WO2021056264A1 - Dai scheme for joint ack/nack feedback in multi-trp/panel transmission - Google Patents

Dai scheme for joint ack/nack feedback in multi-trp/panel transmission Download PDF

Info

Publication number
WO2021056264A1
WO2021056264A1 PCT/CN2019/107843 CN2019107843W WO2021056264A1 WO 2021056264 A1 WO2021056264 A1 WO 2021056264A1 CN 2019107843 W CN2019107843 W CN 2019107843W WO 2021056264 A1 WO2021056264 A1 WO 2021056264A1
Authority
WO
WIPO (PCT)
Prior art keywords
dai
pdcch
trp
counting
global
Prior art date
Application number
PCT/CN2019/107843
Other languages
French (fr)
Inventor
Yi Zhang
Keeth Saliya Jayasinghe LADDU
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2019/107843 priority Critical patent/WO2021056264A1/en
Priority to CN201980100771.9A priority patent/CN114503720A/en
Publication of WO2021056264A1 publication Critical patent/WO2021056264A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • Certain embodiments may relate to communication systems. For example, some embodiments may relate to multi-transmission receive point (TRP) /panel transmissions.
  • TRP receive point
  • WI includes enhancements on multiple input multiple output (MIMO) .
  • Multi-TRP/panel transmissions are considered an important part of NR deployments due to their benefits to enhanced mobile broadband (eMBB) operations, as well as the capability to improve the reliability of ultra-reliable low-latency communication (URLLC) services.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low-latency communication
  • the WI related to MIMO enhancements notes that enhancements on multi-TRP/panel transmission including improved reliability and robustness with both ideal and non-ideal backhaul.
  • These enhancements may include specifying downlink control signaling enhancements for efficient support of non-coherent joint transmission, as well as enhancements on uplink control signaling and/or reference signal (s) for non-coherent joint transmissions.
  • a method may include configuring, by a user equipment, a plurality of physical downlink control channels (PDCCHs) associated with a plurality of transmission receive points (TRPs) , wherein each TRP corresponds with each PDCCH, and wherein each PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) .
  • the method may further include transmitting, by the network entity, at least one PDCCH associated with the at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme.
  • the at least one memory and the computer program code may be further configured to, with the at least one processor, cause the apparatus to at least transmit at least one PDCCH associated with the at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme.
  • a non-transitory computer readable medium may be encoded with instructions that may, when executed in hardware, perform a method.
  • the method may configure a plurality of physical downlink control channels (PDCCHs) associated with a plurality of transmission receive points (TRPs) , wherein each TRP corresponds with each PDCCH, and wherein each PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) .
  • DCI downlink control information
  • DAI downlink assignment index
  • the method may further transmit at least one PDCCH associated with the at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme.
  • a computer program product may perform a method.
  • the method may configure a plurality of physical downlink control channels (PDCCHs) associated with a plurality of transmission receive points (TRPs) , wherein each TRP corresponds with each PDCCH, and wherein each PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) .
  • the method may further transmit at least one PDCCH associated with the at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme.
  • an apparatus may include circuitry configured to configure a plurality of physical downlink control channels (PDCCHs) associated with a plurality of transmission receive points (TRPs) , wherein each TRP corresponds with each PDCCH, and wherein each PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) .
  • the circuitry may further transmit at least one PDCCH associated with the at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme.
  • a method may include receiving, by a user equipment, at least one physical downlink control channel (PDCCH) associated with at least one dynamic assignment index (DAI) according to at least one local DAI counting scheme and/or at least one global DAI counting scheme, wherein the received PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) .
  • the method may further include detecting, by the user equipment, at least one missing detected PDCCH.
  • the method may further include determining, by the user equipment, at least one hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook size.
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • an apparatus may include means for receiving at least one physical downlink control channel (PDCCH) associated with at least one dynamic assignment index (DAI) according to at least one local DAI counting scheme and/or at least one global DAI counting scheme, wherein the received PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) .
  • the apparatus may further include means for detecting at least one missing detected PDCCH.
  • the apparatus may further include means for determining at least one hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook size.
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • an apparatus may include at least one processor and at least one memory including computer program code.
  • the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to at least receive at least one physical downlink control channel (PDCCH) associated with at least one dynamic assignment index (DAI) according to at least one local DAI counting scheme and/or at least one global DAI counting scheme, wherein the received PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) .
  • the at least one memory and the computer program code may be further configured to, with the at least one processor, cause the apparatus to at least detect at least one missing detected PDCCH.
  • the at least one memory and the computer program code may be further configured to, with the at least one processor, cause the apparatus to at least determine at least one hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook size.
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • a non-transitory computer readable medium may be encoded with instructions that may, when executed in hardware, perform a method.
  • the method may receive at least one physical downlink control channel (PDCCH) associated with at least one dynamic assignment index (DAI) according to at least one local DAI counting scheme and/or at least one global DAI counting scheme, wherein the received PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) .
  • DCI downlink control information
  • DCI downlink control information
  • the method may further detect at least one missing detected PDCCH.
  • the method may further determine at least one hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook size.
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • a computer program product may perform a method.
  • the method may receive at least one physical downlink control channel (PDCCH) associated with at least one dynamic assignment index (DAI) according to at least one local DAI counting scheme and/or at least one global DAI counting scheme, wherein the received PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) .
  • the method may further detect at least one missing detected PDCCH.
  • the method may further determine at least one hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook size.
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • an apparatus may include circuitry configured to receive at least one physical downlink control channel (PDCCH) associated with at least one dynamic assignment index (DAI) according to at least one local DAI counting scheme and/or at least one global DAI counting scheme, wherein the received PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) .
  • the circuitry may further detect at least one missing detected PDCCH.
  • the circuitry may further determine at least one hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook size.
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • FIG. 1 illustrates an example of PDCCH scheduling transmissions of NR-PDSCH from various TRPs.
  • FIG. 2 illustrates an example of separate counting for multiple TRP transmissions.
  • FIG. 3 illustrates an example of no detection ability where burst PDCCH is missing due to being blocked by a TRP.
  • FIG. 4 illustrates an example of an optimized scheme based on local/joint counting and high layer signaling for reference TRP according to some embodiments.
  • FIG. 6 illustrates a signaling diagram according to certain embodiments.
  • FIG. 7 illustrates an example of a method performed by a network entity according to certain embodiments.
  • FIG. 9 illustrates an example of a system according to certain embodiments.
  • RAN radio access network
  • WG 3GPP radio access network
  • Single PDCCH schedules one DPSCH where separate layers are transmitted from separate TRPs
  • multiple PDCCHs each schedule a respective PDSCH where each NR-PDSCH is transmitted from a separate TRP.
  • multiple PDCCHs from multiple TRPs may schedule respective multiple PDSCHs.
  • the transmission of multiple PDCCHs may occur independently from two TRPs. Thus, this may be used for both ideal and non-ideal backhauls.
  • one CORESET in a “PDCCH-config” may correspond with one TRP.
  • one CORESET in a “PDCCH-config” corresponds to one TRP in order to link multiple PDCCH/PDSCH pairs with multiple TRPs.
  • the maximum number of CORESETs per “PDCCH-config” may be increased to 5.
  • This TRP differentiation may be used for enhanced DAI indication for join ACK/NACK feedback in the event of multiple TRP transmission with multiple DCI.
  • a dynamic codebook such as a type II codebook
  • the NE and UE may interpret codebook sizes differently, and furthermore may further result in a corrupted feedback report for, at least, the missing downlink controls signaling.
  • the UE may be scheduled for downlink transmissions in two subsequent PDCCH monitoring occasions, but missed the first PDCCH, and as a result, the UE may transmit an acknowledgement only for the PDSCH scheduled by the second PDCCH monitoring occasion.
  • the downlink assignment index may be 2 bits as defined in subclause 9.1.3 of TS 38.213.
  • the PDSCH may be transmitted from multiple TRP with multiple PDCCH scheduling.
  • the ACK/NACK bits may be jointly returned for ideal backhaul or non-ideal backhaul with small latency.
  • HARQ-ACK bit number of dynamic HARQ-ACK codebook may be determined based on actual PDSCH from carriers as well as PDCCHs missing.
  • 3GPP Rel-15 DAI indication schemes are insufficient to correct missing PDCCHs, where PDCCHs may originate from multiple TRPs.
  • An extension scheme may be added to 3GPP Rel-15 independently for each TRP, but not without some disadvantages. For example, such as extension scheme would not provide cross-checking abilities between TRPs for missing PDCCHs. For example, as shown in FIG. 2, cDAI information in PDCCH from TRP2 would be unable to support detection of missing PDCCH from TRP1.
  • a DAI indication scheme with joint PDCCH counting from multiple TRPs may be used to solve the above-described disadvantages since this includes cross-check capabilities for the detection of missing PDCCHs, as well as only one “last” DCI from joint HARQ-ACK codebook views.
  • the DAI from PDCCH with improved channel quality may also provide missing checks for PDCCH with worse channel quality.
  • FR2 frequency range 2
  • PDCCH scheduling 4 CCs from one TRP may be missed due to blocking, and the UE is unaware there is PDCCH transmissions according to current Rel-15 DAI design schemes.
  • a special design which exploits the counting information from another TRP may be used to provide the detection ability for burst PDCCH loss.
  • Certain embodiments described herein may provide a DAI-enhanced scheme, achieving an improvement between signaling overhead and the ability to detect missing PDCCH with 2-bit DAI for non-CA scenarios.
  • the PDCCH missing detection ability may be improved for a CA case, or for non-CA with 4-bits, DAI case for joint ACK/NACK feedback with multiple DCI transmissions from multiple TRPs.
  • Certain embodiments are, therefore, directed to improvements in computer-related technology, specifically, enabling DAI indications to guarantee the same understanding of HARQ-ACK codebook size between network entity and user equipment.
  • Certain embodiments may further conserve network resources and reduce power consumption of network entities and/or user equipment located within the network by reducing redundant operations.
  • FIG. 6 illustrates an example of a signalling diagram according to some embodiments.
  • Network entity (NE) 620 may be similar to NE 910 in FIG. 9, and user equipment (UE) 630 may be similar to UE 920 in FIG. 9. Although only a single UE and a single NE are illustrated, a communications network may contain one or more of each of these entities.
  • NE 620 may determine whether at least one carrier aggregation is configured. For example, upon determining that no CA is configured, NE 620 may be configured to configure bit number 2 or 4 for DAI according to, for example, channel quality. In various embodiments, NE 620 may be configured to configure 4-bit DAI for at least one cell edge user in response to at least one missing PDCCH detection ability of NE 620 exceeding at least one performance threshold. Additionally or alternatively, UE 630 may be configured to configure 2-bit DAI for at least one cell center user in response to at least one probability of PDCCH missing falling below at least one predetermined threshold.
  • NE 620 may determine whether at least one DAI bit number is configured.
  • the at least one DAI bit number may be configured as at least one fixed predetermined value.
  • at least one tDAI is required for each of the at least one DAI bit number, the at least one DAI bit number may be configured with at least one 4 bits.
  • NE 620 may determine DAI with modulus 4 operation, for example, according to cDAI and/or tDAI.
  • NE 620 may determine DAI with modulus 4 operation based upon global or local counting with configured order for PDCCH in the same PDCCH monitoring occasion from different TRPs. For example, each PDCCH may only include 2 bits for indicating PDCCH counting index, i.e., cDAI.
  • NE 620 may configured at least one reference TRP index associating with higher-layer signalling. For example, NE 620 may select at least one reference TRP with channel quality exceeding at least one predetermined threshold configured to improve detection of missing PDCCH by NE 620. NE 620 may determine channel quality based upon at least one L3-RSRP measurement result. For each PDCCH from at least one different TRP in at least one PDCCH monitoring occasion, at least one PDCCH from the at least one TRP is deferred for counting. For example, DAI may be determined, in part, based on at least one cumulative PDCCH number, wherein the actual index may be related with a counting sequence.
  • a PDCCH received from a TRP associated with a lower channel quality may be counted before a TRP associated with a higher channel quality.
  • local counting may be used for a first TRP with a lower channel quality
  • global counting may be used for a second TRP with a higher channel quality.
  • TRP2 may be a reference TRP based upon channel quality exceeding at least one predetermined threshold.
  • NE 620 may count at least one PDCCH.
  • at least one local index may be used for DAI with TRP-specific separate PDCCH counting for at least one other TRP, for example, at least one TRP other than the reference TRP.
  • the global index may be configured to for DAI with joint PDCCH counting for reference TRP. As a result, this may provide missing detection ability exceeding at least one predetermined threshold configured to assist of DAI of reference TRP.
  • At least one DAI indication bit may be determined based upon at least one counter DAI with modulo operation for 4 on account of 2-bit indication.
  • NE 620 may configure, for UE 630, at least one counting order for PDCCH in at least one PDCCH monitoring occasion from at least one different TRP associated with at least one higher-lever signaling.
  • local counting may be used for a first TRP with a lower channel quality
  • global counting may be used for a second TRP with a higher channel quality.
  • PDCCH from at least one TRP with channel quality above at least one predetermined threshold may be counted later than at least one PDCCH from at least one TRP with a channel quality below the at least one predetermined quality in order to better detect at least one missing PDCCH
  • NE 620 may be configured for global counting of at least one PDCCH.
  • at least one global index may be configured for DAI based on joint counting, which may provide an improved ability to cross check between TRPs and detecting of missing PDCCHs.
  • NE 620 may determine at least one DAI bit according to at least one cDAI based on joint counting with modulo operation for 4.
  • NE 620 may transmit at least one PDCCH associated with the at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme to UE 630.
  • NE 620 may transmit multiple PDCCH from different TRP/CC.
  • UE 630 may detect at least one missing PDCCH, for example, based upon at least one DAI bit.
  • a PDCCH received from a TRP associated with a lower channel quality may be counted before a TRP associated with a higher channel quality.
  • local counting may be used for a first TRP with a lower channel quality
  • global counting may be used for a second TRP with a higher channel quality.
  • TRP2 may be a reference TRP based upon channel quality exceeding at least one predetermined threshold.
  • at least one PDCCH from TRP2 may be counted after the at least one PDCCH is received from TRP1
  • the NE may count at least one PDCCH.
  • at least one local index may be used for DAI with TRP-specific separate PDCCH counting for at least one other TRP, for example, at least one TRP other than the reference TRP.
  • the global index may be configured to for DAI with joint PDCCH counting for reference TRP. As a result, this may provide missing detection ability exceeding at least one predetermined threshold configured to assist of DAI of reference TRP.
  • At least one DAI indication bit may be determined based upon at least one counter DAI with modulo operation for 4 on account of 2-bit indication.
  • the NE may configure, for the UE, at least one counting order for PDCCH in at least one PDCCH monitoring occasion from at least one different TRP associated with at least one higher-lever signaling.
  • local counting may be used for a first TRP with a lower channel quality
  • global counting may be used for a second TRP with a higher channel quality.
  • the counting order may be sorted according to at least one CORESET index, for example, at least one PDCCH from CORESET with at least one larger index may be placed behind for counting.
  • the NE may be configured for global counting of at least one PDCCH.
  • at least one global index may be configured for DAI based on joint counting, which may provide an improved ability to cross check between TRPs and detecting of missing PDCCHs.
  • the NE may determine at least one DAI bit according to at least one cDAI based on joint counting with modulo operation for 4.
  • the NE may configure a plurality of PDCCHs associated with a plurality of TRPs, wherein each TRP corresponds with each PDCCH, and wherein each PDCCH comprises at least one downlink control information (DCI) field comprising at least one DAI.
  • DCI downlink control information
  • the NE may transmit at least one PDCCH with DAI according to at least one proposed counting scheme to the UE.
  • the NE may transmit multiple PDCCH from different TRP/CC.
  • FIG. 8 illustrates an example of a method performed by user equipment, such as user equipment 920 in FIG. 9.
  • the UE may receive at least one PDCCH associated with at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme, wherein the received PDCCH comprises at least one DCI field comprising at least one DAI from a NE, such as NE 910 in FIG. 9.
  • the UE may receive multiple PDCCH from different TRP/CC.
  • the UE may detect at least one missing PDCCH, for example, based upon at least one DAI bit.
  • the UE may determine at least one HARQ-ACK codebook size. For example, for ACK/NACK bits corresponding to missing PDCCH scheduled PDSCH, the UE may set NACK directly.
  • FIG. 9 illustrates an example of a system according to certain example embodiments.
  • a system may include multiple devices, such as, for example, network entity 910 and/or user equipment 920.
  • Network entity 910 may be one or more of a base station, such as a mmWave antenna, an evolved node B (eNB) or 5G or New Radio node B (gNB) , a serving gateway, a server, and/or any other access node or combination thereof.
  • a base station such as a mmWave antenna, an evolved node B (eNB) or 5G or New Radio node B (gNB) , a serving gateway, a server, and/or any other access node or combination thereof.
  • eNB evolved node B
  • gNB New Radio node B
  • User equipment 920 may include one or more of a mobile device, such as a mobile phone, smart phone, personal digital assistant (PDA) , tablet, or portable media player, digital camera, pocket video camera, video game console, navigation unit, such as a global positioning system (GPS) device, desktop or laptop computer, single-location device, such as a sensor or smart meter, or any combination thereof.
  • a mobile device such as a mobile phone, smart phone, personal digital assistant (PDA) , tablet, or portable media player, digital camera, pocket video camera, video game console, navigation unit, such as a global positioning system (GPS) device, desktop or laptop computer, single-location device, such as a sensor or smart meter, or any combination thereof.
  • GPS global positioning system
  • processors 911 and 921 may be embodied by any computational or data processing device, such as a central processing unit (CPU) , application specific integrated circuit (ASIC) , or comparable device.
  • the processors may be implemented as a single controller, or a plurality of controllers or processors.
  • Processors 911 and 921 and memories 912 and 922 or a subset thereof may be configured to provide means corresponding to the various blocks of FIGS. 1-8.
  • the devices may also include positioning hardware, such as GPS or micro electrical mechanical system (MEMS) hardware, which may be used to determine a location of the device.
  • MEMS micro electrical mechanical system
  • Other sensors are also permitted and may be included to determine location, elevation, orientation, and so forth, such as barometers, compasses, and the like.
  • transceivers 913 and 923 may be provided, and one or more devices may also include at least one antenna, respectively illustrated as 914 and 924.
  • the device may have many antennas, such as an array of antennas configured for multiple input multiple output (MIMO) communications, or multiple antennas for multiple radio access technologies. Other configurations of these devices, for example, may be provided.
  • Transceivers 913 and 923 may be a transmitter, a receiver, or both a transmitter and a receiver, or a unit or device that may be configured both for transmission and reception.
  • the memory and the computer program instructions may be configured, with the processor for the particular device, to cause a hardware apparatus such as user equipment to perform any of the processes described below (see, for example, FIGS. 1-8) . Therefore, in certain example embodiments, a non-transitory computer-readable medium may be encoded with computer instructions that, when executed in hardware, perform a process such as one of the processes described herein. Alternatively, certain example embodiments may be performed entirely in hardware.
  • an apparatus may include circuitry configured to perform any of the processes or functions illustrated in FIGS. 1-8.
  • circuitry may be hardware-only circuit implementations, such as analog and/or digital circuitry.
  • circuitry may be a combination of hardware circuits and software, such as a combination of analog and/or digital hardware circuit (s) with software or firmware, and/or any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and at least one memory that work together to cause an apparatus to perform various processes or functions.
  • circuitry may be hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that include software, such as firmware for operation.
  • Software in circuitry may not be present when it is not needed for the operation of the hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In accordance with some embodiments, an apparatus comprises at least one processor and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to configure a plurality of physical downlink control channels (PDCCHs) associated with a plurality of transmission receive points (TRPs), wherein each TRP corresponds with each PDCCH, and wherein each PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI). The apparatus further transmits at least one PDCCH associated with the at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme.

Description

DAI SCHEME FOR JOINT ACK/NACK FEEDBACK IN MULTI-TRP/PANEL TRANSMISSION BACKGROUND: Field:
Certain embodiments may relate to communication systems. For example, some embodiments may relate to multi-transmission receive point (TRP) /panel transmissions.
Description of the Related Art:
Under 3rd Generation Partnership Project (3GPP) , release 16 (Rel-16) work item (WI) includes enhancements on multiple input multiple output (MIMO) . Multi-TRP/panel transmissions are considered an important part of NR deployments due to their benefits to enhanced mobile broadband (eMBB) operations, as well as the capability to improve the reliability of ultra-reliable low-latency communication (URLLC) services. For example, the WI related to MIMO enhancements notes that enhancements on multi-TRP/panel transmission including improved reliability and robustness with both ideal and non-ideal backhaul. These enhancements may include specifying downlink control signaling enhancements for efficient support of non-coherent joint transmission, as well as enhancements on uplink control signaling and/or reference signal (s) for non-coherent joint transmissions.
SUMMARY:
In accordance with some embodiments, a method may include configuring, by a user equipment, a plurality of physical downlink control channels (PDCCHs) associated with a plurality of transmission receive points (TRPs) , wherein each TRP corresponds with each PDCCH, and wherein each PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) . The method may  further include transmitting, by the network entity, at least one PDCCH associated with the at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme.
In accordance with some embodiments, an apparatus may include means for configuring a plurality of physical downlink control channels (PDCCHs) associated with a plurality of transmission receive points (TRPs) , wherein each TRP corresponds with each PDCCH, and wherein each PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) . The apparatus may further include means for transmitting at least one PDCCH associated with the at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme.
In accordance with some embodiments, an apparatus may include at least one processor and at least one memory including computer program code. The at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to at least configure a plurality of physical downlink control channels (PDCCHs) associated with a plurality of transmission receive points (TRPs) , wherein each TRP corresponds with each PDCCH, and wherein each PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) . The at least one memory and the computer program code may be further configured to, with the at least one processor, cause the apparatus to at least transmit at least one PDCCH associated with the at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme.
In accordance with some embodiments, a non-transitory computer readable medium may be encoded with instructions that may, when executed in hardware, perform a method. The method may configure a plurality of physical downlink control channels (PDCCHs) associated with a plurality of transmission receive points (TRPs) , wherein each TRP corresponds with each  PDCCH, and wherein each PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) . The method may further transmit at least one PDCCH associated with the at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme.
In accordance with some embodiments, a computer program product may perform a method. The method may configure a plurality of physical downlink control channels (PDCCHs) associated with a plurality of transmission receive points (TRPs) , wherein each TRP corresponds with each PDCCH, and wherein each PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) . The method may further transmit at least one PDCCH associated with the at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme.
In accordance with some embodiments, an apparatus may include circuitry configured to configure a plurality of physical downlink control channels (PDCCHs) associated with a plurality of transmission receive points (TRPs) , wherein each TRP corresponds with each PDCCH, and wherein each PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) . The circuitry may further transmit at least one PDCCH associated with the at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme.
In accordance with some embodiments, a method may include receiving, by a user equipment, at least one physical downlink control channel (PDCCH) associated with at least one dynamic assignment index (DAI) according to at least one local DAI counting scheme and/or at least one global DAI counting scheme, wherein the received PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) . The method may further include detecting, by the user equipment, at  least one missing detected PDCCH. The method may further include determining, by the user equipment, at least one hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook size.
In accordance with some embodiments, an apparatus may include means for receiving at least one physical downlink control channel (PDCCH) associated with at least one dynamic assignment index (DAI) according to at least one local DAI counting scheme and/or at least one global DAI counting scheme, wherein the received PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) . The apparatus may further include means for detecting at least one missing detected PDCCH. The apparatus may further include means for determining at least one hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook size.
In accordance with some embodiments, an apparatus may include at least one processor and at least one memory including computer program code. The at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to at least receive at least one physical downlink control channel (PDCCH) associated with at least one dynamic assignment index (DAI) according to at least one local DAI counting scheme and/or at least one global DAI counting scheme, wherein the received PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) . The at least one memory and the computer program code may be further configured to, with the at least one processor, cause the apparatus to at least detect at least one missing detected PDCCH. The at least one memory and the computer program code may be further configured to, with the at least one processor, cause the apparatus to at least determine at least one hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook size.
In accordance with some embodiments, a non-transitory computer readable medium may be encoded with instructions that may, when executed in  hardware, perform a method. The method may receive at least one physical downlink control channel (PDCCH) associated with at least one dynamic assignment index (DAI) according to at least one local DAI counting scheme and/or at least one global DAI counting scheme, wherein the received PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) . The method may further detect at least one missing detected PDCCH. The method may further determine at least one hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook size.
In accordance with some embodiments, a computer program product may perform a method. The method may receive at least one physical downlink control channel (PDCCH) associated with at least one dynamic assignment index (DAI) according to at least one local DAI counting scheme and/or at least one global DAI counting scheme, wherein the received PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) . The method may further detect at least one missing detected PDCCH. The method may further determine at least one hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook size.
In accordance with some embodiments, an apparatus may include circuitry configured to receive at least one physical downlink control channel (PDCCH) associated with at least one dynamic assignment index (DAI) according to at least one local DAI counting scheme and/or at least one global DAI counting scheme, wherein the received PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) . The circuitry may further detect at least one missing detected PDCCH. The circuitry may further determine at least one hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook size.
BRIEF DESCRIPTION OF THE DRAWINGS:
For proper understanding of this disclosure, reference should be made to the accompanying drawings, wherein:
FIG. 1 illustrates an example of PDCCH scheduling transmissions of NR-PDSCH from various TRPs.
FIG. 2 illustrates an example of separate counting for multiple TRP transmissions.
FIG. 3 illustrates an example of no detection ability where burst PDCCH is missing due to being blocked by a TRP.
FIG. 4 illustrates an example of an optimized scheme based on local/joint counting and high layer signaling for reference TRP according to some embodiments.
FIG. 5 illustrates another example of an optimized scheme based on joint counting and high layer signaling for counting order between TRP according to some embodiments.
FIG. 6 illustrates a signaling diagram according to certain embodiments.
FIG. 7 illustrates an example of a method performed by a network entity according to certain embodiments.
FIG. 8 illustrates an example of a method performed by a user equipment according to certain embodiments.
FIG. 9 illustrates an example of a system according to certain embodiments.
DETAILED DESCRIPTION:
During 3GPP radio access network (RAN) work group (WG) 1, two techniques were agreed to support multi-TRP transmissions in NR, specifically, single PDCCH-design and multiple PDCCH-design. Single PDCCH schedules one DPSCH where separate layers are transmitted from separate TRPs, while multiple PDCCHs each schedule a respective PDSCH where each NR-PDSCH is transmitted from a separate TRP. In the multiple PDCCH design, multiple PDCCHs from multiple TRPs may schedule respective multiple PDSCHs. The  transmission of multiple PDCCHs may occur independently from two TRPs. Thus, this may be used for both ideal and non-ideal backhauls.
3GPP RAN1 97 meeting resulted in an agreement that joint HARQ-ACK feedback for multiple DCI may be supported, and both type-1 and type-2 HARQ-ACK codebooks may be supported. In particular, for separate ACK/NACK feedback for PDSCHs received from different TRPs, the UE should be able to generate separate ACK/NACK codebooks identified by an index, if the index is configured and applied across all CCs. In addition, joint HARQ-ACK feedback may be supported for PDSCHs received from different TRPs where multiple DCIs are used. When the PUCCH resources are on the different PDCCH monitoring occasions, which are indicated by PDSCH-to-HARQ feedback timing indicator fields of multiple DCIs for different TRPs, both type-1 and type-2 HARQ-ACK codebooks are supported.
Furthermore, for multiple PDCCH-based multiple TRP transmissions, one CORESET in a “PDCCH-config” may correspond with one TRP. Following 3GPP RAN1 96 and RAN1 97, in order to support multiple-PDCCH based multi-TRP/panel transmissions with intra-cell (i.e., same cell ID) one CORESET in a “PDCCH-config” corresponds to one TRP in order to link multiple PDCCH/PDSCH pairs with multiple TRPs.
Additionally, for multi-PDCCH based multi-TRP operations, the maximum number of CORESETs per “PDCCH-config” may be increased to 5. This TRP differentiation may be used for enhanced DAI indication for join ACK/NACK feedback in the event of multiple TRP transmission with multiple DCI.
According to the Rel-15 DAI indicating scheme, a dynamic codebook, such as a type II codebook, may reduce a codebook size relative to semi-static codebooks, and may be an improvement for no errors in the downlink control signaling. However, in the presence of missing detection of downlink control signaling, the NE and UE may interpret codebook sizes differently, and furthermore may further result in a corrupted feedback report for, at least, the  missing downlink controls signaling. For example, the UE may be scheduled for downlink transmissions in two subsequent PDCCH monitoring occasions, but missed the first PDCCH, and as a result, the UE may transmit an acknowledgement only for the PDSCH scheduled by the second PDCCH monitoring occasion. In contrast, the NE may attempt to receive acknowledgements for two PDCCH monitoring occasions and mismatch happens. To respond to these errors, the downlink assignment index (DAI) may be used in the downlink DCI. The DAI field may be further split into two parts, a counter DAI (cDAI) and an optional total DAI (tDAI) for carrier aggregations. The counter DAI included in the DCI may indicate the number of current scheduled downlink transmissions, where DCI is sorted in a carrier first, and then time. The total DAI included in the DAI included in the DCI may indicate the total number of downlink transmissions across all carrier up to the current PDCCH monitoring occasion.
As defined in 3GPP technical specification (TS) 38.212 Rel-15, for DCI format 1-0, the downlink assignment index may be 2 bits as defined in subclause 9.1.3 of TS 38.213. And for DCI format 1-1, the number of bits of the downlink assignment index may be 4 bits if more than one serving cell are configured in the DL and the higher layer parameter pdsch-HARQ-ACK-Codebook=dynamic, where the 2 MSB bits are the counter DAI and the 2 LSB bits are the total DAI, and 2 bits if only one serving cell is configured in the DL and the higher layer parameter pdsch-HARQ-ACK-Codebook=dynamic, where the 2 bits are the counter DAI.
For a non-coherent joint transmission (NCJT) , the PDSCH may be transmitted from multiple TRP with multiple PDCCH scheduling. The ACK/NACK bits may be jointly returned for ideal backhaul or non-ideal backhaul with small latency. HARQ-ACK bit number of dynamic HARQ-ACK codebook may be determined based on actual PDSCH from carriers as well as PDCCHs missing. However, 3GPP Rel-15 DAI indication schemes are insufficient to correct missing PDCCHs, where PDCCHs may originate from  multiple TRPs. An extension scheme may be added to 3GPP Rel-15 independently for each TRP, but not without some disadvantages. For example, such as extension scheme would not provide cross-checking abilities between TRPs for missing PDCCHs. For example, as shown in FIG. 2, cDAI information in PDCCH from TRP2 would be unable to support detection of missing PDCCH from TRP1.
In addition, there is no ability to identify the last several missing PDCCHs. The number of undetected missing PDCCHs would be increased due to an increased number of TRPs. Referring again to FIG. 2, if the second PDCCH from TRP1 is missed by the UE, it may be detected since the UE could receive cDAI information from the received third PDCCH received from TRP1. However, the UE would be unable to detect the missing of the fourth PDCCH from TRP1, as well as the third or fourth PDCCH from TRP2, since they are the last PDCCH and there is no DAI information which may be used for reference. For multiple TRP transmissions, the last PDCCH is from multiple TRP views, increasing the number of PDCCH missing detections.
However, a DAI indication scheme with joint PDCCH counting from multiple TRPs may be used to solve the above-described disadvantages since this includes cross-check capabilities for the detection of missing PDCCHs, as well as only one “last” DCI from joint HARQ-ACK codebook views. The DAI from PDCCH with improved channel quality may also provide missing checks for PDCCH with worse channel quality.
For multiple TRP transmission, one scenario in frequency range 2 (FR2) occurs where PDCCH bursts may be missing from one TRP due to blocking. Due to the limit of granularity caused by 2-bit DAI indications, there is no ability for detecting 4 consecutive missing PDCCHs. As illustrated in FIG. 3, PDCCH scheduling 4 CCs from one TRP may be missed due to blocking, and the UE is unaware there is PDCCH transmissions according to current Rel-15 DAI design schemes. Thus, a special design which exploits the counting information from another TRP may be used to provide the detection ability for  burst PDCCH loss.
Under the current 3GPP Rel-15 DAI scheme, 2 bits are used for non-CA cases, while 4 bits are used for CA cases. For multiple TRP transmission, there is not definition on how many bits are used for non-CA cases. PDCCH reliability may be enhanced with smaller DAI bit number, while the detection ability for missing PDCCHs may be enhanced with more DAI bits, such as 4 bits. For joint HARQ-ACK with multiple PDCCH from multiple TRP, the counted PDCCH numbers for indicating DAI may be increased because of multiple TRP. Thus, an enhanced scheme which balances missing PDCCH detection ability with DAI signaling overhead is desired, where the channel quality difference between TRP may be exploited. The high layer signaling may then be used to switch the 2 bits and 4 bits DAI signaling scheme based on channel quality.
Certain embodiments described herein may provide a DAI-enhanced scheme, achieving an improvement between signaling overhead and the ability to detect missing PDCCH with 2-bit DAI for non-CA scenarios. In addition, the PDCCH missing detection ability may be improved for a CA case, or for non-CA with 4-bits, DAI case for joint ACK/NACK feedback with multiple DCI transmissions from multiple TRPs. Certain embodiments are, therefore, directed to improvements in computer-related technology, specifically, enabling DAI indications to guarantee the same understanding of HARQ-ACK codebook size between network entity and user equipment. Certain embodiments may further conserve network resources and reduce power consumption of network entities and/or user equipment located within the network by reducing redundant operations.
FIG. 6 illustrates an example of a signalling diagram according to some embodiments. Network entity (NE) 620 may be similar to NE 910 in FIG. 9, and user equipment (UE) 630 may be similar to UE 920 in FIG. 9. Although only a single UE and a single NE are illustrated, a communications network may contain one or more of each of these entities.
In step 601, NE 620 may determine whether at least one carrier aggregation is configured. For example, upon determining that no CA is configured, NE 620 may be configured to configure  bit number  2 or 4 for DAI according to, for example, channel quality. In various embodiments, NE 620 may be configured to configure 4-bit DAI for at least one cell edge user in response to at least one missing PDCCH detection ability of NE 620 exceeding at least one performance threshold. Additionally or alternatively, UE 630 may be configured to configure 2-bit DAI for at least one cell center user in response to at least one probability of PDCCH missing falling below at least one predetermined threshold.
In step 603, NE 620 may determine whether at least one DAI bit number is configured. For example, the at least one DAI bit number may be configured as at least one fixed predetermined value. For example, at least one tDAI is required for each of the at least one DAI bit number, the at least one DAI bit number may be configured with at least one 4 bits. In step 605, NE 620 may determine DAI with modulus 4 operation, for example, according to cDAI and/or tDAI. In certain embodiments, upon NE 620 determining that no DAI bit number is configured, or that DAI bit number is configured as 2 bits, NE 620 may determine DAI with modulus 4 operation based upon global or local counting with configured order for PDCCH in the same PDCCH monitoring occasion from different TRPs. For example, each PDCCH may only include 2 bits for indicating PDCCH counting index, i.e., cDAI.
In some embodiments, NE 620 may configured at least one reference TRP index associating with higher-layer signalling. For example, NE 620 may select at least one reference TRP with channel quality exceeding at least one predetermined threshold configured to improve detection of missing PDCCH by NE 620. NE 620 may determine channel quality based upon at least one L3-RSRP measurement result. For each PDCCH from at least one different TRP in at least one PDCCH monitoring occasion, at least one PDCCH from the at least one TRP is deferred for counting. For example, DAI may be determined,  in part, based on at least one cumulative PDCCH number, wherein the actual index may be related with a counting sequence. Thus, a PDCCH received from a TRP associated with a lower channel quality may be counted before a TRP associated with a higher channel quality. In some embodiments, local counting may be used for a first TRP with a lower channel quality, and global counting may be used for a second TRP with a higher channel quality.
As illustrated in FIG. 4, TRP2 may be a reference TRP based upon channel quality exceeding at least one predetermined threshold. In various embodiments, within at least one PDCCH monitoring occasion, at least one PDCCH from TRP2 may be counted after the at least one PDCCH is received from TRP1. For example, if PDCCH with cDAI=7 is missing, UE 630 may not know whether there is an actual PDCCH transmission since it is the last PDCCH. In response, when PDCCH with cDAI=7 comes from reference TRP with channel condition exceeding at least one predetermined threshold, this may lower the probability for PDCCH missing below at least one predetermined threshold.
In certain embodiments, NE 620 may count at least one PDCCH. For example, at least one local index may be used for DAI with TRP-specific separate PDCCH counting for at least one other TRP, for example, at least one TRP other than the reference TRP. Additionally or alternatively, the global index may be configured to for DAI with joint PDCCH counting for reference TRP. As a result, this may provide missing detection ability exceeding at least one predetermined threshold configured to assist of DAI of reference TRP. Furthermore, as illustrated in FIG. 4, when UE 630 does not receive PDCCH with cDAI=6/3 but receives PDCCH with cDAI=5 and cDAI=7, UE 630 may be configured to know that PDCCH with cDAI=6/3 is missing, and that there is no problem for determining at least one HARQ-ACK codebook size.
In some embodiments, at least one DAI indication bit may be determined based upon at least one counter DAI with modulo operation for 4 on account of 2-bit indication. In some embodiments, NE 620 may configure, for UE 630, at  least one counting order for PDCCH in at least one PDCCH monitoring occasion from at least one different TRP associated with at least one higher-lever signaling. In some embodiments, local counting may be used for a first TRP with a lower channel quality, and global counting may be used for a second TRP with a higher channel quality.
For example, PDCCH from at least one TRP with channel quality above at least one predetermined threshold may be counted later than at least one PDCCH from at least one TRP with a channel quality below the at least one predetermined quality in order to better detect at least one missing PDCCH
In certain embodiments, channel quality may be determined based on at least one L3-RSRP measurement result. For at least one PDCCH from at least one different CORESET group, the counting order may be sorted according to at least one channel quality, for example, PDCCH from TRP with improved channel may be deferred for counting. For example, DAI may be determined, in part, based on at least one cumulative PDCCH number, wherein the actual index may be related with a counting sequence. Thus, a PDCCH received from a TRP associated with a lower channel quality may be counted before a TRP associated with a higher channel quality. In some embodiments, local counting may be used for a first TRP with a lower channel quality, and global counting may be used for a second TRP with a higher channel quality. For PDCCH from the same CORESET group, the counting order may be sorted according to at least one CORESET index, for example, at least one PDCCH from CORESET with at least one larger index may be placed behind for counting.
As illustrated in FIG. 5, within a PDCCH monitoring occasion, PDCCH from TRP2 may be counted after the PDCCH from TRP1 since PDCCH from TRP2 may have a better channel condition. For example, if at least one PDCCH with cDAI=7 is missing, UE 630 may not know whether there is at least one actual PDCCH transmission since it is the last PDCCH. When at least one PDCCH cDAI=7 comes from TRP with a channel condition exceeding at least one predetermined threshold, there may be lower probability of at least one  PDCCH missing.
In some embodiments, NE 620 may be configured for global counting of at least one PDCCH. For example, at least one global index may be configured for DAI based on joint counting, which may provide an improved ability to cross check between TRPs and detecting of missing PDCCHs. As shown in FIG. 5, when UE 630 does not receive at least one PDCCH with cDAI=6, but receives at least one PDCCH with cDAI=7, UE 630 may be aware that PDCCH with cDAI=6 may be missing, and/or there may be an improved ability to determine HARQ-ACK codebook size. NE 620 may determine at least one DAI bit according to at least one cDAI based on joint counting with modulo operation for 4.
In step 607, NE 620 may configure a plurality of PDCCHs associated with a plurality of TRPs, wherein each TRP corresponds with each PDCCH, and wherein each PDCCH comprises at least one downlink control information (DCI) field comprising at least one DAI.
In step 609, NE 620 may transmit at least one PDCCH associated with the at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme to UE 630. For example, NE 620 may transmit multiple PDCCH from different TRP/CC.
In step 611, upon receiving the at least one PDCCH with DAI according to the at least one proposed counting scheme, UE 630 may detect at least one missing PDCCH, for example, based upon at least one DAI bit.
In step 613, UE 630 may determine at least one HARQ-ACK codebook size. For example, for ACK/NACK bits corresponding to missing PDCCH scheduled PDSCH, UE 630 may set NACK directly.
FIG. 7 illustrates an example of a method performed by a network entity, such as network entity 910 in FIG. 9. In step 701, the network entity may determine whether at least one carrier aggregation is configured. For example, upon determining that no CA is configured, the network entity may be configured to configure  bit number  2 or 4 for DAI according to, for example,  channel quality. In various embodiments, the network entity may be configured to configure 4-bit DAI for at least one cell edge user in response to at least one missing PDCCH detection ability of the network entity exceeding at least one performance threshold. Additionally or alternatively, a user equipment, such as UE 920 in FIG. 9, may be configured to configure 2-bit DAI for at least one cell center user in response to at least one probability of PDCCH missing falling below at least one predetermined threshold.
In step 703, the network entity may determine whether at least one DAI bit number is configured. In step 705, the network entity may determine at least one DAI with modulus 4 operation, for example, according to cDAI. In certain embodiments, upon the network entity determining that no DAI bit number is configured, or that DAI bit number is configured as 2 bits, the network entity may determine DAI with modulus 4 operation based upon global counting with configured order for PDCCH in the same PDCCH monitoring occasion from a different TRP. For example, each PDCCH may only include 2 bits for indicating PDCCH counting index, i.e., cDAI.
In some embodiments, the network entity may configured at least one reference TRP index associating with higher-layer signalling. For example, the network entity may select at least one reference TRP with channel quality exceeding at least one predetermined threshold configured to improve detection of missing PDCCH by the network entity. The network entity may determine channel quality based upon at least one L3-RSRP measurement result. For each PDCCH from at least one different TRP in at least one PDCCH monitoring occasion, at least one PDCCH from the at least one TRP is deferred for counting. For example, DAI may be determined, in part, based on at least one cumulative PDCCH number, wherein the actual index may be related with a counting sequence. Thus, a PDCCH received from a TRP associated with a lower channel quality may be counted before a TRP associated with a higher channel quality. In some embodiments, local counting may be used for a first TRP with a lower channel quality, and global counting may be used for a second TRP with a  higher channel quality.
As illustrated in FIG. 4, TRP2 may be a reference TRP based upon channel quality exceeding at least one predetermined threshold. In various embodiments, within at least one PDCCH monitoring occasion, at least one PDCCH from TRP2 may be counted after the at least one PDCCH is received from TRP1 For example, if PDCCH with cDAI=7 is missing, the UE may not know whether there is an actual PDCCH transmission since it is the last PDCCH. In response, when PDCCH with cDAI=7 comes from reference TRP with channel condition exceeding at least one predetermined threshold, this may lower the probability for PDCCH missing below at least one predetermined threshold.
In certain embodiments, the NE may count at least one PDCCH. For example, at least one local index may be used for DAI with TRP-specific separate PDCCH counting for at least one other TRP, for example, at least one TRP other than the reference TRP. Additionally or alternatively, the global index may be configured to for DAI with joint PDCCH counting for reference TRP. As a result, this may provide missing detection ability exceeding at least one predetermined threshold configured to assist of DAI of reference TRP. Furthermore, as illustrated in FIG. 4, when the UE does not receive PDCCH with cDAI=6/3 but receives PDCCH with cDAI=5 and cDAI=7, the UE may be configured to know that PDCCH with cDAI=6/3 is missing, and that there is no problem for determining at least one HARQ-ACK codebook size.
In some embodiments, at least one DAI indication bit may be determined based upon at least one counter DAI with modulo operation for 4 on account of 2-bit indication. In some embodiments, the NE may configure, for the UE, at least one counting order for PDCCH in at least one PDCCH monitoring occasion from at least one different TRP associated with at least one higher-lever signaling.
For example, PDCCH from at least one TRP with channel quality above at least one predetermined threshold may be counted later than at least one  PDCCH from at least one TRP with a channel quality below the at least one predetermined quality in order to better detect at least one missing PDCCH
In certain embodiments, channel quality may be determined based on at least one L3-RSRP measurement result. For at least one PDCCH from at least one different CORESET group, the counting order may be sorted according to at least one channel quality, for example, PDCCH from TRP with improved channel may be deferred for counting. For example, DAI may be determined, in part, based on at least one cumulative PDCCH number, wherein the actual index may be related with a counting sequence. Thus, a PDCCH received from a TRP associated with a lower channel quality may be counted before a TRP associated with a higher channel quality. In some embodiments, local counting may be used for a first TRP with a lower channel quality, and global counting may be used for a second TRP with a higher channel quality. For PDCCH from the same CORESET group, the counting order may be sorted according to at least one CORESET index, for example, at least one PDCCH from CORESET with at least one larger index may be placed behind for counting.
As illustrated in FIG. 5, within a PDCCH monitoring occasion, PDCCH from TRP2 may be counted after the PDCCH from TRP1 since PDCCH from TRP2 may have a better channel condition. For example, if at least one PDCCH with cDAI=7 is missing, the UE may not know whether there is at least one actual PDCCH transmission since it is the last PDCCH. When at least one PDCCH cDAI=7 comes from TRP with a channel condition exceeding at least one predetermined threshold, there may be lower probability of at least one PDCCH missing.
In some embodiments, the NE may be configured for global counting of at least one PDCCH. For example, at least one global index may be configured for DAI based on joint counting, which may provide an improved ability to cross check between TRPs and detecting of missing PDCCHs. As shown in FIG. 5, when the UE does not receive at least one PDCCH with cDAI=6, but receives at least one PDCCH with cDAI=7, the UE may be aware that PDCCH with  cDAI=6 may be missing, and/or there may be an improved ability to determine HARQ-ACK codebook size. The NE may determine at least one DAI bit according to at least one cDAI based on joint counting with modulo operation for 4.
In step 707, the NE may configure a plurality of PDCCHs associated with a plurality of TRPs, wherein each TRP corresponds with each PDCCH, and wherein each PDCCH comprises at least one downlink control information (DCI) field comprising at least one DAI.
In step 709, the NE may transmit at least one PDCCH with DAI according to at least one proposed counting scheme to the UE. For example, the NE may transmit multiple PDCCH from different TRP/CC.
FIG. 8 illustrates an example of a method performed by user equipment, such as user equipment 920 in FIG. 9. In step 801, the UE may receive at least one PDCCH associated with at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme, wherein the received PDCCH comprises at least one DCI field comprising at least one DAI from a NE, such as NE 910 in FIG. 9. For example, the UE may receive multiple PDCCH from different TRP/CC.
In step 803, upon receiving the at least one PDCCH with DAI according to the at least one proposed counting scheme, the UE may detect at least one missing PDCCH, for example, based upon at least one DAI bit. In step 805, the UE may determine at least one HARQ-ACK codebook size. For example, for ACK/NACK bits corresponding to missing PDCCH scheduled PDSCH, the UE may set NACK directly.
FIG. 9 illustrates an example of a system according to certain example embodiments. In one example embodiment, a system may include multiple devices, such as, for example, network entity 910 and/or user equipment 920.
Network entity 910 may be one or more of a base station, such as a mmWave antenna, an evolved node B (eNB) or 5G or New Radio node B (gNB) , a serving gateway, a server, and/or any other access node or  combination thereof. Furthermore, network entity 910 and/or user equipment 920 may be one or more of a citizens broadband radio service device (CBSD) .
User equipment 920 may include one or more of a mobile device, such as a mobile phone, smart phone, personal digital assistant (PDA) , tablet, or portable media player, digital camera, pocket video camera, video game console, navigation unit, such as a global positioning system (GPS) device, desktop or laptop computer, single-location device, such as a sensor or smart meter, or any combination thereof.
One or more of these devices may include at least one processor, respectively indicated as 911 and 921.  Processors  911 and 921 may be embodied by any computational or data processing device, such as a central processing unit (CPU) , application specific integrated circuit (ASIC) , or comparable device. The processors may be implemented as a single controller, or a plurality of controllers or processors.
At least one memory may be provided in one or more of devices indicated at 912 and 922. The memory may be fixed or removable. The memory may include computer program instructions or computer code contained therein.  Memories  912 and 922 may independently be any suitable storage device, such as a non-transitory computer-readable medium. A hard disk drive (HDD) , random access memory (RAM) , flash memory, or other suitable memory may be used. The memories may be combined on a single integrated circuit as the processor, or may be separate from the one or more processors. Furthermore, the computer program instructions stored in the memory and which may be processed by the processors may be any suitable form of computer program code, for example, a compiled or interpreted computer program written in any suitable programming language. Memory may be removable or non-removable.
Processors  911 and 921 and  memories  912 and 922 or a subset thereof, may be configured to provide means corresponding to the various blocks of FIGS. 1-8. Although not shown, the devices may also include positioning  hardware, such as GPS or micro electrical mechanical system (MEMS) hardware, which may be used to determine a location of the device. Other sensors are also permitted and may be included to determine location, elevation, orientation, and so forth, such as barometers, compasses, and the like.
As shown in FIG. 9,  transceivers  913 and 923 may be provided, and one or more devices may also include at least one antenna, respectively illustrated as 914 and 924. The device may have many antennas, such as an array of antennas configured for multiple input multiple output (MIMO) communications, or multiple antennas for multiple radio access technologies. Other configurations of these devices, for example, may be provided.  Transceivers  913 and 923 may be a transmitter, a receiver, or both a transmitter and a receiver, or a unit or device that may be configured both for transmission and reception.
The memory and the computer program instructions may be configured, with the processor for the particular device, to cause a hardware apparatus such as user equipment to perform any of the processes described below (see, for example, FIGS. 1-8) . Therefore, in certain example embodiments, a non-transitory computer-readable medium may be encoded with computer instructions that, when executed in hardware, perform a process such as one of the processes described herein. Alternatively, certain example embodiments may be performed entirely in hardware.
In certain example embodiments, an apparatus may include circuitry configured to perform any of the processes or functions illustrated in FIGS. 1-8. For example, circuitry may be hardware-only circuit implementations, such as analog and/or digital circuitry. In another example, circuitry may be a combination of hardware circuits and software, such as a combination of analog and/or digital hardware circuit (s) with software or firmware, and/or any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and at least one memory that work together to cause an apparatus to perform various processes or functions. In yet another example, circuitry may be hardware circuit (s) and or processor (s) , such as a  microprocessor (s) or a portion of a microprocessor (s) , that include software, such as firmware for operation. Software in circuitry may not be present when it is not needed for the operation of the hardware.
The features, structures, or characteristics of certain embodiments described throughout this specification may be combined in any suitable manner in one or more embodiments. For example, the usage of the phrases “certain embodiments, ” “some embodiments, ” “other embodiments, ” or other similar language, throughout this specification refers to the fact that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present invention. Thus, appearance of the phrases “in certain embodiments, ” “in some embodiments, ” “in other embodiments, ” or other similar language, throughout this specification does not necessarily refer to the same group of embodiments, and the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
One having ordinary skill in the art will readily understand that the invention as discussed above may be practiced with steps in a different order, and/or with hardware elements in configurations which are different than those which are disclosed. Therefore, although the invention has been described based upon these preferred embodiments, it would be apparent to those of skill in the art that certain modifications, variations, and alternative constructions would be apparent, while remaining within the spirit and scope of the invention. The above embodiments may be applied to any communication network or wireless system. While many of the above embodiments refer to LTE or LTE-A, other embodiments may be used for 3GPP fifth generation (5G) technology, fourth generation (4G) technology, New Radio (NR) technology, and/or any wireless land access network (WLAN) .
Partial Glossary
3GPP        3rd Generation Partnership Project
5G         5th Generation Wireless System
ACK        Acknowledgement
CA         Carrier Aggregation
CC         Component Carrier
cDAI       Counter Dynamic Assignment Index
CORESET    Control Resource Set
DAI        Dynamic Assignment Index
DCI        Dynamic Control Indicator
eMBB       Enhanced Mobile Broadband
eNB        evolved Node B
E-UTRAN    Evolved Universal Mobile Telecommunications SystemTerrestrial Radio Access Network
gNB        Next Generation Node B
HARQ       Hybrid Automatic Repeat Request
LTE        Long Term Evolution
MAC        Medium Access Control
MIMO       Multiple Input Multiple Output
NACK       Non Acknowledgement
NCJT       Non-Coherent Joint Transmission
NE         Network Entity
NR         New Radio
PDCCH      Physical Downlink Control Channel
PDSCH      Physical Downlink Shared Channel
PUSCH      Physical Uplink Control Channel
REL        Release
tDAI       Total Dynamic Assignment Index
TRP        Transmission Receive Point
UE         User Equipment
UL         Uplink
WI         Work Item

Claims (22)

  1. An apparatus, comprising:
    at least one processor; and
    at least one memory including computer program code,
    wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to:
    configure a plurality of physical downlink control channels (PDCCHs) associated with a plurality of transmission receive points (TRPs) , wherein each TRP corresponds with each PDCCH, and wherein each PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) ; and
    transmit at least one PDCCH associated with the at least one DAI according to at least one local DAI counting scheme and/or at least one global DAI counting scheme.
  2. The apparatus according to claim 1, wherein the at least one local DAI counting scheme is configured to count each of a plurality of PDCCHs on a plurality of TRPs separately, and the at least one global DAI counting scheme is configured to count multiple PDCCHs on multiple TRPs as a single count.
  3. The apparatus according to any of claims 1 and 2, wherein the at least one global DAI counting scheme takes into account channel qualities between  TRPs and the user equipment.
  4. The apparatus according to any of claims 1-3, wherein the global counting scheme is configured to start counting in the order from a PDCCH on a TRP with the worst channel quality to a PDCCH on a TRP with the best channel quality.
  5. The apparatus according to any of claims 1-4, wherein the at least one reference TRP is associated with at least one channel quality exceeding at least one channel quality of at least one other TRP.
  6. The apparatus according to any of claims 1-5, wherein one global PDCCH index is used in DAI of the reference TRP to provide checking ability for the missing PDCCH from other TRP.
  7. The apparatus according to any of claims 1-6, wherein upon the apparatus determining that DAI bit number is configured as 4 bits, or that no CA is configured, the apparatus further determines DAI with modulus 4 operation based on 3-dimension counting with order of first TRP, followed by component carrier, followed by at least one PDCCH monitoring occasion index.
  8. The apparatus according to any of claims 1-7, wherein upon the apparatus determining that DAI bit number of 4 bits is not configured, or that  DAI bit number of 2 bits is configured, the apparatus further determines DAI with modulus 4 operation based upon global counting with configured order for the at least one PDCCH monitoring occasion from a different TRP.
  9. The apparatus according to any of claims 1-8, wherein the at least one global DAI counting scheme is configured to count based on at least one 2-bit indication, and the at least one local DAI counting scheme is configured to count based on at least one 2-bit indication.
  10. The apparatus according to any of claims 1-9, wherein upon determining that no CA is configured, the apparatus further configures bit number 2 or 4 for DAI according to channel quality.
  11. The apparatus according to any of claims 1-10, wherein the apparatus further determines whether at least one dynamic assignment index (DAI) bit number is configured.
  12. An apparatus, comprising:
    at least one processor; and
    at least one memory including computer program code,
    wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus to:
    receive at least one physical downlink control channel (PDCCH)  associated with at least one dynamic assignment index (DAI) according to at least one local DAI counting scheme and/or at least one global DAI counting scheme, wherein the received PDCCH comprises at least one downlink control information (DCI) field comprising at least one downlink assignment index (DAI) ;
    detect at least one missing detected PDCCH; and
    determine at least one hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook size.
  13. The apparatus according to claim 12, wherein the at least one local DAI counting scheme is configured to count each of a plurality of PDCCHs on a plurality of TRPs separately, and the at least one global DAI counting scheme is configured to count multiple PDCCHs on multiple TRPs as a single count.
  14. The apparatus according to any of claims 12 and 13, wherein the at least one global DAI counting scheme takes into account channel qualities between TRPs and the user equipment.
  15. The apparatus according to any of claims 12-14, wherein the global counting scheme is configured to start counting in the order from a PDCCH on a TRP with the worst channel quality to a PDCCH on a TRP with the best channel quality.
  16. The apparatus according to any of claims 12-15, wherein the at least one reference TRP is associated with at least one channel quality exceeding at least one channel quality of at least one other TRP.
  17. The apparatus according to any of claims 12-16, wherein one global PDCCH index is used in DAI of the reference TRP to provide checking ability for the missing PDCCH from other TRP.
  18. A method according to any of claims 1-17.
  19. A non-transitory computer-readable medium encoding instructions that, when executed in hardware, perform a process according to any of claims 1-17.
  20. An apparatus comprising means for performing a process according to any of claims 1-17.
  21. An apparatus comprising circuitry configured to cause the apparatus to perform a process according to any of claims 1-17.
  22. A computer program product encoded with instructions for performing a process according to any of claims 1-17.
PCT/CN2019/107843 2019-09-25 2019-09-25 Dai scheme for joint ack/nack feedback in multi-trp/panel transmission WO2021056264A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/107843 WO2021056264A1 (en) 2019-09-25 2019-09-25 Dai scheme for joint ack/nack feedback in multi-trp/panel transmission
CN201980100771.9A CN114503720A (en) 2019-09-25 2019-09-25 DAI scheme for joint ACK/NACK feedback in multiple TRP/panel transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107843 WO2021056264A1 (en) 2019-09-25 2019-09-25 Dai scheme for joint ack/nack feedback in multi-trp/panel transmission

Publications (1)

Publication Number Publication Date
WO2021056264A1 true WO2021056264A1 (en) 2021-04-01

Family

ID=75165491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107843 WO2021056264A1 (en) 2019-09-25 2019-09-25 Dai scheme for joint ack/nack feedback in multi-trp/panel transmission

Country Status (2)

Country Link
CN (1) CN114503720A (en)
WO (1) WO2021056264A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210116591A (en) * 2019-02-15 2021-09-27 엘지전자 주식회사 Method for transmitting and receiving data in wireless communication system and apparatus therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160295561A1 (en) * 2015-04-06 2016-10-06 Samsung Electronics Co., Ltd Codeword determination for acknowledgement information
CN106714320A (en) * 2015-11-16 2017-05-24 电信科学技术研究院 Method and device for transmitting downlink control information (DCI)
CN110061816A (en) * 2018-08-31 2019-07-26 中国信息通信研究院 A kind of mobile communication system, the network equipment, terminal device and data dispatching method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160295561A1 (en) * 2015-04-06 2016-10-06 Samsung Electronics Co., Ltd Codeword determination for acknowledgement information
CN106714320A (en) * 2015-11-16 2017-05-24 电信科学技术研究院 Method and device for transmitting downlink control information (DCI)
CN110061816A (en) * 2018-08-31 2019-07-26 中国信息通信研究院 A kind of mobile communication system, the network equipment, terminal device and data dispatching method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC: "Enhancements on multi-TRP/panel transmission", 3GPP DRAFT; R1-1906224, vol. RAN WG1, 3 May 2019 (2019-05-03), Reno USA, pages 1 - 32, XP051708263 *
SAMSUNG: "HARQ Management and Feedback", 3GPP DRAFT; R1-1720340, vol. RAN WG1, 18 November 2017 (2017-11-18), Reno, USA, pages 1 - 8, XP051369925 *

Also Published As

Publication number Publication date
CN114503720A (en) 2022-05-13

Similar Documents

Publication Publication Date Title
US11627557B2 (en) Communication device, system and method for communication using feedback
CN112154619B (en) Method and apparatus for hybrid automatic repeat request (HARQ)
US10778377B2 (en) Methods, apparatuses and user equipment for hybrid automatic repeat request transmission
US20200106569A1 (en) Mechanisms for postponing hybrid automatic repeat request acknowledgement (harq-ack) feedback
WO2020093336A1 (en) Method and devices for hybrid automatic repeat request
US10849120B2 (en) Methods, apparatus and systems for determining a size of a feedback signal in a wireless communication
US8537702B2 (en) Method of handling downlink signaling and related communication device
US20180098345A1 (en) Dynamic codebook adaptation for enhanced carrier aggregation
US20220272726A1 (en) Report of harq feedback in sidelink transmission
US11394504B2 (en) Method and apparatus for uplink transmission
CN111431682B (en) Communication method, communication device, and storage medium
US20140003276A1 (en) Method for measuring transmission error information and network device
WO2018091072A1 (en) Configurable channel quality indicator (cqi) reporting for wireless networks
US20190132106A1 (en) Uplink transmission method and apparatus
WO2021056264A1 (en) Dai scheme for joint ack/nack feedback in multi-trp/panel transmission
CN113994617A (en) Method, apparatus and computer readable medium for hybrid automatic repeat request feedback
EP4145746A1 (en) Communication method and apparatus
CN113966001A (en) Semi-persistent scheduling data transmission triggered hybrid automatic repeat request acknowledgement reporting
WO2024020947A1 (en) Control information multiplexing for wireless communications
CN114342552A (en) Discontinuous Transmission (DTX) detection
WO2015089833A1 (en) Cross-carrier scheduling and acknowledgment transmission
US12004127B2 (en) Communication device, system and method for communication using feedback
CN114826521B (en) Control information transmitting method, control information receiving device and storage medium
US20230299893A1 (en) Communication Method And Apparatus
CN114070505B (en) Method and device for determining HARQ codebook, method and device for configuring HARQ codebook, storage medium, terminal and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947413

Country of ref document: EP

Kind code of ref document: A1