WO2021056235A1 - 数字信号处理器以及相关芯片及手持装置 - Google Patents

数字信号处理器以及相关芯片及手持装置 Download PDF

Info

Publication number
WO2021056235A1
WO2021056235A1 PCT/CN2019/107694 CN2019107694W WO2021056235A1 WO 2021056235 A1 WO2021056235 A1 WO 2021056235A1 CN 2019107694 W CN2019107694 W CN 2019107694W WO 2021056235 A1 WO2021056235 A1 WO 2021056235A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital
sensing
signal
integrated
sensing signals
Prior art date
Application number
PCT/CN2019/107694
Other languages
English (en)
French (fr)
Inventor
徐荣贵
徐建昌
林永福
徐嘉骏
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2019/107694 priority Critical patent/WO2021056235A1/zh
Priority to CN201980002091.3A priority patent/CN112840303A/zh
Publication of WO2021056235A1 publication Critical patent/WO2021056235A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • This application relates to a digital signal processing technology, in particular to a digital signal processor and related chips and handheld devices.
  • touch interfaces include touch buttons, touch sliders or touch wheels, and touch panels or touch screens.
  • touch screen is used to sense the capacitance defined by the touch screen and the object, and accordingly generate analog sensing signals.
  • the analog front-end circuit is used for performing analog-to-digital conversion on the analog sensing signal to generate a digital sensing signal, so that the digital signal processor performs subsequent processing based on the digital sensing signal.
  • the operation of the touch screen, the analog front-end circuit, and the digital signal processor often affect the ability of the electronic device to sense objects.
  • the design cost it is impossible to increase the design complexity of touch screens, analog front-end circuits, and digital signal processors without limitation. Therefore, in order to balance the sensing capability and design cost at the same time, improving the processing method of the sensing signal has become an important work item.
  • One of the objectives of the present application is to disclose a digital signal processing technology, especially a digital signal processor and related chips and handheld devices, to solve the above-mentioned problems.
  • An embodiment of the present application discloses a digital signal processor coupled to an analog front-end circuit, the analog front-end circuit is coupled to a touch screen, the touch screen includes a plurality of sensing channels, the plurality of sensing channels are real-time The ground outputs a plurality of analog sensing signals respectively according to the detected capacitance change, and the analog front-end circuit is used to perform analog-to-digital conversion on the plurality of analog sensing signals output by the plurality of sensing channels to generate multiple Each digital sensing signal corresponds to a plurality of sensing channels.
  • the digital signal processor is used for judging whether there is an object approaching above the touch screen based on the plurality of digital sensing signals
  • the digital signal processor includes: a signal integration circuit coupled to the analog front-end circuit for Receiving the plurality of digital sensing signals, and generating a plurality of to-be-integrated sensing signal combinations corresponding to the plurality of digital sensing signals respectively according to the plurality of digital-sensing signals, and sensing the plurality of to-be-integrated sensing signals
  • the signal combinations respectively perform a signal integration operation to generate a plurality of integrated sensing signals, the plurality of to-be-integrated sensing signal combinations each include at least two digital sensing signals of the plurality of digital sensing signals; and a proximity event determining circuit , Coupled to the signal integration circuit, for determining whether the object is approaching above the touch screen based on the plurality of integrated sensing signals.
  • An embodiment of the application discloses a chip.
  • the chip includes the aforementioned digital signal processor.
  • An embodiment of the application discloses an electronic device.
  • the electronic device includes the aforementioned digital signal processor.
  • the digital signal processor disclosed in the present application can increase the signal-to-noise ratio of the sensing signal used to determine whether an object is approaching the touch screen, and thus can improve the accuracy of the determination result.
  • FIG. 1 is a block diagram of an embodiment in which the digital signal processor of this application is applied to a touch screen.
  • FIG. 2 is a block diagram of the digital signal processor of FIG. 1.
  • FIG. 2 is a block diagram of the digital signal processor of FIG. 1.
  • FIG. 3 is a schematic diagram of an exemplary operation of the touch screen of FIG. 1 to sense an object.
  • FIG. 4 is a schematic diagram of the digital signal processor of FIG. 2 operating under the exemplary operation of FIG. 3.
  • FIG. 5 shows a schematic diagram of a sensing signal under the exemplary operation of FIG. 3.
  • FIG. 6 shows a schematic diagram of a sensing signal under the exemplary operation of FIG. 3.
  • FIG. 7 is a block diagram of another embodiment of the digital signal processor of this application.
  • FIG. 8 is a schematic diagram of the digital signal processor of FIG. 7 operating under the exemplary operation of FIG. 3.
  • FIG. 9 is a block diagram of still another embodiment of the digital signal processor of this application.
  • Fig. 10 is a schematic diagram of an embodiment in which a chip including the digital signal processor shown in Fig. 1, Fig. 7 or Fig. 9 is applied to an electronic device.
  • first and second features are in direct contact with each other; and may also include
  • additional components are formed between the above-mentioned first and second features, so that the first and second features may not be in direct contact.
  • present disclosure may reuse component symbols and/or labels in multiple embodiments. Such repeated use is based on the purpose of brevity and clarity, and does not in itself represent the relationship between the different embodiments and/or configurations discussed.
  • spatially relative terms here such as “below”, “below”, “below”, “above”, “above” and similar, may be used to facilitate the description of the drawing in the figure
  • the relationship between one component or feature relative to another component or feature is shown.
  • the original meaning of these spatially-relative vocabulary covers a variety of different orientations of the device in use or operation, in addition to the orientation shown in the figure.
  • the device may be placed in other orientations (for example, rotated 90 degrees or in other orientations), and these spatially-relative description vocabulary should be explained accordingly.
  • the touch screen is used to sense the capacitance defined by the touch screen and the object, and accordingly generate an analog sensing signal, wherein the capacitance is positively related to the magnitude of the analog sensing signal.
  • the analog front-end circuit is used to perform analog-to-digital conversion on the analog sensing signal to generate a digital sensing signal, wherein the magnitude of the analog sensing signal is positively related to the magnitude of the digital sensing signal.
  • the narrative method "the magnitude of the digital sensing signal” does not mean the magnitude of the digital sensing signal, but refers to the size of the capacitance corresponding to the encoding of the digital sensing signal.
  • the digital signal processor determines whether there is an object close to the touch screen based on the digital sensing signal, and provides the determination result accordingly.
  • the judgment result can reflect the real situation between the object and the touch screen.
  • the accuracy of the judgment result is often affected by the magnitude of the analog sensing signal and the digital sensing signal. More precisely, the accuracy of the judgment result is positively related to the signal-to-noise ratio of the analog sensing signal and the signal-to-noise ratio of the digital sensing signal. Therefore, to improve the accuracy of the judgment result, at least the signal-to-noise ratio of the digital sensing signal can be improved.
  • the signal processing method of the digital signal processor of the present application can improve the signal-to-noise ratio of the digital sensing signal, and thus can improve the accuracy of the judgment result. The details are described below.
  • FIG. 1 is a block diagram of an embodiment in which the digital signal processor 10 of this application is applied to a touch screen 30.
  • the digital signal processor 10 is coupled to the analog front-end circuit 20.
  • the analog front end circuit 20 is coupled to the touch screen 30.
  • the touch screen 30 includes a plurality of sensing channels X1 to Xn and Y1 to Ym, where n and m are positive integers.
  • the sensing channels X1 to Xn and Y1 to Ym are arranged as an array. In some embodiments, n and m are equal.
  • the operation modes of the sensing channels X1 to Xn and the sensing channels Y1 to Ym are the same. For brevity, the sensing channels X1 to Xn are taken as an example for description below.
  • the sensing channel is used to detect capacitance in real time (not shown).
  • the sensing channel detects a capacitance (not shown), and the detected capacitance may be a stray capacitance.
  • the sensing channel detects the capacitance defined by the touch screen 30 and the object 40 (not shown).
  • the function of the sensing channel can be described as: the sensing channel detects the capacitance change in real time.
  • the sensing channel X1 outputs the sensing signal S A1 ; the sensing channel X2 outputs the sensing signal S A2 ; and the sensing channel Xn outputs the sensing signal S An , and so on.
  • the analog front-end circuit 20 taking the sensing channel X1 as an example, is used to perform analog-to-digital conversion on the analog sensing signal S A1 output by the sensing channel X1 to generate a digital sensing signal S D1 . Accordingly, the digital sensing signal S D1 corresponds to the sensing channel X1. Similarly, the analog front-end circuit 20 also performs analog-to-digital conversion on the analog sensing signals S A2 to S An output by the other sensing channels X2 to Xn, which will not be repeated here.
  • the digital signal processor 10 is used for judging whether there is an object 40 approaching above the touch screen 30 based on the plurality of digital sensing signals SD1 to SDn. In some embodiments, the digital signal processor 10 is used to determine whether a hovering event caused by the object 40 occurs above the touch screen 30 based on the plurality of digital sensing signals SD1 to SDn. The actual operation mode of the digital signal processor 10 will be described in detail in the embodiment of FIG. 2.
  • FIG. 2 is a block diagram of the digital signal processor 10 of FIG. 1.
  • the digital signal processor 10 includes a signal integration circuit 100 and a proximity event judgment circuit 102.
  • the signal integration circuit 100 is coupled to the analog front-end circuit 20 of FIG. 1 for receiving a plurality of digital sensing signals SD1 to SDn , and generating a plurality of to-be-integrated sensing signals according to the plurality of digital sensing signals SD1 to SDn Signal combination [S D1 , SD2 , ..., SD (1+K-1) ], [S D2 , SD3 , ..., SD (2+K-1) ], [S D3 , SD4 ,... , S D(3+K-1) ]..., and [S D(n-K+1) , S D(n-K+2) , S Dn ], where K represents a combination of sensing signals to be integrated The number of digital sensing signals.
  • Each of the sensing signal combinations to be integrated includes at least two digital sensing signals of a plurality of digital sensing signals SD1 to SDn. In some embodiments, each combination of sensing signals to be integrated includes the same number of digital sensing signals. In some embodiments, each combination of sensing signals to be integrated is different from each other.
  • a plurality of sensing signal combinations to be integrated [ SD1 , SD2 ,..., SD (1+K-1) ], [ SD2 , SD3 ,..., SD (2+K- 1) ], [S D3 , S D4 ,..., S D(3+K-1) ]..., and [S D(n-K+1) , S D(n-K+2) , S Dn ] Two of them include at least one common digital sensing signal.
  • the sensor signal combinations to be integrated [ SD1 , SD2 ,..., SD (1+K-1) ] and [ SD2 , SD3 ,..., SD (2+K-1) ] include Common digital sensing signal SD2 .
  • sensing signals to be integrated [S D1 , SD2 , ..., SD (1+K-1) ], [S D2 , SD3 , ..., SD (2+K-1) ], [S D3 , S D4 ,..., S D(3+K-1) ]..., and [S D(n-K+1) , S D(n-K+2) , S Dn ] respectively correspond to multiple digital senses Test signals S D1 to S Dn .
  • the digital sensor signal S D1 is the part of the sensor signal combination to be integrated Start signal, and then count (K-1) signals.
  • the (K-1) signals and the digital sensing signal SD1 are the same combination of sensing signals to be integrated.
  • the digital sensing signal SD1 is used as the starting signal, and one signal is pushed back to obtain the digital sensing signal SD2 , where the digital sensing signals SD1 and SD2 correspond to multiple sensing channels X1 To the two adjacent sensing channels X1 and X2 in X7.
  • the digital sensing signals SD1 and SD2 belong to the same sensing signal combination to be integrated.
  • the sensing signal combination to be integrated corresponding to the digital sensing signal SD1 is [S D1 , S D2 ].
  • the signal integration circuit 100 pairs multiple sensor signal combinations to be integrated [ SD1 , SD2 ,..., SD (1+K-1) ], [ SD2 , SD3 ,..., SD (2+K) -1) ], [S D3 , S D4 ,..., S D(3+K-1) ]..., and [S D(n-K+1) , S D(n-K+2) , S Dn ] Perform signal integration operations to generate a plurality of integrated sensing signals S I1 to S I(n-K+1) respectively .
  • the signal integration circuit 100 to-be-integrated sensing signal combination [S D1 , S D2 , ..., S D (1+K-1) ] Perform a signal integration operation to generate an integrated sensing signal S I1 , and so on.
  • the signal integration circuit 100 generates a plurality of integrated sensing signals S I1 to S I(n-K+1) by adding at least two digital sensing signals of each combination of sensing signals to be integrated. Taking the to-be-integrated sensing signal combinations [S D1 , SD2 ,..., SD (1+K-1) ] as an example, the signal integration circuit 100 combines the to-be-integrated sensing signal combinations [S D1 , SD2 ,..., S D (1 + K-1 )] of the digital sensing signal S D1, S D2, ..., S D (1 + K-1) are summed to produce integrated sensed signal S I1, and so on.
  • the proximity event determination circuit 102 is coupled to the signal integration circuit 100 for determining whether there is an object 40 approaching above the touch screen 30 based on a plurality of integrated sensing signals S I1 to S I(n-K+1). In some embodiments, the proximity event determining circuit 102 determines whether a hovering event occurs above the touch screen 30 based on a plurality of integrated sensing signals S I1 to S I(n-K+1).
  • the proximity event judging circuit 102 determines whether an object 40 is approaching above the touch screen 30 based on integrated sensing signals instead of digital sensing signals, the accuracy of the judgment result of the proximity event judging circuit 102 is better than that of the proximity event judging circuit The accuracy of the judgment result obtained by the judgment 102 based on the digital sensing signal is high. This is because the signal-to-noise ratio of the integrated sensing signal is better than that of the digital sensing signal.
  • the signal-to-noise ratio of the integrated sensing signal can be expressed as the following equation (1), where in the following equation (1), the integrated sensing signal S I1 is taken as an example, and a sensing signal to be integrated The combination includes 2 digital sensing signals.
  • SNR I1 represents the signal-to-noise ratio of the integrated sensing signal S I1 ; and, N I1 represents the noise of the integrated sensing signal S I1.
  • Integrating the sensor signal S I1 is a sum of a digital sensing signal of S D1 and S D2.
  • the digital sensing signals SD1 and SD2 represent the capacitance changes detected by the sensing channels X1 and X2, respectively. Accordingly, the digital sensing signal S D1 and S D2 sum of the available sensing channels X1 and X2 detected amount of change in the total capacitance represented. Therefore, the integrated sensing signal S I1 can be expressed as the following equation (2).
  • dC1 represents the capacitance change detected by the sensing channel X1; and, dC2 represents the capacitance change detected by the sensing channel X2.
  • the noise N I1 of the integrated sensing signal S I1 is related to the noise of the capacitance changes dC1 and dC2 detected by the sensing channels X1 and X2.
  • the noise of the capacitance changes dC1 and dC2 is further related to the standard deviation of the capacitance change dC1 and the standard deviation of the capacitance change dC2, respectively, which can be expressed as the following equation (3).
  • ⁇ C1 represents the standard deviation of the capacitance change dC1; and, ⁇ C2 represents the standard deviation of the capacitance change dC2.
  • Equation (4) can be further simplified to the following equation (5).
  • the difference between the capacitance changes dC1 and dC2 is substantially not large, and can be expressed as the following equation (6).
  • the signal-to-noise ratio of the digital sensing signal can be expressed as the following equation (8), where in the following equation (8), the digital sensing signal SD1 is taken as an example.
  • SNR D1 represents the signal-to-noise ratio of the digital sensing signal S D1 ; and, N D1 represents the noise of the digital sensing signal S D1.
  • the digital sensing signal S D1 represents the capacitance change detected by the sensing channel X1. Accordingly, the digital sensing signal S D1 can be represented by the capacitance change dC1 detected by the sensing channel X1. Therefore, the digital sensing signal SD1 can be expressed as the following equation (9).
  • the noise of the capacitance variation dC1 detected by the sensing channel X1 is related to the standard deviation of the capacitance variation dC1, which can be expressed as the following equation (10).
  • equation (11) After putting equations (9) and (10) into equation (8) appropriately, the following equation (11) can be obtained.
  • the signal-to-noise ratio SNR I1 of the integrated sensing signal S I1 is substantially greater than the signal-to-noise ratio SNR D1 of the digital sensing signal S D1 Times, and p is substantially equal to 1, so in simple terms, the signal-to-noise ratio SNR I1 of the integrated sensing signal S I1 is substantially greater than the signal-to-noise ratio SNR D1 of the digital sensing signal S D1 Times.
  • the accuracy of the judgment result obtained by the proximity event judgment circuit 102 based on the integrated sensing signal is higher than the accuracy of the judgment result obtained based on the digital sensing signal.
  • FIG. 3 is a schematic diagram of an exemplary operation of the touch screen 30 of FIG. 1 to sense an object 40.
  • the touch screen 30 includes 7 sensing channels X1 to X7 and 7 sensing channels Y1 to Y7.
  • the sensing channels X1 to X7 are taken as an example.
  • the projection point of the object 40 on the touch screen 30 is located at the intersection of the sensing channels X4 and Y4. Therefore, in the sensing channels X1 to X7, ideally, the capacitance change detected by the sensing channel X4 is the largest, and the capacitance change detected by the sensing channels X3 and X5 is the second largest. To put it simply, the farther away the sensing channel X4 is, the smaller the capacitance change detected by the sensing channel.
  • the signal integration circuit 100 receives a plurality of digital sensing signals SD1 to SD7 .
  • Signal integrated circuit 100 according to the digital sensing signal S D1 is generated to be integrated sensed signal composition [S D1, S D2]; produced to be integrated sensing signal composition according to the digital sensing signal S D2 [S D2, S D3 ]; and, According to the digital sensing signal SD3, the to-be-integrated sensing signal combination [ SD3 , SD4 ] is generated, and so on.
  • the signal integration circuit 100 performs a signal integration operation to add the digital sensing signals S D1 and SD2 to the integrated sensing signal combination [S D1 , S D2 ] to generate an integrated sensing signal S I1 ; the to-be integrated sensing signal combination [S D1, S D2] S D2 , S D3 ] perform a signal integration operation to add the digital sensing signals S D2 and SD3 to generate an integrated sensing signal S I2 ; and, to perform signal integration for the combination of sensing signals to be integrated [S D3 , S D4] The operation adds the digital sensing signals S D3 and SD4 to generate an integrated sensing signal S I3 , and so on.
  • the proximity event determination circuit 102 determines whether an object 40 is approaching above the touch screen 30 based on the plurality of integrated sensing signals S I1 to S I6.
  • the accuracy of the judgment result obtained by the proximity event judgment circuit 102 based on the integrated sensing signal is higher than the accuracy of the judgment result obtained based on the digital sensing signal.
  • FIG. 5 and 6 show schematic diagrams of sensing signals under the exemplary operation of FIG. 3. 5, the horizontal axis represents the sensing channel; and the vertical axis represents the amount of capacitance change. In FIG. 5, only the sensing channels X2, X3, X4, X5, and X6 and the corresponding capacitance changes of each are shown for simplicity. It can be observed from FIG. 5 that the plurality of sensing channels X1 to Xn corresponding to the plurality of digital sensing signals S D1 to S Dn exhibit a Gaussian distribution in terms of capacitance variation as a whole.
  • the digital signal processor 10 determines whether there is an object 40 approaching above the touch screen 30 based on a plurality of digital sensing signals SD1 to SDn, and as described in the embodiment of FIG. The accuracy of the judgment result obtained by the comparative example is relatively low.
  • the horizontal axis represents the equivalent sensing channel; and the vertical axis represents the capacitance change.
  • the equivalent sensing channel represents the sensing channel equivalently corresponding to the integrated sensing signal.
  • the equivalent sensing channel is not a physical channel on the touch screen 30, that is, the equivalent sensing channel is not one of the sensing channels X1 to X7.
  • This embodiment includes six equivalent sensing channels X1' to X6' corresponding to a plurality of integrated sensing signals S I1 to S I6 .
  • the equivalent sensing channel X2' represents the equivalent sensing channel corresponding to the integrated sensing signal S I2 ; and, the equivalent sensing channel X3' represents the equivalent corresponding sensing channel of the integrated sensing signal S I3. Channel, and so on.
  • FIG. 5 only the equivalent sensing channels X2', X3', X4', and X5' and the corresponding capacitance changes are shown for simplicity. It can be observed from FIG. 5 that the multiple equivalent sensing channels X1 ′ to X6 ′ corresponding to the multiple integrated sensing signals S I1 to S I6 exhibit a non-Gaussian distribution as a whole in terms of capacitance variation.
  • FIG. 7 is a block diagram of another embodiment of the digital signal processor 50 of this application. 7, the digital signal processor 50 is similar to the digital signal processor 10 of FIG. 2, the difference is that the digital signal processor 50 further includes a weighting circuit 500, and the signal integration circuit 510 corresponds to the weighting circuit 500 compared to the signal integration circuit 100 made further changes.
  • the weighting circuit 500 is coupled to the analog front-end circuit 20 and the signal integration circuit 510 of FIG. 1 for receiving a plurality of digital sensing signals S D1 to S Dn and generating based on the plurality of digital sensing signals S D1 to S Dn A plurality of weight signals SW1 to SWn are sent to the signal integration circuit 510.
  • the multiple weight signals S W1 to S Wn correspond to the multiple digital sensing signals S D1 to S Dn, respectively .
  • the weight circuit 500 determines a plurality of weights to signals S W1 S Wn based on the relative magnitude between a plurality of digital sensed signal S D1 to S Dn, thereby generating a plurality of weights to signals S W1 S Wn .
  • the magnitude of the digital sensing signal is positively related to the magnitude of the weight signal.
  • the operation mode of the signal integration circuit 510 is similar to the operation mode of the signal integration circuit 100 in FIG. 1, the difference is that the signal integration circuit 510 further combines a plurality of sensing signals to be integrated based on a plurality of weight signals S W1 to S Wn [ S D1 , S D2 , ..., S D(1+K-1) ], [S D2 , S D3 , ..., S D(2+K-1) ], [S D3 , S D4 , ..., S D (3+K-1) ]..., and [S D(n-K+1) , S D(n-K+2) , S Dn ] perform signal integration operations.
  • the signal integration circuit 510 generates a plurality of integrated sensing signals S I1 to S by multiplying at least two digital sensing signals of each combination of sensing signals to be integrated by corresponding weight signals and adding them together. I(n-K+1) .
  • the digital sensing signal S D1 corresponds to the weight signal S W1 ;
  • the digital sensing signal S D2 corresponds to the weight The value signal SW2 ;
  • the digital sensing signal SD (1+K-1) corresponds to the weight signal SW1(1+K-1) , and so on.
  • the integrated sensing signal S I1 can be expressed as the following equation (12).
  • S I1 S D1 x S W1 +...+S D(1+K-1) x S W1(1+K-1) (12)
  • the remaining integrated sensing signals S I2 to S I(n-K+1) can be obtained based on equations similar to equation (12).
  • the signal-to-noise ratio SNR I1 of the integrated sensing signal S I1 can be expressed as the following equation (13), where K is 2 in this embodiment.
  • equation (13) can be further simplified into the following equation (14).
  • the weight circuit 500 includes a trial integration circuit 502, an integration judgment circuit 504, and a weight evaluation circuit 506.
  • the signal integration method of the trial integration circuit 502 is substantially the same as the signal integration method of the signal integration circuit 100 of FIG. 2, so the description of the signal integration of the trial integration circuit 502 will be omitted in due course.
  • Trial integrated circuit 502 for receiving a plurality of digital sensed signal S D1 to S Dn, and according to a plurality of digital sensed signal S D1 to S Dn generates a plurality of sensing signals to be integrated composition [S D1, S D2, ... , S D(1+K-1) ], [S D2 , S D3 ,..., S D(2+K-1) ], [S D3 , S D4 ,..., S D(3+K-1) ] ..., and [S D(n-K+1) , S D(n-K+2) , S Dn ].
  • the trial integration circuit 502 is used to combine at least two digital sensing signals of each combination of sensing signals to be integrated with the same weight, for example, the weight is 1, and add them to generate a plurality of trial integration results ST1 to ST( n-K+1) .
  • the trial integration circuit 502 combines the sensing signals to be integrated [S D1 , S D2 , ..., S D (1 + K-1 )] of the digital sensing signal S D1, S D2, ..., S D (1 + K-1) are the weights to produce a pilot phase integration result S T1, and so on.
  • the integration judgment circuit 504 is coupled to the trial integration circuit 502 for judging the relative magnitude between the plurality of digital sensing signals SD1 to SDn based on the plurality of trial integration results ST1 to ST(n-K+1).
  • Weight evaluation circuit 506 is coupled to the integrated circuit 504 is determined, for determining the plurality of weights to signals S W1 S Wn based on the relative magnitude between a plurality of digital sensed signal S D1 to S Dn.
  • the magnitude of the digital sensing signal is positively related to the magnitude of the weight signal.
  • the weight evaluation circuit 506 will evaluate the larger the weight signal.
  • FIG. 8 is a schematic diagram of the digital signal processor 50 of FIG. 7 operating under the exemplary operation of FIG. 3, where K is 2 in this embodiment.
  • the trial integration circuit 502 receives a plurality of digital sensing signals SD1 to SD7 .
  • Trial integrated circuit 502 according to the digital sensing signal S D1 is generated to be integrated sensed signal composition [S D1, S D2]; produced to be integrated sensed signal composition [S D2, S D3] according to the digital sensing signal S D2; and, According to the digital sensing signal SD3, the to-be-integrated sensing signal combination [ SD3 , SD4 ] is generated, and so on.
  • Pilot integration circuit 502 integrate the sensed signal treatment composition [S D1, S D2] two digital sensing signal S D1 to S D2 and same weight value to produce a phase 1 trial integration result S T1; treat integrating the sensor signal combiner
  • the two digital sensing signals S D2 and S D3 of [S D2 , S D3 ] are added with the same weight 1 to produce the trial integration result S T2 ; and, the combination of the sensing signals to be integrated [S D3 , S D4 ]
  • the two digital sensing signals SD3 and SD4 are added with the same weight 1 to generate the trial integration result S T3 , and so on.
  • trial integration results ST1 to ST6 because the trial integration results ST3 and ST4 both include the largest digital sensing signal S D4 , they are compared with the other trial integration results in the trial integration results ST1 to ST6 , The trial integration results S T3 and S T4 are the largest.
  • the integration judgment circuit 504 can infer that among the digital sensing signals S D1 to SD7 , the digital sensing signal S D4 is the largest. Furthermore, the integration circuit 504 is determined corresponding sense channels X4 digital sensing signal S D4 is the central point, X3 and X5 sense channel is determined that the corresponding sense channels adjacent X4 digital sensing signal S D3 and S D5 is The second largest, and so on.
  • Weight evaluation circuit 506 in response to the digital sensing signal S to the maximum D4, assess digital sensing signal value S D4 weights W4 of the signal S is a maximum; in response to the digital sensing signal S S D3 and D5 is the second largest, assess D3 digital sensing signal S S and the weight signals S and S W3 D5 W5 of the second largest, and so on.
  • the weight evaluation circuit 506 outputs the weight signals SW1 to SW7 to the signal integration circuit 510.
  • the signal integration circuit 510 multiplies the two digital sensing signals S D1 and SD2 of the combination of sensing signals to be integrated [S D1 , S D2 ] by the corresponding weight signals S W1 and SW2 and adds them to generate an integrated sensing signal.
  • FIG. 9 is a block diagram of still another embodiment of the digital signal processor 70 of this application.
  • the digital signal processor 70 is similar to the digital signal processor 10 of FIG. 2, the difference is that the digital signal processor 70 further includes an activation module 700 and a touch module 702.
  • the activation module 700 is coupled to the analog front-end circuit 20 of FIG. 1 for receiving a plurality of digital sensing signals SD1 to SDn , and selectively integrating the signal with the signal integration circuit 100 according to the plurality of digital sensing signals SD1 to SDn Or the touch module 702 sends out the enable signal EN.
  • the signal integration circuit 100 When the signal integration circuit 100 receives the enable signal EN and is enabled in response to the enable signal EN, the signal integration circuit 100 generates a plurality of to-be-integrated sensing signal combinations [S D1 , SD2 , ..., SD (1 +K-1) ], [S D2 , S D3 , ..., SD (2+K-1) ], [S D3 , SD4 , ..., SD (3+K-1) ]..., and [ S D(n-K+1) , S D(n-K+2) , S Dn ].
  • the signal integration circuit 100 does not receive the enabling signal EN and is not enabled accordingly, the signal integration circuit 100 does not generate a plurality of to-be-integrated sensing signal combinations [S D1 , S D2 , ..., S D(1 +K-1) ], [S D2 , S D3 , ..., S D(2+K-1) ], [S D3 , S D4 , ..., SD (3+K-1) ]..., and [ S D(n-K+1) , S D(n-K+2) , S Dn ], so that the proximity event judgment circuit 102 does not act accordingly.
  • the touch module 702 When the touch module 702 receives the enable signal EN and is enabled in response to the enable signal EN, the touch module 702 determines the touch of the touch screen 30 by the object 40 based on the plurality of digital sensing signals SD1 to SDn.
  • the activation module 700 is used to enable the touch module 702 and not enable the signal integration circuit 100 when at least one of the plurality of digital sensing signals S D1 to S Dn exceeds a threshold, and to enable the plurality of digital sensing signals When the test signals S D1 to S Dn do not reach the threshold, the signal integration circuit 100 is enabled and the touch module 702 is not enabled.
  • the threshold is a specific value. In some embodiments, the threshold is a specific numerical range.
  • the activation module 700 when the activation module 700 enables the signal integration circuit 100, the activation module 700 is also used to turn on the touch screen 30.
  • this application is not limited to this.
  • the touch screen 30 can be urged to light up by other modules.
  • the signal integration circuit 100 transmits a plurality of integrated sensing signals S I1 to S I(n-K+1) to a central processing unit (central processing unit). , CPU), the central processing unit determines based on the multiple integrated sensing signals S I1 to S I(n-K+1) that multiple equivalent coordinates respectively correspond to the multiple integrated sensing signals S I1 to S I(n-K +1) .
  • the digital signal processor 50 of FIG. 7 may also include an activation module 700 and a touch module 702.
  • a chip includes a digital signal processor 10 or 50.
  • the chip may be a semiconductor chip implemented by a different process.
  • FIG. 10 is a schematic diagram of an embodiment in which the chip 62 including the digital signal processor 10, 50, or 70 is applied to the electronic device 60.
  • the electronic device 60 includes a chip 62 and a display screen component 64.
  • the display screen assembly 64 includes a touch screen 30.
  • the electronic device 60 may be any handheld electronic device such as a smart phone, a personal digital assistant, a handheld computer system, or a tablet computer.

Abstract

本申请公开了一种数字信号处理器(10)以及相关芯片及手持装置。所述数字信号处理器用以基于多个数字感测信号(S D1~S Dn)判断于触摸屏上方是否有物体接近,所述数字信号处理器包括:信号整合电路(100),用以接收所述多个数字感测信号,并依据所述多个数字感测信号产生多个待整合感测信号组合分别对应所述多个数字感测信号,并对所述多个待整合感测信号组合分别执行信号整合操作以产生多个整合感测信号(S I1~S I(n-K+1)),所述多个待整合感测信号组合均包括所述多个数字感测信号的至少二个数字感测信号;以及接近事件判断电路(102),耦接于所述信号整合电路,用以基于所述多个整合感测信号判断于所述触摸屏上方是否有所述物体接近。

Description

数字信号处理器以及相关芯片及手持装置 技术领域
本申请涉及一种数字信号处理技术,尤其涉及一种数字信号处理器以及相关芯片及手持装置。
背景技术
随着科技的发展与进步,移动电话、数字相机、平板计算机、笔记本电脑等移动电子装置已经成为了人们生活中不可或缺的工具。这些电子装置往往配有触摸操作界面。各种触摸界面中,包括有触摸按键、触摸滑条或触摸滑轮、以及触摸面板或触摸屏。在触摸屏的方案中,触摸屏用以感测所述触摸屏与物体所界定出的电容,并且据以产生模拟感测信号。模拟前端电路用以对模拟感测信号进行模数转换以产生数字感测信号,以使数字信号处理器基于所述数字感测信号进行后续的处理。
触摸屏、模拟前端电路及数字信号处理器的操作往往会影响电子装置感测物体的能力。但,考虑到设计成本,不可能无限制的增加触摸屏、模拟前端电路及数字信号处理器的设计复杂度。因此,为了同时兼顾感测能力和设计成本,改善感测信号的处理方式已成为一个重要的工作项目。
发明内容
本申请的目的之一在于公开一种数字信号处理技术,尤其涉及一种数字信号处理器以及相关芯片及手持装置,来解决上述问题。
本申请的一实施例公开了一种数字信号处理器,耦接至模拟前端电路,所述模拟前端电路耦接至触摸屏,所述触摸屏包括多个感测通道,所述多个感测通道实时地依据侦测到的电容变化量分别输出多个模拟感测信号,所述模拟前端电路用以对所述多个感测通道输出的所述多个模拟感测信号进行模数转换以产生多个数字感测信号分别对应多个感测通道。所述数字信号处理器用以基于所述多个数字感测信号判断于所述触摸屏上方是否有物体接近,所述数字信号处理器包括:信号整合电路,耦接于所述模拟前端电路,用以接收所述多个数字感测信号,并依据所述多个数字感测信号产生多个待整合感测信号组合分别对应所述多个数字感测信号,并对所述多个待整合感测信号组合分别执行信号整合操作以产生多个整合感测信号,所述多个待整合感测信号组合均包括所述多个数字感测信号的至少二个数字感测信号;以及接近事件判断电路,耦接于所述信号整合电路,用以基于所述多个整合感测信号判断于所述触摸屏上方是否有所述物体接近。
本申请的一实施例公开了一种芯片。所述芯片包括前述的数字信号处理器。
本申请的一实施例公开了一种电子装置。所述电子装置包括前述的数字信号处理器。
本申请所公开的数字信号处理器能够将用于判断是否有物体接近触摸屏的感测信号的信噪比提升,因而能够提升判断结果的准确度。
附图说明
图1为本申请的数字信号处理器应用于触摸屏的实施例的方块示意图。
图2为图1的数字信号处理器的方块示意图。
图3为图1的触摸屏感测物体的示范性操作的示意图。
图4为图2的数字信号处理器操作在图3的示范性操作下的示意图。
图5显示在图3的示范性操作下的感测信号的示意图。
图6显示在图3的示范性操作下的感测信号的示意图。
图7为本申请的数字信号处理器的另一实施例的方块示意图。
图8为图7的数字信号处理器操作在图3的示范性操作下的示意图。
图9为本申请的数字信号处理器的又另一实施例的方块示意图。
图10为包括图1、图7或图9所示的数字信号处理器的芯片应用在电子装置的实施例的示意图。
其中,附图标记说明如下:
10                       数字信号处理器
20                       模拟前端电路
30                       触摸屏
40                       物体
50                       数字信号处理器
60                       电子装置
62                       芯片
64                       显示屏组件
100                      信号整合电路
102                      接近事件判断电路
500                      权值电路
502                      试行整合电路
504                      整合判断电路
506                      权值评估电路
510                      信号整合电路
S D1~S Dn                  数字感测信号
S A1~S An                 模拟感测信号
S I1~S I(n-K+1)            整合感测信号
S T1~S T(n-K+1)            试行整合结果
S W1~S Wn                 权值信号
X1~Xn                   感测通道
Y1~Ym                   感测通道
EN                       致能信号
具体实施方式
以下揭示内容提供了多种实施方式或例示,其能用以实现本揭示内容的不同特征。下文所述之组件与配置的具体例子系用以简化本揭示内容。当可想见,这些叙述仅为例示,其本意并非用于限制本揭示内容。举例来说,在下文的描述中,将一第一特征形成于一第二特征上或之上,可能包括某些实施例其中所述的第一与第二特征彼此直接接触;且也可能包括某些实施例其中还有额外的组件形成于上述第一与第二特征之间,而使得第一与第二特征可能没有直接接触。此外,本揭示内容可能会在多个实施例中重复使用组件符号和/或标号。此种重复使用乃是基于简洁与清楚的目的,且其本身不代表所讨论的不同实施例和/或组态之间的关系。
再者,在此处使用空间上相对的词汇,譬如「之下」、「下方」、「低于」、「之上」、「上方」及与其相似者,可能是为了方便说明图中所绘示的一组件或特征相对于另一或多个组件或特征之间的关系。这些空间上相对的词汇其本意除了图中所绘示的方位之外,还涵盖了装置在使用或操作中所处的多种不同方位。可能将所述设备放置于其他方位(如,旋转90度或处于其他方位),而这些空间上相对的描述词汇就应该做相应的解释。
虽然用以界定本申请较广范围的数值范围与参数皆是约略的数值,此处已尽可能精确地呈现具体实施例中的相关数值。然而,任 何数值本质上不可避免地含有因个别测试方法所致的标准偏差。在此处,「相同」通常系指实际数值在一特定数值或范围的正负10%、5%、1%或0.5%之内。或者是,「相同」一词代表实际数值落在平均值的可接受标准误差之内,视本申请所属技术领域中具有通常知识者的考虑而定。当可理解,除了实验例之外,或除非另有明确的说明,此处所用的所有范围、数量、数值与百分比(例如用以描述材料用量、时间长短、温度、操作条件、数量比例及其他相似者)均经过「相同」的修饰。因此,除非另有相反的说明,本说明书与附随申请专利范围所揭示的数值参数皆为约略的数值,且可视需求而更动。至少应将这些数值参数理解为所指出的有效位数与套用一般进位法所得到的数值。在此处,将数值范围表示成由一端点至另一端点或介于二端点之间;除非另有说明,此处所述的数值范围皆包括端点。
触摸屏用以感测所述触摸屏与物体所界定出的电容,并且据以产生模拟感测信号,其中电容是正相关于模拟感测信号的大小。模拟前端电路用以对模拟感测信号进行模数转换以产生数字感测信号,其中模拟感测信号的大小正相关于数字感测信号的大小。
需说明的是,在本文中,叙述方式「数字感测信号的大小」并非意味著数字感测信号的幅值的大小,而是指数字感测信号的编码所对应的电容的大小。
数字信号处理器基于数字感测信号例如判断是否有物体靠近触摸屏,据以提供判断结果。当判断结果越准时,判断结果越能反映出物体与触摸屏之间的真实情况。判断结果的准确度往往会受到模拟感测信号及数字感测信号的大小影响。更确切的来说,判断结果的准确度正相关于模拟感测信号的信噪比及数字感测信号的信噪比。因此,要提升判断结果的准确度可以至少从改善数字感测信号的信噪比来著手。本申请的数字信号处理器的信号处理方式能够提升数字感测信号的信噪比,因而能够提升判断结果的准确度,其细节说明如下。
图1为本申请的数字信号处理器10应用于触摸屏30的实施例的方块示意图。参照图1,数字信号处理器10耦接至模拟前端电路20。模拟前端电路20耦接至触摸屏30。触摸屏30包括多个感测通道X1至Xn以及Y1至Ym,其中n及m为正整数。感测通道X1至Xn以及Y1至Ym被设置为阵列。在一些实施例中,n及m相等。感测通道X1至Xn及感测通道Y1至Ym的操作方式相同,为了简洁,以下以感测通道X1至Xn为例进行说明。
感测通道用以实时地侦测电容(图未示)。详言之,当未有物体40靠近触摸屏30时,感测通道侦测出电容(图未示),其中所侦测到的电容可能是杂散电容。另一方面,当有物体40靠近触摸屏30时,感测通道侦测出触摸屏30与物体40所界定出的电容(图未示)。此时电容与杂散电容经适当处理之后,能得到前述电容与杂散电容之间的差值,也就是电容变化量。为了简洁,可将感测通道的功能说明为:感测通道实时地侦测电容变化量。据此,感测通道依据侦测到的电容变化量输出模拟感测信号S A。详言之,感测通道X1输出感测信号S A1;感测通道X2输出感测信号S A2;以及,感测通道Xn输出感测信号S An,依此类推。
模拟前端电路20,以感测通道X1为例,用以对感测通道X1输出的模拟感测信号S A1进行模数转换以产生数字感测信号S D1。据此,数字感测信号S D1对应感测通道X1。同理,模拟前端电路20亦对其它感测通道X2至Xn输出的模拟感测信号S A2至S An进行模数转换,于此不再赘述。
数字信号处理器10用以基于多个数字感测信号S D1至S Dn判断于触摸屏30上方是否有物体40接近。在一些实施例中,数字信号处理器10用以基于多个数字感测信号S D1至S Dn判断于触摸屏30上方是否发生物体40引起的悬停事件。数字信号处理器10实际的操作方式将详细说明于图2的实施例。
图2为图1的数字信号处理器10的方块示意图。参照图2,数 字信号处理器10包括信号整合电路100以及接近事件判断电路102。
信号整合电路100耦接于图1的模拟前端电路20,用以接收多个数字感测信号S D1至S Dn,并依据多个数字感测信号S D1至S Dn产生多个待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]、[S D2、S D3、…、S D(2+K-1)]、[S D3、S D4、…、S D(3+K-1)]…,以及[S D(n-K+1)、S D(n-K+2)、S Dn],其中K代表一个待整合感测信号组合中的数字感测信号的数量。每一个待整合感测信号组合均包括多个数字感测信号S D1至S Dn的至少二个数字感测信号。在一些实施例中,每一待整合感测信号组合均包括相同数量的数字感测信号。在一些实施例中,每一待整合感测信号组合彼此不相同。在一些实施例中,多个待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]、[S D2、S D3、…、S D(2+K-1)]、[S D3、S D4、…、S D(3+K-1)]…,以及[S D(n-K+1)、S D(n-K+2)、S Dn]中的两个包括至少一共同的数字感测信号。举例来说,待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]及[S D2、S D3、…、S D(2+K-1)]包括共同的数字感测信号S D2
多个待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]、[S D2、S D3、…、S D(2+K-1)]、[S D3、S D4、…、S D(3+K-1)]…,以及[S D(n-K+1)、S D(n-K+2)、S Dn]分别对应多个数字感测信号S D1至S Dn。详言之,以待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]为例,以数字感测信号S D1为其所属待整合感测信号组合的起始信号,接著,往后数(K-1)个信号。此(K-1)个信号与数字感测信号S D1为同一个待整合感测信号组合。举例来说,触摸屏30包括7个感测通道X1至X7,也就是n为7;以及,一个待整合感测信号组合包括2个数字感测信号,也就是K=2。在此例子中,以数字感测信号S D1为起始信号,并且往后推1个信号可得到数字感测信号S D2,其中数字感测信号S D1及S D2对应多个感测通道X1至X7中相邻的二个感测通道X1及X2。数字感测信号S D1及S D2属同一个待整合感测信号组合,换言之,对应数字感测信号S D1的待整合感测信号组合为[S D1、S D2]。
此外,信号整合电路100对多个待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]、[S D2、S D3、…、S D(2+K-1)]、[S D3、S D4、…、S D(3+K-1)]…, 以及[S D(n-K+1)、S D(n-K+2)、S Dn]分别执行信号整合操作以产生多个整合感测信号S I1至S I(n-K+1)。以待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]为例,信号整合电路100对待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]执行信号整合操作以产生整合感测信号S I1,依此类推。
在一些实施例中,信号整合电路100通过将每一待整合感测信号组合的至少二个数字感测信号相加产生多个整合感测信号S I1至S I(n-K+1)。以待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]为例,信号整合电路100通过将待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]的数字感测信号S D1、S D2、…、S D(1+K-1)相加产生整合感测信号S I1,依此类推。
接近事件判断电路102耦接于信号整合电路100,用以基于多个整合感测信号S I1至S I(n-K+1)判断于触摸屏30上方是否有物体40接近。在一些实施例中,接近事件判断电路102基于多个整合感测信号S I1至S I(n-K+1)判断于触摸屏30上方是否发生悬停事件。
由于接近事件判断电路102是基于整合感测信号,而不是基于数字感测信号,判断于触摸屏30上方是否有物体40接近,因此接近事件判断电路102的判断结果的准确度会比接近事件判断电路102基于数字感测信号进行判断所得到的判断结果的准确度高。这是因为整合感测信号的信噪比优于数字感测信号的信噪比。
详言之,整合感测信号的信噪比可表示如以下的方程式(1),其中在以下的方程式(1)中,是以整合感测信号S I1为例,并且一个待整合感测信号组合中包括2个数字感测信号。
Figure PCTCN2019107694-appb-000001
其中,SNR I1代表整合感测信号S I1的信噪比;以及,N I1代表整合感测信号S I1的噪声。
整合感测信号S I1是数字感测信号S D1及S D2的总和。又,数字 感测信号S D1及S D2分别代表感测通道X1及X2侦测到的电容变化量。据此,数字感测信号S D1及S D2的总和可用感测通道X1及X2侦测到的总电容变化量来代表。因此,整合感测信号S I1可表示为以下的方程式(2)。
S I1=dC1+dC2       (2)
其中,dC1代表感测通道X1侦测到的电容变化量;以及,dC2代表感测通道X2侦测到的电容变化量。
整合感测信号S I1的噪声N I1相关于感测通道X1及X2侦测到的电容变化量dC1及dC2的噪声。电容变化量dC1及dC2的噪声进一步分别相关于电容变化量dC1的标准差及电容变化量dC2的标准差,其可表示如以下的方程式(3)。
Figure PCTCN2019107694-appb-000002
其中,σC1代表电容变化量dC1的标准差;以及,σC2代表电容变化量dC2的标准差。
将方程式(2)及(3)带入方程式(1)后,可得到以下的方程式(4)。
Figure PCTCN2019107694-appb-000003
又,标准差σC1及σC2实质上相同。方程式(4)可进一步简化为以下的方程式(5)。
Figure PCTCN2019107694-appb-000004
由于感测通道X1相邻感测通道X2,电容变化量dC1及dC2之间的差值实质不大,并且可表示为以下方程式(6)。
dC2=p×dC1     (6)
其中p代表电容变化量dC1及dC2之间的比值,并且p接近1。
将方程式(6)带入方程式(5)后,可得到以下的方程式(7)。
Figure PCTCN2019107694-appb-000005
另一方面,数字感测信号的信噪比可表示如以下的方程式(8),其中在以下的方程式(8)中,是以数字感测信号S D1为例。
Figure PCTCN2019107694-appb-000006
其中,SNR D1代表数字感测信号S D1的信噪比;以及,N D1代表数字感测信号S D1的噪声。
数字感测信号S D1代表感测通道X1侦测到的电容变化量。据此,数字感测信号S D1可用感测通道X1侦测到的电容变化量dC1来代表。因此,数字感测信号S D1可表示为以下的方程式(9)。
S D1=dC1       (9)
感测通道X1侦测到的电容变化量dC1的噪声相关于电容变化量dC1的标准差,其可表示如以下的方程式(10)。
N D1=σC1     (10)
将方程式(9)及(10)适当的带入方程式(8)后,可得到以下的方程式(11)。
Figure PCTCN2019107694-appb-000007
将方程式(7)及(11)比较后,可清楚看出整合感测信号S I1的信噪比SNR I1实质上大于数字感测信号S D1的信噪比SNR D1
Figure PCTCN2019107694-appb-000008
倍,又p实质上等于1,因此简单来说,整合感测信号S I1的信噪比SNR I1实质上比数字感测信号S D1的信噪比SNR D1
Figure PCTCN2019107694-appb-000009
倍。
因此,接近事件判断电路102基于整合感测信号得到的判断结果的准确度,比基于数字感测信号得到的判断结果的准确度,来的高。
图3为图1的触摸屏30感测物体40的示范性操作的示意图。参照图3,在此实施例中,触摸屏30包括7个感测通道X1至X7以及7个感测通道Y1至Y7。为了简洁,在以下说明中,以感测通道X1至X7为例。
物体40在触摸屏30上的投影点位于感测通道X4及Y4的交叉处。因此,在感测通道X1至X7中,理想上,感测通道X4侦测到的电容变化量为最大,并且感测通道X3及X5侦测到的电容变化量为第二大。简单来说,距离感测通道X4越远的感测通道所侦测到的电容变化量越小。
图4为图2的数字信号处理器10操作在图3的示范性操作下的示意图,其中在此实施例中,K为2。参照图4,信号整合电路100接收多个数字感测信号S D1至S D7。信号整合电路100依据数字感测信号S D1产生待整合感测信号组合[S D1、S D2];依据数字感测信号S D2产生待整合感测信号组合[S D2、S D3];以及,依据数字感测信号S D3产生待整合感测信号组合[S D3、S D4],依此类推。
信号整合电路100对待整合感测信号组合[S D1、S D2]执行信号整合操作将数字感测信号S D1及S D2相加,以产生整合感测信号S I1;对待整合感测信号组合[S D2、S D3]执行信号整合操作将数字感测信号S D2及S D3相加,以产生整合感测信号S I2;以及,对待整合感测信号组合[S D3、S D4]执行信号整合操作将数字感测信号S D3及S D4相加,以产生整合感测信号S I3,依此类推。
接近事件判断电路102基于多个整合感测信号S I1至S I6判断于触摸屏30上方是否有物体40接近。接近事件判断电路102基于整合感测信号得到的判断结果的准确度,比基于数字感测信号得到的判断结果的准确度,来的高。
图5及图6显示在图3的示范性操作下的感测信号的示意图。参照图5,横轴代表感测通道;以及,纵轴代表电容变化量。在图5中,仅绘示出感测通道X2、X3、X4、X5及X6及各者对应的电容变化量,以示简洁。从图5可观察出,多个数字感测信号S D1至S Dn对应的多个感测通道X1至Xn在电容变化量上整体呈现高斯分布。在一些比较实施例中,数字信号处理器10是基于多个数字感测信号S D1至S Dn判断于触摸屏30上方是否有物体40接近,而如图2的实施例中所述,通过所述比较实施例所得到的判断结果的准确度比较低。
参照图6,横轴代表等效感测通道;以及,纵轴代表电容变化量。需说明的是,等效感测通道代表整合感测信号所等效对应的感测通道。等效感测通道并非是触摸屏30上的实体通道,也就是说,等效感测通道不是感测通道X1至X7中的一者。
本实施例包括6个等效感测通道X1’至X6’对应多个整合感测信号S I1至S I6。详言之,等效感测通道X2’代表整合感测信号S I2所等效对应的感测通道;以及,等效感测通道X3’代表整合感测信号S I3所等效对应的感测通道,依此类推。在图5中,仅绘示出等效感测通道X2’、X3’、X4’以及X5’及各者对应的电容变化量,以示简洁。从图5可观察出,多个整合感测信号S I1至S I6对应的多个等效感测通道X1’至X6’在电容变化量上整体呈现非高斯分布。
总的来说,只要知道用于判断于触摸屏30上方是否有物体40接近的多个信号的分布情况,就可判断出是使用比较实施例的操作方式,或是图2的实施例的操作方式。
图7为本申请的数字信号处理器50的另一实施例的方块示意图。 参照图7,数字信号处理器50类似于图2的数字信号处理器10,差别在于,数字信号处理器50进一步包括权值电路500,且信号整合电路510因应权值电路500而相对信号整合电路100做了进一步的变化。
权值电路500,耦接于图1的模拟前端电路20及信号整合电路510,用以接收多个数字感测信号S D1至S Dn,并基于多个数字感测信号S D1至S Dn产生多个权值信号S W1至S Wn至信号整合电路510。多个权值信号S W1至S Wn分别对应多个数字感测信号S D1至S Dn
在一些实施例中,权值电路500基于多个数字感测信号S D1至S Dn之间的相对大小决定多个权值信号S W1至S Wn,藉此产生多个权值信号S W1至S Wn。在一些实施例中,数字感测信号的大小正相关于权值信号的大小。
信号整合电路510的操作方式类似于图1的信号整合电路100的操作方式,差别在于,信号整合电路510进一步基于多个权值信号S W1至S Wn分别对多个待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]、[S D2、S D3、…、S D(2+K-1)]、[S D3、S D4、…、S D(3+K-1)]…,以及[S D(n-K+1)、S D(n-K+2)、S Dn]执行信号整合操作。
在一些实施例中,信号整合电路510通过将每一待整合感测信号组合的至少二个数字感测信号分别乘上对应的权值信号后相加以产生多个整合感测信号S I1至S I(n-K+1)。以待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]为例,数字感测信号S D1对应权值信号S W1;数字感测信号S D2对应权值信号S W2;以及,数字感测信号S D(1+K-1)对应权值信号S W1(1+K-1),依此类推。整合感测信号S I1可表示为以下的方程式(12)。
S I1=S D1xS W1+...+S D(1+K-1)xS W1(1+K-1)      (12)
其余的整合感测信号S I2至S I(n-K+1)能够基于类似于方程式(12) 的方程式来获得。在这样的例子中,整合感测信号S I1的信噪比SNR I1可表示为以下的方程式(13),其中在此实施例中,K为2。
Figure PCTCN2019107694-appb-000010
基于方程式(6),可进一步将方程式(13)简化为以下的方程式(14)。
Figure PCTCN2019107694-appb-000011
将方程式(11)及(14)比较后,可清楚看出整合感测信号S I1的信噪比SNR I1实质上大于数字感测信号S D1的信噪比SNR D1。因此,接近事件判断电路102基于整合感测信号得到的判断结果的准确度,比基于数字感测信号得到的判断结果的准确度,来的高。
在本实施例中,权值电路500包括试行整合电路502、整合判断电路504以及权值评估电路506。试行整合电路502整合信号的方式实质上与图2的信号整合电路100整合信号的方式相同,因此试行整合电路502整合信号的描述将适时的予以省略。
试行整合电路502用以接收多个数字感测信号S D1至S Dn,并依据多个数字感测信号S D1至S Dn产生多个待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]、[S D2、S D3、…、S D(2+K-1)]、[S D3、S D4、…、S D(3+K-1)]…,以及[S D(n-K+1)、S D(n-K+2)、S Dn]。多个待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]、[S D2、S D3、…、S D(2+K-1)]、[S D3、S D4、…、S D(3+K-1)]…,以及[S D(n-K+1)、S D(n-K+2)、S Dn]分别对应多个数字感测信号S D1至S Dn。试行整合电路502用以将每一待整合感测信号组合的至少二个数字感测信号以相同的权值,例如权值均为1,相加以产生多个试行整合结果S T1至S T(n-K+1)。以待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]为例,试行整合电路502通过将待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]的数字感测信号S D1、S D2、…、S D(1+K-1)均以权值1相加以 产生试行整合结果S T1,依此类推。
整合判断电路504耦接于试行整合电路502,用以基于多个试行整合结果S T1至S T(n-K+1)判断多个数字感测信号S D1至S Dn之间的相对大小。
权值评估电路506耦接于整合判断电路504,用以基于多个数字感测信号S D1至S Dn之间的相对大小决定多个权值信号S W1至S Wn。在一些实施例中,数字感测信号的大小正相关于权值信号的大小。当数字感测信号越大,权值评估电路506将评估出越大的权值信号。
图8为图7的数字信号处理器50操作在图3的示范性操作下的示意图,其中在此实施例中,K为2。参照图8,试行整合电路502接收多个数字感测信号S D1至S D7。试行整合电路502依据数字感测信号S D1产生待整合感测信号组合[S D1、S D2];依据数字感测信号S D2产生待整合感测信号组合[S D2、S D3];以及,依据数字感测信号S D3产生待整合感测信号组合[S D3、S D4],依此类推。
试行整合电路502对待整合感测信号组合[S D1、S D2]的二个数字感测信号S D1及S D2以相同的权值1相加以产生试行整合结果S T1;对待整合感测信号组合[S D2、S D3]的二个数字感测信号S D2及S D3以相同的权值1相加以产生试行整合结果S T2;以及,对待整合感测信号组合[S D3、S D4]的二个数字感测信号S D3及S D4以相同的权值1相加以产生试行整合结果S T3,依此类推。
通常,由于感测通道X4侦测到的电容变化量为最大,因此对应感测通道X4的数字感测信号S D4最大。在试行整合结果S T1至S T6中,因为试行整合结果S T3及S T4均包括最大的数字感测信号S D4,因此相较于在试行整合结果S T1至S T6中的其余试行整合结果,试行整合结果S T3及S T4为最大。
由于最大的试行整合结果S T3及S T4共同地包括数字感测信号S D4,整合判断电路504能够反推出在数字感测信号S D1至S D7中,数字感测信号S D4为最大。此外,整合判断电路504以对应数字感 测信号S D4的感测通道X4为中心点,判断出相邻感测通道X4的感测通道X3及X5对应的数字感测信号S D3及S D5为第二大,依此类推。
权值评估电路506,响应于数字感测信号S D4为最大,评估出数字感测信号S D4的权值信号S W4为最大;响应于数字感测信号S D3及S D5为第二大,评估出数字感测信号S D3及S D5的权值信号S W3及S W5为第二大,依此类推。权值评估电路506将权值信号S W1至S W7输出至信号整合电路510。
信号整合电路510对待整合感测信号组合[S D1、S D2]的二个数字感测信号S D1及S D2分别乘上对应的权值信号S W1及S W2后相加产生整合感测信号S I1;对待整合感测信号组合[S D2、S D3]的二个数字感测信号S D2及S D3分别乘上对应的权值信号S W2及S W3后相加产生整合感测信号S I2;以及,对待整合感测信号组合[S D3、S D4]的二个数字感测信号S D3及S D4分别乘上对应的权值信号S W3及S W4后相加产生整合感测信号S I3,依此类推。
图9为本申请的数字信号处理器70的又另一实施例的方块示意图。参照图9,数字信号处理器70类似于图2的数字信号处理器10,差别在于,数字信号处理器70进一步包括启动模块700及触摸模块702。
启动模块700耦接于图1的模拟前端电路20,用以接收多个数字感测信号S D1至S Dn,并依据多个数字感测信号S D1至S Dn选择性地对信号整合电路100或触摸模块702发出致能信号EN。
当信号整合电路100接收致能信号EN并据以响应于致能信号EN被致能时,信号整合电路100产生多个待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]、[S D2、S D3、…、S D(2+K-1)]、[S D3、S D4、…、S D(3+K-1)]…,以及[S D(n-K+1)、S D(n-K+2)、S Dn]。或者,当信号整合电路100没有收到致能信号EN而据以不被致能时,信号整合电路100不产生多个待整合感测信号组合[S D1、S D2、…、S D(1+K-1)]、[S D2、S D3、…、S D(2+K-1)]、 [S D3、S D4、…、S D(3+K-1)]…,以及[S D(n-K+1)、S D(n-K+2)、S Dn],使得接近事件判断电路102据此不作动。
当触摸模块702接收致能信号EN并据以响应于致能信号EN被致能时,触摸模块702基于多个数字感测信号S D1至S Dn判断物体40对触摸屏30的触摸。
在一些实施例中,启动模块700,用以于多个数字感测信号S D1至S Dn至少一者超过临界时,致能触摸模块702并且不致能信号整合电路100,以及于多个数字感测信号S D1至S Dn均未达所述临界时,致能信号整合电路100并且不致能触摸模块702。在一些实施例中,所述临界为特定数值。在一些实施例中,所述临界为特定数值范围。
在一些实施例中,当启动模块700致能信号整合电路100时,启动模块700还用以使触摸屏30亮屏。然而,本申请不限定于此。在一些实施例中,触摸屏30可被其他模块促使而亮屏。
在一些实施例中,当启动模块700致能信号整合电路100时,信号整合电路100将多个整合感测信号S I1至S I(n-K+1)传送至中央处理器(central processing unit,CPU),中央处理器基于多个整合感测信号S I1至S I(n-K+1)判断出多个等效坐标分别对应多个整合感测信号S I1至S I(n-K+1)
在一些实施例中,图7的数字信号处理器50亦可包括启动模块700及触摸模块702。
在一些实施例中,一种芯片包括数字信号处理器10或50,举例来说该芯片可以是不同工艺实现的半导体芯片。
图10为包括数字信号处理器10、50、或70的芯片62应用在电子装置60的实施例的示意图。参照图9,电子装置60包含芯片62及显示屏组件64。显示屏组件64包括触摸屏30。电子装置60可为例如智能型手机、个人数字助理、手持式计算机系统或平板计算机等任何手持式电子装置。
上文的叙述简要地提出了本申请某些实施例之特征,而使得本申请所属技术领域具有通常知识者能够更全面地理解本揭示内容的多种态样。本申请所属技术领域具有通常知识者当可明了,其可轻易地利用本揭示内容作为基础,来设计或更动其他工艺与结构,以实现与此处所述之实施方式相同的目的和/或达到相同的优点。本申请所属技术领域具有通常知识者应当明白,这些均等的实施方式仍属于本揭示内容之精神与范围,且其可进行各种变更、替代与更动,而不会悖离本揭示内容之精神与范围。

Claims (18)

  1. 一种数字信号处理器,耦接至模拟前端电路,所述模拟前端电路耦接至触摸屏,所述触摸屏包括多个感测通道,所述多个感测通道实时地依据侦测到的电容变化量分别输出多个模拟感测信号,所述模拟前端电路用以对所述多个感测通道输出的所述多个模拟感测信号进行模数转换以产生多个数字感测信号分别对应多个感测通道,其特征在于,所述数字信号处理器用以基于所述多个数字感测信号判断于所述触摸屏上方是否有物体接近,所述数字信号处理器包括:
    信号整合电路,耦接于所述模拟前端电路,用以接收所述多个数字感测信号,并依据所述多个数字感测信号产生多个待整合感测信号组合,并对所述多个待整合感测信号组合分别执行信号整合操作以产生多个整合感测信号,所述多个待整合感测信号组合的数目和所述多个数字感测信号的数目相同,且所述多个待整合感测信号组合均包括所述多个数字感测信号的至少二个数字感测信号;以及
    接近事件判断电路,耦接于所述信号整合电路,用以基于所述多个整合感测信号判断于所述触摸屏上方是否有所述物体接近。
  2. 如权利要求1所述的数字信号处理器,其中每一待整合感测信号组合中的所述至少二个数字感测信号对应所述多个感测通道中相邻的至少二个感测通道。
  3. 如权利要求1所述的数字信号处理器,其中所述信号整合电路通过将每一待整合感测信号组合的所述至少二个数字感测信号相加产生所述多个整合感测信号。
  4. 如权利要求1所述的数字信号处理器,进一步包括:
    权值电路,耦接于所述模拟前端电路及所述信号整合电路,用以接收所述多个数字感测信号,并基于所述多个数字感测信 号产生多个权值信号至所述信号整合电路,所述多个权值信号分别对应所述多个数字感测信号。
  5. 如权利要求4所述的数字信号处理器,其中所述权值电路基于所述多个数字感测信号之间的相对大小决定所述多个权值信号。
  6. 如权利要求5所述的数字信号处理器,其中所述信号整合电路进一步基于所述多个权值信号执行所述信号整合操作。
  7. 如权利要求6所述的数字信号处理器,其中所述信号整合电路通过将每一待整合感测信号组合的所述至少二个数字感测信号分别乘上对应的所述权值信号后相加以产生所述多个整合感测信号。
  8. 如权利要求5所述的数字信号处理器,其中每一待整合感测信号组合均包括相同数量的数字感测信号。
  9. 如权利要求8所述的数字信号处理器,其中每一待整合感测信号组合彼此不相同。
  10. 如权利要求9所述的数字信号处理器,其中所述多个待整合感测信号组合中的两个包括至少一共同的数字感测信号。
  11. 如权利要求4所述的数字信号处理器,其中所述权值电路包括:
    试行整合电路,用以接收所述多个数字感测信号,并依据所述多个数字感测信号产生所述多个待整合感测信号组合分别对应所述多个数字感测信号,并用以将每一待整合感测信号组合的所述至少二个数字感测信号以相同的权值相加以产生多个试行整合结果。
  12. 如权利要求11所述的数字信号处理器,其中所述权值电路进一步包括:
    整合判断电路,耦接于所述试行整合电路,用以基于所述多个试行整合结果判断所述多个数字感测信号之间的相对大小。
  13. 如权利要求12所述的数字信号处理器,其中所述权值电路进一步包括:
    权值评估电路,耦接于所述整合判断电路,用以基于所述多个数字感测信号之间的相对大小决定所述多个权值信号。
  14. 如权利要求1所述的数字信号处理器,其中所述多个整合感测信号对应的所述电容变化量整体呈现非高斯分布。
  15. 如权利要求1所述的数字信号处理器,其中所述信号整合电路用以于被致能时,产生所述多个待整合感测信号组合,其中所述数字信号处理器进一步包括:
    触摸模块,用以于被致能时,基于所述多个数字感测信号判断所述物体对所述触摸屏的触摸;以及
    启动模块,耦接于所述信号整合电路及所述触摸模块,用以于所述多个数字感测信号至少一者超过临界时,致能所述触摸模块并且不致能所述信号整合电路,以及于所述多个数字感测信号均未达所述临界时,致能所述信号整合电路并且不致能所述触摸模块。
  16. 如权利要求15所述的数字信号处理器,其中当所述启动模块致能所述信号整合电路时,所述启动模块用以使所述触摸屏亮屏并且所述信号整合电路将所述多个整合感测信号传送至中央处理器,其中所述中央处理器基于所述多个整合感测信号判断出多个等效坐标分别对应所述多个整合感测信号。
  17. 一种芯片,其特征在于,所述芯片包括:
    如权利要求1-16中任一项所述的数字信号处理器。
  18. 一种电子装置,其特征在于,所述电子装置包括:
    所述触摸屏;以及
    如权利要求17所述的芯片。
PCT/CN2019/107694 2019-09-25 2019-09-25 数字信号处理器以及相关芯片及手持装置 WO2021056235A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/107694 WO2021056235A1 (zh) 2019-09-25 2019-09-25 数字信号处理器以及相关芯片及手持装置
CN201980002091.3A CN112840303A (zh) 2019-09-25 2019-09-25 数字信号处理器以及相关芯片及手持装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107694 WO2021056235A1 (zh) 2019-09-25 2019-09-25 数字信号处理器以及相关芯片及手持装置

Publications (1)

Publication Number Publication Date
WO2021056235A1 true WO2021056235A1 (zh) 2021-04-01

Family

ID=75165404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107694 WO2021056235A1 (zh) 2019-09-25 2019-09-25 数字信号处理器以及相关芯片及手持装置

Country Status (2)

Country Link
CN (1) CN112840303A (zh)
WO (1) WO2021056235A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861583A (en) * 1992-06-08 1999-01-19 Synaptics, Incorporated Object position detector
CN101727232A (zh) * 2008-10-21 2010-06-09 乐金显示有限公司 传感设备和放大其输出的方法
CN102156562A (zh) * 2010-02-12 2011-08-17 联咏科技股份有限公司 对象感测装置、触控感测系统及触控感测方法
CN102902397A (zh) * 2011-07-28 2013-01-30 瑞鼎科技股份有限公司 触控面板装置的数字感测数据的提供方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9886142B2 (en) * 2013-12-03 2018-02-06 Pixart Imaging Inc. Capacitive touch sensing system
US9817535B2 (en) * 2016-03-07 2017-11-14 Synaptics Incorporated Mitigating spatially correlated noise in data from capacitive sensors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861583A (en) * 1992-06-08 1999-01-19 Synaptics, Incorporated Object position detector
CN101727232A (zh) * 2008-10-21 2010-06-09 乐金显示有限公司 传感设备和放大其输出的方法
CN102156562A (zh) * 2010-02-12 2011-08-17 联咏科技股份有限公司 对象感测装置、触控感测系统及触控感测方法
CN102902397A (zh) * 2011-07-28 2013-01-30 瑞鼎科技股份有限公司 触控面板装置的数字感测数据的提供方法

Also Published As

Publication number Publication date
CN112840303A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
US9477342B2 (en) Multi-touch force sensing touch-screen devices and methods
JP5788588B2 (ja) 仮想キーボードおよびその提供方法
US7737955B2 (en) Electronic device and method providing a touch-based interface for a display control
US20130328828A1 (en) Glove touch detection for touch devices
JP2012160172A (ja) タッチパネルのマルチタッチ検出方法及びそれを利用したタッチスクリーン装置の動作方法
WO2017161634A1 (zh) 一种快捷操作的实现方法及终端设备
US8380968B2 (en) Overclocking control device and overclocking control method
US20100053092A1 (en) Control Method for Touch Screen Device
CN112329926A (zh) 智能机器人的质量改善方法及系统
CN106249872B (zh) 一种接近传感器的控制方法、装置及移动终端
US10795493B2 (en) Palm touch detection in a touch screen device having a floating ground or a thin touch panel
WO2021056235A1 (zh) 数字信号处理器以及相关芯片及手持装置
US11353978B2 (en) Method and apparatus for determining a touch point
US10338726B2 (en) Mobile device and method of distinguishing between different touch forces
US20220139109A1 (en) User authentication using pose-based facial recognition
US8959258B2 (en) Detection system for detecting button being pressed and method thereof
CN112764565B (zh) 电子装置及其利用触控数据的物件信息识别方法
TWI756917B (zh) 力感測方法、能夠促進力感測的電子模組和運算設備
CN112764594B (zh) 电子装置及其利用触控数据的物件信息识别方法
US10235492B2 (en) Matching IC design patterns using weighted XOR density
JP2011170727A (ja) 入力装置及び入力方法並びに入力プログラム
US10707139B2 (en) Method for adjusting etching parameters
TWI566139B (zh) 觸控裝置及其訊號處理方法
CN115061595A (zh) 电子设备的控制方法、装置、电子设备和可读存储介质
TW202248806A (zh) 利用電容式感測裝置檢測手勢之方法及利用其之電容式感測裝置和資訊處理裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947113

Country of ref document: EP

Kind code of ref document: A1