WO2021056635A1 - 一种基于能效优化的旋翼无人机网络数据传输方法和装置 - Google Patents

一种基于能效优化的旋翼无人机网络数据传输方法和装置 Download PDF

Info

Publication number
WO2021056635A1
WO2021056635A1 PCT/CN2019/111819 CN2019111819W WO2021056635A1 WO 2021056635 A1 WO2021056635 A1 WO 2021056635A1 CN 2019111819 W CN2019111819 W CN 2019111819W WO 2021056635 A1 WO2021056635 A1 WO 2021056635A1
Authority
WO
WIPO (PCT)
Prior art keywords
hop
drone
rotor
data
transmitted
Prior art date
Application number
PCT/CN2019/111819
Other languages
English (en)
French (fr)
Inventor
熊飞
王海
李艾静
于卫波
米志超
郭晓
朱毅
徐正芹
陈娟
荣凤娟
Original Assignee
中国人民解放军陆军工程大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军陆军工程大学 filed Critical 中国人民解放军陆军工程大学
Publication of WO2021056635A1 publication Critical patent/WO2021056635A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the UAV network architecture.
  • Patent Document CN 106304234A An Energy Optimization Routing Method Based on the Isometric Model
  • Patent Document CN 106304234A A Method for Optimizing Energy Consumption of Wireless Sensor Networks Based on Clustering Routing Protocol
  • Patent Document CN106604345A A Realizing Dynamic High Energy Efficiency Mobile Ad-hoc Network Routing Method
  • Patent Document CN 106879054A A Wireless Data Transmission Energy Consumption Optimization Method
  • Patent Document CN 108566663A "SDWSN Energy Consumption Balanced Routing Algorithm Based on Disturbing Particle Swarm Optimization”
  • patent A wireless network path optimization method and system” disclosed in the document CN109451554A, “A method for joint construction of drone network topology and routing” disclosed in the patent document CN109803344A, and “A method and system” disclosed in the patent document CN109996308A
  • Mobile ad hoc network routing method and device based on energy optimization "a mobile ad hoc network routing method based on node location information and available capacity”
  • the routing protocol of the drone network is mostly improved based on the traditional MANET routing protocol.
  • This type of protocol belongs to the hop transmission mode. (hop-by-hop).
  • the traditional MANET routing protocol in the hop-by-hop transmission mode cannot be adapted. Therefore, according to the mobile characteristics of the UAV, the paper based on The "store-carry-forward" (store-carry-forward) routing protocol is dedicated to Delay-tolerant Networking.
  • the wireless transmission can be greatly reduced.
  • the strength of the signal thereby reducing the energy consumption of data transmission. But how to choose this timing is an important issue.
  • the problem to be solved by the present invention is to transmit data through the UAV "storage-move-forward" mode to reduce data energy consumption, thereby optimizing the energy efficiency of data transmission.
  • a rotary wing drone network data transmission method based on energy efficiency optimization includes the following steps:
  • S1 Obtain the amount of data to be transmitted, rotor energy consumption information, drone network information, relay drone information, and target drone location information;
  • S2 By analyzing the data volume of the data to be transmitted, rotor energy consumption information, UAV network information, relay UAV information, and target UAV location information, determine whether the condition for hop-by-hop transmission is met;
  • the condition of the hop-by-hop transmission is:
  • v 0 is the average induced speed of the rotor during hovering, according to the formula Calculated
  • Q is the amount of data to be transmitted;
  • P c is the communication transmission power;
  • B is the channel bandwidth;
  • ⁇ 0 is the receiver signal-to-noise ratio;
  • V mr is the longest distance moving speed;
  • b is the number of rotor blades;
  • c is the rotor Blade chord length;
  • R is the radius of the rotor;
  • is the angular velocity of the rotor blade;
  • S FP is the equivalent plate area of the fuselage;
  • W is the weight of the drone;
  • ⁇ k is the kth hop in the optimal route of the routing protocol in the hop transmission mode
  • n is the number of hops of the optimal route of the routing protocol in the hop transmission mode;
  • L max is the drone network where it is located, no The maximum distance between human-machine nodes;
  • N is the number of drones in the drone network;
  • L is the
  • the rotor energy consumption information includes: communication transmission power P c , channel bandwidth B, receiver signal-to-noise ratio ⁇ 0 , maximum distance moving speed V mr , number of rotor blades b, rotor blade chord length c, rotor radius R, rotor Blade angular velocity ⁇ , fuselage equivalent plate area S FP , UAV weight W;
  • the UAV network information includes: the maximum distance between UAV nodes L max and the number of UAVs N;
  • the relay drone information includes the optimal route of the routing protocol in the hop-by-hop transmission mode
  • the location information of the target drone includes the distance L from the target drone to the local drone;
  • is the air density
  • is the correction coefficient of the induced power increment
  • is the profile resistance coefficient
  • is the circle ratio
  • the air density ⁇ , the induced power increment correction coefficient ⁇ , the cross-sectional drag coefficient ⁇ , and the circular rate ⁇ are predetermined constants.
  • the network data transmission method of rotor drone based on energy efficiency optimization further includes the following steps:
  • step S4 The temporarily stored data to be transmitted is judged according to step S2 whether the condition for hop-by-hop transmission is met at a certain time interval, and if the condition for hop-by-hop transmission is met, the hop-by-hop transmission mode is adopted for the data to be transmitted To transfer.
  • a rotor drone network data transmission device based on energy efficiency optimization includes the following modules:
  • M1 is used to: obtain the amount of data to be transmitted, rotor energy consumption information, drone network information, relay drone information, and target drone location information;
  • M2 is used to determine whether the transmission by hop is satisfied by analyzing the amount of data to be transmitted, rotor energy consumption information, UAV network information, relay UAV information, and target UAV location information. condition;
  • M3 is used for: if the condition for hop-by-hop transmission is met, the data to be transmitted is transmitted in a hop-by-hop transmission mode, and if the condition for hop-by-hop transmission is not met, temporarily storing the data to be transmitted.
  • the condition of the hop-by-hop transmission is:
  • v 0 is the average induced speed of the rotor during hovering, according to the formula Calculated
  • Q is the amount of data to be transmitted;
  • P c is the communication transmission power;
  • B is the channel bandwidth;
  • ⁇ 0 is the receiver signal-to-noise ratio;
  • V mr is the longest distance moving speed;
  • b is the number of rotor blades;
  • c is the rotor Blade chord length;
  • R is the radius of the rotor;
  • is the angular velocity of the rotor blade;
  • S FP is the equivalent plate area of the fuselage;
  • W is the weight of the drone;
  • ⁇ k is the kth hop in the optimal route of the routing protocol in the hop transmission mode
  • n is the number of hops of the optimal route of the routing protocol in the hop transmission mode;
  • L max is the drone network where it is located, no The maximum distance between human-machine nodes;
  • N is the number of drones in the drone network;
  • L is the
  • the rotor energy consumption information includes: communication transmission power P c , channel bandwidth B, receiver signal-to-noise ratio ⁇ 0 , maximum distance moving speed V mr , number of rotor blades b, rotor blade chord length c, rotor radius R, rotor Blade angular velocity ⁇ , fuselage equivalent plate area S FP , UAV weight W;
  • the UAV network information includes: the maximum distance between UAV nodes L max and the number of UAVs N;
  • the relay drone information includes the optimal route of the routing protocol in the hop-by-hop transmission mode
  • the location information of the target drone includes the distance L from the target drone to the local drone;
  • is the air density
  • is the correction coefficient of the induced power increment
  • is the profile resistance coefficient
  • is the circle ratio
  • the air density ⁇ , the induced power increment correction coefficient ⁇ , the cross-sectional drag coefficient ⁇ , and the circular rate ⁇ are predetermined constants.
  • the rotor drone network data transmission device based on energy efficiency optimization according to the present invention further includes a module:
  • M4 is used to: temporarily store the data to be transmitted according to the module M2 at a certain time interval to determine whether the condition for hop-by-hop transmission is met, and if the condition for hop-by-hop transmission is met, use the button for the data to be transmitted. Jump transmission mode for transmission.
  • the technical effects of the present invention are as follows: The present invention judges whether the hop-by-hop transmission is satisfied by analyzing the amount of data to be transmitted, rotor energy consumption information, UAV network information, relay UAV information, and target UAV location information. It is determined whether to transmit the data to be transmitted according to the hop transmission mode, thereby achieving energy consumption evaluation through the hop transmission conditions, so as to realize the optimization of the energy efficiency of data transmission.
  • FIG. 1 is a schematic diagram of the module structure connection of the rotor UAV network data transmission device based on energy efficiency optimization of the present invention.
  • the network data transmission method of the rotor drone based on energy efficiency optimization of the present invention mainly includes the following three steps: a data collection step, an energy efficiency evaluation step, and an evaluation decision-making step.
  • the data collection step is used to collect the data needed for energy efficiency evaluation.
  • the collected data includes: the amount of data to be transmitted, rotor energy consumption information, UAV network information, relay UAV information, and target UAV location information.
  • the rotor energy consumption information is the information related to the energy consumption of the rotor drone during operation, including: communication transmission power, channel bandwidth, receiver signal-to-noise ratio, maximum distance movement speed, number of rotor blades, and rotor blade chord length , Rotor radius, rotor blade angular velocity, fuselage equivalent plate area, UAV weight.
  • the UAV network information includes the maximum distance between UAV nodes and the number of UAVs.
  • the relay UAV information includes the optimal route of the routing protocol in the hop-by-hop transmission mode.
  • the location information of the target drone includes the distance from the target drone to the local drone.
  • the energy efficiency evaluation step is used to evaluate whether the current collected data status meets the conditions of hop-by-hop transmission, that is, the amount of data to be transmitted, rotor energy consumption information, drone network information, relay drone information, and target Analyze the position information of the drone to determine whether it meets the condition of hop-by-hop transmission.
  • this embodiment uses the following formula to determine:
  • v 0 is the average induced speed of the rotor during hovering, according to the formula Calculated
  • Q is the amount of data to be transmitted;
  • P c is the communication transmission power;
  • B is the channel bandwidth;
  • ⁇ 0 is the receiver signal-to-noise ratio;
  • V mr is the longest distance moving speed;
  • b is the number of rotor blades;
  • c is the rotor Blade chord length;
  • R is the radius of the rotor;
  • is the angular velocity of the rotor blade;
  • S FP is the equivalent plate area of the fuselage;
  • W is the weight of the drone;
  • ⁇ k is the kth hop in the optimal route of the routing protocol in the hop transmission mode
  • n is the number of hops of the optimal route of the routing protocol in the hop transmission mode;
  • L max is the drone network where it is located, no The maximum distance between human-machine nodes;
  • N is the number of drones in the drone network;
  • L is the
  • the optimal route of the routing protocol under the hop transmission mode can be expressed as a set ⁇ 1 , ⁇ 2 ,..., ⁇ n ⁇ , where n is the number of hops.
  • ⁇ k is expressed as the distance from the kth hop, that is, the distance from the kth hop relay drone node to the k+1 hop relay drone node.
  • ⁇ 1 , ⁇ 2 ,..., ⁇ n ⁇ represents the set of n hops, that is, the set of all the hops of the shortest path.
  • the GPS information of the relay node in the hop transmission mode cannot be obtained, the set ⁇ 1 , ⁇ 2 ,..., ⁇ n ⁇ cannot be obtained. Therefore, the calculation formula of the parameter E In an invalid state, it cannot be calculated according to this formula. In this case, the calculation formula of parameter E is determined by Instead, otherwise the formula is preferred As the calculation formula of parameter E.
  • the farthest distance moving speed V mr is defined as follows: when the UAV is flying at a certain constant speed, the speed at which it can fly the farthest distance under the same energy consumption conditions, and this constant speed is the farthest distance moving speed V mr .
  • the longest distance moving speed V mr is neither the maximum speed of the UAV nor a very small speed, but a speed at an intermediate position.
  • the farthest distance moving speed V mr is a parameter stored in the UAV after the test is obtained.
  • the evaluation decision step is used to judge whether the data to be transmitted is temporarily stored or transmitted by the hop transmission mode according to the results of the energy efficiency evaluation. Specifically, if the hop transmission conditions are met, the data to be transmitted will be transmitted by hop Mode for transmission, if the condition of hop-by-hop transmission is not met, the data to be transmitted is temporarily stored. After the data to be transmitted is temporarily stored, it is transmitted according to the "storage-move-forward" mode. Of course, those skilled in the art understand that after the data to be transmitted is temporarily stored, it may not be transmitted according to the "storage-move-forward" mode, for example, according to the traditional delay-tolerant network processing method.
  • the following mechanism is adopted for data transmission: the temporarily stored data to be transmitted is judged according to the energy efficiency evaluation at a certain time interval whether the condition of the hop-by-hop transmission is met, and if the condition for the hop-by-hop transmission is met, the data to be transmitted is to be transmitted by the hop. Transmission mode for transmission.
  • the time interval can be set to, for example, 5 minutes or 10 minutes.
  • a rotor drone network data transmission device based on energy efficiency optimization includes a data collection module 100, an energy efficiency evaluation module 200, an evaluation decision module 300, a data buffer module 400, a buffer processing module 500, and hop-by-hop transmission Module 901 and delay tolerance module 902.
  • the data collection module 100 is used to collect data, that is, to implement the aforementioned data collection steps.
  • the energy efficiency evaluation module 200 is used to perform energy efficiency evaluation based on the collected data, that is, to implement the aforementioned energy efficiency evaluation steps.
  • the evaluation decision module 300 determines whether the data to be transmitted is temporarily stored or transmitted in a hop transmission mode according to the result of the energy efficiency evaluation, that is, the aforementioned evaluation decision step is realized.
  • the data buffer module 400 is used to temporarily store data to be transmitted.
  • the buffer processing module 500 is used to further process the temporarily stored data to be transmitted, that is, input the data to be transmitted into the data collection module 100, the energy efficiency evaluation module 200, and the evaluation decision module 300 at a certain time interval for processing. Evaluate and judge whether the conditions for hop-by-hop transmission are met.
  • the data to be transmitted will be transmitted in the hop-by-hop transmission mode; if the pre-set time is exceeded, the hop-by-hop transmission conditions cannot be met,
  • the data to be transmitted is put into the delay tolerant module 902, and the delay tolerant module 902 transmits the data to be transmitted according to the delay tolerant forwarding mechanism.
  • the hop-by-hop transmission module 901 is used to transmit data in a hop-by-hop transmission mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明公开了一种基于能效优化的旋翼无人机网络数据传输方法和装置。本发明通过对待传输数据的数据量、旋翼能耗信息、无人机网络信息、中继无人机信息以及目标无人机位置信息的分析,判定是否满足按跳传输的条件。若满足按跳传输的条件,则对待传输数据采用按跳传输模式进行传输,若不满足按跳传输的条件,则暂存所述待传输数据直到满足按跳传输的条件后再进行按跳传输模式进行传输。本发明通过对按跳传输的条件实现能耗评估,从而实现数据传输能效优化。

Description

一种基于能效优化的旋翼无人机网络数据传输方法和装置 技术领域
本发明涉及无人机网络架构。
背景技术
无人机在空中作业时,由电池供电,这要求无人机作业时需要处处考虑能效问题,以最大程度减少能耗,从而延长无人机在空中作业时间。这其中涉及了数据传输能耗。为提高数据传输能效,减少数据传输能耗,现有技术已经有了很多种方法,比如专利文献CN105873163A所公开的《一种能量优化的无线传感器网络路由方法》、专利文献CN 105959991A所公开的《种基于等量线模型的能量优化路由方法》、专利文献CN 106304234A所空开的《一种基于聚类路由协议的无线传感器网络能耗优化方法》、专利文献CN106604345A《一种实现动态高能效的移动Ad-hoc网络路由方法》、专利文献CN 106879054A所公开的《一种无线数据传输能耗优化方法》、专利文献CN 108566663A所公开的《基于扰动粒子群优化的SDWSN能耗均衡路由算法》专利文献CN 109451554A所公开的《一种无线网络路径优化方法及系统》、专利文献CN 109803344A所公开的《一种无人机网络拓扑及路由联合构建方法》、专利文献CN 109996308A所公开的《一种基于能量优化的移动ad hoc网络路由方法及装置》、专利文献CN 110139335A所公开的《一种基于节点位置信息和可用容量的移动Ad Hoc网络路由方法》、专利文献CN 110149671A所公开的《无人机蜂群网络的路由选择方法》等等。
由于无人机网络与移动自组织网络MANET(Mobile Ad-hoc Network)比较相似,所以无人机网络的路由协议多数以传统的MANET路由协议为基础进行改进得到,这类协议属于按跳传输模式(hop-by-hop)。但由于无人机网络存在较强的动态性,需要解决按跳传输路径不可达的情况,传统的按跳传输模式的MANET路由协议无法适应,所以又根据无人机的移动特点,提出了基于“存储-移动-转发”(store-carry-forward)模式的路由协议,专用于延迟容忍网络(Delay-tolerant Networking)。
在无人机“存储-移动-转发”模式下,存储的待转发数据如果能够选择至合适的时机进行转发,比如目标无人机距离本机较近时刻进行传输,即可大幅度减少无线传输信号的强度,从而减小数据传输能耗。但是如何选择这个时机是一个重要问题。
发明内容
本发明所要解决的问题:通过无人机“存储-移动-转发”模式传输数据,以减小数据能 耗,从而使得数据传输能效得到优化。
为解决上述问题,本发明采用的方案如下:
根据本发明的一种基于能效优化的旋翼无人机网络数据传输方法,包括以下步骤:
S1:获取待传输数据的数据量、旋翼能耗信息、无人机网络信息、中继无人机信息以及目标无人机位置信息;
S2:通过对所述待传输数据的数据量、旋翼能耗信息、无人机网络信息、中继无人机信息以及目标无人机位置信息的分析,判断是否满足按跳传输的条件;
S3:若满足所述按跳传输的条件,则对所述待传输数据采用按跳传输模式进行传输,若不满足所述按跳传输的条件,则暂存所述待传输数据。
进一步,根据本发明的基于能效优化的旋翼无人机网络数据传输方法,所述按跳传输的条件为:
Figure PCTCN2019111819-appb-000001
时,满足
Figure PCTCN2019111819-appb-000002
Figure PCTCN2019111819-appb-000003
时,满足
Figure PCTCN2019111819-appb-000004
当按跳传输模式路由中继节点的GPS信息能够获取时,
Figure PCTCN2019111819-appb-000005
当按跳传输模式路由中继节点的GPS信息不能够获取时,
Figure PCTCN2019111819-appb-000006
其中,
Figure PCTCN2019111819-appb-000007
Figure PCTCN2019111819-appb-000008
其中,
P 0为叶片功率,根据公式
Figure PCTCN2019111819-appb-000009
计算得到;
P i为诱导功率,根据公式
Figure PCTCN2019111819-appb-000010
计算得到;
U tip为旋翼叶片尖速度,根据公式U tip=ωR计算得到;
v 0为悬停时旋翼平均诱导速度,根据公式
Figure PCTCN2019111819-appb-000011
计算得到;
d 0为机身阻力比,根据公式
Figure PCTCN2019111819-appb-000012
计算得到;
s为转子坚固性,根据公式
Figure PCTCN2019111819-appb-000013
计算得到;
A为旋翼面积,根据公式A=πR 2计算得到;
其中,Q为待传输数据的数据量;P c为通信传输功率;B为信道带宽;γ 0为接收机信噪比;V mr为最远距离移动速度;b为旋翼叶片数量;c为旋翼叶片弦长;R为旋翼半径;ω为旋翼叶片角速度;S FP为机身等效平板面积;W为无人机重量;τ k为按跳传输模式下路由协议的最优路由中第k跳中继无人机节点至第k+1跳中继无人机节点的距离;n为按跳传输模式下路由协议的最优路由的转跳数;L max为所在无人机网络中,无人机节点间的最大距离;N为所在无人机网络中无人机数目;L为目标无人机至本机的距离;
所述旋翼能耗信息包括:通信传输功率P c、信道带宽B、接收机信噪比γ 0、最远距离移动速度V mr、旋翼叶片数量b、旋翼叶片弦长c、旋翼半径R、旋翼叶片角速度ω、机身等效平板面积S FP、无人机重量W;
所述无人机网络信息包括:无人机节点间的最大距离L max和无人机数目N;
所述中继无人机信息包括按跳传输模式下路由协议的最优路由;
所述目标无人机位置信息包括目标无人机至本机的距离L;
其中,ρ为空气密度;β为感应功率增量修正系数;δ为剖面阻力系数;π为圆周率;
空气密度ρ、感应功率增量修正系数β、剖面阻力系数δ以及圆周率π为预先设定的常数。
进一步,根据本发明的基于能效优化的旋翼无人机网络数据传输方法,还包括步骤:
S4:对暂存所述待传输数据按一定的时间间隔根据步骤S2判断是否满足所述按跳传输的条件,若满足所述按跳传输的条件则对所述待传输数据采用按跳传输模式进行传输。
根据本发明的一种基于能效优化的旋翼无人机网络数据传输装置,包括以下模块:
M1,用于:获取待传输数据的数据量、旋翼能耗信息、无人机网络信息、中继无人机信息以及目标无人机位置信息;
M2,用于:通过对所述待传输数据的数据量、旋翼能耗信息、无人机网络信息、中继无人机信息以及目标无人机位置信息的分析,判断是否满足按跳传输的条件;
M3,用于:若满足所述按跳传输的条件,则对所述待传输数据采用按跳传输模式进行传输,若不满足所述按跳传输的条件,则暂存所述待传输数据。
进一步,根据本发明的基于能效优化的旋翼无人机网络数据传输装置,所述按跳传输的条件为:
Figure PCTCN2019111819-appb-000014
时,满足
Figure PCTCN2019111819-appb-000015
Figure PCTCN2019111819-appb-000016
时,满足
Figure PCTCN2019111819-appb-000017
当按跳传输模式路由中继节点的GPS信息能够获取时,
Figure PCTCN2019111819-appb-000018
当按跳传输模式路由中继节点的GPS信息不能够获取时,
Figure PCTCN2019111819-appb-000019
其中,
Figure PCTCN2019111819-appb-000020
Figure PCTCN2019111819-appb-000021
其中,
P 0为叶片功率,根据公式
Figure PCTCN2019111819-appb-000022
计算得到;
P i为诱导功率,根据公式
Figure PCTCN2019111819-appb-000023
计算得到;
U tip为旋翼叶片尖速度,根据公式U tip=ωR计算得到;
v 0为悬停时旋翼平均诱导速度,根据公式
Figure PCTCN2019111819-appb-000024
计算得到;
d 0为机身阻力比,根据公式
Figure PCTCN2019111819-appb-000025
计算得到;
s为转子坚固性,根据公式
Figure PCTCN2019111819-appb-000026
计算得到;
A为旋翼面积,根据公式A=πR 2计算得到;
其中,Q为待传输数据的数据量;P c为通信传输功率;B为信道带宽;γ 0为接收机信噪比;V mr为最远距离移动速度;b为旋翼叶片数量;c为旋翼叶片弦长;R为旋翼半径;ω为旋翼叶片角速度;S FP为机身等效平板面积;W为无人机重量;τ k为按跳传输模式下路由协议的最优路由中第k跳中继无人机节点至第k+1跳中继无人机节点的距离;n为按跳传输模式下路由协议的最优路由的转跳数;L max为所在无人机网络中,无人机节点间的最大距离;N为所在无人机网络中无人机数目;L为目标无人机至本机的距离;
所述旋翼能耗信息包括:通信传输功率P c、信道带宽B、接收机信噪比γ 0、最远距离移动速度V mr、旋翼叶片数量b、旋翼叶片弦长c、旋翼半径R、旋翼叶片角速度ω、机身等效平板面积S FP、无人机重量W;
所述无人机网络信息包括:无人机节点间的最大距离L max和无人机数目N;
所述中继无人机信息包括按跳传输模式下路由协议的最优路由;
所述目标无人机位置信息包括目标无人机至本机的距离L;
其中,ρ为空气密度;β为感应功率增量修正系数;δ为剖面阻力系数;π为圆周率;
空气密度ρ、感应功率增量修正系数β、剖面阻力系数δ以及圆周率π为预先设定的常数。
进一步,根据本发明的基于能效优化的旋翼无人机网络数据传输装置,还包括模块:
M4,用于:对暂存所述待传输数据按一定的时间间隔根据模块M2判断是否满足所述按跳传输的条件,若满足所述按跳传输的条件则对所述待传输数据采用按跳传输模式进行传输。
本发明的技术效果如下:本发明通过对待传输数据的数据量、旋翼能耗信息、无人机网络信息、中继无人机信息以及目标无人机位置信息的分析,判断是否满足按跳传输的条件,确定是否按跳传输模式进行传输待传输数据,由此通过对按跳传输的条件实现能耗评估,从而实现数据传输能效优化。
附图说明
图1是本发明基于能效优化的旋翼无人机网络数据传输装置的模块结构连接示意图。
具体实施方式
下面结合说明书附图对本发明做进一步详细说明。
本发明的基于能效优化的旋翼无人机网络数据传输方法,主要包括以下三个步骤:数据收集步骤、能效评估步骤、评估决策步骤。
数据收集步骤,用于收集能效评估所需要的数据。所收集的数据包括:待传输数据的数据量、旋翼能耗信息、无人机网络信息、中继无人机信息以及目标无人机位置信息。其中,旋翼能耗信息是旋翼无人机在工作时与能耗相关的信息,包括:通信传输功率、信道带宽、接收机信噪比、最远距离移动速度、旋翼叶片数量、旋翼叶片弦长、旋翼半径、旋翼叶片角速度、机身等效平板面积、无人机重量。无人机网络信息包括无人机节点间的最大距离和无人机数目。中继无人机信息包括按跳传输模式下路由协议的最优路由。目标无人机位置信息包括目标无人机至本机的距离。
能效评估步骤,用于评价当前所收集的数据状态是否满足按跳传输的条件,也就是,对待传输数据的数据量、旋翼能耗信息、无人机网络信息、中继无人机信息以及目标无人机位置信息的分析,判断是否满足按跳传输的条件。
按跳传输的条件,本实施例采用如下公式确定:
Figure PCTCN2019111819-appb-000027
时,满足
Figure PCTCN2019111819-appb-000028
Figure PCTCN2019111819-appb-000029
时,满足
Figure PCTCN2019111819-appb-000030
当按跳传输模式路由中继节点的GPS信息能够获取时,
Figure PCTCN2019111819-appb-000031
当按跳传输模式路由中继节点的GPS信息不能够获取时,
Figure PCTCN2019111819-appb-000032
其中,
Figure PCTCN2019111819-appb-000033
Figure PCTCN2019111819-appb-000034
其中,
P 0为叶片功率,根据公式
Figure PCTCN2019111819-appb-000035
计算得到;
P i为诱导功率,根据公式
Figure PCTCN2019111819-appb-000036
计算得到;
U tip为旋翼叶片尖速度,根据公式U tip=ωR计算得到;
v 0为悬停时旋翼平均诱导速度,根据公式
Figure PCTCN2019111819-appb-000037
计算得到;
d 0为机身阻力比,根据公式
Figure PCTCN2019111819-appb-000038
计算得到;
s为转子坚固性,根据公式
Figure PCTCN2019111819-appb-000039
计算得到;
A为旋翼面积,根据公式A=πR 2计算得到;
其中,Q为待传输数据的数据量;P c为通信传输功率;B为信道带宽;γ 0为接收机信噪比;V mr为最远距离移动速度;b为旋翼叶片数量;c为旋翼叶片弦长;R为旋翼半径;ω为旋翼叶片角速度;S FP为机身等效平板面积;W为无人机重量;τ k为按跳传输模式下路由协议的最优路由中第k跳中继无人机节点至第k+1跳中继无人机节点的距离;n为按跳传输模式下路由协议的最优路由的转跳数;L max为所在无人机网络中,无人机节点间的最大距离;N为所在无人机网络中无人机数目;L为目标无人机至本机的距离;ρ为空气密度;β为感应功率增量修正系数;δ为剖面阻力系数;π为圆周率;空气密度ρ、感应功率增量修正系数β、剖面阻力系数δ以及圆周率π为预先设定的常数。
需要指出的是,按跳传输模式下路由协议的最优路由可以表示为集合{τ 12,…,τ n},n为转跳数。本机至目标无人机共有n跳,τ k表示为第k跳的距离,也就是,第k跳中继无人机节点至第k+1跳中继无人机节点的距离。{τ 12,…,τ n}表示这n跳组成的集合,即最短路径所有跳的集合。当按跳传输模式路由中继节点的GPS信息不能够获取时,集合{τ 12,…,τ n}无法获取得到,因此,参数E的计算公式
Figure PCTCN2019111819-appb-000040
处于无效状态,也就不能按照该公式进行计 算,此种情形下,参数E的计算公式由
Figure PCTCN2019111819-appb-000041
代替,否则优先使用公式
Figure PCTCN2019111819-appb-000042
作为参数E的计算公式。
最远距离移动速度V mr定义如下:当无人机采用某个恒定速度飞行时,在同样能耗条件下,可以飞行最远距离的速度,该恒定速度即为最远距离移动速度V mr。根据研究,最远距离移动速度V mr既不是无人机的最大速度,也不是一个极小的速度,是一个处于中间位置的速度。本实施例中,最远距离移动速度V mr经测试获得后保存在无人机中的参数。
评估决策步骤,用于根据能效评估的结果判断是对待传输的数据进行暂存还是通过按跳传输模式进行传输,具体来说为,若满足按跳传输的条件,则对待传输数据采用按跳传输模式进行传输,若不满足按跳传输的条件,则暂存待传输数据。待传输数据暂存后,则按照“存储-移动-转发”模式进行传输。当然本领域技术人员理解,待传输数据暂存后,也可以不按照“存储-移动-转发”模式进行传输,比如按照传统的延迟容忍网络处理方式进行传输。本实施例则采用如下机制进行数据传输:对暂存待传输数据按一定的时间间隔根据能效评估判断是否满足所述按跳传输的条件,若满足按跳传输的条件则对待传输数据采用按跳传输模式进行传输。这其中的时间间隔可以设为比如5分钟或10分钟等。
本实施上述过程体现在旋翼无人机的数据传输系统中,采用如图1所示的架构。一种基于能效优化的旋翼无人机网络数据传输装置,如图1所示,包括数据收集模块100、能效评估模块200、评估决策模块300、数据缓存模块400、缓存处理模块500、按跳传输模块901和延迟容忍模块902。数据收集模块100用于收集数据,即实现前述数据收集步骤。能效评估模块200用于根据收集的数据进行能效评估,即实现前述能效评估步骤。评估决策模块300根据能效评估的结果判断是对待传输的数据进行暂存还是通过按跳传输模式进行传输,即实现前述评估决策步骤。数据缓存模块400用于暂存待传输的数据。缓存处理模块500用于对暂存待传输的数据做进一步处理,即按一定的时间间隔将待传输的数据输入数据收集模块100、能效评估模块200和评估决策模块300进行处理,以此根据能效评估判断是否满足所述按跳传输的条件,若满足按跳传输的条件则对待传输数据采用按跳传输模式进行传输;如果超过预先设定的时间后,还是无法满足按跳传输的条件,则将该待传输的数据放入延迟容忍模块902中,延迟容忍模块902则根据延迟容忍转发机制传输该待传输的数据。按跳传输模块901用于对传输数据采用按跳传输模式进行传输。

Claims (6)

  1. 一种基于能效优化的旋翼无人机网络数据传输方法,其特征在于,包括以下步骤:
    S1:获取待传输数据的数据量、旋翼能耗信息、无人机网络信息、中继无人机信息以及目标无人机位置信息;
    S2:通过对所述待传输数据的数据量、旋翼能耗信息、无人机网络信息、中继无人机信息以及目标无人机位置信息的分析,判断是否满足按跳传输的条件;
    S3:若满足所述按跳传输的条件,则对所述待传输数据采用按跳传输模式进行传输,若不满足所述按跳传输的条件,则暂存所述待传输数据。
  2. 如权利要求1所述的基于能效优化的旋翼无人机网络数据传输方法,其特征在于,所述按跳传输的条件为:
    Figure PCTCN2019111819-appb-100001
    时,满足
    Figure PCTCN2019111819-appb-100002
    Figure PCTCN2019111819-appb-100003
    时,满足
    Figure PCTCN2019111819-appb-100004
    当按跳传输模式路由中继节点的GPS信息能够获取时,
    Figure PCTCN2019111819-appb-100005
    当按跳传输模式路由中继节点的GPS信息不能够获取时,
    Figure PCTCN2019111819-appb-100006
    其中,
    Figure PCTCN2019111819-appb-100007
    Figure PCTCN2019111819-appb-100008
    其中,
    P 0为叶片功率,根据公式
    Figure PCTCN2019111819-appb-100009
    计算得到;
    P i为诱导功率,根据公式
    Figure PCTCN2019111819-appb-100010
    计算得到;
    U tip为旋翼叶片尖速度,根据公式U tip=ωR计算得到;
    v 0为悬停时旋翼平均诱导速度,根据公式
    Figure PCTCN2019111819-appb-100011
    计算得到;
    d 0为机身阻力比,根据公式
    Figure PCTCN2019111819-appb-100012
    计算得到;
    s为转子坚固性,根据公式
    Figure PCTCN2019111819-appb-100013
    计算得到;
    A为旋翼面积,根据公式A=πR 2计算得到;
    其中,Q为待传输数据的数据量;P c为通信传输功率;B为信道带宽;γ 0为接收机信噪比;V mr为最远距离移动速度;b为旋翼叶片数量;c为旋翼叶片弦长;R为旋翼半径;ω为旋翼叶片角速度;S FP为机身等效平板面积;W为无人机重量;τ k为按跳传输模式下路由协议的最优路由中第k跳中继无人机节点至第k+1跳中继无人机节点的距离;n为按跳传输模式下路由协议的最优路由的转跳数;L max为所在无人机网络中,无人机节点间的最大距离;N为所在无人机网络中无人机数目;L为目标无人机至本机的距离;
    所述旋翼能耗信息包括:通信传输功率P c、信道带宽B、接收机信噪比γ 0、最远距离移动速度V mr、旋翼叶片数量b、旋翼叶片弦长c、旋翼半径R、旋翼叶片角速度ω、机身等效平板面积S FP、无人机重量W;
    所述无人机网络信息包括:无人机节点间的最大距离L max和无人机数目N;
    所述中继无人机信息包括按跳传输模式下路由协议的最优路由;
    所述目标无人机位置信息包括目标无人机至本机的距离L;
    其中,ρ为空气密度;β为感应功率增量修正系数;δ为剖面阻力系数;π为圆周率;
    空气密度ρ、感应功率增量修正系数β、剖面阻力系数δ以及圆周率π为预先设定的常数。
  3. 如权利要求1或2所述的基于能效优化的旋翼无人机网络数据传输方法,其特征在于,还包括步骤:
    S4:对暂存所述待传输数据按一定的时间间隔根据步骤S2判断是否满足所述按跳传输的条件,若满足所述按跳传输的条件则对所述待传输数据采用按跳传输模式进行传输。
  4. 一种基于能效优化的旋翼无人机网络数据传输装置,其特征在于,包括以下模块:
    M1,用于:获取待传输数据的数据量、旋翼能耗信息、无人机网络信息、中继无人机信息以及目标无人机位置信息;
    M2,用于:通过对所述待传输数据的数据量、旋翼能耗信息、无人机网络信息、中继无人机信息以及目标无人机位置信息的分析,判断是否满足按跳传输的条件;
    M3,用于:若满足所述按跳传输的条件,则对所述待传输数据采用按跳传输模式进行传输,若不满足所述按跳传输的条件,则暂存所述待传输数据。
  5. 如权利要求4所述的基于能效优化的旋翼无人机网络数据传输装置,其特征在于,所述按跳传输的条件为:
    Figure PCTCN2019111819-appb-100014
    时,满足
    Figure PCTCN2019111819-appb-100015
    Figure PCTCN2019111819-appb-100016
    时,满足
    Figure PCTCN2019111819-appb-100017
    当按跳传输模式路由中继节点的GPS信息能够获取时,
    Figure PCTCN2019111819-appb-100018
    当按跳传输模式路由中继节点的GPS信息不能够获取时,
    Figure PCTCN2019111819-appb-100019
    其中,
    Figure PCTCN2019111819-appb-100020
    Figure PCTCN2019111819-appb-100021
    其中,
    P 0为叶片功率,根据公式
    Figure PCTCN2019111819-appb-100022
    计算得到;
    P i为诱导功率,根据公式
    Figure PCTCN2019111819-appb-100023
    计算得到;
    U tip为旋翼叶片尖速度,根据公式U ttp=ωR计算得到;
    v 0为悬停时旋翼平均诱导速度,根据公式
    Figure PCTCN2019111819-appb-100024
    计算得到;
    d 0为机身阻力比,根据公式
    Figure PCTCN2019111819-appb-100025
    计算得到;
    s为转子坚固性,根据公式
    Figure PCTCN2019111819-appb-100026
    计算得到;
    A为旋翼面积,根据公式A=πR 2计算得到;
    其中,Q为待传输数据的数据量;P c为通信传输功率;B为信道带宽;γ 0为接收机信噪比;V mr为最远距离移动速度;b为旋翼叶片数量;c为旋翼叶片弦长;R为旋翼半径;ω为旋翼叶片角速度;S FP为机身等效平板面积;W为无人机重量;τ k为按跳传输模式下路由协议的最优路由中第k跳中继无人机节点至第k+1跳中继无人机节点的距离;n为按跳传输模式下路由协议的最优路由的转跳数;L max为所在无人机网络中,无人机节点间的最大距离;N为所在无人机网络中无人机数目;L为目标无人机至本机的距离;
    所述旋翼能耗信息包括:通信传输功率P c、信道带宽B、接收机信噪比γ 0、最远距离移动速度V mr、旋翼叶片数量b、旋翼叶片弦长c、旋翼半径R、旋翼叶片角速度ω、机身等效平板面积S FP、无人机重量W;
    所述无人机网络信息包括:无人机节点间的最大距离L max和无人机数目N;
    所述中继无人机信息包括按跳传输模式下路由协议的最优路由;
    所述目标无人机位置信息包括目标无人机至本机的距离L;
    其中,ρ为空气密度;β为感应功率增量修正系数;δ为剖面阻力系数;π为圆周率;
    空气密度ρ、感应功率增量修正系数β、剖面阻力系数δ以及圆周率π为预先设定的常数。
  6. 如权利要求4或5所述的基于能效优化的旋翼无人机网络数据传输装置,其特征在于,还包括模块:M4,用于:对暂存所述待传输数据按一定的时间间隔根据模块M2判断是否满足所述按跳传输的条件,若满足所述按跳传输的条件则对所述待传输数据采用按跳传输模式进行传输。
PCT/CN2019/111819 2019-09-29 2019-10-18 一种基于能效优化的旋翼无人机网络数据传输方法和装置 WO2021056635A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910930530.9A CN110677929A (zh) 2019-09-29 2019-09-29 一种基于能效优化的旋翼无人机网络数据传输方法和装置
CN201910930530.9 2019-09-29

Publications (1)

Publication Number Publication Date
WO2021056635A1 true WO2021056635A1 (zh) 2021-04-01

Family

ID=69079873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111819 WO2021056635A1 (zh) 2019-09-29 2019-10-18 一种基于能效优化的旋翼无人机网络数据传输方法和装置

Country Status (2)

Country Link
CN (1) CN110677929A (zh)
WO (1) WO2021056635A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160381596A1 (en) * 2015-06-25 2016-12-29 The Board Of Trustees Of The University Of Alabama Intelligent multi-beam medium access control in ku-band for mission-oriented mobile mesh networks
CN108092707A (zh) * 2017-12-21 2018-05-29 广东工业大学 一种基于无人机自组网的数据传输方法及装置
CN108124249A (zh) * 2017-11-29 2018-06-05 中国人民解放军陆军工程大学 一种无人机集群数据传输的方法、装置和系统
CN109067490A (zh) * 2018-09-29 2018-12-21 郑州航空工业管理学院 蜂窝网联下多无人机协同移动边缘计算系统资源分配方法
CN109803342A (zh) * 2018-10-31 2019-05-24 南京大学 一种面向能量均衡高可靠传输的无人机自组织网络路由方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160381596A1 (en) * 2015-06-25 2016-12-29 The Board Of Trustees Of The University Of Alabama Intelligent multi-beam medium access control in ku-band for mission-oriented mobile mesh networks
CN108124249A (zh) * 2017-11-29 2018-06-05 中国人民解放军陆军工程大学 一种无人机集群数据传输的方法、装置和系统
CN108092707A (zh) * 2017-12-21 2018-05-29 广东工业大学 一种基于无人机自组网的数据传输方法及装置
CN109067490A (zh) * 2018-09-29 2018-12-21 郑州航空工业管理学院 蜂窝网联下多无人机协同移动边缘计算系统资源分配方法
CN109803342A (zh) * 2018-10-31 2019-05-24 南京大学 一种面向能量均衡高可靠传输的无人机自组织网络路由方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, MA-MENG ET AL.: "Research on the mobile strategy of micro air vehicles with limited energy", ELECTRONIC DESIGN ENGINEERING, vol. 24, no. 20, 31 October 2016 (2016-10-31), pages 56 - 58, XP055794766 *

Also Published As

Publication number Publication date
CN110677929A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
CN110149671B (zh) 无人机蜂群网络的路由选择方法
Ghdiri et al. Energy-efficient multi-UAV data collection for IoT networks with time deadlines
Li et al. Energy-efficient multipath routing in wireless sensor network considering wireless interference
CN112752357B (zh) 基于能量收割技术的在线无人机辅助数据收集方法及装置
Ouyang et al. Trust based task offloading scheme in UAV-enhanced edge computing network
Yuan et al. Software defined mobile sensor network for micro UAV swarm
Trotta et al. BEE-DRONES: Ultra low-power monitoring systems based on unmanned aerial vehicles and wake-up radio ground sensors
CN114339661A (zh) 基于鲸鱼优化的飞行器自组织网络多径路由机制
Sayeed et al. Optimizing unmanned aerial vehicle assisted data collection in cluster based wireless sensor network
Kurunathan et al. Deep reinforcement learning for persistent cruise control in UAV-aided data collection
WO2021056635A1 (zh) 一种基于能效优化的旋翼无人机网络数据传输方法和装置
Ya-qin et al. Opnet-based network of manet routing protocols dsr computer simulation
Zhu et al. Energy-efficient routing algorithms for UAV-assisted mMTC networks
CN113133105A (zh) 一种基于深度强化学习的无人机数据收集方法
Liu et al. Age-constrained energy minimization in UAV-assisted wireless powered sensor networks: a DQN-based approach
Suraki et al. FCLCC: fuzzy cross-layer congestion control in mobile ad hoc networks
Wei et al. DRL-based energy-efficient trajectory planning, computation offloading, and charging scheduling in UAV-MEC network
Shen et al. Energy-awareness dynamic trajectory planning for UAV-enabled data collection in mMTC networks
CN114449608A (zh) 一种基于Q-Learning的无人机自组网自适应路由方法
Chai et al. Joint clustering and UAV trajectory planning algorithm in UAV-assisted WSNs with data collection time minimization
CN111711974A (zh) 基于轨迹预测的飞行自组织网络能量有效型机会路由方法
Vasanthi et al. An Implementation of Low Energy Consumed Long Life Network (LECLLN) with Reliable Routing Protocol (RRP)
Mozumder et al. Multiple Circular Ring-canals on the Starfish Routing Backbone in Wireless Sensor Networks
CN114900868B (zh) 基于能量优化的无人机自组网路由协议的数据传输方法
Zhang et al. Bi-objective optimization for UAV swarm-enabled relay communications via collaborative beamforming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947216

Country of ref document: EP

Kind code of ref document: A1