WO2021056311A1 - 随机接入时机的配置方法、装置和存储介质 - Google Patents

随机接入时机的配置方法、装置和存储介质 Download PDF

Info

Publication number
WO2021056311A1
WO2021056311A1 PCT/CN2019/108055 CN2019108055W WO2021056311A1 WO 2021056311 A1 WO2021056311 A1 WO 2021056311A1 CN 2019108055 W CN2019108055 W CN 2019108055W WO 2021056311 A1 WO2021056311 A1 WO 2021056311A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
configuration parameters
shared
step random
fdm
Prior art date
Application number
PCT/CN2019/108055
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/764,533 priority Critical patent/US20220353919A1/en
Priority to PCT/CN2019/108055 priority patent/WO2021056311A1/zh
Priority to CN201980002167.2A priority patent/CN110800361B/zh
Publication of WO2021056311A1 publication Critical patent/WO2021056311A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0866Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a method, device and storage medium for configuring a random access opportunity (RACH Occasion, RO).
  • the Third Generation Partnership Project (3GPP) has carried out two-step (2-step) random access standardization work. Two-step random access is simplified compared to four-step random access. , That is, only the message A (Message A, Msg A) sent by the terminal to the base station and the message B (Message B, Msg B) that the base station feeds back to the terminal are included.
  • Msg A includes Physical Random Access Channel (PRACH) and Physical Uplink Shared Channel (PUSCH). Among them, the RO used by PRACH is configured by the system message.
  • PRACH Physical Random Access Channel
  • PUSCH Physical Uplink Shared Channel
  • Two-step random access and four-step random access can share all or part of the ROs configuration. However, there is no reasonable technical solution to solve the configuration method of shared ROs.
  • the embodiments of the present disclosure provide a random access timing configuration method, device, and storage medium, which can be used to solve how to share the configuration of all or part of ROs when two-step random access and four-step random access can share all or part of the configuration of ROs.
  • the problem of configuring ROs is as follows:
  • a random access timing configuration method the method includes:
  • the access network device sends the configuration parameters of the RO, and the configuration parameters include: the offset value of the starting position of the shared RO relative to the starting position of the RO used for four-step random access, and the shared RO is the four-step random access.
  • One-step random access and two-step random access share the RO used.
  • a random access timing configuration method including:
  • the terminal receives the configuration parameters of the RO, and the configuration parameters include: the offset value of the starting position of the shared RO relative to the starting position of the RO used for the four-step random access, the shared RO being the four-step random access RO used for shared access and two-step random access;
  • the terminal determines the frequency domain location of the shared RO according to the configuration parameters of the RO.
  • the RO configuration parameters also include:
  • the first number of ROs of the frequency domain multiplexing FDM at the same time of the two-step random access is one of the following numbers: 1, 2, 4, 8.
  • the RO configuration parameters also include:
  • the second number of ROs of the frequency domain multiplexing FDM at the same time of the four-step random access is one of the following numbers: 1, 2, 4, 8.
  • the first number is less than or equal to the second number.
  • the RO configuration parameters also include:
  • the RO configuration parameters further include: the starting position of the RO used by the four-step random access
  • determining the frequency domain location of the shared RO includes:
  • different parameters in the configuration parameters of the RO are carried in the same or different configuration information.
  • a random access opportunity configuration device including:
  • the receiving module is configured to receive configuration parameters of the RO, the configuration parameters including: the offset value of the starting position of the shared RO relative to the starting position of the RO used for four-step random access, and the shared RO is the Describe the RO used for four-step random access and two-step random access sharing;
  • the determining module is configured to determine the frequency domain location of the shared RO according to the configuration parameters of the RO.
  • a random access opportunity configuration device including:
  • the sending module is configured to send configuration parameters of the RO, the configuration parameters including: the offset value of the starting position of the shared RO relative to the starting position of the RO used in the four-step random access, and the shared RO is the starting position of the RO used in the four-step random access.
  • the RO shared by the four-step random access and the two-step random access is described.
  • a terminal comprising: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the processing The device is configured to load and execute the executable instructions to implement the random access timing configuration method as described in the foregoing aspect.
  • an access network device comprising: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor ; Wherein, the processor is configured to load and execute the executable instructions to implement the random access timing configuration method as described in the foregoing aspect.
  • a computer-readable storage medium having executable instructions stored in the readable storage medium, and the executable instructions are loaded and executed by the processor to implement the above-mentioned How to configure random access timing.
  • a computer program product is provided, and executable instructions are stored in the program product, and the executable instructions are loaded and executed by the processor to implement the random access as described in the above aspects. Timing configuration method.
  • the UE is configured with RO configuration parameters through the access network equipment.
  • the configuration parameters include an offset value for indicating the starting position of the shared RO.
  • the UE can determine the frequency domain position of the shared RO according to the configuration parameters, thereby realizing different frequencies.
  • the flexible configuration of the RO in the domain position improves the flexibility of the configuration method.
  • Fig. 1 is a block diagram of a communication system provided by an exemplary embodiment of the present disclosure
  • Fig. 2 is a flowchart of a four-step random access provided by an exemplary embodiment of the present disclosure
  • Fig. 3 is a flow chart of two-step random access provided by an exemplary embodiment of the present disclosure
  • Figure 4 is a flow chart of a RO configuration method known to the inventor
  • Fig. 5 is a flowchart of a RO configuration method provided by an exemplary embodiment of the present disclosure
  • Fig. 6 is a flowchart of a RO configuration method provided by an exemplary embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of an RO configuration method provided by an exemplary embodiment of the present disclosure during implementation
  • FIG. 8 is a schematic diagram of an RO configuration method provided by an exemplary embodiment of the present disclosure during implementation
  • FIG. 9 is a schematic diagram of an RO configuration method provided by an exemplary embodiment of the present disclosure during implementation.
  • FIG. 10 is a schematic diagram of an RO configuration method provided by an exemplary embodiment of the present disclosure during implementation
  • FIG. 11 is a schematic diagram of an RO configuration method provided by an exemplary embodiment of the present disclosure during implementation
  • FIG. 12 is a schematic diagram of an RO configuration method provided by an exemplary embodiment of the present disclosure during implementation
  • FIG. 13 is a schematic diagram of an RO configuration method provided by an exemplary embodiment of the present disclosure during implementation
  • FIG. 14 is a schematic diagram of an RO configuration method provided by an exemplary embodiment of the present disclosure during implementation
  • FIG. 15 is a schematic diagram of an RO configuration method provided by an exemplary embodiment of the present disclosure during implementation
  • FIG. 16 is a block diagram of a device for configuring random access timing provided by an exemplary embodiment of the present disclosure
  • FIG. 17 is a block diagram of a device for configuring random access timing provided by an exemplary embodiment of the present disclosure.
  • Fig. 18 is a block diagram of a communication device provided by an exemplary embodiment of the present disclosure.
  • FIG. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may include: an access network 12 and a terminal 13.
  • the access network 12 includes several access network devices 120.
  • the access network device 120 may be a base station, and the base station is a device deployed in an access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different.
  • eNodeB or eNB In LTE systems, they are called eNodeB or eNB; in 5G NR-U systems, they are called gNodeB or gNB.
  • the description of "base station” may change.
  • the above-mentioned devices for providing wireless communication functions for the terminal 13 are collectively referred to as access network equipment.
  • the access network device 120 includes: a source base station and a target base station.
  • the terminal 13 may include various handheld devices with wireless communication functions, in-vehicle devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of terminals (User Equipment, UE), and mobile stations (Mobile Stations). Station, MS), terminal (terminal device) and so on.
  • terminals User Equipment, UE
  • MS mobile stations
  • terminals terminals
  • the access network device 120 and the terminal 13 communicate with each other through a certain air interface technology, such as a Uu interface.
  • the random access process refers to the process from the user sending the random access preamble sequence to try to access the network until the basic signaling connection is established with the network.
  • the random access process is one of the most basic requirements for any cellular communication system. 1. It is used to establish data communication between the terminal and the network side.
  • the random access process is divided into four steps (4-step) random access and two steps (2-step) random access.
  • Figure 4 shows that in the contention-based random access process, the four steps of the random access process include:
  • the terminal sends a message 1: random access preamble to the access network device.
  • the terminal sends a random access preamble to the access network device, and the access network device estimates the transmission delay of the terminal based on this to achieve uplink synchronization.
  • RAR Random Access Response
  • the access network device sends a timing advance command based on the transmission delay estimated in the first step above to adjust the sending time of the terminal.
  • Message 2 is organized by the Media Access Control (MAC) layer of the access network equipment and carried by the Down Link Share Channel (DL_SCH).
  • MAC Media Access Control
  • DL_SCH Down Link Share Channel
  • the access network equipment uses the Physical Downlink Control Channel (PDCCH) to schedule message 2, and it is addressed through C-RNTI or RA-RNTI (also called scrambling).
  • RA-RNTI is determined by the physical randomness of message 1.
  • PRACH physical random access channel
  • Message 2 contains the uplink transmission timing advance and allocates uplink resources and temporary C-RNTI for message 3.
  • the terminal sends a message 3: the first scheduled transmission to the access network device.
  • the terminal After receiving the message 2, the terminal transmits the message 3 on the allocated uplink resource, and sends the user equipment (User Equipment Identify, UE ID) to the access network device through the physical uplink shared channel (Phyiscal UpLink Share Channel, PUSCH).
  • the user equipment User Equipment Identify, UE ID
  • PUSCH Physical Uplink Share Channel
  • the message 3 includes a common control channel (CCCH) service data unit (Service Data Unit, SDU), which is used for the message 4 to carry the contention resolution ID.
  • CCCH common control channel
  • SDU Service Data Unit
  • the access network device sends a message 4: contention resolution message to the terminal.
  • the contention resolution message sent by the access network device to the terminal on the physical downlink shared channel (Phyiscal DownLink Share Channel, PDSCH).
  • the 4-step random access process can be combined into a 2-step random access process.
  • the combined message A and message B are included.
  • the relevant steps include:
  • the terminal sends a message A to the access network device.
  • the access network device After receiving the message A sent by the terminal, the access network device sends a message B to the terminal.
  • message A includes the content of message 1 and message 3, that is, message A includes: random access preamble sequence and UE ID.
  • the UE ID can be one of C-RNTI, temporary C-RNTI, and RA-RNTI.
  • message B includes the content of message 2 and message 4, that is, message B includes: random access response and contention resolution information.
  • Fig. 4 shows a schematic diagram of an RO configuration method known to the inventor.
  • the access network device sends RO configuration parameters to the UE, and the RO configuration parameters include:
  • FDM for 4-step 4, that is, the number of ROs for frequency division multiplexing in the four-step random access at the same time is 4.
  • FDM for 2-step 2, that is, the number of ROs of two-step random access frequency division multiplexing at the same time is 2.
  • the UE can confirm that there are 4 ROs 0 to 3 in the frequency domain.
  • RO 0 and RO 1 are the two ROs exclusively used by the four-step random access
  • RO 2 and RO 3 are the two ROs shared by the four-step random access and the two-step random access.
  • the starting position of the shared RO is the default, so the configuration method is relatively simple and not flexible enough.
  • Fig. 5 shows a schematic diagram of a RO configuration method provided by an exemplary embodiment of the present disclosure.
  • the method is applied to the communication system shown in FIG. 1 as an example.
  • the method includes:
  • Step 501 The access network device sends RO configuration parameters
  • the UE receives the configuration parameters of the RO.
  • the configuration parameters include: the offset value of the starting position of the shared RO relative to the starting position of the RO used for the four-step random access.
  • the shared RO is the four-step random access and Two-step random access shared RO;
  • the starting position refers to the starting position of the frequency domain dimension.
  • the starting position of the RO used in the four-step random access is determined by the configuration parameters of the RO used in the four-step random access.
  • the starting position of the shared RO is determined by the configuration parameters of the RO used in the four-step random access and the two-step random access.
  • the RO configuration parameters used in the four-step random access and the RO configuration parameters used in the two-step random access are configured separately.
  • Step 503 Determine the frequency domain location of the shared RO according to the configuration parameters of the RO.
  • the method provided in this embodiment configures RO configuration parameters to the UE through the access network device.
  • the configuration parameters include an offset value for indicating the starting position of the shared RO, and the UE can determine the configuration parameters according to the configuration parameters.
  • the frequency domain position of the shared RO is determined (for example, the starting position of the shared RO is determined according to the offset value), so as to realize the flexible configuration of ROs at different frequency domain positions and improve the flexibility of the configuration method.
  • the configuration parameters of the RO include the following parameters:
  • the first number of ROs of the frequency domain multiplexing FDM at the same time of the two-step random access is one of the following numbers: 1, 2, 4, 8. In other embodiments, the first number may also be a number greater than 8, such as 16, 32, etc. The present disclosure does not limit the specific value of the first number.
  • the second number of ROs of the frequency domain multiplexing FDM at the same time of the four-step random access is one of the following numbers: 1, 2, 4, 8.
  • the second number may also be a number greater than 8, such as 16, 32, etc.
  • the present disclosure does not limit the specific value of the second number.
  • the first quantity is less than or equal to the second quantity.
  • the configuration parameters of the RO further include the following parameters:
  • the configuration parameters of the RO further include the following parameters:
  • the starting position of the RO used in the four-step random access refers to the starting position of the RO used in the four-step random access in the frequency domain dimension.
  • the access network device may configure a separate message 1-FDM and the frequency domain start position of message 1 for the RO of two-step random access.
  • a two-step random access preamble can also be allocated from the non-content-based random access (CBRA) preamble associated with each SSB.
  • CBRA non-content-based random access
  • Fig. 6 shows a schematic diagram of an RO configuration method provided by an exemplary embodiment of the present disclosure.
  • the method is applied to the communication system shown in FIG. 1 as an example.
  • the method includes:
  • Step 601 The access network device sends configuration information, and the configuration information carries configuration parameters of the RO.
  • Step 602 the UE receives configuration information, the configuration information carries configuration parameters of the RO.
  • the configuration parameters include: the starting position of the RO used for the four-step random access, and the starting position of the shared RO relative to the four-step random access.
  • the offset value of the starting position of the RO used, and the shared RO is the RO shared by the four-step random access and the two-step random access;
  • the configuration parameters further include at least one of the following parameters:
  • the first number FDM 2-step of the RO of the frequency domain multiplexing FDM at the same time of the two-step random access is one of the following numbers: 1, 2, 4, 8, 16, 32.
  • the second number FDM 4-step of the RO of the frequency domain multiplexing FDM is one of the following numbers: 1, 2, 4, 8, 16, 32.
  • the first quantity is less than or equal to the second quantity.
  • the starting position of the RO used in the four-step random access refers to the starting position of the RO used in the four-step random access in the frequency domain dimension.
  • the configuration information may be Remaining Minimum System Information (RMSI).
  • RMSI Remaining Minimum System Information
  • Step 603 The UE determines the start position of the shared RO according to the start position and offset value of the RO used in the four-step random access.
  • FDM 2-step is the first number of ROs of FDM multiplexed in frequency domain at the same time during two-step random access, and the value range of the first number is (1, 2, 4, 8, 16, 32);
  • FDM 4 -step is the second number of ROs of the frequency domain multiplexing FDM at the same time during the four-step random access.
  • the value range of the second number is (1, 2, 4, 8), and the first number is less than the second number.
  • Step 604 The UE determines the end position of the shared RO according to the start position of the shared RO and the first number FDM 2-step.
  • the starting position of the RO used in the four-step random access is x
  • the offset value is shift
  • the starting position of the shared RO is x+shift.
  • the end position of the shared RO is x+shift+FDM 2-step *W.
  • W is the frequency domain width of a single RO.
  • FMD 4-step 8
  • FMD 2-step 4
  • shift 4
  • the start position of the shared RO is RO4
  • the end position is RO7, as shown in FIG. 8.
  • FMD 4-step 8
  • FMD 2-step 2
  • shift 2
  • the start position of the shared RO is RO2
  • the end position is RO3, as shown in FIG. 10.
  • FMD 4-step 8
  • FMD 2-step 2
  • shift 4
  • the start position of the shared RO is RO4, and the end position is RO5, as shown in FIG. 11.
  • FMD 4-step 8
  • FMD 2-step 2
  • shift 6
  • the start position of the shared RO is RO6, and the end position is RO7, as shown in FIG. 12.
  • FMD 4-step 8
  • FMD 2-step 1
  • shift 0, then the start position and end position of the shared RO are RO0, as shown in FIG. 13.
  • FMD 4-step 8
  • FMD 4-step 8
  • shift 3 or 4 or 5 or 6 or 7, the analogy is in order, and the details are not repeated here.
  • FMD 4-step 8
  • FMD 4-step only 4
  • FMD 2-step 4
  • shift 4
  • the start position of the shared RO is RO4, and the end position is RO7, as shown in Figure 8. Show.
  • the method provided in this embodiment configures RO configuration parameters to the UE through the access network device.
  • the configuration parameters include an offset value for indicating the starting position of the shared RO, and the UE can determine the configuration parameters according to the configuration parameters. Determine the frequency domain position (start position and end position) of the shared RO, so as to realize the flexible configuration of the RO at different frequency domain positions, and improve the flexibility of the configuration mode.
  • the above steps performed by the UE can be implemented as a method for configuring random access timing on the terminal side
  • the above steps performed by the access network device can be implemented as a random access timing on the access network device side. Configuration method.
  • FIG. 16 shows a block diagram of a device for configuring random access timing provided by an exemplary embodiment of the present disclosure, and the device includes:
  • the receiving module 1620 is configured to receive configuration parameters of the RO, the configuration parameters including: the offset value of the starting position of the shared RO relative to the starting position of the RO used for four-step random access, the shared RO being RO shared by the four-step random access and the two-step random access;
  • the determining module 1640 is configured to determine the frequency domain location of the shared RO according to the configuration parameters of the RO.
  • the configuration parameters of the RO further include: the starting position of the RO used for the four-step random access;
  • the determining module 1640 is configured to determine the starting position of the shared RO according to the starting position of the RO used in the four-step random access and the offset value.
  • the RO configuration parameters further include: the first number of ROs FDM 2-step of frequency domain multiplexing FDM at the same time of the two-step random access;
  • the determining module 1640 is configured to determine the end position of the shared RO according to the start position of the shared RO and the first number FDM 2-step.
  • the configuration parameters of the RO further include:
  • the first number is less than or equal to the second number.
  • the configuration parameters of the RO further include:
  • different parameters in the configuration parameters of the RO are carried in the same or different configuration information.
  • Fig. 17 shows a block diagram of an apparatus for configuring a random access opportunity provided by an exemplary embodiment of the present disclosure, and the apparatus includes:
  • the sending module 1720 is configured to send configuration parameters of the RO, the configuration parameters including: the offset value of the starting position of the shared RO relative to the starting position of the RO used for four-step random access, and the shared RO is The four-step random access and the two-step random access share the RO used.
  • the configuration parameters of the RO further include: the starting position of the RO used for the four-step random access.
  • the configuration parameters of the RO further include:
  • the configuration parameters of the RO further include:
  • the first number is less than the second number.
  • the configuration parameters of the RO further include:
  • different parameters in the configuration parameters of the RO are carried in the same or different configuration information.
  • FIG. 18 shows a schematic structural diagram of a communication device (terminal or access network device) provided by an exemplary embodiment of the present disclosure.
  • the terminal includes: a processor 101, a receiver 102, a transmitter 103, a memory 104, and a bus 105.
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 104 is connected to the processor 101 through a bus 105.
  • the memory 104 may be used to store at least one instruction, and the processor 101 is used to execute the at least one instruction to implement each step in the foregoing method embodiment.
  • the memory 104 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, electrically erasable and programmable Read-only memory (EEPROM), erasable programmable read-only memory (EPROM), static anytime access memory (SRAM), read-only memory (ROM), magnetic memory, flash memory, programmable read-only memory (PROM) .
  • a computer-readable storage medium stores at least one instruction, at least one program, code set, or instruction set, and the at least one instruction, the At least one program, the code set, or the instruction set is loaded and executed by the processor to implement the random access timing configuration method performed by the communication device provided by the foregoing method embodiments.
  • a computer program product stores at least one instruction, at least one program, a code set, or an instruction set, the at least one instruction, the at least one program,
  • the code set or instruction set is loaded and executed by the processor to implement the random access timing configuration method performed by the communication device provided in the foregoing method embodiments.
  • the program can be stored in a computer-readable storage medium.
  • the storage medium mentioned can be a read-only memory, a magnetic disk or an optical disk, etc.

Abstract

一种随机接入时机的配置方法、装置、设备及存储介质,应用于通信系统中,该方法包括:接入网设备发送RO的配置参数,配置参数包括:共享RO的起始位置相对于四步随机接入所使用的RO的起始位置的偏移值,所述共享RO是所述四步随机接入和两步随机接入共享使用的RO。终端接收RO的配置参数,根据所述RO的配置参数,确定所述共享RO的频域位置。实现了不同频域位置的共享RO的灵活配置,提高了配置方式的灵活性。

Description

随机接入时机的配置方法、装置和存储介质 技术领域
本公开涉及通信技术领域,特别涉及一种随机接入时机(RACH Occasion,RO)的配置方法、装置和存储介质。
背景技术
第三代合作伙伴项目(Third Generation Partnership Project,3GPP)开展了两步(2-step)随机接入的标准化工作,两步随机接入是相对于四步(4-step)随机接入的简化,即只包含终端向基站发送的消息A(Message A,Msg A)和基站向终端反馈的消息B(Message B,Msg B)。
Msg A包括了物理随机接入信道(Physical Random Access Channel,PRACH)和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。其中,PRACH所使用的RO由系统消息配置得到。
两步随机接入和四步随机接入可以共享全部或部分ROs的配置。但对于共享ROs的配置方式,尚不存在合理的技术方案来进行解决。
发明内容
本公开实施例提供了一种随机接入时机的配置方法、装置和存储介质,可以用于解决当两步随机接入和四步随机接入可以共享全部或部分ROs的配置时,如何对共享ROs进行配置的问题。所述技术方案如下:
根据本公开的一个方面,提供了一种随机接入时机的配置方法,所述方法包括:
接入网设备发送RO的配置参数,所述配置参数包括:共享RO的起始位置相对于四步随机接入所使用的RO的起始位置的偏移值,所述共享RO是所述四步随机接入和两步随机接入共享使用的RO。
根据本公开的另一方面,提供了一种随机接入时机的配置方法,所述方法包括:
终端接收RO的配置参数,所述配置参数包括:共享RO的起始位置相对于四步随机接入所使用的RO的起始位置的偏移值,所述共享RO是所述四步随机接入和两步随机接入共享使用的RO;
终端根据所述RO的配置参数,确定所述共享RO的频域位置。
在一些可能的设计中,所述RO的配置参数,还包括:
所述两步随机接入的同一时刻频域复用FDM的RO的第一数量,所述第一数量为如下数字中的一个:1、2、4、8。
在一些可能的设计中,所述RO的配置参数,还包括:
所述四步随机接入的同一时刻频域复用FDM的RO的第二数量,所述第二数量为如下数字中的一个:1、2、4、8。
在一些可能的设计中,所述第一数量小于或等于所述第二数量。
在一些可能的设计中,所述RO的配置参数,还包括:
所述四步随机接入的同一时刻频域复用FDM的RO的独占数量。
在一些可能的设计中,所述RO的配置参数还包括:所述四步随机接入所使用的RO的起始位置
根据所述RO的配置参数,确定所述共享RO的频域位置,包括:
根据所述四步随机接入所使用的RO的起始位置和所述偏移值,确定所述共享RO的起始位置。
在一些可能的设计中,所述RO的配置参数中的不同参数携带在相同或不同的配置信息中。
根据本公开的一个方面,提供了一种随机接入时机的配置装置,所述装置包括:
接收模块,被配置为接收RO的配置参数,所述配置参数包括:共享RO的起始位置相对于四步随机接入所使用的RO的起始位置的偏移值,所述共享RO是所述四步随机接入和两步随机接入共享使用的RO;
确定模块,被配置为根据所述RO的配置参数,确定所述共享RO的频域位置。
根据本公开的一个方面,提供了一种随机接入时机的配置装置,所述装置包括:
发送模块,被配置为发送RO的配置参数,所述配置参数包括:共享RO的起始位置相对于四步随机接入所使用的RO的起始位置的偏移值,所述共享RO 是所述四步随机接入和两步随机接入共享使用的RO。
根据本公开的一个方面,提供了一种终端,所述终端包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的随机接入时机的配置方法。
根据本公开的一个方面,提供了一种接入网设备,所述接入网设备包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的随机接入时机的配置方法。
根据本公开的一个方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上方面所述的随机接入时机的配置方法。
根据本公开的一个方面,提供了一种计算机程序产品,所述程序产品中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述方面所述的随机接入时机的配置方法。
本公开实施例提供的技术方案至少包括如下有益效果:
通过接入网设备向UE配置RO的配置参数,该配置参数包括用于指示共享RO的起始位置的偏移值,UE能够根据该配置参数来确定共享RO的频域位置,从而实现不同频域位置的RO的灵活配置,提高了配置方式的灵活性。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一个示例性实施例提供的通信系统的框图;
图2是本公开一个示例性实施例提供的四步随机接入的流程图;
图3是本公开一个示例性实施例提供的两步随机接入的流程图;
图4是发明人已知的一种RO的配置方法的流程图;
图5是本公开一个示例性实施例提供的RO的配置方法的流程图;
图6是本公开一个示例性实施例提供的RO的配置方法的流程图;
图7是本公开一个示例性实施例提供的RO的配置方法在实施时的示意图;
图8是本公开一个示例性实施例提供的RO的配置方法在实施时的示意图;
图9是本公开一个示例性实施例提供的RO的配置方法在实施时的示意图;
图10是本公开一个示例性实施例提供的RO的配置方法在实施时的示意图;
图11是本公开一个示例性实施例提供的RO的配置方法在实施时的示意图;
图12是本公开一个示例性实施例提供的RO的配置方法在实施时的示意图;
图13是本公开一个示例性实施例提供的RO的配置方法在实施时的示意图;
图14是本公开一个示例性实施例提供的RO的配置方法在实施时的示意图;
图15是本公开一个示例性实施例提供的RO的配置方法在实施时的示意图;
图16是本公开一个示例性实施例提供的随机接入时机的配置装置的框图;
图17是本公开一个示例性实施例提供的随机接入时机的配置装置的框图;
图18是本公开一个示例性实施例提供的通信设备的框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
以下对本公开实施例涉及的若干个技术术语进行简介:
本公开实施例描述的通信系统以及业务场景是为了更加清楚地说明本公开实施例的技术方案,并不构成对本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
图1示出了本公开一个示意性实施例提供的通信系统的框图,该通信系统可以包括:接入网12和终端13。
接入网12中包括若干个接入网设备120。接入网设备120可以是基站,所述基站是一种部署在接入网中用以为终端提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为eNodeB或者eNB;在5G NR-U系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一描述可能会变化。为方便本公开实施例中,上 述为终端13提供无线通信功能的装置统称为接入网设备。示例性的,接入网设备120中包括:源基站和目标基站。
终端13可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的终端(User Equipment,UE),移动台(Mobile Station,MS),终端(terminal device)等等。为方便描述,上面提到的设备统称为终端。接入网设备120与终端13之间通过某种空口技术互相通信,例如Uu接口。
随机接入过程
随机接入过程是指从用户发送随机接入前导序列开始尝试接入网络到与网络间建立起基本的信令连接之前的过程,随机接入过程是对于任意一个蜂窝通信系统的最基本要求之一,用于使终端与网络侧建立数据通信。
随机接入过程分为:四步(4-step)随机接入和两步(2-step)随机接入。
四步随机接入
图4示出了在基于竞争的随机接入过程中,随机接入过程的4个步骤包括:
(1)终端向接入网设备发送消息1:随机接入前导序列(preamble)。
终端向接入网设备发送随机接入前导序列(preamble),接入网设备据此估计终端的传输时延以实现上行同步。
(2)接入网设备向终端发送消息2:随机接入响应(Random Access Response,RAR)。
接入网设备基于上述第一步骤中估计得到的传输时延,发送时间提前(timing advance)命令,以调整终端的发送时间。消息2由接入网设备的媒体介入控制层(Media Access Control,MAC)组织,并由下行共享信道(Down Link Share Channel,DL_SCH)承载,一条消息2可同时响应多个终端的随机接入请求。
接入网设备采用物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度消息2,并通过C-RNTI或RA-RNTI进行寻址(也称加扰),RA-RNTI由承载消息1的物理随机接入信道(Physical Random Access Channel,PRACH)时频资源位置确定。消息2包含上行传输定时提前量,为消息3分配上行资源和临时C-RNTI。
(3)终端向接入网设备发送消息3:第一次调度传输。
终端在收到消息2后,在分配的上行资源上传输消息3,通过物理上行共享信道(Phyiscal UpLink Share Channel,PUSCH)向接入网设备发送用户设备(User Equipment Identify,UE ID)。
可选地,在消息3中包括公共控制信道(common control channel,CCCH)服务数据单元(Service Data Unit,SDU),用于消息4携带竞争解决ID。
(4)接入网设备向终端发送消息4:竞争解决消息。
接入网设备在物理下行共享信道(Phyiscal DownLink Share Channel,PDSCH)上发送给终端的竞争解决消息。
两步随机接入
在基于竞争的随机接入的过程中,可以将4步的随机接入过程合并成2步的随机接入过程,结合图5,合并后包括消息A和消息B,相关步骤包括:
(1)终端向接入网设备发送消息A。
(2)接入网设备接收到终端发送的消息A后,向终端发送消息B。
可选地,消息A包括消息1和消息3的内容,也即消息A包括:随机接入前导序列和UE ID,UE ID可以是:C-RNTI、临时C-RNTI、RA-RNTI中的一种;
可选地,消息B包括消息2和消息4的内容,也即消息B包括:随机接入响应和竞争解决信息。
图4示出了发明人已知的一种RO的配置方法的示意图。接入网设备向UE发送RO的配置参数,该RO的配置参数包括:
1、FDM for 4-step=4,也即,四步随机接入在同一时刻频分复用的RO数量为4。
2、FDM for 2-step=2,也即,两步随机接入在同一时刻频分复用的RO数量为2。
UE根据该RO的配置参数,可以确认频域上存在4个RO 0~3。其中,RO 0和RO 1是四步随机接入独占使用的两个RO,RO 2和RO 3是四步随机接入和两步随机接入共享使用的两个RO。但是这种配置方式中共享RO的起点位置是默认的,因此配置方式比较简单,不够灵活。
图5示出了本公开一个示例性实施例提供的RO的配置方法的示意图。本实 施例以该方法应用于图1所示的通信系统来举例说明。该方法包括:
步骤501,接入网设备发送RO的配置参数,
步骤502,UE接收RO的配置参数,该配置参数包括:共享RO的起始位置相对于四步随机接入所使用的RO的起始位置的偏移值,共享RO是四步随机接入和两步随机接入共享使用的RO;
示例性的,起始位置是指频域维度的起始位置。
四步随机接入所使用的RO的起始位置,是由四步随机接入所使用的RO的配置参数确定。
共享RO的起始位置,是由四步随机接入和两步随机接入所使用的RO的配置参数确定。可选地,四步随机接入所使用的RO的配置参数和两步随机接入所使用的RO的配置参数是分别配置的。
步骤503,根据RO的配置参数,确定共享RO的频域位置。
综上所述,本实施例提供的方法,通过接入网设备向UE配置RO的配置参数,该配置参数包括用于指示共享RO的起始位置的偏移值,UE能够根据该配置参数来确定共享RO的频域位置(比如根据偏移值确定共享RO的起始位置),从而实现不同频域位置的RO的灵活配置,提高了配置方式的灵活性。
在基于图5的可选实施例中,RO的配置参数包括如下参数:
两步随机接入的同一时刻频域复用FDM的RO的第一数量,所述第一数量为如下数字中的一个:1、2、4、8。在其它实施例中,第一数量还可以是比8更大的数字,比如16、32等,本公开对第一数量的具体取值不加以限定。
四步随机接入的同一时刻频域复用FDM的RO的第二数量,所述第二数量为如下数字中的一个:1、2、4、8。在其它实施例中,第二数量还可以是比8更大的数字,比如16、32等,本公开对第二数量的具体取值不加以限定。
其中,第一数量小于或等于第二数量。
在基于图5的可选实施例中,RO的配置参数还包括如下参数:
四步随机接入的同一时刻频域复用FDM的RO的独占数量。该独占数量=第二数量-第一数量。
在基于图5的可选实施例中,RO的配置参数还包括如下参数:
四步随机接入所使用的RO的起始位置。该起始位置是指四步随机接入所使用的RO在频域维度的起始位置。
也即,接入网设备可以为两步随机接入的RO配置单独的消息1-FDM,以及消息1的频域起始位置。同时,还可以从每个SSB相关联的非基于内容的随机接入(Contention Based Random Access,CBRA)前导码中分配两步随机接入前导码。
图6示出了本公开一个示例性实施例提供的RO的配置方法的示意图。本实施例以该方法应用于图1所示的通信系统来举例说明。该方法包括:
步骤601,接入网设备发送配置信息,配置信息携带有RO的配置参数,
步骤602,UE接收配置信息,配置信息携带有RO的配置参数,该配置参数包括:四步随机接入所使用的RO的起始位置、共享RO的起始位置相对于四步随机接入所使用的RO的起始位置的偏移值,共享RO是四步随机接入和两步随机接入共享使用的RO;
可选地,配置参数还包括如下参数中的至少一项:
1、两步随机接入的同一时刻频域复用FDM的RO的第一数量FDM 2-step,所述第一数量为如下数字中的一个:1、2、4、8、16、32。
2、四步随机接入的同一时刻频域复用FDM的RO的第二数量FDM 4-step,所述第二数量为如下数字中的一个:1、2、4、8、16、32。
其中,第一数量小于或等于第二数量。
3、四步随机接入的同一时刻频域复用FDM的RO的独占数量FDM 4-step  only。该独占数量=第二数量-第一数量。
4、四步随机接入所使用的RO的起始位置。该起始位置是指四步随机接入所使用的RO在频域维度的起始位置。
需要说明的是,RO的配置参数中的不同参数携带在相同或不同的配置信息中。该配置信息可以是剩余最小系统信息(Remaining Minimum System Information,RMSI)。
步骤603,UE根据四步随机接入所使用的RO的起始位置和偏移值,确定共享RO的起始位置。
设FDM 2-step是两步随机接入的同一时刻频域复用FDM的RO的第一数量,第一数量的取值范围为(1、2、4、8、16、32);FDM 4-step是四步随机接入的同一时刻频域复用FDM的RO的第二数量,第二数量的取值范围为(1、2、4、8),第一数量小于第二数量。
设FDM 4-step  only是四步随机接入的同一时刻频域复用FDM的RO的独占数量,独占数量的取值范围为(1、2、4、8、16、32)。当FDM 4-step  only=8时,不存在共享RO。
步骤604,UE根据共享RO的起始位置和第一数量FDM 2-step,确定共享RO的结束位置。
四步随机接入所使用的RO的起始位置为x,偏移值为shift,共享RO的起始位置为x+shift。共享RO的结束位置为x+shift+FDM 2-step*W。W为单个RO的频域宽度。
在一个示例中,FMD 4-step=8,FMD 2-step=4,shift=0,则共享RO的起始位置为RO0,结束位置为RO3,如图7所示。
在一个示例中,FMD 4-step=8,FMD 2-step=4,shift=4,则共享RO的起始位置为RO4,结束位置为RO7,如图8所示。
在一个示例中,FMD 4-step=8,FMD 2-step=2,shift=0,则共享RO的起始位置为RO0,结束位置为RO1,如图9所示。
在一个示例中,FMD 4-step=8,FMD 2-step=2,shift=2,则共享RO的起始位置为RO2,结束位置为RO3,如图10所示。
在一个示例中,FMD 4-step=8,FMD 2-step=2,shift=4,则共享RO的起始位置为RO4,结束位置为RO5,如图11所示。
在一个示例中,FMD 4-step=8,FMD 2-step=2,shift=6,则共享RO的起始位置为RO6,结束位置为RO7,如图12所示。
在一个示例中,FMD 4-step=8,FMD 2-step=1,shift=0,则共享RO的起始位置和结束位置为RO0,如图13所示。
在一个示例中,FMD 4-step=8,FMD 2-step=1,shift=1,则共享RO的起始位置和结束位置为RO1,如图14所示。
在一个示例中,FMD 4-step=8,FMD 2-step=1,shift=2,则共享RO的起始位置和结束位置为RO2,如图15所示。对于shift=3或4或5或6或7的情况,依次类推,不再赘述。
在一个示例中,FMD 4-step=8,FMD 4-step  only=4,FMD 2-step=4,shift=4,则共享RO的起始位置为RO4,结束位置为RO7,如图8所示。
综上所述,本实施例提供的方法,通过接入网设备向UE配置RO的配置参数,该配置参数包括用于指示共享RO的起始位置的偏移值,UE能够根据该配 置参数来确定共享RO的频域位置(起始位置和结束位置),从而实现不同频域位置的RO的灵活配置,提高了配置方式的灵活性。
需要说明的是,上述由UE执行的步骤可以实现成为终端一侧的随机接入时机的配置方法,上述由接入网设备执行的步骤可以实现成为接入网设备一侧的随机接入时机的配置方法。
图16示出了本公开一个示例性实施例提供的随机接入时机的配置装置的框图,该装置包括:
接收模块1620,被配置为接收RO的配置参数,所述配置参数包括:共享RO的起始位置相对于四步随机接入所使用的RO的起始位置的偏移值,所述共享RO是所述四步随机接入和两步随机接入共享使用的RO;
确定模块1640,被配置为根据所述RO的配置参数,确定所述共享RO的频域位置。
在一个可选的实现方式中,所述RO的配置参数还包括:所述四步随机接入所使用的RO的起始位置;
所述确定模块1640,被配置为根据所述四步随机接入所使用的RO的起始位置和所述偏移值,确定所述共享RO的起始位置。
在一个可选的实现方式中,所述RO的配置参数,还包括:所述两步随机接入的同一时刻频域复用FDM的RO的第一数量FDM 2-step
所述确定模块1640,被配置为根据所述共享RO的起始位置和所述第一数量FDM 2-step,确定所述共享RO的结束位置。
在一个可选的实现方式中,所述RO的配置参数,还包括:
所述四步随机接入的同一时刻频域复用FDM的RO的第二数量FDM 4-step
在一个可选的实现方式中,所述第一数量小于或等于所述第二数量。
在一个可选的实现方式中,所述RO的配置参数,还包括:
所述四步随机接入的同一时刻频域复用FDM的RO的独占数量FDM 4-step  only
在一个可选的实现方式中,所述RO的配置参数中的不同参数携带在相同或不同的配置信息中。
图17示出了本公开一个示例性实施例提供的随机接入时机的配置装置的框 图,该装置包括:
发送模块1720,被配置为发送RO的配置参数,所述配置参数包括:共享RO的起始位置相对于四步随机接入所使用的RO的起始位置的偏移值,所述共享RO是所述四步随机接入和两步随机接入共享使用的RO。
在一个可选的实现方式中,所述RO的配置参数还包括:所述四步随机接入所使用的RO的起始位置。
在一个可选的实现方式中,所述RO的配置参数,还包括:
所述两步随机接入的同一时刻频域复用FDM的RO的第一数量FDM 2-step
在一个可选的实现方式中,所述RO的配置参数,还包括:
所述四步随机接入的同一时刻频域复用FDM的RO的第二数量FDM 4-step
在一个可选的实现方式中,所述第一数量小于所述第二数量。
在一个可选的实现方式中,所述RO的配置参数,还包括:
所述四步随机接入的同一时刻频域复用FDM的RO的独占数量FDM 2-step  only
在一个可选的实现方式中,所述RO的配置参数中的不同参数携带在相同或不同的配置信息中。
图18示出了本公开一个示例性实施例提供的通信设备(终端或接入网设备)的结构示意图,该终端包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可 编程只读存储器(PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的由通信设备执行的随机接入时机的配置方法。
在示例性实施例中,还提供了一种计算机程序产品,所述计算机程序产品中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的由通信设备执行的随机接入时机的配置方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (23)

  1. 一种随机接入时机RO的配置方法,其特征在于,所述方法包括:
    接收RO的配置参数,所述配置参数包括:共享RO的起始位置相对于四步随机接入所使用的RO的起始位置的偏移值,所述共享RO是所述四步随机接入和两步随机接入共享使用的RO;
    根据所述RO的配置参数,确定所述共享RO的频域位置。
  2. 根据权利要求1所述的方法,其特征在于,所述RO的配置参数还包括:所述四步随机接入所使用的RO的起始位置;
    所述根据所述RO的配置参数,确定所述共享RO的频域位置,包括:
    根据所述四步随机接入所使用的RO的起始位置和所述偏移值,确定所述共享RO的起始位置。
  3. 根据权利要求2所述的方法,其特征在于,所述RO的配置参数,还包括:所述两步随机接入的同一时刻频域复用FDM的RO的第一数量FDM 2-step
    所述根据所述RO的配置参数,确定所述共享RO的频域位置,包括:
    根据所述共享RO的起始位置和所述第一数量FDM 2-step,确定所述共享RO的结束位置。
  4. 根据权利要求3所述的方法,其特征在于,所述RO的配置参数,还包括:
    所述四步随机接入的同一时刻频域复用FDM的RO的第二数量FDM 4-step,所述第一数量小于或等于所述第二数量。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述RO的配置参数,还包括:
    所述四步随机接入的同一时刻频域复用FDM的RO的独占数量FDM 4-step  only
  6. 一种随机接入时机RO的配置方法,其特征在于,所述方法包括:
    发送RO的配置参数,所述配置参数包括:共享RO的起始位置相对于四步随机接入所使用的RO的起始位置的偏移值,所述共享RO是所述四步随机接入和两步随机接入共享使用的RO。
  7. 根据权利要求6所述的方法,其特征在于,所述RO的配置参数还包括:所述四步随机接入所使用的RO的起始位置。
  8. 根据权利要求6所述的方法,其特征在于,所述RO的配置参数,还包括:
    所述两步随机接入的同一时刻频域复用FDM的RO的第一数量FDM 2-step
  9. 根据权利要求8所述的方法,其特征在于,所述RO的配置参数,还包括:
    所述四步随机接入的同一时刻频域复用FDM的RO的第二数量FDM 4-step,所述第一数量小于或等于所述第二数量。
  10. 根据权利要求6至9任一所述的方法,其特征在于,所述RO的配置参数,还包括:
    所述四步随机接入的同一时刻频域复用FDM的RO的独占数量FDM 2-step  only
  11. 一种随机接入时机RO的配置装置,其特征在于,所述装置包括:
    接收模块,被配置为接收RO的配置参数,所述配置参数包括:共享RO的起始位置相对于四步随机接入所使用的RO的起始位置的偏移值,所述共享RO是所述四步随机接入和两步随机接入共享使用的RO;
    确定模块,被配置为根据所述RO的配置参数,确定所述共享RO的频域位置。
  12. 根据权利要求11所述的装置,其特征在于,所述RO的配置参数还包括:所述四步随机接入所使用的RO的起始位置;
    所述确定模块,被配置为根据所述四步随机接入所使用的RO的起始位置和所述偏移值,确定所述共享RO的起始位置。
  13. 根据权利要求12所述的装置,其特征在于,所述RO的配置参数,还包括:所述两步随机接入的同一时刻频域复用FDM的RO的第一数量FDM 2-step
    所述确定模块,被配置为根据所述共享RO的起始位置和所述第一数量FDM 2-step,确定所述共享RO的结束位置。
  14. 根据权利要求13所述的装置,其特征在于,所述RO的配置参数,还包括:
    所述四步随机接入的同一时刻频域复用FDM的RO的第二数量FDM 4-step,所述第一数量小于或等于所述第二数量。
  15. 根据权利要求11至14任一所述的装置,其特征在于,所述RO的配置参数,还包括:
    所述四步随机接入的同一时刻频域复用FDM的RO的独占数量FDM 4-step  only
  16. 一种随机接入时机RO的配置装置,其特征在于,所述装置包括:
    发送模块,被配置为发送RO的配置参数,所述配置参数包括:共享RO的起始位置相对于四步随机接入所使用的RO的起始位置的偏移值,所述共享RO是所述四步随机接入和两步随机接入共享使用的RO。
  17. 根据权利要求16所述的装置,其特征在于,所述RO的配置参数还包括:所述四步随机接入所使用的RO的起始位置。
  18. 根据权利要求16所述的装置,其特征在于,所述RO的配置参数,还包括:
    所述两步随机接入的同一时刻频域复用FDM的RO的第一数量FDM 2-step
  19. 根据权利要求18所述的装置,其特征在于,所述RO的配置参数,还包括:
    所述四步随机接入的同一时刻频域复用FDM的RO的第二数量FDM 4-step,所述第一数量小于或等于所述第二数量。
  20. 根据权利要求16至19任一所述的装置,其特征在于,所述RO的配置参数,还包括:
    所述四步随机接入的同一时刻频域复用FDM的RO的独占数量FDM 2-step  only
  21. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至5任一所述的随机接入时机的配置方法。
  22. 一种接入网设备,其特征在于,所述接入网设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求6至10任一所述的随机接入时机的配置方法。
  23. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如权利要求1至10所述的随机接入时机的配置方法。
PCT/CN2019/108055 2019-09-26 2019-09-26 随机接入时机的配置方法、装置和存储介质 WO2021056311A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/764,533 US20220353919A1 (en) 2019-09-26 2019-09-26 Method and apparatus for configuring random access occasion, and storage medium
PCT/CN2019/108055 WO2021056311A1 (zh) 2019-09-26 2019-09-26 随机接入时机的配置方法、装置和存储介质
CN201980002167.2A CN110800361B (zh) 2019-09-26 2019-09-26 随机接入时机的配置方法、装置和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/108055 WO2021056311A1 (zh) 2019-09-26 2019-09-26 随机接入时机的配置方法、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2021056311A1 true WO2021056311A1 (zh) 2021-04-01

Family

ID=69448551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108055 WO2021056311A1 (zh) 2019-09-26 2019-09-26 随机接入时机的配置方法、装置和存储介质

Country Status (3)

Country Link
US (1) US20220353919A1 (zh)
CN (1) CN110800361B (zh)
WO (1) WO2021056311A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116584146A (zh) * 2021-12-10 2023-08-11 北京小米移动软件有限公司 随机接入时机资源信息的确定、指示方法和装置
CN117099466A (zh) * 2023-04-14 2023-11-21 上海移远通信技术股份有限公司 被用于无线通信的节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130182626A1 (en) * 2012-01-13 2013-07-18 Innovative Sonic Corporation Method and apparatus for reducing user equipment (ue) power consumption in the rrc (radio resource control) connected mode
US9629136B1 (en) * 2015-05-22 2017-04-18 Sprint Spectrum L.P. Method and system for reducing PRACH interference
CN106899964A (zh) * 2017-02-09 2017-06-27 北京小米移动软件有限公司 终端能力信息传递方法及装置
CN109863814A (zh) * 2016-10-19 2019-06-07 高通股份有限公司 增强型随机接入信道(rach)规程

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291845B (zh) * 2010-06-21 2016-03-30 中兴通讯股份有限公司 随机接入方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130182626A1 (en) * 2012-01-13 2013-07-18 Innovative Sonic Corporation Method and apparatus for reducing user equipment (ue) power consumption in the rrc (radio resource control) connected mode
US9629136B1 (en) * 2015-05-22 2017-04-18 Sprint Spectrum L.P. Method and system for reducing PRACH interference
CN109863814A (zh) * 2016-10-19 2019-06-07 高通股份有限公司 增强型随机接入信道(rach)规程
CN106899964A (zh) * 2017-02-09 2017-06-27 北京小米移动软件有限公司 终端能力信息传递方法及装置

Also Published As

Publication number Publication date
CN110800361A (zh) 2020-02-14
CN110800361B (zh) 2023-07-11
US20220353919A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
US11711846B2 (en) Multiple starting and ending positions for scheduled downlink transmission on unlicensed spectrum
JP6732102B2 (ja) ランダムアクセスのための方法及び装置
US20220061103A1 (en) Method and device for random access
US11363645B2 (en) Method and device for random access and instruction after random access rollback
RU2736415C1 (ru) Способ для произвольного доступа и терминальное устройство
CN108702779A (zh) 确定用于上行链路控制信道上的发送的参数的方法
JP6938777B2 (ja) Rrc接続モードでのランダムアクセスのための帯域幅部分操作
WO2020168566A1 (zh) 随机接入过程的消息发送方法、装置、设备及系统
JP7174859B2 (ja) ランダムアクセス方法、装置、及びシステム
WO2021056311A1 (zh) 随机接入时机的配置方法、装置和存储介质
TW201906476A (zh) 處理排程請求的裝置及方法
JP7297866B2 (ja) ランダムアクセス方法及び関連機器
BR112021016692A2 (pt) Listen-before-talk aprimorado
WO2021138850A1 (en) Method and apparatus for timely scheduling
CN109788580B (zh) Rrc连接重建方法及装置、存储介质、用户设备、网络设备
CN110830181B (zh) 数据处理方法和终端设备
WO2020220320A1 (zh) 随机接入类型的选择方法、装置、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946619

Country of ref document: EP

Kind code of ref document: A1