WO2021057773A1 - Procédé et dispositif de prédiction de réservoir d'huile et de gaz à l'aide d'un milieu diphasique - Google Patents

Procédé et dispositif de prédiction de réservoir d'huile et de gaz à l'aide d'un milieu diphasique Download PDF

Info

Publication number
WO2021057773A1
WO2021057773A1 PCT/CN2020/117050 CN2020117050W WO2021057773A1 WO 2021057773 A1 WO2021057773 A1 WO 2021057773A1 CN 2020117050 W CN2020117050 W CN 2020117050W WO 2021057773 A1 WO2021057773 A1 WO 2021057773A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
liquid phase
phase
value
solid phase
Prior art date
Application number
PCT/CN2020/117050
Other languages
English (en)
Chinese (zh)
Inventor
桂金咏
高建虎
雍学善
李胜军
王洪求
刘炳杨
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to CA3158470A priority Critical patent/CA3158470A1/fr
Publication of WO2021057773A1 publication Critical patent/WO2021057773A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/306Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • G01V2210/624Reservoir parameters

Definitions

  • the present invention provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, it realizes the steps of the method for predicting oil and gas reservoirs in a two-phase medium according to any one of the above embodiments.
  • the parameter value of the first solid phase parameter and the parameter value of the second solid phase parameter of the two-phase medium in the target area are obtained to obtain the to-be-determined target area Reservoir, and then determine the fluid-containing reservoir in the target area according to the parameter values of the first liquid phase parameter and the parameter value of the second liquid phase parameter of the dual-phase medium, as well as the reservoir to be determined in the target area, and finally according to the parameter value of the dual-phase medium
  • the parameter value of at least one physical property parameter and the fluid-containing reservoir in the target area are predicted to predict the oil and gas reservoir in the target area, which can realize the quantitative prediction of the oil and gas reservoir in the target area and improve the accuracy of the oil and gas reservoir prediction.
  • Fig. 2b is a schematic diagram of the inversion result of the second solid phase parameter provided by an embodiment of the present invention.
  • Fig. 5 is a schematic flow chart of a method for predicting oil and gas reservoirs in dual-phase media according to another embodiment of the present invention.
  • Fig. 7 is a schematic diagram of comparison of the elastic parameters of a two-phase medium according to an embodiment of the present invention.
  • Fig. 10 is a schematic diagram of a curve of physical property parameters obtained by different methods provided by an embodiment of the present invention.
  • Fig. 14 is a schematic structural diagram of a dual-phase medium oil and gas reservoir prediction device provided by another embodiment of the present invention.
  • FIG. 15 is a schematic diagram of the physical structure of an electronic device provided by an embodiment of the present invention.
  • the inversion result of the first solid phase parameter of the target area can be obtained.
  • the value range of the first solid phase parameter of the reservoir is different, according to the parameter value of each first solid phase parameter in the inversion result of the first solid phase parameter of the target area and the value of the first solid phase parameter of the reservoir.
  • the value range can determine the distribution position of the reservoir.
  • Fig. 2a is a schematic diagram of the inversion result of the first solid phase parameter provided by an embodiment of the present invention.
  • the abscissa represents the gather
  • the unit is track
  • the ordinate represents the time
  • the unit is milliseconds.
  • the middle gray scale indicates the parameter value of the first solid phase parameter
  • the unit is N/m2.
  • the lighter gray scale indicates the larger the parameter value of the first solid phase parameter.
  • Figure 2a shows the correspondence between the gather data, time data and the parameter value of the first solid phase parameter.
  • the solidity of the reservoir is weaker than that of the non-reservoir, and the value of the solid phase parameter is smaller.
  • the parameter value of the first liquid phase parameter is within the value range of the first liquid phase parameter of the fluid-containing reservoir
  • the parameter value of the first liquid phase parameter corresponds to the parameter value of the second liquid phase parameter in the
  • the second liquid phase parameter corresponding to the fluid reservoir is within the value range, and the position of the target area corresponding to the parameter value of the first liquid phase parameter and the parameter value of the second liquid phase parameter belongs to the waiting area of the target area.
  • the reservoir is determined, then the position of the target area corresponding to the parameter value of the first liquid phase parameter and the parameter value of the second liquid phase parameter belongs to the fluid-containing reservoir in the target area.
  • the above judgment process is performed on the inversion result of the first liquid phase parameter and the inversion result of the second liquid phase parameter in the target area, so that the fluid-containing reservoir in the target area can be determined.
  • the first liquid phase parameter may be a measurement reflecting the coupling relationship between solid volume and fluid volume change, and the unit may be N/m2; the second liquid phase parameter may be to allow a preset volume of fluid to flow into the dual phase. A measure of the force required to keep the total volume of the two-phase medium unchanged.
  • the unit can be N/m2; the inversion result of the first liquid phase parameter and the inversion of the second liquid phase parameter In the result, the parameter value of the first liquid phase parameter corresponding to the same gather data and time data corresponds to the parameter value of the second liquid phase parameter.
  • the inversion result of the first liquid phase parameter includes the correspondence between time, gather and the first liquid phase parameter
  • the inversion result of the second liquid phase parameter includes the correspondence between time, gather and the second liquid phase parameter relationship.
  • the inversion result of the first liquid phase parameter and the inversion result of the second liquid phase parameter are obtained in advance.
  • the value range of the first liquid phase parameter of the fluid-containing reservoir is set according to actual experience, and is not limited in the embodiment of the present invention; the value range of the second liquid phase parameter of the fluid-containing reservoir is set according to actual experience, the present invention The embodiment is not limited.
  • the first solid phase parameter, the second solid phase parameter, the first liquid phase parameter, and the second liquid phase parameter are called two-phase media elastic parameters.
  • Fig. 3a is a schematic diagram of the inversion result of the first liquid phase parameter provided by an embodiment of the present invention.
  • the abscissa represents the gather
  • the unit is track
  • the ordinate represents the time
  • the unit is milliseconds.
  • the gray scale indicates the parameter value of the first liquid phase parameter
  • the unit is N/m2.
  • the lighter the gray scale the larger the parameter value of the first liquid phase parameter.
  • Figure 3a shows the correspondence between the gather data, time data and the parameter values of the first liquid phase parameter.
  • a fluid-containing reservoir has a higher liquid phase parameter value than a non-fluid-containing reservoir. The distribution position of the fluid-containing reservoir can be observed through the value of the first liquid phase parameter in Fig. 3a, as shown by the ellipse in Fig. 3a.
  • the physical property parameter of the at least one physical property parameter of the two-phase medium is performed Inversion, the inversion result of each physical parameter of the target area can be obtained. If the at least one physical property parameter is a physical property parameter, compare the parameter value of each physical property parameter in the inversion result of the physical property parameter in the target area with the corresponding oil and gas threshold.
  • the inversion result of the physical property parameter is If there is a parameter value of a physical parameter greater than the corresponding oil and gas threshold, and a parameter value of a physical parameter greater than the oil and gas threshold, the location of the target area corresponding to the fluid-containing reservoir in the target area, then the parameter of the physical parameter greater than the oil and gas threshold The location of the target area corresponding to the value belongs to the oil and gas reservoir of the target area.
  • the above judgment process is performed on the parameter value of each physical parameter in the inversion result of the physical parameter in the target area, so that the oil and gas reservoir in the target area can be predicted.
  • the above judgment process is performed on the parameter value of each physical property parameter in the inversion result of the multiple physical property parameters in the target area, so that the oil and gas reservoir in the target area can be predicted.
  • the at least one physical property parameter includes but is not limited to porosity and oil and gas saturation.
  • the oil and gas threshold corresponding to each physical parameter is set according to actual experience, which is not limited in the embodiment of the present invention.
  • the at least one physical property parameter includes one physical property parameter, which is porosity.
  • Figure 4a is a schematic diagram of the porosity inversion results provided by an embodiment of the present invention. As shown in Figure 4a, the abscissa represents gathers, the unit is track, the ordinate represents time, the unit is milliseconds, and the gray scale in the figure represents The parameter value of porosity, the lighter the gray, the larger the parameter value of porosity. Figure 4a shows the correspondence between gather data, time data and the parameter values of porosity.
  • the oil and gas reservoir has good physical properties and relatively high porosity parameter values. The distribution position of the high porosity corresponding to the oil and gas reservoir can be observed through Figure 4a, as shown by the ellipse in Figure 4a.
  • the at least one physical property parameter includes one physical property parameter, which is oil and gas saturation.
  • Fig. 4b is a schematic diagram of the inversion result of oil and gas saturation provided by an embodiment of the present invention.
  • the abscissa represents gathers
  • the unit is trace
  • the ordinate represents time
  • the unit is milliseconds
  • the gray scale in the figure is shallow Indicates the parameter value of oil and gas saturation. The lighter the gray scale, the larger the parameter value of oil and gas saturation.
  • Figure 4b shows the correspondence between gather data, time data and parameter values of oil and gas saturation.
  • the oil and gas reservoir has good physical properties and has a higher value of oil and gas saturation. The distribution position of high oil and gas saturation can be observed through Fig. 4b, as shown by the ellipse in Fig. 4b.
  • the at least one physical property parameter includes two physical property parameters, porosity and oil and gas saturation.
  • the porosity parameters in the porosity inversion results are greater than the corresponding oil and gas threshold value of the porosity.
  • the position is recorded as the first type of position, and the position where the parameter value of each oil and gas saturation in the inversion result of the oil and gas saturation is greater than the hydrocarbon threshold corresponding to the oil and gas saturation is recorded as the second type of position; then, the first type is obtained
  • the intersection of the position and the second type of position that is, the position corresponding to the same time data and gather data, the third type of position is obtained; then the position in the oil and gas reservoir in the target area is obtained from the third type of position, thereby The oil and gas reservoirs in the target area can be obtained.
  • the oil and gas threshold corresponding to the porosity can be set to 0.045
  • the oil and gas threshold corresponding to the oil and gas saturation can be set to 0.7.
  • the to-be-determined reservoir in the target area is obtained according to the parameter values of the first solid phase parameter and the parameter value of the second solid phase parameter of the dual-phase media in the target area , And then determine the fluid-containing reservoir in the target area according to the parameter value of the first liquid phase parameter and the parameter value of the second liquid phase parameter of the dual-phase medium and the reservoir to be determined in the target area.
  • Fig. 5 is a schematic flow chart of a method for predicting oil and gas reservoirs in dual-phase media according to another embodiment of the present invention. As shown in Fig. 5, on the basis of the foregoing embodiments, further, the first solid phase parameter is obtained
  • the steps of the parameter value of, the parameter value of the second solid phase parameter, the parameter value of the first liquid phase parameter, and the parameter value of the second liquid phase parameter include:
  • DEI( ⁇ ) represents the two-phase medium elastic impedance data volume at the incident angle ⁇
  • I 0 represents the average longitudinal wave impedance of the target area
  • A represents the first solid phase parameter of the two-phase medium
  • N represents the second solid phase parameter of the two-phase medium.
  • Phase parameter P represents the first liquid phase parameter of the two-phase medium
  • Q represents the second liquid phase parameter of the two-phase medium
  • a 0 represents the average value of the first solid phase parameter in the target area
  • N 0 represents the second liquid phase parameter of the target area.
  • the two-phase medium elastic impedance equation includes four parameters: the first solid phase parameter, the second solid phase parameter, the first liquid phase parameter, and the second liquid phase parameter, at least four elastic impedance data volumes with different incident angles need to be inverted .
  • the two-phase medium elastic impedance inversion is performed on at least four pre-stack angle partial stacks of different incident angles in the target area, and at least four two-phase mediums with different incident angles can be obtained.
  • Medium elastic impedance data volume Wherein, the pre-stack gather gathers of the pre-stack angle of the incident angle of the target area may be obtained from the pre-stack gather data of the target area.
  • the specific process of the elastic impedance inversion of the two-phase medium at each incident angle is the same as the algorithm and process of the equivalent media elastic impedance inversion in the prior art, and will not be repeated here.
  • R( ⁇ ) represents the longitudinal wave reflection coefficient corresponding to the incident angle ⁇
  • A represents the first solid phase parameter of the two-phase medium
  • N represents the second solid phase parameter of the two-phase medium
  • P represents the first liquid phase of the two-phase medium Parameter
  • Q represents the second liquid phase parameter of the two-phase medium
  • a( ⁇ ) represents the coefficient corresponding to the first solid phase parameter
  • b( ⁇ ) represents the coefficient corresponding to the second solid phase parameter
  • c( ⁇ ) represents the first liquid parameter
  • d( ⁇ ) represents the coefficient corresponding to the second liquid phase parameter
  • ⁇ A represents the difference between the first solid phase parameter of the two-phase medium on both sides of the reflective interface
  • ⁇ N represents the second solid phase parameter of the two-phase medium on both sides of the reflective interface.
  • ⁇ P represents the difference between the first liquid phase parameters of the two-phase medium on both sides of the reflective interface
  • ⁇ Q represents the difference between the second liquid phase parameters of the two-phase medium on both sides of the reflective interface
  • the reflection coefficient of the longitudinal wave corresponding to the incident angle ⁇ can be expressed as the logarithm of the impedance.
  • the impedance expression of the reflection coefficient of the two-phase medium is as follows:
  • R( ⁇ ) represents the longitudinal wave reflection coefficient corresponding to the incident angle ⁇
  • DEI 1 ( ⁇ ) represents the elastic impedance value of the upper two-phase medium of the reflective interface
  • DEI 2 ( ⁇ ) represents the elastic impedance value of the lower two-phase medium of the reflective interface
  • DEI( ⁇ ) represents the elastic impedance data volume of the two-phase medium at the incident angle ⁇ .
  • FIG. 6 is a schematic diagram of the elastic impedance curve of a two-phase medium with different incident angles according to an embodiment of the present invention. As shown in FIG. 6, the incident angles are 10 degrees, 15 degrees, 20 degrees and 25 degrees, and different angles can be seen There is a certain difference in the elastic impedance curve of the two-phase medium. This difference can be used to invert the elastic parameters of the two-phase medium: the first solid phase parameter, the second solid phase parameter, the first liquid phase parameter, and the second liquid phase parameter. Wherein, the elastic impedance curves of the two-phase medium with different incident angles shown in FIG. 6 are calculated by using the single-well data of the target area.
  • the exponential terms at each sampling point are the same.
  • Perform logarithmic operation on the elastic impedance equation of the two-phase medium and bring in at least four two-phase medium elastic impedance data volumes with different incident angles and the exponential terms of the corresponding angles to obtain a multivariate linear equation system.
  • the parameter values of the first solid phase parameter, the parameter value of the second solid phase parameter, the parameter value of the first liquid phase parameter, and the parameter value of the second liquid phase parameter can be obtained.
  • FIG. 7 is a schematic diagram of comparison of the elastic parameters of a two-phase medium according to an embodiment of the present invention.
  • the actual value of the first solid phase parameter A, the actual value of the second solid phase parameter N, and the actual value of the first liquid The actual value of the phase parameter P and the actual value of the second liquid phase parameter Q are represented by solid lines.
  • the solution value of the first solid phase parameter A obtained by solving the quaternary linear equation (8), the second solid phase parameter N The solution value, the solution value of the first liquid phase parameter P and the solution value of the second liquid phase parameter Q are represented by dashed lines.
  • the simplified equation of the reflection coefficient of the two-phase medium is the sum of the solid phase part and the liquid phase part, and the solid phase part is based on the first solid phase parameter and the first solid phase parameter.
  • the two solid phase parameters are obtained with their respective coefficients, and the liquid phase part is obtained according to the first liquid phase parameters and the second liquid phase parameters and their respective coefficients; wherein, the first solid phase parameter corresponds to The coefficient, the coefficient corresponding to the second solid phase parameter, the coefficient corresponding to the first liquid phase parameter, and the coefficient corresponding to the second liquid phase parameter are all related to the incident angle.
  • the first solid phase parameter is a measure of the tensile stress required to prevent the solid framework of the dual-phase medium from compressing laterally
  • the second solid phase parameter is the dual
  • the solid framework of the phase medium is a measure of the resistance to shear strain
  • the coefficient corresponding to the first solid phase parameter is determined according to the Lame parameter coefficient of the equivalent medium reflection coefficient equation
  • the coefficient corresponding to the second solid phase parameter is determined according to the coefficient of the Lame parameter of the equivalent medium reflection coefficient equation.
  • the coefficient of the shear modulus of the effective medium reflection coefficient equation is determined.
  • the first solid phase parameter is a measure of the tensile stress required to prevent lateral compression of the solid framework of the dual-phase medium, and the unit may be N/m2.
  • the second solid phase parameter is a measure of the resistance to shear strain of the solid framework of the dual-phase medium, and the unit may be N/m2.
  • the solid-phase partial reflection coefficient in the dual-phase medium is similar to the equivalent medium reflection coefficient
  • the first solid-phase parameter is similar to the Lame parameter in the equivalent medium reflection coefficient equation
  • the second solid-phase parameter is similar to the equivalent
  • the shear modulus in the medium reflection coefficient equation therefore, the coefficient corresponding to the first solid phase parameter can be determined according to the Lame parameter coefficient of the equivalent medium reflection coefficient equation
  • the coefficient corresponding to the second solid phase parameter can be
  • the coefficient of shear modulus is determined according to the equivalent medium reflection coefficient equation.
  • the coefficient a( ⁇ ) corresponding to the first solid phase parameter can be expressed as:
  • the coefficient b( ⁇ ) corresponding to the second solid phase parameter can be expressed as:
  • K is a constant, which can be the square of the ratio of the average shear wave velocity to the average longitudinal wave velocity of the solid medium
  • r is a constant, which can be the average ratio of the change rate of the shear wave velocity to the density change of the solid medium.
  • K and r can be obtained by analyzing the logging data of the target area.
  • Fig. 8 is a schematic flow chart of a method for predicting a two-phase medium oil and gas reservoir provided by another embodiment of the present invention. As shown in Fig. 8, on the basis of the foregoing embodiments, further, the first liquid phase parameter is obtained
  • the steps of the corresponding coefficient and the coefficient corresponding to the second liquid phase parameter include:
  • each incident angle and The longitudinal wave reflection coefficient corresponding to each group of dual-phase media elastic parameters is obtained by solving the general equation of the dual-phase media reflection coefficient; each group of dual-phase media elastic parameters includes the first solid phase parameter, the second solid phase parameter, and the A first liquid phase parameter and the second liquid phase parameter;
  • J sets of dual-phase media elastic parameters are randomly constructed, and each set of dual-phase media elastic parameters includes the first solid phase parameter, the second solid phase parameter, and the first solid phase parameter.
  • Set I incident angles, and I incident angles belong to the pre-stack gather angle range.
  • the free combination of I incident angle and J sets of two-phase media elastic parameters is input into the simplified equation of the reflection coefficient of the two-phase medium, and the simplified equation of the reflection coefficient of I ⁇ J two-phase media can be obtained.
  • the simplified equation of the reflection coefficient of the medium constitutes an I ⁇ J order matrix equation group.
  • the petrophysical model of the target area is set based on actual experience, which is not limited in the embodiment of the present invention.
  • the pre-stack gather angle range is set according to actual experience, which is not limited in the embodiment of the present invention.
  • the specific values of I and J are set according to actual needs, and are not limited in the embodiment of the present invention.
  • D is the I ⁇ J-dimensional longitudinal wave reflection coefficient vector
  • the element in the j-th row and the i-th column in D is the elastic parameter of the j-th two-phase medium and the longitudinal wave reflection coefficient corresponding to the i-th incident angle
  • S s represents the solid phase coefficient matrix
  • W s represents the solid phase elastic parameter matrix
  • S F represents the liquid phase coefficient matrix
  • W F represents the liquid phase elastic parameter matrix
  • i is a positive integer and i is less than or equal to I
  • j is a positive integer and j is less than or equal to J
  • I and J are positive integers.
  • the elastic parameters of the j-th group of dual-phase media and the longitudinal wave reflection coefficient corresponding to the i-th incident angle can be obtained by solving the general equation of the reflection coefficient of the dual-phase medium.
  • the specific solution process is based on the prior art and will not be repeated here.
  • the general equation of the reflection coefficient of the dual-phase medium can be expressed as follows:
  • a 1 , N 1 , Q 1 , R 1 are the elastic parameters of the upper medium
  • a 2 , N 2 , Q 2 , and R 2 are the elastic parameters of the lower medium
  • ⁇ 1 is the porosity of the upper medium
  • ⁇ 2 is the porosity of the lower medium
  • l 11 , l 12 , l 1 , l 21 , l 22 , l 2 , l i are respectively P 11 , P 12 , S 1 , P 21 , P 22 , S 2 , P i circular wave number
  • m 11 , m 12 , m 21 , m 22 are the ratio of the fluid amplitude to the solid amplitude corresponding to
  • the I ⁇ J order matrix equation group (11) the I incident angle and the J group of two-phase media elastic parameters are known numbers, D has been calculated, and the solid phase coefficient matrix S s can be calculated according to formula (9) And (10), the solid-phase elastic parameter matrix W s can be calculated according to the parameter values of the first solid-phase parameter and the second solid-phase parameter in the elastic parameters of the two-phase medium in the group J, and the liquid-phase elastic parameter matrix W F can be calculated based on the parameter value of the first liquid phase parameter and the parameter value of the second liquid phase parameter in the elastic parameters of the J group of two-phase media.
  • the matrix equations of order I ⁇ J (11) can be transformed into the following expressions:
  • the coefficient corresponding to the incident angle and the first liquid phase parameter may be established by data fitting.
  • the coefficient corresponding to the first liquid phase parameter corresponding to the incident angle can be obtained.
  • the relationship between the incident angle and the coefficient corresponding to the second liquid phase parameter can be established by data fitting.
  • Fig. 9 is a schematic flow chart of a method for predicting a two-phase medium oil and gas reservoir provided by another embodiment of the present invention. As shown in Fig. 9, on the basis of the foregoing embodiments, further, according to the first solid phase parameter The parameter value of, the parameter value of the second solid phase parameter, the parameter value of the first liquid phase parameter, and the parameter value of the second liquid phase parameter to obtain the parameter value of the at least one physical property parameter includes:
  • the parameter value of the first solid phase parameter, the parameter value of the second solid phase parameter, the parameter value of the first liquid phase parameter, and the parameter value of the second liquid phase parameter are input as known quantities into In the physical parameter target inversion function, an equation to be solved is obtained, and the unknown quantity of the equation to be solved includes the at least one physical parameter.
  • the physical property parameters of the target area are the values of a set of physical property parameters corresponding to the maximum value of the posterior probability density on the premise that the elastic parameters of the two-phase medium are known, and the physical property parameter target inversion function It can be expressed as:
  • the vector X represents at least one physical parameter
  • X i represents at least the i-th set of parameter values a physical parameters
  • Sg i represents the i-th parameter value of oil and gas saturation
  • Por i represents the i-th parameter value of porosity
  • E) represents the probability of obtaining the i-th set of parameter values of the at least one physical property parameter when the elastic parameters of the two-phase medium are known, and the prior distribution function P(X i ) represents obtaining The probability of the i-th set of parameter values
  • the target inversion function is composed of a priori distribution function and a likelihood function.
  • the prior distribution function P(X i ) is obtained by statistics of logging samples in the study area, while the likelihood function P(E
  • the relationship between the elastic parameter of the dual-phase medium and the petrophysical model of the at least one physical parameter can be expressed as follows:
  • the vector E represents the elastic parameter of the two-phase medium
  • E [A N P Q] T
  • the vector X represents the at least one physical parameter
  • represents the error between the petrophysical model and the measured value
  • the function f() represents the petrophysical model
  • the at least one physical property parameter is randomly generated according to the prior distribution probability of the at least one physical property parameter, and the at least one physical property parameter and formula (14) are randomly generated
  • the elastic parameter of the dual-phase medium corresponding to the at least one physical property parameter generated randomly is obtained.
  • a sample training data set of liquid phase parameters, and then conventional Bayesian classification training is performed based on the sample training data set, and the likelihood function P(E
  • the target inversion function can be determined, and the equation to be solved can be solved. Since the value range of each physical property parameter in the at least one physical property parameter is limited, the posterior probability density value of the target inversion function can be obtained by enumerating each physical property parameter in the at least one physical property parameter , You can get multiple posterior probability density values. A set of enumerated values of the at least one physical property parameter corresponding to the maximum value of the posterior probability density is taken as the parameter value of the at least one physical property parameter.
  • the parameter value of at least one physical property parameter corresponding to the maximum value of the posterior probability density of the target inversion function is obtained as the inversion value of the final physical property parameter
  • the value range of each physical parameter is set according to actual experience, which is not limited in the embodiment of the present invention.
  • Fig. 10 is a schematic diagram of the curves of physical property parameters obtained by different methods provided by an embodiment of the present invention.
  • the dotted line in the figure is the method for obtaining oil and gas obtained by using the dual-phase medium oil and gas reservoir prediction method provided by the embodiment of the present invention.
  • the curve of saturation Sg and the curve of porosity Por is the curve of oil and gas saturation Sg and the curve of porosity Por obtained by the inversion method of single-phase media physical properties in conventional technology.
  • the lines are the actual oil and gas saturation Sg curve and the porosity Por curve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne un procédé et un dispositif de prédiction d'un réservoir d'huile et de gaz à l'aide d'un milieu diphasique, le procédé consistant : en fonction de la valeur de paramètre d'un premier paramètre de phase solide et de la valeur de paramètre d'un second paramètre de phase solide d'un milieu diphasique dans une région cible, à obtenir un réservoir à déterminer dans la région cible (S101) ; en fonction de la valeur de paramètre d'un premier paramètre de phase liquide et de la valeur de paramètre d'un second paramètre de phase liquide du milieu diphasique, ainsi que du réservoir à déterminer dans la région cible, à déterminer un réservoir contenant un fluide dans la région cible (S102) ; et en fonction de la valeur de paramètre d'au moins un paramètre de propriété physique du milieu diphasique et du réservoir contenant un fluide dans la région cible, à prédire un réservoir d'huile et de gaz dans la région cible (S103). Le dispositif est utilisé pour exécuter le procédé décrit. Le procédé et le dispositif de prédiction d'un réservoir d'huile et de gaz à l'aide d'un milieu diphasique décrits améliorent la précision de prédiction de réservoir d'huile et de gaz.
PCT/CN2020/117050 2019-09-25 2020-09-23 Procédé et dispositif de prédiction de réservoir d'huile et de gaz à l'aide d'un milieu diphasique WO2021057773A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3158470A CA3158470A1 (fr) 2019-09-25 2020-09-23 Methode et appareil pour prevoir un reservoir d'hydrocarbures avec un vehicule biphase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910908826.0A CN112558153B (zh) 2019-09-25 2019-09-25 一种双相介质的油气储层预测方法及装置
CN201910908826.0 2019-09-25

Publications (1)

Publication Number Publication Date
WO2021057773A1 true WO2021057773A1 (fr) 2021-04-01

Family

ID=75029045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117050 WO2021057773A1 (fr) 2019-09-25 2020-09-23 Procédé et dispositif de prédiction de réservoir d'huile et de gaz à l'aide d'un milieu diphasique

Country Status (3)

Country Link
CN (1) CN112558153B (fr)
CA (1) CA3158470A1 (fr)
WO (1) WO2021057773A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534262B (zh) * 2021-06-24 2023-02-03 中国海洋石油集团有限公司 基于大数据分析的砂泥互层型储层发育带地震的预测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174888A (zh) * 2011-03-03 2011-09-07 康志勇 一种基于储集岩岩性参数的地层数据处理方法
WO2015014762A2 (fr) * 2013-07-29 2015-02-05 Cgg Services Sa Procédé et dispositif permettant de générer et d'appliquer des paramètres élastiques anisotropes dans des milieux isotropes transverses horizontaux
CN104459778A (zh) * 2014-12-03 2015-03-25 中国石油天然气股份有限公司 一种基于双相介质固液解耦的叠前地震反演方法及系统
CN106772604A (zh) * 2016-12-28 2017-05-31 中国石油化工股份有限公司 基于流体体积压缩系数的叠前地震反演方法
CN107193041A (zh) * 2017-04-19 2017-09-22 赵永兴 基于双相介质的有效储层正演模拟的方法及系统
CN107918148A (zh) * 2016-10-08 2018-04-17 中国石油化工股份有限公司 双相介质方程简化计算方法及系统
CN109283580A (zh) * 2018-11-15 2019-01-29 中国地质大学(武汉) 一种碳酸盐岩储层物理模型选择方法
CN109782348A (zh) * 2019-01-22 2019-05-21 太原理工大学 基于多孔介质模型的储层流体与脆性同时反演的识别方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7234521B2 (en) * 2003-03-10 2007-06-26 Baker Hughes Incorporated Method and apparatus for pumping quality control through formation rate analysis techniques
CN102768367B (zh) * 2012-07-04 2014-12-31 中国石油集团川庆钻探工程有限公司地球物理勘探公司 基于三重条件约束的双相介质avo正演方法
GB2523020B (en) * 2012-12-06 2017-09-20 Schlumberger Holdings Multiphase flare for effluent flow
CN103364834B (zh) * 2013-07-29 2016-08-10 成都晶石石油科技有限公司 一种利用叠前地震频散分析预测储层渗透率的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174888A (zh) * 2011-03-03 2011-09-07 康志勇 一种基于储集岩岩性参数的地层数据处理方法
WO2015014762A2 (fr) * 2013-07-29 2015-02-05 Cgg Services Sa Procédé et dispositif permettant de générer et d'appliquer des paramètres élastiques anisotropes dans des milieux isotropes transverses horizontaux
CN104459778A (zh) * 2014-12-03 2015-03-25 中国石油天然气股份有限公司 一种基于双相介质固液解耦的叠前地震反演方法及系统
CN107918148A (zh) * 2016-10-08 2018-04-17 中国石油化工股份有限公司 双相介质方程简化计算方法及系统
CN106772604A (zh) * 2016-12-28 2017-05-31 中国石油化工股份有限公司 基于流体体积压缩系数的叠前地震反演方法
CN107193041A (zh) * 2017-04-19 2017-09-22 赵永兴 基于双相介质的有效储层正演模拟的方法及系统
CN109283580A (zh) * 2018-11-15 2019-01-29 中国地质大学(武汉) 一种碳酸盐岩储层物理模型选择方法
CN109782348A (zh) * 2019-01-22 2019-05-21 太原理工大学 基于多孔介质模型的储层流体与脆性同时反演的识别方法

Also Published As

Publication number Publication date
CN112558153A (zh) 2021-03-26
CA3158470A1 (fr) 2021-04-01
CN112558153B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
CA3069442C (fr) Procede de prediction de rupture a angle eleve, dispositif informatique et support de stockage lisible par ordinateur
RU2014107470A (ru) Инверсия анизотропии многоскважинной системы
CN109407150A (zh) 基于统计岩石物理的页岩储层可压裂性解释方法及系统
Mehra et al. Acoustic pulse propagation in an urban environment using a three-dimensional numerical simulation
WO2021057773A1 (fr) Procédé et dispositif de prédiction de réservoir d'huile et de gaz à l'aide d'un milieu diphasique
CN103630939A (zh) 一种气层识别评价方法
WO2022011450A1 (fr) Systèmes et procédés de caractérisation ultrasonore de permagel et de sol gelé
Song et al. Seismic attenuation and dispersion in a cracked porous medium: An effective medium model based on poroelastic linear slip conditions
Djeran-Maigre et al. Soliton-like Lamb waves in layered media
CN114548520A (zh) 一种页岩油压裂潜力预测方法、系统、设备及终端
CN113433587B (zh) 岩石物理反演方法及系统
Shahat et al. Electrical tortuosity index: a new approach for identifying rock typing to enhance reservoir characterization using well-log data of uncored wells
CN104122584A (zh) 根据地震数据确定方向性的方法及装置
CN112699528A (zh) 含规则裂缝柱塞岩样数字岩心建模方法及装置
CN112147688B (zh) 一种储层油气识别方法和装置
Moyano et al. Improved quantitative calibration of rock physics models
CN115480296A (zh) 天然气水合物稳定带底界预测方法及装置
CN114460639A (zh) 页岩油储层渗透率的预测方法及装置
Morozov et al. Elastic potential and pressure dependence of elastic moduli in fluid-saturated rock with double porosity
US20220390631A1 (en) Laplace-fourier 1.5d forward modeling using an adaptive sampling technique
Ma et al. Pore System Characterization of Carbonate Rocks: A Multiphysics Approach Through Acoustic and NMR Measurements
Köhler et al. Rapid source parameter estimations of southern California earthquakes using PreSEIS
CN113075727B (zh) 基于振幅方位导数的储层裂缝分布特征确定方法及系统
CN112255679A (zh) 地震资料绕射深度偏移处理方法及装置
CN112596102B (zh) 油藏渗流特征参数的地球物理预测方法、装置及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 3158470

Country of ref document: CA

122 Ep: pct application non-entry in european phase

Ref document number: 20868128

Country of ref document: EP

Kind code of ref document: A1