WO2021057772A1 - 测试方法、装置及系统 - Google Patents

测试方法、装置及系统 Download PDF

Info

Publication number
WO2021057772A1
WO2021057772A1 PCT/CN2020/117049 CN2020117049W WO2021057772A1 WO 2021057772 A1 WO2021057772 A1 WO 2021057772A1 CN 2020117049 W CN2020117049 W CN 2020117049W WO 2021057772 A1 WO2021057772 A1 WO 2021057772A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
radio frequency
signal
terminal device
frequency signal
Prior art date
Application number
PCT/CN2020/117049
Other languages
English (en)
French (fr)
Inventor
郝博
黄叶村
胡亮
郭钜添
翟巍
颜成文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20869852.2A priority Critical patent/EP4024732A4/en
Publication of WO2021057772A1 publication Critical patent/WO2021057772A1/zh
Priority to US17/702,181 priority patent/US20220216926A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0085Monitoring; Testing using service channels; using auxiliary channels using test signal generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/001Analogue/digital/analogue conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/17Detection of non-compliance or faulty performance, e.g. response deviations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/354Adjacent channel leakage power

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a testing method, device, and system.
  • LTE long term evolution
  • WCDMA wideband code division multiple access
  • GSM global system for mobile communications
  • TD-SCDMA time division-synchronous code division multiple access
  • WLAN wireless local area network
  • 5G next-generation communication protocols
  • terminal devices will need to support more and more communication protocols, which poses a very high challenge to the test efficiency of the communication functions of terminal devices under different communication protocols.
  • the testing of communication functions includes a swept-frequency tuning test method and a single-protocol fast Fourier transform test method.
  • the terminal equipment can change the local oscillator frequency of the down-conversion mixer so that the difference between the frequency of the input signal under test and the local oscillator frequency is equal to the required fixed intermediate frequency;
  • the pass filter takes out the required difference frequency from the intermediate frequency signal, and tests and analyzes the signal to be measured.
  • the test equipment digitizes the signal to be tested in the time domain and then executes the fast Fourier transform to obtain the frequency spectrum.
  • the low-pass filter in the test equipment removes the high-frequency components outside the measurement range of the signal under test, and then samples the waveform for analog-to-digital conversion.
  • the microprocessor in the test equipment receives the sampled waveform and uses the fast Fourier transform to calculate the frequency spectrum of the waveform.
  • the swept-frequency tuning test method has a complicated hardware system and is only suitable for single-protocol non-real-time measurement, and the test speed is slower than that of large batches of multiple protocols.
  • the single-protocol Fast Fourier Transform test method is deeply coupled with the characteristics of the front-end RF device.
  • each protocol can only be tested serially.
  • the RF front-end needs to be reconfigured in the middle.
  • the test time varies with The proliferation of test protocols has grown exponentially. Therefore, the above-mentioned two existing communication function test methods have a relatively slow test speed for the communication function of a multi-protocol terminal device.
  • the embodiments of the present application provide a test method, device, and system to solve the problem of slow test speed for multi-protocol terminal equipment in the prior art.
  • the first aspect provides a test method, which can be applied to test equipment or chips of test equipment.
  • the following description is applied to a test device as an example.
  • the test device receives an uplink radio frequency signal sent by a terminal device.
  • the uplink radio frequency signal is generated by superimposing at least two test signals, and each test signal corresponds to a communication protocol. , Used to test the downlink communication function of the terminal device corresponding to the communication protocol.
  • the test device After extracting the at least two test signals from the uplink radio frequency signal, the test device tests the at least two test signals respectively, and obtains the uplink test result of the terminal device.
  • test method when the terminal device contains multiple communication protocols, parallel testing of multiple communication protocols can be implemented, which significantly improves the test efficiency of the communication function of the terminal device.
  • the extraction of the at least two test signals from the uplink radio frequency signal by the test device includes: the test device performs analog-to-digital conversion on the uplink radio frequency signal to generate in-phase quadrature Signal; the test equipment digitally down-converts the in-phase quadrature signal to the radio frequency frequency point of the communication protocol, and extracts the at least two test signals.
  • the test signal can be extracted quickly and accurately through the analog-to-digital conversion and down-conversion of the uplink radio frequency signal, thereby realizing the parallel test of multiple communication protocols, and significantly improving the communication function of the terminal device The test efficiency.
  • the method before the test device digitally down-converts the in-phase quadrature signal to the radio frequency point of the communication protocol, the method further includes: the test device performs the digital down-conversion of the in-phase quadrature signal Perform filtering.
  • test method provided by this possible implementation manner can remove the clutter in the uplink radio frequency signal, thereby extracting the test signal more accurately.
  • the method further includes: the test device performs preprocessing on the at least two test signals, and the preprocessing Including: signal synchronization processing and/or signal equalization processing.
  • the test method provided by this possible implementation manner can reduce the influence of signal interference on the test result and improve the accuracy of the test result.
  • the uplink test result includes at least one of the following: error vector magnitude EVM, adjacent channel power ratio ACPR, power.
  • the second aspect provides a test method, which can be applied to terminal equipment, and can also be applied to the chip of the terminal equipment.
  • the following describes the application to a terminal device as an example.
  • the terminal device generates an uplink radio frequency signal according to a test protocol, and sends the uplink radio frequency signal to the test device.
  • the third aspect provides a test method, which can be applied to test equipment, and can also be applied to the chip of the test equipment.
  • the following description is applied to a test device as an example.
  • the test device generates at least two test signals according to a communication protocol, and each of the test signals corresponds to one of the communication protocols, and is used to test the terminal device corresponding to the communication protocol.
  • the test device superimposes the at least two test signals to generate a downlink radio frequency signal, and sends the downlink radio frequency signal to a terminal device, where the downlink radio frequency signal is used to determine a downlink test result of the terminal device.
  • the test equipment generating a downlink radio frequency signal according to the at least two test signals includes: the test equipment up-converts the at least two test signals occupying different frequency bands in the frequency domain to At the radio frequency frequency point of the communication protocol, an in-phase quadrature signal is superimposed and synthesized in the time domain; the test equipment performs digital-to-analog conversion on the in-phase quadrature signal to generate the downlink radio frequency signal.
  • the method before the test device up-converts the at least two test signals to the radio frequency point of the communication protocol, and superimposes and synthesizes the in-phase quadrature signal, the method further includes: the test device The at least two test signals are filtered.
  • the downlink test result includes at least one of the following: signal sensitivity, blocking, and adjacent channel selectivity.
  • the fourth aspect provides a test method, which can be applied to terminal equipment, and can also be applied to the chip of the terminal equipment.
  • the following describes the application to a terminal device as an example.
  • the terminal device receives a downlink radio frequency signal sent by the test device, and determines the downlink test result of the terminal device according to the downlink radio frequency signal.
  • a fifth aspect provides a testing device, including: a first transceiver module and a first processing module.
  • the first transceiver module is used to receive an uplink radio frequency signal sent by a terminal device.
  • the uplink radio frequency signal is generated by superimposing at least two test signals.
  • Each test signal corresponds to a communication protocol and is used to test the corresponding terminal device.
  • the first processing module is configured to extract the at least two test signals from the uplink radio frequency signal; test the at least two test signals respectively, and obtain an uplink test result of the terminal device.
  • the first processing module is specifically configured to perform analog-to-digital conversion on the uplink radio frequency signal to generate an in-phase quadrature signal; digitally down-convert the in-phase quadrature signal to the communication And extract the at least two test signals at the radio frequency point of the protocol.
  • the first processing module is further configured to filter the in-phase quadrature signal.
  • the first processing module is further configured to perform preprocessing on the at least two test signals, and the preprocessing includes: signal synchronization processing and/or signal equalization processing.
  • the uplink test result includes at least one of the following: error vector magnitude EVM, adjacent channel power ratio ACPR, power.
  • a sixth aspect provides a testing device, including: a third transceiver module and a third processing module.
  • the third processing module is configured to generate the uplink radio frequency signal
  • the third transceiver module is configured to send the uplink radio frequency signal to the test equipment.
  • a seventh aspect provides a testing device, including: a second processing module and a second transceiver module.
  • the second processing module is configured to generate at least two test signals according to the communication protocol, each of the test signals corresponding to a kind of the communication protocol, and is used to test the uplink communication function of the terminal device corresponding to the communication protocol;
  • the at least two test signals are superimposed to generate a downlink radio frequency signal;
  • the second transceiver module is configured to send the downlink radio frequency signal to a terminal device, and the downlink radio frequency signal is used to determine a downlink test result of the terminal device.
  • the second processing module is specifically used for the test device to up-convert the at least two test signals occupying different frequency bands in the frequency domain to the radio frequency point of the communication protocol , Superimposing and synthesizing in-phase quadrature signals in the time domain; performing digital-to-analog conversion on the in-phase quadrature signals to generate the downlink radio frequency signal.
  • the second processing module is further configured to filter the at least two test signals.
  • the downlink test result includes at least one of the following: signal sensitivity, blocking, and adjacent channel selectivity.
  • An eighth aspect provides a testing device, including: a fourth processing module and a fourth transceiver module.
  • the fourth transceiver module is used to receive the downlink radio frequency signal sent by the test equipment;
  • the fourth processing module is configured to determine the downlink test result of the terminal device according to the downlink radio frequency signal.
  • a ninth aspect provides an electronic device, including: a memory and a processor
  • the memory is used to store executable instructions of the processor
  • the processor is configured to receive an uplink radio frequency signal sent by a terminal device, where the uplink radio frequency signal is generated by at least two test signals, and each of the test signals corresponds to a communication protocol, and is used to test the corresponding communication protocol of the terminal device.
  • the downlink communication function of the communication protocol extract the at least two test signals from the uplink radio frequency signal; test the at least two test signals separately, and obtain the uplink test result of the terminal device.
  • the processor is specifically configured to: perform analog-to-digital conversion on the uplink radio frequency signal to generate an in-phase quadrature signal; and digitally down-convert the in-phase quadrature signal to the communication protocol And extract the at least two test signals.
  • the processor is further configured to filter the in-phase quadrature signal.
  • the processor is further configured to perform preprocessing on the at least two test signals, where the preprocessing includes: signal synchronization processing and/or signal equalization processing.
  • the uplink test result includes at least one of the following: error vector magnitude EVM, adjacent channel power ratio ACPR, power.
  • a tenth aspect provides an electronic device, including: a memory and a processor;
  • the memory is used to store executable instructions of the processor
  • the processor is configured to generate an uplink radio frequency signal according to a test protocol, and send the uplink radio frequency signal to a test device.
  • An eleventh aspect provides an electronic device, including: a memory and a processor;
  • the memory is used to store executable instructions of the processor
  • the processor is configured to: generate at least two test signals according to a communication protocol, and each of the test signals is for a communication protocol and is used to test the uplink communication function of the terminal device corresponding to the communication protocol;
  • the at least two test signals generate a downlink radio frequency signal; the downlink radio frequency signal is sent to a terminal device, and the downlink radio frequency signal is used to determine a downlink test result of the terminal device.
  • the processor is specifically configured to: up-convert the at least two test signals to a radio frequency point of the communication protocol, superimpose and synthesize an in-phase quadrature signal;
  • the quadrature signal undergoes digital-to-analog conversion to generate the downlink radio frequency signal.
  • the processor is further configured to: the test device filters the at least two test signals.
  • the downlink test result includes at least one of the following: signal sensitivity, blocking, and adjacent channel selectivity.
  • a twelfth aspect provides an electronic device, including: a memory and a processor;
  • the memory is used to store executable instructions of the processor
  • the processor is configured to receive a downlink radio frequency signal sent by a test device, and determine a downlink test result of the terminal device according to the downlink radio frequency signal.
  • the thirteenth aspect provides a test system, including: test equipment, terminal equipment, switches, and servers;
  • the test device is connected to the terminal device, and the switch is respectively connected to the test device, the terminal device, and the server;
  • the terminal device is used to send an uplink radio frequency signal to the test device or receive a downlink radio frequency signal from the test device;
  • the test equipment is used to execute the test method described in the first aspect or the second aspect;
  • the server is configured to send a test instruction to the test device and the terminal device through the switch, and to obtain an uplink test result and/or a downlink test result of the terminal device.
  • the fourteenth aspect provides a program, which is used to execute the method of the first aspect above when the program is executed by a processor.
  • the fifteenth aspect provides a program, which is used to execute the method of the second aspect above when the program is executed by a processor.
  • a sixteenth aspect provides a program, which is used to perform the method of the third aspect above when the program is executed by a processor.
  • the seventeenth aspect provides a program, which is used to execute the method of the fourth aspect above when the program is executed by a processor.
  • the eighteenth aspect provides a program product, such as a computer-readable storage medium, including the program of the fourteenth aspect.
  • the nineteenth aspect provides a program product, such as a computer-readable storage medium, including the program of the fifteenth aspect.
  • the twentieth aspect provides a program product, such as a computer-readable storage medium, including the program of the sixteenth aspect.
  • the twenty-first aspect provides a program product, such as a computer-readable storage medium, including the program of the seventeenth aspect.
  • a twenty-second aspect provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the method of the first aspect.
  • a twenty-third aspect provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the method of the second aspect.
  • a twenty-fourth aspect provides a computer-readable storage medium, in which instructions are stored, which when run on a computer, cause the computer to execute the method of the third aspect.
  • a twenty-fifth aspect provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the method of the fourth aspect.
  • the test equipment receives the uplink radio frequency signal sent by the terminal equipment, and the uplink radio frequency signal is generated by at least two test signals.
  • Each of the test signals corresponds to a communication protocol and is used to test the communication protocol corresponding to the terminal equipment.
  • Downlink communication function After extracting the at least two test signals from the uplink radio frequency signal, the testing device tests the at least two test signals respectively, and obtains the uplink test result of the terminal device.
  • FIG. 1 is a schematic structural diagram of a terminal device provided by an embodiment of the present invention.
  • FIG. 2 is a system architecture diagram of a test system provided by an embodiment of the application
  • FIG. 3 is a system architecture diagram of another test system provided by an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a test method provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of electromagnetic distribution of a test signal of a terminal device according to an embodiment of the application.
  • FIG. 6 is a schematic flowchart of another test method provided by an embodiment of the application.
  • FIG. 7 is a schematic flowchart of yet another test method provided by an embodiment of the application.
  • FIG. 8 is a schematic flowchart of another test method provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a testing device provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of another test device provided by an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of still another testing device provided by an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of yet another test device provided by an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of a test device provided by an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 15 is a structural block diagram when the terminal device provided by an embodiment of the application is a mobile phone.
  • LTE long term evolution
  • WCDMA wideband code division multiple access
  • GSM global system for mobile communications
  • TD-SCDMA time division-synchronous code division multiple access
  • WLAN wireless local area network
  • 5G next-generation communication protocols
  • terminal devices will need to support more and more communication protocols, which poses a very high challenge to the test efficiency of terminal devices' communication functions under different communication protocols.
  • the testing of the communication function of the terminal equipment includes a swept-frequency tuning test method and a single-protocol fast Fourier transform test method.
  • the terminal equipment can change the local oscillator frequency of the down-conversion mixer so that the difference between the frequency of the input signal under test and the local oscillator frequency is equal to the required fixed intermediate frequency;
  • the pass filter takes out the required difference frequency from the intermediate frequency signal, and tests and analyzes the signal to be measured.
  • the test equipment digitizes the signal to be tested in the time domain and then executes the fast Fourier transform to obtain the frequency spectrum.
  • the low-pass filter in the test equipment removes the high-frequency components outside the measurement range of the signal under test, and then samples the waveform for analog-to-digital conversion.
  • the microprocessor in the test equipment receives the sampled waveform and uses the fast Fourier transform to calculate the frequency spectrum of the waveform.
  • the swept-frequency tuning test method has a complicated hardware system and is only suitable for single-protocol non-real-time measurement, and the test speed is slower than that of large batches of multi-protocols.
  • the single-protocol Fast Fourier Transform test method is deeply coupled with the characteristics of the front-end RF device. For large-scale testing of multi-protocol terminal equipment, each protocol can only be tested serially. The RF front-end needs to be reconfigured in the middle. The test time varies with The increase in testing protocols has multiplied. Therefore, the above-mentioned two existing testing methods for communication protocols have a relatively slow testing speed for multi-protocol terminal devices.
  • the embodiments of the present application provide a test method, device, and system to implement parallel testing of multiple communication protocols, and significantly improve the test efficiency of the communication function of the terminal device.
  • Fig. 1 is a schematic structural diagram of a terminal device provided by an embodiment of the present invention.
  • the existing terminal equipment usually involves multiple communication protocols, and the communication protocols may be, for example, LTE, WCDMA, GSM, TD-SCDMA, WLAN, Bluetooth, etc.
  • the terminal device is provided with a variety of communication modules corresponding to the above-mentioned communication protocols.
  • the communication modules may for example: satellite positioning module, WiFi module, Bluetooth module, 2G communication module, 3G communication module, 4G communication module, etc.
  • the manufacturer needs to test the communication functions of all communication modules of the terminal device before the terminal device leaves the factory.
  • the communication test can be performed in an over-the-air technology (OTA) test environment, or in a conductive environment.
  • OTA over-the-air technology
  • FIG. 2 is a system architecture diagram of a test system provided by an embodiment of the application.
  • the test system includes: a terminal device 101, a test device 102, an antenna 103, a switch 104, a server 105, and a test box 106.
  • the test device 102 is connected to the antenna 103, the terminal device 101 and the switch 104, and the switch 104 is connected to the terminal device 101 and the server 105, respectively.
  • the test system in Figure 2 performs communication testing in an OTA test environment.
  • the terminal device 101 and the antenna 103 are set in the test box 106.
  • the test device 102 receives the uplink radio frequency signal sent by the terminal device 101 through the antenna 103 and sends it to the terminal device 101
  • the downlink radio frequency signal completes the test of the communication function index of the terminal equipment.
  • FIG. 3 is a system architecture diagram of another test system provided by an embodiment of the application.
  • the test system includes a terminal device 201, a test device 202, a switch 203, a server 204, and a probe group 205.
  • the probe set 205 is set on the terminal device and connected to the test device 205.
  • the terminal device 201 is also directly connected to the test device 202 and the switch 203, respectively, and the switch 204 is connected to the server 205.
  • the test system in FIG. 3 performs a communication test in a conductive environment.
  • the test device 102 receives the uplink radio frequency signal sent by the terminal device 201 through the probe set 204, and sends the downlink radio frequency signal to the terminal device 201 to complete the communication function index of the terminal device test.
  • terminal equipment also called user equipment
  • the terminal equipment can be a wireless terminal
  • a wireless terminal can be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connection function Type equipment, or other processing equipment connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks via a radio access network (RAN).
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN radio access network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • they can be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • a wireless terminal can also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, and a remote terminal.
  • the access terminal (access terminal), user terminal (user terminal), and user agent (user agent) are not limited here.
  • the test device can be a device for testing the communication function of the terminal device, it can be an independent external test device, or the board card form is embedded in the personal computer through the bus.
  • the test equipment may be a large-bandwidth multi-protocol parallel test equipment.
  • the switch is used to obtain the uplink test result of the terminal device from the test device, or obtain the downlink test result of the terminal device from the terminal device, and send the uplink test result or the downlink test result to the server.
  • the server is used to store the uplink test result and/or the downlink test result corresponding to the terminal device.
  • the test box is used to accommodate part of the equipment in the test system during testing.
  • the test signal For the communication test performed in the OTA test environment in Figure 2, since the test signal is sent and received through the antenna, the test signal will be interfered by other external signals, and the test box needs to be isolated from the external signal.
  • the test signal For the communication test performed in the conductive environment in Figure 3, since the signal is directly acquired or generated through the probe set, the test signal will not be interfered by other external signals, and no test box is required during the test.
  • FIG. 4 is a schematic flowchart of a testing method provided by an embodiment of the application. This embodiment relates to a process in which the test device determines the uplink test result of the terminal device according to the uplink radio frequency signal sent by the terminal device.
  • the execution subject of this embodiment is the test equipment. As shown in Figure 4, the method includes:
  • the test equipment receives the uplink radio frequency signal sent by the terminal equipment.
  • the uplink radio frequency signal is generated by superimposing at least two test signals.
  • Each test signal corresponds to a communication protocol and is used to test the downlink communication function of the terminal equipment corresponding to the communication protocol.
  • the radio frequency signal usually refers to an adjusted radio wave with a certain transmitting frequency.
  • the uplink radio frequency signal may be the radio frequency signal sent by the terminal equipment to the test equipment, and correspondingly, the downlink radio frequency signal may be the radio frequency signal sent by the test equipment to the terminal equipment.
  • the test equipment collects the uplink radio frequency signal sent by the terminal equipment once within the configured bandwidth.
  • the communication protocol may be the communication protocol corresponding to the communication standard involved in the terminal device. It should be noted that there can be one or more communication protocols. The embodiment of this application does not limit the number of communication protocols, which can be determined according to the number of communication protocols actually included in the terminal device, or according to the communication protocol that needs to be tested. The number is determined.
  • Table 1 is a classification table of communication protocols.
  • communication protocols can be for example: Long Term Evolution (LTE), Code Division Multiple Access (CDMA), Global System for Mobile Communications (Global System) for mobile communications, GSM), time division-synchronous code division multiple access (TD-SCDMA), wireless local area network (WLAN), Bluetooth and other protocols.
  • LTE Long Term Evolution
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • TD-SCDMA time division-synchronous code division multiple access
  • WLAN wireless local area network
  • Bluetooth Bluetooth
  • the communication protocol in Table 1 does not limit the communication protocol in the embodiment of this application, and other communication protocols not in Table 1 can also be used as the communication protocol in the embodiment of this application.
  • the terminal device may include at least two communication protocols, and each communication protocol corresponds to one test signal.
  • each communication protocol corresponds to one test signal.
  • the terminal device When the terminal device generates an uplink radio frequency signal, it can superimpose the test signal corresponding to the communication protocol to generate an uplink radio frequency signal containing a variety of test information.
  • the terminal device may include four communication protocols, 4G protocol, 5G protocol, WiFi protocol, and bit torrent (BT) protocol, and each protocol corresponds to a test signal. Therefore, the uplink radio frequency signal sent by the terminal device to the test device is generated by superimposing test signals corresponding to the 4G protocol, 5G protocol, WiFi protocol, and BT protocol.
  • 4G protocol 4G protocol
  • 5G protocol 5G protocol
  • WiFi protocol 4G protocol
  • BT bit torrent
  • test device receives the uplink radio frequency signal sent by the terminal device.
  • the test system shown in FIG. 2 may be used, and the test device receives the uplink radio signal through an antenna. Radio frequency signal; in another alternative implementation, the test system shown in FIG. 3 can be used.
  • the test equipment directly obtains the uplink radio frequency signal through the probe set installed on the terminal device.
  • the terminal device before the test device receives the uplink radio frequency signal sent by the terminal device, the terminal device needs to receive the uplink test instruction, and according to the uplink test instruction, superimpose, generate and send the corresponding uplink radio frequency signal.
  • generating the uplink radio frequency signal may specifically include the terminal device generating at least two test signals according to the communication protocol, up-converting the at least two test signals to the radio frequency point of the communication protocol, superimposing and synthesizing in-phase quadrature signals, and then combining the in-phase quadrature After the signal undergoes digital-to-analog conversion, an uplink test signal is generated.
  • test signals occupy different frequency bands in the frequency domain.
  • the test signals occupying different frequency bands in the frequency domain can be superimposed in the time domain, thereby combining at least two test signals. It is superimposed into an in-phase quadrature signal, and then an up-conversion signal is obtained through analog-digital conversion.
  • up-conversion is a way of frequency modulation of the test signal, and the embodiment of the present application does not limit how to modulate the frequency of the test signal.
  • the test equipment extracts at least two test signals from the uplink radio frequency signal.
  • At least two test signals can be extracted from the uplink radio frequency signal, so as to test the test signals separately.
  • FIG. 5 is a schematic diagram of electromagnetic distribution of a test signal of a terminal device according to an embodiment of the application. Please refer to Figure 5.
  • Different communication protocols occupy different frequency bands in electromagnetic distribution.
  • the terminal device can generate a test signal corresponding to the frequency band occupied by the communication protocol, and superimpose the test signal to generate an uplink radio frequency signal. Because the frequency bands of the test signals corresponding to the communication protocols are different, the uplink radio frequency signals collected by the test equipment within the configured bandwidth can extract the test signals from the uplink radio frequency signals in the frequency band of the communication protocol, and test the test signals separately.
  • test equipment can extract all test signals from the uplink radio frequency signal sent by the terminal equipment, or extract part of the test signal from the uplink radio frequency signal sent by the terminal equipment.
  • the number of test signals extracted by the radio frequency signal is not limited, and can be determined according to the actual test content.
  • the terminal device includes three communication protocols: communication protocol A, communication protocol B, and communication protocol C.
  • the test device receives a test instruction in advance, indicating that only the communication function of the terminal device with respect to communication protocol A and communication protocol B is tested.
  • the test device can extract only the test signal A corresponding to the communication protocol A and the test signal B corresponding to the communication protocol B from the uplink radio frequency signal, and check Test signal A and test signal B are tested.
  • the test device tests at least two test signals separately, and obtains the uplink test result of the terminal device.
  • the test equipment after the test equipment extracts at least two test signals from the uplink radio frequency signal, it can test the at least two test signals respectively to obtain the test results corresponding to the at least two test signals, and according to the at least two test signals corresponding
  • the result of the test is the uplink test result of the terminal equipment.
  • the uplink test result includes at least one of the following: error vector magnitude (EVM), adjacent channel power ratio ( adjacent channel power ratio, ACPR), power.
  • EVM error vector magnitude
  • adjacent channel power ratio adjacent channel power ratio
  • ACPR adjacent channel power ratio
  • test algorithm may be set according to the actual functional test requirements of the terminal device. It should be noted that the test algorithm may be one or multiple, which is not limited in the embodiment of the present application.
  • the test algorithm preset in the test equipment can test only the test signal corresponding to the specific communication protocol, or test all the test signals.
  • the test device includes a test algorithm a and a test algorithm b.
  • the test algorithm a can test the test signal A and the test signal B separately, and the test algorithm b can test the test signal B only.
  • the test equipment tests at least two test signals separately, and each test signal can obtain multiple test sub-results. According to the test sub-results corresponding to each test signal, the uplink test of the terminal device can be determined result. It should be noted that in the embodiment of the present application, the number of test sub-results corresponding to different test signals may be the same or different, and the embodiment of the present application does not limit this.
  • the uplink radio frequency signal sent by the terminal device is generated by superimposing test signal A, test signal B, and test signal C.
  • the test equipment can test the test signal A to determine the EVM, ACPR and power corresponding to the test signal A.
  • the test equipment can test the test signal B to determine the EVM, ACPR and power corresponding to the test signal B.
  • the test equipment can test the test signal C. Perform a test to determine the EVM and power corresponding to the test signal C. According to the EVM, ACPR and power corresponding to the test signal A, the EVM, ACPR and power corresponding to the test signal B, and the EVM and power corresponding to the test signal C, the uplink test result of the terminal equipment is determined.
  • the embodiment of the application does not limit how to determine the uplink test result of the terminal device according to the test sub-result corresponding to the test signal.
  • the uplink The test result is unqualified.
  • the uplink test result is unqualified.
  • the test device after extracting at least two test signals, can distribute the test signals to the corresponding test modules, so that the test signals can be tested in parallel.
  • protocol compatibility is mostly measured indirectly through indicators such as out-of-band leakage of a single protocol.
  • multi-protocol compatibility can be directly evaluated through the measurement of respective indicators under multiple protocols in parallel.
  • the test device before the test device separately tests the at least two test signals, it further includes: the test device performs preprocessing on the at least two test signals, and the preprocessing includes: signal synchronization processing and/or signal processing. Balanced processing. Among them, the signal synchronization processing is to provide the same time reference for the signal to facilitate subsequent processing.
  • Signal equalization is the equalization of channel characteristics. The equalizer at the receiving end produces the opposite characteristics of the channel to offset the inter-symbol interference caused by the time-varying multipath propagation characteristics of the channel.
  • the test equipment receives the uplink radio frequency signal sent by the terminal device, and the uplink radio frequency signal is generated by superimposing at least two test signals, and each test signal corresponds to a communication protocol. After extracting at least two test signals from the uplink radio frequency signal, the test equipment tests the at least two test signals respectively, and obtains the uplink test results of the terminal equipment.
  • the uplink radio frequency signal collected by the test equipment within the configured bandwidth is superimposed on multiple test signals and rides. Therefore, when testing the test signal, it is necessary to extract at least two test signals from the uplink radio frequency signal first, and then test the test signals separately. The following describes how the test equipment extracts at least two test signals from the uplink radio frequency signal.
  • FIG. 6 is a schematic flowchart of another testing method provided by an embodiment of the application.
  • the execution subject of this embodiment is the test equipment. As shown in Figure 6, the method includes:
  • step S401 the specific implementation process and implementation principle of step S401 are similar to those of step S301 in the first embodiment, and will not be repeated here.
  • the test equipment converts the uplink radio frequency signal to generate an in-phase quadrature signal
  • In-phase/quadrature is a way of expressing radio frequency signals through amplitude and phase in polar coordinates.
  • the radio frequency signal in the form of an analog signal can be directly converted into a baseband IQ signal in the form of a digital signal.
  • the input uplink radio frequency signal can be processed in-phase and quadrature to obtain an in-phase quadrature signal.
  • the uplink radio frequency signal can be decomposed by analog quadrature to generate two mutually orthogonal local oscillator signals as IQ signals.
  • the uplink radio frequency signal can be directly sampled to obtain the IQ signal.
  • filtering method, Hilbert transform method, etc. can also be used. The embodiment of the present application does not limit how to convert the uplink radio frequency signal into an in-phase quadrature signal.
  • the uplink radio frequency signal may also be filtered. Through the filtering process, the clutter interference in the external environment can be reduced, and the accuracy of the extracted test signal can be improved.
  • the embodiment of the present application does not limit the type of filtering processing, and may be, for example, adaptive filtering.
  • the test equipment digitally down-converts the in-phase quadrature signal to a radio frequency point of the communication protocol, and extracts at least two test signals.
  • Digital down converters can be a technology that down-converts the spectrum of an intermediate frequency digital signal to a baseband signal.
  • the test equipment may include a numerically controlled oscillator (NCO), a mixer, and a filter.
  • NCO numerically controlled oscillator
  • Digital down conversion can be realized by digitally controlled oscillators, mixers and filters.
  • the radio frequency signal is an intermediate frequency signal
  • the digital down-conversion can mix the intermediate frequency signal with the carrier signal generated by the digital control oscillator, and then pass the low-pass filter to obtain the baseband signal, thereby realizing the down-conversion function.
  • the in-phase quadrature signal can be digitally down-converted according to the radio frequency frequency of the communication protocol, and the test information corresponding to the signal to be tested can be determined.
  • the above-mentioned test signal is a baseband signal.
  • test device tests at least two test signals separately, and obtains an uplink test result of the terminal device.
  • step S404 the specific implementation process and implementation principle of step S404 are similar to those of step S301 in the first embodiment, and will not be repeated here.
  • the test equipment performs analog-to-digital conversion on the uplink radio frequency signal to generate an in-phase quadrature signal. Subsequently, the test equipment digitally down-converts the in-phase quadrature signal to the radio frequency point of the communication protocol, and extracts at least two test signals, thereby testing the at least two test signals.
  • the test device may extract at least two test signals, thereby completing the parallel test of the communication function of the terminal device with different protocols.
  • the signal receiving function of the terminal device can also be tested, that is, the communication function of the terminal device is tested in the downlink, so as to ensure that the terminal device passes the involved
  • the communication protocol can not only send signals normally, but also receive signals normally. The following describes the downlink test of the communication function of the terminal device provided by the embodiment of the present application.
  • FIG. 7 is a schematic flowchart of yet another test method provided by an embodiment of the application.
  • the execution subject of this embodiment is the test equipment. As shown in Figure 7, the method includes:
  • the test equipment generates at least two test signals according to the communication protocol, and each test signal corresponds to a communication protocol, and is used to test the uplink communication function of the terminal equipment corresponding to the communication protocol.
  • the communication protocol may be the communication protocol corresponding to the communication standard involved in the terminal device.
  • Communication protocols can be for example: long term evolution (LTE), wideband code division multiple access (WCDMA), global system for mobile communications (GSM), time division-synchronization code division multiple access Address (time division-synchronous code division multiple access, TD-SCDMA), wireless local area network (WLAN), Bluetooth and other protocols.
  • LTE long term evolution
  • WCDMA wideband code division multiple access
  • GSM global system for mobile communications
  • time division-synchronization code division multiple access Address time division-synchronous code division multiple access
  • WLAN wireless local area network
  • Bluetooth Bluetooth
  • the terminal device may include at least two communication protocols, and the test device selects part or all of the at least two communication protocols as the communication protocol according to the received test instruction. Subsequently, the test equipment generates a test signal corresponding to the communication protocol.
  • the terminal device may include four communication protocols: 4G protocol, 5G protocol, WiFi protocol, and bit torrent (BT) protocol.
  • the test equipment receives the test instruction and needs to test the 4G protocol, 5G protocol and WiFi protocol. Therefore, the test equipment generates a test signal corresponding to the 4G protocol, a test signal corresponding to the 5G protocol, and a test signal corresponding to the WiFi protocol.
  • test equipment generates a downlink radio frequency signal according to the superposition of at least two test signals
  • the at least two test signals can be superimposed to generate a downlink test signal, so that the terminal device can send the downlink radio frequency signal to the terminal device, so that the terminal device performs downlink test.
  • the downlink test may be a test in which a test device sends a radio frequency signal to a terminal device to test the function of the terminal device to receive a signal.
  • the downlink radio frequency signal may be generated by superimposing all test signals, or may be generated based on part of the test signals, which is not limited in the embodiment of the present application.
  • the terminal device may include four communication protocols: 4G protocol, 5G protocol, WiFi protocol, and bit torrent (BT) protocol.
  • 4G protocol 4G protocol
  • 5G protocol 5G protocol
  • WiFi protocol 4G protocol
  • BT bit torrent
  • the test equipment In a downlink test, if only the communication functions of the terminal equipment with respect to the 4G protocol and the 5G protocol are tested, correspondingly, the test equipment generates a downlink radio frequency signal according to the superposition of the test signal corresponding to the 4G protocol and the signal corresponding to the 5G protocol.
  • the test device sends a downlink radio frequency signal to the terminal device, and the downlink radio frequency signal is used to determine the downlink test result of the terminal device.
  • the test device after the test device generates the downlink radio frequency signal, it can transmit the downlink radio frequency signal to the terminal device, and the terminal device determines the downlink test result of the terminal device according to the downlink radio frequency signal.
  • test device may send the downlink radio frequency signal to the terminal device through a transmit (Tx) path.
  • Tx transmit
  • the terminal device may extract at least two test signals from the downlink radio frequency signal, and then perform separate tests on the at least two test signals to obtain test results corresponding to the at least two test signals, according to the at least two test signals.
  • the test result corresponding to each test signal obtains the downlink test result of the terminal device.
  • the uplink test result includes at least one of the following: signal sensitivity, blocking, and adjacent channel selectivity.
  • the embodiment of this application does not limit how the terminal device receives the downlink radio frequency signal sent by the test device.
  • the test system shown in FIG. 2 may be used, and the terminal device receives the downlink signal through an antenna. Radio frequency signal; in another optional implementation manner, the test system shown in FIG. 3 may be used, and the terminal device directly obtains the downlink radio frequency signal through the probe set installed on the test device.
  • the terminal device may extract the test signal from the downlink radio frequency signal, and perform a parallel test on the test signal to determine the downlink test result of the terminal device .
  • the manufacturer will perform the uplink test and the downlink test on the terminal device before leaving the factory, however, in the test method provided in the embodiment of this application, only the communication function of the terminal device can be tested in the uplink or only The communication function of the terminal device can be tested in the downlink.
  • the communication function of the terminal device can be tested in the uplink first and then the downlink test.
  • the communication function of the terminal device can be tested in the downlink and then the uplink test.
  • the embodiments of this application do not restrict this .
  • the test device generates at least two test signals according to a communication protocol, and each test signal is for one communication protocol, and the test device generates a downlink radio frequency signal according to the at least two test signals, and sends the downlink radio frequency signal to the terminal device.
  • the radio frequency signal, the downlink radio frequency signal is used to determine the downlink test result of the terminal equipment.
  • test equipment generates a downlink radio frequency signal from the test signal.
  • FIG. 8 is a schematic flowchart of another test method provided by an embodiment of the application.
  • the execution subject of this embodiment is the test equipment. As shown in Figure 8, the method includes:
  • the test equipment generates at least two test signals according to the communication protocol, and each test signal corresponds to one communication protocol.
  • step S601 the specific implementation process and implementation principle of step S601 are similar to those of step S501 in the first embodiment, and will not be repeated here.
  • the test equipment up-converts at least two test signals occupying different frequency bands in the frequency domain to a radio frequency point of the communication protocol, and superimposes and synthesizes an in-phase quadrature signal in the time domain.
  • Digital up converter can be a signal with a higher frequency than the original signal after being mixed.
  • the test signal is a baseband signal
  • each test signal can be up-converted into a corresponding intermediate frequency signal through the radio frequency point of the communication protocol corresponding to the test signal. Since different test signals occupy different frequency bands in the frequency domain, by up-conversion, the test signals occupying different frequency bands in the frequency domain can be superimposed in the time domain, thereby superimposing at least two test signals into one lower in-phase Quadrature signal.
  • up-conversion is a way of frequency modulation of the test signal, and the embodiment of the present application does not limit how to modulate the frequency of the test signal.
  • filtering processing may be performed on the at least two test signals. Processing through filtering.
  • the embodiment of the present application does not limit the type of filtering processing, and may be, for example, adaptive filtering.
  • the test equipment performs digital-to-analog conversion on the in-phase quadrature signal to generate a downlink radio frequency signal.
  • the test equipment since the IQ signal generated above is a digital signal, and the radio frequency signal sent through the antenna is an analog signal, the test equipment needs to perform analog-to-digital conversion on the IQ signal to convert the in-phase quadrature signal It is a downlink radio frequency signal.
  • the embodiment of the application does not limit how to convert the IQ signal into a downlink radio frequency signal. In an optional implementation manner, it can be implemented by a digital-to-analog conversion chip.
  • the test device sends a downlink radio frequency signal to the terminal device, and the downlink radio frequency signal is used to determine the downlink test result of the terminal device.
  • step S604 the specific implementation process and implementation principle of step S604 are similar to those of step S503 in the first embodiment, and will not be repeated here.
  • the test equipment up-converts at least two test signals to the radio frequency point of the communication protocol, and superimposes them to synthesize an in-phase quadrature signal; the test equipment performs digital-to-analog conversion on the in-phase quadrature signal to generate a downlink radio frequency signal.
  • the downlink radio frequency signal sent by the test equipment can include at least two test signals, thereby completing the parallel test of the communication functions of the terminal equipment with different protocols.
  • a person of ordinary skill in the art can understand that all or part of the steps in the above method embodiments can be implemented by a program instructing relevant hardware.
  • the foregoing program can be stored in a computer readable storage medium. When the program is executed, it is executed. Including the steps of the foregoing method embodiment; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.
  • FIG. 9 is a schematic structural diagram of a testing device provided by an embodiment of the application.
  • the test device can be used to execute the method on the test equipment side in the embodiments shown in FIGS. 4-6.
  • the test device includes: a first transceiver module 11, a first processing module 12, and a first storage module. Module 13, wherein the first storage module 13 is used to couple with the first processing module 12 to store program instructions and/or data;
  • the first transceiver module 11 is used to receive an uplink radio frequency signal sent by a terminal device.
  • the uplink radio frequency signal is generated by superimposing at least two test signals.
  • Each test signal corresponds to a communication protocol and is used to test the downlink communication of the terminal device corresponding to the communication protocol.
  • the first processing module 12 is configured to extract at least two test signals from the uplink radio frequency signal; test the at least two test signals respectively, and obtain the uplink test results of the terminal equipment.
  • the first processing module 12 may be implemented based on hardware such as a field programmable gate array (FPGA) circuit, a digital signal processing (digital signal processing, DSP) circuit, a central processing unit (CPU), etc. Its processing function.
  • FPGA field programmable gate array
  • DSP digital signal processing
  • CPU central processing unit
  • the first storage module 13 may implement its storage function based on hardware such as double data rate (double data rate, DDR) memory, random access memory (RAM), flash memory (FLASH), and the like.
  • DDR double data rate
  • RAM random access memory
  • FLASH flash memory
  • the testing device may also include a clock module, which may be based on a digital oscillator (numerically controlled oscillator, NCO), a voltage-controlled oscillator (VCO), a phase-locked medium frequency synthesizer (phase- Locked dielectric oscillator (PDRO) and other hardware implement its timing and management functions.
  • a digital oscillator number of controlled oscillator, NCO
  • VCO voltage-controlled oscillator
  • PDRO phase-locked medium frequency synthesizer
  • other hardware implement its timing and management functions.
  • the first processing module 12 is specifically configured to perform analog-to-digital conversion on the uplink radio frequency signal to generate an in-phase quadrature signal; digital down-conversion of the in-phase quadrature signal to the radio frequency point of the communication protocol, And extract at least two test signals.
  • the first processing module 12 is also used to filter the in-phase quadrature signal.
  • the first processing module 12 is further configured to perform preprocessing on at least two test signals, and the preprocessing includes: signal synchronization processing and/or signal equalization processing.
  • the uplink test result includes at least one of the following: error vector magnitude EVM, adjacent channel power ratio ACPR, power.
  • FIG. 10 is a schematic structural diagram of another test device provided by an embodiment of the application.
  • the test device can be used to execute the method on the terminal device side in the embodiments shown in Figs. 4-6.
  • the test device includes: a third transceiver module 21, a third processing module 22, and a third storage Module 23, where the third storage module 23 is used to couple with the third processing module 22 to store program instructions and/or data; the third processing module 22 is used to generate uplink radio frequency signals;
  • the third transceiver module 21 is used to send uplink radio frequency signals to the test equipment.
  • FIG. 11 is a schematic structural diagram of yet another testing device provided by an embodiment of the application.
  • the test device can be used to execute the method on the test equipment side in the embodiments shown in Figs. 7 to 8.
  • the test device includes: a second transceiver module 31, a second processing module 32, and a second storage Module 33, wherein the second storage module 33 is used to couple with the second processing module 32 to store program instructions and/or data;
  • the second processing module 32 is configured to generate at least two test signals according to the communication protocol, and each test signal corresponds to a communication protocol, and is used to test the uplink communication function of the terminal equipment corresponding to the communication protocol; and generate the downlink according to the superposition of the at least two test signals Radio frequency signal;
  • the second transceiver module 31 is configured to send a downlink radio frequency signal to the terminal device, and the downlink radio frequency signal is used to determine the downlink test result of the terminal device.
  • the first processing module 32 can be implemented based on hardware such as a field programmable gate array (FPGA) circuit, a digital signal processing (digital signal processing, DSP) circuit, a central processing unit (CPU), etc. Its processing function.
  • FPGA field programmable gate array
  • DSP digital signal processing
  • CPU central processing unit
  • the first storage module 33 can implement its storage function based on hardware such as double data rate (DDR) memory, random access memory (RAM), and flash memory (FLASH).
  • DDR double data rate
  • RAM random access memory
  • FLASH flash memory
  • the test device may also include a clock module, which may be based on a digital oscillator (numerically controlled oscillator, NCO), a voltage-controlled oscillator (VCO), a phase-locked medium frequency synthesizer (phase- Locked dielectric oscillator (PDRO) and other hardware implement its timing and management functions.
  • a digital oscillator number of controlled oscillator, NCO
  • VCO voltage-controlled oscillator
  • PDRO phase-locked medium frequency synthesizer
  • other hardware implement its timing and management functions.
  • the second processing module 32 is specifically configured to up-convert at least two test signals to the radio frequency point of the communication protocol, superimpose and synthesize an in-phase quadrature signal; perform digital analog to the in-phase quadrature signal. Conversion to generate a downlink radio frequency signal.
  • the second processing module 32 is also used to filter at least two test signals.
  • the downlink test result includes at least one of the following: signal sensitivity, blocking, and adjacent channel selectivity.
  • FIG. 12 is a schematic structural diagram of still another testing device provided by an embodiment of the application.
  • the test device can be used to execute the method on the terminal device side in the embodiments shown in FIGS. 7 to 8.
  • the test device includes: a fourth transceiver module 41, a fourth processing module 42, and a fourth storage Module 43, where the fourth storage module 43 is used to couple with the fourth processing module 42 to store program instructions and/or data;
  • the fourth transceiver module 41 is configured to receive downlink radio frequency signals sent by the test equipment;
  • the fourth processing module 42 is configured to determine the downlink test result of the terminal device according to the downlink radio frequency signal.
  • FIG. 13 is a schematic structural diagram of a test device provided by an embodiment of the application.
  • the test equipment may include: a processor 51 (such as a CPU), a memory 52, and a transceiver 53; the transceiver 53 is coupled to the processor 51, and the processor 51 controls the transceiver 53's transceiving actions; the memory 52 may It includes high-speed random access memory (random-access memory, RAM), and may also include non-volatile memory (non-volatile memory, NVM), such as at least two disk memories.
  • the memory 52 can store various instructions to It is used to complete various processing functions and implement the method steps of this application.
  • the test equipment involved in the present application may further include: a power supply 54, a communication bus 55 and a communication port 56.
  • the transceiver 53 may be integrated in the transceiver of the test equipment, or may be an independent transceiver antenna on the test equipment.
  • the communication bus 55 is used to implement communication connections between components.
  • the aforementioned communication port 56 is used to implement connection and communication between the test equipment and other peripherals.
  • the above-mentioned memory 52 is used to store computer executable program code, and the program code includes instructions; when the processor 51 executes the instructions, the instructions cause the processor 51 of the terminal device to execute the processing of the test device in the above-mentioned method embodiment.
  • the operation causes the transceiver 53 to perform the receiving and sending actions of the test equipment in the foregoing method embodiment.
  • the test equipment integrates traditional cellular meters, WLAN meters, Bluetooth meters, etc., and compared with the prior art, the total volume of the meters is reduced by more than 75%.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • the access network sub-device may include: a processor 61 (for example, a CPU), a memory 62, and a transceiver 63; the transceiver 63 is coupled to the processor 61, and the processor 61 controls the transceiving actions of the transceiver 63;
  • the memory 62 may include a high-speed random access memory (random-access memory, RAM), and may also include a non-volatile memory (non-volatile memory, NVM), such as at least two disk memories.
  • the memory 62 may store various types of Instructions are used to complete various processing functions and implement the method steps of this application.
  • the terminal device involved in the present application may further include: a power supply 64, a communication bus 65, and a communication port 66.
  • the transceiver 63 may be integrated in the transceiver of the terminal device, or may be an independent transceiver antenna on the terminal device.
  • the communication bus 65 is used to implement communication connections between components.
  • the aforementioned communication port 66 is used to implement connection and communication between the terminal device and other peripherals.
  • the aforementioned memory 62 is used to store computer executable program code, and the program code includes instructions; when the processor 61 executes the instructions, the instructions cause the processor 61 of the terminal device to execute the processing of the terminal device in the foregoing method embodiment.
  • the action is to cause the transceiver 63 to perform the receiving and sending actions of the terminal device in the foregoing method embodiment.
  • FIG. 15 is a structural block diagram of the terminal device provided by the embodiment of the application as a mobile phone.
  • the mobile phone may include: a radio frequency (RF) circuit 1110, a memory 1120, an input unit 1130, a display unit 1140, a sensor 1150, an audio circuit 1160, a wireless fidelity (WiFi) module 1170, a processing The device 1180, the power supply 1190, the communication unit 1210 and other components.
  • RF radio frequency
  • the structure of the mobile phone shown in FIG. 15 does not constitute a limitation on the mobile phone, and may include more or less components than those shown in the figure, or a combination of some components, or different component arrangements.
  • the RF circuit 1110 can be used for receiving and sending signals during the process of sending and receiving information or talking. For example, after receiving the downlink information of the base station, it is processed by the processor 1180; in addition, the uplink data is sent to the base station.
  • the RF circuit includes, but is not limited to, an antenna, at least two amplifiers, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and so on.
  • the RF circuit 1110 can also communicate with the network and other devices through wireless communication.
  • the above-mentioned wireless communication can use any communication standard or protocol, including but not limited to Global System of Mobile Communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division) Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE)), Email, Short Messaging Service (SMS), etc.
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • Email Short Messaging Service
  • the memory 1120 may be used to store software programs and modules.
  • the processor 1180 executes various functional applications and data processing of the mobile phone by running the software programs and modules stored in the memory 1120.
  • the memory 1120 may mainly include a program storage area and a data storage area, where the program storage area may store an operating system, application programs required by at least two functions (such as sound playback function, image playback function, etc.), etc.; the storage data area may store Data created based on the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 1120 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least two magnetic disk storage devices, flash memory devices, or other volatile solid-state storage devices.
  • the input unit 1130 may be used to receive inputted digital or character information, and generate key signal input related to user settings and function control of the mobile phone.
  • the input unit 1130 may include a touch panel 1131 and other input devices 1132.
  • the touch panel 1131 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 1131 or near the touch panel 1131. Operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 1131 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 1180, and can receive and execute the commands sent by the processor 1180.
  • the touch panel 1131 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the input unit 1130 may also include other input devices 1132.
  • other input devices 1132 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick.
  • the display unit 1140 may be used to display information input by the user or information provided to the user and various menus of the mobile phone.
  • the display unit 1140 may include a display panel 1141.
  • the display panel 1141 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • the touch panel 1131 can cover the display panel 1141. When the touch panel 1131 detects a touch operation on or near it, it transmits it to the processor 1180 to determine the type of the touch event, and then the processor 1180 according to The type of touch event provides corresponding visual output on the display panel 1141.
  • the touch panel 1131 and the display panel 1141 are used as two independent components to implement the input and input functions of the mobile phone, but in some embodiments, the touch panel 1131 and the display panel 1141 can be integrated. Realize the input and output functions of the mobile phone.
  • the mobile phone may also include at least one sensor 1150, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1141 according to the brightness of the ambient light.
  • the light sensor can close the display panel 1141 and/or when the mobile phone is moved to the ear. Or backlight.
  • the acceleration sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when it is stationary. It can be used to identify the application of mobile phone gestures (such as horizontal and vertical screen switching, related games).
  • Magnetometer posture calibration Magnetometer posture calibration
  • vibration recognition related functions such as pedometer, percussion
  • other sensors such as gyroscopes, barometers, hygrometers, thermometers, infrared sensors, etc. that can be configured in mobile phones, I won’t repeat them here. .
  • the audio circuit 1160, the speaker 1161, and the microphone 1162 can provide an audio interface between the user and the mobile phone.
  • the audio circuit 1160 can transmit the electric signal converted from the received audio data to the speaker 1161, which is converted into a sound signal by the speaker 1161 for output; on the other hand, the microphone 1162 converts the collected sound signal into an electric signal, and the audio circuit 1160 After being received, it is converted into audio data, and then processed by the audio data output processor 1180, and sent to, for example, another mobile phone via the RF circuit 1110, or the audio data is output to the memory 1120 for further processing.
  • WiFi is a short-distance wireless transmission technology.
  • the mobile phone can help users send and receive emails, browse web pages, and access streaming media through the WiFi module 1170. It provides users with wireless broadband Internet access.
  • FIG. 15 shows the WiFi module 1170, it is understandable that it is not a necessary component of the mobile phone, and can be omitted as needed without changing the essence of the embodiments of the present application.
  • the processor 1180 is the control center of the mobile phone. It uses various interfaces and lines to connect various parts of the entire mobile phone. It executes by running or executing software programs and/or modules stored in the memory 1120, and calling data stored in the memory 1120. Various functions and processing data of the mobile phone can be used to monitor the mobile phone as a whole.
  • the processor 1180 may include one or more processing units; for example, the processor 1180 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs, etc.
  • the modem processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 1180.
  • the mobile phone also includes a power supply 1190 (such as a battery) for supplying power to various components.
  • a power supply 1190 (such as a battery) for supplying power to various components.
  • the power supply can be logically connected to the processor 1180 through a power management system, so that functions such as charging, discharging, and power consumption management can be managed through the power management system.
  • the mobile phone may also include a camera 1200, which may be a front camera or a rear camera. Although not shown, the mobile phone may also include a Bluetooth module, a GPS module, etc., which will not be repeated here.
  • the processor 1180 included in the mobile phone may be used to execute the foregoing embodiment of the data transmission method, and its implementation principles and technical effects are similar, and details are not described herein again.
  • the embodiment of the present application also provides a chip including a processor and an interface.
  • the interface is used to input and output data or instructions processed by the processor.
  • the processor is used to execute the method provided in the above method embodiment.
  • the chip can be used in the server or in the first electronic device.
  • the embodiment of the present application also provides a program, which is used to execute the method provided in the above method embodiment when the program is executed by the processor.
  • the embodiments of the present application also provide a program product, such as a computer-readable storage medium, in which instructions are stored, which when run on a computer, cause the computer to execute the method provided in the foregoing method embodiment.
  • a program product such as a computer-readable storage medium, in which instructions are stored, which when run on a computer, cause the computer to execute the method provided in the foregoing method embodiment.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present invention are generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to transmit to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种测试方法、装置及系统,方法包括:测试设备接收终端设备发送的上行射频信号,上行射频信号由至少两个测试信号叠加生成,每个测试信号对应一种通信协议;测试设备从上行射频信号中提取至少两个测试信号;测试设备分别对至少两个测试信号进行测试,并获取终端设备的上行测试结果。通过上述方法,现实了多个通信协议的并行化测试,显著提高了终端设备通信功能的测试效率。

Description

测试方法、装置及系统
本申请要求于2019年09月23日提交中国专利局、申请号为201910901411.0、申请名称为“测试方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种测试方法、装置及系统。
背景技术
目前市场上的终端设备涉及多种通信协议,比如长期演进(long term evolution,LTE)、宽带码分多址(wideband code division multiple access,WCDMA)、全球移动通信系统(global system for mobile communications,GSM)、时分-同步码分多址(time division-synchronous code division multiple access,TD-SCDMA)、无线局域网(wireless local area network,WLAN)、蓝牙等协议。随着5G等下一代通信协议的加入,终端设备将需要支撑越来越多的通信协议,这对不同通信协议下终端设备的通信功能的测试测试效率提出了很高的挑战。
现有技术中,对于通信功能的测试包括有扫频调谐式测试方法和单协议快速傅里叶变换测试方法。在扫频调谐式测试方法中,终端设备可以通过改变下变频混频器的本地振荡器频率,使得输入待测信号的频率与本振频率之差等于需要的固定中频;后续的,再使用带通滤波器由中频信号中取出所需的差频,进行待测信号的测试与分析。在单协议快速傅里叶变换测试方法中,测试设备将待测信号在时域中数字化后执行快速傅里叶变换来求出频谱。随后,测试设备中的低通滤波器将待测信号除去测量范围之外的高频分量,再对波形进行取样进行模拟到数字转换。随后,测试设备中的微处理器接收取样波形,利用快速傅里叶变换计算波形的频谱。
然而,扫频调谐式测试方法,硬件系统复杂,仅适用单协议非实时测量,多于大批量多协议的测试速度较慢。单协议快速傅里叶变换测试方法,与前端射频器件特性深耦合,对于多协议终端设备的大规模测试,只能串行测试每个协议,中间需要对射频前端重新配置,测试的时间随着测试协议的增多成倍增长。因此,上述两种现有的通信功能的测试方法,对于多协议终端设备的通信功能的测试速度较慢。
发明内容
本申请实施例提供一种测试方法、装置及系统,以解决现有技术中对于多协议终端设备的测试速度较慢的问题。
第一方面提供一种测试方法,该方法可以运用于测试设备,也可以应用于测试设备的芯片。下面以应用于测试设备为例进行描述,该方法中,测试设备接收终端设备发送的上行射频信号,该上行射频信号由至少两个测试信号叠加生成,每个所述测试信号对应一种通信协议,用于测试所述终端设备对应所述通信协议的下行通信功能。测试设备从所述 上行射频信号中提取所述至少两个测试信号后,分别对所述至少两个测试信号进行测试,并获取所述终端设备的上行测试结果。
通过第一方面提供的测试方法,当终端设备包含多个通信协议时,可以现实多个通信协议的并行化测试,显著提高了终端设备通信功能的测试效率。
在一种可能的实现方式中,所述测试设备从所述上行射频信号中提取所述至少两个测试信号,包括:所述测试设备对所述上行射频信号进行模数转换,生成同相正交信号;所述测试设备将所述同相正交信号数字下变频至所述通信协议的射频频点处,并提取所述至少两个测试信号。
通过该可能的实现方式提供的测试方法,通过对上行射频信号的模数转换以及下变频,可以快速准确地提取测试信号,进而现实多个通信协议的并行化测试,显著提高了终端设备通信功能的测试效率。
在一种可能的实现方式中,在所述测试设备将所述同相正交信号数字下变频至所述通信协议的射频频点处之前,还包括:所述测试设备对所述同相正交信号进行滤波。
通过该可能的实现方式提供的测试方法,可以去除上行射频信号中的杂波,从而更加准确地提取测试信号。
在一种可能的实现方式中,在所述测试设备分别对所述至少两个测试信号进行测试之前,还包括:所述测试设备对所述至少两个测试信号进行预处理,所述预处理包括:信号同步处理和/或信号均衡处理。
通过该可能的实现方式提供的测试方法,可以减少信号干扰对测试结果的影响,提高测试结果的准确性。
在一种可能的实现方式中,所述上行测试结果包括以下至少一项:误差向量幅度EVM、邻信道功率比ACPR、功率。
第二方面提供一种测试方法,该方法可以运用于终端设备,也可以应用于终端设备的芯片。下面以应用于终端设备为例进行描述,该方法中,终端设备根据测试协议生成上行射频信号,并向测试设备发送所述上行射频信号。
第三方面提供一种测试方法,该方法可以运用于测试设备,也可以应用于测试设备的芯片。下面以应用于测试设备为例进行描述,该方法中,测试设备根据通信协议生成至少两个测试信号,每个所述测试信号对应一种所述通信协议,用于测试所述终端设备对应所述通信协议的上行通信功能。随后,所述测试设备根据所述至少两个测试信号叠加生成下行射频信号,并向终端设备发送所述下行射频信号,所述下行射频信号用于确定所述终端设备的下行测试结果。
在一种可能的实现方式中,所述测试设备根据所述至少两个测试信号生成下行射频信号,包括:所述测试设备将在频域占据不同频带的所述至少两个测试信号上变频至所述通信协议的射频频点处,在时域叠加合成同相正交信号;所述测试设备对所述同相正交信号进行数模转换,生成所述下行射频信号。
在一种可能的实现方式中,在所述测试设备将所述至少两个测试信号上变频至所述通信协议的射频频点处,叠加合成同相正交信号之前,还包括:所述测试设备对所述至少两个测试信号进行滤波。
在一种可能的实现方式中,所述下行测试结果包括以下至少一项:信号灵敏度、阻塞、 邻道选择性。
第四方面提供一种测试方法,该方法可以运用于终端设备,也可以应用于终端设备的芯片。下面以应用于终端设备为例进行描述,该方法中,终端设备接收测试设备发送下行射频信号,并根据所述下行射频信号确定所述终端设备的下行测试结果。
第五方面提供一种测试装置,包括:第一收发模块和第一处理模块。
第一收发模块,用于接收终端设备发送的上行射频信号,所述上行射频信号由至少两个测试信号叠加生成,每个所述测试信号对应一种通信协议,用于测试所述终端设备对应所述通信协议的下行通信功能;
第一处理模块,用于从所述上行射频信号中提取所述至少两个测试信号;分别对所述至少两个测试信号进行测试,并获取所述终端设备的上行测试结果。
在一种可能的实现方式中,所述第一处理模块,具体用于对所述上行射频信号进行模数转换,生成同相正交信号;将所述同相正交信号数字下变频至所述通信协议的射频频点处,并提取所述至少两个测试信号。
在一种可能的实现方式中,所述第一处理模块,还用于对所述同相正交信号进行滤波。
在一种可能的实现方式中,所述第一处理模块,还用于对所述至少两个测试信号进行预处理,所述预处理包括:信号同步处理和/或信号均衡处理。
在一种可能的实现方式中,所述上行测试结果包括以下至少一项:误差向量幅度EVM、邻信道功率比ACPR、功率。
第六方面提供一种测试装置,包括:第三收发模块和第三处理模块。
所述第三处理模块,用于生成所述上行射频信号;
所述第三收发模块,用于将所述上行射频信号发送给所述测试设备。
第七方面提供一种测试装置,包括:第二处理模块和第二收发模块。
第二处理模块,用于根据通信协议生成至少两个测试信号,每个所述测试信号对应一种所述通信协议,用于测试所述终端设备对应所述通信协议的上行通信功能;根据所述至少两个测试信号叠加生成下行射频信号;
第二收发模块,用于向终端设备发送所述下行射频信号,所述下行射频信号用于确定所述终端设备的下行测试结果。
在一种可能的实现方式中,所述第二处理模块,具体用于所述测试设备将在频域占据不同频带的所述至少两个测试信号上变频至所述通信协议的射频频点处,在时域叠加合成同相正交信号;对所述同相正交信号进行数模转换,生成所述下行射频信号。
在一种可能的实现方式中,所述第二处理模块,还用于对所述至少两个测试信号进行滤波。
在一种可能的实现方式中,所述下行测试结果包括以下至少一项:信号灵敏度、阻塞、邻道选择性。
第八方面提供一种测试装置,包括:第四处理模块和第四收发模块。
第四收发模块,用于接收所述测试设备发送的下行射频信号;
第四处理模块,用于根据所述下行射频信号确定所述终端设备的下行测试结果。
第九方面提供一种电子设备,包括:存储器和处理器;
其中,所述存储器用于存储所述处理器的可执行指令;
所述处理器被配置为:接收终端设备发送的上行射频信号,所述上行射频信号由至少两个测试信号生成,每个所述测试信号对应一种通信协议,用于测试所述终端设备对应所述通信协议的下行通信功能;从所述上行射频信号中提取所述至少两个测试信号;分别对所述至少两个测试信号进行测试,并获取所述终端设备的上行测试结果。
在一种可能的实现方式中,所述处理器具体被配置为:对所述上行射频信号进行模数转换,生成同相正交信号;将所述同相正交信号数字下变频至所述通信协议的射频频点处,并提取所述至少两个测试信号。
在一种可能的实现方式中,所述处理器还被配置为:对所述同相正交信号进行滤波。
在一种可能的实现方式中,所述处理器还被配置为:对所述至少两个测试信号进行预处理,所述预处理包括:信号同步处理和/或信号均衡处理。
在一种可能的实现方式中,所述上行测试结果包括以下至少一项:误差向量幅度EVM、邻信道功率比ACPR、功率。
第十方面提供一种电子设备,包括:存储器和处理器;
其中,所述存储器用于存储所述处理器的可执行指令;
所述处理器被配置为:根据测试协议生成上行射频信号,并向测试设备发送所述上行射频信号。
第十一方面提供一种电子设备,包括:存储器和处理器;
其中,所述存储器用于存储所述处理器的可执行指令;
所述处理器被配置为:根据通信协议生成至少两个测试信号,每个所述测试信号对于一种所述通信协议,用于测试所述终端设备对应所述通信协议的上行通信功能;根据所述至少两个测试信号生成下行射频信号;向终端设备发送所述下行射频信号,所述下行射频信号用于确定所述终端设备的下行测试结果。
在一种可能的实现方式中,所述处理器具体被配置为:将所述至少两个测试信号上变频至所述通信协议的射频频点处,叠加合成同相正交信号;对所述同相正交信号进行数模转换,生成所述下行射频信号。
在一种可能的实现方式中,所述处理器还被配置为:所述测试设备对所述至少两个测试信号进行滤波。
在一种可能的实现方式中,所述下行测试结果包括以下至少一项:信号灵敏度、阻塞、邻道选择性。
第十二方面提供一种电子设备,包括:存储器和处理器;
其中,所述存储器用于存储所述处理器的可执行指令;
所述处理器被配置为:接收测试设备发送下行射频信号,并根据所述下行射频信号确定所述终端设备的下行测试结果。
第十三方面提供一种测试系统,包括:测试设备、终端设备、交换机和服务器;
所述测试设备与所述终端设备连接,所述交换机分别与所述测试设备、终端设备和所述服务器连接;
所述终端设备用于向所述测试设备发送上行射频信号或接受所述测试设备的下行射频信号;
所述测试设备用于执行上述第一方面或者第二方面所述的测试方法;
所述服务器用于通过所述交换机向所述测试设备和所述终端设备发送测试指示,以及获取所述终端设备的上行测试结果和/或下行测试结果。
第十四方面提供一种程序,该程序在被处理器执行时用于执行以上第一方面的方法。
第十五方面提供一种程序,该程序在被处理器执行时用于执行以上第二方面的方法。
第十六方面提供一种程序,该程序在被处理器执行时用于执行以上第三方面的方法。
第十七方面提供一种程序,该程序在被处理器执行时用于执行以上第四方面的方法。
第十八方面提供一种程序产品,例如计算机可读存储介质,包括第十四方面的程序。
第十九方面提供一种程序产品,例如计算机可读存储介质,包括第十五方面的程序。
第二十方面提供一种程序产品,例如计算机可读存储介质,包括第十六方面的程序。
第二十一方面提供一种程序产品,例如计算机可读存储介质,包括第十七方面的程序。
第二十二方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面的方法。
第二十三方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面的方法。
第二十四方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面的方法。
第二十五方面提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面的方法。
在本申请实施例中,测试设备接收终端设备发送的上行射频信号,该上行射频信号由至少两个测试信号生成,每个所述测试信号对应一种通信协议,用于测试终端设备对应通信协议的下行通信功能。测试设备从所述上行射频信号中提取所述至少两个测试信号后,分别对所述至少两个测试信号进行测试,并获取所述终端设备的上行测试结果。通过该方法,当终端设备包含多个通信协议时,可以现实多个通信协议的并行化测试,显著提高了不同通信协议下终端设备通信功能的测试效率。
附图说明
图1为本发明实施例提供的一种终端设备的结构示意图;
图2为本申请实施例提供的一种测试系统的系统架构图;
图3为本申请实施例提供的另一种测试系统的系统架构图;
图4为本申请实施例提供的一种测试方法的流程示意图;
图5为本申请实施例提供的一种终端设备的测试信号的电磁分布示意图;
图6为本申请实施例提供的另一种测试方法的流程示意图;
图7为本申请实施例提供的再一种测试方法的流程示意图;
图8为本申请实施例提供的又一种测试方法的流程示意图;
图9为本申请实施例提供的一种测试装置的结构示意图;
图10为本申请实施例提供的另一种测试装置的结构示意图;
图11为本申请实施例提供的再一种测试装置的结构示意图;
图12为本申请实施例提供的又一种测试装置的结构示意图;
图13为本申请实施例提供的一种测试设备的结构示意图;
图14为本申请实施例提供的一种终端设备的结构示意图;
图15为本申请实施例提供的终端设备为手机时的结构框图。
具体实施方式
目前市场上的终端设备涉及多种通信协议,比如长期演进(long term evolution,LTE)、宽带码分多址(wideband code division multiple access,WCDMA)、全球移动通信系统(global system for mobile communications,GSM)、时分-同步码分多址(time division-synchronous code division multiple access,TD-SCDMA)、无线局域网(wireless local area network,WLAN)、蓝牙等协议。随着5G等下一代通信协议的加入,终端设备将需要支撑越来越多的通信协议,这对不同通信协议下终端设备的通信功能的测试效率提出了很高的挑战。
现有技术中,对于终端设备的通信功能的测试包括有扫频调谐式测试方法和单协议快速傅里叶变换测试方法。在扫频调谐式测试方法中,终端设备可以通过改变下变频混频器的本地振荡器频率,使得输入待测信号的频率与本振频率之差等于需要的固定中频;后续的,再使用带通滤波器由中频信号中取出所需的差频,进行待测信号的测试与分析。在单协议快速傅里叶变换测试方法中,测试设备将待测信号在时域中数字化后执行快速傅里叶变换来求出频谱。随后,测试设备中的低通滤波器将待测信号除去测量范围之外的高频分量,再对波形进行取样进行模拟到数字转换。随后,测试设备中的微处理器接收取样波形,利用快速傅里叶变换计算波形的频谱。然而,扫频调谐式测试方法,硬件系统复杂,仅适用单协议非实时测量,多于大批量多协议的测试速度较慢。单协议快速傅里叶变换测试方法,与前端射频器件特性深耦合,对于多协议终端设备的大规模测试,只能串行测试每个协议,中间需要对射频前端重新配置,测试的时间随着测试协议的增多成倍增长。因此,上述两种现有的通信协议的测试方法,对于多协议终端设备的测试速度较慢。
为了解决上述问题,本申请实施例提供一种测试方法、装置及系统,以现实多个通信协议的并行化测试,显著提高终端设备通信功能的测试效率。
下面对本申请实施例的应用场景进行介绍。
图1为本发明实施例提供的一种终端设备的结构示意图。参考图1,现有的终端设备通常涉及多种通信协议,通信协议可例如:LTE、WCDMA、GSM、TD-SCDMA、WLAN、蓝牙等。相应的,终端设备设置有多种通信模块与上述通信协议相对应,通信模块可例如:卫星定位模块、WiFi模块、蓝牙模块、2G通信模块、3G通信模块、4G通信模块等。为保证每个通信模块的通信功能满足要求,在终端设备出厂前,厂商需要对终端设备的所有通信模块的通信功能进行测试。该通信测试可以在空中下载技术(over the air technology,OTA)测试环境下进行,也可以在传导环境下进行。
下面对本申请实施例提供测试系统的系统架构进行说明。
图2为本申请实施例提供的一种测试系统的系统架构图。如图2所示,测试系统包括:终端设备101、测试设备102、天线103、交换机104、服务器105和测试箱106。其中,测试设备102分别和天线103、终端设备101和交换机104连接,交换机104分别和终端设备101和服务器105连接。图2中的测试系统在OTA测试环境下进行通信测试,终端设备101和天线103设置在测试箱106中,测试设备102通过天线103接收终端设备101发送的上行射频信号,并向终端设备101发送下行射频信号,完成终端设备的通信功能指 标的测试。
图3为本申请实施例提供的另一种测试系统的系统架构图。如图3所示,测试系统包括终端设备201、测试设备202、交换机203、服务器204和探针组205。探针组205设置在终端设备上,与测试设备205连接。终端设备201还分别与测试设备202和交换机203直接连接,交换机204与服务器205连接。图3中的测试系统在传导环境下进行通信测试,测试设备102通过探针组204接收终端设备201发送的上行射频信号,并向终端设备201发送下行射频信号,完成终端设备的通信功能指标的测试。
在图1或图2中,终端设备:也称为用户设备,该终端设备可以是无线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent),在此不作限定。
测试设备,可以是对终端设备的通信功能进行测试的设备,其可以是独立外置的测试设备,也可是板卡形态通过总线内嵌于个人计算机机内部。示例性的,测试设备可以是大宽带多协议并行测试设备。
交换机,用于从测试设备获取终端设备的上行测试结果,或,从终端设备获取终端设备的下行测试结果,并将上行测试结果或下行测试结果发送给服务器。
服务器,用于存储终端设备对应的上行测试结果和/或下行测试结果。
测试箱,用于在测试时容纳测试系统中的部分设备。对于图2中OTA测试环境下进行的通信测试,由于测试信号通过天线收发,测试信号会受到其他外部信号的干扰,需要测试箱隔绝外部信号。对于图3中传导环境下进行的通信测试,由于通过探针组直接获取或发生信号,测试信号不会受到其他外部信号的干扰,测试时无需测试箱。
下面以具体地实施例对本申请实施例的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图4为本申请实施例提供的一种测试方法的流程示意图。本实施例涉及的是测试设备根据终端设备发送的上行射频信号确定终端设备的上行测试结果的过程。本实施例的执行主体为测试设备。如图4所示,该方法包括:
S301、测试设备接收终端设备发送的上行射频信号,上行射频信号由至少两个测试信号叠加生成,每个测试信号对应一种通信协议,用于测试终端设备对应通信协议的下行通信功能。
其中,射频信号通常是指经过调整的拥有一定发射频率的电波。在本申请实施例提供的测试方法中,上行射频信号可以是终端设备向测试设备发送的射频信号,相应的,下行 射频信号可以是测试设备向终端设备发送的射频信号。测试设备在配置带宽内采集一次终端设备发出的上行射频信号。
通信协议,可以是终端设备所涉及的通信制式所对应的通信协议。需要说明的是通信协议可以为一个也可以为多个,本申请实施例对于通信协议的数量不做限制,可以根据终端设备实际包括的通信协议的数量来确定,也可以根据需要测试的通信协议的数量来确定。
表1为通信协议的分类表,如图1所示,通信协议可例如:长期演进(long term evolution,LTE)、码分多址(code division multiple access,CDMA)、全球移动通信系统(global system for mobile communications,GSM)、时分-同步码分多址(time division-synchronous code division multiple access,TD-SCDMA)、无线局域网(wireless local area network,WLAN)、蓝牙等协议。
表1
类别 协议
基础通信 5G/mmWave、TDD LTE/FDD LTE、C2k/UMTA/TD-CDMA、GSM/CDMA
定位 GPS、Beidou、Glonass、Galileo
WLAN 802.11a/b/nac/ad/ax/ay…
短距 Bluetooth 3.0/4.0/5.0、NFC、RFID
多媒体 FM、DAB、CMMB、DTMB
未来物联 NB-loT、eMTC、Siqfox、LoRa、RPMA、Ziqbee
需要说明的是,表1中的通信协议并不对本申请实施例中的通信协议进行限制,其他不在表1中的通信协议也可作为本申请实施例中的通信协议。
在本申请实施例中,终端设备可以包括有至少两个通信协议,每种通信协议对应一个测试信号。在终端设备生成上行射频信号时,可以对通信协议对应的测试信号进行叠加,进而生成包含了多种测试信息的上行射频信号。
示例性的,终端设备可以包括有4G协议、5G协议、WiFi协议和比特流(bit torrent,BT)协议四种通信协议,每种协议对应了一个测试信号。因此,终端设备向测试设备发送的上行射频信号,由4G协议、5G协议、WiFi协议和BT协议对应的测试信号叠加生成。
需要说明的是,本申请实施例对于测试设备如何接收终端设备发送的上行射频信号不做限制,一种可选的实施方式中,可以如图2所示的测试系统,测试设备通过天线接收上行射频信号;另一种可选的实施方式中,可以如图3所示的测试系统,测试设备通过安装在终端设备上的探针组直接获取上行射频信号。
在一种可选的实施方式中,在测试设备接收终端设备发送的上行射频信号之前,终端设备需要接收上行测试指示,并根据上行测试指示,叠加生成并发送对应的上行射频信号。其中,生成上行射频信号具体可以有终端设备根据通信协议生成至少两个测试信号,将至少两个测试信号上变频至通信协议的射频频点处,叠加合成同相正交信号,再将同相正交信号进行数模转换后生成上行测试信号。
在一些实施例中,不同测试信号在频域分别占据不同频带,通过上变频的方式,可以将在频域上占据不同频带的测试信号,在时域上进行叠加,从而将至少两个测试信号叠加为一个同相正交信号,进而通过模数转换得到上行变频信号。其中,上变频是对测试信号进行频率调制的一种方式,本申请实施例对于如何调制测试信号的频率不做限制。
S302、测试设备从上行射频信号中提取至少两个测试信号。
在本申请实施例中,当测试设备接收终端设备发送的上行射频信号后,可以从上行射频信号中提取至少两个测试信号,从而对测试信号分别进行测试。
图5为本申请实施例提供的一种终端设备的测试信号的电磁分布示意图。请参考图5,不同的通信协议之间在电磁分布上所占频段不同。在进行上行测试时,由于每个测试信号对应一种通信协议,终端设备可以生成通信协议所占频段对应的测试信号,并根据测试信号叠加生成上行射频信号。由于通信协议对应的测试信号的频段不同,测试设备在配置带宽内采集到的上行射频信号,可以在通信协议的频段内从上行射频信号中提取测试信号,并对测试信号分别进行测试。
需要说明的是,测试设备可以从终端设备发送的上行射频信号提取所有的测试信号,也可以从终端设备发送的上行射频信号提取部分测试信号,本申请实施例对于测试设备从终端设备发送的上行射频信号提取的测试信号的数量不做限制,可以根据实际的测试内容进行确定。
示例性地,终端设备包含通信协议A、通信协议B和通信协议C三种通信协议,测试设备预先接收测试指示,指示仅对终端设备关于通信协议A和通信协议B的通信功能进行测试。在对终端设备进行上行测试时,测试设备在接收到终端设备发送上行射频信号后,可以仅从上行射频信号中提取通信协议A对应的测试信号A和通信协议B对应的测试信号B,并对测试信号A和测试信号B进行测试。
S303、测试设备分别对至少两个测试信号进行测试,并获取终端设备的上行测试结果。
在申请实施例中,测试设备在上行射频信号中提取至少两个测试信号后,可以分别对至少两个测试信号进行测试,得到至少两个测试信号对应的测试结果,根据至少两个测试信号对应的测试结果得到终端设备的上行测试结果。
本申请实施例对于上行测试结果的类型和数量不做限制,一种可选的实施方式中,上行测试结果包括以下至少一项:误差向量幅度(error vector magnitude,EVM)、邻信道功率比(adjacent channel power ratio,ACPR)、功率。
本申请实施例对于如何对测试信息进行测试不做限制,一种可选的实施方式中,可以根据实际的终端设备的功能测试要求设置对应的测试算法。需要说明的是,该测试算法可以为一个,也可以为多个,本申请实施例对此不做限制。测试设备中预设的测试算法可以仅对特定的通信协议对应的测试信号进行测试,也可以对所有测试信号进行测试。
示例性的,若终端设备发送的上行射频信号由测试信号A和测试信号B叠加生成,测试设备包含测试算法a和测试算法b。其中,测试算法a可以对测试信号A和测试信号B分别进行测试,测试算法b可以仅对测试信号B进行测试。
一种可选的实施方式中,测试设备分别对至少两个测试信号进行测试,每个测试信号可以得到多个测试子结果,根据各个测试信号对应的测试子结果,可以确定终端设备的上行测试结果。需要说明的是,本申请实施例中,不同测试信号对应的测试子结果的数量可以相同,也可以不同,本申请实施例对此不做限制。
示例性的,若终端设备发送的上行射频信号由测试信号A、测试信号B和测试信号C叠加生成。测试设备可以对测试信号A进行测试,确定测试信号A对应的EVM、ACPR和功率,测试设备可以对测试信号B进行测试确定测试信号B对应的EVM、ACPR和功 率,测试设备可以对测试信号C进行测试,确定测试信号C对应的EVM和功率。根据测试信号A对应的EVM、ACPR和功率,测试信号B对应的EVM、ACPR和功率,以及测试信号C对应的EVM和功率,确定终端设备的上行测试结果。
本申请实施例对于如何根据测试信号对应的测试子结果确定终端设备的上行测试结果也不做限制,在一种可选的实施方式中,若任意测试信号对应的测试子结果不合格,则上行测试结果不合格,在另一种可选的实施方式中,若测试信号对应的测试子结果不合格的数量超过阈值,则上行测试结果不合格。
本申请实施例中,在提取至少两个测试信号后,测试设备可以将测试信号分发到对应的测试模块中,从而使得测试信号可以并向测试。现有技术中,协议兼容性多通过单个协议带外泄露等指标间接测量,在本申请实施例中,可通过多协议并行下各自指标测量直接评估多协议兼容性。
在一种可选的实施方式中,在测试设备分别对至少两个测试信号进行测试之前,还包括:测试设备对至少两个测试信号进行预处理,预处理包括:信号同步处理和/或信号均衡处理。其中,信号同步处理是为信号提供相同的时间参考,从而方便后续的处理。信号均衡是对信道特性的均衡,通过接收端的均衡器产生与信道相反的特性,用来抵消信道的时变多径传播特性引起的码间干扰。
在本申请实施例中,测试设备接收终端设备发送的上行射频信号,该上行射频信号由至少两个测试信号叠加生成,每个测试信号对应一种通信协议。测试设备从上行射频信号中提取至少两个测试信号后,分别对至少两个测试信号进行测试,并获取终端设备的上行测试结果。通过该方法,当终端设备包含多个通信协议时,可以现实多个通信协议的并行化测试,显著提高了终端设备通信功能的测试效率。
在本申请实施例中,由于测试设备在配置带宽内采集的上行射频信号由多个测试信号叠加乘车。因此,在对测试信号进行测试时,需要先从上行射频信号提取至少两个测试信号,在单独对测试信号进行测试。下面对测试设备如何从上行射频信号中提取至少两个测试信号进行说明。
图6为本申请实施例提供的另一种测试方法的流程示意图。本实施例的执行主体为测试设备。如图6所示,该方法包括:
S401、测试设备接收终端设备发送的上行射频信号,上行射频信号由至少两个测试信号叠加生成,每个测试信号对应一种通信协议。
本实施例中,步骤S401的具体实现过程和实现原理与实施例一中步骤S301的类似,此处不再赘述。
S402、测试设备将上行射频信号转换,生成同相正交信号;
同相正交(in-phase/quadrature,I/Q),是一种通过极坐标上的振幅和相位来表示射频信号的方式。通过同相正交处理,可以直接将模拟信号形式的射频信号转化为数字信号形式的基带IQ信号。
在本步骤中,当测试设备接收到上行射频信号后,可以将输入的上行射频信号进行同相正交处理,得到生成同相正交信号。
在一种可选的实施方式中,将上行射频信号转化为同相正交信号,可以通过对上行射频信号进行模拟正交分解,产生相互正交的两个本振信号,作为IQ信号。在另一种可选 的实施方式中,可以直接对上行射频信号进行采样,得到IQ信号。此外,将上行射频信号转化为同相正交信号,还可以通过滤波法、希尔伯特变换法等,本申请实施例对于如何将将上行射频信号转化为同相正交信号不做限制。
在本申请实施例中,在将测试设备对上行射频信号进行模数转换生成同相正交信号之前,还可以对上行射频信号进行滤波处理。通过滤波处理,可以减少外界环境中的杂波干扰,提高提取出的测试信号的准确性。本申请实施例对于滤波处理的类型不做限制,可例如自适应滤波。
S403、测试设备将同相正交信号数字下变频至通信协议的射频频点处,并提取至少两个测试信号。
数字下变频(digital down converters,DDC),可以是将中频数字信号频谱下变频到基带信号的技术。
测试设备中可以包括数字控制振荡器(numerically controlled oscillator,NCO)、混频器(mixer)、滤波器(filter)。数字下变频可以由数字控制振荡器、混频器和滤波器实现。具体的,射频信号为一种中频信号,数字下变频可以将中频信号与数字控制振荡器产生的载波信号进行混频,再经过低通滤波器得到基带信号,从而实现下变频功能。
本申请实施例中,可以根据通信协议的射频频点,分别对同相正交信号进行数字下变频,确定该待测信号对应的测试信息。其中,上述测试信号为一种基带信号。
S404、测试设备分别对至少两个测试信号进行测试,并获取终端设备的上行测试结果。
本实施例中,步骤S404的具体实现过程和实现原理与实施例一中步骤S301的类似,此处不再赘述。
本申请实施例提供的测试方法,测试设备对上行射频信号进行模数转换,生成同相正交信号。随后,测试设备将同相正交信号数字下变频至通信协议的射频频点处,并提取至少两个测试信号,从而对至少两个测试信号进行测试。通过上述方法,可以是测试设备提取至少两个测试信号,从而完成终端设备不同协议的通信功能的并行测试。
在终端设备的通信功能的测试过程中,完成终端设备的上行测试后,还可以对终端设备接收信号的功能进行测试,即,对终端设备的通信功能进行下行测试,从而保证终端设备通过涉及的通信协议不仅可以正常发送信号,还可以正常接收信号。下面对本申请实施例提供的终端设备的通信功能的下行测试进行说明。
图7为本申请实施例提供的再一种测试方法的流程示意图。本实施例的执行主体为测试设备。如图7所示,该方法包括:
S501、测试设备根据通信协议生成至少两个测试信号,每个测试信号对应一种通信协议,用于测试终端设备对应通信协议的上行通信功能;
通信协议,可以是终端设备所涉及的通信制式所对应的通信协议。通信协议可例如:长期演进(long term evolution,LTE)、宽带码分多址(wideband code division multiple access,WCDMA)、全球移动通信系统(global system for mobile communications,GSM)、时分-同步码分多址(time division-synchronous code division multiple access,TD-SCDMA)、无线局域网(wireless local area network,WLAN)、蓝牙等协议。
在本申请实施例中,终端设备可以包括有至少两个通信协议,测试设备根据接收的测试指示,从至少两个通信协议选取部分或全部作为通信协议。随后,测试设备生成与通信 协议对应的测试信号。
示例性地,终端设备可以包括有4G协议、5G协议、WiFi协议和比特流(bit torrent,BT)协议四种通信协议。测试设备接收到测试指示,需要对其中的4G协议、5G协议和WiFi协议进行测试。因此,测试设备生成4G协议对应的测试信号、5G协议对应的测试信号以及WiFi协议对应的测试信号。
S502、测试设备根据至少两个测试信号叠加生成下行射频信号;
在本申请实施中,在测试设备生成至少两个测试信号后,可以将至少两个测试信号叠加生成下行测试信号,从而使得终端设备可以将该下行射频信号发送给终端设备,使得终端设备进行下行测试。其中,下行测试可以是一种测试设备向终端设备发送射频信号测试终端设备接收信号功能的测试。
下行射频信号可以由所以测试信号叠加生成,也可以根据部分测试信号生成,本申请实施例对此不做限制。示例性地,终端设备可以包括有4G协议、5G协议、WiFi协议和比特流(bit torrent,BT)协议四种通信协议。在一次下行测试中,若仅对终端设备关于4G协议、5G协议的通信功能进行测试,则相应的,测试设备根据4G协议对应的测试信号和5G协议对应的信号叠加生成下行射频信号。
S503、测试设备向终端设备发送下行射频信号,下行射频信号用于确定终端设备的下行测试结果。
在申请实施例中,测试设备在生成下行射频信号后,可以将下行射频信号发射给终端设备,终端设备根据下行射频信号确定终端设备的下行测试结果。
本申请实施例对于测试设备如何发送下行射频信号不做限制,一种可选的实施方式中,测试设备可以通过发射(Tx)通路,将下行射频信号发送给终端设备。
在一种可选的实施方式中,终端设备可以从下行射频信号中提取至少两个测试信号,随后对至少两个测试信号进行分别测试,得到至少两个测试信号对应的测试结果,根据至少两个测试信号对应的测试结果得到终端设备的下行测试结果。
本申请实施例对于上行测试结果的类型和数量不做限制,一种可选的实施方式中,上行测试结果包括以下至少一项:信号灵敏度、阻塞、邻道选择性。
需要说明的是,本申请实施例对于终端设备如何接收测试设备发送的下行射频信号不做限制,一种可选的实施方式中,可以如图2所示的测试系统,终端设备通过天线接收下行射频信号;另一种可选的实施方式中,可以如图3所示的测试系统,终端设备通过安装在测试设备上的探针组直接获取下行射频信号。
在一种可选的实施方式中,在测试设备向终端设备发送下行射频信号之后,终端设备可以从下行射频信号中提取测试信号,并对测试信号进行并向测试,确定终端设备的下行测试结果。
需要说明的是,虽然厂商在终端设备出厂前会对终端设备进行上行测试和下行测试,然而,本申请实施例提供的测试方法中,可以仅对终端设备的通信功能进行上行测试,可以仅对终端设备的通信功能进行下行测试,可以对终端设备的通信功能先进行上行测试再进行下行测试,可以终端设备的通信功能对进行下行测试再进行上行测试,本申请实施例对此均不做限制。
本申请实施例提供的测试方法,测试设备根据通信协议生成至少两个测试信号,每个 测试信号对于一种通信协议,测试设备根据至少两个测试信号生成下行射频信号,并向终端设备发送下行射频信号,下行射频信号用于确定终端设备的下行测试结果。通过该方法,当终端设备包含多个通信协议时,可以现实多个通信协议的并行化测试,显著提高了终端设备通信功能的测试效率。
下面对测试设备如何从根据测试信号生成下行射频信号进行说明。
图8为本申请实施例提供的又一种测试方法的流程示意图。本实施例的执行主体为测试设备。如图8所示,该方法包括:
S601、测试设备根据通信协议生成至少两个测试信号,每个测试信号对于一种通信协议。
本实施例中,步骤S601的具体实现过程和实现原理与实施例一中步骤S501的类似,此处不再赘述。
S602、测试设备将在频域占据不同频带的至少两个测试信号上变频至通信协议的射频频点处,在时域叠加合成同相正交信号。
数字上变频(digital up converter,DUC),可以是将信号经过混频后得到比原始信号更高频率的信号。
在本申请实施例中,测试信号为一种基带信号,通过测试信号对应的通信协议的射频频点,可以将各测试信号上变频转换为对应的中频信号。由于不同测试信号在频域分别占据不同频带,通过上变频的方式,可以将在频域上占据不同频带的测试信号,在时域上进行叠加,从而将至少两个测试信号叠加为一个下同相正交信号。其中,上变频是对测试信号进行频率调制的一种方式,本申请实施例对于如何调制测试信号的频率不做限制。
在一种可选的实施方式中,在测试设备将至少两个测试信号上变频至通信协议的射频频点处,叠加合成同相正交信号之前,还可以对至少两个测试信号进行滤波处理。通过滤波处理。本申请实施例对于滤波处理的类型不做限制,可例如自适应滤波。
S603、测试设备对同相正交信号进行数模转换,生成下行射频信号。
本申请实施例中,由于上述生成的IQ信号为一种数字信号,而通过天线发送的射频信号是一种模拟信号,因此,测试设备需要对IQ信号进行模数转换,将同相正交信号转化为下行射频信号。
本申请实施例对于如何将IQ信号转化为下行射频信号不做限制,一种可选的实施方式中,可以通过数模转换芯片来实现。
S604、测试设备向终端设备发送下行射频信号,下行射频信号用于确定终端设备的下行测试结果。
本实施例中,步骤S604的具体实现过程和实现原理与实施例一中步骤S503的类似,此处不再赘述。
本申请实施例提供的测试方法,测试设备将至少两个测试信号上变频至通信协议的射频频点处,叠加合成同相正交信号;测试设备对同相正交信号进行数模转换,生成下行射频信号。通过上述方法,可以使测试设备发送的下行射频信号中包含有至少两个测试信号,从而完成终端设备不同协议的通信功能的并行测试。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执 行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
图9为本申请实施例提供的一种测试装置的结构示意图。该测试装置可以用于执行上述图4~图6所示实施例中测试设备侧的方法,如图9所示,该测试装置包括:第一收发模块11,第一处理模块12,第一存储模块13,其中第一存储模块13用于与第一处理模块12耦合,保存程序指令和/或数据;
第一收发模块11,用于接收终端设备发送的上行射频信号,上行射频信号由至少两个测试信号叠加生成,每个测试信号对应一种通信协议,用于测试终端设备对应通信协议的下行通信功能;
第一处理模块12,用于从上行射频信号中提取至少两个测试信号;分别对至少两个测试信号进行测试,并获取终端设备的上行测试结果。
其中,第一处理模块12可以基于现场可编程逻辑门阵列(field programmable gate array,FPGA)电路、数字信号处理(digital signal processing,DSP)电路、中央处理器(central processing unit,CPU)等硬件实现其处理功能。
第一存储模块13可以基于双倍数据速率(double data rate,DDR)存储器、随机存储器(random access memory,RAM)、闪存(FLASH)等硬件实现其存储功能。
可选的,测试装置还可以包括时钟模块,该时钟模块可以基于数字振荡器(numerically controlled oscillator,NCO)、压控振荡器(voltage-controlled oscillator,VCO)、锁相介质频率合成器(phase-locked dielectric oscillator,PDRO)等硬件实现其计时和管理功能。
在一种可能的实现方式中,第一处理模块12,具体用于对上行射频信号进行模数转换,生成同相正交信号;将同相正交信号数字下变频至通信协议的射频频点处,并提取至少两个测试信号。
在一种可能的实现方式中,第一处理模块12,还用于对同相正交信号进行滤波。
在一种可能的实现方式中,第一处理模块12,还用于对至少两个测试信号进行预处理,预处理包括:信号同步处理和/或信号均衡处理。
在一种可能的实现方式中,上行测试结果包括以下至少一项:误差向量幅度EVM、邻信道功率比ACPR、功率。
图10为本申请实施例提供的另一种测试装的结构示意图。该测试装置可以用于执行上述图4~图6所示实施例中终端设备侧的方法,如图10所示,该测试装置包括:第三收发模块21,第三处理模块22,第三存储模块23,其中第三存储模块23用于与第三处理模块22耦合,保存程序指令和/或数据;第三处理模块22,用于生成上行射频信号;
第三收发模块21,用于将上行射频信号发送给测试设备。
图11为本申请实施例提供的再一种测试装置的结构示意图。该测试装置可以用于执行上述图7~图8所示实施例中测试设备侧的方法,如图11所示,该测试装置包括:第二收发模块31,第二处理模块32,第二存储模块33,其中第二存储模块33用于与第二处理模块32耦合,保存程序指令和/或数据;
第二处理模块32,用于根据通信协议生成至少两个测试信号,每个测试信号对应一种通信协议,用于测试终端设备对应通信协议的上行通信功能;根据至少两个测试信号叠加生成下行射频信号;
第二收发模块31,用于向终端设备发送下行射频信号,下行射频信号用于确定终端设备的下行测试结果。
其中,第一处理模块32可以基于现场可编程逻辑门阵列(field programmable gate array,FPGA)电路、数字信号处理(digital signal processing,DSP)电路、中央处理器(central processing unit,CPU)等硬件实现其处理功能。
第一存储模块33可以基于双倍数据速率(double data rate,DDR)存储器、随机存储器(random access memory,RAM)、闪存(FLASH)等硬件实现其存储功能。
可选的,测试装置还可以包括时钟模块,该时钟模块可以基于数字振荡器(numerically controlled oscillator,NCO)、压控振荡器(voltage-controlled oscillator,VCO)、锁相介质频率合成器(phase-locked dielectric oscillator,PDRO)等硬件实现其计时和管理功能。
在一种可能的实现方式中,第二处理模块32,具体用于将至少两个测试信号上变频至通信协议的射频频点处,叠加合成同相正交信号;对同相正交信号进行数模转换,生成下行射频信号。
在一种可能的实现方式中,第二处理模块32,还用于对至少两个测试信号进行滤波。
在一种可能的实现方式中,下行测试结果包括以下至少一项:信号灵敏度、阻塞、邻道选择性。
图12为本申请实施例提供的再一种测试装置的结构示意图。该测试装置可以用于执行上述图7~图8所示实施例中终端设备侧的方法,如图11所示,该测试装置包括:第四收发模块41,第四处理模块42,第四存储模块43,其中第四存储模块43用于与第四处理模块42耦合,保存程序指令和/或数据;
第四收发模块41,用于接收测试设备发送的下行射频信号;
第四处理模块42,用于根据下行射频信号确定终端设备的下行测试结果。
图13为本申请实施例提供的一种测试设备的结构示意图。如图13所示,该测试设备可以包括:处理器51(例如CPU)、存储器52、收发器53;收发器53耦合至处理器51,处理器51控制收发器53的收发动作;存储器52可能包含高速随机存取存储器(random-access memory,RAM),也可能还包括非易失性存储器(non-volatile memory,NVM),例如至少两个磁盘存储器,存储器52中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。在一种可实施的方式中,本申请涉及的测试设备还可以包括:电源54、通信总线55以及通信端口56。收发器53可以集成在测试设备的收发信机中,也可以为测试设备上独立的收发天线。通信总线55用于实现元件之间的通信连接。上述通信端口56用于实现测试设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器52用于存储计算机可执行程序代码,程序代码包括指令;当处理器51执行指令时,指令使终端设备的处理器51执行上述方法实施例中测试设备的处理动作,使收发器53执行上述方法实施例中测试设备的收发动作,其实现原理和技术效果类似,在此不再赘述。
本申请实施例中,测试设备将传统蜂窝仪表、WLAN仪表、蓝牙仪表等进行合一,相比于现有技术,仪表总体积降低75%以上。
图14为本申请实施例提供的一种终端设备的结构示意图。如图14所示,该接入网子 设备可以包括:处理器61(例如CPU)、存储器62、收发器63;收发器63耦合至处理器61,处理器61控制收发器63的收发动作;存储器62可能包含高速随机存取存储器(random-access memory,RAM),也可能还包括非易失性存储器(non-volatile memory,NVM),例如至少两个磁盘存储器,存储器62中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。在一种可实施的方式中,本申请涉及的终端设备还可以包括:电源64、通信总线65以及通信端口66。收发器63可以集成在终端设备的收发信机中,也可以为终端设备上独立的收发天线。通信总线65用于实现元件之间的通信连接。上述通信端口66用于实现终端设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器62用于存储计算机可执行程序代码,程序代码包括指令;当处理器61执行指令时,指令使终端设备的处理器61执行上述方法实施例中终端设备的处理动作,使收发器63执行上述方法实施例中终端设备的收发动作,其实现原理和技术效果类似,在此不再赘述。
正如上述实施例,本申请实施例涉及的电子设备可以是手机、平板电脑等无线设备,因此,以电子设备为手机为例:图15为本申请实施例提供的终端设备为手机时的结构框图。参考图15,该手机可以包括:射频(Radio Frequency,RF)电路1110、存储器1120、输入单元1130、显示单元1140、传感器1150、音频电路1160、无线保真(wireless fidelity,WiFi)模块1170、处理器1180、电源1190以及通信单元1210等部件。本领域技术人员可以理解,图15中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图15对手机的各个构成部件进行具体的介绍:
RF电路1110可用于收发信息或通话过程中,信号的接收和发送,例如,将基站的下行信息接收后,给处理器1180处理;另外,将上行的数据发送给基站。通常,RF电路包括但不限于天线、至少两个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路1110还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE))、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器1120可用于存储软件程序以及模块,处理器1180通过运行存储在存储器1120的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器1120可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少两个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少两个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元1130可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元1130可包括触控面板1131以及其他输入设备1132。触控面板1131,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如 用户使用手指、触笔等任何适合的物体或附件在触控面板1131上或在触控面板1131附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板1131可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1180,并能接收处理器1180发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1131。除了触控面板1131,输入单元1130还可以包括其他输入设备1132。具体地,其他输入设备1132可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元1140可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元1140可包括显示面板1141,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1141。进一步的,触控面板1131可覆盖于显示面板1141之上,当触控面板1131检测到在其上或附近的触摸操作后,传送给处理器1180以确定触摸事件的类型,随后处理器1180根据触摸事件的类型在显示面板1141上提供相应的视觉输出。虽然在图10中,触控面板1131与显示面板1141是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板1131与显示面板1141集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器1150,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1141的亮度,光传感器可在手机移动到耳边时,关闭显示面板1141和/或背光。作为运动传感器的一种,加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路1160、扬声器1161以及传声器1162可提供用户与手机之间的音频接口。音频电路1160可将接收到的音频数据转换后的电信号,传输到扬声器1161,由扬声器1161转换为声音信号输出;另一方面,传声器1162将收集的声音信号转换为电信号,由音频电路1160接收后转换为音频数据,再将音频数据输出处理器1180处理后,经RF电路1110以发送给比如另一手机,或者将音频数据输出至存储器1120以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块1170可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图15示出了WiFi模块1170,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变本申请实施例的本质的范围内而省略。
处理器1180是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器1120内的软件程序和/或模块,以及调用存储在存储器1120内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器1180可包括一个或多个处理单元;例如,处理器1180可集成应用处理器和调制解调处理器, 其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1180中。
手机还包括给各个部件供电的电源1190(比如电池),可选的,电源可以通过电源管理系统与处理器1180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
手机还可以包括摄像头1200,该摄像头可以为前置摄像头,也可以为后置摄像头。尽管未示出,手机还可以包括蓝牙模块、GPS模块等,在此不再赘述。
在本申请实施例中,该手机所包括的处理器1180可以用于执行上述数据传输方法实施例,其实现原理和技术效果类似,在此不再赘述。
本申请实施例还提供了一种芯片,包括处理器和接口。其中接口用于输入输出处理器所处理的数据或指令。处理器用于执行以上方法实施例中提供的方法。该芯片可以应用于服务器中也可以应用于第一电子设备中。
本申请实施例还提供一种程序,该程序在被处理器执行时用于执行以上方法实施例提供的方法。
本申请实施例还提供一种程序产品,例如计算机可读存储介质,该程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述方法实施例提供的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本发明实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (21)

  1. 一种测试方法,其特征在于,包括:
    测试设备接收终端设备发送的上行射频信号,所述上行射频信号由至少两个测试信号叠加生成,每个所述测试信号对应一种通信协议,用于测试所述终端设备对应所述通信协议的上行通信功能;
    所述测试设备从所述上行射频信号中提取所述至少两个测试信号;
    所述测试设备分别对所述至少两个测试信号进行测试,并获取所述终端设备的上行通信功能的测试结果。
  2. 根据权利要求1所述的方法,其特征在于,所述测试设备从所述上行射频信号集中提取所述至少两个测试信号,包括:
    所述测试设备对所述上行射频信号进行模数转换,生成同相正交信号;
    所述测试设备将所述同相正交信号数字下变频至所述通信协议的射频频点处,并提取所述至少两个测试信号。
  3. 根据权利要求2所述的方法,其特征在于,在所述测试设备将所述同相正交信号数字下变频至所述通信协议的射频频点处之前,还包括:
    所述测试设备对所述同相正交信号进行滤波。
  4. 根据权利要求1所述的方法,其特征在于,在所述测试设备分别对所述至少两个测试信号进行测试之前,还包括:
    所述测试设备对所述至少两个测试信号进行预处理,所述预处理包括:信号同步处理和/或信号均衡处理。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述上行测试结果包括以下至少一项:误差向量幅度EVM、邻信道功率比ACPR、功率。
  6. 一种测试方法,其特征在于,包括:
    测试设备根据通信协议生成至少两个测试信号,每个所述测试信号对于一种所述通信协议,用于测试所述终端设备对应所述通信协议的下行通信功能;
    所述测试设备根据所述至少两个测试信号叠加生成下行射频信号;
    所述测试设备向终端设备发送所述下行射频信号,所述下行射频信号用于确定所述终端设备的下行测试结果。
  7. 根据权利要求6所述的方法,其特征在于,所述测试设备根据所述至少两个测试信号叠加生成下行射频信号,包括:
    所述测试设备将在频域占据不同频带的所述至少两个测试信号上变频至所述通信协议的射频频点处,在时域叠加合成;
    所述测试设备对所述同相正交信号进行数模转换,生成所述下行射频信号。
  8. 根据权利要求7所述的方法,其特征在于,在所述测试设备将所述至少两个测试信号上变频至所述通信协议的射频频点处,叠加合成同相正交信号之前,还包括:
    所述测试设备对所述至少两个测试信号进行滤波。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,所述下行测试结果包括以下至少一项:信号灵敏度、阻塞、邻道选择性。
  10. 一种测试装置,其特征在于,包括:
    第一收发模块,用于接收终端设备发送的上行射频信号,所述上行射频信号由至少两个测试信号叠加生成,每个所述测试信号对应一种通信协议,用于测试所述终端设备对应所述通信协议的上行通信功能;
    第一处理模块,用于从所述上行射频信号中提取所述至少两个测试信号;分别对所述至少两个测试信号进行测试,并获取所述终端设备的上行测试结果。
  11. 根据权利要求10所述的装置,其特征在于,所述第一处理模块,具体用于对所述上行射频信号进行模数转换,生成同相正交信号;将所述同相正交信号数字下变频至所述通信协议的射频频点处,并提取所述至少两个测试信号。
  12. 根据权利要求11所述的装置,其特征在于,所述第一处理模块,还用于对所述同相正交信号进行滤波。
  13. 根据权利要求10所述的装置,其特征在于,所述第一处理模块,还用于对所述至少两个测试信号进行预处理,所述预处理包括:信号同步处理和/或信号均衡处理。
  14. 根据权利要求10-13任一项所述的装置,其特征在于,所述上行测试结果包括以下至少一项:误差向量幅度EVM、邻信道功率比ACPR、功率。
  15. 一种测试装置,其特征在于,包括:
    第二处理模块,用于根据通信协议生成至少两个测试信号,每个所述测试信号对应一种所述通信协议,用于测试所述终端设备对应所述通信协议的下行通信功能;根据所述至少两个测试信号叠加生成下行射频信号;
    第二收发模块,用于向终端设备发送所述下行射频信号,所述下行射频信号用于确定所述终端设备的下行测试结果。
  16. 根据权利要求15所述的装置,其特征在于,所述第二处理模块,具体用于将在频域占据不同频带的所述至少一个至少两个测试信号上变频至所述通信协议的射频频点处,在时域叠加合成同相正交信号;,叠加合成同相正交信号;对所述同相正交信号进行数模转换,生成所述下行射频信号。
  17. 根据权利要求16所述的装置,其特征在于,所述第二处理模块,还用于对所述至少两个测试信号进行滤波。
  18. 根据权利要求15-17任一项所述的装置,其特征在于,所述下行测试结果包括以下至少一项:信号灵敏度、阻塞、邻道选择性。
  19. 一种电子设备,其特征在于,包括:存储器和处理器;
    其中,所述存储器用于存储所述处理器的可执行指令;
    所述处理器被配置为:接收终端设备发送的上行射频信号,所述上行射频信号由至少两个测试信号叠加生成,每个所述测试信号对应一种通信协议,用于测试所述终端设备对应所述通信协议的上行通信功能;从所述上行射频信号中提取所述至少两个测试信号;分别对所述至少两个测试信号进行测试,并获取所述终端设备的上行测试结果。
  20. 一种电子设备,其特征在于,包括:存储器和处理器;
    其中,所述存储器用于存储所述处理器的可执行指令;
    所述处理器被配置为:根据通信协议生成至少两个测试信号,每个所述测试信号对应一种所述通信协议,用于测试所述终端设备对应所述通信协议的下行通信功能;根据所述 至少两个测试信号叠加生成下行射频信号;向终端设备发送所述下行射频信号,所述下行射频信号用于确定所述终端设备的下行测试结果。
  21. 一种测试系统,其特征在于,包括:测试设备、终端设备、交换机和服务器;
    所述测试设备与所述终端设备连接,所述交换机分别与所述测试设备、终端设备和所述服务器连接;
    所述终端设备用于向所述测试设备发送上行射频信号或接受所述测试设备的下行射频信号;
    所述测试设备用于执行权利要求1-5或6-9所述的测试方法;
    所述服务器用于通过所述交换机向所述测试设备和所述终端设备发送测试指示,以及获取所述终端设备的上行测试结果和/或下行测试结果。
PCT/CN2020/117049 2019-09-23 2020-09-23 测试方法、装置及系统 WO2021057772A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20869852.2A EP4024732A4 (en) 2019-09-23 2020-09-23 TEST METHOD, APPARATUS AND SYSTEM
US17/702,181 US20220216926A1 (en) 2019-09-23 2022-03-23 Test Method, Apparatus, And System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910901411.0 2019-09-23
CN201910901411.0A CN112543068B (zh) 2019-09-23 2019-09-23 测试方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/702,181 Continuation US20220216926A1 (en) 2019-09-23 2022-03-23 Test Method, Apparatus, And System

Publications (1)

Publication Number Publication Date
WO2021057772A1 true WO2021057772A1 (zh) 2021-04-01

Family

ID=75013174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117049 WO2021057772A1 (zh) 2019-09-23 2020-09-23 测试方法、装置及系统

Country Status (4)

Country Link
US (1) US20220216926A1 (zh)
EP (1) EP4024732A4 (zh)
CN (1) CN112543068B (zh)
WO (1) WO2021057772A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115333607A (zh) * 2022-08-11 2022-11-11 四川灵通电讯有限公司 数据链系统的分体式地面系统及其应用方法
WO2023180659A1 (fr) * 2022-03-25 2023-09-28 Mvg Industries Systeme d'emission et reception intelligent integre et compact

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116469312B (zh) * 2021-12-28 2024-04-19 深圳荣耀智能机器有限公司 显示屏组件、电子设备、测试装置及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100095345A (ko) * 2009-02-20 2010-08-30 주식회사 네오셈 프로토콜변환보드를 사용한 ssd 소자 테스트시스템
CN104753612A (zh) * 2015-03-06 2015-07-01 广东欧珀移动通信有限公司 一种射频测试方法及系统
CN105790859A (zh) * 2016-02-29 2016-07-20 华为技术有限公司 一种测试电子设备的方法和装置
CN106230522A (zh) * 2016-07-19 2016-12-14 为准(北京)电子科技有限公司 一种通信仪表测试频段的扩展方法和设备
CN106302025A (zh) * 2016-08-22 2017-01-04 腾讯科技(深圳)有限公司 通信协议的自动化测试方法和装置
CN107666413A (zh) * 2016-07-29 2018-02-06 罗德施瓦兹两合股份有限公司 用于测试被测设备的通信安全性的方法和装置
CN108733568A (zh) * 2018-05-25 2018-11-02 平安科技(深圳)有限公司 应用测试方法、装置、设备及可读存储介质

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111903217B (zh) * 2007-03-01 2012-03-14 中国电子科技集团公司第五十四研究所 对多信号进行分离和提取的方法及装置
US8467735B2 (en) * 2009-03-23 2013-06-18 Apple Inc. Methods and apparatus for testing and integration of modules within an electronic device
US20120123723A1 (en) * 2010-11-15 2012-05-17 Wassim El-Hassan Methods for mitigating interactions among wireless devices in a wireless test system
CN102421133B (zh) * 2011-11-28 2014-11-12 上海创远仪器技术股份有限公司 一种多模移动终端测试设备的模式切换方法与装置
US9618552B2 (en) * 2012-03-08 2017-04-11 Ricoh Co., Ltd. Method and apparatus for measuring radio-frequency energy
US8982936B2 (en) * 2012-04-10 2015-03-17 Insight Scientific International (Shanghai) Ltd. Method and apparatus for simultaneous RF testing of multiple devices in specific frequency bands
US8995926B2 (en) * 2012-09-27 2015-03-31 Apple Inc. Methods and apparatus for performing coexistence testing for multi-antenna electronic devices
US20140119421A1 (en) * 2012-10-29 2014-05-01 Apple Inc. Testing Radio-Frequency Performance of Wireless Communications Circuitry Using Fast Fourier Transforms
WO2014148970A1 (en) * 2013-03-20 2014-09-25 Telefonaktiebolaget L M Ericsson (Publ) Procedures for controlling alternative radio-access technology (rat) in multi-rat capable terminals
CN103227686B (zh) * 2013-03-29 2015-04-08 中国电子科技集团公司第四十一研究所 多模终端综合测试仪的模式切换装置的信号处理方法
CN104009889B (zh) * 2014-06-10 2017-04-26 西安西电捷通无线网络通信股份有限公司 一种通信协议测试方法及其被测设备和测试平台
US10009126B2 (en) * 2015-12-11 2018-06-26 Litepoint Corporation Method for testing a radio frequency (RF) data packet signal transceiver with multiple transmitters and receivers capable of concurrent operations
CN106130665A (zh) * 2016-06-12 2016-11-16 陈松 一种无线测试装置
CN108075839B (zh) * 2016-11-17 2020-10-09 上海原动力通信科技有限公司 一种支持多种通信制式信号功率检测的装置和方法
CN106792803B (zh) * 2016-12-02 2020-03-20 深圳市极致汇仪科技有限公司 一种双频多天线的待测设备并行测试方法及系统
CN107949012A (zh) * 2017-12-22 2018-04-20 上海载德信息科技有限公司 基站信息采集方法和设备
US10187232B1 (en) * 2018-06-12 2019-01-22 Mitsubishi Electric Research Laboratories, Inc. Multi-band radio frequency transmitter
CN111224696B (zh) * 2018-11-26 2021-04-20 深圳市通用测试系统有限公司 无线终端的无线性能测试方法及系统
JP7242878B2 (ja) * 2019-02-19 2023-03-20 シーメンス インダストリー ソフトウェア インコーポレイテッド 無線機器検査装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100095345A (ko) * 2009-02-20 2010-08-30 주식회사 네오셈 프로토콜변환보드를 사용한 ssd 소자 테스트시스템
CN104753612A (zh) * 2015-03-06 2015-07-01 广东欧珀移动通信有限公司 一种射频测试方法及系统
CN105790859A (zh) * 2016-02-29 2016-07-20 华为技术有限公司 一种测试电子设备的方法和装置
CN106230522A (zh) * 2016-07-19 2016-12-14 为准(北京)电子科技有限公司 一种通信仪表测试频段的扩展方法和设备
CN107666413A (zh) * 2016-07-29 2018-02-06 罗德施瓦兹两合股份有限公司 用于测试被测设备的通信安全性的方法和装置
CN106302025A (zh) * 2016-08-22 2017-01-04 腾讯科技(深圳)有限公司 通信协议的自动化测试方法和装置
CN108733568A (zh) * 2018-05-25 2018-11-02 平安科技(深圳)有限公司 应用测试方法、装置、设备及可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024732A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023180659A1 (fr) * 2022-03-25 2023-09-28 Mvg Industries Systeme d'emission et reception intelligent integre et compact
FR3133966A1 (fr) * 2022-03-25 2023-09-29 Mvg Industries Module émetteur récepteur intelligent intégré et compact
CN115333607A (zh) * 2022-08-11 2022-11-11 四川灵通电讯有限公司 数据链系统的分体式地面系统及其应用方法

Also Published As

Publication number Publication date
CN112543068A (zh) 2021-03-23
EP4024732A4 (en) 2023-02-22
CN112543068B (zh) 2022-06-10
US20220216926A1 (en) 2022-07-07
EP4024732A1 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
WO2021057772A1 (zh) 测试方法、装置及系统
CA2839378C (en) Systems and methods for testing radio-based devices
US9491029B2 (en) Devices and methods for reducing signal distortion in I/Q modulation transceivers
US9178629B2 (en) Non-synchronized radio-frequency testing
WO2013074063A1 (en) Perturbation-based dynamic measurement of antenna impedance in real-time
US11711085B2 (en) Phase synchronization updates without synchronous signal transfer
TWI552534B (zh) 組態無線電收發機的裝置、系統及方法
EP3280056B1 (en) Transceiver architecture for license assisted access systems
Rahman et al. A practical approach to spectrum analyzing unit using rtl-sdr
US11233536B2 (en) High-performance receiver architecture
CN108307485B (zh) 无线网络扫描方法、装置、终端设备及存储介质
US8391803B2 (en) Device, system and method of configurable frequency signal generation
CN112152649B (zh) 射频电路、终端设备、信号传输方法及存储介质
US10171124B2 (en) Low noise amplifier arbiter for license assisted access systems
CN115085826B (zh) 发射功率检测电路、方法和无线通信设备
US20220231707A1 (en) Programmable radio timing controller
US20090143060A1 (en) Remote host controller interface control for devices
US20230085553A1 (en) Electronic device for adjusting frequency of reference signal used to generate rf signal
CN107086882A (zh) 一种载波聚合射频电路以及移动终端
US20230361967A1 (en) Counting active resources for ue processing complexity related capability
US20200014472A1 (en) Reverse coupler for transceiver devices
CN114448533A (zh) 接收链路的测试方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020869852

Country of ref document: EP

Effective date: 20220331