WO2021054455A1 - Method for remanufacturing article transporting container sheet - Google Patents

Method for remanufacturing article transporting container sheet Download PDF

Info

Publication number
WO2021054455A1
WO2021054455A1 PCT/JP2020/035540 JP2020035540W WO2021054455A1 WO 2021054455 A1 WO2021054455 A1 WO 2021054455A1 JP 2020035540 W JP2020035540 W JP 2020035540W WO 2021054455 A1 WO2021054455 A1 WO 2021054455A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
transport container
article transport
shape
remanufacturing
Prior art date
Application number
PCT/JP2020/035540
Other languages
French (fr)
Japanese (ja)
Inventor
智也 又吉
賢士 野間
和人 杉山
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2021546990A priority Critical patent/JP7110498B2/en
Publication of WO2021054455A1 publication Critical patent/WO2021054455A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • This disclosure relates to a method for remanufacturing a sheet for an article transport container.
  • a tray-shaped resin container molded according to the shape of the article to be transported is used from the viewpoint of avoiding damage to the article due to vibration during transportation ().
  • Japanese Patent Application Laid-Open No. 2017-36090 Japanese Patent Application Laid-Open No. 2017-36090.
  • a tray-shaped resin container formed according to the shape of this article is generally called "Danedge”.
  • the Danage may not be able to protect the article unless its shape conforms to the shape of the article on which it is placed. Therefore, the conventional Danedge is manufactured by molding a resin material according to the shape of the article each time the shape of the article to be transported changes. Therefore, from the viewpoints of manufacturing cost, disposal cost, storage location, etc., there is a demand for reusable danedge for transporting goods having different shapes.
  • the article transport container sheet contains a polymer satisfying the following (1) and (2), and contains a polymer.
  • the article transport container sheet heated at the first temperature is placed on the surface of the flat surface of the mounting portion having a flat surface under atmospheric pressure, and the first step is performed. 1.
  • ⁇ 4> The method for remanufacturing an article transport container sheet according to any one of ⁇ 1> to ⁇ 3>, wherein the flatness of the article transport container sheet having a flat shape is less than 0.04.
  • a cooling step for cooling the article transport container sheet shaped into the second storage shape, and Have The method for remanufacturing a sheet for an article transport container according to any one of ⁇ 1> to ⁇ 4>, wherein the second heating step, the shaping step, and the cooling step are performed in this order.
  • ⁇ 6> The method for remanufacturing a sheet for an article transport container according to ⁇ 5>, wherein in the shaping step, any one of vacuum forming, compressed air forming, and vacuum forming is used.
  • the shaping step Using a shaped mold having a mold surface corresponding to the second accommodation shape, The article transport container sheet having the flat shape and heated at the second temperature is brought into contact with the mold surface to shape the flat shape into the second storage shape.
  • the cooling step at least the article transport container sheet shaped into the second accommodation shape is brought into contact with the mold surface while the article transport container sheet shaped into the second accommodation shape is brought into contact with the mold surface.
  • the shaping step Using a shaped mold having a mold surface corresponding to the second accommodation shape, The air between the article transport container sheet and the shaping mold is exhausted, and the article transport container sheet having a flat shape and heated at the second temperature is brought into contact with the mold surface to obtain the above.
  • the flat shape is shaped into the second accommodation shape
  • the cooling step the article transport container sheet shaped in the second accommodation shape is cooled while the article transport container sheet shaped in the second accommodation shape is brought into contact with the mold surface.
  • the shaping step Using a shaped mold having a mold surface corresponding to the second accommodation shape, The article transport container sheet is pressurized with compressed air, and the article transport container sheet having the flat shape and heated at the second temperature is brought into contact with the mold surface to accommodate the flat shape in the second storage.
  • the article transport container sheet shaped into the second storage shape is maintained in contact with the mold surface, and the article transport container shaped into the second storage shape is used.
  • ⁇ 10> The article transport container sheet according to any one of ⁇ 1> to ⁇ 9>, wherein the volume of the first article is 3.0 cm 3 or more and 1.0 ⁇ 10 6 cm 3 or less. Production method.
  • the manufacturing history information includes at least one selected from the group consisting of article name information, size information, remanufacturing condition information, remanufacturing date / time information, and remanufacturing frequency information.
  • the article name information indicates the name of the first article.
  • the size information indicates the dimensions of the first article.
  • the remanufacturing condition information includes the first temperature when the flattening step is executed.
  • the remanufacturing date and time information indicates the date and time when the flattening step was executed.
  • a method for remanufacturing a sheet for an article transport container that can repeatedly shape an article so that it can be accommodated.
  • the numerical range represented by using “-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • each component may contain a plurality of applicable substances.
  • the amount of each component in the composition in the present disclosure if a plurality of substances corresponding to each component are present in the composition, unless otherwise specified, the plurality of types present in the composition. It means the total amount of substances.
  • the sheet is a concept that includes not only what is generally called a sheet but also what is generally called a film.
  • the sheet for an article transport container of the present disclosure includes a polymer satisfying the following (1) and (2) (hereinafter, may be referred to as a “specific polymer”).
  • the ultimate viscosity [ ⁇ ] measured in a decalin solution at 135 ° C. is 4.0 dL / g or more and 35.0 dL / g or less.
  • the melting point Tm is 120 ° C. or higher and 140 ° C. or lower.
  • the article transport container sheet of the present disclosure contains a specific polymer.
  • the rubber flat region indicates that the storage elastic modulus E'of the specific polymer takes a substantially constant value regardless of the temperature at a temperature of the melting point Tm or more of the specific polymer.
  • the specific polymer behaves like rubber and has high viscoelasticity. It is presumed that the sheet for the article transport container of the present disclosure can be repeatedly shaped so as to be able to accommodate the article because the rubber-like flat region exists in the range of the melting point Tm to about 200 ° C. in the specific polymer.
  • the viscosity average molecular weight of the polymer that does not satisfy the above (1) is lower than that of the specific polymer.
  • the rubber-like flat region does not exist, or even if the rubber-like flat region exists, the temperature range of the rubber-like flat region is very narrow. It is presumed that this is because the polymer chains do not penetrate deeper than the specific polymer in the polymer that does not satisfy the above (1), and the so-called "entanglement effect" is weak.
  • a sheet for an article transport container that does not contain a specific polymer tends to have high fluidity at a temperature equal to or higher than the melting point, and when it is deformed by an external force, the potential for recovering to the original shape decreases. As a result, the article transport container sheet that does not contain the specific polymer cannot be repeatedly shaped so that the article can be accommodated.
  • the index of the rubber flat region will be described later.
  • the shaping means giving a desired shape to a flat-shaped article-carrying container sheet (hereinafter, may be referred to as "flat sheet") without scraping the goods-carrying container sheet.
  • the article include automobile parts; electronic parts; precision equipment; food / beverage containers; daily necessities; clothing; furniture; office equipment; and the like.
  • automobile parts include tires, wheels, chassis parts, interior parts and the like.
  • the volume per article is not particularly limited, and is preferably 3.0 cm 3 or more and 1.0 ⁇ 10 6 cm 3 or less.
  • the shape of the article transport container sheet is appropriately selected according to the usage opportunity of the article transport container sheet, and is, for example, a storage shape capable of accommodating articles (hereinafter referred to as “containment shape”), a flat shape, or the like. ..
  • a sheet for an article transport container having a storage shape may be referred to as an "article transport container”.
  • the accommodation shape means a shape in which an article can be placed and the article is protected when the article is transported.
  • the accommodation shape is selected according to the application of the article transport container sheet and the like, and examples thereof include a fitting shape and an enclosure shape.
  • the fitting shape fits with the article to be placed.
  • the fitting shape is shaped according to the shape of the article to be placed.
  • the enclosure shape encloses the article to be placed with a wall portion.
  • the flat shape means a shape in which both sides of the article transport container sheet are substantially flat.
  • the flatness of the flat-shaped sheet for transporting goods is preferably less than 0.04, more preferably 0.02 or less, and the smaller it is, the more preferable it is because it does not take up storage space.
  • the flatness of the flat-shaped article transport container sheet is less than 0.04, the occurrence of warpage of the flat-shaped article transport container sheet is suppressed. Therefore, the article transport container sheet is likely to be shaped into a desired storage shape. Further, when the article transport container sheet is stored, the article transport container sheet becomes less bulky. Flatness is measured in the same manner as described in the examples.
  • the article transport container sheet may have a single-layer structure or a laminated structure of two or more layers.
  • the sheet for the article transport container has a laminated structure, at least one layer, preferably all layers of each layer to be laminated may contain a polymer satisfying the requirements (1) and (2) of the present disclosure. .. Further, the article transport container sheet may be used by providing a release layer, a coating layer and the like, if necessary.
  • the size of the goods transport container sheet is appropriately adjusted according to the goods to be loaded.
  • the length of one side may be 1 m or more.
  • the average thickness of the article transport container sheet is not particularly limited, but is preferably 100 ⁇ m to 1 cm, more preferably 500 ⁇ m to 1 cm, and even more preferably 1 mm to 8 mm, for example.
  • the average thickness of the article transport container sheet means the arithmetic mean value of the thickness of any five places in the article transport container sheet.
  • Examples of the method for forming the sheet for the article transport container include hot press molding, roll press molding, extrusion molding, vacuum forming, vacuum forming, vacuum forming. Further, a sheet may be obtained by skiving from the molded products obtained by these heat moldings.
  • the article transport container sheet is preferably manufactured into a flat shape by hot press molding a material (hereinafter, referred to as "polymer material") constituting the article transport container sheet at a predetermined pressure. .. As a result, the flat shape is stored as a stable shape in the article transport sheet.
  • the shape memory effect of the sheet for the article transport container causes. It becomes easier to spontaneously recover the shape to the original flat shape.
  • a phenomenon is not seen in, for example, a hollow tray formed by blow molding ultra-high molecular weight polyethylene.
  • the lower limit of the pressure for hot press molding is preferably 0.1 MPa or more, more preferably 1 MPa or more.
  • the upper limit of the pressure for hot press molding is preferably 20 MPa or less, more preferably 10 MPa or less.
  • the lower limit of the heating temperature of the hot press molding is the melting point Tm or more of the polymer, preferably 160 ° C. or higher, and more preferably 170 ° C. or higher.
  • the upper limit of the heating temperature for hot press molding is preferably 280 ° C. or lower, more preferably 260 ° C. or lower.
  • the lower limit of the pressurizing time of hot press molding is preferably 5 minutes or more, more preferably 10 minutes or more.
  • the upper limit of the pressurizing time of hot press molding is preferably within 24 hours, more preferably within 12 hours.
  • the article transport container sheet may be heat-press-molded and then cooled-pressed.
  • Examples of the pressure of the cooling press include a range similar to the range exemplified as the pressure of hot press molding.
  • the pressure of the cooling press may be the same as or different from the pressure of the hot press molding.
  • the cooling temperature of the cooling press may be a temperature lower than the crystallization temperature of the specific polymer, and may be, for example, a temperature 100 ° C. to 200 ° C. lower than the heating temperature of hot press molding.
  • the cooling time of the cooling press may be in the same range as the range exemplified as the heating time of hot press molding.
  • the pressure of the cooling press may be the same as or different from the heating time of the hot press molding.
  • the specific polymer has an ultimate viscosity [ ⁇ ] measured in a decalin solution at 135 ° C. of 4.0 dL / g to 35.0 dL / g, which makes it possible to more repeat the shaping using the article transport container sheet. From the viewpoint of the above, it is preferably 5.0 dL / g to 35.0 dL / g, more preferably 5.0 dL / g to 30.0 dL / g, and 10.0 dL / g to 20.0 dL / g. It is more preferably g.
  • the lower limit of the ultimate viscosity [ ⁇ ] of the specific polymer is 4.0 dL / g or more, the viscosity average molecular weight of the specific polymer is high. Therefore, the specific polymer has a rubber-like flat region. As a result, the article transport container sheet can be repeatedly shaped.
  • the viscosity average molecular weight can be calculated by an equation according to ASTM D4020 using the extremely reduced viscosity [ ⁇ ].
  • the lower limit of the ultimate viscosity [ ⁇ ] of the specific polymer is 35.0 dL / g or less, it is preferable in terms of production suitability.
  • the method for measuring the ultimate viscosity [ ⁇ ] is the same as the method described in Examples.
  • the method of setting the ultimate viscosity [ ⁇ ] within the above range is not particularly limited, and examples thereof include a method of using hydrogen together when polymerizing a specific polymer; a method of appropriately adjusting the polymerization temperature; and the like.
  • the melting point Tm of the specific polymer is 120 ° C. to 140 ° C., and is more preferably 130 ° C. to 140 ° C. from the viewpoint of making the shaping using the article transport container sheet more repeatable.
  • the upper limit of the melting point Tm of the specific polymer is 140 ° C. or lower, the article transport container sheet can be shaped at a heating temperature lower than that when the melting point Tm is more than 140 ° C. Therefore, the productivity of the sheet for the article transport container is excellent.
  • the melting point Tm of the specific polymer is 120 ° C. or higher, it is preferable in terms of heat resistance.
  • the method for measuring the melting point Tm is the same as the method described in Examples.
  • the viscosity average molecular weight Mv of the specific polymer is preferably 35 ⁇ 10 4 to 650 ⁇ 10 4 , more preferably 120 ⁇ 10 4 to 650 ⁇ 10 4 , and even more preferably 120 ⁇ 10 4 to 260. It is ⁇ 10 4 .
  • the sheet article carrying container can easily be repeatedly shaped.
  • shapeable number of sheets for the article transport container is more.
  • the density of the specific polymer is not particularly limited, and may be appropriately designed according to the desired strength of the article transport container, manufacturing convenience, and the like.
  • the density of the specific polymer is preferably 900 kg / m 3 to 960 kg / m 3 , more preferably 920 kg / m 3 to 960 kg / m 3 , and 920 kg / m 3 to 950 kg / m 3 . It is more preferable to have.
  • the method for measuring the density is the same as the method described in the examples.
  • the lower limit of the storage elastic modulus E'(T1 ° C.) at T1 ° C. (melting point Tm ⁇ T1 ⁇ 180 ° C.) of the specific polymer is preferably 0.5 MPa or more, more preferably 1.0 MPa or more. is there.
  • the upper limit of the storage elastic modulus E'(T1 ° C.) of the specific polymer is preferably 7.0 MPa or less, more preferably 6.0 MPa or less, still more preferably 5.0 MPa or less.
  • the specific polymer has high viscoelasticity at T1 ° C.
  • the storage elastic modulus E'(T1 ° C.) of the specific polymer is the same as the method described in Examples.
  • the lower limit of the storage elastic modulus E'(T2 ° C.) at T2 ° C. (180 ° C. ⁇ T2 ⁇ 240 ° C.) of the specific polymer is preferably 0.5 MPa or more, more preferably 0.8 MPa or more.
  • the upper limit of the storage elastic modulus E'(T2 ° C.) of the specific polymer is preferably 7.0 MPa or less, more preferably 6.0 MPa or less, still more preferably 5.0 MPa or less.
  • the specific polymer has high viscoelasticity at T2 ° C.
  • the storage elastic modulus E'(T2 ° C.) of the specific polymer is the same as the method described in Examples.
  • the lower limit of the ratio of the storage elastic modulus E'(T2 ° C.) to the storage elastic modulus E'(T1 ° C.) of the specific polymer (hereinafter referred to as "(E'(T2 ° C.) / E'(T1 ° C.))"). Is preferably 0.4 or more, more preferably 0.5 or more.
  • the upper limit of (E'(T2 ° C.) / E'(T1 ° C.)) is preferably 1.5 or less, more preferably 1.3 or less, still more preferably 1.2 or less.
  • the storage elastic modulus E'of the specific polymer is substantially constant regardless of the temperature. It can be considered to take a value. Therefore, the specific polymer has high viscoelasticity in the range of T1 ° C. to T2 ° C.
  • the existence of the rubber-like flat region means the case where the following (i) and (ii) are satisfied.
  • the absence of the rubber-like flat region means a case where at least one of the following (i) and (ii) is not satisfied.
  • Each of the storage elastic modulus E'(140 ° C.) and the storage elastic modulus E'(230 ° C.) is 0.5 MPa or more
  • the specific polymer preferably contains an olefin polymer from the viewpoint of making it easier to obtain a sheet for an article transport container that can be repeatedly shaped so that the article can be accommodated.
  • the specific polymer may be used alone or in combination of two or more.
  • olefin polymer examples include low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, ethylene-based polymer, and a copolymer of ethylene and ⁇ -olefin having 2 to 20 carbon atoms.
  • Ethylene-based polymer propylene-based polymer such as propylene homopolymer, copolymer of propylene and ⁇ -olefin having 2 to 20 carbon atoms; butene-1 homopolymer, butene-1 and carbon number of 2 to 20 carbon atoms
  • Buten-1 polymer such as a copolymer with ⁇ -olefin (excluding butene-1); 4-methyl-1-pentene homopolymer, 4-methyl-1-pentene homopolymer and 2 carbon atoms
  • 4-methyl-1-pentene-based polymers such as copolymers with ⁇ 20 ⁇ -olefins (excluding 4-methyl-1-pentene).
  • the ethylene-based polymer is a polymer having at least ethylene as a constituent unit.
  • the propylene-based polymer is a polymer having at least propylene as a constituent unit.
  • the olefin polymer includes at least one of an ethylene polymer and a propylene polymer from the viewpoint of making it easier to obtain a sheet for an article transport container that can accommodate an article and can be repeatedly shaped.
  • ethylene-based polymer and it is particularly preferable to contain an ultra-high molecular weight ethylene-based polymer.
  • the ultra-high molecular weight ethylene polymer examples include two types, a linear type and a crosslinked type.
  • the specific polymer may be, for example, a mode in which the crosslinked ultra-high molecular weight ethylene-based polymer is not contained and the linear type ultra-high molecular weight ethylene-based polymer is contained.
  • a linear ultra-high molecular weight ethylene-based copolymer is preferably used as a sheet for transporting articles because it has excellent wear resistance, low friction resistance, mechanical strength, low temperature impact resistance, and excellent repeatability. be able to.
  • the content of the specific polymer is preferably 40% by mass to 100% by mass, more preferably 60% by mass to 100% by mass, and 80% by mass to 100% by mass, based on the total amount of the article transport container sheet. It is more preferably 100% by mass.
  • the sheet for the article transport container of the present disclosure may contain a polymer other than the specific polymer as long as the effect of the present disclosure is not impaired.
  • examples of other polymers include thermoplastic resins and thermosetting resins.
  • the thermoplastic resin includes polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, chlorinated polypropylene, polyvinylidene fluoride, rubber chloride, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-chloride.
  • vinylidene copolymer vinyl chloride-vinylidene chloride-vinyl acetate ternary copolymer, vinyl chloride-acrylic acid ester copolymer, vinyl chloride-maleic acid ester copolymer, vinyl chloride-cyclohexylmaleimide copolymer, etc.
  • Halogen resin petroleum resin, kumaron resin, polystyrene, polyvinyl acetate, acrylic resin, styrene and / or ⁇ -methylstyrene and other monomers (eg, maleic anhydride, phenylmaleimide, methyl methacrylate, butadiene, acrylonitrile, etc.) )
  • AS acrylonitrile styrene
  • ABS acrylonitrile butadiene styrene copolymer
  • ACS acrylonitrile / chlorinated polyethylene / styrene copolymer
  • SBS styrene butadiene styrene block common weight
  • MBS methyl methacrylate, butadiene, styrene copolymer
  • Polymethyl methacrylate polyvinyl alcohol, polyvinyl formal, polyvinyl butyral
  • Aromatic polyesters such as polyalkylene naphthalate such as polyalkylene terephthalate, polyethylene naphthalate, polybutylene naphthalate and linear polyesters such as polytetramethylene terephthalate; polyhydroxybutyrate, polycaprolactone, polybutylene succinate, polyethylene succi Degradable aliphatic polyesters such as nate, polylactic acid, polyappleic acid, polyglycolic acid, polydioxane, poly (2-oxetanone); polyamides such as polyphenylene oxide, polycaprolactam and polyhexamethylene adipamide, polycarbonate, polycarbonate / ABS Thermoplastic resins such as resins, branched polycarbonates, polyacetals, polyphenylene sulfides, polyurethanes, fibrous resins, polyimide resins, polysulfones, polyphenylene ethers, polyether ketones, polyether ether ketones, liquid crystal polymers
  • the thermoplastic resin includes isoprene rubber, butadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, fluororubber, silicone rubber, styrene elastomer, polyester elastomer, nitrile elastomer, nylon elastomer, and chloride. It may be an elastomer such as a vinyl-based elastomer, a polyamide-based elastomer, or a polyurethane-based elastomer.
  • the thermoplastic resin may be used alone or in combination of two or more.
  • thermosetting resin examples include epoxy resin, silicone resin, phenol resin, urea resin, unsaturated polyester resin, melamine resin, polyimide resin, polybenzoxazole resin, urethane resin and the like.
  • the thermosetting resin may be used alone or in combination of two or more.
  • the content of the specific polymer is preferably 95% by mass or more, preferably 98% by mass or more, based on 100% by mass of the total amount of the polymers contained in the sheet for transporting articles. It is more preferable that the content is 99.9% by mass or more.
  • the article transport container sheet of the present disclosure may contain a filler and a colorant.
  • the filler include inorganic particles such as carbon black, silica, alumina, magnesium and calcium carbonate; natural mineral particles such as talc and mica; and the like.
  • the content of the filler is preferably 1% by mass to 20% by mass, preferably 2% by mass, based on the total amount of the sheet for the article transport container from the viewpoint of maintaining the shape recovery in the flattening step described later. It is more preferably to 10% by mass.
  • the colorant include pigments; pigments; and the like.
  • the article transport container of the present disclosure is a sheet for an article transport container having a storage shape. Since the article transport container of the present disclosure is a shaped product of the sheet for the article transport container of the present disclosure, it can be repeatedly shaped so that the article can be accommodated.
  • the article transport container of the present disclosure is substantially a sheet-like material.
  • the thickness of the article transport container may be substantially the same as the average thickness of the article transport container sheet.
  • the article transport container of the present disclosure protects the article to be transported when the article is to be transported. Examples of the article transport container include a container, a danedge, and the like. Above all, the article transport container is preferably a Danage.
  • the container of the present disclosure has the above-mentioned enclosure shape.
  • the article transport container sheet having a storage shape may be referred to as a "Danage sheet".
  • the Danage sheet of the present disclosure has the above-mentioned fitting shape and contains a specific polymer.
  • the molding method for obtaining the Danedge sheet is not particularly limited, and a known molding method can be applied. Examples of the molding method include vacuum forming, pressure forming, vacuum pressure forming, TOM (Three dimension Overlay Method) molding, hot press molding and the like.
  • FIG. 1 is a perspective view showing a Danedge sheet 10A according to the first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of the cutting line II of FIG.
  • the Danedge seat 10A can carry four wheels 20A.
  • the wheel 20A is an example of an article.
  • the Danedge sheet 10A is substantially a sheet-like material.
  • the Danedge sheet 10A has an upper surface TS 10A and a lower surface BS 10A.
  • the upper surface TS10A and the lower surface BS10A face each other.
  • the wheel 20A is placed on the upper surface TS10A.
  • the thickness T10A of the discharge sheet 10A is substantially uniform over the entire area of the discharge sheet 10A.
  • FIG. 1 the Danedge sheet 10A is substantially a sheet-like material.
  • the Danedge sheet 10A has an upper surface TS 10A and a lower surface BS 10A.
  • the upper surface TS10A and the lower surface BS10A face each other.
  • the wheel 20A is placed on the upper surface TS10A.
  • the thickness T10A of the discharge sheet 10A is substantially uniform over the entire area of the discharge sheet 10A.
  • the upper surface TS10A has a flat surface portion TS11A, a first convex portion TS12A, four second convex portions TS13A, and four third convex portions TS14A.
  • the flat surface portion TS11A is substantially flat.
  • Each of the first convex portion TS12A, the four second convex portions TS13A, and the four third convex portions TS14A protrudes upward from the flat surface portion TS11A.
  • Each of the first convex portion TS12A, the four second convex portions TS13A, and the four third convex portions TS14A is formed so as to be fitted with the four wheels 20A. As shown in FIG.
  • the lower surface BS10A has a flat surface portion BS11A, a first convex portion (not shown), four second convex portions BS12A, and four third convex portions (not shown).
  • the flat surface portion BS11A is substantially flat.
  • Each of the first convex portion of the lower surface BS10A, the four second convex portions BS12A, and the four third convex portions of the lower surface BS10A protrudes upward from the flat surface portion BS11A.
  • the flat surface portion BS11A faces the flat surface portion TS11A of the upper surface TS10A.
  • the first convex portion of the lower surface BS10A faces the first convex portion TS12A.
  • Each of the four second convex portions BS12A faces the corresponding second convex portion TS13A of the four second convex portions TS13A.
  • Each of the four third convex portions of the lower surface BS10A faces the corresponding third convex portion TS14A of the four third convex portions TS14A.
  • the first convex portion TS12A, the four second convex portions TS13A, and the four third convex portions TS14A form a fitting shape that can be fitted with the wheel 20A.
  • the fitting shape is an example of the housing shape.
  • FIG. 3 is a perspective view showing the Danedge sheet 10B according to the second embodiment.
  • FIG. 4 is a cross-sectional view of the cutting line IV of FIG.
  • the Danedge sheet 10B can carry four flanges 20B.
  • the flange 20B is an example of an article.
  • the Danedge sheet 10B is substantially a sheet-like material.
  • the discharge sheet 10B has an upper surface TS10B and a lower surface BS10B.
  • the upper surface TS10A and the lower surface BS10A face each other.
  • the flange 20B is placed on the upper surface TS10B.
  • the thickness T10B of the discharge sheet 10B is substantially uniform over the entire area of the discharge sheet 10B.
  • the upper surface TS10B has a flat surface portion TS11B, four concave flat surface portions TS12B, and four convex portions TS13B.
  • the flat surface portion TS11B is substantially flat.
  • Each of the four concave flat surface portions TS12B is recessed downward from the flat surface portion TS11B.
  • Each of the four concave flat surface portions TS12B is substantially flat.
  • Each of the four convex portions TS13B protrudes upward from the concave flat surface portion TS12B.
  • the four concave flat surface portions TS12B and the four convex flat portions TS13B are formed so that the flange 20B can be fitted.
  • the lower surface BS10B has a flat surface portion BS11B, four concave flat surface portions BS12B, and four convex portions BS13B.
  • the flat surface portion BS11B is substantially flat.
  • the four concave flat surface portions BS12B are recessed downward from the flat surface portion BS11B.
  • the flat surface portion BS11B faces the flat surface portion TS11B of the upper surface TS10B.
  • Each of the four convex portions BS13B projects upward from the concave flat surface portion BS12B.
  • the concave flat surface portion BS12B faces the concave flat surface portion TS12B of the upper surface TS10B.
  • Each of the four convex portions BS13B faces the corresponding convex portion TS13B of the four convex portions TS13B.
  • the concave flat surface portion TS12B and the four convex portions TS13B can be fitted to the flange 20B and form a fitting enclosure shape surrounding the flange 20B.
  • the fitting enclosure shape is an example of the accommodation shape.
  • the containment of the present disclosure includes an article and an article transport container (more preferably, a danedge) of the present disclosure.
  • the article is housed in the article transport container (more preferably, Danedge), which is a molded product of the article transport container sheet of the present disclosure.
  • the method for remanufacturing a sheet for an article transport container of the present disclosure includes a first heating step and a flattening step.
  • the first heating step and the flattening step may be carried out in this order or may be carried out at the same time.
  • first article transport container By executing the first heating step and the flattening step, from the article transport container sheet having the first accommodating shape capable of accommodating the first article (hereinafter, may be referred to as "first article transport container").
  • first article transport container A flat sheet is obtained. That is, the remanufacturing method of the present disclosure can remanufacture a sheet for an article transport container that can be repeatedly shaped so as to accommodate an article.
  • Examples of the first article include those similar to those exemplified as the article.
  • the first accommodating shape may be the same as that exemplified as the accommodating shape.
  • Examples of the first article transport container include those similar to those exemplified as the article transport container.
  • First heating step In the first heating step, the first article transport container is heated at the first temperature. As a result, the first article transport container is softened.
  • the lower limit of the first temperature is a temperature equal to or higher than the melting point Tm of the polymer, preferably a temperature 10 ° C. higher than the melting point Tm of the polymer, and more preferably a temperature 20 ° C. higher than the melting point Tm of the polymer.
  • the upper limit of the first temperature is 280 ° C. or lower, preferably 260 ° C. or lower, more preferably 240 ° C. or lower, still more preferably 220 ° C. or lower, particularly preferably 210 ° C. or lower, and even more preferably 190 ° C. or lower.
  • the first article transport container In the temperature range of the first temperature, there is a rubber flat region of the polymer.
  • Tm melting point
  • the first article transport container When the first article transport container is heated to the melting point Tm or higher of the polymer, when the first article transport container is an excipient of a flat sheet, the first article transport container has an original flat shape due to its shape memory effect. It tends to spontaneously recover its shape (in sheet form).
  • the first article transport container is heated at the first temperature of 280 ° C. or lower, the polymer in the first article transport container does not flow and its sheet form is maintained.
  • the heating means in the first heating step is not particularly limited, and for example, from the viewpoint of efficiently heating according to the shape of the first article transport container, a heating device capable of multifaceted heating at different temperatures may be used. Good.
  • a heating device capable of multifaceted heating at different temperatures may be used.
  • the heating source hot air, an infrared heater, or the like can be used.
  • the infrared heater is suitable because when the thickness of the first article transport container is thick, it can be efficiently heated in a short time due to the self-heating associated with the infrared absorption of the first article transport container.
  • the heating time in the first heating step is not particularly limited, and may be appropriately set according to the size, thickness, and the like of the first article transport container.
  • the heating time may be, for example, 1 second to 1 minute, or 1 minute to 10 minutes.
  • the first article transport container may be heated and pressurized by a heating press such as die pressing. ..
  • the first storage of the article transport container sheet having the first storage shape and heated at the first temperature (hereinafter, referred to as “the first article transport container heated at the first temperature”). Make the shape flat. This gives a flat sheet.
  • the means for flattening the first accommodation shape (hereinafter, also referred to as “flattening means”) is appropriately selected according to the size and the like of the first article transport container, and is, for example, a flat surface mounting method, decompression processing, and gold. Examples include die press processing. Above all, the flattening means is preferably a flat surface mounting method. If the flattening means is a flat surface mounting method, the first article transport container can be easily flattened. In particular, when the first article transport container is a shaped product of a flat sheet, the original flat shape can be obtained by simply placing the first article transport container heated at the first temperature on a flat surface due to its shape memory effect. The shape recovers spontaneously.
  • the first article transport container heated at the first temperature is placed on the flat surface of the mounting portion having a flat surface under atmospheric pressure, and the first storage shape is formed without load. Make it flat. As a result, the softened first article transport container tends to have a flat shape easily. Under atmospheric pressure is a pressure of about 0.08 MPa to 0.12 MPa (about 0.8 atm to 1.2 atm).
  • the first article transport container may be heated at the first temperature.
  • the heating time may be, for example, 1 second to 1 minute, or 1 minute to 30 minutes. The higher the heating temperature, the easier it is to shorten the time until the shape becomes flat.
  • the first article transport container When the flattening means is decompression processing, the first article transport container may be heated and flattened under vacuum decompression.
  • the flattening means When the flattening means is die press working, for example, it may be flattened by pressing with a die in the depth direction of the first article transport container.
  • the flattening means When the flattening means is a stretching process, for example, it may be flattened by stretching in a direction perpendicular to the depth direction of the first article transport container.
  • the flattening means is preferably pressure (compressive force, etc.) from the viewpoint of efficiently flattening the first article transport container heated at the first temperature, for example.
  • an external force is applied to at least one direction of the depth direction and the direction parallel to the main surface of the first article transport container heated at the first temperature to transport the first article.
  • the main surface of the first article transport container heated at the first temperature represents a surface that becomes horizontal when the container is transported, or a surface at a position where the transporter holds the container.
  • the depth direction of the article transport container heated at the first temperature represents the direction perpendicular to the main surface of the first article transport container.
  • the flattening step may be a step of flattening the first article transport container heated at the first temperature while heating it from the viewpoint of more efficiently flattening the first article transport container.
  • the first heating temperature and the heating time may be the same as those preferred in the first heating step.
  • the method for remanufacturing the sheet for the article transport container of the present disclosure preferably includes a manufacturing history information addition step.
  • a mark indicating manufacturing history information (hereinafter, referred to as “manufacturing history information mark”) is added to the flat sheet.
  • the manufacturing history information addition step is executed after the flattening step.
  • a flat sheet to which the manufacturing history information mark is added can be obtained. Therefore, the user can easily obtain the manufacturing history information of the article transport container sheet based on the manufacturing history information mark.
  • the number of times the article transport container sheet can be shaped is finite and depends on the manufacturing history of the article transport container sheet. For example, when selecting a flat sheet to be shaped from a plurality of flat sheets, the user can select an appropriate flat sheet based on the acquired manufacturing history information.
  • the manufacturing history information examples include article name information, size information, remanufacturing condition information, remanufacturing date and time information, remanufacturing frequency information, and the like. Above all, it is preferable that the manufacturing history information includes at least one selected from the group consisting of article name information, size information, remanufacturing condition information, remanufacturing date and time information, and remanufacturing frequency information.
  • the article name information indicates the name of the contained article.
  • the contained article refers to an article contained in the contained shape before the first heating step and the flattening step are executed.
  • the article name information may include the names of a plurality of contained articles when the number of times of shaping of the article transport container sheet is 2 or more.
  • the size information indicates the dimensions of the contained article.
  • the size information may include the dimensions of a plurality of contained articles when the number of times of shaping the sheet for the article transport container is 2 or more.
  • the remanufacturing condition information includes the first temperature when the flattening step is performed.
  • the remanufacturing condition information may include, for example, the holding time of the first temperature and the pressurizing condition when the flattening step is executed.
  • the remanufacturing information may include a plurality of first temperatures when the number of shaping of the article transport container sheet is 2 or more.
  • the remanufacturing date and time information indicates the date and time when the flattening process was executed.
  • the remanufacturing date and time information may include a plurality of dates and times when the flattening step is executed when the number of times the flattening step is executed is two or more.
  • the manufacturing history information mark includes a QR code (registered trademark), a barcode, a character string, and a number string.
  • the manufacturing history information mark is a QR code (registered trademark) or a barcode
  • the mobile terminal transmits the mark information to the server via the network.
  • the mark information includes the read manufacturing history information mark.
  • the server stores the remanufacturing date and time information in association with the manufacturing history information mark.
  • the server selects the remanufacturing date / time information corresponding to the received manufacturing history information mark from the plurality of stored remanufacturing date / time information.
  • the server then sends the selected remanufacturing date and time information to the mobile terminal.
  • the mobile terminal has a display unit.
  • the mobile terminal receives the remanufacturing date / time information from the server, the mobile terminal displays the remanufacturing date / time information on the display unit of the mobile terminal.
  • the display unit include a liquid crystal display, an organic electroluminescence display, and the like.
  • the method of adding the manufacturing history information mark to the flat sheet is not particularly limited, and for example, a method of printing the manufacturing history information on the surface of the flat sheet and a label on which the manufacturing history information mark is printed are affixed to the surface of the flat sheet.
  • the method and the like can be mentioned.
  • the method for printing the manufacturing history information mark is not particularly limited, and examples thereof include digital printing, letterpress printing, intaglio printing, lithographic printing, and stencil printing. Examples of digital printing include inkjet printing and electrophotographic printing. Examples of letterpress printing include gravure printing. Examples of intaglio printing include offset printing. Examples of stencil printing include screen printing.
  • the method for remanufacturing a sheet for an article transport container of the present disclosure may further include a second heating step, a shaping step, and a cooling step.
  • the second heating step, shaping step, and cooling step (hereinafter collectively referred to as “accommodation shape shaping step”) are executed in this order.
  • a sheet for an article transport container having a second storage shape (hereinafter, referred to as “second article transport container”) can be obtained from the flat sheet.
  • the accommodation shape shaping step is performed after the flattening step.
  • the shaping step is executed after the manufacturing history information adding step.
  • Examples of the second article include those similar to those exemplified as the article.
  • the second article may be the same as or different from the first article.
  • the second accommodating shape may be the same as that exemplified as the accommodating shape.
  • the second accommodation shape may be the same as or different from the first accommodation shape.
  • Examples of the second article transport container include those similar to those exemplified as the article transport container.
  • the second article transport container may be the same as or different from the first article transport container.
  • the flat sheet is heated at the second temperature. This softens the flat sheet.
  • the lower limit of the second temperature is a temperature equal to or higher than the melting point Tm of the polymer, preferably a temperature 10 ° C. higher than the melting point Tm of the polymer, and more preferably a temperature 20 ° C. higher than the melting point Tm of the polymer.
  • the upper limit of the second temperature is 280 ° C. or lower, preferably 260 ° C. or lower, more preferably 240 ° C. or lower, still more preferably 220 ° C. or lower, particularly preferably 210 ° C. or lower, and even more preferably 190 ° C. or lower.
  • the second temperature may be the same as or different from the first temperature. In the temperature range of the second temperature, there is a rubber flat region of the polymer.
  • the heating means is not particularly limited, and examples thereof include the same heating means as exemplified as the heating means in the first heating step.
  • the heating time is not particularly limited, and examples thereof include the same heating times as those exemplified as the heating time in the first heating step.
  • shaping process In the shaping step, the flat shape of the article transport container sheet heated at the second temperature and having a flat shape is shaped into the second storage shape.
  • the means for shaping the flat shape into the second accommodating shape (hereinafter, referred to as “forming means”) is not particularly limited, and a mold produced according to the shape of the article, the desired accommodating size, and the like is used. Examples thereof include vacuum forming, pressure forming, vacuum forming, TOM forming, and hot press forming.
  • a shaping mold having a mold surface corresponding to the second accommodating shape hereinafter, may be referred to as a “second accommodating mold surface” is used.
  • the shaping means it is preferable to use any one of vacuum forming, compressed air forming, and vacuum forming, which is suitable for shaping into a large-sized accommodation shape.
  • vacuum forming the air between the flat sheet and the shaping mold is exhausted (hereinafter, may be referred to as "vacuum suction"), and the flat sheet heated at the second temperature is brought into contact with the second accommodating mold surface.
  • the flat shape is shaped into the second accommodation shape.
  • a flat sheet is pressurized with compressed air (hereinafter referred to as "compressed air”), and the flat sheet heated at a second temperature is brought into contact with the second accommodating mold surface to form a flat shape as a second accommodating shape.
  • compressed air a flat sheet is pressurized with compressed air
  • vacuum suction and compressed air are performed at the same time or at different times, and a flat sheet heated at a second temperature is brought into contact with a second accommodating mold surface to shape the flat shape into a second accommodating shape. ..
  • the article transport container sheet shaped in the second accommodation shape is cooled while the article transport container sheet shaped in the second accommodation shape is brought into contact with the second accommodation mold surface (hereinafter,).
  • Contact cooling is preferred.
  • the article transport container sheet shaped into the second storage shape tends to return to the original flat shape due to its shape memory. Therefore, by rapidly solidifying by contact cooling, it becomes easy to obtain a sheet for a second article transport container. Further, it is more preferable that the contact cooling is performed until at least the temperature at which the specific polymer is solidified or lower. As a result, the second accommodating mold surface is more reliably transferred to the article transport container sheet shaped into the second accommodating shape. That is, it becomes easier to obtain a sheet for the second article transport container.
  • the solidification temperature of the specific polymer is, for example, when the polymer is an ethylene polymer, the crystallization temperature (Tc) measured in the temperature lowering process in addition to the melting point Tm using a differential scanning calorimeter (DSC). Shows a temperature 40 ° C lower.
  • cooling means The means for cooling the article transport container sheet shaped in the second storage shape
  • the cooling means is not particularly limited, and for example, the article in which the cooling medium is shaped in the second storage shape. Examples thereof include a method of directly or indirectly contacting the transport container sheet. Examples of the cooling medium include cold air and cooling water. Above all, it is preferable that the cooling means brings the cooling medium into contact with the molding apparatus provided with the shaping means to cool the article transport container sheet shaped into the second accommodation shape.
  • the method for remanufacturing a sheet for an article transport container of the present disclosure may include other steps (hereinafter, also simply referred to as “other steps”) other than the heating step, the flattening step, and the shaping step.
  • other steps for example, the following steps (A) to (D) may be included depending on the shape, size, and the like of the article.
  • (A) Cutting process of cutting the sheet for the article transport container (B) Pressing the sheet for the article transport container against the mold and pulling it out into the shape of the mold (C) Laminating a plurality of sheets for the article transport container , Laminating process (D) Coating process for coating the article transport container sheet with wax or the like
  • the method for producing an ethylene polymer may include, for example, a prepolymerization step and a main polymerization step. The prepolymerization step and the main polymerization step are carried out in this order.
  • the method for producing an ethylene polymer includes a prepolymerization step and a main polymerization step will be described.
  • the ⁇ -olefin is prepolymerized in the presence of a catalyst for olefin polymerization.
  • the amount of ⁇ -olefin is 0.1 to 1000 g, preferably 0.3 to 500 g, and particularly preferably 1 to 200 g per 1 g of the solid catalyst.
  • the catalyst concentration in the prepolymerization step may be higher than the catalyst concentration in the main polymerization step.
  • the catalyst for olefin polymerization includes a solid titanium catalyst and an organometallic compound catalyst.
  • the catalyst for olefin polymerization may contain other catalyst components, if necessary.
  • the solid titanium catalyst preferably contains titanium, magnesium, and halogen.
  • the solid titanium catalyst is obtained, for example, by contacting a titanium compound, a magnesium compound, and an electron donor.
  • the titanium compound include titanium tetrachloride and titanium tetrabromide.
  • the magnesium compound include magnesium chloride and magnesium bromide.
  • the electron donor include 2-isobutyl-2-isopropyl-1,3-dimethoxypropane and 2,2-diisobutyl-1,3-dimethoxypropane.
  • the concentration of the solid titanium catalyst is preferably 0.001 mmol to 200 mmol, more preferably 0.01 mmol to 50 mmol, and particularly preferably 0.1 mmol to 20 mmol in terms of titanium atoms per liter of the liquid medium.
  • the liquid medium includes, for example, an inert hydrocarbon medium described later.
  • the organometallic compound catalyst examples include triethylaluminum and triisobutylaluminum.
  • the amount of the organometallic compound catalyst may be such that 0.1 g to 1000 g, more preferably 0.3 g to 500 g of the polymer is produced per 1 g of the solid titanium catalyst.
  • the amount of the organometallic compound catalyst is preferably 0.1 mol to 300 mol, more preferably 0.5 mol to 100 mol, and particularly preferably 1 mol to 50 mol, per 1 mol of titanium atoms in the solid titanium catalyst. The amount.
  • Examples of other catalyst components include polyether compounds and the like.
  • Examples of the polyether compound include 2-isobutyl-2-isopropyl-1,3-dimethoxypropane and 2,2-diisobutyl-1,3-dimethoxypropane.
  • the amount of the other catalyst components is preferably 0.1 mol to 50 mol, more preferably 0.5 mol to 30 mol, per 1 mol of titanium atoms in the solid titanium catalyst. It is mol, more preferably 1 mol to 10 mol.
  • an olefin and a polymerization catalyst for an olefin may be added to an inert hydrocarbon medium to prepolymerize the ⁇ -olefin under mild conditions.
  • Inactive hydrocarbon media include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, kerosene; cycloheptane, methylcycloheptane, cyclohexane, methylcyclohexane, methylcyclopentane, cyclooctane.
  • Alicyclic hydrocarbons such as methylcyclooctane; Aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethylene chloride and chlorobenzene, and mixtures thereof.
  • an aliphatic hydrocarbon is preferable as the inert hydrocarbon medium.
  • prepolymerization is preferably carried out in a batch reactor.
  • the ⁇ -olefin may be prepolymerized using the ⁇ -olefin itself as a solvent, or the ⁇ -olefin may be prepolymerized in a state where there is substantially no solvent. In this case, it is preferable to carry out the prepolymerization continuously.
  • the ⁇ -olefin used in the prepolymerization may be the same as or different from the olefin used in the main polymerization described later.
  • the ⁇ -olefin is preferably ethylene or propylene.
  • the temperature at the time of prepolymerization is preferably in the range of ⁇ 20 to + 100 ° C., more preferably ⁇ 20 to + 80 ° C., and even more preferably 0 to + 40 ° C.
  • the main polymerization step In the main polymerization step, the main polymerization (polymerization) is performed. Specifically, in this polymerization step, ethylene is polymerized in the presence of a catalyst for olefin polymerization.
  • an ⁇ -olefin having 3 to 20 carbon atoms may be shared.
  • ⁇ -olefins having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, and the like.
  • linear olefins such as 1-octadecene and 1-eicosene
  • branched olefins such as 4-methyl-1-pentene, 3-methyl-1-pentene and 3-methyl-1-butene.
  • ⁇ -olefins propylene, 1-butene, 1-pentene, and 4-methyl-1-pentene are preferable.
  • aromatic vinyl compounds such as styrene and allylbenzene; and alicyclic vinyl compounds such as vinylcyclohexane and vinylcycloheptane can also be used together with these ⁇ -olefins.
  • the polymerization method of the prepolymerization and the main polymerization may be any of a bulk polymerization method, a liquid phase polymerization method and a gas phase polymerization method.
  • Examples of the liquid phase polymerization method include dissolution polymerization and suspension polymerization.
  • the inert hydrocarbon used in the above-mentioned prepolymerization can be used as the reaction solvent, or an olefin that is liquid at the reaction temperature can be used.
  • a solid titanium catalyst In this polymerization, a solid titanium catalyst, an organometallic compound catalyst, and other catalyst components, if necessary, are used.
  • other catalyst components include polyether compounds.
  • the polyether compound include 2-isobutyl-2-isopropyl-1,3-dimethoxypropane and 2,2-diisobutyl-1,3-dimethoxypropane.
  • the amount of the solid titanium catalyst is preferably 0.0001 mmol to 0.5 mmol, more preferably 0.005 mmol to 0.1 mmol in terms of titanium atoms per liter of polymerization volume.
  • the amount of the organometallic compound catalyst is preferably 1 mol to 2000 mol, more preferably 5 mol to 500 mol, with respect to 1 mol of titanium atoms in the catalyst component in the polymerization system.
  • the amount of the other catalyst components used is preferably 0.001 mol to 50 mol, more preferably 0.01 mol to 30 mol, and particularly preferably 0.01 mol to 30 mol, based on the organometallic compound catalyst. It is 0.05 mol to 20 mol.
  • this polymerization is carried out in the presence of hydrogen, the molecular weight of the obtained ethylene-based polymer can be adjusted. Therefore, in this polymerization, it is preferable to carry out the polymerization of ethylene in the presence of hydrogen.
  • the reason for this is not clear at this time, but by polymerizing in the presence of hydrogen, the chain transfer reaction by olefins such as ethylene is suppressed, and ethylene-based polymer particles having a saturated bond structure at the molecular end, that is, molding It is presumed that this is because a stable ethylene-based polymer that is unlikely to deteriorate on the way can be obtained.
  • the polymerization temperature of the olefin is preferably 20 ° C. to 200 ° C., more preferably 30 ° C. to 100 ° C., and further preferably 50 ° C. to 90 ° C.
  • the pressure is preferably normal pressure to 10 MPa, more preferably 0.20 MPa to 5 MPa.
  • Examples of the polymerization reactor include batch type, semi-continuous type, continuous type and the like.
  • the polymerization can be carried out in two or more stages by changing the reaction conditions.
  • the present polymerization step may include a step (a) and a step (b).
  • step (a) an ethylene polymer having an intrinsic viscosity [ ⁇ ] within the first range is produced.
  • the first range is preferably 2 dl / g or more and less than 10 dl / g, more preferably 3 dl / g or more and less than 10 dl / g, and further preferably 5 dl / g or more and less than 10 dl / g.
  • step (b) an ethylene-based polymer having an intrinsic viscosity [ ⁇ ] within the second range is produced.
  • the second range is preferably 5 dl / g or more and 35 dl / g or less, more preferably 7 dl / g or more and 33 dl / g or less, still more preferably 10 dl / g or more and 33 dl / g or less, and particularly preferably 15 dl / g or more and 32 dl / g. It is as follows.
  • the extreme viscosity [ ⁇ ] of the ethylene-based polymer obtained in the step (a) (hereinafter referred to as “ethylene-based polymer (a)”) and the ethylene-based polymer obtained in the step (b) (hereinafter referred to as “ethylene-based polymer”)
  • the [ ⁇ ] of the ethylene-based polymer (b) is more than the ultimate viscosity [ ⁇ ] of the ethylene-based polymer (a). ] Is preferably high.
  • the [ ⁇ ] of the ethylene-based polymer produced in the first stage is lower than the ultimate viscosity [ ⁇ ] of all the ethylene-based polymers produced in the second and subsequent stages. That is, it is preferable that the [ ⁇ ] of the ethylene-based polymer produced in the first stage is lower than the ultimate viscosity [ ⁇ ] of the finally obtained ethylene-based polymer.
  • the preferable range of the ultimate viscosity [ ⁇ ] of the ethylene-based polymer produced in the first stage is the same as the range of [ ⁇ ] of the ethylene-based polymer obtained in the above step (a).
  • the mass ratio of the ethylene-based polymer (a) to the ethylene-based polymer (b) depends on the extreme viscosity produced in each step, but the proportion of the ethylene-based polymer (a) is 0 to 50% by mass. , The proportion of the ethylene polymer (b) is 100 to 50% by mass.
  • the preferred mass ratio of the ethylene-based polymer (a) to the ethylene-based polymer (b) is 5/95 to 50/50, more preferably 10/90 to 40/60, and even more preferably 15/85 to 40/60. Is.
  • This mass ratio is determined in each step by measuring the amount of ethylene absorbed in each step, sampling a small amount and a specified amount of the resin obtained in each step, and taking into account the mass, slurry concentration, content of catalyst components in the resin, etc. It can be determined by calculating the amount of resin produced in.
  • a batch reactor In this polymerization step, a batch reactor, a continuous reactor, or the like can be used.
  • the main polymerization step is multi-step as described above, it is preferable to adopt a batch reactor.
  • the particles of the ethylene-based polymer (a) and the ethylene-based polymer (b) obtained by using the batch reactor have little variation among the particles.
  • the ethylene-based polymer thus obtained may be any of a homopolymer, a random copolymer, a block copolymer, and the like.
  • the ethylene-based polymer is a homopolymer of ethylene from the viewpoint of easily obtaining a polymer having a high degree of crystallinity.
  • the method for producing an ethylene polymer may include a heating step in addition to the prepolymerization step and the main polymerization step.
  • the heating step is performed after the main polymerization step.
  • the temperature is maintained at 100 ° C. or higher and below the melting point of the ethylene polymer in a vapor phase atmosphere.
  • the heating temperature in the heating step is preferably 100 ° C. to 140 ° C., more preferably 105 ° C. to 140 ° C., and even more preferably 110 ° C. to 135 ° C.
  • the heating time of the heating step is preferably 15 minutes to 24 hours, more preferably 1 to 10 hours, and even more preferably 1 to 4 hours.
  • Examples of the method for heating the ethylene polymer include a method using an oven and a method using a dryer. By going through such a step, an ethylene-based polymer having a higher crystallinity can be obtained.
  • the method for producing an ethylene-based polymer preferably includes a drying step in addition to the prepolymerization step and the main polymerization step.
  • the heating temperature in the drying step is preferably 90 ° C. to 140 ° C., more preferably 95 ° C. to 140 ° C., still more preferably 95 ° C. to 135 ° C., and particularly preferably 95 ° C. to 130 ° C.
  • the heating time in the drying step is preferably 15 minutes to 24 hours, more preferably 1 to 10 hours, and even more preferably 1 to 4 hours.
  • the ethylene polymer may be a commercially available product.
  • commercially available products include Hi-Zex Million (registered trademark) 030S, 145M, 240S, 320MU, 630M, Newlite (registered trademark) NL-W and the like.
  • Ethylene-based polymers (PE-1) to (PE-6) were prepared as polymer materials.
  • the ethylene-based polymers (PE-1) to (PE-5) of Examples were produced according to WO2008 / 013144.
  • Tc crystallization temperature
  • Tm melting point
  • DSC differential scanning calorimeter
  • the crystallization temperature (Tc) and melting point (Tm) were measured using a differential scanning calorimeter (DSC) under the following conditions. Specifically, about 5 mg of the polymer material is sealed in a measuring aluminum pan of a differential scanning calorimeter (DSC220C type) manufactured by Seiko Instruments Inc., and heated from 30 ° C. to 10 ° C./min to 200 ° C. did. To completely melt the polymeric material, it was held at 200 ° C. for 10 minutes and then cooled to 30 ° C. at 10 ° C./min.
  • DSC220C type differential scanning calorimeter
  • the temperature showing the exothermic peak generated in this temperature lowering process was defined as the crystallization temperature (Tc). Then, after standing at 30 ° C. for 5 minutes, the second heating was performed at 10 ° C./min to 200 ° C. The temperature (° C.) showing the endothermic peak in the obtained second heating was defined as the melting point (Tm) of the polymer material.
  • Tc crystallization temperature
  • Tm melting point
  • ⁇ Measurement method of storage elastic modulus> Using a solid viscoelasticity measuring device (“RSA-III” manufactured by TA Instruments), a test piece made of a polymer material (thickness: 2 mm) is subjected to 25 ° C to 230 under the following conditions.
  • the storage elastic modulus E'and the loss elastic modulus E' were measured in the temperature range up to ° C.
  • FIG. 5 shows the measurement results of the storage elastic modulus E'of the ethylene-based polymers (PE-1) to (PE-6) in the temperature range of 30 ° C. to 230 ° C.
  • Example 1 ⁇ Manufacturing of sheets for goods transport containers ⁇
  • the ethylene polymer (PE-1) is heat press molded under vacuum using a vacuum heating press molding device (manufactured by Kansai Roll Co., Ltd., maximum mold clamping force 254 kN) (heating temperature 230 ° C., pressure 2 MPa, pressurization).
  • a sheet size: 350 mm ⁇ 350 mm
  • a cooling press cooling temperature 30 ° C., pressure 2 MPa, pressurization time 10 minutes.
  • the obtained sheet was cut into A4 size (210 mm ⁇ 297 mm) to obtain a first flat sheet.
  • the average thickness of the obtained first flat sheet was the average thickness shown in Table 1.
  • a flat sheet was shaped into a desired three-dimensional shape using a 3D type vacuum heat pressurizing device (manufactured by Mikado Technos Co., Ltd.).
  • the vacuum heat pressurizing device includes a flat plate-shaped upper plate and a lower plate having a rectangular parallelepiped-shaped cavity space.
  • the upper board is located above the lower board in the vertical direction.
  • Mold 1 (see FIG. 6, material: stainless steel, deep-drawn molded product, mass: 19 g) was placed in the center of the lower plate.
  • the mold surface S1 of the mold 1 was a boat shape.
  • the maximum length of the mold 1 was 110 mm.
  • the maximum height of the mold 1 was 14 mm.
  • the upper plate temperature was set to 200 ° C.
  • the lower plate temperature in the vertical direction was set to 60 ° C.
  • the first flat sheet was then preheated in advance at 200 ° C. for 10 minutes in a heating oven. After that, the first flat sheet was clamped between the upper plate and the lower plate. In that state, the first flat sheet was left for 300 seconds (second heating step).
  • the space surrounded by the upper plate and the lower plate was evacuated over 30 seconds. After that, only the space surrounded by the upper plate and the first flat sheet was returned to atmospheric pressure. As a result, the flat shape of the first flat sheet was shaped into the first fitting shape so as to follow the shape of the mold 1 (forming step).
  • the maximum length of the mold 2 was 95 mm.
  • the maximum height of the mold 2 was 15 mm.
  • the obtained Danage 2 was evaluated for the following second formability. (4) Next, the obtained Danage 2 was placed on the surface of a flat surface in a heating oven (temperature 200 ° C.) and heated for 10 minutes with no load to spontaneously flatten the second fitting shape (2). First heating step and flattening step). As a result, a third flat sheet was obtained. The obtained third flat sheet was evaluated for the following second shape recovery and second flatness.
  • Table 1 shows the evaluation results of the first formability, the first shape recovery property, the first flatness, the second formability, the second shape recovery property, and the second flatness.
  • the flatness of the second flat sheet was calculated.
  • the flatness is represented by (Hmax / L).
  • An acceptable assessment of the first flatness is A or B.
  • the flatness of the second flat sheet is calculated as follows. The second flat sheet was placed on the surface of the rigid flat surface measuring table so that the first main surface of the second flat sheet was facing upward. Then, using a height gauge, the maximum height H1 of the second flat sheet from the surface of the plane measuring table was measured. Next, the second flat sheet was placed on the surface of the plane measuring table so that the second main surface of the second flat sheet was facing upward.
  • the maximum height H2 of the second flat sheet from the surface of the plane measuring table was measured using a height gauge. Of the height H1 and the height H2 obtained by the measurement, the higher one was defined as Hmax.
  • the length of the longest straight line portion in the plane of the second flat sheet was defined as L. Specifically, in the A4 size second flat sheet, the diagonal length (about 364 cm) of the second flat sheet was set to L. Finally, dividing Hmax by L gives the flatness represented by (Hmax / L).
  • the flatness of the third flat sheet was calculated. Based on the calculated flatness value, the second flatness was evaluated according to the following criteria. An acceptable assessment of the second flatness is A or B.
  • the flatness (Hmax / L) of the third flat sheet was determined in the same manner as the flatness (Hmax / L) of the second flat sheet.
  • Examples 2 to 5, Comparative Example 1 As the polymer material, instead of the ethylene-based polymer (PE-1), the ethylene-based polymer (PE-2, PE-3, PE-4, PE-5) shown in Table 1 was used under vacuum. The heating temperature was set to 260 ° C by heat press molding, and the heating temperature was set to 230 ° C by heat press molding under vacuum for the ethylene-based copolymer (PE-6). In the same manner as in Example 1, a first flat sheet, a ethylene 1, a second flat sheet, a polymer 2, and a third flat sheet were obtained.
  • the article transport container sheets of Examples 1 to 5 contain an ethylene polymer.
  • the intrinsic viscosity [ ⁇ ] of the ethylene-based polymers of Examples 1 to 5 was 4.0 dL / g or more and 35.0 dL / g or less.
  • the melting point Tm of the ethylene-based polymers of Examples 1 to 5 was 120 ° C. or higher and 140 ° C. or lower. Therefore, the "(E'(230 ° C.) / E'(140 ° C.))" of the ethylene-based polymers of Examples 1 to 5 was in the range of 0.4 to 1.5. In other words, as shown in FIG.
  • Examples 1 to 5 it was found that the ethylene-based polymers of Examples 1 to 5 had a rubber-like flat region at about 140 ° C. to 230 ° C.
  • Danedge 1 was placed on the surface of a flat surface in a heating oven and heated at 200 ° C. within a temperature range in which a rubber-like flat region exists.
  • the boat shape of Danedge 1 spontaneously became flat, and a second flat sheet was obtained.
  • the evaluation of the first shape recoverability and the first flatness of the second flat sheets of Examples 1 to 5 obtained was "A".
  • the article transport container sheet can be repeatedly shaped so that the article can be accommodated.
  • the article transport container sheet was heated at 200 ° C., which is within the temperature range in which the rubber-like flat region exists, to obtain Danedge 2 and the third flat sheet. Therefore, the evaluation of the second formability of Danedge 2, the second shape recovery of the third flat sheet, and the second flatness was "A" or "B". As a result, it was found that in Examples 1 to 5, the article transport container sheet can be shaped twice or more.
  • the article transport container sheet of Comparative Example 1 contains an ethylene polymer.
  • the intrinsic viscosity [ ⁇ ] of the ethylene polymer of Comparative Example 1 was less than 4.0 dL / g. Therefore, the "(E'(230 ° C.) / E'(140 ° C.))" of the ethylene-based polymer of Comparative Example 1 was less than 0.4.
  • FIG. 5 it was found that the ethylene-based polymer of Comparative Example 1 did not have a rubber-like flat region in the temperature range of 140 ° C. or higher.
  • Comparative Example 1 the Danedge 1 was placed on the surface of a flat surface in a heating oven and heated at 200 ° C., which is outside the temperature range in which the rubber-like flat region exists, to obtain a second flat sheet. Therefore, the evaluation of the first shape recovery property and the first flatness of the obtained second flat sheet was "C". As a result, in Comparative Example 1, it was found that the article transport container sheet could not be repeatedly shaped so that the article could be accommodated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

The present invention is a method for remanufacturing an article transporting container sheet, the method including: a first heating step for heating, at a first temperature, the article transporting container sheet having a first accommodation shape capable of accommodating a first article; and a flattening step for forming, into a flat shape, the first accommodation shape of the sheet that has the first accommodation shape and has been subjected to heating at the first temperature. The sheet contains a macromolecule satisfying conditions (1) and (2) below. The first temperature is between the melting point Tm of the macromolecule and 280°C, inclusive. (1) The limiting viscosity [η] measured in a decalin solution at 135°C is between 4.0 dL/g and 35.0 dL/g, inclusive. (2) The melting point Tm is between 120°C and 140°C, inclusive.

Description

物品搬送容器用シートの再製造方法Remanufacturing method of sheet for goods transport container
 本開示は、物品搬送容器用シートの再製造方法に関する。 This disclosure relates to a method for remanufacturing a sheet for an article transport container.
 自動車部品といった精密な物品の輸送の際には、輸送中の振動等により物品が損傷することを避ける観点から、輸送される物品の形状に合わせて成形されたトレイ状の樹脂容器が用いられる(例えば、特開2017-36090号公報)。この物品の形状に合わせて成形されたトレイ状の樹脂容器は、一般に「ダネッジ」と呼ばれる。 When transporting precision articles such as automobile parts, a tray-shaped resin container molded according to the shape of the article to be transported is used from the viewpoint of avoiding damage to the article due to vibration during transportation (). For example, Japanese Patent Application Laid-Open No. 2017-36090). A tray-shaped resin container formed according to the shape of this article is generally called "Danedge".
 しかしながら、ダネッジは、その形状が載置される物品の形状に沿った形状でないと、物品を保護できないおそれがある。従って、従来のダネッジは、輸送される物品の形状が変わるたびに、物品の形状に合わせて樹脂材料を成形加工して、作製されていた。このため製造コスト、廃棄コスト、保管場所等の観点から、異なる形状を有する物品の輸送に再利用可能なダネッジが求められている。 However, the Danage may not be able to protect the article unless its shape conforms to the shape of the article on which it is placed. Therefore, the conventional Danedge is manufactured by molding a resin material according to the shape of the article each time the shape of the article to be transported changes. Therefore, from the viewpoints of manufacturing cost, disposal cost, storage location, etc., there is a demand for reusable danedge for transporting goods having different shapes.
 本開示では、上記事情に鑑み、物品を収容可能に繰り返し賦形可能な物品搬送容器用シートの再製造方法を提供することを課題とする。 In view of the above circumstances, it is an object of the present disclosure to provide a method for remanufacturing a sheet for an article transport container that can repeatedly shape an article so that it can be accommodated.
 前記課題を解決するための具体的手段には、下記の態様が含まれる。 Specific means for solving the above problems include the following aspects.
<1> 第1物品を収容可能な第1収容形状を有する物品搬送容器用シートを第1温度で加熱する第1加熱工程と、
 前記第1温度で加熱された前記物品搬送容器用シートの前記第1収容形状を平坦形状にする平坦化工程と、
を有し、
 前記物品搬送容器用シートは、下記(1)及び(2)を満たす高分子を含有し、
 前記第1温度は、前記高分子の融点Tm以上280℃以下である、物品搬送容器用シートの再製造方法。
(1)135℃のデカリン溶液中で測定される極限粘度[η]が4.0dL/g以上35.0dL/g以下である
(2)融点Tmが120℃以上140℃以下である
<2>前記高分子は、エチレン系重合体を含む、<1>に記載の物品搬送容器用シートの再製造方法。
<3> 前記平坦化工程では、大気圧下、平坦面を有する載置部の前記平坦面の表面に、前記第1温度で加熱された前記物品搬送容器用シートを載置して、前記第1収容形状を前記平坦形状にする、請求項1又は請求項2に記載の物品搬送容器用シートの再製造方法。
<4> 前記平坦形状の前記物品搬送容器用シートの平坦度は、0.04未満である、<1>~<3>のいずれか1項に記載の物品搬送容器用シートの再製造方法。
<5> 前記平坦形状の前記物品搬送容器用シートを、前記高分子の融点Tm以上280℃以下である第2温度で加熱する第2加熱工程と、
 前記第2温度で加熱された前記物品搬送容器用シートの前記平坦形状を、第2物品を収容可能な第2収容形状に賦形する賦形工程と、
 前記第2収容形状に賦形された前記物品搬送容器用シートを冷却する冷却工程と、
を有し、
 前記第2加熱工程、前記賦形工程、及び前記冷却工程は、この順で実行される、<1>~<4>のいずれか1項に記載の物品搬送容器用シートの再製造方法。
<6> 前記賦形工程では、真空成形、圧空成形、及び真空圧空成形のいずれかの1つの賦形方法を用いる、<5>に記載の物品搬送容器用シートの再製造方法。
<7> 前記賦形工程では、
 前記第2収容形状に対応する型面を有する賦形型を用い、
 前記平坦形状で、かつ前記第2温度で加熱された前記物品搬送容器用シートを前記型面に接触させて、前記平坦形状を前記第2収容形状に賦形し、
 前記冷却工程では、前記第2収容形状に賦形された前記物品搬送容器用シートを前記型面に接触させながら、前記第2収容形状に賦形された前記物品搬送容器用シートを、少なくとも前記高分子の固化温度以下となるまで冷却する、<6>に記載の物品搬送容器用シートの再製造方法。
<8> 前記賦形工程では、
 前記第2収容形状に対応する型面を有する賦形型を用い、
 前記物品搬送容器用シートと前記賦形型との間の空気を排気し、前記平坦形状で、かつ前記第2温度で加熱された前記物品搬送容器用シートを前記型面に接触させて、前記平坦形状を前記第2収容形状に賦形し、
 前記冷却工程では、前記第2収容形状に賦形された前記物品搬送容器用シートを前記型面に接触させながら、前記第2収容形状に賦形された前記物品搬送容器用シートを冷却する、<6>又は<7>に記載の物品搬送容器用シートの再製造方法。
<9> 前記賦形工程では、
 前記第2収容形状に対応する型面を有する賦形型を用い、
 前記物品搬送容器用シートを圧縮空気で加圧し、前記平坦形状で、かつ前記第2温度で加熱された前記物品搬送容器用シートを前記型面に接触させて、前記平坦形状を前記第2収容形状に賦形し、
 前記冷却工程では、前記第2収容形状に賦形された前記物品搬送容器用シートを前記型面に接触させた状態を維持して、前記第2収容形状に賦形された前記物品搬送容器用シートを冷却する、<6>又は<7>に記載の物品搬送容器用シートの再製造方法。
<10> 前記第1物品の体積は、3.0cm以上1.0×10cm以下である、<1>~<9>のいずれか1項に記載の物品搬送容器用シートの再製造方法。
<11> 前記物品搬送容器用シートがダネッジ用シートである、<1>~<10>のいずれか1項に記載の物品搬送容器用シートの再製造方法。
<12> 前記平坦形状の前記物品搬送容器用シートに製造履歴情報を示すマークを付加する製造履歴情報付加工程を有し、
 前記製造履歴情報付加工程は、前記平坦化工程の後に実行される、<1>~<11>のいずれか1項に記載の物品搬送容器用シートの再製造方法。
<13> 前記製造履歴情報は、物品名情報、サイズ情報、再製造条件情報、再製造日時情報、及び再製造回数情報からなる群から選ばれる少なくとも1つを含み、
 前記物品名情報は、前記第1物品の名称を示し、
 前記サイズ情報は、前記第1物品の寸法を示し、
 前記再製造条件情報は、前記平坦化工程が実行された際の前記第1温度を含み、
 前記再製造日時情報は、前記平坦化工程が実行された日時を示し、
 前記再製造回数情報は、前記平坦化工程が実行された累積回数を示す、<12>に記載の物品搬送容器用シートの再製造方法。
<1> A first heating step of heating a sheet for an article transport container having a first accommodating shape capable of accommodating a first article at a first temperature, and
A flattening step of flattening the first accommodating shape of the article transport container sheet heated at the first temperature, and
Have,
The article transport container sheet contains a polymer satisfying the following (1) and (2), and contains a polymer.
A method for remanufacturing a sheet for an article transport container, wherein the first temperature is the melting point Tm or more and 280 ° C. or less of the polymer.
(1) The ultimate viscosity [η] measured in a decalin solution at 135 ° C. is 4.0 dL / g or more and 35.0 dL / g or less (2) The melting point Tm is 120 ° C. or more and 140 ° C. or less <2> The method for remanufacturing a sheet for an article transport container according to <1>, wherein the polymer contains an ethylene-based polymer.
<3> In the flattening step, the article transport container sheet heated at the first temperature is placed on the surface of the flat surface of the mounting portion having a flat surface under atmospheric pressure, and the first step is performed. 1. The method for remanufacturing a sheet for an article transport container according to claim 1 or 2, wherein the accommodation shape is made into the flat shape.
<4> The method for remanufacturing an article transport container sheet according to any one of <1> to <3>, wherein the flatness of the article transport container sheet having a flat shape is less than 0.04.
<5> A second heating step of heating the flat-shaped sheet for transporting articles at a second temperature of the melting point Tm or more and 280 ° C. or less of the polymer.
A shaping step of shaping the flat shape of the article transport container sheet heated at the second temperature into a second accommodating shape capable of accommodating the second article.
A cooling step for cooling the article transport container sheet shaped into the second storage shape, and
Have,
The method for remanufacturing a sheet for an article transport container according to any one of <1> to <4>, wherein the second heating step, the shaping step, and the cooling step are performed in this order.
<6> The method for remanufacturing a sheet for an article transport container according to <5>, wherein in the shaping step, any one of vacuum forming, compressed air forming, and vacuum forming is used.
<7> In the shaping step,
Using a shaped mold having a mold surface corresponding to the second accommodation shape,
The article transport container sheet having the flat shape and heated at the second temperature is brought into contact with the mold surface to shape the flat shape into the second storage shape.
In the cooling step, at least the article transport container sheet shaped into the second accommodation shape is brought into contact with the mold surface while the article transport container sheet shaped into the second accommodation shape is brought into contact with the mold surface. The method for remanufacturing a sheet for an article transport container according to <6>, which cools the polymer until it becomes a solidification temperature or lower.
<8> In the shaping step,
Using a shaped mold having a mold surface corresponding to the second accommodation shape,
The air between the article transport container sheet and the shaping mold is exhausted, and the article transport container sheet having a flat shape and heated at the second temperature is brought into contact with the mold surface to obtain the above. The flat shape is shaped into the second accommodation shape,
In the cooling step, the article transport container sheet shaped in the second accommodation shape is cooled while the article transport container sheet shaped in the second accommodation shape is brought into contact with the mold surface. The method for remanufacturing a sheet for an article transport container according to <6> or <7>.
<9> In the shaping step,
Using a shaped mold having a mold surface corresponding to the second accommodation shape,
The article transport container sheet is pressurized with compressed air, and the article transport container sheet having the flat shape and heated at the second temperature is brought into contact with the mold surface to accommodate the flat shape in the second storage. Shaped into a shape,
In the cooling step, the article transport container sheet shaped into the second storage shape is maintained in contact with the mold surface, and the article transport container shaped into the second storage shape is used. The method for remanufacturing a sheet for an article transport container according to <6> or <7>, which cools the sheet.
<10> The article transport container sheet according to any one of <1> to <9>, wherein the volume of the first article is 3.0 cm 3 or more and 1.0 × 10 6 cm 3 or less. Production method.
<11> The method for remanufacturing a sheet for an article transport container according to any one of <1> to <10>, wherein the sheet for the article transport container is a sheet for discharge.
<12> It has a manufacturing history information addition step of adding a mark indicating manufacturing history information to the flat-shaped sheet for transporting articles.
The method for remanufacturing a sheet for an article transport container according to any one of <1> to <11>, wherein the manufacturing history information adding step is executed after the flattening step.
<13> The manufacturing history information includes at least one selected from the group consisting of article name information, size information, remanufacturing condition information, remanufacturing date / time information, and remanufacturing frequency information.
The article name information indicates the name of the first article.
The size information indicates the dimensions of the first article.
The remanufacturing condition information includes the first temperature when the flattening step is executed.
The remanufacturing date and time information indicates the date and time when the flattening step was executed.
The method for remanufacturing a sheet for an article transport container according to <12>, wherein the remanufacturing number information indicates the cumulative number of times the flattening step has been executed.
 本開示によれば、物品を収容可能に繰り返し賦形可能な物品搬送容器用シートの再製造方法が提供される。 According to the present disclosure, there is provided a method for remanufacturing a sheet for an article transport container that can repeatedly shape an article so that it can be accommodated.
本開示の第1実施形態に係るダネッジ用シートを示す斜視図である。It is a perspective view which shows the sheet for Danedge which concerns on 1st Embodiment of this disclosure. 図1の切断線IIの断面図である。It is sectional drawing of the cutting line II of FIG. 本開示の第2実施形態に係るダネッジ用シートを示す斜視図である。It is a perspective view which shows the sheet for Danedge which concerns on 2nd Embodiment of this disclosure. 図2の切断線IVの断面図である。It is sectional drawing of the cutting line IV of FIG. 周波数1.59Hzにおける、エチレン系重合体(PE-1)~(PE-6)の貯蔵弾性率E’の測定結果を示すグラフである。It is a graph which shows the measurement result of the storage elastic modulus E'of the ethylene-based polymer (PE-1)-(PE-6) at a frequency of 1.59 Hz. 実施例で用いた舟型の金型の斜視図である。It is a perspective view of the boat mold used in an Example. 実施例で用いたマドレーヌ型の金型の斜視図である。It is a perspective view of the Madeleine mold used in the Example.
 以下に、本開示の実施形態について説明する。これらの説明及び実施例は実施形態を例示するものであり、実施形態の範囲を制限するものではない。 Hereinafter, embodiments of the present disclosure will be described. These explanations and examples illustrate the embodiments and do not limit the scope of the embodiments.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
In the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
 本開示において各成分は該当する物質を複数種含んでいてもよい。本開示において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数種存在する場合には、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。 In this disclosure, each component may contain a plurality of applicable substances. When referring to the amount of each component in the composition in the present disclosure, if a plurality of substances corresponding to each component are present in the composition, unless otherwise specified, the plurality of types present in the composition. It means the total amount of substances.
 本開示においてシートは、一般的にシートと呼ばれているものだけでなく、一般的にフィルムと呼ばれているものをも包含する概念である。 In the present disclosure, the sheet is a concept that includes not only what is generally called a sheet but also what is generally called a film.
≪物品搬送容器用シート≫
 本開示の物品搬送容器用シートは、下記(1)及び(2)を満たす高分子(以下、「特定高分子」という場合がある。)を含む。
(1)135℃のデカリン溶液中で測定される極限粘度[η]が4.0dL/g以上35.0dL/g以下である。
(2)融点Tmが120℃以上140℃以下である。
≪Sheet for goods transport container≫
The sheet for an article transport container of the present disclosure includes a polymer satisfying the following (1) and (2) (hereinafter, may be referred to as a “specific polymer”).
(1) The ultimate viscosity [η] measured in a decalin solution at 135 ° C. is 4.0 dL / g or more and 35.0 dL / g or less.
(2) The melting point Tm is 120 ° C. or higher and 140 ° C. or lower.
 本開示の物品搬送容器用シートは、特定高分子を含む。 The article transport container sheet of the present disclosure contains a specific polymer.
 これにより、本開示の物品搬送容器用シートは、物品を収容可能に繰り返し賦形可能である。これは、以下の理由によると推測される。
 特定高分子は、上記(1)を満たすので、ASTM D4020に準じる次式から算出される特定高分子の粘度平均分子量(Mv)は高い。
           Mv=5.37×10×[η]1.37
 特定高分子では、特定高分子の貯蔵弾性率E’と温度との関係において、特定高分子の融点Tm~200℃付近の範囲に、ゴム状平坦領域が存在する。本開示において、ゴム平坦領域とは、特定高分子の融点Tm以上の温度において、特定高分子の貯蔵弾性率E’が温度に依存せずに略一定の値をとることを示す。ゴム平坦領域において、特定高分子は、ゴムのように振る舞い、高い粘弾性を有する。
 本開示の物品搬送容器用シートが物品を収容可能に繰り返し賦形可能であるのは、特定高分子において、融点Tm~200℃付近の範囲にゴム状平坦領域が存在するためと推測される。
 これに対し、上記(1)を満たさない高分子の粘度平均分子量は、特定高分子よりも低い。そのため、上記(1)を満たさない高分子では、ゴム状平坦領域は存在しないか、ゴム状平坦領域が存在してもゴム状平坦領域の温度範囲は非常に狭い。これは、上記(1)を満たさない高分子では、高分子鎖同士が特定高分子よりも深く貫入し合っておらず、いわゆる「絡み合い効果」が弱いためと推測される。特定高分子を含まない物品搬送容器用シートは、融点以上の温度において、流動性が高くなりやすく、外力による変形を伴うと、元の形状に回復しようとするポテンシャルが小さくなる。その結果、特定高分子を含まない物品搬送容器用シートは、物品を収容可能に繰り返し賦形できない。
 ゴム平坦領域の指標については、後述する。
As a result, the sheet for the article transport container of the present disclosure can be repeatedly shaped so as to accommodate the article. This is presumed to be due to the following reasons.
Since the specific polymer satisfies the above (1), the viscosity average molecular weight (Mv) of the specific polymer calculated from the following equation according to ASTM D4020 is high.
Mv = 5.37 × 10 4 × [η] 1.37
In the specific polymer, a rubber-like flat region exists in the range of the melting point Tm to 200 ° C. of the specific polymer in relation to the storage elastic modulus E'of the specific polymer and the temperature. In the present disclosure, the rubber flat region indicates that the storage elastic modulus E'of the specific polymer takes a substantially constant value regardless of the temperature at a temperature of the melting point Tm or more of the specific polymer. In the rubber flat region, the specific polymer behaves like rubber and has high viscoelasticity.
It is presumed that the sheet for the article transport container of the present disclosure can be repeatedly shaped so as to be able to accommodate the article because the rubber-like flat region exists in the range of the melting point Tm to about 200 ° C. in the specific polymer.
On the other hand, the viscosity average molecular weight of the polymer that does not satisfy the above (1) is lower than that of the specific polymer. Therefore, in the polymer that does not satisfy the above (1), the rubber-like flat region does not exist, or even if the rubber-like flat region exists, the temperature range of the rubber-like flat region is very narrow. It is presumed that this is because the polymer chains do not penetrate deeper than the specific polymer in the polymer that does not satisfy the above (1), and the so-called "entanglement effect" is weak. A sheet for an article transport container that does not contain a specific polymer tends to have high fluidity at a temperature equal to or higher than the melting point, and when it is deformed by an external force, the potential for recovering to the original shape decreases. As a result, the article transport container sheet that does not contain the specific polymer cannot be repeatedly shaped so that the article can be accommodated.
The index of the rubber flat region will be described later.
 賦形とは、物品搬送容器用シートを削らずに、平坦形状の物品搬送容器用シート(以下、「平坦シート」という場合がある。)に所望の形状を付与することを意味する。
 物品は、例えば、自動車部品;電子部品;精密機器;食品・飲料容器;日用品;衣料品;家具;事務機器;などが挙げられる。自動車部品は、例えば、タイヤ、ホイール、シャーシ部品、内装部品等が挙げられる。物品の1個当たりの体積は、特に限定されず、好ましくは3.0cm以上1.0×10cm以下である。
The shaping means giving a desired shape to a flat-shaped article-carrying container sheet (hereinafter, may be referred to as "flat sheet") without scraping the goods-carrying container sheet.
Examples of the article include automobile parts; electronic parts; precision equipment; food / beverage containers; daily necessities; clothing; furniture; office equipment; and the like. Examples of automobile parts include tires, wheels, chassis parts, interior parts and the like. The volume per article is not particularly limited, and is preferably 3.0 cm 3 or more and 1.0 × 10 6 cm 3 or less.
〔物品搬送容器用シートの形状〕
 物品搬送容器用シートの形状は、物品搬送容器用シートの使用機会等に応じて適宜選択され、例えば、物品を収容可能な収容形状(以下、「収容形状」という。)、平坦形状等である。
[Shape of article transport container sheet]
The shape of the article transport container sheet is appropriately selected according to the usage opportunity of the article transport container sheet, and is, for example, a storage shape capable of accommodating articles (hereinafter referred to as “containment shape”), a flat shape, or the like. ..
 以下、収容形状を有する物品搬送容器用シートを「物品搬送容器」という場合がある。 Hereinafter, a sheet for an article transport container having a storage shape may be referred to as an "article transport container".
 収容形状とは、物品を載置可能で、かつ物品の輸送の際に物品を保護する形状を意味する。収容形状としては、物品搬送容器用シートの用途等に応じて選択され、嵌合形状、囲い形状等が挙げられる。嵌合形状は、載置される物品と嵌合する。嵌合形状は、載置される物品の形状に合わせて賦形されている。囲い形状は、載置される物品を壁部で囲う。 The accommodation shape means a shape in which an article can be placed and the article is protected when the article is transported. The accommodation shape is selected according to the application of the article transport container sheet and the like, and examples thereof include a fitting shape and an enclosure shape. The fitting shape fits with the article to be placed. The fitting shape is shaped according to the shape of the article to be placed. The enclosure shape encloses the article to be placed with a wall portion.
 平坦形状とは、物品搬送容器用シートの両面が略平面である形状を意味する。換言すると、平坦形状の物品搬送容器用シートの平坦度は、好ましくは0.04未満、より好ましくは0.02以下であり、収納スペースを取らないことから小さければ小さいほど好ましい。
 平坦形状の物品搬送容器用シートの平坦度が0.04未満であれば、平坦形状の物品搬送容器用シートの反りの発生は抑制されている。そのため、物品搬送容器用シートは、所望の収容形状に賦形されやすくなる。更に、物品搬送容器用シートを保管する際に、物品搬送容器用シートは嵩張りにくくなる。
 平坦度は、実施例に記載の方法と同様にして測定される。
The flat shape means a shape in which both sides of the article transport container sheet are substantially flat. In other words, the flatness of the flat-shaped sheet for transporting goods is preferably less than 0.04, more preferably 0.02 or less, and the smaller it is, the more preferable it is because it does not take up storage space.
When the flatness of the flat-shaped article transport container sheet is less than 0.04, the occurrence of warpage of the flat-shaped article transport container sheet is suppressed. Therefore, the article transport container sheet is likely to be shaped into a desired storage shape. Further, when the article transport container sheet is stored, the article transport container sheet becomes less bulky.
Flatness is measured in the same manner as described in the examples.
〔層構造及び成形方法〕
 物品搬送容器用シートは、単層構造であってもよいし、2層以上の積層構造であってもよい。物品搬送容器用シートが積層構造である場合、積層される各層の少なくとも1層、好ましくはすべての層が、本開示の要件(1)及び(2)を満たす高分子を含むものであればよい。また、物品搬送容器用シートは、必要に応じて離型層、コーティング層等を設けて使用してもよい。
[Layer structure and molding method]
The article transport container sheet may have a single-layer structure or a laminated structure of two or more layers. When the sheet for the article transport container has a laminated structure, at least one layer, preferably all layers of each layer to be laminated may contain a polymer satisfying the requirements (1) and (2) of the present disclosure. .. Further, the article transport container sheet may be used by providing a release layer, a coating layer and the like, if necessary.
 物品搬送容器用シートのサイズは、積載される物品等に応じて適宜調整される。例えば、物品搬送容器用シートが四辺形である場合、1辺の長さは1m以上であってもよい。物品搬送容器用シートの平均厚さは、特に制限されないが、例えば、100μm~1cmであることが好ましく、500μm~1cmであることがより好ましく、1mm~8mmであることがさらに好ましい。なお、物品搬送容器用シートの平均厚さとは、物品搬送容器用シートにおける任意の5箇所の厚さの算術平均値を意味する。 The size of the goods transport container sheet is appropriately adjusted according to the goods to be loaded. For example, when the article transport container sheet has a quadrilateral shape, the length of one side may be 1 m or more. The average thickness of the article transport container sheet is not particularly limited, but is preferably 100 μm to 1 cm, more preferably 500 μm to 1 cm, and even more preferably 1 mm to 8 mm, for example. The average thickness of the article transport container sheet means the arithmetic mean value of the thickness of any five places in the article transport container sheet.
 物品搬送容器用シートの成形方法としては、例えば、熱プレス成形、ロールプレス成形、押出成形、真空成形、圧空成形、真空圧空成形等が挙げられる。また、これらの加熱成形によって得られた成形品から、スカイビング加工によりシートを得ても良い。
 特に、物品搬送容器用シートは、物品搬送容器用シートを構成する材料(以下、「高分子材料」という。)を、所定の圧力で熱プレス成形して、平坦形状に製造されることが好ましい。これにより、物品搬送用シートにおいて、平坦形状が安定な形状として記憶される。そのため、平坦シートの平坦形状が収容形状に賦形されても、物品搬送容器用シートは、ゴム状平坦領域が存在する温度範囲で加熱されると、物品搬送容器用シートの形状記憶効果により、元の平坦形状に自発的に形状回復しやすくなる。このような現象は、例えば、超高分子量ポリエチレンをブロー成形して形成された中空トレイには見られない。ブロー成形では、ブロー成形後、超高分子量ポリエチレンの融点以上に中空トレイを再加熱しても、中空トレイは、平板状に形状回復することはない。
 熱プレス成形の圧力の下限は、好ましくは0.1MPa以上、より好ましくは1MPa以上である。熱プレス成形の圧力の上限は、好ましくは20MPa以下、より好ましくは10MPa以下である。熱プレス成形の加熱温度の下限は、高分子の融点Tm以上であり、好ましくは160℃以上、より好ましくは170℃以上である。熱プレス成形の加熱温度の上限は、好ましくは280℃以下、より好ましくは260℃以下である。熱プレス成形の加圧時間の下限は、好ましくは5分以上、より好ましくは10分以上である。熱プレス成形の加圧時間の上限は、好ましくは24時間以内、より好ましくは12時間以内である。
 物品搬送容器用シートは、熱プレス成形された後に、冷却プレスされてもよい。
 冷却プレスの圧力としては、熱プレス成形の圧力として例示した範囲と同様の範囲が挙げられる。冷却プレスの圧力は、熱プレス成形の圧力と同一であってもよいし、異なっていてもよい。
 冷却プレスの冷却温度は、特定高分子の結晶化温度よりも低い温度であればよく、例えば、熱プレス成形の加熱温度よりも100℃~200℃低い温度であればよい。
 冷却プレスの冷却時間は、熱プレス成形の加熱時間として例示した範囲と同様の範囲が挙げられる。冷却プレスの圧力は、熱プレス成形の加熱時間と同一であってもよいし、異なっていてもよい。
Examples of the method for forming the sheet for the article transport container include hot press molding, roll press molding, extrusion molding, vacuum forming, vacuum forming, vacuum forming. Further, a sheet may be obtained by skiving from the molded products obtained by these heat moldings.
In particular, the article transport container sheet is preferably manufactured into a flat shape by hot press molding a material (hereinafter, referred to as "polymer material") constituting the article transport container sheet at a predetermined pressure. .. As a result, the flat shape is stored as a stable shape in the article transport sheet. Therefore, even if the flat shape of the flat sheet is shaped into the accommodation shape, when the sheet for the article transport container is heated in the temperature range in which the rubber-like flat region exists, the shape memory effect of the sheet for the article transport container causes. It becomes easier to spontaneously recover the shape to the original flat shape. Such a phenomenon is not seen in, for example, a hollow tray formed by blow molding ultra-high molecular weight polyethylene. In blow molding, even if the hollow tray is reheated above the melting point of ultra-high molecular weight polyethylene after blow molding, the hollow tray does not recover to a flat plate shape.
The lower limit of the pressure for hot press molding is preferably 0.1 MPa or more, more preferably 1 MPa or more. The upper limit of the pressure for hot press molding is preferably 20 MPa or less, more preferably 10 MPa or less. The lower limit of the heating temperature of the hot press molding is the melting point Tm or more of the polymer, preferably 160 ° C. or higher, and more preferably 170 ° C. or higher. The upper limit of the heating temperature for hot press molding is preferably 280 ° C. or lower, more preferably 260 ° C. or lower. The lower limit of the pressurizing time of hot press molding is preferably 5 minutes or more, more preferably 10 minutes or more. The upper limit of the pressurizing time of hot press molding is preferably within 24 hours, more preferably within 12 hours.
The article transport container sheet may be heat-press-molded and then cooled-pressed.
Examples of the pressure of the cooling press include a range similar to the range exemplified as the pressure of hot press molding. The pressure of the cooling press may be the same as or different from the pressure of the hot press molding.
The cooling temperature of the cooling press may be a temperature lower than the crystallization temperature of the specific polymer, and may be, for example, a temperature 100 ° C. to 200 ° C. lower than the heating temperature of hot press molding.
The cooling time of the cooling press may be in the same range as the range exemplified as the heating time of hot press molding. The pressure of the cooling press may be the same as or different from the heating time of the hot press molding.
〔分析方法〕
 物品搬送容器用シートに複数の種類の特定高分子が含まれる場合、又は、特定高分子以外のその他の高分子が含まれる場合、特定高分子及びその他の高分子は、極限粘度等のレオロジー分析等の通常の高分子の分析方法によりそれぞれ特定することができる。
[Analysis method]
When multiple types of specific polymers are contained in the sheet for transporting goods, or when other polymers other than the specific polymers are contained, the specific polymers and other polymers are rheologically analyzed such as extreme viscosity. Each can be specified by an ordinary polymer analysis method such as.
〔特定高分子の性質〕
(1)極限粘度[η]
 特定高分子は、135℃のデカリン溶液中で測定される極限粘度[η]が4.0dL/g~35.0dL/gであり、物品搬送容器用シートを用いた賦形をより繰り返し可能とする観点からは、5.0dL/g~35.0dL/gであることが好ましく、5.0dL/g~30.0dL/gであることがより好ましく、10.0dL/g~20.0dL/gであることがさらに好ましい。
 特定高分子の極限粘度[η]の下限が4.0dL/g以上であれば、特定高分子の粘度平均分子量は高い。そのため、特定高分子には、ゴム状平坦領域が存在する。その結果、物品搬送容器用シートは、繰り返し賦形され得る。粘度平均分子量は、極減粘度[η]を用いて、ASTM D4020に準じる式により算出され得る。
 特定高分子の極限粘度[η]の下限が35.0dL/g以下であれば、製造適性の点で好ましい。
 極限粘度[η]の測定方法は、実施例に記載の方法と同様である。
[Characteristics of specific polymer]
(1) Extreme viscosity [η]
The specific polymer has an ultimate viscosity [η] measured in a decalin solution at 135 ° C. of 4.0 dL / g to 35.0 dL / g, which makes it possible to more repeat the shaping using the article transport container sheet. From the viewpoint of the above, it is preferably 5.0 dL / g to 35.0 dL / g, more preferably 5.0 dL / g to 30.0 dL / g, and 10.0 dL / g to 20.0 dL / g. It is more preferably g.
When the lower limit of the ultimate viscosity [η] of the specific polymer is 4.0 dL / g or more, the viscosity average molecular weight of the specific polymer is high. Therefore, the specific polymer has a rubber-like flat region. As a result, the article transport container sheet can be repeatedly shaped. The viscosity average molecular weight can be calculated by an equation according to ASTM D4020 using the extremely reduced viscosity [η].
When the lower limit of the ultimate viscosity [η] of the specific polymer is 35.0 dL / g or less, it is preferable in terms of production suitability.
The method for measuring the ultimate viscosity [η] is the same as the method described in Examples.
 極限粘度[η]を上記範囲内とする手法は、特に制限されないが、例えば、特定高分子の重合の際に水素を併用する手法;重合温度を適宜調整する手法;等が挙げられる。 The method of setting the ultimate viscosity [η] within the above range is not particularly limited, and examples thereof include a method of using hydrogen together when polymerizing a specific polymer; a method of appropriately adjusting the polymerization temperature; and the like.
(2)融点Tm
 特定高分子の融点Tmは、120℃~140℃であり、物品搬送容器用シートを用いた賦形をより繰り返し可能とする観点からは、130℃~140℃であることがさらに好ましい。
 特に、特定高分子の融点Tmの上限が140℃以下であるので、融点Tmが140℃超である場合よりも低い加熱温度で、物品搬送容器用シートは賦形され得る。そのため、物品搬送容器用シートの生産性が優れる。
 特定高分子の融点Tmが120℃以上であれば、耐熱性の点で好ましい。
 融点Tmの測定方法は、実施例に記載の方法と同様である。
(2) Melting point Tm
The melting point Tm of the specific polymer is 120 ° C. to 140 ° C., and is more preferably 130 ° C. to 140 ° C. from the viewpoint of making the shaping using the article transport container sheet more repeatable.
In particular, since the upper limit of the melting point Tm of the specific polymer is 140 ° C. or lower, the article transport container sheet can be shaped at a heating temperature lower than that when the melting point Tm is more than 140 ° C. Therefore, the productivity of the sheet for the article transport container is excellent.
When the melting point Tm of the specific polymer is 120 ° C. or higher, it is preferable in terms of heat resistance.
The method for measuring the melting point Tm is the same as the method described in Examples.
(3)粘度平均分子量
 特定高分子の粘度平均分子量Mvは、好ましくは35×10~650×10、より好ましくは120×10~650×10、さらに好ましくは120×10~260×10である。
 特定高分子の粘度平均分子量Mvが35×10~650×10の範囲内であれば、物品搬送容器用シートは繰り返し賦形されやすくなる。
 特定高分子の粘度平均分子量Mvが120×10~650×10の範囲内であれば、物品搬送容器用シートの賦形可能回数はより多くなる。
 特定高分子の粘度平均分子量Mvが120×10~260×10の範囲内であれば、物品搬送容器用シートの賦形性はより向上する。
 粘度平均分子量の測定方法は、実施例と同様である。
(3) Viscosity Average Molecular Weight The viscosity average molecular weight Mv of the specific polymer is preferably 35 × 10 4 to 650 × 10 4 , more preferably 120 × 10 4 to 650 × 10 4 , and even more preferably 120 × 10 4 to 260. It is × 10 4 .
Within the range the viscosity-average molecular weight Mv of 35 × 10 4 ~ 650 × 10 4 of the specific polymer, the sheet article carrying container can easily be repeatedly shaped.
Within the range the viscosity-average molecular weight Mv of 120 × 10 4 ~ 650 × 10 4 of the specific polymer, shapeable number of sheets for the article transport container is more.
Within the range the viscosity-average molecular weight Mv of 120 × 10 4 ~ 260 × 10 4 of the specific polymer, formability of the sheet for the article transport container is further improved.
The method for measuring the viscosity average molecular weight is the same as in the examples.
(4)密度
 特定高分子の密度は、特に制限されず、所望する物品搬送容器の強度、製造上の都合等に応じて、適宜設計してよい。例えば、特定高分子の密度は、900kg/m~960kg/mであることが好ましく、920kg/m~960kg/mであることがより好ましく、920kg/m~950kg/mであることがさらに好ましい。
 密度の測定方法は、実施例に記載の方法と同様である。
(4) Density The density of the specific polymer is not particularly limited, and may be appropriately designed according to the desired strength of the article transport container, manufacturing convenience, and the like. For example, the density of the specific polymer is preferably 900 kg / m 3 to 960 kg / m 3 , more preferably 920 kg / m 3 to 960 kg / m 3 , and 920 kg / m 3 to 950 kg / m 3 . It is more preferable to have.
The method for measuring the density is the same as the method described in the examples.
(5)貯蔵弾性率
 特定高分子のT1℃(融点Tm≦T1<180℃)における貯蔵弾性率E’(T1℃)の下限は、好ましくは0.5MPa以上、より好ましくは1.0MPa以上である。
 特定高分子の貯蔵弾性率E’(T1℃)の上限は、好ましくは7.0MPa以下、より好ましくは6.0MPa以下、さらに好ましくは5.0MPa以下である。
 貯蔵弾性率E’(T1℃)が0.5MPa以上であれば、特定高分子は、T1℃において、高い粘弾性を有する。
 特定高分子の貯蔵弾性率E’(T1℃)は、実施例に記載の方法と同様である。
(5) Storage elastic modulus The lower limit of the storage elastic modulus E'(T1 ° C.) at T1 ° C. (melting point Tm ≦ T1 <180 ° C.) of the specific polymer is preferably 0.5 MPa or more, more preferably 1.0 MPa or more. is there.
The upper limit of the storage elastic modulus E'(T1 ° C.) of the specific polymer is preferably 7.0 MPa or less, more preferably 6.0 MPa or less, still more preferably 5.0 MPa or less.
When the storage elastic modulus E'(T1 ° C.) is 0.5 MPa or more, the specific polymer has high viscoelasticity at T1 ° C.
The storage elastic modulus E'(T1 ° C.) of the specific polymer is the same as the method described in Examples.
 特定高分子のT2℃(180℃≦T2≦240℃)における貯蔵弾性率E’(T2℃)の下限は、好ましくは0.5MPa以上、より好ましくは0.8MPa以上である。
 特定高分子の貯蔵弾性率E’(T2℃)の上限は、好ましくは7.0MPa以下、より好ましくは6.0MPa以下、さらに好ましくは5.0MPa以下である。
 貯蔵弾性率E’(T2℃)が0.5MPa以上であれば、特定高分子は、T2℃において、高い粘弾性を有する。
 特定高分子の貯蔵弾性率E’(T2℃)は、実施例に記載の方法と同様である。
The lower limit of the storage elastic modulus E'(T2 ° C.) at T2 ° C. (180 ° C.≤T2≤240 ° C.) of the specific polymer is preferably 0.5 MPa or more, more preferably 0.8 MPa or more.
The upper limit of the storage elastic modulus E'(T2 ° C.) of the specific polymer is preferably 7.0 MPa or less, more preferably 6.0 MPa or less, still more preferably 5.0 MPa or less.
When the storage elastic modulus E'(T2 ° C.) is 0.5 MPa or more, the specific polymer has high viscoelasticity at T2 ° C.
The storage elastic modulus E'(T2 ° C.) of the specific polymer is the same as the method described in Examples.
 特定高分子の貯蔵弾性率E’(T1℃)に対する貯蔵弾性率E’(T2℃)の比(以下、「(E’(T2℃)/E’(T1℃))」という。)の下限は、好ましくは0.4以上、より好ましくは0.5以上である。
 (E’(T2℃)/E’(T1℃))の上限は、好ましくは1.5以下、より好ましくは1.3以下、さらに好ましくは1.2以下である。
 (E’(T2℃)/E’(T1℃))の0.4以上1.5以下の範囲内であれば、特定高分子の貯蔵弾性率E’が温度に依存せずに略一定の値をとるとみなすことができる。そのため、特定高分子は、T1℃~T2℃の範囲内において、高い粘弾性を有する。
The lower limit of the ratio of the storage elastic modulus E'(T2 ° C.) to the storage elastic modulus E'(T1 ° C.) of the specific polymer (hereinafter referred to as "(E'(T2 ° C.) / E'(T1 ° C.))"). Is preferably 0.4 or more, more preferably 0.5 or more.
The upper limit of (E'(T2 ° C.) / E'(T1 ° C.)) is preferably 1.5 or less, more preferably 1.3 or less, still more preferably 1.2 or less.
If it is within the range of 0.4 or more and 1.5 or less of (E'(T2 ° C.) / E'(T1 ° C.)), the storage elastic modulus E'of the specific polymer is substantially constant regardless of the temperature. It can be considered to take a value. Therefore, the specific polymer has high viscoelasticity in the range of T1 ° C. to T2 ° C.
〔ゴム状平坦領域の指標〕
 本開示では、ゴム状平坦領域が存在するとは、下記(i)及び(ii)を満たす場合をいう。ゴム状平坦領域が存在しないとは、下記(i)及び(ii)の少なくとも一方を満たさない場合をいう。
(i)貯蔵弾性率E’(140℃)及び貯蔵弾性率E’(230℃)の各々が0.5MPa以上であること
(ii)「(E’(230℃)/E’(140℃))」が0.4~1.5の範囲内であること
[Indicator of rubber-like flat area]
In the present disclosure, the existence of the rubber-like flat region means the case where the following (i) and (ii) are satisfied. The absence of the rubber-like flat region means a case where at least one of the following (i) and (ii) is not satisfied.
(I) Each of the storage elastic modulus E'(140 ° C.) and the storage elastic modulus E'(230 ° C.) is 0.5 MPa or more (ii) "(E'(230 ° C.) / E'(140 ° C.)) ) ”Is in the range of 0.4 to 1.5
〔特定高分子の構造〕
 特定高分子は、物品を収容可能に繰り返し賦形可能な物品搬送容器用シートをより得られ易くする観点から、オレフィン重合体を含むことが好ましい。特定高分子は、1種単独で用いても、2種以上を併用してもよい。
[Structure of specific polymer]
The specific polymer preferably contains an olefin polymer from the viewpoint of making it easier to obtain a sheet for an article transport container that can be repeatedly shaped so that the article can be accommodated. The specific polymer may be used alone or in combination of two or more.
 オレフィン重合体としては、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン系重合体、エチレンと炭素数2~20のα-オレフィンとの共重合体等のエチレン系重合体;プロピレン単独重合体、プロピレンと炭素数2~20のα-オレフィンとの共重合体等のプロピレン系重合体;ブテン-1単独重合体、ブテン-1と炭素数2~20のα-オレフィン(ただしブテン-1は除く)との共重合体等のブテン-1系重合体;4-メチル-1-ペンテン単独重合体、4-メチル-1-ペンテン単独重合体と炭素数2~20のα-オレフィン(ただし4-メチル-1-ペンテンは除く)との共重合体等の4-メチル-1-ペンテン系重合体;などが挙げられる。 Examples of the olefin polymer include low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, ethylene-based polymer, and a copolymer of ethylene and α-olefin having 2 to 20 carbon atoms. Ethylene-based polymer; propylene-based polymer such as propylene homopolymer, copolymer of propylene and α-olefin having 2 to 20 carbon atoms; butene-1 homopolymer, butene-1 and carbon number of 2 to 20 carbon atoms Buten-1 polymer such as a copolymer with α-olefin (excluding butene-1); 4-methyl-1-pentene homopolymer, 4-methyl-1-pentene homopolymer and 2 carbon atoms Examples thereof include 4-methyl-1-pentene-based polymers such as copolymers with ~ 20 α-olefins (excluding 4-methyl-1-pentene).
 エチレン系重合体は、少なくともエチレンを構成単位として有する重合体である。
 プロピレン系重合体は、少なくともプロピレンを構成単位として有する重合体である。
The ethylene-based polymer is a polymer having at least ethylene as a constituent unit.
The propylene-based polymer is a polymer having at least propylene as a constituent unit.
 上記の中でも、オレフィン重合体としては、物品を収容可能に繰り返し賦形可能な物品搬送容器用シートをより得られ易くする観点からは、エチレン系重合体及びプロピレン系重合体の少なくとも一方を含むことがより好ましく、エチレン系重合体を含むことがさらに好ましく、超高分子量エチレン系重合体を含むことが特に好ましい。 Among the above, the olefin polymer includes at least one of an ethylene polymer and a propylene polymer from the viewpoint of making it easier to obtain a sheet for an article transport container that can accommodate an article and can be repeatedly shaped. Is more preferable, and it is more preferable to contain an ethylene-based polymer, and it is particularly preferable to contain an ultra-high molecular weight ethylene-based polymer.
 超高分子量エチレン系重合体としては、直鎖型と架橋型の2種類が挙げられる。
 本開示の一態様として、特定高分子は、例えば、架橋型の超高分子量エチレン系重合体を含まず、且つ、直鎖型の超高分子量エチレン系重合体を含む態様であってもよい。
 特に、直鎖型の超高分子量エチレン系共重合体は、物品輸送用シートとして、耐摩耗性、低摩擦性、機械強度、耐低温衝撃性に優れ、かつ繰り返し賦形性に優れ、好ましく用いることができる。
Examples of the ultra-high molecular weight ethylene polymer include two types, a linear type and a crosslinked type.
As one aspect of the present disclosure, the specific polymer may be, for example, a mode in which the crosslinked ultra-high molecular weight ethylene-based polymer is not contained and the linear type ultra-high molecular weight ethylene-based polymer is contained.
In particular, a linear ultra-high molecular weight ethylene-based copolymer is preferably used as a sheet for transporting articles because it has excellent wear resistance, low friction resistance, mechanical strength, low temperature impact resistance, and excellent repeatability. be able to.
 特定高分子の含有量は、物品搬送容器用シートの総量に対して、40質量%~100質量%であることが好ましく、60質量%~100質量%であることがより好ましく、80質量%~100質量%であることがさらに好ましい。 The content of the specific polymer is preferably 40% by mass to 100% by mass, more preferably 60% by mass to 100% by mass, and 80% by mass to 100% by mass, based on the total amount of the article transport container sheet. It is more preferably 100% by mass.
〔その他の高分子〕
 本開示の物品搬送容器用シートは、本開示の効果が阻害されない範囲内で、特定高分子以外のその他の高分子を含んでいてもよい。
 その他の高分子としては、例えば、熱可塑性樹脂及び熱硬化性樹脂が挙げられる。
 熱可塑性樹脂としては、ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩素化ポリプロピレン、ポリフッ化ビニリデン、塩化ゴム、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル三元共重合体、塩化ビニル-アクリル酸エステル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-シクロヘキシルマレイミド共重合体等の含ハロゲン樹脂;石油樹脂、クマロン樹脂、ポリスチレン、ポリ酢酸ビニル、アクリル樹脂、スチレンおよび/またはα-メチルスチレンと他の単量体(例えば、無水マレイン酸、フェニルマレイミド、メタクリル酸メチル、ブタジエン、アクリロニトリル等)との共重合体(例えば、AS(アクリロニトリルスチレン)樹脂、ABS(アクリロニトリルブタジエンスチレン共重合体)樹脂、ACS(アクリロニトリル・塩素化ポリエチレン・スチレン共重合体)樹脂、SBS(スチレンブタジエンスチレンブロック共重合体)樹脂、MBS(メチルメタクリレート・ブタジエン・スチレン共重合体)樹脂、耐熱ABS樹脂等);ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート等のポリアルキレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリアルキレンナフタレート等の芳香族ポリエステルおよびポリテトラメチレンテレフタレート等の直鎖ポリエステル;ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ乳酸、ポリリンゴ酸、ポリグリコール酸、ポリジオキサン、ポリ(2-オキセタノン)等の分解性脂肪族ポリエステル;ポリフェニレンオキサイド、ポリカプロラクタムおよびポリヘキサメチレンアジパミド等のポリアミド、ポリカーボネート、ポリカーボネート/ABS樹脂、分岐ポリカーボネート、ポリアセタール、ポリフェニレンサルファイド、ポリウレタン、繊維素系樹脂、ポリイミド樹脂、ポリサルフォン、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、液晶ポリマー等の熱可塑性樹脂およびこれらのブレンド物を挙げることができる。また、熱可塑性樹脂は、イソプレンゴム、ブタジエンゴム、アクリロニトリル-ブタジエン共重合ゴム、スチレン-ブタジエン共重合ゴム、フッ素ゴム、シリコーンゴム、スチレン系エラストマー、ポリエステル系エラストマー、ニトリル系エラストマー、ナイロン系エラストマー、塩化ビニル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー等のエラストマーであってもよい。熱可塑性樹脂は、1種単独で使用してもよく、2種以上を併せて使用してもよい。
 熱硬化性樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ユリア樹脂、不飽和ポリエステル樹脂、メラミン樹脂、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ウレタン樹脂等が挙げられる。熱硬化性樹脂は、1種単独で使用してもよく、2種以上を併せて使用してもよい。
 その他の高分子を含む場合、特定高分子の含有量は、物品搬送容器用シートに含まれる高分子の総量100質量%に対して、95質量%以上であることが好ましく、98質量%以上であることがより好ましく、99.9質量%以上であることがさらに好ましい。
[Other polymers]
The sheet for the article transport container of the present disclosure may contain a polymer other than the specific polymer as long as the effect of the present disclosure is not impaired.
Examples of other polymers include thermoplastic resins and thermosetting resins.
The thermoplastic resin includes polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, chlorinated polypropylene, polyvinylidene fluoride, rubber chloride, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-chloride. Includes vinylidene copolymer, vinyl chloride-vinylidene chloride-vinyl acetate ternary copolymer, vinyl chloride-acrylic acid ester copolymer, vinyl chloride-maleic acid ester copolymer, vinyl chloride-cyclohexylmaleimide copolymer, etc. Halogen resin; petroleum resin, kumaron resin, polystyrene, polyvinyl acetate, acrylic resin, styrene and / or α-methylstyrene and other monomers (eg, maleic anhydride, phenylmaleimide, methyl methacrylate, butadiene, acrylonitrile, etc.) ) (For example, AS (acrylonitrile styrene) resin, ABS (acrylonitrile butadiene styrene copolymer) resin, ACS (acrylonitrile / chlorinated polyethylene / styrene copolymer) resin, SBS (styrene butadiene styrene block common weight) Combined) resin, MBS (methyl methacrylate, butadiene, styrene copolymer) resin, heat-resistant ABS resin, etc.); Polymethyl methacrylate, polyvinyl alcohol, polyvinyl formal, polyvinyl butyral; polyethylene terephthalate, polybutylene terephthalate, polycyclohexanedimethylene terephthalate, etc. Aromatic polyesters such as polyalkylene naphthalate such as polyalkylene terephthalate, polyethylene naphthalate, polybutylene naphthalate and linear polyesters such as polytetramethylene terephthalate; polyhydroxybutyrate, polycaprolactone, polybutylene succinate, polyethylene succi Degradable aliphatic polyesters such as nate, polylactic acid, polyappleic acid, polyglycolic acid, polydioxane, poly (2-oxetanone); polyamides such as polyphenylene oxide, polycaprolactam and polyhexamethylene adipamide, polycarbonate, polycarbonate / ABS Thermoplastic resins such as resins, branched polycarbonates, polyacetals, polyphenylene sulfides, polyurethanes, fibrous resins, polyimide resins, polysulfones, polyphenylene ethers, polyether ketones, polyether ether ketones, liquid crystal polymers, and blends thereof can be mentioned. it can. The thermoplastic resin includes isoprene rubber, butadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, fluororubber, silicone rubber, styrene elastomer, polyester elastomer, nitrile elastomer, nylon elastomer, and chloride. It may be an elastomer such as a vinyl-based elastomer, a polyamide-based elastomer, or a polyurethane-based elastomer. The thermoplastic resin may be used alone or in combination of two or more.
Examples of the thermosetting resin include epoxy resin, silicone resin, phenol resin, urea resin, unsaturated polyester resin, melamine resin, polyimide resin, polybenzoxazole resin, urethane resin and the like. The thermosetting resin may be used alone or in combination of two or more.
When other polymers are contained, the content of the specific polymer is preferably 95% by mass or more, preferably 98% by mass or more, based on 100% by mass of the total amount of the polymers contained in the sheet for transporting articles. It is more preferable that the content is 99.9% by mass or more.
〔充填材〕
 本開示の物品搬送容器用シートは、充填材、着色剤を含んでいてもよい。
 充填材としては、例えば、カーボンブラック、シリカ、アルミナ、マグネシウム、炭酸カルシウム等の無機粒子;タルク、マイカ、などの天然鉱物系粒子;などが挙げられる。充填材の含有量は、後述する平坦化工程での形状回復性を保持する観点から、物品搬送容器用シートの総量に対して、1質量%~20質量%であることが好ましく、2質量%~10質量%であることがより好ましい。着色剤としては、顔料;色素;などが挙げられる。
[Filler]
The article transport container sheet of the present disclosure may contain a filler and a colorant.
Examples of the filler include inorganic particles such as carbon black, silica, alumina, magnesium and calcium carbonate; natural mineral particles such as talc and mica; and the like. The content of the filler is preferably 1% by mass to 20% by mass, preferably 2% by mass, based on the total amount of the sheet for the article transport container from the viewpoint of maintaining the shape recovery in the flattening step described later. It is more preferably to 10% by mass. Examples of the colorant include pigments; pigments; and the like.
≪物品搬送容器≫
 本開示の物品搬送容器は、収容形状を有する物品搬送容器用シートである。
 本開示の物品搬送容器は、本開示の物品搬送容器用シートの賦形物であるため、物品を収容可能に繰り返し賦形可能である。
 本開示の物品搬送容器は、略シート状物である。物品搬送容器の厚みは、物品搬送容器用シートの平均厚みと略同一であってもよい。
 本開示の物品搬送容器は、搬送する物品を際に、搬送する物品を保護する。物品搬送容器としては、例えば、コンテナ、ダネッジ等が挙げられる。中でも、物品搬送容器は、ダネッジであることが好ましい。本開示のコンテナは、上述した囲い形状を有する。
≪Goods transport container≫
The article transport container of the present disclosure is a sheet for an article transport container having a storage shape.
Since the article transport container of the present disclosure is a shaped product of the sheet for the article transport container of the present disclosure, it can be repeatedly shaped so that the article can be accommodated.
The article transport container of the present disclosure is substantially a sheet-like material. The thickness of the article transport container may be substantially the same as the average thickness of the article transport container sheet.
The article transport container of the present disclosure protects the article to be transported when the article is to be transported. Examples of the article transport container include a container, a danedge, and the like. Above all, the article transport container is preferably a Danage. The container of the present disclosure has the above-mentioned enclosure shape.
 以下、物品搬送容器がダネッジである場合、収容形状を有する物品搬送容器用シートを「ダネッジ用シート」という場合がある。 Hereinafter, when the article transport container is a Danage, the article transport container sheet having a storage shape may be referred to as a "Danage sheet".
≪ダネッジ用シート≫
 本開示のダネッジ用シートは、上述した嵌合形状を有し、特定高分子を含有する。
 ダネッジ用シートを得る成形方法は、特に制限されず、公知の成形方法が適用できる。前記成形方法としては、例えば、真空成形、圧空成形、真空圧空成形、TOM(Three dimension Overlay Method)成形、熱プレス成形等が挙げられる。
≪Sheet for Danedge≫
The Danage sheet of the present disclosure has the above-mentioned fitting shape and contains a specific polymer.
The molding method for obtaining the Danedge sheet is not particularly limited, and a known molding method can be applied. Examples of the molding method include vacuum forming, pressure forming, vacuum pressure forming, TOM (Three dimension Overlay Method) molding, hot press molding and the like.
 図1~図4を参照して、本開示のダネッジ用シートを具体的に説明する。
 まず、図1及び図2を参照して、本開示の第1実施形態に係るダネッジ用シート10Aについて説明する。図1は、本開示の第1実施形態に係るダネッジ用シート10Aを示す斜視図である。図2は、図1の切断線IIの断面図である。
The sheet for discharge of the present disclosure will be specifically described with reference to FIGS. 1 to 4.
First, the Danedge sheet 10A according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 and 2. FIG. 1 is a perspective view showing a Danedge sheet 10A according to the first embodiment of the present disclosure. FIG. 2 is a cross-sectional view of the cutting line II of FIG.
 ダネッジ用シート10Aは、4個のホイール20Aを積載可能である。ホイール20Aは、物品の一例である。
 ダネッジ用シート10Aは、図1に示すように、略シート状物である。ダネッジ用シート10Aは、上面TS10A及び下面BS10Aを有する。上面TS10A及び下面BS10Aは互いに対向している。ホイール20Aは、上面TS10Aに載置される。ダネッジ用シート10Aの厚みT10Aは、図2に示すように、ダネッジ用シート10Aの全域に亘って略均一である。
 上面TS10Aは、図1に示すように、平面部TS11Aと、第1凸部TS12Aと、4つの第2凸部TS13Aと、4つの第3凸部TS14Aとを有する。平面部TS11Aは、略平面状である。第1凸部TS12A、4つの第2凸部TS13A、及び4つの第3凸部TS14Aの各々は、平面部TS11Aから上方向に向けて突出している。第1凸部TS12A、4つの第2凸部TS13A、及び4つの第3凸部TS14Aの各々は、4つのホイール20Aと嵌合可能に形成されている。
 下面BS10Aは、図2に示すように、平面部BS11A、第1凸部(図示せず)と、4つの第2凸部BS12Aと、4つの第3凸部(図示せず)とを有する。平面部BS11Aは、略平面状である。下面BS10Aの第1凸部、4つの第2凸部BS12A、及び下面BS10Aの4つの第3凸部の各々は、平面部BS11Aから上方向に向けて突出している。平面部BS11Aは、上面TS10Aの平面部TS11Aと対向している。下面BS10Aの第1凸部は、第1凸部TS12Aに対向している。4つの第2凸部BS12Aの各々は、4つの第2凸部TS13Aのうち対応する1つの第2凸部TS13Aに対向している。下面BS10Aの4つの第3凸部の各々は、4つの第3凸部TS14Aのうち対応する1つの第3凸部TS14Aに対向している。
 第1凸部TS12A、4つの第2凸部TS13A、及び4つの第3凸部TS14Aは、ホイール20Aと嵌合可能な嵌合形状を構成する。嵌合形状は、収容形状の一例である。
The Danedge seat 10A can carry four wheels 20A. The wheel 20A is an example of an article.
As shown in FIG. 1, the Danedge sheet 10A is substantially a sheet-like material. The Danedge sheet 10A has an upper surface TS 10A and a lower surface BS 10A. The upper surface TS10A and the lower surface BS10A face each other. The wheel 20A is placed on the upper surface TS10A. As shown in FIG. 2, the thickness T10A of the discharge sheet 10A is substantially uniform over the entire area of the discharge sheet 10A.
As shown in FIG. 1, the upper surface TS10A has a flat surface portion TS11A, a first convex portion TS12A, four second convex portions TS13A, and four third convex portions TS14A. The flat surface portion TS11A is substantially flat. Each of the first convex portion TS12A, the four second convex portions TS13A, and the four third convex portions TS14A protrudes upward from the flat surface portion TS11A. Each of the first convex portion TS12A, the four second convex portions TS13A, and the four third convex portions TS14A is formed so as to be fitted with the four wheels 20A.
As shown in FIG. 2, the lower surface BS10A has a flat surface portion BS11A, a first convex portion (not shown), four second convex portions BS12A, and four third convex portions (not shown). The flat surface portion BS11A is substantially flat. Each of the first convex portion of the lower surface BS10A, the four second convex portions BS12A, and the four third convex portions of the lower surface BS10A protrudes upward from the flat surface portion BS11A. The flat surface portion BS11A faces the flat surface portion TS11A of the upper surface TS10A. The first convex portion of the lower surface BS10A faces the first convex portion TS12A. Each of the four second convex portions BS12A faces the corresponding second convex portion TS13A of the four second convex portions TS13A. Each of the four third convex portions of the lower surface BS10A faces the corresponding third convex portion TS14A of the four third convex portions TS14A.
The first convex portion TS12A, the four second convex portions TS13A, and the four third convex portions TS14A form a fitting shape that can be fitted with the wheel 20A. The fitting shape is an example of the housing shape.
 次に、図3及び図4を参照して、本開示の第2実施形態に係るダネッジ用シート10Bについて説明する。図3は、第2実施形態に係るダネッジ用シート10Bを示す斜視図である。図4は、図3の切断線IVの断面図である。 Next, the Danedge sheet 10B according to the second embodiment of the present disclosure will be described with reference to FIGS. 3 and 4. FIG. 3 is a perspective view showing the Danedge sheet 10B according to the second embodiment. FIG. 4 is a cross-sectional view of the cutting line IV of FIG.
 ダネッジ用シート10Bは、4個のフランジ20Bを積載可能である。フランジ20Bは、物品の一例である。
 ダネッジ用シート10Bは、図3に示すように、略シート状物である。ダネッジ用シート10Bは、上面TS10B及び下面BS10Bを有する。上面TS10A及び下面BS10Aは互いに対向している。フランジ20Bは、上面TS10Bに載置される。ダネッジ用シート10Bの厚みT10Bは、図4に示すように、ダネッジ用シート10Bの全域に亘って略均一である。
 上面TS10Bは、図3に示すように、平面部TS11Bと、4つの凹平面部TS12Bと、4つの凸部TS13Bとを有する。平面部TS11Bは、略平面状である。4つの凹平面部TS12Bの各々は、平面部TS11Bから下方向に向けて凹んでいる。4つの凹平面部TS12Bの各々は、略平面状である。4つの凸部TS13Bの各々は、凹平面部TS12Bから上方向に向けて突出している。4つの凹平面部TS12B、及び4つの凸部TS13Bは、フランジ20Bを嵌合可能に形成されている。
 下面BS10Bは、図4に示すように、平面部BS11B、4つの凹平面部BS12B、及び4つの凸部BS13Bを有する。平面部BS11Bは、略平面状である。4つの凹平面部BS12Bは、平面部BS11Bから下方向に凹んでいる。平面部BS11Bは、上面TS10Bの平面部TS11Bと対向している。4つの凸部BS13Bの各々は、凹平面部BS12Bから上方向に向けて突出している。凹平面部BS12Bは、上面TS10Bの凹平面部TS12Bと対向している。4つの凸部BS13Bの各々は、4つの凸部TS13Bのうち対応する1つの凸部TS13Bに対向している。
 凹平面部TS12B、及び4つの凸部TS13Bは、フランジ20Bと嵌合可能で、かつフランジ20Bを囲む嵌合囲い形状を構成する。嵌合囲い形状は、収容形状の一例である。
The Danedge sheet 10B can carry four flanges 20B. The flange 20B is an example of an article.
As shown in FIG. 3, the Danedge sheet 10B is substantially a sheet-like material. The discharge sheet 10B has an upper surface TS10B and a lower surface BS10B. The upper surface TS10A and the lower surface BS10A face each other. The flange 20B is placed on the upper surface TS10B. As shown in FIG. 4, the thickness T10B of the discharge sheet 10B is substantially uniform over the entire area of the discharge sheet 10B.
As shown in FIG. 3, the upper surface TS10B has a flat surface portion TS11B, four concave flat surface portions TS12B, and four convex portions TS13B. The flat surface portion TS11B is substantially flat. Each of the four concave flat surface portions TS12B is recessed downward from the flat surface portion TS11B. Each of the four concave flat surface portions TS12B is substantially flat. Each of the four convex portions TS13B protrudes upward from the concave flat surface portion TS12B. The four concave flat surface portions TS12B and the four convex flat portions TS13B are formed so that the flange 20B can be fitted.
As shown in FIG. 4, the lower surface BS10B has a flat surface portion BS11B, four concave flat surface portions BS12B, and four convex portions BS13B. The flat surface portion BS11B is substantially flat. The four concave flat surface portions BS12B are recessed downward from the flat surface portion BS11B. The flat surface portion BS11B faces the flat surface portion TS11B of the upper surface TS10B. Each of the four convex portions BS13B projects upward from the concave flat surface portion BS12B. The concave flat surface portion BS12B faces the concave flat surface portion TS12B of the upper surface TS10B. Each of the four convex portions BS13B faces the corresponding convex portion TS13B of the four convex portions TS13B.
The concave flat surface portion TS12B and the four convex portions TS13B can be fitted to the flange 20B and form a fitting enclosure shape surrounding the flange 20B. The fitting enclosure shape is an example of the accommodation shape.
≪収容体≫
 本開示の収容体は、物品と、本開示の物品搬送容器(より好ましくはダネッジ)と、を有する。
 本開示の収容体は、物品が、本開示の物品搬送容器用シートの成形物である物品搬送容器(より好ましくはダネッジ)に収容されている。
≪Container≫
The containment of the present disclosure includes an article and an article transport container (more preferably, a danedge) of the present disclosure.
In the container of the present disclosure, the article is housed in the article transport container (more preferably, Danedge), which is a molded product of the article transport container sheet of the present disclosure.
≪物品搬送容器用シートの再製造方法≫
 本開示の物品搬送容器用シートの再製造方法は、第1加熱工程と、平坦化工程と、を有する。第1加熱工程、及び平坦化工程は、この順に実行されてもよいし、同時に実行されてもよい。
 第1加熱工程及び平坦化工程を実行することにより、第1物品を収容可能な第1収容形状を有する物品搬送容器用シート(以下、「第1物品搬送容器」という場合がある。)から、平坦シートが得られる。つまり、本開示の再製造方法は、物品を収容可能に繰り返し賦形可能な物品搬送容器用シートを再製造することができる。
≪Remanufacturing method of sheet for goods transport container≫
The method for remanufacturing a sheet for an article transport container of the present disclosure includes a first heating step and a flattening step. The first heating step and the flattening step may be carried out in this order or may be carried out at the same time.
By executing the first heating step and the flattening step, from the article transport container sheet having the first accommodating shape capable of accommodating the first article (hereinafter, may be referred to as "first article transport container"). A flat sheet is obtained. That is, the remanufacturing method of the present disclosure can remanufacture a sheet for an article transport container that can be repeatedly shaped so as to accommodate an article.
 第1物品は、物品として例示したものと同様のものが挙げられる。
 第1収容形状は、収容形状として例示したものと同様のものが挙げられる。
 第1物品搬送容器は、物品搬送容器として例示したものと同様のものが挙げられる。
Examples of the first article include those similar to those exemplified as the article.
The first accommodating shape may be the same as that exemplified as the accommodating shape.
Examples of the first article transport container include those similar to those exemplified as the article transport container.
[第1加熱工程]
 第1加熱工程では、第1物品搬送容器を、第1温度で加熱する。これにより、第1物品搬送容器は、軟化する。
[First heating step]
In the first heating step, the first article transport container is heated at the first temperature. As a result, the first article transport container is softened.
 第1温度の下限は、高分子の融点Tm以上であり、好ましくは高分子の融点Tmより10℃高い温度、より好ましくは高分子の融点Tmより20℃高い温度である。
 第1温度の上限は、280℃以下であり、好ましくは260℃以下、より好ましくは240℃以下、さらに好ましくは220℃以下、特に好ましくは210℃以下、なお一層好ましくは190℃以下である。第一温度と加熱時間を特定の範囲とすることで、加熱劣化を抑制することができる。
 第1温度の温度範囲には、高分子のゴム平坦領域が存在する。
 第1物品搬送容器を高分子の融点Tm以上に加熱すると、第1物品搬送容器が平坦シートの賦形物である場合、第1物品搬送容器は、その形状記憶効果により、元の平坦形状(シート状)に自発的に形状回復する傾向にある。
 第1物品搬送容器を第1温度の280℃以下で加熱すると、第1物品搬送容器における高分子が流動せず、そのシート形態は保持される。
The lower limit of the first temperature is a temperature equal to or higher than the melting point Tm of the polymer, preferably a temperature 10 ° C. higher than the melting point Tm of the polymer, and more preferably a temperature 20 ° C. higher than the melting point Tm of the polymer.
The upper limit of the first temperature is 280 ° C. or lower, preferably 260 ° C. or lower, more preferably 240 ° C. or lower, still more preferably 220 ° C. or lower, particularly preferably 210 ° C. or lower, and even more preferably 190 ° C. or lower. By setting the first temperature and the heating time within specific ranges, heating deterioration can be suppressed.
In the temperature range of the first temperature, there is a rubber flat region of the polymer.
When the first article transport container is heated to the melting point Tm or higher of the polymer, when the first article transport container is an excipient of a flat sheet, the first article transport container has an original flat shape due to its shape memory effect. It tends to spontaneously recover its shape (in sheet form).
When the first article transport container is heated at the first temperature of 280 ° C. or lower, the polymer in the first article transport container does not flow and its sheet form is maintained.
 第1加熱工程の加熱手段は、特に制限されず、例えば、第1物品搬送容器の形状に応じて効率的に加熱する観点からは、異なる温度で多面的に加熱可能な加熱装置を用いてもよい。加熱源としては、熱風、赤外線ヒーター等を用いることができる。特に、赤外線ヒーターは、第1物品搬送容器の厚さが厚い場合、第1物品搬送容器の赤外吸収に伴う自己発熱により、短時間で効率良く加熱することができるため、好適である。 The heating means in the first heating step is not particularly limited, and for example, from the viewpoint of efficiently heating according to the shape of the first article transport container, a heating device capable of multifaceted heating at different temperatures may be used. Good. As the heating source, hot air, an infrared heater, or the like can be used. In particular, the infrared heater is suitable because when the thickness of the first article transport container is thick, it can be efficiently heated in a short time due to the self-heating associated with the infrared absorption of the first article transport container.
 第1加熱工程の加熱時間は、特に制限されず、第1物品搬送容器の大きさ、厚さ等に応じて、適宜設定してよい。加熱時間は、例えば、1秒~1分であってもよく、1分~10分であってもよい。 The heating time in the first heating step is not particularly limited, and may be appropriately set according to the size, thickness, and the like of the first article transport container. The heating time may be, for example, 1 second to 1 minute, or 1 minute to 10 minutes.
 第1加熱工程は、例えば、第1収容形状から平坦形状への形状回復をアシストする観点から、第1物品搬送容器を、加熱するとともに、金型プレス加工等の加熱プレスで加圧してもよい。 In the first heating step, for example, from the viewpoint of assisting the shape recovery from the first accommodation shape to the flat shape, the first article transport container may be heated and pressurized by a heating press such as die pressing. ..
[平坦化工程]
 平坦化工程では、第1収容形状を有し、かつ第1温度で加熱された物品搬送容器用シート(以下、「第1温度で加熱された第1物品搬送容器」という。)の第1収容形状を平坦形状にする。これにより、平坦シートが得られる。
[Flatification process]
In the flattening step, the first storage of the article transport container sheet having the first storage shape and heated at the first temperature (hereinafter, referred to as “the first article transport container heated at the first temperature”). Make the shape flat. This gives a flat sheet.
 第1収容形状を平坦形状にする手段(以下、「平坦化手段」とも称す。)は、第1物品搬送容器のサイズ等に応じて適宜選択され、例えば、平面載置法、減圧加工、金型プレス加工等が挙げられる。中でも、平坦化手段は、平面載置法が好ましい。平面化手段が平面載置法であれば、第1物品搬送容器を簡単に平坦形状にすることができる。特に、第1物品搬送容器が平坦シートの賦形物である場合、その形状記憶効果により、第1温度で加熱された第1物品搬送容器を平坦面に載置するだけで、元の平坦形状に自発的に形状回復する。
 平面載置法では、大気圧下、平坦面を有する載置部の平坦面の表面に、第1温度で加熱された第1物品搬送容器を載置して、無負荷で第1収容形状を平坦形状にする。これにより、軟化した第1物品搬送容器は、簡便に平坦形状になりやすくなる。
 大気圧下とは、0.08MPa~0.12MPa(約0.8気圧~1.2気圧)程度の圧力である。第1収容形状を平坦形状にする際、第1物品搬送容器は第1温度で加熱されていてもよい。第1収容形状を平坦形状にする際、加熱時間は、例えば、1秒~1分であってもよく、1分~30分であってもよい。加熱温度が高いほど、平坦形状になるまでの時間を短縮化し易くなる。
 平坦化手段が減圧加工である場合、第1物品搬送容器を真空減圧下により加熱平坦化してもよい。
 平坦化手段が金型プレス加工である場合、例えば、第1物品搬送容器の深さ方向に対し、金型でプレスすることにより平坦化してもよい。
 平坦化手段が延伸加工である場合、例えば、第1物品搬送容器の深さ方向に垂直な方向に対し、延伸することにより平坦化してもよい。
 上記の中でも、平坦化手段は、例えば、第1温度で加熱された第1物品搬送容器を効率的に平坦化する観点からは、圧力(圧縮力等)であることが好ましい。
The means for flattening the first accommodation shape (hereinafter, also referred to as “flattening means”) is appropriately selected according to the size and the like of the first article transport container, and is, for example, a flat surface mounting method, decompression processing, and gold. Examples include die press processing. Above all, the flattening means is preferably a flat surface mounting method. If the flattening means is a flat surface mounting method, the first article transport container can be easily flattened. In particular, when the first article transport container is a shaped product of a flat sheet, the original flat shape can be obtained by simply placing the first article transport container heated at the first temperature on a flat surface due to its shape memory effect. The shape recovers spontaneously.
In the flat mounting method, the first article transport container heated at the first temperature is placed on the flat surface of the mounting portion having a flat surface under atmospheric pressure, and the first storage shape is formed without load. Make it flat. As a result, the softened first article transport container tends to have a flat shape easily.
Under atmospheric pressure is a pressure of about 0.08 MPa to 0.12 MPa (about 0.8 atm to 1.2 atm). When the first accommodation shape is made flat, the first article transport container may be heated at the first temperature. When the first accommodation shape is made flat, the heating time may be, for example, 1 second to 1 minute, or 1 minute to 30 minutes. The higher the heating temperature, the easier it is to shorten the time until the shape becomes flat.
When the flattening means is decompression processing, the first article transport container may be heated and flattened under vacuum decompression.
When the flattening means is die press working, for example, it may be flattened by pressing with a die in the depth direction of the first article transport container.
When the flattening means is a stretching process, for example, it may be flattened by stretching in a direction perpendicular to the depth direction of the first article transport container.
Among the above, the flattening means is preferably pressure (compressive force, etc.) from the viewpoint of efficiently flattening the first article transport container heated at the first temperature, for example.
 平坦化工程では、必要に応じて、第1温度で加熱された第1物品搬送容器の深さ方向及び主面に平行な方向の少なくとも一方向に対し、外力を加えることにより、第1物品搬送容器の形状平坦化をアシストしてもよい。
 第1温度で加熱された第1物品搬送容器における主面とは、収容体を、搬送する際に、水平になる面、又は、搬送機が前記収容体を保持する位置の面を表す。第1温度で加熱された物品搬送容器における深さ方向とは、第1物品搬送容器における主面に垂直の方向を表す。
In the flattening step, if necessary, an external force is applied to at least one direction of the depth direction and the direction parallel to the main surface of the first article transport container heated at the first temperature to transport the first article. You may assist in flattening the shape of the container.
The main surface of the first article transport container heated at the first temperature represents a surface that becomes horizontal when the container is transported, or a surface at a position where the transporter holds the container. The depth direction of the article transport container heated at the first temperature represents the direction perpendicular to the main surface of the first article transport container.
 平坦化工程は、第1物品搬送容器をより効率的に平坦化する観点からは、第1温度で加熱された第1物品搬送容器を加熱しながら平坦化する工程であってもよい。この場合、第1加熱温度及び加熱時間は、第1加熱工程における好ましい態様と同様の態様が挙げられる。 The flattening step may be a step of flattening the first article transport container heated at the first temperature while heating it from the viewpoint of more efficiently flattening the first article transport container. In this case, the first heating temperature and the heating time may be the same as those preferred in the first heating step.
[製造履歴情報付加工程]
 本開示の物品搬送容器用シートの再製造方法は、製造履歴情報付加工程を有することが好ましい。製造履歴情報付加工程では、平坦シートに製造履歴情報を示すマーク(以下、「製造履歴情報マーク」という。)を付加する。製造履歴情報付加工程は、平坦化工程の後に実行される。
 これにより、製造履歴情報マークが付加された平坦シートが得られる。そのため、ユーザーは、製造履歴情報マークに基づいて、物品搬送容器用シートの製造履歴情報を簡単に知得できる。物品搬送容器用シートの賦形可能な回数は、有限で、物品搬送容器用シートの製造履歴に依存する。例えば、ユーザーは、複数の平坦シートのうちから賦形する平坦シートを選択する際、取得した製造履歴情報に基づいて、適切な平坦シートを選択することができる。
[Manufacturing history information addition process]
The method for remanufacturing the sheet for the article transport container of the present disclosure preferably includes a manufacturing history information addition step. In the manufacturing history information addition process, a mark indicating manufacturing history information (hereinafter, referred to as “manufacturing history information mark”) is added to the flat sheet. The manufacturing history information addition step is executed after the flattening step.
As a result, a flat sheet to which the manufacturing history information mark is added can be obtained. Therefore, the user can easily obtain the manufacturing history information of the article transport container sheet based on the manufacturing history information mark. The number of times the article transport container sheet can be shaped is finite and depends on the manufacturing history of the article transport container sheet. For example, when selecting a flat sheet to be shaped from a plurality of flat sheets, the user can select an appropriate flat sheet based on the acquired manufacturing history information.
 製造履歴情報は、例えば、物品名情報、サイズ情報、再製造条件情報、再製造日時情報、再製造回数情報等が挙げられる。中でも、製造履歴情報は、物品名情報、サイズ情報、再製造条件情報、再製造日時情報、及び再製造回数情報からなる群より選ばれる少なくとも1つを含むことが好ましい。
 物品名情報は、収容物品の名称を示す。収容物品とは、第1加熱工程及び平坦化工程が実行される前の収容形状に収容された物品を示す。物品名情報は、物品搬送容器用シートの賦形回数が2以上である場合、複数の収容物品の名称を含んでもよい。
 サイズ情報は、収容物品の寸法を示す。サイズ情報は、物品搬送容器用シートの賦形回数が2以上である場合、複数の収容物品の寸法を含んでもよい。
 再製造条件情報は、平坦化工程が実行された際の第1温度を含む。再製造条件情報は、例えば、第1温度の保持時間、平坦化工程が実行された際の加圧条件を含んでもよい。再製造情報は、物品搬送容器用シートの賦形回数が2以上である場合、複数の第1温度を含んでもよい。
 再製造日時情報は、平坦化工程が実行された日時を示す。再製造日時情報は、平坦化工程が実行された回数が2以上である場合、平坦化工程が実行された複数の日時を含んでもよい。
Examples of the manufacturing history information include article name information, size information, remanufacturing condition information, remanufacturing date and time information, remanufacturing frequency information, and the like. Above all, it is preferable that the manufacturing history information includes at least one selected from the group consisting of article name information, size information, remanufacturing condition information, remanufacturing date and time information, and remanufacturing frequency information.
The article name information indicates the name of the contained article. The contained article refers to an article contained in the contained shape before the first heating step and the flattening step are executed. The article name information may include the names of a plurality of contained articles when the number of times of shaping of the article transport container sheet is 2 or more.
The size information indicates the dimensions of the contained article. The size information may include the dimensions of a plurality of contained articles when the number of times of shaping the sheet for the article transport container is 2 or more.
The remanufacturing condition information includes the first temperature when the flattening step is performed. The remanufacturing condition information may include, for example, the holding time of the first temperature and the pressurizing condition when the flattening step is executed. The remanufacturing information may include a plurality of first temperatures when the number of shaping of the article transport container sheet is 2 or more.
The remanufacturing date and time information indicates the date and time when the flattening process was executed. The remanufacturing date and time information may include a plurality of dates and times when the flattening step is executed when the number of times the flattening step is executed is two or more.
 製造履歴情報マークは、QRコード(登録商標)、バーコード、文字列、数字列が挙げられる。製造履歴情報マークがQRコード(登録商標)又はバーコードである場合、例えば、携帯端末が製造履歴情報マークを読み取ると、携帯端末は、ネットワークを経由して、マーク情報をサーバーに送信する。マーク情報は、読み取った製造履歴情報マークを含む。サーバーは、再製造日時情報を製造履歴情報マークと関連付けて記憶している。サーバーは、マーク情報を受信すると、記憶されている複数の再製造日時情報のうち、受信した製造履歴情報マークに対応する再製造日時情報を選択する。次いで、サーバーは、選択した再製造日時情報を携帯端末に送信する。携帯端末は、表示部を有する。携帯端末は、サーバーから再製造日時情報を受信すると、携帯端末の表示部に再製造日時情報を表示させる。これにより、ユーザーは、製造履歴情報を簡単に知得することができる。表示部としては、液晶表示ディスプレイ、有機エレクトロルミネッセンスディスプレイ等が挙げられる。 The manufacturing history information mark includes a QR code (registered trademark), a barcode, a character string, and a number string. When the manufacturing history information mark is a QR code (registered trademark) or a barcode, for example, when the mobile terminal reads the manufacturing history information mark, the mobile terminal transmits the mark information to the server via the network. The mark information includes the read manufacturing history information mark. The server stores the remanufacturing date and time information in association with the manufacturing history information mark. When the server receives the mark information, the server selects the remanufacturing date / time information corresponding to the received manufacturing history information mark from the plurality of stored remanufacturing date / time information. The server then sends the selected remanufacturing date and time information to the mobile terminal. The mobile terminal has a display unit. When the mobile terminal receives the remanufacturing date / time information from the server, the mobile terminal displays the remanufacturing date / time information on the display unit of the mobile terminal. As a result, the user can easily obtain the manufacturing history information. Examples of the display unit include a liquid crystal display, an organic electroluminescence display, and the like.
 平坦シートに製造履歴情報マークを付加する方法は、特に限定されず、例えば、製造履歴情報を平坦シートの表面に印刷する方法、製造履歴情報マークが印刷されたラベルを平坦シートの表面に貼付する方法等が挙げられる。製造履歴情報マークを印刷する方法は、特に限定されず、デジタル印刷、凸版印刷、凹版印刷、平板印刷、孔版印刷等が挙げられる。デジタル印刷としては、インクジェット印刷、電子写真印刷等が挙げられる。凸版印刷としては、グラビア印刷等が挙げられる。凹版印刷としては、オフセット印刷等が挙げられる。孔版印刷としては、スクリーン印刷等が挙げられる。 The method of adding the manufacturing history information mark to the flat sheet is not particularly limited, and for example, a method of printing the manufacturing history information on the surface of the flat sheet and a label on which the manufacturing history information mark is printed are affixed to the surface of the flat sheet. The method and the like can be mentioned. The method for printing the manufacturing history information mark is not particularly limited, and examples thereof include digital printing, letterpress printing, intaglio printing, lithographic printing, and stencil printing. Examples of digital printing include inkjet printing and electrophotographic printing. Examples of letterpress printing include gravure printing. Examples of intaglio printing include offset printing. Examples of stencil printing include screen printing.
[収容形状賦形工程]
 本開示の物品搬送容器用シートの再製造方法は、第2加熱工程と、賦形工程と、冷却工程とをさらに有していてもよい。第2加熱工程、賦形工程、及び冷却工程(以下、まとめて「収容形状賦形工程」という。)は、この順に実行される。これにより、平坦シートから、第2収容形状を有する物品搬送容器用シート(以下、「第2物品搬送容器」という。)が得られる。収容形状賦形工程は、平坦化工程の後に実行される。本開示の物品搬送容器用シートの再製造方法が製造履歴情報付加工程を有する場合、賦形工程は、製造履歴情報付加工程の後に実行される。
[Accommodation shape shaping process]
The method for remanufacturing a sheet for an article transport container of the present disclosure may further include a second heating step, a shaping step, and a cooling step. The second heating step, shaping step, and cooling step (hereinafter collectively referred to as "accommodation shape shaping step") are executed in this order. As a result, a sheet for an article transport container having a second storage shape (hereinafter, referred to as “second article transport container”) can be obtained from the flat sheet. The accommodation shape shaping step is performed after the flattening step. When the method for remanufacturing a sheet for an article transport container of the present disclosure includes a manufacturing history information adding step, the shaping step is executed after the manufacturing history information adding step.
 第2物品は、物品として例示したものと同様のものが挙げられる。第2物品は、第1物品と同一であってもよいし、異なっていてもよい。
 第2収容形状は、収容形状として例示したものと同様のものが挙げられる。第2収容形状は、第1収容形状と同一であってもよいし、異なっていてもよい。
 第2物品搬送容器は、物品搬送容器として例示したものと同様のものが挙げられる。第
2物品搬送容器は、第1物品搬送容器と同一であってもよいし、異なっていてもよい。
Examples of the second article include those similar to those exemplified as the article. The second article may be the same as or different from the first article.
The second accommodating shape may be the same as that exemplified as the accommodating shape. The second accommodation shape may be the same as or different from the first accommodation shape.
Examples of the second article transport container include those similar to those exemplified as the article transport container. The second article transport container may be the same as or different from the first article transport container.
(第2加熱工程)
 第2加熱工程では、平坦シートを、第2温度で加熱する。これにより、平坦シートは、軟化する。
(Second heating step)
In the second heating step, the flat sheet is heated at the second temperature. This softens the flat sheet.
 第2温度の下限は、高分子の融点Tm以上であり、好ましくは高分子の融点Tmより10℃高い温度、より好ましくは高分子の融点Tmより20℃高い温度である。
 第2温度の上限は、280℃以下であり、好ましくは260℃以下、より好ましくは240℃以下、さらに好ましくは220℃以下、特に好ましくは210℃以下、なお一層好ましくは190℃以下である。
 第2温度は、第1温度と同一であってもよいし、異なっていてもよい。
 第2温度の温度範囲には、高分子のゴム平坦領域が存在する。
The lower limit of the second temperature is a temperature equal to or higher than the melting point Tm of the polymer, preferably a temperature 10 ° C. higher than the melting point Tm of the polymer, and more preferably a temperature 20 ° C. higher than the melting point Tm of the polymer.
The upper limit of the second temperature is 280 ° C. or lower, preferably 260 ° C. or lower, more preferably 240 ° C. or lower, still more preferably 220 ° C. or lower, particularly preferably 210 ° C. or lower, and even more preferably 190 ° C. or lower.
The second temperature may be the same as or different from the first temperature.
In the temperature range of the second temperature, there is a rubber flat region of the polymer.
 加熱手段は、特に限定されず、第1加熱工程の加熱手段として例示したものと同様のものが挙げられる。加熱時間は、特に限定されず、第1加熱工程の加熱時間として例示したものと同様のものが挙げられる。 The heating means is not particularly limited, and examples thereof include the same heating means as exemplified as the heating means in the first heating step. The heating time is not particularly limited, and examples thereof include the same heating times as those exemplified as the heating time in the first heating step.
(賦形工程)
 賦形工程では、平坦形状で、かつ第2温度で加熱された物品搬送容器用シートの平坦形状を、第2収容形状に賦形する。
 平坦形状を第2収容形状に賦形する手段(以下、「賦形手段」という。)は、特に制限されず、物品の形状、所望する収容サイズ等に応じて作製された金型を用いた真空成形、圧空成形、真空圧空成形、TOM成形、熱プレス成形等が挙げられる。これらの賦形手段では、第2収容形状に対応する型面(以下、「第2収容型面」という場合がある。)を有する賦形型を用いる。なかでも、賦形手段は、大型の収容形状への賦形に適した真空成形、圧空成形、及び真空圧空成形のいずれか1つの賦形方法を用いることが好ましい。
 真空成形は、平坦シートと賦形型との間の空気を排気し(以下、「真空吸引」という場合がある。)、第2温度で加熱された平坦シートを第2収容型面に接触させて、平坦形状を第2収容形状に賦形する。
 圧空成形とは、平坦シートを圧縮空気で加圧し(以下、「圧空」という。)、第2温度で加熱された平坦シートを第2収容型面に接触させて、平坦形状を第2収容形状に賦形する。
 真空圧空成形とは、真空吸引と圧空とを同時又は異時に実施し、第2温度で加熱された平坦シートを第2収容型面に接触させて、平坦形状を第2収容形状に賦形する。
(Shaping process)
In the shaping step, the flat shape of the article transport container sheet heated at the second temperature and having a flat shape is shaped into the second storage shape.
The means for shaping the flat shape into the second accommodating shape (hereinafter, referred to as “forming means”) is not particularly limited, and a mold produced according to the shape of the article, the desired accommodating size, and the like is used. Examples thereof include vacuum forming, pressure forming, vacuum forming, TOM forming, and hot press forming. In these shaping means, a shaping mold having a mold surface corresponding to the second accommodating shape (hereinafter, may be referred to as a “second accommodating mold surface”) is used. Among them, as the shaping means, it is preferable to use any one of vacuum forming, compressed air forming, and vacuum forming, which is suitable for shaping into a large-sized accommodation shape.
In vacuum forming, the air between the flat sheet and the shaping mold is exhausted (hereinafter, may be referred to as "vacuum suction"), and the flat sheet heated at the second temperature is brought into contact with the second accommodating mold surface. The flat shape is shaped into the second accommodation shape.
In the pressure-air molding, a flat sheet is pressurized with compressed air (hereinafter referred to as "compressed air"), and the flat sheet heated at a second temperature is brought into contact with the second accommodating mold surface to form a flat shape as a second accommodating shape. Shape to.
In vacuum compressed air molding, vacuum suction and compressed air are performed at the same time or at different times, and a flat sheet heated at a second temperature is brought into contact with a second accommodating mold surface to shape the flat shape into a second accommodating shape. ..
(冷却工程)
 冷却工程では、第2収容形状に賦形された物品搬送容器用シートを冷却する。これにより、第2物品搬送容器が得られる。
(Cooling process)
In the cooling step, the article transport container sheet shaped in the second accommodation shape is cooled. As a result, a second article transport container is obtained.
 冷却工程では、第2収容形状に賦形された物品搬送容器用シートを第2収容型面に接触させながら、第2収容形状に賦形された物品搬送容器用シートを冷却すること(以下、「接触冷却」という。)が好ましい。第2収容形状に賦形された物品搬送容器用シートは、軟化した状態では、その形状記憶性により、元の平坦形状に戻ろうとする傾向がある。そのため、接触冷却により急速固化させることで、第2物品搬送容器用シートが得られ易くなる。
 また、接触冷却は、少なくとも特定高分子の固化温度以下となるまで行われることがより好ましい。これにより、より確実に第2収容型面が第2収容形状に賦形された物品搬送容器用シートに転写される。つまり、第2物品搬送容器用シートがより得られ易くなる。
In the cooling step, the article transport container sheet shaped in the second accommodation shape is cooled while the article transport container sheet shaped in the second accommodation shape is brought into contact with the second accommodation mold surface (hereinafter,). "Contact cooling") is preferred. In the softened state, the article transport container sheet shaped into the second storage shape tends to return to the original flat shape due to its shape memory. Therefore, by rapidly solidifying by contact cooling, it becomes easy to obtain a sheet for a second article transport container.
Further, it is more preferable that the contact cooling is performed until at least the temperature at which the specific polymer is solidified or lower. As a result, the second accommodating mold surface is more reliably transferred to the article transport container sheet shaped into the second accommodating shape. That is, it becomes easier to obtain a sheet for the second article transport container.
 特定高分子の固化温度とは、例えば、高分子がエチレン系重合体である場合、示差走査熱量計(DSC)を用いて融点Tmの他に、降温過程で測定された結晶化温度(Tc)より40℃低い温度を示す。 The solidification temperature of the specific polymer is, for example, when the polymer is an ethylene polymer, the crystallization temperature (Tc) measured in the temperature lowering process in addition to the melting point Tm using a differential scanning calorimeter (DSC). Shows a temperature 40 ° C lower.
 第2収容形状に賦形された物品搬送容器用シートを冷却する手段(以下、「冷却手段」という。)は、特に限定されず、例えば、冷却媒体を第2収容形状に賦形された物品搬送容器用シートを直接的又は間接的に接触させる方法等が挙げられる。冷却媒体としては、冷風、冷却水等が挙げられる。中でも、冷却手段は、賦形手段を備える成形装置に冷却媒体を接触させて、第2収容形状に賦形された物品搬送容器用シートを冷却することが好ましい。 The means for cooling the article transport container sheet shaped in the second storage shape (hereinafter, referred to as “cooling means”) is not particularly limited, and for example, the article in which the cooling medium is shaped in the second storage shape. Examples thereof include a method of directly or indirectly contacting the transport container sheet. Examples of the cooling medium include cold air and cooling water. Above all, it is preferable that the cooling means brings the cooling medium into contact with the molding apparatus provided with the shaping means to cool the article transport container sheet shaped into the second accommodation shape.
[その他の工程]
 本開示の物品搬送容器用シートの再製造方法は、加熱工程、平坦化工程及び賦形工程以外のその他の工程(以下、単に「その他の工程」とも称す。)を有していてもよい。
 その他の工程としては、例えば、物品の形状、サイズ等に応じて以下の工程(A)~(D)をそれぞれ有していてもよい。
(A)物品搬送容器用シートを切り取る、切取工程
(B)物品搬送容器用シートを金型に押し当て前記金型の形状に抜き取る、抜き工程
(C)複数の物品搬送容器用シートを貼り合わせる、貼り合わせ工程
(D)物品搬送容器用シートをワックス等でコーティングするコーティング工程
[Other processes]
The method for remanufacturing a sheet for an article transport container of the present disclosure may include other steps (hereinafter, also simply referred to as “other steps”) other than the heating step, the flattening step, and the shaping step.
As other steps, for example, the following steps (A) to (D) may be included depending on the shape, size, and the like of the article.
(A) Cutting process of cutting the sheet for the article transport container (B) Pressing the sheet for the article transport container against the mold and pulling it out into the shape of the mold (C) Laminating a plurality of sheets for the article transport container , Laminating process (D) Coating process for coating the article transport container sheet with wax or the like
[エチレン系重合体の製造]
 次に、特定高分子の一例であるエチレン系重合体の製造方法について説明する。
 エチレン系重合体の製造方法は、オレフィン重合用触媒を用いて、オレフィンの重合を行う。これにより、エチレン系重合体が得られる。
 エチレン系重合体の製造方法は、例えば、予備重合工程と、本重合工程とを含んでもよい。予備重合工程、及び本重合工程は、この順で実行される。
 以下、エチレン系重合体の製造方法が、予備重合工程と、本重合工程とを含む場合について、説明する。
[Manufacturing of ethylene polymer]
Next, a method for producing an ethylene-based polymer, which is an example of a specific polymer, will be described.
In the method for producing an ethylene polymer, olefins are polymerized using a catalyst for olefin polymerization. As a result, an ethylene polymer can be obtained.
The method for producing an ethylene polymer may include, for example, a prepolymerization step and a main polymerization step. The prepolymerization step and the main polymerization step are carried out in this order.
Hereinafter, a case where the method for producing an ethylene polymer includes a prepolymerization step and a main polymerization step will be described.
(予備重合工程)
 予備重合工程では、オレフィン重合用触媒の存在下で、α-オレフィンを予備重合(prepolymerization)させる。
 α-オレフィンの量は、固体状触媒1g当り0.1~1000g好ましくは0.3~500g、特に好ましくは1~200gである。
(Prepolymerization step)
In the prepolymerization step, the α-olefin is prepolymerized in the presence of a catalyst for olefin polymerization.
The amount of α-olefin is 0.1 to 1000 g, preferably 0.3 to 500 g, and particularly preferably 1 to 200 g per 1 g of the solid catalyst.
 予備重合工程における触媒濃度は、本重合工程における触媒濃度よりも高くてもよい。
 オレフィン重合用触媒は、固体状チタン触媒と、有機金属化合物触媒とを含む。オレフィン重合用触媒は、必要に応じて、その他触媒成分を含んでもよい。
The catalyst concentration in the prepolymerization step may be higher than the catalyst concentration in the main polymerization step.
The catalyst for olefin polymerization includes a solid titanium catalyst and an organometallic compound catalyst. The catalyst for olefin polymerization may contain other catalyst components, if necessary.
 固体状チタン触媒は、チタン、マグネシウム、及びハロゲンを含むことが好ましい。固体状チタン触媒は、例えば、チタン化合物、マグネシウム化合物、及び電子供与体を接触させて得られる。チタン化合物としては、四塩化チタン、四臭化チタン等が挙げられる。マグネシウム化合物としては、塩化マグネシウム、臭化マグネシウム等が挙げられる。電子供与体としては、2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジメトキシプロパン等が挙げられる。
 固体状チタン触媒の濃度は、液状媒体1リットル当り、チタン原子換算で、好ましくは0.001ミリモル~200ミリモル、より好ましくは0.01ミリモル~50ミリモル、特に好ましくは0.1ミリモル~20ミリモルである。液体媒体は、例えば、後述する不活性炭化水素媒体を含む。
The solid titanium catalyst preferably contains titanium, magnesium, and halogen. The solid titanium catalyst is obtained, for example, by contacting a titanium compound, a magnesium compound, and an electron donor. Examples of the titanium compound include titanium tetrachloride and titanium tetrabromide. Examples of the magnesium compound include magnesium chloride and magnesium bromide. Examples of the electron donor include 2-isobutyl-2-isopropyl-1,3-dimethoxypropane and 2,2-diisobutyl-1,3-dimethoxypropane.
The concentration of the solid titanium catalyst is preferably 0.001 mmol to 200 mmol, more preferably 0.01 mmol to 50 mmol, and particularly preferably 0.1 mmol to 20 mmol in terms of titanium atoms per liter of the liquid medium. Is. The liquid medium includes, for example, an inert hydrocarbon medium described later.
 有機金属化合物触媒としては、トリエチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。
 有機金属化合物触媒の量は、固体状チタン触媒1g当り、好ましくは0.1g~1000g、より好ましくは0.3g~500gの重合体が生成するような量であればよい。有機金属化合物触媒の量は、固体状チタン触媒中のチタン原子1モル当り、好ましくは0.1モル~300モル、より好ましくは0.5モル~100モル、特に好ましくは1モル~50モルの量である。
Examples of the organometallic compound catalyst include triethylaluminum and triisobutylaluminum.
The amount of the organometallic compound catalyst may be such that 0.1 g to 1000 g, more preferably 0.3 g to 500 g of the polymer is produced per 1 g of the solid titanium catalyst. The amount of the organometallic compound catalyst is preferably 0.1 mol to 300 mol, more preferably 0.5 mol to 100 mol, and particularly preferably 1 mol to 50 mol, per 1 mol of titanium atoms in the solid titanium catalyst. The amount.
 その他触媒成分としては、ポリエーテル化合物等が挙げられる。ポリエーテル化合物としては、2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジメトキシプロパン等が挙げられる。
 オレフィン重合用触媒がその他触媒成分を含む場合、その他触媒成分の量は、固体状チタン触媒中のチタン原子1モル当り、好ましくは0.1モル~50モル、より好ましくは0.5モル~30モル、更に好ましくは1モル~10モルである。
Examples of other catalyst components include polyether compounds and the like. Examples of the polyether compound include 2-isobutyl-2-isopropyl-1,3-dimethoxypropane and 2,2-diisobutyl-1,3-dimethoxypropane.
When the catalyst for olefin polymerization contains other catalyst components, the amount of the other catalyst components is preferably 0.1 mol to 50 mol, more preferably 0.5 mol to 30 mol, per 1 mol of titanium atoms in the solid titanium catalyst. It is mol, more preferably 1 mol to 10 mol.
 予備重合工程では、不活性炭化水素媒体にオレフィン及びオレフィン用重合触媒を加え、温和な条件下で、α-オレフィンを予備重合させてもよい。
 不活性炭化水素媒体としては、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素; シクロヘプタン、メチルシクロヘプタン、シクロヘキサン、メチルシクロヘキサン、メチルシクロペンタン、シクロオクタン、メチルシクロオクタンなどの脂環族炭化水素;
ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼンなどのハロゲン化炭化水素、これらの混合物などを挙げられる。
 中でも、不活性炭化水素媒体としては、脂肪族炭化水素が好ましい。不活性炭化水素媒体が用いられる場合、予備重合はバッチ式反応器で行うことが好ましい。
In the prepolymerization step, an olefin and a polymerization catalyst for an olefin may be added to an inert hydrocarbon medium to prepolymerize the α-olefin under mild conditions.
Inactive hydrocarbon media include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, kerosene; cycloheptane, methylcycloheptane, cyclohexane, methylcyclohexane, methylcyclopentane, cyclooctane. , Alicyclic hydrocarbons such as methylcyclooctane;
Aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethylene chloride and chlorobenzene, and mixtures thereof.
Among them, an aliphatic hydrocarbon is preferable as the inert hydrocarbon medium. When an inert hydrocarbon medium is used, prepolymerization is preferably carried out in a batch reactor.
 予備重合工程では、α-オレフィン自体を溶媒としてα-オレフィンを予備重合してもよいし、また実質的に溶媒の無い状態でα-オレフィンを予備重合してもよい。この場合には、予備重合を連続的に行うことが好ましい。 In the prepolymerization step, the α-olefin may be prepolymerized using the α-olefin itself as a solvent, or the α-olefin may be prepolymerized in a state where there is substantially no solvent. In this case, it is preferable to carry out the prepolymerization continuously.
 予備重合で使用されるα-オレフィンは、後述する本重合で使用されるオレフィンと同一であっても、異なっていてもよい。具体的には、α-オレフィンは、エチレン、プロピレンであることが好ましい。 The α-olefin used in the prepolymerization may be the same as or different from the olefin used in the main polymerization described later. Specifically, the α-olefin is preferably ethylene or propylene.
 予備重合の際の温度は、好ましくは-20~+100℃、より好ましくは-20~+80℃、更に好ましくは0~+40℃の範囲である。 The temperature at the time of prepolymerization is preferably in the range of −20 to + 100 ° C., more preferably −20 to + 80 ° C., and even more preferably 0 to + 40 ° C.
(本重合工程)
 本重合工程では、本重合(polymerization)を行う。詳しくは、本重合工程では、オレフィン重合用触媒の存在下で、エチレンを重合させる。
(Main polymerization step)
In the main polymerization step, the main polymerization (polymerization) is performed. Specifically, in this polymerization step, ethylene is polymerized in the presence of a catalyst for olefin polymerization.
 本重合工程では、エチレンの他に、炭素原子数が3~20のα-オレフィンが共用されてもよい。炭素原子数が3~20のα-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどの直鎖状オレフィンや、4-メチル-1-ペンテン、3-メチル-1-ペンテン、3-メチル-1-ブテン等の分岐状オレフィン等が挙げられる。これらのα-オレフィンとしてはプロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテンが好ましい。
 本重合工程では、これらのα-オレフィンと共に、スチレン、アリルベンゼン等の芳香族ビニル化合物;ビニルシクロヘキサン、ビニルシクロヘプタン等の脂環族ビニル化合物を用いることもできる。
In this polymerization step, in addition to ethylene, an α-olefin having 3 to 20 carbon atoms may be shared. Examples of α-olefins having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, and the like. Examples thereof include linear olefins such as 1-octadecene and 1-eicosene, and branched olefins such as 4-methyl-1-pentene, 3-methyl-1-pentene and 3-methyl-1-butene. As these α-olefins, propylene, 1-butene, 1-pentene, and 4-methyl-1-pentene are preferable.
In this polymerization step, aromatic vinyl compounds such as styrene and allylbenzene; and alicyclic vinyl compounds such as vinylcyclohexane and vinylcycloheptane can also be used together with these α-olefins.
 予備重合及び本重合の重合法は、バルク重合法、液相重合法及び気相重合法のいずれであってもよい。液相重合法としては、溶解重合、懸濁重合などが挙げられる。 The polymerization method of the prepolymerization and the main polymerization may be any of a bulk polymerization method, a liquid phase polymerization method and a gas phase polymerization method. Examples of the liquid phase polymerization method include dissolution polymerization and suspension polymerization.
 本重合がスラリー重合の反応形態を採る場合、反応溶媒としては、上述の予備重合時に用いられる不活性炭化水素を用いることもできるし、反応温度において液体であるオレフィンを用いることもできる。 When the main polymerization takes the reaction form of slurry polymerization, the inert hydrocarbon used in the above-mentioned prepolymerization can be used as the reaction solvent, or an olefin that is liquid at the reaction temperature can be used.
 本重合においては、固体状チタン触媒と、有機金属化合物触媒と、必要に応じてその他触媒成分が用いられる。その他触媒成分としては、ポリエーテル化合物が挙げられる。ポリエーテル化合物としては、2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジメトキシプロパン等が挙げられる。
 固体状チタン触媒の量は、重合容積1リットル当りチタン原子に換算して、好ましくは0.0001ミリモル~0.5ミリモル、より好ましくは0.005ミリモル~0.1ミリモルである。
 また、有機金属化合物触媒の量は、重合系中の触媒成分中のチタン原子1モルに対し、好ましくは1モル~2000モル、より好ましくは5モル~500モルである。
 その他触媒成分が使用される場合、その他の触媒成分の使用量は、有機金属化合物触媒に対して、好ましくは0.001モル~50モル、より好ましくは0.01モル~30モル、特に好ましくは0.05モル~20モルである。
In this polymerization, a solid titanium catalyst, an organometallic compound catalyst, and other catalyst components, if necessary, are used. Examples of other catalyst components include polyether compounds. Examples of the polyether compound include 2-isobutyl-2-isopropyl-1,3-dimethoxypropane and 2,2-diisobutyl-1,3-dimethoxypropane.
The amount of the solid titanium catalyst is preferably 0.0001 mmol to 0.5 mmol, more preferably 0.005 mmol to 0.1 mmol in terms of titanium atoms per liter of polymerization volume.
The amount of the organometallic compound catalyst is preferably 1 mol to 2000 mol, more preferably 5 mol to 500 mol, with respect to 1 mol of titanium atoms in the catalyst component in the polymerization system.
When other catalyst components are used, the amount of the other catalyst components used is preferably 0.001 mol to 50 mol, more preferably 0.01 mol to 30 mol, and particularly preferably 0.01 mol to 30 mol, based on the organometallic compound catalyst. It is 0.05 mol to 20 mol.
 本重合を水素の存在下に行えば、得られるエチレン系重合体の分子量を調節することが可能となる。そのため、本重合において、水素の存在下にエチレンの重合を行うことが好ましい。この理由は現時点で定かではないが、水素の存在下に重合を行うことによって、エチレンなどのオレフィンによる連鎖移動反応が抑制され、分子末端も飽和結合の構造を有するエチレン系重合体粒子、即ち成形途中に変質を起こし難い、安定なエチレン系重合体が得られるためと推定される。 If this polymerization is carried out in the presence of hydrogen, the molecular weight of the obtained ethylene-based polymer can be adjusted. Therefore, in this polymerization, it is preferable to carry out the polymerization of ethylene in the presence of hydrogen. The reason for this is not clear at this time, but by polymerizing in the presence of hydrogen, the chain transfer reaction by olefins such as ethylene is suppressed, and ethylene-based polymer particles having a saturated bond structure at the molecular end, that is, molding It is presumed that this is because a stable ethylene-based polymer that is unlikely to deteriorate on the way can be obtained.
 本重合において、オレフィンの重合温度は、好ましくは20℃~200℃、より好ましくは30℃~100℃、さらに好ましくは50℃~90℃である。圧力は、好ましくは常圧~10MPa、より好ましくは0.20MPa~5MPaである。重合反応器は、回分式、半連続式、連続式等が挙げられる。 In the main polymerization, the polymerization temperature of the olefin is preferably 20 ° C. to 200 ° C., more preferably 30 ° C. to 100 ° C., and further preferably 50 ° C. to 90 ° C. The pressure is preferably normal pressure to 10 MPa, more preferably 0.20 MPa to 5 MPa. Examples of the polymerization reactor include batch type, semi-continuous type, continuous type and the like.
 更に重合を、反応条件を変えて二段以上に分けて行うこともできる。
 具体的には、本重合工程は、工程(a)と、工程(b)とを有してもよい。
 工程(a)では、極限粘度[η]が第1範囲内のエチレン系重合体を製造する。第1範囲は、好ましくは2dl/g以上10dl/g未満、より好ましくは3dl/g以上10dl/g未満、更に好ましくは5dl/g以上、10dl/g未満である。
 工程(b)では、極限粘度[η]が第2範囲内のエチレン系重合体を製造する。第2範囲は、好ましくは5dl/g以上35dl/g以下、より好ましくは7dl/g以上33dl/g以下、更に好ましくは10dl/g以上33dl/g以下、特に好ましくは15dl/g以上32dl/g以下である。
 但し、工程(a)で得られるエチレン系重合体(以下、「エチレン系重合体(a)」という。)の極限粘度[η]と、工程(b)で得られるエチレン系重合体(以下、「エチレン系重合体(b)」という。)の[η]とは異なり、更にはエチレン系重合体(a)の極限粘度[η]に比して、エチレン系重合体(b)の[η]が高いことが好ましい。
 更には2段目以降で製造される全てのエチレン系重合体の極限粘度[η]より1段目に製造するエチレン系重合体の[η]が低くなる条件で行うことがより好ましい。即ち、最終的に得られるエチレン系重合体の極限粘度[η]よりも1段目に製造するエチレン系重合体の[η]が低いことが好ましい。1段目で製造されるエチレン系重合体の極限粘度[η]の好ましい範囲は、上記の(a)工程で得られるエチレン系重合体の[η]の範囲と同じである。
Further, the polymerization can be carried out in two or more stages by changing the reaction conditions.
Specifically, the present polymerization step may include a step (a) and a step (b).
In the step (a), an ethylene polymer having an intrinsic viscosity [η] within the first range is produced. The first range is preferably 2 dl / g or more and less than 10 dl / g, more preferably 3 dl / g or more and less than 10 dl / g, and further preferably 5 dl / g or more and less than 10 dl / g.
In step (b), an ethylene-based polymer having an intrinsic viscosity [η] within the second range is produced. The second range is preferably 5 dl / g or more and 35 dl / g or less, more preferably 7 dl / g or more and 33 dl / g or less, still more preferably 10 dl / g or more and 33 dl / g or less, and particularly preferably 15 dl / g or more and 32 dl / g. It is as follows.
However, the extreme viscosity [η] of the ethylene-based polymer obtained in the step (a) (hereinafter referred to as “ethylene-based polymer (a)”) and the ethylene-based polymer obtained in the step (b) (hereinafter referred to as “ethylene-based polymer”) Unlike [η] of the ethylene-based polymer (b)), the [η] of the ethylene-based polymer (b) is more than the ultimate viscosity [η] of the ethylene-based polymer (a). ] Is preferably high.
Further, it is more preferable to carry out under the condition that the [η] of the ethylene-based polymer produced in the first stage is lower than the ultimate viscosity [η] of all the ethylene-based polymers produced in the second and subsequent stages. That is, it is preferable that the [η] of the ethylene-based polymer produced in the first stage is lower than the ultimate viscosity [η] of the finally obtained ethylene-based polymer. The preferable range of the ultimate viscosity [η] of the ethylene-based polymer produced in the first stage is the same as the range of [η] of the ethylene-based polymer obtained in the above step (a).
 また、エチレン系重合体(a)とエチレン系重合体(b)の質量比は、それぞれの工程で生成する極限粘度にもよるが、エチレン系重合体(a)の割合が0~50質量%、エチレン系重合体(b)の割合が100~50質量%である。エチレン系重合体(a)とエチレン系重合体(b)の好ましい質量比は、5/95~50/50、より好ましくは10/90~40/60、更に好ましくは15/85~40/60である。この質量比は、各工程でのエチレン吸収量測定や、各工程で得られた樹脂を少量且つ規定量をサンプリングし、その質量やスラリー濃度、樹脂中の触媒成分の含有率等から各工程での樹脂生成量を計算する事によって決定することが出来る。 The mass ratio of the ethylene-based polymer (a) to the ethylene-based polymer (b) depends on the extreme viscosity produced in each step, but the proportion of the ethylene-based polymer (a) is 0 to 50% by mass. , The proportion of the ethylene polymer (b) is 100 to 50% by mass. The preferred mass ratio of the ethylene-based polymer (a) to the ethylene-based polymer (b) is 5/95 to 50/50, more preferably 10/90 to 40/60, and even more preferably 15/85 to 40/60. Is. This mass ratio is determined in each step by measuring the amount of ethylene absorbed in each step, sampling a small amount and a specified amount of the resin obtained in each step, and taking into account the mass, slurry concentration, content of catalyst components in the resin, etc. It can be determined by calculating the amount of resin produced in.
 固体状チタン触媒を含む触媒により、エチレンや必要に応じて用いられる他のオレフィンの重合反応を行う際、その重合反応は固体状チタン触媒成分中の触媒活性点で起こる。重合反応初期に生成する重合体は粒子の表面部に、重合反応後期に生成する重合体は粒子の内部に、それぞれ偏在すると推測されている。木の年輪と類似した現象であると考えられる。従って、2段以上に反応条件を分けてエチレン系重合体を製造する場合、1段目に製造するエチレン系重合体の極限粘度[η]が、最終的に得られるエチレン系重合体の[η]より低くなる条件で製造すると、粒子表面に相対的に分子量の低い重合体が存在する可能性が高い。 When a polymerization reaction of ethylene or other olefins used as needed is carried out by a catalyst containing a solid titanium catalyst, the polymerization reaction occurs at a catalytic activity point in the solid titanium catalyst component. It is presumed that the polymer produced in the early stage of the polymerization reaction is unevenly distributed on the surface of the particles, and the polymer produced in the latter stage of the polymerization reaction is unevenly distributed inside the particles. It is considered to be a phenomenon similar to the annual rings of trees. Therefore, when the ethylene polymer is produced by dividing the reaction conditions into two or more stages, the ultimate viscosity [η] of the ethylene polymer produced in the first stage is [η] of the finally obtained ethylene polymer. ] When manufactured under lower conditions, there is a high possibility that a polymer having a relatively low molecular weight is present on the particle surface.
 本重合工程では、バッチ式反応器、連続式反応器等が用いられ得る。本重合工程が上記の様な多段階である場合は、バッチ式反応器を採用することが好ましい。バッチ式反応器を用いて得られるエチレン系重合体(a)及びエチレン系重合体(b)の各々の粒子は、粒子毎のバラツキが少ない。 In this polymerization step, a batch reactor, a continuous reactor, or the like can be used. When the main polymerization step is multi-step as described above, it is preferable to adopt a batch reactor. The particles of the ethylene-based polymer (a) and the ethylene-based polymer (b) obtained by using the batch reactor have little variation among the particles.
 このようにして得られたエチレン系重合体は、単独重合体、ランダム共重合体およびブロック共重合体などのいずれであってもよい。好ましくは結晶化度の高い重合体を得やすい観点からエチレン系重合体はエチレンの単独重合体であることが好ましい。 The ethylene-based polymer thus obtained may be any of a homopolymer, a random copolymer, a block copolymer, and the like. Preferably, the ethylene-based polymer is a homopolymer of ethylene from the viewpoint of easily obtaining a polymer having a high degree of crystallinity.
 エチレン系重合体の製造方法は、予備重合工程及び本重合工程に加えて、加熱工程を有していてもよい。加熱工程は、本重合工程の後に実行される。
 加熱工程では、気相雰囲気下で100℃以上、エチレン系重合体の融点以下の加熱温度に保持する。
 加熱工程の加熱温度は、好ましくは100℃~140℃、より好ましくは105℃~140℃、さらに好ましくは110℃~135℃である。加熱工程の加熱時間は、好ましくは15分~24時間、より好ましくは1~10時間、さらに好ましくは1~4時間である。エチレン系重合体の加熱方法としては、オーブンを用いる方法、乾燥機を用いる方法などが挙げられる。この様な工程を経ることで、より高い結晶化度を有するエチレン系重合体を得られる。
The method for producing an ethylene polymer may include a heating step in addition to the prepolymerization step and the main polymerization step. The heating step is performed after the main polymerization step.
In the heating step, the temperature is maintained at 100 ° C. or higher and below the melting point of the ethylene polymer in a vapor phase atmosphere.
The heating temperature in the heating step is preferably 100 ° C. to 140 ° C., more preferably 105 ° C. to 140 ° C., and even more preferably 110 ° C. to 135 ° C. The heating time of the heating step is preferably 15 minutes to 24 hours, more preferably 1 to 10 hours, and even more preferably 1 to 4 hours. Examples of the method for heating the ethylene polymer include a method using an oven and a method using a dryer. By going through such a step, an ethylene-based polymer having a higher crystallinity can be obtained.
 また、本重合工程の重合法が液相重合法である場合、エチレン系重合体の製造方法は、予備重合工程及び本重合工程に加えて、乾燥工程を有することが好ましい。
 乾燥工程の加熱温度は、好ましくは90℃~140℃、より好ましくは95℃~140℃、さらに好ましくは95℃~135℃で、特に好ましくは95℃~130℃である。乾燥工程の加熱時間は、好ましくは15分~24時間、より好ましくは1~10時間、さらに好ましくは1~4時間である。
When the polymerization method of the present polymerization step is a liquid phase polymerization method, the method for producing an ethylene-based polymer preferably includes a drying step in addition to the prepolymerization step and the main polymerization step.
The heating temperature in the drying step is preferably 90 ° C. to 140 ° C., more preferably 95 ° C. to 140 ° C., still more preferably 95 ° C. to 135 ° C., and particularly preferably 95 ° C. to 130 ° C. The heating time in the drying step is preferably 15 minutes to 24 hours, more preferably 1 to 10 hours, and even more preferably 1 to 4 hours.
 エチレン系重合体は、市販品であってもよい。市販品としては、例えば、ハイゼックスミリオン(登録商標)030S、145M、240S、320MU、630M、ニューライト(登録商標)NL-W等が挙げられる。 The ethylene polymer may be a commercially available product. Examples of commercially available products include Hi-Zex Million (registered trademark) 030S, 145M, 240S, 320MU, 630M, Newlite (registered trademark) NL-W and the like.
 以下、本開示の実施例を説明するが、本開示は以下の実施例に限定されるものではない。 Hereinafter, examples of the present disclosure will be described, but the present disclosure is not limited to the following examples.
≪高分子材料の準備≫
 高分子の材料として、エチレン系重合体(PE-1)~(PE-6)を準備した。
実施例のエチレン系重合体(PE-1)~(PE-5)は、WO2008/013144公報に準じて製造された。
(PE-1)超高分子量ポリエチレン(極限粘度4.9dl/g、融点132℃)
(PE-2)超高分子量ポリエチレン(極限粘度14.4dl/g、融点132℃)
(PE-3)超高分子量ポリエチレン(極限粘度19.9dl/g、融点133℃)
(PE-4)超高分子量ポリエチレン(極限粘度30.5dl/g、融点133℃)
(PE-5)超高分子量ポリエチレン(極限粘度14.0dl/g、融点131℃)
(PE-6)高密度ポリエチレン  (極限粘度 3.3dl/g、融点128℃)
≪Preparation of polymer material≫
Ethylene-based polymers (PE-1) to (PE-6) were prepared as polymer materials.
The ethylene-based polymers (PE-1) to (PE-5) of Examples were produced according to WO2008 / 013144.
(PE-1) Ultra High Molecular Weight Polyethylene (Extreme Viscosity 4.9 dl / g, Melting Point 132 ° C)
(PE-2) Ultra High Molecular Weight Polyethylene (Extreme Viscosity 14.4 dl / g, Melting Point 132 ° C)
(PE-3) Ultra High Molecular Weight Polyethylene (Extreme Viscosity 19.9 dl / g, Melting Point 133 ° C)
(PE-4) Ultra High Molecular Weight Polyethylene (Extreme Viscosity 30.5 dl / g, Melting Point 133 ° C)
(PE-5) Ultra High Molecular Weight Polyethylene (Extreme Viscosity 14.0 dl / g, Melting Point 131 ° C)
(PE-6) High-density polyethylene (extreme viscosity 3.3 dl / g, melting point 128 ° C)
[エチレン系重合体の測定]
 エチレン系重合体(PE-1)~(PE-6)の極限粘度[η]、粘度平均分子量Mv、融点Tm、結晶化温度Tc、密度、及び貯蔵弾性率E’の測定を下記のとおり行った。極限粘度[η]、粘度平均分子量Mv、融点Tm、結晶化温度Tc、密度、及び貯蔵弾性率E’の測定結果を表1に示す。
[Measurement of ethylene polymer]
The extreme viscosities [η], viscosity average molecular weight Mv, melting point Tm, crystallization temperature Tc, density, and storage elastic modulus E'of the ethylene-based polymers (PE-1) to (PE-6) were measured as follows. It was. Table 1 shows the measurement results of the ultimate viscosity [η], the viscosity average molecular weight Mv, the melting point Tm, the crystallization temperature Tc, the density, and the storage elastic modulus E'.
<極限粘度[η]の測定方法>
 極限粘度[η]は、測定装置としてウベローデ粘度計を用いて、デカリン溶媒中、135℃で測定した。
 具体的には、約20mgの粉末状の高分子材料を、デカリン25mlに溶解させた。その後、ウベローデ粘度計を用いて、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリンを5ml加えて希釈した後、上記と同様にして比粘度ηspを測定した。この希釈操作を更に2回繰り返し、下記の式1に示すように、濃度(C)を0に外挿した時の(ηsp/C)の値を極限粘度[η](単位:dl/g)として求めた。
  [η]=lim(ηsp/C)  (C→0)・・・式1
<Measurement method of extreme viscosity [η]>
The ultimate viscosity [η] was measured at 135 ° C. in a decalin solvent using an Ubbelohde viscometer as a measuring device.
Specifically, about 20 mg of a powdery polymer material was dissolved in 25 ml of decalin. Then, the specific viscosity η sp was measured in an oil bath at 135 ° C. using an Ubbelohde viscometer. After adding 5 ml of decalin to this decalin solution and diluting it, the specific viscosity η sp was measured in the same manner as above. This dilution operation was repeated twice more, and as shown in Equation 1 below, the value of (η sp / C) when the concentration (C) was extrapolated to 0 was set to the ultimate viscosity [η] (unit: dl / g). ).
[Η] = lim (ηsp / C) (C → 0) ・ ・ ・ Equation 1
<粘度平均分子量Mvの測定方法>
 粘度平均分子量Mvは、ASTM D4020に準拠して、測定した。
<Measurement method of viscosity average molecular weight Mv>
The viscosity average molecular weight Mv was measured according to ASTM D4020.
<結晶化温度(Tc)及び融点(Tm)の測定方法>
 結晶化温度(Tc)及び融点(Tm)は、下記の条件で、示差走査熱量計(DSC)を用いて、測定した。
 具体的に、約5mgの高分子材料を、セイコーインスツル(株)製の示差走査熱量計(DSC220C型)の測定用アルミニウムパン中に密封し、30℃から10℃/分で200℃まで加熱した。高分子材料を完全融解させるために、200℃で10分間保持し、次いで、10℃/分で30℃まで冷却した。この降温過程で生じた発熱ピークを示す温度を結晶化温度(Tc)とした。
 次いで、30℃で5分間置いた後、10℃/minで200℃まで2度目の加熱を行った。得られた2度目の加熱での吸熱ピークを示す温度(℃)を、高分子材料の融点(Tm)とした。なお、複数のピークが検出される場合には、重量平均分子量が最も高い高分子材料に該当する成分のピークを、高分子材料の融点(Tm)として採用した。
<Measurement method of crystallization temperature (Tc) and melting point (Tm)>
The crystallization temperature (Tc) and melting point (Tm) were measured using a differential scanning calorimeter (DSC) under the following conditions.
Specifically, about 5 mg of the polymer material is sealed in a measuring aluminum pan of a differential scanning calorimeter (DSC220C type) manufactured by Seiko Instruments Inc., and heated from 30 ° C. to 10 ° C./min to 200 ° C. did. To completely melt the polymeric material, it was held at 200 ° C. for 10 minutes and then cooled to 30 ° C. at 10 ° C./min. The temperature showing the exothermic peak generated in this temperature lowering process was defined as the crystallization temperature (Tc).
Then, after standing at 30 ° C. for 5 minutes, the second heating was performed at 10 ° C./min to 200 ° C. The temperature (° C.) showing the endothermic peak in the obtained second heating was defined as the melting point (Tm) of the polymer material. When a plurality of peaks were detected, the peak of the component corresponding to the polymer material having the highest weight average molecular weight was adopted as the melting point (Tm) of the polymer material.
<密度の測定方法>
 密度は、ASTM D1505に準拠して、測定した。
<Density measurement method>
Density was measured according to ASTM D1505.
<貯蔵弾性率の測定方法>
 固体粘弾性測定装置(ティー・エイ・インスツルメント社製の「RSA-III」)を用いて、高分子材料からなる試験片(厚さ:2mm)に対し、下記の条件で25℃から230℃までの温度範囲で、貯蔵弾性率E’及び損失弾性率E”を測定した。
・測定モード    :引張り
・周波数      :1.59Hz
・歪量       :0.1%
・昇温速度     :4℃/分
・雰囲気      :窒素
<Measurement method of storage elastic modulus>
Using a solid viscoelasticity measuring device (“RSA-III” manufactured by TA Instruments), a test piece made of a polymer material (thickness: 2 mm) is subjected to 25 ° C to 230 under the following conditions. The storage elastic modulus E'and the loss elastic modulus E'were measured in the temperature range up to ° C.
・ Measurement mode: Tension ・ Frequency: 1.59Hz
・ Strain amount: 0.1%
・ Temperature rise rate: 4 ℃ / min ・ Atmosphere: Nitrogen
 30℃~230℃の温度範囲におけるエチレン系重合体(PE-1)~(PE-6)の貯蔵弾性率E’の測定結果を図5に示す。 FIG. 5 shows the measurement results of the storage elastic modulus E'of the ethylene-based polymers (PE-1) to (PE-6) in the temperature range of 30 ° C. to 230 ° C.
[実施例1]
≪物品搬送容器用シートの製造≫
 エチレン系重合体(PE-1)を、真空加熱プレス成形装置(株式会社関西ロール製、最大型締力254kN)を用いて、真空下で加熱プレス成形(加熱温度230℃、圧力2MPa、加圧時間10分)の後、冷却プレス(冷却温度30℃、圧力2MPa、加圧時間10分)により、シート(サイズ:350mm×350mm)を得た。次いで、得られたシートをA4サイズ(210mm×297mm)に切り出し、第1平坦シートとした。得られた第1平坦シートの平均厚みは、表1に示す平均厚さであった。
[Example 1]
≪Manufacturing of sheets for goods transport containers≫
The ethylene polymer (PE-1) is heat press molded under vacuum using a vacuum heating press molding device (manufactured by Kansai Roll Co., Ltd., maximum mold clamping force 254 kN) (heating temperature 230 ° C., pressure 2 MPa, pressurization). After 10 minutes), a sheet (size: 350 mm × 350 mm) was obtained by a cooling press (cooling temperature 30 ° C., pressure 2 MPa, pressurization time 10 minutes). Next, the obtained sheet was cut into A4 size (210 mm × 297 mm) to obtain a first flat sheet. The average thickness of the obtained first flat sheet was the average thickness shown in Table 1.
≪繰り返し賦形の評価≫
(1)3Dタイプ真空熱加圧装置(ミカドテクノス株式会社製)を用いて、平坦シートを所望の立体形状に賦形した。真空熱加圧装置は、平板状の上盤と、直方体形状のキャビティ空間をもつ下盤とを備える。上盤は、下盤に対して鉛直方向上方に位置する。
 金型1(図6参照、材質:ステンレス鋼、深絞り成型品、質量:19g)を下盤中央に配置した。金型1の型面S1は、図6に示すように、舟型であった。金型1の最大長さは110mmであった。金型1の最大高さは14mmであった。
 その後、上盤温度を200℃、鉛直方向下方の下盤温度を60℃とした。次いで、加熱オーブン内で、第1平坦シートを予め200℃で10分間予熱した。その後、上盤と下盤との間に、第1平坦シートをクランプした。その状態で300秒間、第1平坦シートを放置した(第2加熱工程)。
 次いで、上盤と下盤とで囲まれる空間を30秒間かけて真空減圧した。その後、上盤と第1平坦シートとで囲まれる空間のみを大気圧に戻した。これにより、金型1の形状に沿うように、第1平坦シートの平坦形状を第1嵌合形状に賦形した(賦形工程)。
 冷却のため、真空減圧した状態のままで(第1嵌合形状に賦形された物品搬送容器用シートを金型1の型面S1に接触させながら)300秒間保持した(冷却工程)。この際、第1嵌合形状に賦形された物品搬送容器用シートは、120℃(結晶化温度Tc)以下となる。
 その後、装置内部を大気圧に開放し、型開し、第1嵌合形状を有するダネッジ1を得た(収容形状賦形工程)。
 得られたダネッジ1について、下記の第1賦形性の評価を行った。
(2)次いで、得られたダネッジ1を加熱オーブン内(温度200℃)の平坦面の表面に置き、無負荷で10分間加熱し、自発的に、第1嵌合形状を平坦形状にさせた(第1加熱工程及び平坦化工程)。その後、室温まで冷却し、第2平坦シートが得られた。
 得られた第2平坦シートについて、下記の第1形状回復性、及び第1平坦度の評価を行った。
(3)金型1の代わりに金型2(図7参照、材質:アルミニウム合金製、深絞り成型品、質量:17g)を用いた他は、前記(1)の工程と同様にして、第2嵌合形状を有するダネッジ2を得た(収容形状賦形工程)。金型2の型面S2は、図7に示すように、マドレーヌ型であった。金型2の最大長さは95mmであった。金型2の最大高さは15mmであった。
 得られたダネッジ2について、下記の第2賦形性の評価を行った。
(4)次いで、得られたダネッジ2を加熱オーブン内(温度200℃)の平坦面の表面に置き、無負荷で10分間加熱し、自発的に第2嵌合形状を平坦形状にさせた(第1加熱工程及び平坦化工程)。これにより、第3平坦シートが得られた。
 得られた第3平坦シートについて、下記の第2形状回復性、及び第2平坦度の評価を行った。
≪Evaluation of repeated shaping≫
(1) A flat sheet was shaped into a desired three-dimensional shape using a 3D type vacuum heat pressurizing device (manufactured by Mikado Technos Co., Ltd.). The vacuum heat pressurizing device includes a flat plate-shaped upper plate and a lower plate having a rectangular parallelepiped-shaped cavity space. The upper board is located above the lower board in the vertical direction.
Mold 1 (see FIG. 6, material: stainless steel, deep-drawn molded product, mass: 19 g) was placed in the center of the lower plate. As shown in FIG. 6, the mold surface S1 of the mold 1 was a boat shape. The maximum length of the mold 1 was 110 mm. The maximum height of the mold 1 was 14 mm.
After that, the upper plate temperature was set to 200 ° C., and the lower plate temperature in the vertical direction was set to 60 ° C. The first flat sheet was then preheated in advance at 200 ° C. for 10 minutes in a heating oven. After that, the first flat sheet was clamped between the upper plate and the lower plate. In that state, the first flat sheet was left for 300 seconds (second heating step).
Next, the space surrounded by the upper plate and the lower plate was evacuated over 30 seconds. After that, only the space surrounded by the upper plate and the first flat sheet was returned to atmospheric pressure. As a result, the flat shape of the first flat sheet was shaped into the first fitting shape so as to follow the shape of the mold 1 (forming step).
For cooling, it was held for 300 seconds in a vacuum-decompressed state (while bringing the article transport container sheet shaped into the first fitting shape into contact with the mold surface S1 of the mold 1) (cooling step). At this time, the temperature of the article transport container sheet shaped into the first fitting shape is 120 ° C. (crystallization temperature Tc) or less.
Then, the inside of the apparatus was opened to atmospheric pressure, and the mold was opened to obtain a Danage 1 having the first fitting shape (accommodation shape shaping step).
The obtained Danage 1 was evaluated for the following first formability.
(2) Next, the obtained Danage 1 was placed on the surface of a flat surface in a heating oven (temperature 200 ° C.) and heated for 10 minutes with no load to spontaneously flatten the first fitting shape. (First heating step and flattening step). Then, it cooled to room temperature, and the 2nd flat sheet was obtained.
The obtained second flat sheet was evaluated for the following first shape recovery and first flatness.
(3) In the same manner as in the above step (1), except that the mold 2 (see FIG. 7, material: aluminum alloy, deep-drawn molded product, mass: 17 g) was used instead of the mold 1. 2 A Danage 2 having a fitting shape was obtained (accommodation shape shaping step). As shown in FIG. 7, the mold surface S2 of the mold 2 was a Madeleine mold. The maximum length of the mold 2 was 95 mm. The maximum height of the mold 2 was 15 mm.
The obtained Danage 2 was evaluated for the following second formability.
(4) Next, the obtained Danage 2 was placed on the surface of a flat surface in a heating oven (temperature 200 ° C.) and heated for 10 minutes with no load to spontaneously flatten the second fitting shape (2). First heating step and flattening step). As a result, a third flat sheet was obtained.
The obtained third flat sheet was evaluated for the following second shape recovery and second flatness.
 第1賦形性、第1形状回復性、第1平坦度、第2賦形性、第2形状回復性、及び第2平坦度の各々の評価結果を表1に示す。 Table 1 shows the evaluation results of the first formability, the first shape recovery property, the first flatness, the second formability, the second shape recovery property, and the second flatness.
≪第1賦形性の評価≫
 ダネッジ1の外観を目視で観察した。下記基準で、ダネッジ1の第1賦形性を評価した。第1賦形性の許容可能な評価は、A、又はBである。
≪Evaluation of the first formability≫
The appearance of Danedge 1 was visually observed. The first formability of Danedge 1 was evaluated according to the following criteria. An acceptable assessment of the first formability is A, or B.
<第1賦形性の評価基準>
 A:金型1の形状が明瞭に賦形されている。
 B:金型1の形状が概ね賦形されており、許容範囲である。
 C:金型1の形状への賦形が不十分である。
<Evaluation criteria for first formability>
A: The shape of the mold 1 is clearly shaped.
B: The shape of the mold 1 is generally shaped, which is within the permissible range.
C: The shaping of the mold 1 into the shape is insufficient.
≪第1形状回復性の評価≫
 第2平坦シートの外観を目視で観察した。下記基準で、第2平坦シートの第1形状回復性を評価した。第1形状回復性の許容可能な評価は、A又はBである。
≪Evaluation of first shape recovery≫
The appearance of the second flat sheet was visually observed. The first shape recovery of the second flat sheet was evaluated according to the following criteria. An acceptable assessment of the first shape recoverability is A or B.
<第1形状回復性の評価基準>
 A:第2平坦シートの表面に、金型1の賦形痕が全く見られなかった。
 B:第2平坦シートの表面に、金型1の賦形痕が若干観られたが、許容範囲であった。
 C:第2平坦シートの表面に、金型1の賦形痕がはっきりと見られた。
<Evaluation criteria for first shape recovery>
A: No shaping marks of the mold 1 were found on the surface of the second flat sheet.
B: Some shaping marks of the mold 1 were observed on the surface of the second flat sheet, but it was within the permissible range.
C: The shaping marks of the mold 1 were clearly seen on the surface of the second flat sheet.
≪第1平坦度の評価≫
 第2平坦シートの平坦度を算出した。平坦度は、(Hmax/L)で表される。算出した平坦度の数値に基づいて、下記基準で、第1平坦度を評価した。第1平坦度の許容可能な評価は、A又はBである。
 具体的に、第2平坦シートの平坦度は、以下のようにして、算出される。
 第2平坦シートの第1主面が上向きとなるように、剛性を有する平面測定台の表面に第2平坦シートを載せた。次いで、ハイトゲージを用いて、平面測定台の表面からの第2平坦シートの最高高さH1を測定した。次いで、第2平坦シートの第2主面が上向きとなるように、平面測定台の表面に第2平坦シートを載せた。ハイトゲージを用いて、平面測定台の表面からの第2平坦シートの最高高さH2を測定した。測定して得られた高さH1及び高さH2のうち、高い方をHmaxとした。
 第2平坦シートの平面内の最も長い直線部の長さをLとした。詳しくは、A4サイズの第2平坦シートでは、第2平坦シートの対角線の長さ(約364cm)をLとした。
 最後に、HmaxをLで除算すると、(Hmax/L)で表される平坦度が得られる。
≪Evaluation of the first flatness≫
The flatness of the second flat sheet was calculated. The flatness is represented by (Hmax / L). Based on the calculated flatness value, the first flatness was evaluated according to the following criteria. An acceptable assessment of the first flatness is A or B.
Specifically, the flatness of the second flat sheet is calculated as follows.
The second flat sheet was placed on the surface of the rigid flat surface measuring table so that the first main surface of the second flat sheet was facing upward. Then, using a height gauge, the maximum height H1 of the second flat sheet from the surface of the plane measuring table was measured. Next, the second flat sheet was placed on the surface of the plane measuring table so that the second main surface of the second flat sheet was facing upward. The maximum height H2 of the second flat sheet from the surface of the plane measuring table was measured using a height gauge. Of the height H1 and the height H2 obtained by the measurement, the higher one was defined as Hmax.
The length of the longest straight line portion in the plane of the second flat sheet was defined as L. Specifically, in the A4 size second flat sheet, the diagonal length (about 364 cm) of the second flat sheet was set to L.
Finally, dividing Hmax by L gives the flatness represented by (Hmax / L).
<第1平坦度の評価基準>
 A :第2平坦シートの平坦度(Hmax/L)が0.04以下
 B :第2平坦シートの平坦度(Hmax/L)が0.04を超え0.08未満
 C :第2平坦シートの平坦度(Hmax/L)が0.08以上
<Evaluation criteria for the first flatness>
A: Flatness (Hmax / L) of the second flat sheet is 0.04 or less B: Flatness (Hmax / L) of the second flat sheet is more than 0.04 and less than 0.08 C: Of the second flat sheet Flatness (Hmax / L) is 0.08 or more
≪第2賦形性の評価≫
 ダネッジ2の外観を目視で観察した。下記基準で、ダネッジ2の第2賦形性を評価した。第2賦形性の許容可能な評価は、A、又はBである。
≪Evaluation of second formability≫
The appearance of Danedge 2 was visually observed. The second formability of Danedge 2 was evaluated according to the following criteria. An acceptable assessment of the second formability is A, or B.
<第2賦形性の評価基準>
 A:金型2の形状が明瞭に賦形されている。
B:金型2の形状が概ね賦形されており、許容範囲である。
 C:金型2の形状への賦形が不十分である。
<Evaluation criteria for second formability>
A: The shape of the mold 2 is clearly shaped.
B: The shape of the mold 2 is generally shaped, which is within the permissible range.
C: The shaping of the mold 2 into the shape is insufficient.
≪第2形状回復性の評価≫
 第3平坦シートの外観を目視で観察した。下記基準で、第3平坦シートの第2形状回復性を評価した。第2形状回復性の許容可能な評価は、A又はBである。
≪Evaluation of second shape recovery≫
The appearance of the third flat sheet was visually observed. The second shape recovery of the third flat sheet was evaluated according to the following criteria. An acceptable assessment of the second shape recoverability is A or B.
<第2形状回復性の評価基準>
 A:第3平坦シートの表面に、金型1及び金型2の賦形痕が全く見られなかった。
 B:第3平坦シートの表面に、金型1及び金型2の賦形痕が若干観られたが、許容範囲であった。
 C:第3平坦シートの表面に、金型1及び金型2の賦形痕がはっきりと見られた。
<Evaluation criteria for second shape recovery>
A: No shaping marks of the mold 1 and the mold 2 were found on the surface of the third flat sheet.
B: Some shaping marks of the mold 1 and the mold 2 were observed on the surface of the third flat sheet, but they were within the permissible range.
C: Shape marks of mold 1 and mold 2 were clearly seen on the surface of the third flat sheet.
≪第2平坦度の評価≫
 第3平坦シートの平坦度を算出した。算出した平坦度の数値に基づいて、下記基準で、第2平坦度を評価した。第2平坦度の許容可能な評価は、A又はBである。
 第3平坦シートの平坦度(Hmax/L)は、第2平坦シートの平坦度(Hmax/L)と同様にして求めた。
≪Evaluation of the second flatness≫
The flatness of the third flat sheet was calculated. Based on the calculated flatness value, the second flatness was evaluated according to the following criteria. An acceptable assessment of the second flatness is A or B.
The flatness (Hmax / L) of the third flat sheet was determined in the same manner as the flatness (Hmax / L) of the second flat sheet.
<第2平坦度評価の評価基準>
 A :第3平坦シートの平坦度(Hmax/L)が0.04以下
 B :第3平坦シートの平坦度(Hmax/L)が0.04を超え0.08未満
 C :第3平坦シートの平坦度(Hmax/L)が0.08以上
<Evaluation criteria for the second flatness evaluation>
A: Flatness (Hmax / L) of the third flat sheet is 0.04 or less B: Flatness (Hmax / L) of the third flat sheet is more than 0.04 and less than 0.08 C: Of the third flat sheet Flatness (Hmax / L) is 0.08 or more
[実施例2~5、比較例1]
 高分子材料として、エチレン系重合体(PE-1)に代えて、表1に示すエチレン系重合体(PE-2、PE-3、PE-4、PE-5)に対し、真空下での加熱プレス成形で加熱温度260℃とし、エチレン系共重合体(PE-6)に対しては、真空下での加熱プレス成形で加熱温度230℃とし、それぞれ第1平坦シートを製造した他は、実施例1と同様にして、第1平坦シート、ダネッジ1、第2平坦シート、ダネッジ2、及び第3平坦シートを得た。
 得られたダネッジ1、第2平坦シート、ダネッジ2、及び第3平坦シートについて、実施例1と同様にして、第1賦形性、第1形状回復性、第1平坦度、第2賦形性、第2形状回復性、及び第2平坦度の各々を評価した。これらの評価結果を表1に示す。
[Examples 2 to 5, Comparative Example 1]
As the polymer material, instead of the ethylene-based polymer (PE-1), the ethylene-based polymer (PE-2, PE-3, PE-4, PE-5) shown in Table 1 was used under vacuum. The heating temperature was set to 260 ° C by heat press molding, and the heating temperature was set to 230 ° C by heat press molding under vacuum for the ethylene-based copolymer (PE-6). In the same manner as in Example 1, a first flat sheet, a ethylene 1, a second flat sheet, a polymer 2, and a third flat sheet were obtained.
With respect to the obtained Danage 1, the second flat sheet, the Danedge 2, and the third flat sheet, the first formability, the first shape recovery property, the first flatness, and the second formability were obtained in the same manner as in Example 1. Each of the property, the second shape recovery property, and the second flatness was evaluated. The results of these evaluations are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~5の物品搬送容器用シートは、エチレン系重合体を含む。実施例1~5のエチレン系重合体の極限粘度[η]は、4.0dL/g以上35.0dL/g以下であった。更に、実施例1~5のエチレン系重合体の融点Tmは、120℃以上140℃以下であった。そのため、実施例1~5のエチレン系重合体の「(E’(230℃)/E’(140℃))」は、0.4~1.5の範囲内であった。換言すると、図5に示すように、実施例1~5のエチレン系重合体には、約140℃~230℃においてゴム状平坦領域が存在することがわかった。
 実施例1~5では、ダネッジ1を加熱オーブン内の平坦面の表面に置き、ゴム状平坦領域が存在する温度範囲内にある200℃で加熱した。これにより、自発的にダネッジ1の舟型形状は平坦形状になり、第2平坦シートが得られた。得られた実施例1~5の第2平坦シートの第1形状回復性及び第1平坦度の評価は「A」であった。その結果、実施例1~5では、物品を収容可能に物品搬送容器用シートを繰り返し賦形が可能であることがわかった。
As shown in Table 1, the article transport container sheets of Examples 1 to 5 contain an ethylene polymer. The intrinsic viscosity [η] of the ethylene-based polymers of Examples 1 to 5 was 4.0 dL / g or more and 35.0 dL / g or less. Further, the melting point Tm of the ethylene-based polymers of Examples 1 to 5 was 120 ° C. or higher and 140 ° C. or lower. Therefore, the "(E'(230 ° C.) / E'(140 ° C.))" of the ethylene-based polymers of Examples 1 to 5 was in the range of 0.4 to 1.5. In other words, as shown in FIG. 5, it was found that the ethylene-based polymers of Examples 1 to 5 had a rubber-like flat region at about 140 ° C. to 230 ° C.
In Examples 1 to 5, Danedge 1 was placed on the surface of a flat surface in a heating oven and heated at 200 ° C. within a temperature range in which a rubber-like flat region exists. As a result, the boat shape of Danedge 1 spontaneously became flat, and a second flat sheet was obtained. The evaluation of the first shape recoverability and the first flatness of the second flat sheets of Examples 1 to 5 obtained was "A". As a result, in Examples 1 to 5, it was found that the article transport container sheet can be repeatedly shaped so that the article can be accommodated.
 更に、実施例1~5では、ゴム状平坦領域が存在する温度範囲内にある200℃で物品搬送容器用シートを加熱して、ダネッジ2、及び第3平坦シートを得た。そのため、ダネッジ2の第2賦形性、並びに第3平坦シートの第2形状回復性及び第2平坦度の評価は、「A」又は「B」であった。これらの結果、実施例1~5では、物品搬送容器用シートを2回以上賦形することができることがわかった。 Further, in Examples 1 to 5, the article transport container sheet was heated at 200 ° C., which is within the temperature range in which the rubber-like flat region exists, to obtain Danedge 2 and the third flat sheet. Therefore, the evaluation of the second formability of Danedge 2, the second shape recovery of the third flat sheet, and the second flatness was "A" or "B". As a result, it was found that in Examples 1 to 5, the article transport container sheet can be shaped twice or more.
 表1に示すように、比較例1の物品搬送容器用シートは、エチレン系重合体を含む。比較例1のエチレン系重合体の極限粘度[η]は、4.0dL/g未満であった。そのため、比較例1のエチレン系重合体の「(E’(230℃)/E’(140℃))」は、0.4未満であった。換言すると、図5に示すように、比較例1のエチレン系重合体には、140℃以上の温度範囲において、ゴム状平坦領域が存在しないことがわかった。
 比較例1では、ダネッジ1を加熱オーブン内の平坦面の表面に置き、ゴム状平坦領域が存在する温度範囲外である200℃で加熱することで、第2平坦シートを得た。そのため、得られた第2平坦シートの第1形状回復性及び第1平坦度の評価は「C」であった。その結果、比較例1では、物品を収容可能に物品搬送容器用シートを繰り返し賦形が可能でないことがわかった。
As shown in Table 1, the article transport container sheet of Comparative Example 1 contains an ethylene polymer. The intrinsic viscosity [η] of the ethylene polymer of Comparative Example 1 was less than 4.0 dL / g. Therefore, the "(E'(230 ° C.) / E'(140 ° C.))" of the ethylene-based polymer of Comparative Example 1 was less than 0.4. In other words, as shown in FIG. 5, it was found that the ethylene-based polymer of Comparative Example 1 did not have a rubber-like flat region in the temperature range of 140 ° C. or higher.
In Comparative Example 1, the Danedge 1 was placed on the surface of a flat surface in a heating oven and heated at 200 ° C., which is outside the temperature range in which the rubber-like flat region exists, to obtain a second flat sheet. Therefore, the evaluation of the first shape recovery property and the first flatness of the obtained second flat sheet was "C". As a result, in Comparative Example 1, it was found that the article transport container sheet could not be repeatedly shaped so that the article could be accommodated.
 2019年9月20日に出願された日本国特許出願2019-171746の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese patent application 2019-171746, filed September 20, 2019, is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (13)

  1.  第1物品を収容可能な第1収容形状を有する物品搬送容器用シートを第1温度で加熱する第1加熱工程と、
     前記第1温度で加熱された前記物品搬送容器用シートの前記第1収容形状を平坦形状にする平坦化工程と、
    を有し、
     前記物品搬送容器用シートは、下記(1)及び(2)を満たす高分子を含有し、
     前記第1温度は、前記高分子の融点Tm以上280℃以下である、物品搬送容器用シートの再製造方法。
    (1)135℃のデカリン溶液中で測定される極限粘度ηが4.0dL/g以上35.0dL/g以下である
    (2)融点Tmが120℃以上140℃以下である
    A first heating step of heating a sheet for an article transport container having a first accommodating shape capable of accommodating a first article at a first temperature, and
    A flattening step of flattening the first accommodating shape of the article transport container sheet heated at the first temperature, and
    Have,
    The article transport container sheet contains a polymer satisfying the following (1) and (2), and contains a polymer.
    A method for remanufacturing a sheet for an article transport container, wherein the first temperature is the melting point Tm or more and 280 ° C. or less of the polymer.
    (1) The ultimate viscosity η measured in a decalin solution at 135 ° C. is 4.0 dL / g or more and 35.0 dL / g or less. (2) The melting point Tm is 120 ° C. or more and 140 ° C. or less.
  2.  前記高分子は、エチレン系重合体を含む、請求項1に記載の物品搬送容器用シートの再製造方法。 The method for remanufacturing a sheet for an article transport container according to claim 1, wherein the polymer contains an ethylene-based polymer.
  3.  前記平坦化工程では、大気圧下、平坦面を有する載置部の前記平坦面の表面に、前記第1温度で加熱された前記物品搬送容器用シートを載置して、前記第1収容形状を前記平坦形状にする、請求項1又は請求項2に記載の物品搬送容器用シートの再製造方法。 In the flattening step, the article transport container sheet heated at the first temperature is placed on the surface of the flat surface of the mounting portion having the flat surface under atmospheric pressure, and the first accommodation shape is formed. The method for remanufacturing a sheet for an article transport container according to claim 1 or 2, wherein the flat shape is formed.
  4.  前記平坦形状の前記物品搬送容器用シートの平坦度は、0.04未満である、請求項1~請求項3のいずれか1項に記載の物品搬送容器用シートの再製造方法。 The method for remanufacturing an article transport container sheet according to any one of claims 1 to 3, wherein the flatness of the article transport container sheet having a flat shape is less than 0.04.
  5.  前記平坦形状の前記物品搬送容器用シートを、前記高分子の融点Tm以上280℃以下である第2温度で加熱する第2加熱工程と、
     前記第2温度で加熱された前記物品搬送容器用シートの前記平坦形状を、第2物品を収容可能な第2収容形状に賦形する賦形工程と、
     前記第2収容形状に賦形された前記物品搬送容器用シートを冷却する冷却工程と、
    を有し、
     前記第2加熱工程、前記賦形工程、及び前記冷却工程は、この順で実行される、請求項1~請求項4のいずれか1項に記載の物品搬送容器用シートの再製造方法。
    A second heating step of heating the flat-shaped sheet for the article transport container at a second temperature of the melting point Tm or more and 280 ° C. or less of the polymer.
    A shaping step of shaping the flat shape of the article transport container sheet heated at the second temperature into a second accommodating shape capable of accommodating the second article.
    A cooling step for cooling the article transport container sheet shaped into the second storage shape, and
    Have,
    The method for remanufacturing a sheet for an article transport container according to any one of claims 1 to 4, wherein the second heating step, the shaping step, and the cooling step are performed in this order.
  6.  前記賦形工程では、真空成形、圧空成形、及び真空圧空成形のいずれかの1つの賦形方法を用いる、請求項5に記載の物品搬送容器用シートの再製造方法。 The method for remanufacturing a sheet for an article transport container according to claim 5, wherein in the shaping step, any one of vacuum forming, compressed air forming, and vacuum forming is used.
  7.  前記賦形工程では、
     前記第2収容形状に対応する型面を有する賦形型を用い、
     前記平坦形状で、かつ前記第2温度で加熱された前記物品搬送容器用シートを前記型面に接触させて、前記平坦形状を前記第2収容形状に賦形し、
     前記冷却工程では、前記第2収容形状に賦形された前記物品搬送容器用シートを前記型面に接触させながら、前記第2収容形状に賦形された前記物品搬送容器用シートを、少なくとも前記高分子の固化温度以下となるまで冷却する、請求項6に記載の物品搬送容器用シートの再製造方法。
    In the shaping step,
    Using a shaped mold having a mold surface corresponding to the second accommodation shape,
    The article transport container sheet having the flat shape and heated at the second temperature is brought into contact with the mold surface to shape the flat shape into the second storage shape.
    In the cooling step, the article transport container sheet shaped into the second accommodation shape is brought into contact with the mold surface, and at least the article transport container sheet shaped into the second accommodation shape is brought into contact with the mold surface. The method for remanufacturing a sheet for an article transport container according to claim 6, wherein the polymer is cooled to a temperature equal to or lower than the solidification temperature of the polymer.
  8.  前記賦形工程では、
     前記第2収容形状に対応する型面を有する賦形型を用い、
     前記物品搬送容器用シートと前記賦形型との間の空気を排気し、前記平坦形状で、かつ前記第2温度で加熱された前記物品搬送容器用シートを前記型面に接触させて、前記平坦形状を前記第2収容形状に賦形し、
     前記冷却工程では、前記第2収容形状に賦形された前記物品搬送容器用シートを前記型面に接触させながら、前記第2収容形状に賦形された前記物品搬送容器用シートを冷却する、請求項6又は請求項7に記載の物品搬送容器用シートの再製造方法。
    In the shaping step,
    Using a shaped mold having a mold surface corresponding to the second accommodation shape,
    The air between the article transport container sheet and the shaping mold is exhausted, and the article transport container sheet having a flat shape and heated at the second temperature is brought into contact with the mold surface to obtain the above. The flat shape is shaped into the second accommodation shape,
    In the cooling step, the article transport container sheet shaped in the second accommodation shape is cooled while the article transport container sheet shaped in the second accommodation shape is brought into contact with the mold surface. The method for remanufacturing a sheet for an article transport container according to claim 6 or 7.
  9.  前記賦形工程では、
     前記第2収容形状に対応する型面を有する賦形型を用い、
     前記物品搬送容器用シートを圧縮空気で加圧し、前記平坦形状で、かつ前記第2温度で加熱された前記物品搬送容器用シートを前記型面に接触させて、前記平坦形状を前記第2収容形状に賦形し、
     前記冷却工程では、前記第2収容形状に賦形された前記物品搬送容器用シートを前記型面に接触させた状態を維持して、前記第2収容形状に賦形された前記物品搬送容器用シートを冷却する、請求項6又は請求項7に記載の物品搬送容器用シートの再製造方法。
    In the shaping step,
    Using a shaped mold having a mold surface corresponding to the second accommodation shape,
    The article transport container sheet is pressurized with compressed air, and the article transport container sheet having the flat shape and heated at the second temperature is brought into contact with the mold surface to accommodate the flat shape in the second storage. Shaped into a shape,
    In the cooling step, the article transport container sheet shaped into the second storage shape is maintained in contact with the mold surface, and the article transport container shaped into the second storage shape is used. The method for remanufacturing a sheet for an article transport container according to claim 6 or 7, wherein the sheet is cooled.
  10.  前記第1物品の体積は、3.0cm以上1.0×10cm以下である、請求項1~請求項9のいずれか1項に記載の物品搬送容器用シートの再製造方法。 The method for remanufacturing a sheet for an article transport container according to any one of claims 1 to 9, wherein the volume of the first article is 3.0 cm 3 or more and 1.0 × 10 6 cm 3 or less.
  11.  前記物品搬送容器用シートがダネッジ用シートである、請求項1~請求項10のいずれか1項に記載の物品搬送容器用シートの再製造方法。 The method for remanufacturing a sheet for an article transport container according to any one of claims 1 to 10, wherein the sheet for the article transport container is a sheet for discharge.
  12.  前記平坦形状の前記物品搬送容器用シートに製造履歴情報を示すマークを付加する製造履歴情報付加工程を有し、
     前記製造履歴情報付加工程は、前記平坦化工程の後に実行される、請求項1~請求項11のいずれか1項に記載の物品搬送容器用シートの再製造方法。
    It has a manufacturing history information addition step of adding a mark indicating manufacturing history information to the flat-shaped sheet for transporting articles.
    The method for remanufacturing a sheet for an article transport container according to any one of claims 1 to 11, wherein the manufacturing history information adding step is executed after the flattening step.
  13.  前記製造履歴情報は、物品名情報、サイズ情報、再製造条件情報、再製造日時情報、及び再製造回数情報からなる群から選ばれる少なくとも1つを含み、
     前記物品名情報は、前記第1物品の名称を示し、
     前記サイズ情報は、前記第1物品の寸法を示し、
     前記再製造条件情報は、前記平坦化工程が実行された際の前記第1温度を含み、
     前記再製造日時情報は、前記平坦化工程が実行された日時を示し、
     前記再製造回数情報は、前記平坦化工程が実行された累積回数を示す、請求項12に記載の物品搬送容器用シートの再製造方法。
    The manufacturing history information includes at least one selected from the group consisting of article name information, size information, remanufacturing condition information, remanufacturing date / time information, and remanufacturing frequency information.
    The article name information indicates the name of the first article.
    The size information indicates the dimensions of the first article.
    The remanufacturing condition information includes the first temperature when the flattening step is executed.
    The remanufacturing date and time information indicates the date and time when the flattening step was executed.
    The method for remanufacturing a sheet for an article transport container according to claim 12, wherein the remanufacturing number information indicates the cumulative number of times the flattening step has been executed.
PCT/JP2020/035540 2019-09-20 2020-09-18 Method for remanufacturing article transporting container sheet WO2021054455A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021546990A JP7110498B2 (en) 2019-09-20 2020-09-18 Method for remanufacturing sheet for article transport container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019171746 2019-09-20
JP2019-171746 2019-09-20

Publications (1)

Publication Number Publication Date
WO2021054455A1 true WO2021054455A1 (en) 2021-03-25

Family

ID=74883098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035540 WO2021054455A1 (en) 2019-09-20 2020-09-18 Method for remanufacturing article transporting container sheet

Country Status (2)

Country Link
JP (1) JP7110498B2 (en)
WO (1) WO2021054455A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293821A (en) * 1992-04-22 1993-11-09 Mitsubishi Petrochem Co Ltd Manufacture of differential pressure forming crystalline polypropylene sheet
JPH06246824A (en) * 1993-02-24 1994-09-06 Sakushin Kogyo Kk Production of pattern plastic sheet
JPH0966561A (en) * 1995-09-01 1997-03-11 Tsutsunaka Plast Ind Co Ltd Manufacture of bucket made of synthetic resin
JP2017177673A (en) * 2016-03-31 2017-10-05 栃木県 High-strength ultrahigh-molecular-weight polyethylene molded product and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5832098B2 (en) 2003-02-17 2015-12-16 三井化学株式会社 Application to ethylene polymers and molded products

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293821A (en) * 1992-04-22 1993-11-09 Mitsubishi Petrochem Co Ltd Manufacture of differential pressure forming crystalline polypropylene sheet
JPH06246824A (en) * 1993-02-24 1994-09-06 Sakushin Kogyo Kk Production of pattern plastic sheet
JPH0966561A (en) * 1995-09-01 1997-03-11 Tsutsunaka Plast Ind Co Ltd Manufacture of bucket made of synthetic resin
JP2017177673A (en) * 2016-03-31 2017-10-05 栃木県 High-strength ultrahigh-molecular-weight polyethylene molded product and method for producing the same

Also Published As

Publication number Publication date
JPWO2021054455A1 (en) 2021-03-25
JP7110498B2 (en) 2022-08-01

Similar Documents

Publication Publication Date Title
EP2017302B1 (en) Moulded article comprising high density polyethylene copolymer
Frounchi et al. Oxygen barrier properties of poly (ethylene terephthalate) nanocomposite films
EP2582519B1 (en) Single-sided stretch cling film
TWI409296B (en) Polyethylene-based resin molding material
TWI263646B (en) Ethylene polymer and application thereof to moldings
EP2050771B1 (en) Film or laminate comprising ethylene resin or ethylene resin composition
CN112654669B (en) Polyamide resin foam particles and method for producing same
JP6711022B2 (en) Ultra high molecular weight polyethylene porous sintered body
CN1123596C (en) Compositions based on statistical propylene copolymers, process for their mfr. and multilayer heat-sealable sheets contg. them
EP1854841A1 (en) Film
EP2402156A1 (en) Multilayer film and bag formed of the film
Yang et al. Preparation and properties of polyethylene/montmorillonite nanocomposites by in situ polymerization
WO2008001772A1 (en) Stretch-molded ultra-high-molecular-weight polyolefin sheet having excellent transparency and mechanical propreties, and method for production thereof
KR20080028468A (en) Magnetic composite materials and articles containing such
JP6797822B2 (en) Protective membranes, blends, and how to make them
WO2021054455A1 (en) Method for remanufacturing article transporting container sheet
KR20130129349A (en) Polymer article and method for producing polymer article
JP7446302B2 (en) Ethylene homopolymer with good barrier properties
TWI622609B (en) Porous polypropylene film
CA2562909A1 (en) Preparation of polyethylene films
CN114746247A (en) Biaxially oriented polyester film and process for producing the same
CN101514249A (en) Polypropylene-based copolymer and film comprising the polypropylene- based copolymer
KR20170069236A (en) Block copolymer hydride and stretched film formed from same
TW565587B (en) Expanded polypropylene resin bead and process of producing same
JPH11293059A (en) Olefinic resin composition and sheet thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546990

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864624

Country of ref document: EP

Kind code of ref document: A1