WO2021057573A1 - 一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法 - Google Patents

一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法 Download PDF

Info

Publication number
WO2021057573A1
WO2021057573A1 PCT/CN2020/115550 CN2020115550W WO2021057573A1 WO 2021057573 A1 WO2021057573 A1 WO 2021057573A1 CN 2020115550 W CN2020115550 W CN 2020115550W WO 2021057573 A1 WO2021057573 A1 WO 2021057573A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
microbial fuel
wetland
inner sleeve
device coupled
Prior art date
Application number
PCT/CN2020/115550
Other languages
English (en)
French (fr)
Inventor
钟非
张健
陈艳红
余春梅
刘国元
连博琳
Original Assignee
南通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通大学 filed Critical 南通大学
Publication of WO2021057573A1 publication Critical patent/WO2021057573A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/15N03-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/18PO4-P
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Definitions

  • the invention belongs to the field of environmental engineering, and particularly relates to a method for transforming a downstream constructed wetland device coupled to a cluster type microbial fuel cell.
  • constructed wetlands Compared with traditional centralized sewage treatment systems, constructed wetlands have the advantages of low construction and operating costs, simple maintenance, and good landscapes. They have been widely used in the decentralized treatment of various types of sewage.
  • existing constructed wetland systems often face clogging problems after many years of continuous operation, ranging from short flow in the wetland bed to paralysis of the system and seriously affecting its service life.
  • prevention or treatment measures such as optimizing the matrix gradation or stopping and adding earthworms (CN201410204567.0 is a method to solve the problem of wetland clogging) can alleviate the clogging of wetlands and extend the service life of constructed wetlands, the clogging problem still cannot be eradicated.
  • Microbial fuel cells catalyze the decomposition of organic matter at the low-potential anode by microorganisms to produce electrons and protons. Then, the electrons pass through the external circuit to reach the high-potential cathode and interact with electron acceptors (O 2 , NO 2 - and NO 3 - etc.) and from the anode. The protons combine to achieve the degradation of pollutants and generate electricity. Based on the hypoxia in the lower part of the constructed wetland and the aerobic redox environment at the upper part, it has been reported that the implantation of microbial fuel cells in it will help improve the purification efficiency of various pollutants per unit area of the constructed wetland.
  • Purpose of the invention In view of the above-mentioned prior art, propose a method for transforming a downstream constructed wetland device coupled to a clustered microbial fuel cell.
  • the microbial fuel cell module is implanted to upgrade the system and solve the system Blocking problems and further improve purification efficiency.
  • a method for transforming a downstream constructed wetland device coupled to a cluster type microbial fuel cell including the following steps:
  • Step 1 Suspend the operation of the target wetland, rest the target wetland according to the blockage of the target wetland to restore the wetland function;
  • Step 2 Design the implantation point and depth of the microbial fuel cell to avoid the pipeline at the bottom of the target wetland bed;
  • Step 3 According to the result of step 2, use the drilling core machine to dig a hole to take the core at the corresponding position of the target wetland bed, and immediately insert the outer sleeve, and the bottom of the outer sleeve is closed;
  • Step 4 Insert the inner sleeve into the outer sleeve, the bottom of the inner sleeve is closed, the bottom of the outer side wall of the inner sleeve is provided with a water inlet in the connecting pipe, and the water inlet is connected to the water inlet pipe;
  • the perforated cloth water pipes on the surface layer are replaced with the wetland water distribution pipes, and each water inlet pipe is connected to the wetland water distribution pipe;
  • Step 5 Arrange electrodes in each inner sleeve to form a microbial fuel cell cell.
  • the microbial fuel cell cells in each inner sleeve form a clustered microbial fuel cell.
  • the anode and cathode of each microbial fuel cell are connected to each other through wires. Power detection and management system installed outside the wetland;
  • Step 6 The top of each inner casing pipe is connected to the water distribution diversion groove through a reducing head;
  • Step 7 Plant water purification plants in the reducing head at the top of each inner casing.
  • the microbial fuel cell unit includes a columnar granular graphite layer filled in the middle and lower part of the inner sleeve, and stainless steel mesh is laid on both the top and the bottom of the columnar granular graphite layer.
  • Carbon felt is laid at the water-gas interface of the surface of the inner sleeve, the carbon felt and the top stainless steel mesh and below the bottom stainless steel mesh are filled with denitrification and phosphorus removal fillers, and the columnar particle graphite layer serves as a microbial fuel cell
  • the anode of the monomer, and the carbon felt serves as the cathode of the monomer of the microbial fuel cell.
  • the target wetland bed is stored water, and then a stainless steel liquid nitrogen tube is inserted into the microbial fuel cell implantation site and poured into liquid nitrogen for freezing, and then drilling is performed Core.
  • a hole is drilled on the outer side of the inner sleeve corresponding to the position of the cathode and the anode of the microbial fuel cell unit, and titanium wires are inserted, and the titanium wires are respectively connected to the power detection and management system through insulated wires.
  • the power monitoring and management system shows that the output voltage of a single or multiple microbial fuel cell monomers is abnormal, or there is no water overflow from the top of a single or multiple inner sleeves, the corresponding inner sleeve is taken out of the outer sleeve , After flushing or overall replacement, put it back in the outer sleeve.
  • it also includes the step of replacing wetland plants, planting shallow-rooted wetland purification plants in the wetland area.
  • the root layer of the water purification plant is located between the carbon felt and the top stainless steel mesh.
  • outer sleeve is a PVC pipe covered with steel wire mesh.
  • the overall layer height of the columnar granular graphite layer and the stainless steel mesh is 5-10 cm, and the distance between the carbon felt and the columnar granular graphite layer is 10-40 cm.
  • the denitrification and dephosphorization filler is ceramsite, zeolite or a mixture of both with a particle size of 5-8 mm.
  • the present invention provides a method for transforming a downstream constructed wetland device coupled to a clustered microbial fuel cell, which has the advantages of less damage to the wetland system, simple construction and operation, etc., is beneficial to solve the problem of system blockage, and strengthens the purification efficiency of the system. It can achieve the purpose of prolonging the service life of wetland and realize the transformation and upgrading of the existing downflow constructed wetland system.
  • Fig. 1 is a schematic diagram of the structural decomposition of the microbial fuel cell in the method of the present invention.
  • a method for transforming a downstream constructed wetland device coupled to a cluster type microbial fuel cell includes the following steps:
  • Step 1 Suspend the operation of the target wetland, rest the target wetland according to the blockage of the target wetland to restore the wetland function. Specifically, according to the blockage from light to severe, measures such as emptying and restoring, adding earthworm egg cocoons or living bodies, and removing wetland surface filter materials can be taken in sequence.
  • Step 2 According to the design and construction drawings during the construction of the target wetland, design the implantation point and depth of the microbial fuel cell to avoid the target wetland bed and bottom pipeline; under the premise that it will not cause damage to the wetland bed and bottom pipeline
  • microbial fuel cells can be evenly distributed, such as 9 square meters of constructed wetland, with one microbial fuel cell unit arranged per square meter, coupled with cluster microbial fuel cells arranged in a 3*3 arrangement.
  • Step 3 According to the result of step 2, use the drilling core machine to dig a hole in the corresponding position of the target wetland bed to take the core, and immediately insert the outer tube 2, which is a PVC tube with an inner diameter of 160mm and covered with a steel wire mesh. Tube 2 is closed at the bottom. If it is difficult to implant the outer sleeve due to internal collapse after digging and core removal, first store water on the target wetland bed before digging and core removal, and then insert a stainless steel liquid nitrogen tube at the microbial fuel cell implantation point and pour the liquid into it. After freezing with nitrogen, drill holes and cores.
  • the outer tube 2 which is a PVC tube with an inner diameter of 160mm and covered with a steel wire mesh. Tube 2 is closed at the bottom. If it is difficult to implant the outer sleeve due to internal collapse after digging and core removal, first store water on the target wetland bed before digging and core removal, and then insert a stainless steel liquid nitrogen tube at the microbial fuel cell implantation point and pour the liquid
  • Step 4 Insert an inner sleeve 1 with an inner diameter of 125mm into the outer sleeve 2, and the bottom of the inner sleeve 1 is closed.
  • the bottom of the outer side wall of the inner sleeve is provided with a water inlet 4 in the connecting pipe, and the water inlet 4 is connected to a water inlet pipe 3 with an inner diameter of 15 mm.
  • replace the original perforated cloth water pipes on the surface of the wetland install non-porous wetland water distribution pipes at the same position, and connect with each water inlet pipe 3.
  • Figure 1 for the specific structure.
  • Step 5 Arrange electrodes and functional fillers in the inner sleeve to assemble microbial fuel cell monomers. Multiple groups of microbial fuel cell monomers are combined to form a clustered microbial fuel cell. The negative and positive levels of each microbial fuel cell can be passed as needed. The series and parallel modes can be freely combined and connected to the power detection and management system set outside the wetland.
  • the microbial fuel cell unit includes a 5*6mm columnar granular graphite layer filled in the middle and lower part of the inner sleeve, and the columnar granular graphite layer serves as the cluster type microbial fuel cell anode.
  • a stainless steel mesh is laid on the top and bottom of the columnar granular graphite layer, and the overall layer height of the columnar granular graphite layer and the stainless steel mesh is 5-10 cm.
  • Carbon felt is laid at the water-air interface of the inner casing surface. The carbon felt is used as the cathode of the cluster type microbial fuel cell. The distance between the carbon felt and the columnar graphite layer is 10-40cm. Between the carbon felt and the top stainless steel mesh and below the bottom stainless steel mesh are filled with denitrification and dephosphorization fillers, such as ceramsite, zeolite with a particle size of 5-8mm, or a mixture of both, to further enhance the denitrification and dephosphorization effect.
  • denitrification and dephosphorization fillers such as ceramsite, zeolite with a particle size of 5-8mm, or a mixture of both, to further enhance the denitrification and dephosphorization effect.
  • Step 6 The top end of each inner sleeve 1 is connected to the water distribution diversion groove 6 through a reducing head 5.
  • Step 7 Plant water-purifying plants such as canna, reed, Zailihua and other aquatic plants with well-developed roots in the reducing head 5 at the top of each inner casing 1.
  • the root layer of the water purification plant is located between the carbon felt and the stainless steel mesh on top of the columnar graphite layer.
  • the water inlet pipe is used to introduce the wetland water into the bottom of the inner sleeve and flow upwards.
  • the upper end of the inner sleeve is connected to the water distribution diversion trough through a reducing head, which is used to evenly distribute the overflow water treated by the microbial fuel cell To the wetland.
  • Plant shallow-rooted wetland purification plants in the wetland area such as Lythrum chinensis, iris, and water onion.
  • Table 1 shows the improvement effect of the embodiments of the present invention on the purification effect of constructed wetlands:
  • the implementation of the present invention can significantly improve the purification effect of the constructed wetland on the raw water of domestic sewage.
  • the surface layer of the constructed wetland that has not been modified according to the present invention has a water retention phenomenon for a long time, and the embodiment of the present invention does not have a water retention phenomenon after a long time operation.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Fuel Cell (AREA)

Abstract

一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法,包括在目标位置挖洞取芯后插入外套管(2),在外套管(2)中插入带有进水管(3)的内套管(1),在内套管(1)内布设微生物燃料电池单体,各内套管(1)内的微生物燃料电池单体形成集束式微生物燃料电池,各内套管(1)的顶端连接布水导流槽(6),并在各内套管(1)的顶端种植净水植物的步骤。当微生物燃料电池单体输出电压异常,或者出现内套管(1)顶部无水流溢出时,将对应内套管(1)从外套管(2)中取出,进行冲洗或整体更换后重新放回外套管(2)中。本方法具有对湿地系统损伤小、施工操作简便等优点,有利于解决系统堵塞问题,并强化系统净化效率,可达到延长湿地使用寿命的目的,实现对现有下行流人工湿地系统的改造升级。

Description

一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法 技术领域
本发明属于环境工程领域,特别是涉及一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法。
背景技术
相比于传统污水集中处理系统,人工湿地具有建造及运行费用低、维护简单、景观良好等优点,已被广泛应用于多种类型污水的分散处理。不过,现有人工湿地系统在连续运行多年后经常面临堵塞问题,轻则在湿地床体内部形成短流,重则使得系统运行瘫痪,严重影响其使用寿命。虽然通过优化基质级配或停休并投加蚯蚓(CN201410204567.0一种解决湿地堵塞问题的方法)等预防或治理措施可缓解湿地堵塞,延长人工湿地使用寿命,但是仍然无法根治堵塞问题。由于难以定位堵塞具体部位,根治堵塞问题往往需要对湿地床体表层甚至全部滤料进行冲洗或更换,工程量较大且施工较为困难,对湿地植物、微生物和内埋管道均会造成不利影响。此外,滤料冲洗废水或移除的湿地滤料也难以处置。为了应对湿地堵塞问题,需要提供简便易行的改造方案提高湿地抗堵塞能力,从而延长湿地整体使用寿命。
微生物燃料电池通过微生物在低电势的阳极催化有机物分解,产生电子和质子,然后,电子通过外电路到达高电势阴极并与电子受体(O 2、NO 2 -和NO 3 -等)和来自阳极的质子相结合,实现污染物降解并产生电能。基于人工湿地下部缺氧、上部好氧的氧化还原环境,已有报道将微生物燃料电池植入其中,利于提升单位面积人工湿地对各种污染物的净化效率。此外,还有报道将微生物燃料电池用于人工湿地堵塞状况评测(一种基于微生物燃料电池评测人工湿地堵塞状况的装置和方法CN201710422883.9)。但是,如何对现有人工湿地装置进行改造来耦合微生物燃料电池有待研究。
发明内容
发明目的:针对上述现有技术,提出一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法,针对已实现规模化应用的人工湿地系统,植入微生物燃料电池模块进行升级改造,解决系统堵塞问题,并进一步提升净化效率。
技术方案:一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法,包括如下步骤:
步骤1:暂停目标湿地的运行,根据目标湿地的堵塞情况对目标湿地进行休整来恢 复湿地功能;
步骤2:设计微生物燃料电池植入点位与植入深度,避开目标湿地床体底部管道;
步骤3:根据步骤2结果,使用钻孔取芯机在目标湿地床体对应位置挖洞取芯后,立即插入外套管,所述外套管的底部封闭;
步骤4:在所述外套管内插入内套管,所述内套管的底部封闭,所述内套管外侧壁底部位置设有连通管内的进水口,所述进水口连接进水管;将目标湿地表层的穿孔布水管替换为所述湿地配水管,各进水管与湿地配水管连接;
步骤5:在每个内套管内布设电极形成微生物燃料电池单体,各内套管内的微生物燃料电池单体形成集束式微生物燃料电池,通过导线将各微生物燃料电池单体阴、阳级连接至设置在湿地外部的电源检测与管理系统;
步骤6:各内套管的顶端通过异径变头与布水导流槽连接;
步骤7:在各内套管的顶端的异径变头内种植有净水植物。
进一步的,所述步骤5中,所述微生物燃料电池单体包括在所述内套管的中下部填充的柱状颗粒石墨层,在所述柱状颗粒石墨层的顶部和底部均铺设不锈钢网,在所述内套管表层的水气交界面处铺设碳毡,所述碳毡和顶层不锈钢网之间以及底层不锈钢网下方均填充有脱氮除磷填料,所述柱状颗粒石墨层作为微生物燃料电池单体的阳级,所述碳毡作为微生物燃料电池单体的阴级。
进一步的,所述步骤3中,在挖洞取芯前先对目标湿地床体储水,然后在微生物燃料电池植入点位插入不锈钢液氮导管并灌入液氮冷冻后,再进行钻孔取芯。
进一步的,在所述内套管外侧对应微生物燃料电池单体的阴级和阳极的位置打孔并插入钛丝,所述钛丝分别通过绝缘导线连接到所述电源检测与管理系统。
进一步的,当所述电源监测与管理系统显示单个或多个微生物燃料电池单体输出电压异常,或者出现单个或多个内套管顶部无水流溢出时,将对应内套管从外套管中取出,进行冲洗或整体更换后重新放回外套管中。
进一步的,还包括更换湿地植物步骤,在湿地区域种植浅根系湿地净化植物。
进一步的,净水植物的根系层位于所述碳毡和顶层不锈钢网之间。
进一步的,所述外套管为外覆钢丝网的PVC管。
进一步的,所述柱状颗粒石墨层和不锈钢网的整体层高为5-10cm,所述碳毡距离所述柱状颗粒石墨层10-40cm。
进一步的,所述脱氮除磷填料为粒径为5-8mm的陶粒、沸石或两者的混合。
有益效果:本发明提供了一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法,具有对湿地系统损伤小、施工操作简便等优点,有利于解决系统堵塞问题,并强化系统净化效率,可达到延长湿地使用寿命的目的,实现对现有下行流人工湿地系统的改造升级。
附图说明
图1是本发明方法中微生物燃料电池结构分解示意图。
具体实施方式
下面结合附图对本发明做更进一步的解释。
一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法,包括如下步骤:
步骤1:暂停目标湿地的运行,根据目标湿地的堵塞情况对目标湿地进行休整来恢复湿地功能。具体的,根据堵塞情况从轻到重可以依次采取放空休整、投加蚯蚓卵茧或活体、移除湿地表层滤料等措施。
步骤2:对照目标湿地建造时的设计施工图纸,设计微生物燃料电池植入点位与植入深度,避开目标湿地床体及底部管道;在不会对湿地床体及底部管道造成损害的前提下,微生物燃料电池可采取均匀分布的方式,如9平方米人工湿地,每平方米布置一个微生物燃料电池单体,耦合以3*3排布的集束式微生物燃料电池。
步骤3:根据步骤2结果,使用钻孔取芯机在目标湿地床体的对应位置挖洞取芯后,立即插入外套管2,外套管2为内径160mm的外覆钢丝网的PVC管,外套管2底部封闭。如挖洞取芯后由于内部坍塌难以植入外套管时,先在挖洞取芯前先对目标湿地床体储水,然后在微生物燃料电池植入点位插入不锈钢液氮导管并灌入液氮冷冻后,再进行钻孔取芯。
步骤4:在外套管2内插入内径125mm的内套管1,内套管1的底部封闭。内套管外侧壁底部位置设有连通管内的进水口4,进水口4连接内径15mm的进水管3。同时,替换湿地表层的原有穿孔布水管,在相同位置安装无孔的湿地配水管,并与各进水管3连接。具体结构参考图1。
步骤5:在内套管内布设电极与功能性填料组装为微生物燃料电池单体,多组微生物燃料电池单体组合成为集束式微生物燃料电池,各微生物燃料电池单体阴、阳级可根据需要通过串、并联的方式自由组合,并连接至设置在湿地外部的电源检测与管理系统。具体的,微生物燃料电池单体包括在内套管的中下部填充5*6mm的柱状颗粒石墨层,柱状颗粒石墨层作为集束式微生物燃料电池阳级。在柱状颗粒石墨层的顶部和底部均铺 设不锈钢网,柱状颗粒石墨层和不锈钢网的整体层高为5-10cm。内套管表层的水气交界面处铺设碳毡,碳毡作为集束式微生物燃料电池阴级,碳毡距离柱状颗粒石墨层10-40cm。碳毡和顶层不锈钢网之间以及底层不锈钢网下方均填充有脱氮除磷填料,如粒径5-8mm的陶粒、沸石或两者的混合,用于进一步提升脱氮除磷效果。在内套管外侧对应微生物燃料电池单体的阴级和阳极的位置打孔并插入钛丝,钛丝分别通过绝缘导线引出后,连接到电源检测与管理系统。
步骤6:各内套管1的顶端通过异径变头5与布水导流槽6连接。
步骤7:在各内套管1顶端的异径变头5内种植有净水植物,如美人蕉、芦苇、再力花等根系发达水生植物。净水植物的根系层位于碳毡和柱状颗粒石墨层顶部不锈钢网之间。
进水管用于将湿地进水导入内套管底部,并向上流动,内套管上端通过异径变头与布水导流槽相连,用于将经微生物燃料电池处理后的溢流水体均匀分布至湿地内。在湿地区域种植浅根系湿地净化植物,如千屈菜、鸢尾、水葱等。
运行改造后的湿地系统,当电源监测与管理系统显示单个或多个微生物燃料电池单体输出电压异常,或者出现单个或多个内套管顶部无水流溢出时,将对应内套管从外套管中取出,进行冲洗或整体更换后重新放回外套管中。
本发明在具体实施过程中,取得了较好的效果。下表是在处理水量为3.6m 3/d的条件下,两组装置在本发明实施前后对生活污水的净化效果。
表1为本发明实施例对人工湿地净化效果的提升作用:
Figure PCTCN2020115550-appb-000001
由上述结果可知,本发明实施后能够显著提升人工湿地对生活污水原水的净化效果。此外,未按本发明进行改造的人工湿地表层存在较长时间的壅水现象,而本发明实施例长时间运行后也不存在壅水现象。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法,其特征在于,包括如下步骤:
    步骤1:暂停目标湿地的运行,根据目标湿地的堵塞情况对目标湿地进行休整来恢复湿地功能;
    步骤2:设计微生物燃料电池植入点位与植入深度,避开目标湿地床体底部管道;
    步骤3:根据步骤2结果,使用钻孔取芯机在目标湿地床体对应位置挖洞取芯后,立即插入外套管,所述外套管的底部封闭;
    步骤4:在所述外套管内插入内套管,所述内套管的底部封闭,所述内套管外侧壁底部位置设有连通管内的进水口,所述进水口连接进水管;将目标湿地表层的穿孔布水管替换为所述湿地配水管,各进水管与湿地配水管连接;
    步骤5:在每个内套管内布设电极形成微生物燃料电池单体,各内套管内的微生物燃料电池单体形成集束式微生物燃料电池,通过导线将各微生物燃料电池单体阴、阳级连接至设置在湿地外部的电源检测与管理系统;
    步骤6:各内套管的顶端通过异径变头与布水导流槽连接;
    步骤7:在各内套管的顶端的异径变头内种植有净水植物。
  2. 根据权利要求1所述的改造下行流人工湿地装置耦合集束式微生物燃料电池的方法,其特征在于,所述步骤5中,所述微生物燃料电池单体包括在所述内套管的中下部填充的柱状颗粒石墨层,在所述柱状颗粒石墨层的顶部和底部均铺设不锈钢网,在所述内套管表层的水气交界面处铺设碳毡,所述碳毡和顶层不锈钢网之间以及底层不锈钢网下方均填充有脱氮除磷填料,所述柱状颗粒石墨层作为微生物燃料电池单体的阳级,所述碳毡作为微生物燃料电池单体的阴级。
  3. 根据权利要求1或2所述的改造下行流人工湿地装置耦合集束式微生物燃料电池的方法,其特征在于,所述步骤3中,在挖洞取芯前先对目标湿地床体储水,然后在微生物燃料电池植入点位插入不锈钢液氮导管并灌入液氮冷冻后,再进行钻孔取芯。
  4. 根据权利要求2所述的改造下行流人工湿地装置耦合集束式微生物燃料电池的方法,其特征在于,在所述内套管外侧对应微生物燃料电池单体的阴级和阳极的位置打孔并插入钛丝,所述钛丝分别通过绝缘导线连接到所述电源检测与管理系统。
  5. 根据权利要求1或2所述的改造下行流人工湿地装置耦合集束式微生物燃料电池的方法,其特征在于,当所述电源监测与管理系统显示单个或多个微生物燃料电池单体 输出电压异常,或者出现单个或多个内套管顶部无水流溢出时,将对应内套管从外套管中取出,进行冲洗或整体更换后重新放回外套管中。
  6. 根据权利要求1或2所述的改造下行流人工湿地装置耦合集束式微生物燃料电池的方法,其特征在于,还包括更换湿地植物步骤,在湿地区域种植浅根系湿地净化植物。
  7. 根据权利要求2所述的改造下行流人工湿地装置耦合集束式微生物燃料电池的方法,其特征在于,净水植物的根系层位于所述碳毡和顶层不锈钢网之间。
  8. 根据权利要求1或2所述的改造下行流人工湿地装置耦合集束式微生物燃料电池的方法,其特征在于,所述外套管为外覆钢丝网的PVC管。
  9. 根据权利要求2所述的改造下行流人工湿地装置耦合集束式微生物燃料电池的方法,其特征在于,所述柱状颗粒石墨层和不锈钢网的整体层高为5-10cm,所述碳毡距离所述柱状颗粒石墨层10-40cm。
  10. 根据权利要求2所述的改造下行流人工湿地装置耦合集束式微生物燃料电池的方法,其特征在于,所述脱氮除磷填料为粒径为5-8mm的陶粒、沸石或两者的混合。
PCT/CN2020/115550 2019-09-27 2020-09-16 一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法 WO2021057573A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910921438.6 2019-09-27
CN201910921438.6A CN110697873B (zh) 2019-09-27 2019-09-27 一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法

Publications (1)

Publication Number Publication Date
WO2021057573A1 true WO2021057573A1 (zh) 2021-04-01

Family

ID=69198178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115550 WO2021057573A1 (zh) 2019-09-27 2020-09-16 一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法

Country Status (2)

Country Link
CN (1) CN110697873B (zh)
WO (1) WO2021057573A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110697873B (zh) * 2019-09-27 2020-10-02 南通大学 一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法
CN111977809B (zh) * 2020-08-25 2022-08-16 重庆大学 一种电活性填料导管折流人工湿地

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249423A (zh) * 2011-07-13 2011-11-23 东南大学 一种同时实现污水生态处理与微生物燃料电池产电的结构
CN104926023A (zh) * 2015-03-09 2015-09-23 浙江大学 结合微生物燃料电池与厌氧人工湿地的农村生活污水处理系统
CN106745772A (zh) * 2016-12-29 2017-05-31 东南大学 排阵型微生物燃料电池人工湿地污水处理系统
CN106745764A (zh) * 2016-12-01 2017-05-31 黄鑫 一种多层循环式垂直人工湿地系统
CN108147537A (zh) * 2018-01-05 2018-06-12 桂林理工大学 一种内产电外翻式水流人工湿地污水净化方法
CN110143720A (zh) * 2019-05-20 2019-08-20 河海大学 一种多介质滤料的人工湿地微生物燃料电池耦合装置及其废水处理方法
WO2019165373A1 (en) * 2018-02-23 2019-08-29 University Of Southern California Plant-sediment microbial fuel cell system for wastewater treatment with self-contained power sustainability
CN110697873A (zh) * 2019-09-27 2020-01-17 南通大学 一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法
CN110697872A (zh) * 2019-09-27 2020-01-17 南通大学 一种耦合集束式微生物燃料电池的人工湿地装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206742400U (zh) * 2017-05-23 2017-12-12 南京师范大学 一种利用湿地底泥进行原位产电的电池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249423A (zh) * 2011-07-13 2011-11-23 东南大学 一种同时实现污水生态处理与微生物燃料电池产电的结构
CN104926023A (zh) * 2015-03-09 2015-09-23 浙江大学 结合微生物燃料电池与厌氧人工湿地的农村生活污水处理系统
CN106745764A (zh) * 2016-12-01 2017-05-31 黄鑫 一种多层循环式垂直人工湿地系统
CN106745772A (zh) * 2016-12-29 2017-05-31 东南大学 排阵型微生物燃料电池人工湿地污水处理系统
CN108147537A (zh) * 2018-01-05 2018-06-12 桂林理工大学 一种内产电外翻式水流人工湿地污水净化方法
WO2019165373A1 (en) * 2018-02-23 2019-08-29 University Of Southern California Plant-sediment microbial fuel cell system for wastewater treatment with self-contained power sustainability
CN110143720A (zh) * 2019-05-20 2019-08-20 河海大学 一种多介质滤料的人工湿地微生物燃料电池耦合装置及其废水处理方法
CN110697873A (zh) * 2019-09-27 2020-01-17 南通大学 一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法
CN110697872A (zh) * 2019-09-27 2020-01-17 南通大学 一种耦合集束式微生物燃料电池的人工湿地装置

Also Published As

Publication number Publication date
CN110697873B (zh) 2020-10-02
CN110697873A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2021057573A1 (zh) 一种改造下行流人工湿地装置耦合集束式微生物燃料电池的方法
CN204824550U (zh) 一种用于农村生活污水处理的装置
CN104926038B (zh) 一种用于农村污水处理的生物生态复合处理装置
CN101580324A (zh) 一种应用于新农村污水处理的方法
CN207468411U (zh) 一种农村生活污水处理系统
CN103570135B (zh) 一种污水净化方法及人工湿地污水净化系统
CN204400787U (zh) 阶梯式人工景观湿地污水处理生态系统
CN107500415A (zh) 一种用于黑臭河道治理的科技湿地岸滤系统
CN110668575A (zh) 一种全自动高效脱氮除磷潮汐流人工湿地及其使用方法
CN111592115A (zh) 一种微生物燃料电池-人工湿地耦合系统
CN109111050A (zh) 太阳能微动力农村污水处理系统
CN105601043B (zh) 一种村镇生活污水生态化微动力处理系统
CN107098476A (zh) 一种应用于生活污水及低污染水的抗堵塞人工湿地系统
CN205023952U (zh) 一种垂直流潜流式人工湿地
CN212450852U (zh) 一种微生物燃料电池-人工湿地耦合系统
CN110697872B (zh) 一种耦合集束式微生物燃料电池的人工湿地装置
CN203530028U (zh) 一种人工湿地污水净化系统
CN205076891U (zh) 一种多级自由组合式水平潜流人工湿地污染水处理单元
CN207468298U (zh) 一种用于黑臭河道治理的科技湿地岸滤系统
CN110713315A (zh) 一种乡镇污水厂专用污水处理装置及其处理方法
CN216614193U (zh) 一种人工湿地
CN104944696A (zh) 一种能埋设于地下的卧式污水净化装置
CN105174619A (zh) 一种处理农村生活污水的方法
CN211770568U (zh) 一种阶梯型人工湿地系统
CN204779244U (zh) 一种卧式污水净化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869153

Country of ref document: EP

Kind code of ref document: A1