WO2021057748A1 - 一种远程水文监测系统 - Google Patents

一种远程水文监测系统 Download PDF

Info

Publication number
WO2021057748A1
WO2021057748A1 PCT/CN2020/116948 CN2020116948W WO2021057748A1 WO 2021057748 A1 WO2021057748 A1 WO 2021057748A1 CN 2020116948 W CN2020116948 W CN 2020116948W WO 2021057748 A1 WO2021057748 A1 WO 2021057748A1
Authority
WO
WIPO (PCT)
Prior art keywords
lifting
control box
sensor
telescopic
water level
Prior art date
Application number
PCT/CN2020/116948
Other languages
English (en)
French (fr)
Inventor
钱晓军
Original Assignee
南京师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京师范大学 filed Critical 南京师范大学
Publication of WO2021057748A1 publication Critical patent/WO2021057748A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0428Safety, monitoring
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the invention relates to a hydrological monitoring system, in particular to a remote hydrological monitoring system.
  • hydrological monitoring part of it is manual inspection, and part of it is to install monitoring equipment at fixed points, and then centralized monitoring by the monitoring center.
  • monitoring equipment most of them are customized according to the conditions of the river, which is poor in versatility and is not conducive to the popularization and use of intelligent monitoring. Therefore, it is necessary to design a remote hydrological monitoring system, which can realize remote unmanned monitoring, and can meet the installation of various large and small rivers, and improve the versatility of the installation of detection equipment.
  • the purpose of the invention to provide a remote hydrological monitoring system, which can realize remote unmanned monitoring, and can meet the installation of various large and small rivers, and has good versatility.
  • the remote hydrological monitoring system of the present invention includes a lifting mechanism, a telescopic mechanism, a water level sensor, a flow rate sensor, an infrared camera, and a control box;
  • the telescopic mechanism is installed on the top of the lifting mechanism, which is driven by the lifting mechanism to realize the lifting adjustment;
  • the control box is installed on the telescopic mechanism, and the control box is driven by the telescopic mechanism to move laterally;
  • the water level sensor, the flow rate sensor and the infrared camera are all suspended in the control On the lower side of the box;
  • the control box is equipped with a power supply module, a controller, a memory, and a G communication module;
  • the controller is electrically connected to the memory, G communication module, water level sensor, flow rate sensor, and infrared camera;
  • the power modules are respectively for control Power supply for the device, memory, G communication module, water level sensor, flow rate sensor and infrared camera.
  • a rain sensor is installed on the top of the control box; the controller is electrically connected with the rain sensor; and the power module supplies power for the rain sensor.
  • the lifting mechanism includes an installation bottom plate, a vertical column, a lifting square column, a lifting screw, and a lifting rocker; the vertical column is vertically fixed and installed on the installation bottom plate, and is provided at the installation position of the vertical column and the installation bottom plate.
  • Triangular ribs the upper end of the vertical column is provided with a lifting square hole along the axial direction; the lifting square column is vertically inserted in the lifting jack, and the lower end of the lifting square column is provided with a screw hole in the axial direction; The lower end is installed in the lifting square hole through the rotating support, the upper end of the lifting screw vertically extends into the screw hole, and a lifting seat is fixedly installed in the screw hole; a lifting thread hole is provided on the lifting seat, and the lifting screw thread is screwed together Installed on the lifting threaded hole; on the lower end of the lifting screw is equipped with driven umbrella teeth; the lifting rocker is mounted on the vertical column in a rotating manner, and the rotating shaft of the lifting rocker extends into the lifting jack, and then extends into The driving bevel gear meshing with the driven bevel gear is fixedly installed on the end; the telescopic mechanism is mounted on the upper end of the lifting square column.
  • the telescopic mechanism includes a transverse square tube, a transverse plunger, a telescopic screw, and a telescopic rocker; the end of the transverse square tube is vertically installed on the upper end of the lifting square column, and at the installation position of the horizontal square tube and the lifting square column.
  • Reinforced ribs are provided at the place; the transverse insert rod is inserted into the transverse square tube, and the insertion end of the transverse insert rod is provided with a telescopic drive threaded hole; the telescopic rocker is rotatably installed on the lifting square column; the telescopic screw One end is inserted into the transverse square tube and screwed and installed on the telescopic drive threaded hole; the other end of the telescopic screw is opposite to the rotating shaft of the telescopic rocker; the control box is installed on the outer end of the transverse rod.
  • a cross-shaped bracket is fixedly installed on the top of the lifting square column; a solar panel is installed obliquely on all four ends of the cross-shaped bracket; a solar charging circuit is provided in the control box; four solar cells The board charges the battery of the power module through the solar charging circuit.
  • the flow velocity sensor is suspended and installed on the lower side of the control box through an adjustable inclination hanger;
  • the adjustable inclination hanger includes a suspension rod, a U-shaped plate frame and two angle positioning bolts; the upper end of the suspension rod is installed with threads
  • the lower side of the control box is fixedly installed on the U-shaped plate frame; there are two round tables on the side wall of the cylindrical shell of the flow rate sensor, and the two round tables are on the same axis; Both round tables are provided with an angle locking threaded hole;
  • the flow rate sensor is located between the two sides of the U-shaped plate frame; two angle positioning bolts are respectively penetrated through the two side plates of the U-shaped plate frame, and then screwed and installed on the two plates. The angle of the side is locked on the threaded hole.
  • a rubber ring sleeve is sleeved on the front end of the cylindrical shell of the flow rate sensor; and a water baffle extending toward the front end of the flow rate sensor is provided on the rubber ring sleeve.
  • the infrared camera is suspended and mounted on the lower side of the control box through an electric adjustment bracket;
  • the electric adjustment bracket includes a fixed boom, a U-shaped plate seat and a pitch drive motor;
  • the control box is provided with a motor electrically connected to the controller Drive circuit;
  • the fixed boom is vertically and fixedly installed on the lower side of the control box,
  • the U-shaped plate base is fixedly installed on the lower end of the fixed boom;
  • the U-shaped plate base is rotatably installed between the two parallel side plates
  • the rear end of the infrared camera is fixedly installed on the angle adjustment shaft;
  • the pitch drive motor is fixedly installed on the outer side of a parallel side plate of the U-shaped plate base, and the output shaft of the pitch drive motor is opposite to the angle adjustment shaft Connect;
  • the controller drives the pitch drive motor forward and reverse through the motor drive circuit, and the power module supplies power for the motor drive circuit.
  • a wiper rubber seat is provided in the U-shaped plate seat and above the angle adjustment shaft; an arc-shaped slot is provided on the lower side of the wiper rubber seat, and the slotting direction and angle of the arc-shaped slot are
  • the adjustment shaft is perpendicular; the arc-shaped rubber wiper strips are arranged at intervals in the arc-shaped slot; after the infrared camera rotates upwards around the angle adjustment shaft, the spherical lens of the infrared camera is aligned with the inner arc edge of the curved rubber wiper strip. Snap to achieve the spherical lens wiper.
  • a counterweight is installed on the sensor head of the water level sensor
  • the counterweight is composed of a truncated cone head, four vertical struts and a cross strut; a mounting hole is provided on the truncated cone head along the central axis, and a rubber is provided on the hole wall of the mounting hole Extrusion strip;
  • the sensor head of the water level sensor is vertically inserted into the mounting hole from the bottom of the cone of the truncated cone head, and the sensor head of the water level sensor extends downward from the truncated top of the truncated cone head;
  • the water level sensor The sensor head is squeezed and fixed with the rubber extrusion strip; four vertical support rods are vertically fixed and arranged on the conical surface of the truncated cone head, and the vertical support rods are parallel to the center line of the installation circular hole;
  • the present invention has the beneficial effects that the 4G communication module can send the water level data, flow rate data and image information of the river to the remote control center, thereby realizing remote unmanned monitoring; Realize the adjustment of the position and height of the control box to meet the installation of various rivers and channels, and has good versatility.
  • Figure 1 is a schematic diagram of the overall structure of the present invention.
  • Figure 2 is a schematic sectional view of the structure of the wiper rubber seat of the present invention.
  • Figure 3 is a schematic diagram of the circuit structure of the present invention.
  • Figure 4 is a schematic diagram of the structure of the counterweight of the present invention.
  • the remote hydrological monitoring system disclosed by the present invention includes: a lifting mechanism, a telescopic mechanism, a water level sensor 29, a flow rate sensor 27, an infrared camera 34, and a control box 8;
  • the telescopic mechanism is installed on the top of the elevating mechanism, and the elevating mechanism is driven by the elevating mechanism to realize the lifting adjustment;
  • the control box 8 is installed on the telescopic mechanism, and the control box 8 is driven by the telescopic mechanism to move laterally;
  • the water level sensor 29, the flow rate sensor 27 and the infrared camera 34 are all Suspended installation on the lower side of the control box 8;
  • in the control box 8 is equipped with a power supply module, controller, memory and 4G communication module; the controller and the memory, 4G communication module, water level sensor 29, flow rate sensor 27 and infrared
  • the camera 34 is electrically connected; the power module supplies power to the controller, memory, 4G communication module, water level sensor 29, flow rate sensor 27, and infrared camera 34 respectively.
  • the 4G communication module can send the water level data, flow rate data and image information of the river channel to the remote control center, so as to realize remote unmanned monitoring; the use of telescopic mechanism and lifting mechanism can realize the position and height adjustment of the control box 8 to meet various sizes
  • the installation of river channels has good versatility.
  • a rain sensor 22 is installed on the top of the control box 8; the controller is electrically connected to the rain sensor 22; the power module supplies power to the rain sensor 22.
  • the rainfall sensor 22 can be used to detect the rainfall at the river channel in real time, so as to obtain the rainfall information at the location of the river channel and send it remotely.
  • the lifting mechanism includes an installation bottom plate 1, a vertical column 2, a lifting square column 4, a lifting screw 15 and a lifting handle 18;
  • the vertical column 2 is vertically fixedly installed on the installation bottom plate 1, and is connected to the vertical column 2
  • the installation position of the installation base plate 1 is provided with a triangular rib 3;
  • the upper end of the vertical column 2 is provided with a lifting square hole 13 along the axial direction;
  • the lifting square column 4 is vertically inserted in the lifting jack 13 and is installed on the lifting side
  • the lower end of the column 4 is provided with a screw hole 14 along the axial direction;
  • the lower end of the lifting screw 15 is installed in the lifting square hole 13 through the rotating support 11, and the upper end of the lifting screw 15 extends vertically into the screw hole 14 and is in the screw hole 14
  • a lifting seat 12 is fixedly installed inside; a lifting threaded hole is provided on the lifting seat 12, and the lifting screw 15 is screwed and installed on the lifting threaded hole; a driven umbrella tooth 16 is
  • the telescopic mechanism includes a transverse square tube 5, a transverse plunger 6, a telescopic screw 19, and a telescopic handle 20; the end of the transverse square tube 5 is vertically installed on the upper end of the lifting square column 4, and is mounted on the transverse square tube 5.
  • the mounting position with the lifting square column 4 is provided with a reinforcing rib plate 21; the transverse inserting rod 6 is inserted into the transverse square tube 5, and the insertion end of the transverse inserting rod 6 is provided with a telescopic drive threaded hole; telescopic rocker 20 is rotatably installed on the lifting square column 4; one end of the telescopic screw 19 is inserted into the transverse square tube 5 and screwed and installed on the telescopic drive threaded hole; the other end of the telescopic screw 19 is opposite to the rotating shaft of the telescopic crank 20 ;
  • the control box 8 is installed on the outer end of the transverse rod 6.
  • the telescopic rocker 20 is used to rotate the telescopic screw 19, thereby adjusting the length of the transverse inserting rod 6 extending out of the transverse square tube 5, thereby adjusting the position of the control box 8 above the river channel to meet the width requirements of the river channel.
  • a cross-shaped bracket 10 is fixedly installed on the top of the lifting square column 4; a solar panel 9 is installed obliquely on the four ends of the cross-shaped bracket 10; a solar charging circuit is provided in the control box 8. ; The four solar panels 9 charge the battery of the power module through the solar charging circuit. The solar panel 9 and the solar charging circuit can be used to charge the battery of the power module under the condition of sufficient sunlight to enhance the battery life.
  • the flow velocity sensor 27 is suspended and mounted on the lower side of the control box 8 through an adjustable inclination hanger;
  • the adjustable inclination hanger includes a suspension rod 24, a U-shaped plate frame 25 and two angle positioning bolts 26;
  • the upper end of the rod 24 is threadedly installed on the lower side of the control box 8, and the lower end of the suspension rod 24 is fixedly installed on the U-shaped plate frame 25;
  • two round tables 23 are provided on the side wall of the cylindrical shell of the flow rate sensor 27 , And the two round tables 23 are located on the same axis; both round tables 23 are provided with an angle locking threaded hole;
  • the flow rate sensor 27 is located between the two sides of the U-shaped plate frame 25;
  • two angle positioning bolts 26 are respectively The two side plates of the U-shaped plate frame 25 are threaded and screwed and installed on the angle locking threaded holes on both sides. Two angle positioning bolts 26 can be used to adjust and fix the angle of the flow rate sensor 27 during installation.
  • a rubber ring sleeve 28 is sleeved on the front end of the cylindrical casing of the flow rate sensor 27; a water baffle 30 extending toward the front end of the flow rate sensor 27 is provided on the rubber ring sleeve 28.
  • the rubber ring sleeve 28 is used to set a water baffle 30 at the front end of the flow rate sensor 27, and when the flow rate sensor 27 is adjusted to the front side or the opposite side, the rubber ring cover 28 can be rotated to ensure that the water baffle 30 can always be set at The flow rate sensor 27 is above the front end.
  • the infrared camera 34 is suspended and mounted on the lower side of the control box 8 through an electric adjustment bracket;
  • the electric adjustment bracket includes a fixed boom 31, a U-shaped plate base 32 and a pitch drive motor 35; and the control box 8 is provided with The motor drive circuit electrically connected to the controller;
  • the fixed boom 31 is vertically and fixedly installed on the lower side of the control box 8, and the U-shaped plate base 32 is fixedly installed on the lower end of the fixed boom 31;
  • An angle adjustment shaft 33 is rotatably installed between the two parallel side plates;
  • the rear end of the infrared camera 34 is fixedly installed on the angle adjustment shaft 33;
  • the pitch drive motor 35 is fixedly installed outside a parallel side plate of the U-shaped plate base 32 On the side, and the output shaft of the pitch drive motor 35 is opposite to the angle adjustment shaft 33;
  • the controller drives the pitch drive motor 35 to work in forward and reverse rotation through the motor drive circuit, and the power module supplies power for the motor drive circuit.
  • the pitch drive motor 35 is used to
  • a wiper rubber seat 36 is provided in the U-shaped plate seat 32 and above the angle adjustment shaft 33; an arc-shaped notch 37 is provided on the lower side of the wiper rubber seat 36, and an arc-shaped notch 37 is provided.
  • the slotting direction is perpendicular to the angle adjustment shaft 33; the arc-shaped rubber wiper strips 38 are arranged at intervals in the arc-shaped slot 37; after the infrared camera 34 rotates upwards around the angle adjustment shaft 33, the spherical lens of the infrared camera 34 It is close to the inner arc-shaped edge of the arc-shaped rubber wiper strip 38 to realize the wiping of the spherical lens.
  • the curved rubber wiper strip 38 can be used to wipe and clean the spherical lens of the infrared camera 34 to ensure that the camera shoots clearly and the video or image shooting effect; the curved notch 37 can match the spherical lens of the infrared camera 34 .
  • the counterweight is composed of a truncated cone head 39, four vertical braces 42 and a cross brace 43; a mounting hole 40 is provided on the truncated cone head 39 along the central axis, and is installed
  • the wall of the circular hole 40 is provided with a rubber extrusion strip 41 along its axial direction; the sensor head of the water level sensor 29 is vertically inserted into the installation circular hole 40 by the cone bottom of the truncated cone head 39, and the water level sensor 29
  • the sensor head of the truncated cone 39 protrudes downward from the truncated top; the sensor head of the water level sensor 29 is squeezed and fixed with the rubber extrusion strip 41; the four vertical braces 42 are vertically fixed on the truncated top
  • the use of counterweights can ensure that the sensor head of the water level sensor 29 will not be flushed away from the river bed under the turbulent flow of the river, and can also prevent the sensor head’s connecting cable from pulling the sensor head displacement under the action of the water flow to ensure the water level
  • the sensor head of the sensor 29 is stably located at the throwing point, the truncated cone head 39 acts as a counterweight, and the bracket formed by the four vertical braces 42 and the cross brace 43 enables the sensor head of the water level sensor 29 to be suspended and supported.
  • the inclined water baffle 7 can be used to block the water around the lower side of the control box 8 to prevent rainwater from converging to the bottom of the control box 8 and prevent the flow rate sensor 27 and the infrared camera 34 from being invaded by rain for a long time .
  • the controller adopts an existing controller module, such as an FPGA controller module, which can send and receive control signals;
  • the memory adopts an existing memory chip; and
  • the water level sensor 29 adopts an existing input liquid
  • the position sensor is used to detect the water level of the river in real time;
  • the flow sensor 27 uses the existing ultrasonic flow sensor to collect the water flow speed in the river in real time;
  • the infrared camera 34 uses the existing infrared camera to collect the real-time image of the river in real time;
  • the rainfall sensor 22 uses the existing tipping bucket rain barrel to collect real-time rainfall information;
  • the motor drive circuit uses the existing stepper motor drive circuit;
  • the pitch drive motor 35 uses the existing stepper motor;
  • the 4G communication module uses the existing 4G The communication module is used to realize remote data transmission;
  • the solar battery panel 9 adopts the existing solar battery panel, and the battery of the power module is charged through the matching solar charging circuit.
  • the installation base plate 1 is fixedly installed on the side of the river, and the lifting height of the lifting square column 4 is adjusted according to the installation height of the measured point, and the horizontal rod 6 is adjusted according to the width of the river.
  • the protruding length of each sensor is basically located in the middle of the river; the detection end of the water level sensor 29 is put into the water, and the counterweight 39 is relatively fixed and then calibrated to determine the difference between the measured value and the actual water level value.
  • the water level sensor 29 detects the water level data of the river in real time
  • the flow sensor 27 detects the water velocity data in the river in real time
  • the rainfall sensor 22 detects the rainfall above the river in real time.
  • the 4G communication module sends the collected data of the rain sensor 22, flow rate sensor 27, water level sensor 29 and infrared camera 34 to the monitoring center remotely, so as to realize the remote monitoring of hydrological data; under sufficient light conditions ,
  • the solar panel 9 charges the battery of the power module through the matching solar charging circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Studio Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种远程水文监测系统,包括升降机构、伸缩机构、水位传感器(29)、流速传感器(27)、红外摄像头(34)以及控制箱(8);伸缩机构安装在升降机构的顶部;控制箱(8)安装在伸缩机构上;水位传感器(29)、流速传感器(27)以及红外摄像头(34)均悬挂式安装在控制箱(8)的下侧面上;在控制箱(8)内设有电源模块、控制器、存储器以及4G通信模块。该远程水文监测系统利用4G通信模块将河道的水位数据、流速数据以及图像信息发送至远程控制中心,从而实现远程无人监测;利用伸缩机构和升降机构实现控制箱的位置和高度调节,满足各类大小河道的安装,具有较好的通用性。

Description

一种远程水文监测系统 技术领域
本发明涉及一种水文监测系统,尤其是一种远程水文监测系统。
背景技术
目前,在水文监测方面,一部分是采用人工进行巡检,一部分是采用定点安装监测设备,然后由监控中心集中监控。在定点安装监测设备时,大多都是根据河道情况定制各种监测设备,通用性差,不利于智能化监测的推广使用。因此有必要设计出一种远程水文监测系统,能够实现远程无人监测,且能够满足各类大小河道的安装,提高检测设备安装的通用性。
发明内容
发明目的:提供一种远程水文监测系统,能够实现远程无人监测,且能够满足各类大小河道的安装,具有较好的通用性。
技术方案:本发明所述的远程水文监测系统,包括升降机构、伸缩机构、水位传感器、流速传感器、红外摄像头以及控制箱;
伸缩机构安装在升降机构的顶部,由升降机构驱动伸缩机构实现升降调节;控制箱安装在伸缩机构上,由伸缩机构驱动控制箱横向移动;水位传感器、流速传感器以及红外摄像头均悬挂式安装在控制箱的下侧面上;在控制箱内设有电源模块、控制器、存储器以及G通信模块;控制器分别与存储器、G通信模块、水位传感器、流速传感器以及红外摄像头电连接;电源模块分别为控制器、存储器、G通信模块、水位传感器、流速传感器以及红外摄像头供电。
进一步地,在控制箱的顶部安装有雨量传感器;控制器与雨量传感器电连接;电源模块为雨量传感器供电。
进一步地,升降机构包括安装底板、竖向立柱、升降方柱、升降螺杆以及升降摇把;竖向立柱竖向固定安装在安装底板上,且在竖向立柱与安装底板的安装位置处设置有三角筋板;在竖向立柱的上端沿轴向设有升降方孔;升降方柱竖向插装在升降插孔中,并在升降方柱的下端沿轴向设有螺杆孔;升降螺杆的下端通过旋转支座安装在升降方孔内,升降螺杆的上端竖向伸入螺杆孔内,并在螺杆孔内固定安装有升降座;在升降座上设有升降螺纹孔,升降螺杆螺纹旋合安装在升降螺纹孔上;在升降螺杆的下端上安装有从动伞齿;升降摇把旋转式安装在竖向立柱上,且升降摇把的旋转轴伸入升降插孔内,并在伸入端上固定安装有与从动伞齿相啮合的驱动伞齿;伸缩机构安装在升降方柱的上端部。
进一步地,伸缩机构包括横向方管、横向插杆、伸缩螺杆以及伸缩摇把;横向方管的端部垂直安装在升降方柱的上端部上,并在横向方管与升降方柱的安装位置处设有加强筋板;横向插杆插装在横向方管中,并在横向插杆的插入端部上设有伸缩驱动螺纹孔;伸缩摇把旋转式安装在升降方柱上;伸缩螺杆的一端插入横向方管内并螺纹旋合安装在伸缩驱动螺纹孔上;伸缩螺杆的另一端与伸缩摇把的旋转轴相对接;控制箱安装在横向插杆的外 端部上。
进一步地,在升降方柱的顶部固定安装有一个十字形支架;在十字形支架的四个端部上均倾斜安装有一个太阳能电池板;在控制箱内设置有太阳能充电电路;四个太阳能电池板通过太阳能充电电路为电源模块的蓄电池充电。
进一步地,流速传感器通过倾角可调吊架悬挂式安装在控制箱的下侧面上;倾角可调吊架包括悬吊杆、U形板架以及两根角度定位螺栓;悬吊杆的上端螺纹安装在控制箱的下侧面上,悬吊杆的下端固定安装在U形板架上;在流速传感器的圆筒形壳体侧壁上设有两个圆台,且两个圆台位于同一轴线上;在两个圆台上均设有一个角度锁紧螺纹孔;流速传感器位于U形板架的两侧板之间;两根角度定位螺栓分别贯穿U形板架的两侧板后螺纹旋合安装在两侧的角度锁紧螺纹孔上。
进一步地,在流速传感器的圆筒形壳体前端套设有橡胶圆环套;在橡胶圆环套上设有向流速传感器前端延伸的挡水板。
进一步地,红外摄像头通过电动调节支架悬挂式安装在控制箱的下侧面上;电动调节支架包括固定吊杆、U形板座以及俯仰驱动电机;在控制箱内设有与控制器电连接的电机驱动电路;固定吊杆竖向固定安装在控制箱的下侧面上,U形板座固定安装在固定吊杆的下端部上;在U形板座的两块平行侧板之间旋转式安装有一个角度调节转轴;红外摄像头的后端固定安装在角度调节转轴上;俯仰驱动电机固定安装在U形板座的一块平行侧板外侧边上,且俯仰驱动电机的输出轴与角度调节转轴相对接;控制器通过电机驱动电路驱动俯仰驱动电机正反转工作,电源模块为电机驱动电路供电。
进一步地,在U形板座内且位于角度调节转轴的上方设有刮水橡胶座;在刮水橡胶座的下侧面上设有弧形槽口,且弧形槽口的开槽方向与角度调节转轴相垂直;在弧形槽口内间隔分布设置有各个弧形橡胶刮水条;红外摄像头围绕角度调节转轴向上旋转后,红外摄像头的球面镜头与弧形橡胶刮水条的内弧形边缘相贴紧实现球面镜头刮水。
进一步地,在控制箱的下侧面四周边缘均设有侧边侧边倾斜挡水板,由四块侧边倾斜挡水板构成挡水围挡;在水位传感器的传感头上安装有配重块;配重块由截顶圆锥头、四根竖向撑杆以及十字撑杆构成;在截顶圆锥头上沿中心轴线设置有安装圆孔,并在安装圆孔的孔壁上设有橡胶挤压条;水位传感器的传感头由截顶圆锥头的锥底部竖向插装在安装圆孔上,且水位传感器的传感头由截顶圆锥头的截顶部向下伸出;水位传感器的传感头与橡胶挤压条相挤压固定;四根竖向撑杆竖向固定设置在截顶圆锥头的锥面上,竖向撑杆与安装圆孔的中心线相平行;四根竖向撑杆的下端部分别垂直固定安装在十字撑杆的四根分支撑杆端部上。
本发明与现有技术相比,其有益效果是:利用4G通信模块能够将河道的水位数据、流速数据以及图像信息发送至远程控制中心,从而实现远程无人监测;利用伸缩机构和升降机构能够实现控制箱的位置和高度调节,满足各类大小河道的安装,具有较好的通用性。
附图说明
图1为本发明的整体结构示意图;
图2为本发明的刮水橡胶座剖视结构示意图;
图3为本发明的电路结构示意图;
图4为本发明的配重块结构示意图。
具体实施方式
下面结合附图对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。
实施例1:
如图1-4所示,本发明公开的远程水文监测系统包括:升降机构、伸缩机构、水位传感器29、流速传感器27、红外摄像头34以及控制箱8;
伸缩机构安装在升降机构的顶部,由升降机构驱动伸缩机构实现升降调节;控制箱8安装在伸缩机构上,由伸缩机构驱动控制箱8横向移动;水位传感器29、流速传感器27以及红外摄像头34均悬挂式安装在控制箱8的下侧面上;在控制箱8内设有电源模块、控制器、存储器以及4G通信模块;控制器分别与存储器、4G通信模块、水位传感器29、流速传感器27以及红外摄像头34电连接;电源模块分别为控制器、存储器、4G通信模块、水位传感器29、流速传感器27以及红外摄像头34供电。
利用4G通信模块能够将河道的水位数据、流速数据以及图像信息发送至远程控制中心,从而实现远程无人监测;利用伸缩机构和升降机构能够实现控制箱8的位置和高度调节,满足各类大小河道的安装,具有较好的通用性。
进一步地,在控制箱8的顶部安装有雨量传感器22;控制器与雨量传感器22电连接;电源模块为雨量传感器22供电。利用雨量传感器22能够对河道处的降雨量进行实时检测,从而获取河道位置处的雨量信息并远程发送。
进一步地,升降机构包括安装底板1、竖向立柱2、升降方柱4、升降螺杆15以及升降摇把18;竖向立柱2竖向固定安装在安装底板1上,且在竖向立柱2与安装底板1的安装位置处设置有三角筋板3;在竖向立柱2的上端沿轴向设有升降方孔13;升降方柱4竖向插装在升降插孔13中,并在升降方柱4的下端沿轴向设有螺杆孔14;升降螺杆15的下端通过旋转支座11安装在升降方孔13内,升降螺杆15的上端竖向伸入螺杆孔14内,并在螺杆孔14内固定安装有升降座12;在升降座12上设有升降螺纹孔,升降螺杆15螺纹旋合安装在升降螺纹孔上;在升降螺杆15的下端上安装有从动伞齿16;升降摇把18旋转式安装在竖向立柱2上,且升降摇把18的旋转轴伸入升降插孔13内,并在伸入端上固定安装有与从动伞齿16相啮合的驱动伞齿17;伸缩机构安装在升降方柱4的上端部。利用升降摇把18来旋转升降螺杆15,从而调节升降方柱4伸出竖向立柱2的长度,从而调节控制箱8位于河道上方的高度,满足高度安装要求;将升降螺杆15设置于内部,能够避免上侧户外腐蚀生锈。
进一步地,伸缩机构包括横向方管5、横向插杆6、伸缩螺杆19以及伸缩摇把20;横向方管5的端部垂直安装在升降方柱4的上端部上,并在横向方管5与升降方柱4的安装位置处设有加强筋板21;横向插杆6插装在横向方管5中,并在横向插杆6的插入端部上设有伸缩驱动螺纹孔;伸缩摇把20旋转式安装在升降方柱4上;伸缩螺杆19的一端插入横向方管5内并螺纹旋合安装在伸缩驱动螺纹孔上;伸缩螺杆19的另一端与伸缩摇把20的旋转轴相对接;控制箱8安装在横向插杆6的外端部上。利用伸缩摇把20来旋转伸缩螺杆19,从而调节横向插杆6伸出横向方管5的长度,从而调节控制箱8位于河道上方的位置,满足河道宽度要求。
进一步地,在升降方柱4的顶部固定安装有一个十字形支架10;在十字形支架10的四个端部上均倾斜安装有一个太阳能电池板9;在控制箱8内设置有太阳能充电电路;四个太阳能电池板9通过太阳能充电电路为电源模块的蓄电池充电。利用太阳能电池板9以及太阳能充电电路能够在阳光充足的条件下对电源模块的蓄电池进行充电,增强蓄电池的续航能力。
进一步地,流速传感器27通过倾角可调吊架悬挂式安装在控制箱8的下侧面上;倾角可调吊架包括悬吊杆24、U形板架25以及两根角度定位螺栓26;悬吊杆24的上端螺纹安装在控制箱8的下侧面上,悬吊杆24的下端固定安装在U形板架25上;在流速传感器27的圆筒形壳体侧壁上设有两个圆台23,且两个圆台23位于同一轴线上;在两个圆台23上均设有一个角度锁紧螺纹孔;流速传感器27位于U形板架25的两侧板之间;两根角度定位螺栓26分别贯穿U形板架25的两侧板后螺纹旋合安装在两侧的角度锁紧螺纹孔上。利用两根角度定位螺栓26能够在安装时对流速传感器27的角度进行调节固定。
进一步地,在流速传感器27的圆筒形壳体前端套设有橡胶圆环套28;在橡胶圆环套28上设有向流速传感器27前端延伸的挡水板30。利用橡胶圆环套28在流速传感器27前端设置挡水板30,并且在流速传感器27向前侧或相后侧调节时,能够旋转橡胶圆环套28,从而确保挡水板30始终可以设置位于流速传感器27前端上方。
进一步地,红外摄像头34通过电动调节支架悬挂式安装在控制箱8的下侧面上;电动调节支架包括固定吊杆31、U形板座32以及俯仰驱动电机35;在控制箱8内设有与控制器电连接的电机驱动电路;固定吊杆31竖向固定安装在控制箱8的下侧面上,U形板座32固定安装在固定吊杆31的下端部上;在U形板座32的两块平行侧板之间旋转式安装有一个角度调节转轴33;红外摄像头34的后端固定安装在角度调节转轴33上;俯仰驱动电机35固定安装在U形板座32的一块平行侧板外侧边上,且俯仰驱动电机35的输出轴与角度调节转轴33相对接;控制器通过电机驱动电路驱动俯仰驱动电机35正反转工作,电源模块为电机驱动电路供电。利用俯仰驱动电机35驱动角度调节转轴33旋转,从而调节红外摄像头34的拍摄角度,满足多角度拍摄要求。
进一步地,在U形板座32内且位于角度调节转轴33的上方设有刮水橡胶座36;在刮水橡胶座36的下侧面上设有弧形槽口37,且弧形槽口37的开槽方向与角度调节转轴33相垂直;在弧形槽口37内间隔分布设置有各个弧形橡胶刮水条38;红外摄像头34围绕角度调节转轴33向上旋转后,红外摄像头34的球面镜头与弧形橡胶刮水条38的内弧形边缘相贴紧实现球面镜头刮水。利用弧形橡胶刮水条38能够对红外摄像头34的球面镜头进行刮水清理,确保摄像头拍摄清晰,确保视频或图像的拍摄效果;利用弧形槽口37能够与红外摄像头34的球面镜头相匹配。
进一步地,在控制箱8的下侧面四周边缘均设有侧边侧边倾斜挡水板7,由四块侧边倾斜挡水板7构成挡水围挡;在水位传感器29的传感头上安装有配重块;配重块由截顶圆锥头39、四根竖向撑杆42以及十字撑杆43构成;在截顶圆锥头39上沿中心轴线设置有安装圆孔40,并在安装圆孔40的孔壁上沿其轴向设有橡胶挤压条41;水位传感器29的传感头由截顶圆锥头39的锥底部竖向插装在安装圆孔40上,且水位传感器29的传感头由截顶圆锥头39的截顶部向下伸出;水位传感器29的传感头与橡胶挤压条41相挤压固定;四根竖向撑杆42竖向固定设置在截顶圆锥头39的锥面上,竖向撑杆42与安装圆孔40的中心线相平行;四 根竖向撑杆42的下端部分别垂直固定安装在十字撑杆43的四根分支撑杆端部上。利用配重块能够确保在河道水流湍急的情况下也不会将水位传感器29的传感头冲离河床,也能阻止传感头的连接线缆在水流作用下拉动传感头位移,确保水位传感器29的传感头稳定位于投掷点处,截顶圆锥头39起到配重作用,四根竖向撑杆42以及十字撑杆43构成的支架能够使得水位传感器29的传感头悬空支撑,防止被压入淤泥中影响测量;利用倾斜挡水板7能够对控制箱8的下侧面四周进行挡水,防止雨水汇聚到控制箱8的底部,避免流速传感器27和红外摄像头34长期被雨水侵入。
本发明公开的远程水文监测系统中,控制器采用现有的控制器模块,例如FPGA控制器模块,能够收发控制信号;存储器采用现有的存储芯片构成;水位传感器29采用现有的投入式液位传感器,用于实时检测河道水位;流速传感器27采用现有的超声波流速传感器,用于实时采集河道内水流速度;红外摄像头34采用现有的红外摄像头,用于实时采集河道实时图像;雨量传感器22采用现有的翻斗式雨量桶,用于采集实时雨量信息;电机驱动电路采用现有的步进电机驱动电路;俯仰驱动电机35采用现有的步进电机;4G通信模块采用现有的4G通信模块,用于实现远程数据传输;阳能电池板9采用现有的太阳能电池板,并通过配套的太阳能充电电路为电源模块的蓄电池进行充电。
本发明公开的远程水文监测系统在使用时,将安装底板1固定安装在河道侧边上,再根据测量的点的安装高度调节升降方柱4的升降高度,根据河道宽度调节的横向插杆6的伸出长度,从而使得各个传感器检测点基本位于河道中部位置处;将水位传感器29的检测端投入水中,并通过配重块39进行相对固定后进行标定,确定测量值与实际水位值之间的转换关系;在监测时,由水位传感器29实时检测河道的水位数据,由流速传感器27实时检测河道内水流速度数据,由雨量传感器22实时检测河道上方的降雨量,由红外摄像头34定时或者根据远程命令进行河道图像拍摄采集;由4G通信模块将雨量传感器22、流速传感器27、水位传感器29以及红外摄像头34的采集数据远程发送至监控中心,从而实现水文数据的远程监测;在光线充足条件下,太阳能电池板9通过配套的太阳能充电电路为电源模块的蓄电池进行充电。
如上所述,尽管参照特定的优选实施例已经表示和表述了本发明,但其不得解释为对本发明自身的限制。在不脱离所附权利要求定义的本发明的精神和范围前提下,可对其在形式上和细节上作出各种变化。

Claims (10)

  1. 一种远程水文监测系统,其特征在于:包括升降机构、伸缩机构、水位传感器(29)、流速传感器(27)、红外摄像头(34)以及控制箱(8);
    伸缩机构安装在升降机构的顶部,由升降机构驱动伸缩机构实现升降调节;控制箱(8)安装在伸缩机构上,由伸缩机构驱动控制箱(8)横向移动;水位传感器(29)、流速传感器(27)以及红外摄像头(34)均悬挂式安装在控制箱(8)的下侧面上;在控制箱(8)内设有电源模块、控制器、存储器以及4G通信模块;控制器分别与存储器、4G通信模块、水位传感器(29)、流速传感器(27)以及红外摄像头(34)电连接;电源模块分别为控制器、存储器、4G通信模块、水位传感器(29)、流速传感器(27)以及红外摄像头(34)供电。
  2. 根据权利要求1所述的远程水文监测系统,其特征在于:在控制箱(8)的顶部安装有雨量传感器(22);控制器与雨量传感器(22)电连接;电源模块为雨量传感器(22)供电。
  3. 根据权利要求1所述的远程水文监测系统,其特征在于:升降机构包括安装底板(1)、竖向立柱(2)、升降方柱(4)、升降螺杆(15)以及升降摇把(18);竖向立柱(2)竖向固定安装在安装底板(1)上,且在竖向立柱(2)与安装底板(1)的安装位置处设置有三角筋板(3);在竖向立柱(2)的上端沿轴向设有升降方孔(13);升降方柱(4)竖向插装在升降插孔(13)中,并在升降方柱(4)的下端沿轴向设有螺杆孔(14);升降螺杆(15)的下端通过旋转支座(11)安装在升降方孔(13)内,升降螺杆(15)的上端竖向伸入螺杆孔(14)内,并在螺杆孔(14)内固定安装有升降座(12);在升降座(12)上设有升降螺纹孔,升降螺杆(15)螺纹旋合安装在升降螺纹孔上;在升降螺杆(15)的下端上安装有从动伞齿(16);升降摇把(18)旋转式安装在竖向立柱(2)上,且升降摇把(18)的旋转轴伸入升降插孔(13)内,并在伸入端上固定安装有与从动伞齿(16)相啮合的驱动伞齿(17);伸缩机构安装在升降方柱(4)的上端部。
  4. 根据权利要求1所述的远程水文监测系统,其特征在于:伸缩机构包括横向方管(5)、横向插杆(6)、伸缩螺杆(19)以及伸缩摇把(20);横向方管(5)的端部垂直安装在升降方柱(4)的上端部上,并在横向方管(5)与升降方柱(4)的安装位置处设有加强筋板(21);横向插杆(6)插装在横向方管(5)中,并在横向插杆(6)的插入端部上设有伸缩驱动螺纹孔;伸缩摇把(20)旋转式安装在升降方柱(4)上;伸缩螺杆(19)的一端插入横向方管(5)内并螺纹旋合安装在伸缩驱动螺纹孔上;伸缩螺杆(19)的另一端与伸缩摇把(20)的旋转轴相对接;控制箱(8)安装在横向插杆(6)的外端部上。
  5. 根据权利要求1所述的远程水文监测系统,其特征在于:在升降方柱(4)的顶部固定安装有一个十字形支架(10);在十字形支架(10)的四个端部上均倾斜安装有一个太阳能电池板(9);在控制箱(8)内设置有太阳能充电电路;四个太阳能电池板(9)通过太阳能充电电路为电源模块的蓄电池充电。
  6. 根据权利要求1所述的远程水文监测系统,其特征在于:流速传感器(27)通过倾角可调吊架悬挂式安装在控制箱(8)的下侧面上;倾角可调吊架包括悬吊杆(24)、U形板架(25)以及两根角度定位螺栓(26);悬吊杆(24)的上端螺纹安装在控制箱(8)的下侧面上,悬吊杆(24)的下端固定安装在U形板架(25)上;在流速传感器(27)的圆筒形壳体侧壁上设有两个圆台(23),且两个圆台(23)位于同一轴线上;在两个圆台(23)上均设有一个角度锁紧螺纹孔;流速传感器(27)位于U形板架(25)的两侧板之间;两根角度定位螺栓(26)分别贯穿U形板架(25)的两侧板后螺纹旋合安装在两侧的角度锁紧螺纹孔上。
  7. 根据权利要求6所述的远程水文监测系统,其特征在于:在流速传感器(27)的圆筒形 壳体前端套设有橡胶圆环套(28);在橡胶圆环套(28)上设有向流速传感器(27)前端延伸的挡水板(30)。
  8. 根据权利要求1所述的远程水文监测系统,其特征在于:红外摄像头(34)通过电动调节支架悬挂式安装在控制箱(8)的下侧面上;电动调节支架包括固定吊杆(31)、U形板座(32)以及俯仰驱动电机(35);在控制箱(8)内设有与控制器电连接的电机驱动电路;固定吊杆(31)竖向固定安装在控制箱(8)的下侧面上,U形板座(32)固定安装在固定吊杆(31)的下端部上;在U形板座(32)的两块平行侧板之间旋转式安装有一个角度调节转轴(33);红外摄像头(34)的后端固定安装在角度调节转轴(33)上;俯仰驱动电机(35)固定安装在U形板座(32)的一块平行侧板外侧边上,且俯仰驱动电机(35)的输出轴与角度调节转轴(33)相对接;控制器通过电机驱动电路驱动俯仰驱动电机(35)正反转工作,电源模块为电机驱动电路供电。
  9. 根据权利要求8所述的远程水文监测系统,其特征在于:在U形板座(32)内且位于角度调节转轴(33)的上方设有刮水橡胶座(36);在刮水橡胶座(36)的下侧面上设有弧形槽口(37),且弧形槽口(37)的开槽方向与角度调节转轴(33)相垂直;在弧形槽口(37)内间隔分布设置有各个弧形橡胶刮水条(38);红外摄像头(34)围绕角度调节转轴(33)向上旋转后,红外摄像头(34)的球面镜头与弧形橡胶刮水条(38)的内弧形边缘相贴紧实现球面镜头刮水。
  10. 根据权利要求1所述的远程水文监测系统,其特征在于:在控制箱(8)的下侧面四周边缘均设有侧边侧边倾斜挡水板(7),由四块侧边倾斜挡水板(7)构成挡水围挡;在水位传感器(29)的传感头上安装有配重块;配重块由截顶圆锥头(39)、四根竖向撑杆(42)以及十字撑杆(43)构成;在截顶圆锥头(39)上沿中心轴线设置有安装圆孔(40),并在安装圆孔(40)的孔壁上设有橡胶挤压条(41);水位传感器(29)的传感头由截顶圆锥头(39)的锥底部竖向插装在安装圆孔(40)上,且水位传感器(29)的传感头由截顶圆锥头(39)的截顶部向下伸出;水位传感器(29)的传感头与橡胶挤压条(41)相挤压固定;四根竖向撑杆(42)竖向固定设置在截顶圆锥头(39)的锥面上,竖向撑杆(42)与安装圆孔(40)的中心线相平行;四根竖向撑杆(42)的下端部分别垂直固定安装在十字撑杆(43)的四根分支撑杆端部上。
PCT/CN2020/116948 2019-09-24 2020-09-23 一种远程水文监测系统 WO2021057748A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910907278.XA CN110531684B (zh) 2019-09-24 2019-09-24 一种远程水文监测系统
CN201910907278.X 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021057748A1 true WO2021057748A1 (zh) 2021-04-01

Family

ID=68669862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116948 WO2021057748A1 (zh) 2019-09-24 2020-09-23 一种远程水文监测系统

Country Status (2)

Country Link
CN (1) CN110531684B (zh)
WO (1) WO2021057748A1 (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113483852A (zh) * 2021-07-19 2021-10-08 青岛捷利达地理信息集团有限公司 河道管理采热成像检测方法
CN113916327A (zh) * 2021-11-18 2022-01-11 华能江西清洁能源有限责任公司 一种水面光伏电站水位监测报警装置
CN114136289A (zh) * 2021-11-02 2022-03-04 浙江海洋大学 一种基于时间序列异常检测技术的海洋信息监测装置
CN114567714A (zh) * 2022-02-23 2022-05-31 宋晓静 一种市政工程设计用地下管廊无人测绘记录装置
CN114778886A (zh) * 2022-05-06 2022-07-22 金华市恒通工程检测有限公司 一种水流检测用超值预警装置及其预警方法
CN114877931A (zh) * 2022-03-25 2022-08-09 济南大学 一种水利自动化信息采集装置
CN114935087A (zh) * 2022-05-16 2022-08-23 丁玉祥 一种消防监控系统
CN114964320A (zh) * 2022-05-18 2022-08-30 江苏悦阳光伏科技有限公司 一种接线盒二次按压检测设备
CN115095764A (zh) * 2022-05-07 2022-09-23 上海有间建筑科技有限公司 一种智慧交通安全运维系统
CN115164848A (zh) * 2022-09-07 2022-10-11 中公智联(北京)科技有限公司 具有校准功能的雷达水文监测装备
CN115183750A (zh) * 2022-07-07 2022-10-14 江苏省淮沭新河管理处 一种水利工程管理用智能测量装置
CN115200561A (zh) * 2022-08-11 2022-10-18 枣庄高新建设集团有限公司 一种用于环保工程的水文监测设备
CN115218095A (zh) * 2022-05-16 2022-10-21 丁玉祥 一种消防监控方法
CN115399274A (zh) * 2022-09-13 2022-11-29 浙江大学 一种珍珠龙胆石斑鱼无人养殖自主作业设备
CN115406582A (zh) * 2022-09-29 2022-11-29 湖南省水利水电科学研究院 一种基于红外图像的堤坝渗流识别方法
CN115486391A (zh) * 2022-09-13 2022-12-20 浙江大学 一种珍珠龙胆石斑鱼精准投喂养殖方法
CN115923994A (zh) * 2023-02-01 2023-04-07 长江水利委员会水文局长江中游水文水资源勘测局 一种水文监测浮船下置传感器伸缩装置
CN116086564A (zh) * 2023-04-10 2023-05-09 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) 用于水工环地质的测量装置
CN116147735A (zh) * 2023-04-19 2023-05-23 山东省煤田地质局第五勘探队 一种井下水文地质水位观测调控设备
CN117607381A (zh) * 2024-01-22 2024-02-27 湖南日恒智能工程有限公司 一种水文信息监测遥测终端及方法
CN118050486A (zh) * 2024-04-16 2024-05-17 广东海洋大学 一种渔业碳汇用的水体自动监测装置
CN118089860A (zh) * 2024-04-26 2024-05-28 山东新竹智能科技有限公司 一种楼宇智能化工程监控管理系统
CN118091780A (zh) * 2024-04-25 2024-05-28 国家海洋环境监测中心 一种海滩高程原位监测装置
CN118089859A (zh) * 2024-04-24 2024-05-28 中测新图(北京)遥感技术有限责任公司 一种地质灾害监测装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531684B (zh) * 2019-09-24 2020-11-03 苏州南师大科技园投资管理有限公司 一种远程水文监测系统
CN110906909A (zh) * 2019-12-23 2020-03-24 王淑娟 水文多功能搭载平台
CN112118423A (zh) * 2020-09-15 2020-12-22 重庆金泓和瑞科技有限公司 智慧报警可视化管理平台和工作方法
CN112146631B (zh) * 2020-09-15 2022-01-04 大连理工大学 一种用于游荡型河流的近岸水文现场观测装置
CN112584098B (zh) * 2020-11-28 2022-07-26 力坤科技有限公司 一种道路安防监控装置
CN112629502B (zh) * 2020-12-23 2022-07-19 文鹏 一种用于野外河道的水文测绘监测系统
CN113037960A (zh) * 2021-01-30 2021-06-25 山东省水文局 一种基于图像识别的水位检测方法
CN113009596B (zh) * 2021-02-19 2022-08-30 西北工业大学 一种雨量监测装置
CN113040033A (zh) * 2021-03-17 2021-06-29 太原优易科技有限公司 一种智慧灌区综合管理应用系统
CN113639817A (zh) * 2021-07-09 2021-11-12 浙江八达电子仪表有限公司 一种变电站用水位监测系统
CN113701725A (zh) * 2021-10-27 2021-11-26 湖南江河机电自动化设备股份有限公司 一种内陆河流的水文信息自动化监测系统终端
CN115979367B (zh) * 2021-11-04 2023-09-08 武汉新烽光电股份有限公司 一种市政管网用的投入式超声波流量监测仪
CN114279488B (zh) * 2021-11-15 2023-11-07 安徽省地震局 一种无人值守宏观流体观测点多通道数据自动采集系统
CN113834510B (zh) * 2021-11-30 2022-03-25 山东省地质矿产勘查开发局第四地质大队(山东省第四地质矿产勘查院) 一种水文检测用多类别测量装置
CN114545820A (zh) * 2022-02-08 2022-05-27 郑州科技学院 一种可多范围实时监测的电气设备用环境监控装置
CN116242325A (zh) * 2022-06-08 2023-06-09 滨州市公路勘察设计院有限公司 自悬浮室外测量设备
CN116182991B (zh) * 2023-03-10 2023-09-26 华南农业大学 一种河道水位检测装置
CN116086574B (zh) * 2023-03-24 2023-06-30 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) 一种地下水位埋深自动监测设备
CN116839553B (zh) * 2023-05-16 2024-05-14 中国环境科学研究院 一种高寒地区小流域水文系统动态监测设备及其使用方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130333463A1 (en) * 2012-06-15 2013-12-19 Yi-Jiun Liao Automatic hydrologic parameter measuring system for river flow and the method using the same
CN104092750A (zh) * 2014-07-01 2014-10-08 济南展飞物联网科技有限公司 一种防汛雨水情无线监测站及其监测方法
CN206132126U (zh) * 2016-10-24 2017-04-26 重庆三峡学院 一种地质环境监测装置
CN206497371U (zh) * 2016-12-29 2017-09-15 亓富军 一种基于超声波式变电站水位监控系统
CN207893599U (zh) * 2017-12-28 2018-09-21 柳超 一种方便调节的led探照灯
CN208043190U (zh) * 2018-04-27 2018-11-02 通测科技有限公司 小型水库水位自动监测装置
CN208171386U (zh) * 2018-04-27 2018-11-30 智成互联新媒体科技(湖北)有限公司 便于调节和检修的水位监测装置
CN208398869U (zh) * 2018-07-20 2019-01-18 刘永亮 一种水利工程水深测量装置
CN110531684A (zh) * 2019-09-24 2019-12-03 苏州南师大科技园投资管理有限公司 一种远程水文监测系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696850B2 (ja) * 1990-10-24 1994-11-30 運輸省第三港湾建設局長 測深ロボット装置
JPH05344396A (ja) * 1992-06-08 1993-12-24 Hitachi Ltd レンズクリーナー付きvtr一体形カメラ
JP2008288720A (ja) * 2007-05-15 2008-11-27 Hitachi Information & Communication Engineering Ltd カメラドームの清掃装置
CN103395394B (zh) * 2013-06-17 2016-08-24 中山菲柯特电子电器有限公司 一种带摄像头的曲面后视镜
CN104369838B (zh) * 2013-08-16 2017-02-08 中国科学院海洋研究所 自升式连体潜标测量系统
CN103685895B (zh) * 2013-12-30 2017-04-26 博康智能网络科技有限公司 一种监控摄像机防护罩
CN105584937B (zh) * 2016-03-03 2017-08-25 上汽大众汽车有限公司 一种刀塔用起重工具
CN206212180U (zh) * 2016-12-01 2017-05-31 河北省张家口水文水资源勘测局 水文远程自动监测系统
CN207231581U (zh) * 2017-06-20 2018-04-13 苏腾飞 一种水文遥测终端
CN107389129A (zh) * 2017-07-17 2017-11-24 武汉大学 一种远程体感控制水文水质监测系统平台
CN107888814A (zh) * 2017-12-18 2018-04-06 南京埃塔斯智能科技有限公司 一种基于物联网的具有清洁功能的安防监控摄像头
CN208628887U (zh) * 2018-04-28 2019-03-22 贵州金鹏富风机制造有限公司 一种立式可升降旋转铣床
CN108513050A (zh) * 2018-05-17 2018-09-07 广州目拓电子有限公司 一种自动清洁摄像头
CN109164509B (zh) * 2018-07-06 2024-02-06 中铁建设集团有限公司 基于径流模拟和多传感器监控的智慧雨水系统及运行方法
CN208656892U (zh) * 2018-07-08 2019-03-26 深圳市凯尔特科技有限公司 一种智能wifi高清网络摄像机
CN208638439U (zh) * 2018-07-12 2019-03-22 安徽鼎立网络科技有限公司 一种自清洁安防球形摄像头
CN209197798U (zh) * 2019-01-07 2019-08-02 山东大学 一种中小河流水质—流量智能监测站

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130333463A1 (en) * 2012-06-15 2013-12-19 Yi-Jiun Liao Automatic hydrologic parameter measuring system for river flow and the method using the same
CN104092750A (zh) * 2014-07-01 2014-10-08 济南展飞物联网科技有限公司 一种防汛雨水情无线监测站及其监测方法
CN206132126U (zh) * 2016-10-24 2017-04-26 重庆三峡学院 一种地质环境监测装置
CN206497371U (zh) * 2016-12-29 2017-09-15 亓富军 一种基于超声波式变电站水位监控系统
CN207893599U (zh) * 2017-12-28 2018-09-21 柳超 一种方便调节的led探照灯
CN208043190U (zh) * 2018-04-27 2018-11-02 通测科技有限公司 小型水库水位自动监测装置
CN208171386U (zh) * 2018-04-27 2018-11-30 智成互联新媒体科技(湖北)有限公司 便于调节和检修的水位监测装置
CN208398869U (zh) * 2018-07-20 2019-01-18 刘永亮 一种水利工程水深测量装置
CN110531684A (zh) * 2019-09-24 2019-12-03 苏州南师大科技园投资管理有限公司 一种远程水文监测系统

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113483852B (zh) * 2021-07-19 2023-12-29 青岛捷利达地理信息集团有限公司 河道管理采热成像检测方法
CN113483852A (zh) * 2021-07-19 2021-10-08 青岛捷利达地理信息集团有限公司 河道管理采热成像检测方法
CN114136289B (zh) * 2021-11-02 2023-11-21 浙江海洋大学 一种基于时间序列异常检测技术的海洋信息监测装置
CN114136289A (zh) * 2021-11-02 2022-03-04 浙江海洋大学 一种基于时间序列异常检测技术的海洋信息监测装置
CN113916327A (zh) * 2021-11-18 2022-01-11 华能江西清洁能源有限责任公司 一种水面光伏电站水位监测报警装置
CN114567714A (zh) * 2022-02-23 2022-05-31 宋晓静 一种市政工程设计用地下管廊无人测绘记录装置
CN114567714B (zh) * 2022-02-23 2023-11-28 浙江蓝致城市规划设计有限公司 一种市政工程设计用地下管廊无人测绘记录装置
CN114877931A (zh) * 2022-03-25 2022-08-09 济南大学 一种水利自动化信息采集装置
CN114877931B (zh) * 2022-03-25 2023-07-14 济南大学 一种水利自动化信息采集装置
CN114778886A (zh) * 2022-05-06 2022-07-22 金华市恒通工程检测有限公司 一种水流检测用超值预警装置及其预警方法
CN114778886B (zh) * 2022-05-06 2024-05-14 金华市恒通工程检测有限公司 一种水流检测用超值预警装置及其预警方法
CN115095764A (zh) * 2022-05-07 2022-09-23 上海有间建筑科技有限公司 一种智慧交通安全运维系统
CN115218095A (zh) * 2022-05-16 2022-10-21 丁玉祥 一种消防监控方法
CN114935087B (zh) * 2022-05-16 2024-04-09 张家港市金威金融服务有限公司 一种消防监控系统
CN114935087A (zh) * 2022-05-16 2022-08-23 丁玉祥 一种消防监控系统
CN114964320A (zh) * 2022-05-18 2022-08-30 江苏悦阳光伏科技有限公司 一种接线盒二次按压检测设备
CN115183750A (zh) * 2022-07-07 2022-10-14 江苏省淮沭新河管理处 一种水利工程管理用智能测量装置
CN115183750B (zh) * 2022-07-07 2023-08-15 江苏省淮沭新河管理处 一种水利工程管理用智能测量装置
CN115200561B (zh) * 2022-08-11 2024-01-30 枣庄高新建设集团有限公司 一种用于环保工程的水文监测设备
CN115200561A (zh) * 2022-08-11 2022-10-18 枣庄高新建设集团有限公司 一种用于环保工程的水文监测设备
CN115164848A (zh) * 2022-09-07 2022-10-11 中公智联(北京)科技有限公司 具有校准功能的雷达水文监测装备
CN115164848B (zh) * 2022-09-07 2023-08-15 中公智联(北京)科技有限公司 具有校准功能的雷达水文监测装备
CN115399274A (zh) * 2022-09-13 2022-11-29 浙江大学 一种珍珠龙胆石斑鱼无人养殖自主作业设备
CN115486391A (zh) * 2022-09-13 2022-12-20 浙江大学 一种珍珠龙胆石斑鱼精准投喂养殖方法
CN115399274B (zh) * 2022-09-13 2023-11-07 浙江大学 一种珍珠龙胆石斑鱼无人养殖自主作业设备
CN115486391B (zh) * 2022-09-13 2024-02-06 浙江大学 一种珍珠龙胆石斑鱼精准投喂养殖方法
CN115406582A (zh) * 2022-09-29 2022-11-29 湖南省水利水电科学研究院 一种基于红外图像的堤坝渗流识别方法
CN115923994A (zh) * 2023-02-01 2023-04-07 长江水利委员会水文局长江中游水文水资源勘测局 一种水文监测浮船下置传感器伸缩装置
CN115923994B (zh) * 2023-02-01 2023-08-29 长江水利委员会水文局长江中游水文水资源勘测局 一种水文监测浮船下置传感器伸缩装置
CN116086564A (zh) * 2023-04-10 2023-05-09 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) 用于水工环地质的测量装置
CN116086564B (zh) * 2023-04-10 2023-06-16 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) 用于水工环地质的测量装置
CN116147735A (zh) * 2023-04-19 2023-05-23 山东省煤田地质局第五勘探队 一种井下水文地质水位观测调控设备
CN117607381A (zh) * 2024-01-22 2024-02-27 湖南日恒智能工程有限公司 一种水文信息监测遥测终端及方法
CN117607381B (zh) * 2024-01-22 2024-04-02 湖南日恒智能工程有限公司 一种水文信息监测遥测终端及方法
CN118050486A (zh) * 2024-04-16 2024-05-17 广东海洋大学 一种渔业碳汇用的水体自动监测装置
CN118089859A (zh) * 2024-04-24 2024-05-28 中测新图(北京)遥感技术有限责任公司 一种地质灾害监测装置
CN118091780A (zh) * 2024-04-25 2024-05-28 国家海洋环境监测中心 一种海滩高程原位监测装置
CN118089860A (zh) * 2024-04-26 2024-05-28 山东新竹智能科技有限公司 一种楼宇智能化工程监控管理系统

Also Published As

Publication number Publication date
CN110531684A (zh) 2019-12-03
CN110531684B (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2021057748A1 (zh) 一种远程水文监测系统
CN218037405U (zh) 一种水土保持气象监测装置
CN112994597B (zh) 一种能够保证及时反应的下埋式地灾监测装置
CN112834716A (zh) 一种水文水资源监测装置
CN205283482U (zh) 一种可调节太阳能板角度的支架
CN114487333B (zh) 一种环保型水生态监测装置
CN213426297U (zh) 一种道路用监控装置
CN213039211U (zh) 一种用于石油钻井机的固定装置
CN210891413U (zh) 一种建筑智能化楼道照明装置
CN210690849U (zh) 一种具有防水作用的地下水资源探测设备
CN214225465U (zh) 一种雨量在线监测设备
CN220828305U (zh) 一种清洁能源转换装置
CN216116215U (zh) 一种小水电站下泄生态流量监测装置
CN216046469U (zh) 一种生态水文观测装置
CN216524206U (zh) 一种用于水利设施的水位监测装置
CN213990567U (zh) 一种光伏发电用具有调节结构的光伏板支撑装置
CN212391014U (zh) 一种一体化水利水文测站装置
CN215893673U (zh) 一种农业综合监测仪
CN218621945U (zh) 一种交通事故现场安全警戒设备
CN215117274U (zh) 一种光伏支架用双排单控平单轴跟踪装置
CN215371863U (zh) 一种基于互联网大数据的交通流量监测装置
CN218437216U (zh) 一种公路边坡病害自动监测装置
CN218920523U (zh) 一种工程现场监控装置
CN213544527U (zh) 一种风景园林用氧气探测装置
CN220508171U (zh) 一种路灯水位监测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867053

Country of ref document: EP

Kind code of ref document: A1