信道增益阈值的情况下,才能发送成功。
传输失败概率分析和计算:
在D u内,每个设备的发包概率为:
P ran=1-e   (4)
其中,λ表示D u内到达的数据包数量。设数据包平均到达间隔时间为μ,那么则有
Figure PCTCN2020117165-appb-000013
对于除目标设备以外的任意一个用户设备而言,目标数据包不与任意一个用户设备发的数据包发生碰撞有以下两种情况:一是该任意用户设备不发包,只有目标数据包的所属设备会发送数据包,来自同一个设备的数据包之间不会发生碰撞,因此目标数据包的所属设备会发送数据包的情况下目标数据包不会发生碰撞;第二种情况便是,虽然任意一个用户设备也会发送数据包,但是所述用户设备所发的数据包不与目标数据包选择同一条子信道,这样也能保证目标数据包不会发生碰撞;因此,其他任意一个用户设备不与目标数据包发生碰撞的概率为:
P 0=(1-P ran)+P OanP acc  (5)
其中,P acc为其他任意一个用户设备所发数据包不与目标数据包选择同一条子信道的概率; 那么,当其他所有用户设备发送数据包都不与目标数据包发生碰撞时,则该目标数据包便不会发生碰撞;所述不发生碰撞的概率则为:
P succ=P 0 M-1=[(1-P ran)+P ranP acc] M-1  (6)
以下为概率P acc的求解过程。
首先,设有一个目标数据包已经选择了某一条子信道,为了保证所述数据包不与其他数据包发生碰撞,那么其他所有用户设备所发的全部数据包都不被允许再选择目标数据包所选择的子信道;于是,在一个时隙内,其他任意一个用户设备所发数据包不与目标数据包选择同一条子信道的概率为:
Figure PCTCN2020117165-appb-000014
在一个时隙中,目标数据包发生碰撞的概率则为:
Figure PCTCN2020117165-appb-000015
在联合时频分集的数据包传输方案中,每一个用户设备一共会发送Γ×β个数据包副本;对于任意一个用户设备而言,只要保证所述数据包副本中的至少一个数据包发送成功,那么便可以认为发送该数据包的用户设备传输成功。
而一个数据包的成功传输,需要同时满足两个条件:第一个条件是,在随机选择子信道时,所选子信道只被目标数据包一个数据包选中,即所述数据包不能发生碰撞;第二个条件是,所述数据包在不发生碰撞的前提下,其所选子信道的信道性能需要满足传输条件,即所选信道的瞬时信道增益应该不小于要求的信道增益阈值;如果瞬时信道增益大于或等于信道增益阈值(g i≥g th),那么数据包能够以
Figure PCTCN2020117165-appb-000016
的概率传输成功,其中
Figure PCTCN2020117165-appb-000017
表示误码率;如果瞬时信道增益小于信道增益阈值(g i<g th),则认为数据包丢失。
对于单输入多输出系统而言,在每个时隙内,第m个设备在第i条子信道上传输的最 大比特数为,
Figure PCTCN2020117165-appb-000018
其中,,i=1,2…,β,T为时隙的长度,B为分配给每个子信道的带宽,α m为设备m的大尺度衰落系数,P max为每个设备的最大传输功率,g i为瞬时信道增益,N 0为单边功率谱密度,e m,i为误码率,
Figure PCTCN2020117165-appb-000019
表示Q函数的反函数。从计算式(1)看出,传输的最大比特数随瞬时信道增益的增大而增大,设要传输的数据包大小为b bits,,当R m,i=b时,根据计算式
(1)可以解得信道增益阈值
Figure PCTCN2020117165-appb-000020
为:
Figure PCTCN2020117165-appb-000021
如果瞬时信道增益大于或等于信道增益阈值(g i≥g th),那么数据包能够以
Figure PCTCN2020117165-appb-000022
的概率传输成功;如果瞬时信道增益小于信道增益阈值(g i<g th),则认为数据包丢失。则第i个信道上的丢包概率为:
Figure PCTCN2020117165-appb-000023
其中,
Figure PCTCN2020117165-appb-000024
N t为天线个数。
所以,数据包在第i个信道上的丢包概率为P t,于是在所述信道上目标数据包的传输失败概率为:
Figure PCTCN2020117165-appb-000025
则在一个时隙中,目标设备UE所发数据包的传输失败概率(即,所选β条信道全部传输失败的概率)为:
Figure PCTCN2020117165-appb-000026
每个用户设备还要在Γ个时隙中重复发包,则在重复Γ个时隙中,目标UE传输失败(即Γ×β 个数据包全部传输失败)的概率为:
Figure PCTCN2020117165-appb-000027
2.3优化问题建模
基于以上推导构建一个优化问题,联合优化时间分集次数与频率分集次数,在同时满足URLLC时延要求与可靠性要求的条件下,最大化使系统所能支持的设备数量,并且求得相应的时间分集与频率分集次数的最优解。优化问题建模如下:
max T,βM  (12)
St.T∈[T min,D u]  (13)
Figure PCTCN2020117165-appb-000028
β∈[1,N],
Figure PCTCN2020117165-appb-000029
P≤1-P rel  (16)
Figure PCTCN2020117165-appb-000030
其中,表达式(13)的约束条件确保优化过程中时隙长度不能超出所述取值区间;表达式(14)的约束条件体现了时间分集次数与时隙长度的关系,其中[·]表示对中括号内的数值进行向下取整,通过;表达式(15)的约束条件是用于限制频率分集次数;表达式(16)的约束条件保证系统的URLLC可靠性要求,P rel为常量;表达式(17)的约束条件将用户设备数量约束为正整数。
3使用一种基于PSO算法的两步法来求解优化问题
提出一种两步法来解决以上优化问题;
步骤1:优化时间分集次数
给定频率分集次数的取值,应用粒子群算法优化时隙的长度,根据时隙长度与时间分集次数的关系式(14)求解得到时间分集次数的最优解,并且求出对应的可支持设备的最大值;又因为数据包传输错误概率随用户设备数的增加而增大,因此,为了得到可支持用户设备数量的最大值,我们直接将数据包传输错误概率的最大值代入优化问题(12)进行求解。另外,为了进一步简化所述优化问题的求解过程,先不考虑设备数量M的正整数限制条件,而只需在最后将求得的M最大值进行向下取整操作;因此,原始优化问题则可以简化为如下所示:
max TM  (18)
St.T∈[T min,D u]  (19)
Figure PCTCN2020117165-appb-000031
P=1-P rel  (21)
其中,表达式(19)的约束条件为粒子群算法求解时隙长度的整个搜索空间;表达式(20)的约束条件表示了时隙长度与时间分集次数的关系;表达式(21)的约束条件则保证了系统可靠性要求;将该优化问题求得的最优解表示为T *,将所求得的对应的时间分集次数最优解表示为Γ *,将时间分集次数最优解对应的用户设备最大值表示为M *
步骤2,优化频率分集次数
由于系统提供的共享子信道数是有限的,因此频率分集次数的所有可能取值也是有限的,即β∈{1,2,3,…,N};对β取值区间的所有可能取值进行一维搜索,可以得到N组关于时隙长度与设备数量的最优解,即{T * 1,M * 1},{T * 2,M * 2},{T * 3,M * 3},…,{T * N,M * N},其中,这些最优解的下标对应其相应的频率分集次数取值;再从这些最优解中找出最大的用户设备数M opt,则其对应的时隙长度最优解与频率分集次数最优解即为原始优化问题的最优解。
采用本发明所述方法进行数值仿真和结果分析
仿真所设置的系统参数如表1所示:
表1仿真参数
Figure PCTCN2020117165-appb-000032
优化问题中时隙长度的取值范围下界T min对最优解的取值也有影响。
图4展示了在时隙长度下界T min的不同取值情况下,优化问题最优解的取值情况。由图可见,随着时隙长度下界的增大,时域复刻次数的最优解递减,频域复刻次数的最优解递增。
图5展示了在时隙长度下界T min的不同取值情况下,时域复刻次数与频域复刻次数分别都取最优解时,可支持的用户设备数量取值。由图可知,随着时隙长度下界的增大,可支持的用户设备数量最大值降低;在接下来的实验仿真中取T min=0.1ms。
图6展现了在不同频域复刻次数与时域复刻次数下,系统可支持的用户设备的数量变化。由图可见,无论时域复刻次数取何值,随着频域复刻次数的增大,系统可支持的用户设备数量总是先增加后减少。一方面,频域复刻次数的增加,意味着在每个时隙内,用户设备可以选择的用于传输数据包副本的子信道数增加,这便会减小数据包之间发生碰撞的概率;而另一方面,由于每个设备所分配的最大传输功率是有限的,当频域复刻次数增加时,分配到每个子信道上的传输功率则会减小,从而导致在信道上发生的丢包率增大。当频域复刻次数较小时,碰撞概率减小的影响大于丢包率增大的影响,于是系统可支持设备数呈上升趋势;而当频域复刻次数 增加到超过了某一个阈值,丢包率增大的影响成为了影响可支持设备数的主导因素,从而导致符合QoS要求的用户设备数量呈下降趋势。图6还表明了可支持设备数与时域复刻次数的关系。从图中不难看出,在一定范围内,时域复刻次数越多,系统可支持的用户设备数量越多。这是因为通过增加时域复刻次数,数据包之间的碰撞概率大大减小,从而使可支持用户设备大大增加。
图7展示了联合分集方案、仅时域复刻方案以及仅频域复刻方案分别取最优解的情况下,可支持设备数量与数据包到达率之间的关系,其中,联合方案的时域复刻次数为10,频域复刻次数为2;仅时域复刻方案中,频域复刻次数为1,时域复刻次数为10;仅频域复刻方案中,频域复刻次数为16,时域复刻次数为1;由图可知,当数据包到达率上升时,可支持的用户设备数量会随之减小。这是因为数据包到达率越高,用户设备被激活的概率就越大,需要发送数据包的设备数量越多,数据包之间发生碰撞的概率就越大,继而系统可支持的设备数量就越少。
图8展示了在联合分集方案、仅时域复刻方案以及仅频域复刻方案分别取最优解的情况下,可支持设备数量与共享子信道总数之间的关系。在保证每条子信道所分配的带宽不变的情况下,系统提供的共享子信道数越多,可支持的设备数量就越多。因为共享信道数越多,数据包选择不同子信道的概率就越大,数据包之间的碰撞概率就会越低,从而可支持设备数量就会增大。
由图不难看出,联合分集方案的性能增益最佳,仅时域复刻方案次之,仅频域复刻方案的性能增益最小。由此可见,本发明提出的联合分集方案的性能优势则主要来自于对时隙长度的优化以及数据包副本在每一个时隙内都可以随机选择不同的子信道进行数据包的传输。
综上所述,本发明提出的基于联合时频分集的免授权URLLC上行传输方案,不仅可以满足URLLC业务的时延与可靠性要求,还可以通过选择最优的数据包时域复刻次数与频域复刻次数,以最大化系统可支持的设备数量。
仿真结果表明:与现有方案相比,本发明所提方案不仅有效地保障了URLLC业务的服务 质量要求,而且显著提升了系统可支持的用户设备数量,具有十分重要的现实意义与应用前景。
以上内容是对本发明的详细说明,不能认定本发明的仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定专利保护范围。

Claims (6)

  1. 一种基于联合时频分集的免授权上行传输方法,其特征在于,包括以下步骤:
    S1,建立数据包传输系统,所述数据包传输系统包括M个单天线的用户设备以及一个基站,所述基站配备N t个天线,系统中设置有N个共享子信道;
    S2,基于S1所建立的系统,将上行传输过程的总时延等分为Γ个时隙,每个时隙内,用户设备在系统提供的所有子信道中随机挑选若干个用以传输同一个数据包的副本;并且对所述数据包采用基于Slotted-Aloha协议和免授权传输模式;
    S3,计算出在一个时隙内S2所述目标设备数据包传输失败的概率;
    S4,同时满足URLLC时延要求与可靠性要求的条件下,最大化使S1所述系统所能支持的设备数量,并且求得与之相应的时间分集与频率分集次数的一系列最优解,通过所述最优解求出可支持设备的最大值。
  2. 根据权利要求1所述的基于联合时频分集的免授权上行传输方法,其特征在于,S1所述N个子信道上的瞬时信道增益相互独立,即,N个子信道的频率间隔超过信道相干带宽W c;系统总带宽为W max,分配给每个共享子信道的带宽为
    Figure PCTCN2020117165-appb-100001
    每条共享子信道都是平坦衰落。
  3. 根据权利要求1所述的基于联合时频分集的免授权上行传输方法,其特征在于,S2中,数据包在瞬时信道增益大于或等于设定阈值的子信道上能传输成功,在信道瞬时增益小于该阈值的信道上,认为该数据包丢失,即,数据包在不与其他包发生碰撞,并且所选子信道的瞬时信道增益不小于所求信道增益阈值的情况下发送成功。
  4. 根据权利要求1所述的基于联合时频分集的免授权上行传输方法,其特征在于,S3中,其他任意一个用户设备不与目标数据包发生碰撞的概率为:
    P 0=(1-P ran)+P ranP acc
    其中,P acc为其他任意一个用户设备所发数据包不与目标数据包选择同一条子信道的概率;P ran是在上行传输过程总时延中,每个设备的发包概率;
    P ran=1-e
    Figure PCTCN2020117165-appb-100002
    其中,λ表示D u内到达的数据包数量,数据包平均到达间隔时间为μ,则
    Figure PCTCN2020117165-appb-100003
    其他任意一个用户设备不与目标数据包发生碰撞的概率为:
    P 0=(1-P ran)+P ranP acc
    其他所有用户设备发送数据包都不与目标数据包发生碰撞时,所述目标数据包便不会发生碰撞;所述不发生碰撞的概率为:
    P succ=P 0 M-1=[(1-P ran)+P ranP acc] M-1
    则得到在一个时隙中,目标数据包发生碰撞的概率,即为:
    Figure PCTCN2020117165-appb-100004
  5. 根据权利要求4所述的基于联合时频分集的免授权上行传输方法,其特征在于,在重复Γ个时隙中,目标UE传输失败的概率为:
    Figure PCTCN2020117165-appb-100005
    其中,P FD为一个时隙中目标设备UE所发数据包的传输失败概率,
    Figure PCTCN2020117165-appb-100006
    在一个时隙中,目标数据包发生碰撞的概率,P t为数据包在某一个信道上的丢包概率。
  6. 根据权利要求5所述的基于联合时频分集的免授权上行传输方法,其特征在于,S4中,求得与之相应的时间分集与频率分集次数的最优解具体如下:
    给定频率分集次数的取值,应用粒子群算法优化时隙的长度,根据时隙长度与时间分集次数的关系求解得到时间分集次数的最优解,并且求出对应的可支持设备的最大值;
    将所述联合优化时间分集次数与频率分集次数转换为计算模型,具体如下:
    Figure PCTCN2020117165-appb-100007
    T是每个时隙的长度,D u是上行传输过程的总时延,β表示频率分集次数,
    将St.T∈[T min,D u]作为约束条件确保求解过程中时隙长度不超出所述取值区间,
    Figure PCTCN2020117165-appb-100008
    表示时间分集次数与时隙长度的关系,通过优化TTI的长度来约束时间分集的次数,
    Figure PCTCN2020117165-appb-100009
    P≤1-P rel
    最终求得最优解T *,将所求得的对应的时间分集次数最优解表示为Γ *,将时间分集次数最优解对应的用户设备最大值表示为M *
    优化频率分集次数,β∈{1,2,3,…,N};对β取值区间的所有可能取值进行一维搜索,得到N组关于时隙长度与设备数量的最优解,即{T * 1,M * 1},{T * 2,M * 2},{T * 3,M * 3},…,{T * N,M * N},从这些最优解中找出最大的用户设备数M opt
PCT/CN2020/117165 2019-09-25 2020-09-23 一种基于联合时频分集的免授权上行传输方法 WO2021057799A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910913021.5A CN110856262B (zh) 2019-09-25 2019-09-25 一种基于联合时频分集的免授权上行传输方法
CN201910913021.5 2019-09-25

Publications (1)

Publication Number Publication Date
WO2021057799A1 true WO2021057799A1 (zh) 2021-04-01

Family

ID=69595934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117165 WO2021057799A1 (zh) 2019-09-25 2020-09-23 一种基于联合时频分集的免授权上行传输方法

Country Status (2)

Country Link
CN (1) CN110856262B (zh)
WO (1) WO2021057799A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114827963A (zh) * 2022-04-12 2022-07-29 国网福建省电力有限公司 基于时间相关性随机标识的5G mMTC多用户识别方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110856262B (zh) * 2019-09-25 2022-03-01 西安交通大学 一种基于联合时频分集的免授权上行传输方法
CN115278593B (zh) * 2022-06-20 2024-07-12 南京中科上元科技有限公司 基于半免授权协议的无人机-非正交多址通信系统的传输方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889231A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 免授权的传输上行信息的方法、网络设备和终端设备
CN109392099A (zh) * 2017-08-03 2019-02-26 维沃移动通信有限公司 Urllc中上行免授权传输的方法、用户侧设备和网络侧设备
US20190082456A1 (en) * 2017-09-08 2019-03-14 Electronics And Telecommunications Research Institute Method for transmitting and receiving uplink data channel, and apparatus thereof
CN110121212A (zh) * 2018-10-18 2019-08-13 西安交通大学 一种面向周期类urllc业务的上行传输方法
CN110856262A (zh) * 2019-09-25 2020-02-28 西安交通大学 一种基于联合时频分集的免授权上行传输方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE496509T1 (de) * 2008-11-14 2011-02-15 Deutsch Zentr Luft & Raumfahrt Verfahren zur übertragung von daten
CN109937603B (zh) * 2017-05-03 2021-12-28 华为技术有限公司 基于竞争的传输方法和设备
CN109392163B (zh) * 2018-11-01 2020-11-10 西安交通大学 一种基于碰撞概率的随机频分多址系统多载波分配方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889231A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 免授权的传输上行信息的方法、网络设备和终端设备
CN109392099A (zh) * 2017-08-03 2019-02-26 维沃移动通信有限公司 Urllc中上行免授权传输的方法、用户侧设备和网络侧设备
US20190082456A1 (en) * 2017-09-08 2019-03-14 Electronics And Telecommunications Research Institute Method for transmitting and receiving uplink data channel, and apparatus thereof
CN110121212A (zh) * 2018-10-18 2019-08-13 西安交通大学 一种面向周期类urllc业务的上行传输方法
CN110856262A (zh) * 2019-09-25 2020-02-28 西安交通大学 一种基于联合时频分集的免授权上行传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO SHUYU; WANG YICHEN; XIE YUNCONG; XU DONGYANG: "Joint Time-Frequency Diversity Based Uplink Grant-Free Transmission Scheme for URLLC", 2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 23 October 2019 (2019-10-23), pages 1 - 6, XP033671809 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114827963A (zh) * 2022-04-12 2022-07-29 国网福建省电力有限公司 基于时间相关性随机标识的5G mMTC多用户识别方法

Also Published As

Publication number Publication date
CN110856262B (zh) 2022-03-01
CN110856262A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
WO2021057799A1 (zh) 一种基于联合时频分集的免授权上行传输方法
US8289988B2 (en) Wireless communication methods utilizing a single antenna with multiple channels and the devices thereof
CN108882301A (zh) 大规模m2m网络中基于最优功率退避的非正交随机接入方法
Zhou et al. Enhanced random access and beam training for millimeter wave wireless local networks with high user density
EP2150089B1 (en) System and method using multiple request to send (rts) messages to enhance wireless communication resource allocation
CN107211323A (zh) 用于在无线lan多用户传输机会中传输数据的系统和方法
Pei et al. Performance analysis of licensed-assisted access to unlicensed spectrum in LTE release 13
WO2010142343A1 (en) Method and apparatus for medium access control in a wireless broadband system with multiple-input multiple-output or multiple-input single-output technology with multiuser capabilities
CN107251629A (zh) 用于设置循环前缀长度的系统和方法
US10701686B1 (en) Protection mechanism for multi-user transmission
CN114124311B (zh) 一种5g免授权重传接入技术中断概率评估方法
CN109890076A (zh) 一种非授权频谱上的数据传输方法、设备和存储介质
CN102056325A (zh) 一种基于多输入多输出天线的多址接入方法
CN106559900A (zh) 一种基于非对称带宽的多信道多址接入方法
CN102209021A (zh) 一种包聚合传输的方法和装置
CN111491392A (zh) 通信方法及终端设备、接入网设备
CN107211459A (zh) 接入点ap、站点sta、通信系统及数据传输方法
Sanada et al. Throughput analysis for full duplex wireless local area networks with hidden nodes
CN105142185A (zh) 基于信道争用与集中调度的全双工mac的数据交换方法
CN100429899C (zh) 一种用于时分正交频分多址系统中的随机接入方法
Liu et al. Channel access optimization in unlicensed spectrum for downlink URLLC: Centralized and federated DRL approaches
Islam et al. A Proportional Scheduling Protocol for the OFDMA-Based Future Wi-Fi Network.
Kuo et al. A CSMA-based MAC protocol for WLANs with automatic synchronization capability to provide hard quality of service guarantees
Zhou et al. DRA-OFDMA: Double random access based QoS oriented OFDMA MAC protocol for the next generation WLAN
CN108599881B (zh) 一种用于多用户多信道的无线电动态频谱接入方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868457

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20868457

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20868457

Country of ref document: EP

Kind code of ref document: A1