WO2021056268A1 - 一种线序检测方法和检测系统 - Google Patents

一种线序检测方法和检测系统 Download PDF

Info

Publication number
WO2021056268A1
WO2021056268A1 PCT/CN2019/107864 CN2019107864W WO2021056268A1 WO 2021056268 A1 WO2021056268 A1 WO 2021056268A1 CN 2019107864 W CN2019107864 W CN 2019107864W WO 2021056268 A1 WO2021056268 A1 WO 2021056268A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
rru
antenna
port
station antenna
Prior art date
Application number
PCT/CN2019/107864
Other languages
English (en)
French (fr)
Inventor
胡健
余进军
赵虎
张永定
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980100539.5A priority Critical patent/CN114424505B/zh
Priority to EP19947075.8A priority patent/EP4027542A4/en
Priority to PCT/CN2019/107864 priority patent/WO2021056268A1/zh
Publication of WO2021056268A1 publication Critical patent/WO2021056268A1/zh
Priority to US17/702,949 priority patent/US11946981B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/14Monitoring; Testing of transmitters for calibration of the whole transmission and reception path, e.g. self-test loop-back
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase

Definitions

  • This application relates to the field of communication technology, and in particular to a line sequence detection method and a detection system for detecting the connection relationship when each port between a remote radio unit (RRU) and a base station antenna is connected through a radio frequency line.
  • RRU remote radio unit
  • a base station architecture including a baseband unit (BBU), RRU, and base station antenna
  • BBU baseband unit
  • RRU Radio frequency jumper
  • the RRU port corresponds to the base station antenna port one-to-one.
  • the RRU receives the signal from the base station antenna and sends it to the BBU.
  • the RRU receives the signal from the BBU, processes it and sends it out through the base station antenna.
  • the 8T8R RRU includes 8 antenna ports (ANT0 to ANT7) and one antenna calibration port (CAL).
  • the 8T8R RRU is connected to the base station antenna through 9 radio frequency jumpers.
  • the 9 radio frequency jumpers include 8 service jumpers and 1 calibration jumper. Due to the large number of RF jumpers, misoperations may occur during the engineering installation process, resulting in errors in the connection of the RF jumpers. Refer to Figure 1A. Under normal circumstances, the 8 antenna ports of the 8T8R RRU are connected to the 8 ports of the base station antenna in turn. At the same time, the calibration port CAL of the RRU is connected to the calibration port of the base station antenna.
  • the RRU The calibration port is connected to the base station antenna through a directional coupler and a power splitter. Please refer to Figure 1B. Due to misoperation, the 4th antenna port of the 8T8R RRU is connected to the base station antenna 8 port, and the 8T8R RRU is connected to the base station antenna 4 port. There is a certain gap between the base station antenna and the RRU. The installation distance (usually 2.5 meters to 10 meters), so it is not easy to be found when the wire sequence connection of the RF jumper is wrong.
  • the coverage adopts a beam scanning scheme. Only when the RRU ports and the corresponding base station antenna ports are connected in a one-to-one correspondence can accurate coverage and beamforming effects be achieved. Therefore, the connection sequence of the radio frequency jumper between the base station antenna and the RRU is critical to the operation and performance of the fifth-generation mobile communication.
  • the embodiments of the present application provide a line sequence detection method and detection system, which can accurately detect the line sequence of the port between the RRU and the base station antenna.
  • an embodiment of the present application provides a line sequence detection method.
  • a base station antenna includes N ports, a remote radio unit RRU includes M antenna ports and a calibration port CAL, and any port i of the base station antenna corresponds to A directional coupling branch Ti, on which a switch circuit Ki is arranged, the on and off of the switch circuit Ki is controlled by the remote control unit RCU;
  • the M, N and i are integers, 1 ⁇ i ⁇ N, the M antenna ports of the RRU and the N ports of the base station antenna have completed connection operations
  • the line sequence detection method includes the following steps:
  • the RRU sends a detection signal to the base station antenna through any antenna port j;
  • the RCU controls the switch circuit Ki to turn off, and controls other switch branches to turn on;
  • the RRU detects whether the energy Qi coupled by the directional coupling branch Ti is greater than a threshold
  • the Qi is greater than the threshold, it is determined that the antenna port j of the RRU is connected to the port i of the base station antenna; if the Qi is not greater than the threshold, it is determined that the antenna port j of the RRU is connected to The port i of the base station antenna is not connected.
  • the RRU after the port between the RRU and the base station antenna is connected, it is determined whether any antenna port of the RRU is connected to any port of the base station antenna. Specifically, the RRU sends the antenna to the base station through any antenna port. Send the detection signal; the RCU controls the switch circuit to turn off the switch branch corresponding to the channel to be detected, and at the same time controls other switch branches to turn on; then determine the corresponding channel to be detected according to the energy of the directional coupling branch corresponding to the channel to be detected Whether the antenna port of the RRU and the port of the base station antenna are connected, this method can accurately detect the line sequence of each port between the RRU and the base station antenna.
  • the method further includes: detecting that other (N-1) ports of the base station antenna except for the port i are respectively connected to the antenna of the RRU Connection relationship of port j.
  • connection relationship between the antenna port j of the RRU and the N ports of the base station antenna can be obtained.
  • the method further includes: detecting that the (M-1) antenna ports of the RRU other than the antenna port j of the RRU are connected to the N of the base station antenna. The connection relationship of the ports.
  • connection relationship between the M ports of the RRU and the N ports of the base station antenna can be obtained.
  • the method further includes: generating a line sequence according to the connection relationship between the M antenna ports of the RRU and the N ports of the base station antenna. Connection Diagram.
  • the line sequence connection diagram can be displayed on a maintenance terminal with a display interface.
  • the user can intuitively see the connection relationship between the antenna port of the RRU and the port of the base station antenna.
  • the RCU controls the switch circuit Ki to turn off and controls other switch branches to turn on; including: each switch of the RCU to the base station antenna
  • the circuit sends a control signal, and uses the control signal to control the switching branch Ki to be turned off, and to control other switching circuits to be turned on.
  • control signal may be a digital sequence used to indicate high and low levels.
  • the on and off of the switch branch is controlled by a digital sequence representing high and low levels.
  • a digital sequence composed of 0 and 1 can be used as a control signal, and 0 can be used to represent low level and 1 to represent high.
  • Level can also use 1 to represent low level and 0 to represent high level, as long as the switching branch Ki is turned off after the control signal is controlled, and the other switching branches are turned on.
  • the switch circuit Ki includes a PIN diode.
  • the control signal controls the PIN diode to be turned on or off.
  • an embodiment of the present application provides a detection system, including: a base station antenna, a remote radio unit RRU, and a remote control unit RCU; wherein,
  • the RRU includes M antenna ports and one calibration port CAL;
  • the base station antenna includes N ports; any port i of the base station antenna corresponds to a directional coupling branch Ti, and a switch circuit Ki is provided on the Ti.
  • the switch circuit Ki is turned on and off by a remote
  • the control unit RCU controls; the M, N and i are integers, 1 ⁇ i ⁇ N;
  • the RCU is used to control the switching circuit Ki to turn off, and to control other switching branches to turn on;
  • the RRU is configured to send a detection signal to the base station antenna through any antenna port j after the M antenna ports of the RRU and the N ports of the base station antenna have completed connection operations; and After the RCU controls the switching circuit Ki to turn off and controls other switching branches to turn on, it is detected whether the energy Qi coupled by the directional coupling branch Ti is greater than a threshold; if the Qi is greater than the threshold, the RRU is determined The antenna port j of the RRU is connected with the port i of the base station antenna; if the Qi is not greater than a threshold, it is determined that the antenna port j of the RRU is not connected with the port i of the base station antenna.
  • the RRU after the port between the RRU and the base station antenna is connected, it is determined whether any antenna port of the RRU is connected to any port of the base station antenna. Specifically, the RRU sends the antenna to the base station through any antenna port. Send the detection signal; the RCU controls the switch circuit to turn off the switch branch corresponding to the channel to be detected, and at the same time controls other switch branches to turn on; then determine the corresponding channel to be detected according to the energy of the directional coupling branch corresponding to the channel to be detected Whether the antenna port of the RRU and the port of the base station antenna are connected, this method can accurately detect the line sequence of each port between the RRU and the base station antenna.
  • the detection system is further configured to detect that the other (N-1) ports of the base station antenna except for the port i are connected to all the ports of the RRU. Describe the connection relationship of the antenna port j.
  • connection relationship between the antenna port j of the RRU and the N ports of the base station antenna can be obtained.
  • the detection system is further configured to detect that (M-1) antenna ports other than the antenna port j of the RRU are connected to the base station antenna.
  • the connection relationship of the N ports is further configured to detect that (M-1) antenna ports other than the antenna port j of the RRU are connected to the base station antenna.
  • connection relationship between the M ports of the RRU and the N ports of the base station antenna can be obtained.
  • the detection system further includes a maintenance terminal, and the maintenance terminal is configured to correspond to all the M antenna ports of the RRU and the base station antenna.
  • the connection relationship of the N ports generates a line sequence connection diagram.
  • the line sequence connection diagram can be displayed on a maintenance terminal with a display interface.
  • the user can intuitively see the connection relationship between the antenna port of the RRU and the port of the base station antenna.
  • the RCU is specifically used to control each switch of the base station antenna in terms of controlling the switching circuit Ki to be turned off and controlling the conduction of other switch branches.
  • the circuit sends a control signal, and uses the control signal to control the switching branch Ki to be turned off, and to control other switching circuits to be turned on.
  • control signal includes: a digital sequence used to indicate high and low levels.
  • the on and off of the switch branch is controlled by a digital sequence representing high and low levels.
  • a digital sequence composed of 0 and 1 can be used as a control signal, and 0 can be used to represent low level and 1 to represent high.
  • Level can also use 1 to represent low level and 0 to represent high level, as long as the switching branch Ki is turned off after the control signal is controlled, and the other switching branches are turned on.
  • the switch circuit Ki includes a PIN diode.
  • the control signal controls the PIN diode to be turned on or off.
  • Fig. 1A is a schematic diagram of the correct connection of ports between the 8T8R RRU and the base station antenna in the prior art.
  • Fig. 1B is a schematic diagram of a connection error in each port between the 8T8R RRU and the base station antenna in the prior art.
  • Figure 2A is a schematic diagram of the connection between the RRU and the base station in an embodiment of the present application.
  • FIG. 2B is a schematic diagram of the connection structure between the RCU and the switch circuit in an embodiment of the present application.
  • FIG. 2C is a schematic flowchart of a line sequence detection method in an embodiment of the present application.
  • Fig. 3A is a schematic structural diagram of a line sequence detection system in an embodiment of the present application.
  • FIG. 3B is a schematic diagram of the interaction flow of a line sequence detection method in the embodiment shown in FIG. 3A.
  • FIG. 3C is a schematic diagram of a line sequence connection generated in the maintenance terminal according to an embodiment of the present application.
  • FIG. 3D is a schematic diagram of a line sequence connection generated in the maintenance terminal according to an embodiment of the present application.
  • Fig. 3E is a schematic diagram of a line sequence connection generated in a maintenance terminal according to an embodiment of the present application.
  • the embodiment of the application provides a line sequence detection method, which can be applied to the device shown in FIG. 2A.
  • the base station antenna includes 8 ports, and the RRU includes 8 antenna ports and one CAL.
  • the connection relationship between the RCU and each switch branch is not shown in Figure 2A.
  • the RCU and each switch branch please refer to Figure 2B.
  • Any port i210 of the base station antenna corresponds to a directional coupling branch.
  • Ti 211, a switch circuit Ki 2111 is provided on Ti.
  • the switch circuit is a PIN diode. The on and off of the switch circuit Ki is controlled by the RCU 213, and the RCU 213 is directed to each base station antenna.
  • a switch circuit sends a control signal, controls the switch branch Ki to be turned off, and controls other switch circuits to be turned on.
  • the control signal can be a digital sequence used to indicate high and low levels.
  • the RRU sends a detection signal to the base station antenna through any antenna port j.
  • the RCU controls the switch circuit Ki to turn off, and controls other switch branches to turn on.
  • the RRU detects whether the energy Qi coupled by the directional coupling branch Ti is greater than a threshold; if the Qi is greater than the threshold, it is determined that the antenna port j of the RRU is connected to the port i of the base station antenna; if If the Qi is not greater than the threshold, it is determined that the antenna port j of the RRU and the port i of the base station antenna are not connected.
  • the RRU after the port between the RRU and the base station antenna is connected, it is determined whether any antenna port of the RRU is connected to any port of the base station antenna. Specifically, the RRU sends the antenna to the base station through any antenna port. Send the detection signal; the RCU controls the switch circuit to turn off the switch branch corresponding to the channel to be detected, and at the same time controls other switch branches to turn on; then determine the corresponding channel to be detected according to the energy of the directional coupling branch corresponding to the channel to be detected Whether the antenna port of the RRU and the port of the base station antenna are connected, this method can accurately detect the line sequence of each port between the RRU and the base station antenna.
  • the embodiment of the present application also provides a detection system, including: a base station antenna, a remote radio unit RRU, and a remote control unit RCU; wherein the RRU includes M antenna ports and a calibration port CAL; the base station antenna includes N ports; Any port i of the base station antenna corresponds to a directional coupling branch Ti, and a switch circuit Ki is provided on the Ti, and the on and off of the switch circuit Ki is controlled by the remote control unit RCU; the M, N and i are integers, 1 ⁇ i ⁇ N; RCU is used to control the switch circuit Ki to turn off and other switch branches to turn on; RRU is used to connect the M antenna ports of the RRU After the N ports of the base station antenna have completed the connection operation, send a detection signal to the base station antenna through any antenna port j; and control the switch circuit Ki to turn off and control other switch branches in the RCU After being turned on, detect whether the energy Qi coupled by the directional coupling branch Ti is greater than a threshold; if the Qi is greater than the
  • the detection system is further configured to detect the connection relationship between the other (N-1) ports of the base station antenna except the port i and the antenna port j of the RRU.
  • the detection system is further configured to detect that the (M-1) antenna ports other than the antenna port j of the RRU are connected to the antenna ports of the base station antenna. Connection relationship of N ports.
  • the detection system is further used, and the detection system further includes a maintenance terminal.
  • the maintenance terminal is configured to generate a line sequence connection diagram according to the connection relationship between the M antenna ports of the RRU and the N ports of the base station antenna.
  • the RCU is specifically used to send a control signal to each switch circuit of the base station antenna, and use the The control signal controls the switching branch Ki to be turned off, and controls other switching circuits to be turned on.
  • the detection system is further used for that the control signal includes: a digital sequence used to indicate high and low levels.
  • the detection system is also used for the switching circuit Ki including a PIN diode.
  • the RRU when performing line sequence detection, the RRU is not limited to only one, and there can be multiple RRUs. As shown in Figure 3A, this embodiment includes three RRUs, RRU1, RRU2, and RRU3. The antenna in the RRU The ports correspond to the ports of the base station antenna one-to-one. Figure 3A corresponds to the correct connection line sequence. After the RRU is connected to the base station antenna port, the connection line sequence can be detected, as shown in Figure 3B and Figure 3B.
  • the interactive flow chart of line sequence detection, the hardware involved includes maintenance terminal, BBU, RRU and RCU, etc.
  • the method for detecting the line sequence includes the following steps:
  • the user sends a detection instruction to the BBU through the maintenance terminal.
  • the maintenance terminal may be a device such as a display with a real interface, and a button for triggering a detection instruction can be set on the display interface.
  • the user can trigger the generation of a detection instruction by clicking the button of the detection instruction, and the detection instruction is sent to the BBU.
  • the BBU controls the port n of the m-th RRU to send a test signal.
  • n can be any number from 1 to 8.
  • a traversal test can be performed on the 8 antenna ports of RRU1, and then the 8 antenna ports of RRU2 Carry out traversal test, and finally carry out traversal test on the 8 antenna ports of RRU3. It is understandable that the RRU test sequence may not be limited to the previous sequence, and other possible sequences are also feasible, which are not limited here.
  • the RRU sends a test signal to the RCU.
  • the RCU controls the switch circuit Ki corresponding to the channel to be tested to turn off, and controls other switch branches to turn on.
  • the RRU obtains the received power of the correction loop.
  • the RRU feeds back the detection result.
  • the result of the RRU feedback may be the connection information between the antenna port of the RRU and the antenna port of the base station, or the obtained power information. If the Qi is greater than the threshold, it is determined that the antenna port j of the RRU is connected to the antenna port j of the RRU. The port i of the base station antenna is connected; if the Qi is not greater than a threshold, it is determined that the antenna port j of the RRU and the port i of the base station antenna are not connected.
  • the BBU feeds back the detection result to the maintenance terminal.
  • FIG. 3C, FIG. 3D, and FIG. 3E respectively correspond to the line sequence connection diagrams generated according to the detection results in some embodiments.
  • connection relationship between the antenna port of the RRU and the antenna port of the base station in the corresponding embodiment can be known.
  • the line sequence connection diagram can be displayed on a maintenance terminal with a display interface.
  • the user can intuitively see the connection relationship between the antenna port of the RRU and the port of the base station antenna.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

一种线序检测方法和检测系统,基站天线包括N个端口,RRU包括M个天线端口和一个校正端口,基站天线的任一端口i(210)对应一个定向耦合支路Ti(211),在Ti(211)上设置导通和关断由RCU(213)控制的开关电路Ki(2111)。线序检测方法包括:RRU通过任一天线端口j向基站天线发送检测信号(221);RCU控制开关电路Ki(2111)关断以及控制其他开关电路导通(222);RRU检测Ti(211)耦合的能量Qi是否大于阈值;若Qi大于阈值,则确定RRU的天线端口j与基站天线的端口i(210)连通;若Qi不大于阈值,则确定RRU的天线端口j与基站天线的端口i(210)未连通(223)。线序检测方法能够对RRU与基站天线之间各端口的线序进行准确的检测。

Description

一种线序检测方法和检测系统 技术领域
本申请涉及通信技术领域,尤其涉及远端射频模块(remote radio unit,RRU)与基站天线之间各端口通过射频线相连时,对连接关系进行检测的线序检测方法和检测系统。
背景技术
在包括基带单元(baseband unit,BBU)、RRU和基站天线的基站架构中,RRU与基站天线通过射频跳线进行连接,在建立基站时,RRU端口与基站天线端口一一对应。在接收方向上,RRU接收来自基站天线的信号,发送到BBU。在发送方向上,RRU接收来自BBU的信号,处理后通过基站天线发送出去。
以8发8收(8transmit 8receive,8T8R))RRU为例,8T8R RRU包括8个天线端口(ANT0~ANT7)和一个天线校正端口(calibration,CAL)。8T8R RRU与基站天线通过9根射频跳线相连,9根射频跳线包括:8根业务跳线和1根校正跳线。由于射频跳线数量较多,在工程安装过程中,可能出现误操作,导致射频跳线的线序连接出现错误。请参见图1A,正常情况下,8T8R RRU的8个天线端口依次与基站天线的8个端口相连,同时,RRU的校正端口CAL与基站天线的校正端口相连,在一些可能的实施方式中,RRU的校正端口与基站天线通过定向耦合器和功分器相连。请参见图1B,由于误操作,8T8R RRU的第4个天线端口与基站天线8端口相连了,8T8R RRU的第8个天线端口与基站天线4端口相连了,由于基站天线和RRU之间存在一定的安装距离(通常为2.5米至10米),因此在射频跳线的线序连接出错时不容易被发现。
在通讯时,尤其在第五代移动通信制式下,其覆盖采用波束扫描方案,RRU的端口和对应的基站天线端口一一对应连接时才能实现精准覆盖和波束赋形效果。因此,基站天线与RRU之间射频跳线的连接线序对第五代移动通信的运行和性能至关重要。
发明内容
本申请实施例提供了一种线序检测方法和检测系统,能够对RRU与基站天线之间的端口的线序进行准确的检测。
第一方面,本申请实施例提供了一种线序检测方法,基站天线包括N个端口,射频拉远单元RRU包括M个天线端口和一个校正端口CAL,所述基站天线的任一端口i对应一个定向耦合支路Ti,在所述Ti上设置有开关电路Ki,所述开关电路Ki的导通和关断由远程控制单元RCU控制;所述M、N和i为整数,1≤i≤N,所述RRU的所述M个天线端口与所述基站天线的所述N个端口已完成连接操作,所述线序检测方法包括如下步骤:
所述RRU通过任一天线端口j向所述基站天线发送检测信号;
所述RCU控制所述开关电路Ki关断,以及控制其他开关支路导通;
所述RRU检测所述定向耦合支路Ti耦合的能量Qi是否大于阈值;
若所述Qi大于阈值,则确定所述RRU的所述天线端口j与所述基站天线的所述端口i连通;若所述Qi不大于阈值,则确定所述RRU的所述天线端口j与所述基站天线的所述 端口i未连通。
本申请实施例在RRU与基站天线之间的端口完成连接操作后,确定RRU的任一个天线端口与基站天线的任一个端口是否连通,具体地,由RRU通过所述任一天线端口向基站天线发送检测信号;RCU控制开关电路使待检测通道对应的开关支路关断,同时控制其他开关支路导通;然后根据待检测通道对应的定向耦合支路耦合的能量确定待检测的通道对应的RRU的天线端口和基站天线的端口是否连通,该方法能够对RRU与基站天线之间各端口的线序进行准确的检测。
基于第一方面,在本申请一些可能的实施方式中,所述方法还包括:检测所述基站天线的除所述端口i以外其他(N-1)个端口分别与所述RRU的所述天线端口j的连接关系。
采用该实施例能够得到RRU的天线端口j与基站天线的N个端口的连接关系。
基于第一方面,在本申请一些可能的实施方式中,所述方法还包括:检测所述RRU的所述天线端口j以外的其他(M-1)个天线端口分别与所述基站天线的N个端口的连接关系。
采用该实施例能够得到RRU的M个端口与基站天线的N个端口的连接关系。
基于第一方面,在本申请一些可能的实施方式中,所述方法还包括:根据所述RRU的所述M个天线端口分别与所述基站天线的所述N个端口的连接关系生成线序连接图。
采用该实施例时,线序连接图可以在带有显示界面的维护终端进行显示,通过观察线序连接图,用户可以直观地看到RRU的天线端口与基站天线的端口之间的连接关系。
基于第一方面,在本申请一些可能的实施方式中,所述RCU控制所述开关电路Ki关断,以及控制其他开关支路导通;包括:所述RCU向所述基站天线的每个开关电路发送控制信号,利用所述控制信号控制所述开关支路Ki关断,以及控制其他开关电路都导通。
基于第一方面,在本申请一些可能的实施方式中,控制信号可以是用于表示高低电平的数字序列。
采用该实施例时,通过表示高低电平的数字序列控制开关支路的导通和关断,比如,可以用0和1组成的数字序列作为控制信号,可以用0表示低电平1表示高电平,当然也可以用1表示低电平0表示高电平,只要通过控制信号控制后开关支路Ki关断,其他开关支路导通即可。
在一些可能的实施方式中,所述开关电路Ki包括PIN二极管。
需要说明的是,普通的二极管由PN结组成。在P和N半导体材料之间加入一薄层低掺杂的本征(Intrinsic,I)半导体层,组成的这种P-I-N结构的二极管就是PIN二极管。
采用该实施例时,通过RCU发出控制信号后,控制信号控制PIN二极管导通或者关断。
第二方面,本申请实施例提供了一种检测系统,包括:基站天线、射频拉远单元RRU、 和远程控制单元RCU;其中,
所述RRU包括M个天线端口和一个校正端口CAL;
所述基站天线包括N个端口;所述基站天线的任一端口i对应一个定向耦合支路Ti,在所述Ti上设置有开关电路Ki,所述开关电路Ki的导通和关断由远程控制单元RCU控制;所述M、N和i为整数,1≤i≤N;
所述RCU用于,控制所述开关电路Ki关断,以及控制其他开关支路导通;
所述RRU用于,在所述RRU的所述M个天线端口与所述基站天线的所述N个端口已完成连接操作之后,通过任一天线端口j向所述基站天线发送检测信号;以及在所述RCU控制所述开关电路Ki关断和控制其他开关支路导通之后,检测所述定向耦合支路Ti耦合的能量Qi是否大于阈值;若所述Qi大于阈值,则确定所述RRU的所述天线端口j与所述基站天线的所述端口i连通;若所述Qi不大于阈值,则确定所述RRU的所述天线端口j与所述基站天线的所述端口i未连通。
本申请实施例在RRU与基站天线之间的端口完成连接操作后,确定RRU的任一个天线端口与基站天线的任一个端口是否连通,具体地,由RRU通过所述任一天线端口向基站天线发送检测信号;RCU控制开关电路使待检测通道对应的开关支路关断,同时控制其他开关支路导通;然后根据待检测通道对应的定向耦合支路耦合的能量确定待检测的通道对应的RRU的天线端口和基站天线的端口是否连通,该方法能够对RRU与基站天线之间各端口的线序进行准确的检测。
基于第二方面,在本申请一些可能的实施方式中,所述检测系统还用于,检测所述基站天线的除所述端口i以外其他(N-1)个端口分别与所述RRU的所述天线端口j的连接关系。
采用该实施例能够得到RRU的天线端口j与基站天线的N个端口的连接关系。
基于第二方面,在本申请一些可能的实施方式中,所述检测系统还用于,检测所述RRU的所述天线端口j以外的其他(M-1)个天线端口分别与所述基站天线的N个端口的连接关系。
采用该实施例能够得到RRU的M个端口与基站天线的N个端口的连接关系。
基于第二方面,在本申请一些可能的实施方式中,所述检测系统还包括维护终端,所述维护终端,用于根据所述RRU的所述M个天线端口分别与所述基站天线的所述N个端口的连接关系生成线序连接图。
采用该实施例时,线序连接图可以在带有显示界面的维护终端进行显示,通过观察线序连接图,用户可以直观地看到RRU的天线端口与基站天线的端口之间的连接关系。
基于第二方面,在本申请一些可能的实施方式中,所述RCU在控制所述开关电路Ki关断以及控制其他开关支路导通方面,具体用于:向所述基站天线的每个开关电路发送控制信号,利用所述控制信号控制所述开关支路Ki关断,以及控制其他开关电路都导通。
基于第二方面,在本申请一些可能的实施方式中,所述控制信号包括:用于表示高低电平的数字序列。
采用该实施例时,通过表示高低电平的数字序列控制开关支路的导通和关断,比如,可以用0和1组成的数字序列作为控制信号,可以用0表示低电平1表示高电平,当然也可以用1表示低电平0表示高电平,只要通过控制信号控制后开关支路Ki关断,其他开关支路导通即可。
基于第二方面,在本申请一些可能的实施方式中,所述开关电路Ki包括PIN二极管。
采用该实施例时,通过RCU发出控制信号后,控制信号控制PIN二极管导通或者关断。
附图说明
下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1A是现有技术中8T8R RRU与基站天线之间各端口正确连接时的一个示意图。
图1B是现有技术中8T8R RRU与基站天线之间各端口存在连接错误时的一个示意图。
图2A是本申请的一个实施例中RRU与基站天天之间的连接示意图。
图2B是本申请的一个实施例中RCU与开关电路的连接结构示意图。
图2C是本申请的一个实施例中一种线序检测方法的流程示意图。
图3A是本申请的一个实施例中一种线序检测系统的结构示意图。
图3B是图3A所示实施例中一种线序检测方法的交互流程示意图。
图3C是本申请的一个实施例在维护终端生成的一个线序连接示意图。
图3D是本申请的一个实施例在维护终端生成的一个线序连接示意图。
图3E是本申请的一个实施例在维护终端生成的一个线序连接示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员还可以获得其他实施例。
本申请的实施方式中使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
本申请实施例提供了一种线序检测方法,可以应用在图2A所示的装置上,如图2A所示,基站天线包括8个端口,RRU包括8个天线端口和一个CAL,需要说明的是,在图2A中未画出RCU与各开关支路之间的连接关系,RCU与各开关支路的关系请参见图2B中所示,基站天线的任一端口i 210对应一个定向耦合支路Ti 211,在Ti上设置有开关电路Ki 2111,在图2B所示的图中,开关电路为PIN二极管,开关电路Ki的导通和关断由RCU 213控制,RCU 213向基站天线的每个开关电路发送控制信号,控制开关支路Ki关断,以及控制其他开关电路都导通,控制信号在一些可能的实施方式中可以是用于表示高低电平的数字序列,RRU的8个天线端口与8基站天线的8个端口已完成连接操作后,进行检测连接关系的线序检测方法如图2C所示,包括如下步骤:
221、RRU通过任一天线端口j向所述基站天线发送检测信号。
222、RCU控制开关电路Ki关断,以及控制其他开关支路导通。
223、RRU检测所述定向耦合支路Ti耦合的能量Qi是否大于阈值;若所述Qi大于阈值,则确定所述RRU的所述天线端口j与所述基站天线的所述端口i连通;若所述Qi不大于阈值,则确定所述RRU的所述天线端口j与所述基站天线的所述端口i未连通。
本申请实施例在RRU与基站天线之间的端口完成连接操作后,确定RRU的任一个天线端口与基站天线的任一个端口是否连通,具体地,由RRU通过所述任一天线端口向基站天线发送检测信号;RCU控制开关电路使待检测通道对应的开关支路关断,同时控制其他开关支路导通;然后根据待检测通道对应的定向耦合支路耦合的能量确定待检测的通道对应的RRU的天线端口和基站天线的端口是否连通,该方法能够对RRU与基站天线之间各端口的线序进行准确的检测。
本申请实施例还提供了一种检测系统,包括:基站天线、射频拉远单元RRU、和远程控制单元RCU;其中,RRU包括M个天线端口和一个校正端口CAL;基站天线包括N个端口;所述基站天线的任一端口i对应一个定向耦合支路Ti,在所述Ti上设置有开关电路Ki,所述开关电路Ki的导通和关断由远程控制单元RCU控制;所述M、N和i为整数,1≤i≤N;RCU用于,控制所述开关电路Ki关断,以及控制其他开关支路导通;RRU用于,在所述RRU的所述M个天线端口与所述基站天线的所述N个端口已完成连接操作之后,通过任一天线端口j向所述基站天线发送检测信号;以及在所述RCU控制所述开关电路Ki关断和控制其他开关支路导通之后,检测所述定向耦合支路Ti耦合的能量Qi是否大于阈值;若所述Qi大于阈值,则确定所述RRU的所述天线端口j与所述基站天线的所述端口i连通;若所述Qi不大于阈值,则确定所述RRU的所述天线端口j与所述基站天线的所述端口i未连通。
在一些可能的实施方式中,检测系统还用于,检测所述基站天线的除所述端口i以外其他(N-1)个端口分别与所述RRU的所述天线端口j的连接关系。
在一些可能的实施方式中,检测系统还用于,所述检测系统还用于,检测所述RRU的所述天线端口j以外的其他(M-1)个天线端口分别与所述基站天线的N个端口的连接关系。
在一些可能的实施方式中,检测系统还用于,检测系统还包括维护终端。
维护终端,用于根据所述RRU的所述M个天线端口分别与所述基站天线的所述N个端口的连接关系生成线序连接图。
在一些可能的实施方式中,述RCU在控制所述开关电路Ki关断以及控制其他开关支路导通方面,具体用于:向所述基站天线的每个开关电路发送控制信号,利用所述控制信号控制所述开关支路Ki关断,以及控制其他开关电路都导通。
在一些可能的实施方式中,检测系统还用于,所述控制信号包括:用于表示高低电平的数字序列。
在一些可能的实施方式中,检测系统还用于,开关电路Ki包括PIN二极管。
需要说明的是在进行线序检测时,RRU不限于只有一个,RRU可以有多个,如图3A所示,该实施例中包括3个RRU,分别是RRU1、RRU2和RRU3,RRU中的天线端口与基站天线的端口一一对应,图3A对应的是正确的连接线序,在RRU与基站天线的端口连接完后,可以对连接线序进行检测,如图3B所示,图3B是进行线序检测时的交互流程图,涉及的硬件包括维护终端、BBU、RRU和RCU等。在该实施例中在对线序进行检测的方法包括如下步骤:
301、用户通过维护终端向BBU发送检测指令。
具体地,维护终端可以是具有现实界面的显示器等设备,在显示界面上可以设置用于触发检测指令的按钮,用户可以通过点击检测指令的按钮触发生成检测指令,检测指令发送给BBU。
302、BBU控制第m个RRU的端口n发送测试信号。
m可以是1、2或者3,n可以是1-8中的任一数字,在一些可能的实施方式中,可以对RRU1中的8个天线端口进行遍历测试,然后对RRU2的8个天线端口进行遍历测试,最后对RRU3的8个天线端口进行遍历测试。可以理解的,RRU的测试顺序可以不限于前面的顺序,按照其他可能的顺序也是可行的,这里不做限定。
303、RRU向RCU发送测试信号。
304、RCU控制待测试通道对应的开关电路Ki关断,以及控制其他开关支路导通。
305、RRU获取校正回路的接收功率。
306、RRU反馈检测结果。
需要说明的是,RRU反馈的结果可以是RRU天线端口与基站天线端口的连接信息,也可以是获取的功率信息,若所述Qi大于阈值,则确定所述RRU的所述天线端口j与所述基站天线的所述端口i连通;若所述Qi不大于阈值,则确定所述RRU的所述天线端口j与所述基站天线的所述端口i未连通。
307、重复步骤302~步骤306,循环控制3个RRU,对每个RRU的8个天线端口依次检测。
308、BBU向维护终端反馈检测结果。
309,根据接收到的检测结果,生成线序连接图。
举例来说,图3C、图3D和图3E分别对应一些实施例中,根据检测结果生成的线序连接图。
通过观察图图3C、图3D和图3E可以知悉在对应的实施例中RRU的天线端口与基站天线端口的连接关系。
采用该实施例时,线序连接图可以在带有显示界面的维护终端进行显示,通过观察线序连接图,用户可以直观地看到RRU的天线端口与基站天线的端口之间的连接关系。
应理解本发明的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、 系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (14)

  1. 一种线序检测方法,其特征在于,基站天线包括N个端口,射频拉远单元RRU包括M个天线端口和一个校正端口CAL,所述基站天线的任一端口i对应一个定向耦合支路Ti,在所述Ti上设置有开关电路Ki,所述开关电路Ki的导通和关断由远程控制单元RCU控制;所述M、N和i为整数,1≤i≤N,所述RRU的所述M个天线端口与所述基站天线的所述N个端口已完成连接操作,所述线序检测方法包括如下步骤:
    所述RRU通过任一天线端口j向所述基站天线发送检测信号;
    所述RCU控制所述开关电路Ki关断,以及控制其他开关支路导通;
    所述RRU检测所述定向耦合支路Ti耦合的能量Qi是否大于阈值;
    若所述Qi大于阈值,则确定所述RRU的所述天线端口j与所述基站天线的所述端口i连通;若所述Qi不大于阈值,则确定所述RRU的所述天线端口j与所述基站天线的所述端口i未连通。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    检测所述基站天线的除所述端口i以外其他(N-1)个端口分别与所述RRU的所述天线端口j的连接关系。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    检测所述RRU的所述天线端口j以外的其他(M-1)个天线端口分别与所述基站天线的N个端口的连接关系。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    根据所述RRU的所述M个天线端口分别与所述基站天线的所述N个端口的连接关系生成线序连接图。
  5. 根据权利要求1所述的方法,其特征在于,所述RCU控制所述开关电路Ki关断,以及控制其他开关支路导通;包括:
    所述RCU向所述基站天线的每个开关电路发送控制信号,利用所述控制信号控制所述开关支路Ki关断,以及控制其他开关电路都导通。
  6. 根据权利要求2所述的方法,其特征在于,所述控制信号包括:用于表示高低电平的数字序列。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述开关电路Ki包括PIN二极管。
  8. 一种检测系统,其特征在于,包括:基站天线、射频拉远单元RRU、和远程控制 单元RCU;其中,
    所述RRU包括M个天线端口和一个校正端口CAL;
    所述基站天线包括N个端口;所述基站天线的任一端口i对应一个定向耦合支路Ti,在所述Ti上设置有开关电路Ki,所述开关电路Ki的导通和关断由远程控制单元RCU控制;所述M、N和i为整数,1≤i≤N;
    所述RCU用于,控制所述开关电路Ki关断,以及控制其他开关支路导通;
    所述RRU用于,在所述RRU的所述M个天线端口与所述基站天线的所述N个端口已完成连接操作之后,通过任一天线端口j向所述基站天线发送检测信号;以及在所述RCU控制所述开关电路Ki关断和控制其他开关支路导通之后,检测所述定向耦合支路Ti耦合的能量Qi是否大于阈值;若所述Qi大于阈值,则确定所述RRU的所述天线端口j与所述基站天线的所述端口i连通;若所述Qi不大于阈值,则确定所述RRU的所述天线端口j与所述基站天线的所述端口i未连通。
  9. 根据权利要求8所述的检测系统,其特征在于,
    所述检测系统还用于,检测所述基站天线的除所述端口i以外其他(N-1)个端口分别与所述RRU的所述天线端口j的连接关系。
  10. 根据权利要求8所述的检测系统,其特征在于,
    所述检测系统还用于,检测所述RRU的所述天线端口j以外的其他(M-1)个天线端口分别与所述基站天线的N个端口的连接关系。
  11. 根据权利要求10所述的检测系统,其特征在于,所述检测系统还包括维护终端,
    所述维护终端,用于根据所述RRU的所述M个天线端口分别与所述基站天线的所述N个端口的连接关系生成线序连接图。
  12. 根据权利要求8所述的检测系统,其特征在于,
    所述RCU在控制所述开关电路Ki关断以及控制其他开关支路导通方面,具体用于:向所述基站天线的每个开关电路发送控制信号,利用所述控制信号控制所述开关支路Ki关断,以及控制其他开关电路都导通。
  13. 根据权利要求9所述的检测系统,其特征在于,所述控制信号包括:用于表示高低电平的数字序列。
  14. 根据权利要求8至13任一项所述的检测系统,其特征在于,所述开关电路Ki包括PIN二极管。
PCT/CN2019/107864 2019-09-25 2019-09-25 一种线序检测方法和检测系统 WO2021056268A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980100539.5A CN114424505B (zh) 2019-09-25 2019-09-25 一种线序检测方法和检测系统
EP19947075.8A EP4027542A4 (en) 2019-09-25 2019-09-25 LINE SEQUENCE DETECTION METHOD AND DETECTION SYSTEM
PCT/CN2019/107864 WO2021056268A1 (zh) 2019-09-25 2019-09-25 一种线序检测方法和检测系统
US17/702,949 US11946981B2 (en) 2019-09-25 2022-03-24 Cable sequence detection method and detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107864 WO2021056268A1 (zh) 2019-09-25 2019-09-25 一种线序检测方法和检测系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/702,949 Continuation US11946981B2 (en) 2019-09-25 2022-03-24 Cable sequence detection method and detection system

Publications (1)

Publication Number Publication Date
WO2021056268A1 true WO2021056268A1 (zh) 2021-04-01

Family

ID=75165494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107864 WO2021056268A1 (zh) 2019-09-25 2019-09-25 一种线序检测方法和检测系统

Country Status (4)

Country Link
US (1) US11946981B2 (zh)
EP (1) EP4027542A4 (zh)
CN (1) CN114424505B (zh)
WO (1) WO2021056268A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970731A (zh) * 2018-09-30 2020-04-07 华为技术有限公司 调节装置、天线及通信设备
EP4020823A1 (en) * 2020-12-22 2022-06-29 INTEL Corporation A distributed radiohead system
EP4020853A1 (en) * 2020-12-24 2022-06-29 INTEL Corporation A distributed radiohead system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207836A (zh) * 2006-12-18 2008-06-25 中兴通讯股份有限公司 用于对至少一条线缆进行检测的检测方法
CN101989872A (zh) * 2009-08-04 2011-03-23 鼎桥通信技术有限公司 一种天线跳线线序检测方法
CN102571239A (zh) * 2012-01-13 2012-07-11 中兴通讯股份有限公司 一种射频指标的测试系统
CN203607549U (zh) * 2013-12-06 2014-05-21 华为技术有限公司 一种有源天线系统
CN104581793A (zh) * 2013-10-17 2015-04-29 中国移动通信集团公司 一种基站天馈系统检测方法及设备
US9209853B1 (en) * 2013-12-02 2015-12-08 Sprint Communications Company L.P. Radio port switching device and method of using the radio port switching device
CN205450123U (zh) * 2015-12-21 2016-08-10 中国电信股份有限公司江苏分公司 一种多极化天线检测装置
CN106330345A (zh) * 2015-06-29 2017-01-11 中兴通讯股份有限公司 一种检测电调天线连接线序的方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3913696B2 (ja) * 2003-03-19 2007-05-09 三洋電機株式会社 基地局装置
CN1314294C (zh) 2003-11-13 2007-05-02 中兴通讯股份有限公司 一种个人手持移动通信系统接口线序检测方法
CN101340687B (zh) 2007-07-04 2011-09-21 中兴通讯股份有限公司 智能天线射频端线缆顺序检测方法及装置
CN101741418B (zh) 2008-11-04 2014-04-02 电信科学技术研究院 一种智能天线线序检测方法及装置
JP6464455B2 (ja) * 2015-05-20 2019-02-06 富士通クライアントコンピューティング株式会社 アンテナケーブル接続確認方法及び通信装置
CN109560824B (zh) * 2017-09-27 2021-03-12 大唐移动通信设备有限公司 一种射频指标的测试系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207836A (zh) * 2006-12-18 2008-06-25 中兴通讯股份有限公司 用于对至少一条线缆进行检测的检测方法
CN101989872A (zh) * 2009-08-04 2011-03-23 鼎桥通信技术有限公司 一种天线跳线线序检测方法
CN102571239A (zh) * 2012-01-13 2012-07-11 中兴通讯股份有限公司 一种射频指标的测试系统
CN104581793A (zh) * 2013-10-17 2015-04-29 中国移动通信集团公司 一种基站天馈系统检测方法及设备
US9209853B1 (en) * 2013-12-02 2015-12-08 Sprint Communications Company L.P. Radio port switching device and method of using the radio port switching device
CN203607549U (zh) * 2013-12-06 2014-05-21 华为技术有限公司 一种有源天线系统
CN106330345A (zh) * 2015-06-29 2017-01-11 中兴通讯股份有限公司 一种检测电调天线连接线序的方法和装置
CN205450123U (zh) * 2015-12-21 2016-08-10 中国电信股份有限公司江苏分公司 一种多极化天线检测装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4027542A4 *

Also Published As

Publication number Publication date
EP4027542A4 (en) 2022-09-28
EP4027542A1 (en) 2022-07-13
CN114424505B (zh) 2024-04-26
CN114424505A (zh) 2022-04-29
US11946981B2 (en) 2024-04-02
US20220214407A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
WO2021056268A1 (zh) 一种线序检测方法和检测系统
US7996004B2 (en) Wireless communication system and test method thereof, and access terminal for testing wireless communication system
CN103874116B (zh) 多系统合路平台及其检测漏缆故障点的方法
US6380748B1 (en) Apparatus and method for diagnosing antennas using switches
CN107820717A (zh) 小区切换的方法和装置
CN101958756A (zh) 驻波检测方法、驻波检测装置及基站
US8787839B2 (en) Mobile communication terminal test device and mobile communication terminal test method
WO2011082530A1 (zh) 控制用户设备测量非激活下行分量载波的方法和装置
CN104539377B (zh) 校准设备、校准系统及校准方法
WO2010105513A1 (zh) 一种检测馈线连接的方法、装置及系统
US10554230B2 (en) Signal transmission method in radio frequency network, radio frequency system, and detection device
WO2000076241A1 (en) Method for measuring operation of cellular radio system, and cellular radio system
CN107526000A (zh) 非入户不断电电能表错接线检测的可调注入方案
CN101447813A (zh) 一种td-scdma射频拉远单元的天线自校准方法及电路
CN106454887A (zh) 一种基站天馈设备驻波比位置获取方法和装置
KR20140133667A (ko) 중앙제어형 태양 추적 시스템 및 제어 방법
CN104360356A (zh) 北斗二代抗干扰卫星导航设备检测方法及系统
US6965735B2 (en) Method and apparatus for switching automatically and synchronously among optical channels
CN106571878B (zh) 一种射频故障的检测方法和装置
KR100992607B1 (ko) 이동 통신망을 이용한 배전 자동화 시스템 및 그 운영 방법
CN204215045U (zh) 北斗二代抗干扰卫星导航设备检测系统
JP2008022144A (ja) 光伝送システムとその遅延時間測定方法
WO2022268197A1 (zh) 定位处理方法、定位参考信号发送方法、装置及设备
CN203827518U (zh) 多系统合路平台
JP2016174284A (ja) 移動端末試験装置とそのセル追加方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019947075

Country of ref document: EP

Effective date: 20220407