WO2021054427A1 - Conjugated diene graft polymer and method for producing same - Google Patents

Conjugated diene graft polymer and method for producing same Download PDF

Info

Publication number
WO2021054427A1
WO2021054427A1 PCT/JP2020/035407 JP2020035407W WO2021054427A1 WO 2021054427 A1 WO2021054427 A1 WO 2021054427A1 JP 2020035407 W JP2020035407 W JP 2020035407W WO 2021054427 A1 WO2021054427 A1 WO 2021054427A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
polymer
graft polymer
based graft
group
Prior art date
Application number
PCT/JP2020/035407
Other languages
French (fr)
Japanese (ja)
Inventor
慶和 上野
神原 浩
敦 稲富
順矢 高井
昭明 馬
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2021546967A priority Critical patent/JP7240787B2/en
Publication of WO2021054427A1 publication Critical patent/WO2021054427A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives

Definitions

  • the present invention relates to a conjugated diene-based graft polymer having excellent affinity with polar materials and high stability, and a method for producing the same.
  • a polymer having a branch has a higher fluidity than a linear polymer having the same molecular weight, and has an excellent balance between processability and mechanical properties.
  • a method is known in which a conjugated diene-based graft polymer is formed by reacting polybutadiene grafted with a silyl chloride group by hydrosilylation with a living polymer having an active terminal of living anionic polymerization (see Non-Patent Document 1). ).
  • a conjugated diene-based star polymer in which one or more alkoxy groups and / or hydroxyl groups are bonded on average per one silicon atom has excellent dispersibility of silica (see Patent Document 1). ..
  • Non-Patent Document 1 since the conjugated diene-based graft polymer described in Non-Patent Document 1 does not have an alkoxysilyl group or silanol group having an affinity with a polar material, the affinity with a polar material such as glass or silica is improved. There was room for. Further, the conjugated diene-based star polymer described in Patent Document 1 has a problem that the stability of the polymer is low because the total content of the alkoxysilyl group and the silanol group capable of causing a condensation reaction is large.
  • the present invention has been made in view of the above circumstances, and provides a conjugated diene-based graft polymer having excellent affinity with polar materials and high stability, and a method for producing the conjugated diene-based graft polymer.
  • the purpose is to provide.
  • the conjugated diene-based graft polymer in which the amount is within a certain range has excellent affinity with polar materials and high stability, and has completed the present invention.
  • the present invention provides the following [1] to [11].
  • [1] In the main chain (a) composed of a polymer containing a conjugated diene unit, A side chain (b) consisting of a polymer containing at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units via one heteroatom having a valence of 3 or more, which is a branching point. ) Is a conjugated diene-based graft polymer bonded to it.
  • the main chain (a) is connected to the branch point either directly or through a connecting chain.
  • the side chain (b) is directly connected to the branch point.
  • the heteroatom is at least one selected from the group consisting of Si, Sn, Ge, Pb, P, B, and Al.
  • At least one functional group (c) selected from the group consisting of an alkoxy group and a hydroxyl group is directly bonded to at least one of the branch points.
  • the average number X of functional groups (c) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer and the average number Y of branch points per molecule of the conjugated diene-based graft polymer are the following formula (2); 0 ⁇ (X / Y) ⁇ 1 (2) Satisfy the relationship, Conjugated diene graft polymer.
  • the average number X of the functional groups (c) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer is the following formula (3); 0 ⁇ X ⁇ 10 (3)
  • the average number W of side chains (b) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer and the average number Y of branch points per molecule of the conjugated diene-based graft polymer are expressed by the following formulas (4). 4); 0.5 ⁇ (W / Y) (4)
  • A-1) An active terminal polymer represented by the following formula (I) (hereinafter, this polymer is referred to as an active terminal polymer (I)) and PX (I).
  • P represents a polymer chain containing at least one monomeric unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units, and X represents the active end of anionic polymerization).
  • a functional group-modified conjugated diene-based polymer having a portion containing a functional group represented by the following formula (II) as a branched chain hereinafter, this polymer is referred to as a functional group-modified conjugated diene-based polymer (F)). Step of reacting to prepare a conjugated diene-based graft polymer
  • V represents an alkoxy group or a hydroxyl group
  • Z is Si, Sn, Ge, Pb, P, B, or Al
  • R 1 is an aryl group having 6 to 12 carbon atoms and a carbon number of carbons. It represents an alkyl group of 1 to 12 or a hydrogen atom
  • N represents the valence of Z
  • n is an integer satisfying the following formula (5)
  • 1 ⁇ n ⁇ N-1 (5) When n is 2 or more, V may be the same or different, and when Nn is 2 or more, R 1 may be the same or different, and when a plurality of branched chains are contained in the main chain.
  • Z may be the same or different.
  • a conjugated diene-based graft polymer having excellent affinity with a polar material and having high stability and a method for producing the same are provided.
  • the conjugated diene-based graft polymer of the present invention is In the main chain (a) composed of a polymer containing a conjugated diene unit, A side chain (b) consisting of a polymer containing at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units via one heteroatom having a valence of 3 or more, which is a branching point. ) Is a conjugated diene-based graft polymer bonded to it.
  • the main chain (a) is connected to the branch point either directly or through a connecting chain.
  • the side chain (b) is directly connected to the branch point.
  • the heteroatom is at least one selected from the group consisting of Si, Sn, Ge, Pb, P, B, and Al.
  • At least one functional group (c) selected from the group consisting of an alkoxy group and a hydroxyl group is directly bonded to at least one of the branch points.
  • the average number X of functional groups (c) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer and the average number Y of branch points per molecule of the conjugated diene-based graft polymer are the following formula (2); 0 ⁇ (X / Y) ⁇ 1 (2) Satisfy the relationship.
  • the graft polymer means a polymer having a main chain composed of a polymer chain as a trunk and a side chain composed of a polymer chain as a branch, and is a single amount constituting the polymer chain serving as the main chain.
  • the body unit and the monomer unit constituting the polymer chain to be the side chain may be the same or different.
  • the conjugated diene-based graft polymer of the present invention has a main chain (a) composed of a polymer containing a conjugated diene unit.
  • the main chain contained in the conjugated diene-based graft polymer of the present invention refers to the entire portion derived from all the monomer units including the conjugated diene unit constituting the main chain.
  • an unmodified conjugated diene-based polymer which is a precursor of the functional group-modified conjugated diene-based polymer (F) used in the production thereof Refers to the entire part derived from (F').
  • the main chain (a) is derived from a unit other than a vinyl monomer unit derived from a vinyl monomer such as a conjugated diene or an aromatic vinyl compound (for example, a residue of a coupling agent) in the polymer chain skeleton. It is preferable not to contain a unit having a Si atom or an N atom).
  • a unit other than the vinyl monomer unit is contained in the main chain skeleton, the main chain skeleton is cleaved under conditions where the bond between the hetero atom and carbon, which is a branching point described later, is broken, or by shearing or heat. Therefore, the physical properties tend to deteriorate.
  • the polymer chain terminal, which is the main chain may have a group other than the monomer unit.
  • the main chain (a) contains a conjugated diene unit as a monomer unit constituting the polymer.
  • the conjugated diene include butadiene and isoprene; 2,3-dimethylbutadiene, 2-phenylbutadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, and 1,3-octadien. , 1,3-Cyclohexadiene, 2-methyl-1,3-octadene, 1,3,7-octatriene, myrsen, farnesene, and conjugated diene other than butadiene and isoprene such as chloroprene.
  • conjugated diene butadiene and isoprene are preferable, and butadiene is more preferable.
  • the conjugated diene as the conjugated diene unit may be used alone or in combination of two or more.
  • the main chain (a) is preferably at least one monomer unit selected from the group consisting of butadiene and isoprene in an amount of 50% by mass or more of all the monomer units constituting the polymer. is there.
  • the total content of the butadiene unit and the isoprene unit is preferably 60 to 100% by mass, more preferably 70 to 100% by mass, based on all the monomer units of the main chain (a).
  • Examples of the monomer unit other than the butadiene unit and the isoprene unit that can be contained in the main chain (a) include the above-mentioned conjugated diene unit other than butadiene and isoprene, and an aromatic vinyl compound unit.
  • aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 4-t-butylstyrene, 4-cyclohexylstyrene, 4-.
  • aromatic vinyl compounds styrene, ⁇ -methylstyrene, and 4-methylstyrene are preferable.
  • the aromatic vinyl compound which is the unit of the aromatic vinyl compound may be used alone or in combination of two or more.
  • the content of the monomer unit other than the butadiene unit and the isoprene unit in the main chain (a) is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less. ..
  • the aromatic vinyl compound unit is not more than the above range, the processability of the obtained conjugated diene-based graft polymer tends to be improved.
  • the conjugated diene-based graft polymer is produced by the production method of the present invention, the reactivity tends to be improved when the unmodified conjugated diene-based polymer (F') is modified with a functional group.
  • the weight average molecular weight (Mw) of the main chain (a) is preferably 1,000 or more and 1,000,000 or less, more preferably 2,000 or more and 500,000 or less, and 3,000 or more and 100. More preferably, it is 000 or less.
  • the Mw of the main chain (a) is, for example, a functional group-modified conjugated diene polymer which is a component of the main chain described later when a conjugated diene-based graft polymer is produced by the production method of the present invention. (F), or Mw of the unmodified conjugated diene polymer (F').
  • Mw is a standard polystyrene-equivalent weight average molecular weight obtained from gel permeation chromatography (GPC) measurements.
  • the vinyl content of the main chain (a) is not particularly limited, but is preferably 90 mol% or less, more preferably 80 mol% or less, still more preferably 70 mol% or less.
  • the vinyl content of the main chain (a) is preferably 0.5 mol% or more, more preferably 1 mol% or more.
  • the "vinyl content" refers to 1,2-bonds, 3,4-bonds (in the case of other than farnesene), and 3,13- in a total of 100 mol% of conjugated diene units contained in the polymer.
  • Conjugated diene units that are bonded by bonding in the case of farnesene
  • Conjugated diene units that are bonded by other than 1,4-bonding (in the case of non-farnesene) and 1,13-bonding (in the case of farnesene) Means total mol%.
  • the vinyl content is derived from conjugated diene units that are 1,2-bonded, 3,4-bonded (for non-farnesene), and 3,13-bonded (for farnesene) using 1 H-NMR. It is calculated from the area ratio of the peak derived from the conjugated diene unit that is bonded to the peak of 1,4-bond (in the case of other than farnesene) and 1,13- bond (in the case of farnesene).
  • the vinyl content of the main chain (a) can be designed according to the purpose. For example, when the vinyl content is less than 50 mol%, the glass transition temperature (Tg) of the main chain (a) described later is low. Therefore, the obtained conjugated diene-based graft polymer tends to have excellent fluidity and low temperature characteristics. Further, when it is 50 mol% or more, the reactivity of the obtained conjugated diene-based graft polymer tends to be excellent.
  • the vinyl content of the main chain (a) is, for example, an unmodified conjugated diene-based polymer that is a component of the main chain (a).
  • the desired value can be obtained by controlling the type of solvent used in producing (F'), the polar compound used if necessary, the polymerization temperature, and the like.
  • the glass transition temperature (Tg) of the main chain (a) is derived from butadiene units, isoprene units and butadiene units, vinyl content of conjugated diene units other than isoprene units, types of conjugated diene units, and monomers other than conjugated diene. Although it may vary depending on the content of the unit and the like, ⁇ 150 to 50 ° C. is preferable, ⁇ 130 to 50 ° C. is more preferable, and ⁇ 130 to 30 ° C. is further preferable. When Tg is in the above range, for example, it is possible to suppress an increase in viscosity and facilitate handling. In the present invention, Tg is the peak top value of DDSC determined by differential scanning calorimetry (DSC) measurement.
  • DSC differential scanning calorimetry
  • the conjugated diene-based graft polymer of the present invention has a side chain (b) composed of a polymer containing at least one monomer unit selected from the group consisting of a conjugated diene unit and an aromatic vinyl compound unit.
  • the side chain (b) contains at least one monomer unit selected from the group consisting of a conjugated diene unit and an aromatic vinyl compound unit as the monomer unit constituting the polymer.
  • the specific example of the conjugated diene that can form the monomer unit of the side chain (b) is the same as the specific example of the conjugated diene that constitutes the monomer unit of the main chain (a).
  • the conjugated diene to be the conjugated diene unit contained in the side chain (b) butadiene and isoprene are preferable.
  • the conjugated diene as the conjugated diene unit may be used alone or in combination of two or more.
  • the specific example of the aromatic vinyl compound that can form the monomer unit of the side chain (b) is the same as the specific example of the aromatic vinyl compound that can form the monomer unit of the main chain (a).
  • aromatic vinyl compounds styrene, ⁇ -methylstyrene, and 4-methylstyrene are preferable.
  • the aromatic vinyl compound which is the unit of the aromatic vinyl compound may be used alone or in combination of two or more.
  • the side chain (b) is selected from the group in which the skeleton of the polymer chain consists of a homopolymer consisting of only one conjugated diene unit or one aromatic vinyl compound unit, a conjugated diene unit and an aromatic vinyl compound unit2.
  • the polymer constituting the side chain (b) may be one kind alone or two or more kinds having different structures.
  • the ratio of the conjugated diene units that can form the side chain (b) is not particularly limited and can be designed according to the purpose, but it is preferably 50% by mass or more, and 60% by mass or more. Is more preferable, and is particularly preferably 70% by mass or more, and may be 100% by mass. When the ratio of the conjugated diene unit is 50% by mass or more, the processability of the obtained conjugated diene-based graft polymer tends to be improved.
  • the ratio of the aromatic vinyl compound unit that can form the side chain (b) is not particularly limited and can be designed according to the purpose, but it is preferably 50% by mass or more, and 60% by mass or more. It is more preferable, and it is particularly preferable that it is 70% by mass or more, and it may be 100% by mass. When the ratio of the aromatic vinyl compound unit is 50% by mass or more, the mechanical properties of the obtained conjugated diene-based graft polymer tend to be improved.
  • the side chain (b) is derived from a unit other than a vinyl monomer unit derived from a vinyl monomer such as a conjugated diene or an aromatic vinyl compound (for example, a residue of a coupling agent) in the polymer chain skeleton. It is preferable not to contain (a unit having a Si atom or an N atom).
  • a unit other than the vinyl monomer is contained in the polymer chain skeleton of the side chain (b)
  • the bond between the hetero atom and carbon, which is a branching point described later is broken, or shear or heat. Since the polymer chain skeleton of the side chain (b) is cleaved by this, the physical properties tend to deteriorate.
  • the end of the polymer chain to be the side chain may have a group other than the monomer unit.
  • the weight average molecular weight (Mw) of the side chain (b) is preferably 1,000 or more and 100,000 or less, more preferably 2,000 or more and 80,000 or less, and 3,000 or more and 50 or less. More preferably, it is 000 or less.
  • the Mw of the side chain (b) is, for example, the active terminal polymer (I) which is a component of the side chain described later when a conjugated diene-based graft polymer is produced by the production method of the present invention. It is Mw.
  • the process passability during manufacturing tends to be excellent and the economic efficiency tends to be good.
  • the vinyl content of the side chain (b) is not particularly limited, but is preferably 90 mol% or less, more preferably 80 mol% or less, still more preferably 70 mol% or less.
  • the vinyl content of the side chain (b) is preferably 0.5 mol% or more, more preferably 1 mol% or more.
  • the vinyl content of the side chain (b) is, for example, 1 H of the active terminal polymer (I) which is a component of the side chain, which will be described later, when a conjugated diene-based graft polymer is produced by the production method of the present invention. -Calculated from the NMR spectrum in the same manner as in the case of the main chain (a).
  • the vinyl content of the side chain (b) can be designed according to the purpose. For example, when the vinyl content is less than 50 mol%, the glass transition temperature (Tg) of the side chain (b) described later is low. Therefore, the obtained conjugated diene-based graft polymer tends to have excellent fluidity and low temperature characteristics. Further, when it is 50 mol% or more, the reactivity of the obtained conjugated diene-based graft polymer tends to be excellent.
  • the vinyl content of the side chain (b) is, for example, the active terminal polymer (I) which is a component of the side chain (b) when the conjugated diene-based graft polymer is produced by the production method of the present invention.
  • the desired value can be obtained by controlling the type of solvent used in producing the above, the polar compound used as necessary, the polymerization temperature, and the like.
  • the glass transition temperature (Tg) of the side chain (b) may vary depending on the vinyl content of the conjugated diene unit, the type of the conjugated diene unit, the content of units derived from a monomer other than the conjugated diene, etc., but is -150 to 50 ° C. is preferable, ⁇ 130 to 50 ° C. is more preferable, and ⁇ 130 to 30 ° C. is further preferable.
  • Tg is in the above range, for example, it is possible to suppress an increase in viscosity and facilitate handling.
  • the side chain (b) is bonded to the main chain (a) via one heteroatom having a valence of 3 or more, which is the branch point.
  • At least one of the above is a conjugated diene-based graft polymer to which at least one functional group (c) selected from the group consisting of an alkoxy group and a hydroxyl group is bonded.
  • the main chain (a) is bonded to the branch point directly or through a connecting chain
  • the side chain (b) is directly bonded to the branch point
  • the functional group (c) is directly bonded to the branch point.
  • bonded directly to the branch point means that the branch point is directly bonded to the portion derived from the monomer unit constituting the main chain.
  • a branch point and a bond through a connecting chain means that one end of the connecting chain is bonded to a portion derived from a monomer unit constituting the main chain, and the branch point is directly bonded to the other end of the connecting chain. It means that you are doing it.
  • the case represented by the following formula (III-1) is a case where the branch point is directly bonded to the main chain
  • the following formula (III-2) is the case where the main chain is connected to the branch point through the connecting chain.
  • Z 0 is a heteroatom serving as a branch point
  • R 2a is a connecting chain.
  • R 2a is a divalent organic group, an alkylene group which may have a hetero atom is preferable.
  • branch portion from the main chain including the bond form between the main chain (a) and the branch point is represented by a chemical formula, the form in which the branch point is directly bonded to the main chain (a) as shown in the following formula (III-3).
  • a branching structure including a form in which the branch point is connected to the branch point through a connecting chain as shown in the formula (III-4) is desirable.
  • the wavy line portion is the main chain (a)
  • V is the functional group (c)
  • Z 1 is the branch point
  • P is the side chain (b)
  • R 2b is connected. It is a chain.
  • V represents an alkoxy group or a hydroxyl group
  • Z 1 is Si, Sn, Ge, Pb, P, B, or Al
  • R 2b has a heteroatom.
  • R 3 indicates an aryl group having 6 to 12 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or a hydrogen atom
  • P indicates a conjugated diene unit and an aromatic group.
  • a polymer chain containing at least one monomer unit selected from the group consisting of group vinyl compound units is shown.
  • N represents the valence of Z, and m and n are integers that independently satisfy the following equation (6); 0 ⁇ m ⁇ N-1, 0 ⁇ n ⁇ N-1 (6)
  • P may be the same or different
  • V may be the same or different
  • R 3 may be the same.
  • Z 1 may be the same or different when a plurality of branch points are included in the main chain.
  • the conjugated diene-based graft polymer of the present invention needs to contain V (functional group (c)) and P (side chain (b)) while satisfying the relationship of the above formula (2).
  • the above branch point consists of one heteroatom, and the heteroatom is a heteroatom having a valence of 3 or more.
  • the heteroatom having a valence of 3 or more as a branching point is at least one selected from the group consisting of Si, Sn, Ge, Pb, P, B, and Al. Among these heteroatoms, Si and Sn are preferable, and Si is more preferable.
  • the functional group (c) serving as the group V is at least one selected from the group consisting of an alkoxy group and a hydroxyl group.
  • the alkoxy group include a methoxy group, an ethoxy group, a propoxy group and the like.
  • a methoxy group, an ethoxy group, and a hydroxyl group are preferable from the viewpoint of affinity with a polar material.
  • the functional group (c) may be a single group of one type or a plurality of groups of two or more types.
  • R 3 in the above formulas (III-3) and (III-4) represents an aryl group having 6 to 12 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or a hydrogen atom.
  • alkyl groups having 1 to 6 carbon atoms are preferable, and n-butyl groups, sec-butyl groups, n-propyl groups, isopropyl groups, ethyl groups, and methyl groups are more preferable.
  • R 3 may be a single group of one type or a plurality of groups of two or more types.
  • alkylene group having 1 to 12 carbon atoms having a hetero atom capable of becoming R 2b an alkylene group having 1 to 12 carbon atoms having S is preferable, and SR 2b' (R 2b'is an alkylene group having 1 to 12 carbon atoms. Shown) is more preferable.
  • the conjugated diene-based graft polymer of the present invention when focusing on a hetero atom which is a branch point contained in the graft polymer, the valence of the hetero atom is N, and the side directly bonded to one branch point.
  • the average number of chains (b) is B and the average number of the functional groups (c) bonded to one branch point is C, the relationship of the following formula (1) is satisfied.
  • the branch point is bonded to the main chain (a) directly or through the connecting chain, and the conjugated diene-based graft polymer of the present invention has at least the side chain (b) and the functional group (c). Will be included.
  • N-1 ⁇ B + C, B> 0, C> 0 (1)
  • the conjugated diene-based graft polymer of the present invention has an average number X of functional groups (c) directly bonded to the above-mentioned branch point per molecule of the conjugated diene-based graft polymer and a branch point per molecule of the conjugated diene-based graft polymer.
  • the average number Y of the above satisfies the relationship of the following equation (2). 0 ⁇ (X / Y) ⁇ 1 (2)
  • the conjugated diene-based graft polymer tends to be inferior in affinity with the polar material, and when the above (X / Y) is 1 or more, the conjugated diene-based graft polymer tends to be inferior. Tends to be less stable.
  • the above (X / Y) is preferably in the range of 0.01 or more and 0.99 or less, and preferably in the range of 0.01 or more and 0.9 or less. It is more preferable, and it is particularly preferable that the range is 0.01 or more and 0.5 or less.
  • (X / Y) average number of functional groups (c) per branch point contained in the conjugated diene graft polymer
  • Z is Si
  • the conjugated diene graft Obtained from the results of measuring 29 Si-NMR of the polymer.
  • the integral value obtained by multiplying the integrated value of Si having one functional group (c) bonded and Si having two functional groups (c) bonded by the number of functional groups is added up and integrated. Calculated by comparing with a simple sum of values.
  • Z is a heteroatom other than Si, the average number of the heteroatoms per molecule of the conjugated diene-based graft polymer can be obtained in the same manner.
  • the average number Y of branch points per molecule of the conjugated diene graft polymer is a specific hetero atom (Si, Sn) in the conjugated diene graft polymer measured by an inductively coupled plasma mass spectrometer (ICP-MS).
  • ICP-MS inductively coupled plasma mass spectrometer
  • the average number X of functional groups (c) directly bonded to the above-mentioned branch point per molecule of the conjugated diene-based graft polymer satisfies the relationship of the following formula (3). preferable. 0 ⁇ X ⁇ 10 (3)
  • the average number X of the functional groups (c) is calculated by the method described later.
  • the conjugated diene-based graft polymer tends to have inferior affinity with the polar material, and when the X exceeds 10, the stability of the conjugated diene-based graft polymer tends to decrease. ..
  • X is preferably in the range of 0.01 or more and 9.9 or less, more preferably 0.02 or more and 9 or less, and 0. It is particularly preferable that the range is 05 or more and 5 or less.
  • the average number X of the functional groups (c) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer is the functional group per branch point contained in the conjugated diene-based graft polymer. It is determined by using the average number (X / Y) of (c) and the average number Y of branching points per molecule of the conjugated diene-based graft polymer.
  • the number of side chains (b) and the number of functional groups (c) directly bonded to the branch point are determined by, for example, the steps described later when the conjugated diene-based graft polymer is produced by the production method of the present invention. From the molar ratio of the charged amount of the active terminal polymer (I) and the functional group-modified conjugated diene polymer (F) in (A-1), and the group consisting of alkoxy groups and hydroxyl groups in the step (A-2) described later. The amount and reaction time of the reagent used to inactivate some of the at least one remaining functional group selected (unreacted functional group V), and of the polar compounds used as needed. It can be adjusted to a desired range depending on the type and the amount of addition.
  • the stability of the conjugated diene-based graft polymer can be evaluated, for example, by the appearance change and the formation of insoluble matter (gelled product) when stored for a long period of time at normal temperature and pressure. It is also possible to evaluate the conjugated diene-based graft polymer under conditions that promote the condensation reaction of the alkoxysilyl group or silanol group by heating and reducing the pressure.
  • Affinity with polar materials can be determined by, for example, measuring the peel strength after applying a conjugated diene-based graft polymer or a conjugated diene-based graft polymer composition on a glass substrate and heating it for a certain period of time to cure it. It can be evaluated by conducting a grid test or the like.
  • the reactivity and affinity with polar materials such as glass and silica can be evaluated by the condensation reactivity of the alkoxysilyl group or silanol group. When a solution containing a conjugated diene-based graft polymer is shaken under acidic or basic conditions, insoluble matter (gelled product) is generated when the condensation reactivity is high. The reactivity with the material can be evaluated.
  • the average number of side chains (b) directly bonded to the above-mentioned branch point per molecule of the conjugated diene-based graft polymer is W
  • the number of branches per molecule of the conjugated diene-based graft polymer is W.
  • the above (W / Y) is more preferably 0.6 or more (0.6 ⁇ (W / Y)), and further preferably 0.8 or more (0.8 ⁇ (W / Y)).
  • the average number W of side chains (b) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer is the case where the conjugated diene-based graft polymer is produced by the production method of the present invention.
  • the average number Y of branch points per molecule of the conjugated diene-based graft polymer is calculated by the method described above. If the above (W / Y) is less than 0.5, the fluidity of the conjugated diene-based graft polymer is lowered, and the balance between processability and mechanical properties tends to be poor.
  • the degree of branching of the conjugated diene-based graft polymer is the slope ( ⁇ s ) when the radius of gyration (R) is plotted in both logarithmic ratios with respect to the weight average molecular weight (Mw) of the conjugated diene-based graft polymer by the absolute method.
  • the intrinsic viscosity ( ⁇ ) of the conjugated diene-based graft polymer obtained by the absolute method can be determined from the slope ( ⁇ ) when both logarithmic plots are made.
  • the random coil chain of a normal linear polymer shows a value of about 0.6 to 0.8 for both ⁇ s and ⁇ ⁇ , and if it is less than 0.6, the existence of a branched chain is suggested.
  • the value of ⁇ s or ⁇ ⁇ of the conjugated diene-based graft polymer of the present invention is preferably less than 0.6, more preferably 0.55 or less, and further preferably 0.50 or less.
  • the log-log plot of the weight average molecular weight (Mw) and the radius of gyration (R) or the intrinsic viscosity ( ⁇ ) by the absolute method of the conjugated diene-based graft polymer can be obtained by, for example, the SEC-MALS-VISCO method.
  • the SEC-MALS-VISCO method is a type of liquid chromatography (SEC) that separates polymer chains according to the difference in molecular size (hydrodynamic volume), and is a differential refractometer (RI) and a polygonal light scattering detector.
  • SEC liquid chromatography
  • RI differential refractometer
  • RI polygonal light scattering detector
  • the value of ⁇ s or ⁇ ⁇ of the conjugated diene-based graft polymer of the present invention is in the above range, the fluidity of the conjugated diene-based graft polymer is improved, and the balance between processability and mechanical properties tends to be excellent.
  • the average number W of side chains (b) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer is preferably 1 or more, and preferably 2 or more. More preferably, it is more preferably 3 or more.
  • the average number W of the side chains (b) is calculated by the method described above. If the average number W of the side chains (b) is less than 1, the fluidity of the conjugated diene-based graft polymer tends to decrease, and the balance between processability and mechanical properties tends to be poor.
  • the average number W of the side chains (b) is, for example, the active terminal polymer (I) in the step (A-1) described later.
  • the upper limit of W is the number of functional groups V per molecule of the functional group-modified conjugated diene polymer (F).
  • the combination of the polymer that becomes the main chain (a) and the polymer that becomes the side chain (b) contained in the conjugated diene-based graft polymer is not particularly limited and may be the same or different, and is designed according to the purpose. It is possible.
  • the difference between the polymer serving as the main chain (a) and the polymer serving as the side chain (b) means that at least one selected from the group consisting of the following (i) to (iv) is different.
  • the molecular weight of the polymer that becomes the main chain (a) is different from the molecular weight of the polymer that becomes the side chain (b).
  • the type or combination of the monomer units of the polymer serving as the main chain (a) is different from the type or combination of the monomer units of the polymer serving as the side chain (b).
  • the monomer unit composition ratio of the polymer to be the main chain (a) is on the side. It is different from the monomer unit composition ratio of the polymer to be the chain (b).
  • the vinyl content of the conjugated diene unit of the polymer to be the main chain (a) is the same as that of the side chain (b). It differs from the vinyl content of the conjugated diene unit of the polymer.
  • the conjugated diene-based graft polymer of the present invention may be at least one monomer unit selected from the group consisting of butadiene and isoprene in an amount of 50% by mass or more among all the monomer units constituting the polymer. This is a preferred embodiment.
  • the total content of the butadiene unit and the isoprene unit is more preferably 60 to 100% by mass and further preferably 70 to 100% by mass with respect to all the monomer units of the conjugated diene-based graft polymer.
  • the content of monomer units other than the butadiene unit and the isoprene unit in the conjugated diene-based graft polymer of the present invention is preferably 50% by mass or less, more preferably 40% by mass or less, and 30% by mass. The following is more preferable.
  • the aromatic vinyl compound unit is not more than the above range, the processability of the conjugated diene-based graft polymer of the present invention tends to be improved.
  • the weight average molecular weight (Mw) of the conjugated diene-based graft polymer of the present invention is preferably 5,000 or more and 1,000,000 or less, preferably 30,000 or more and 1,000,000 or less. More preferably, it is more than 100,000 and less than 1,000,000.
  • Mw of the conjugated diene-based graft polymer is within the above range, the process passability during production tends to be excellent and the economic efficiency tends to be good. Further, the processability of the polymer composition containing the conjugated diene-based graft polymer tends to be improved.
  • the molecular weight distribution (Mw / Mn) of the conjugated diene-based graft polymer of the present invention is preferably 1.0 to 20.0, more preferably 1.0 to 10.0, still more preferably 1.0 to 5.0. 1.0 to 2.0 is particularly preferable.
  • Mw / Mn is within the above range, the variation in viscosity of the conjugated diene-based graft polymer is small, which is more preferable.
  • Mn means a number average molecular weight
  • Mn is a standard polystyrene-equivalent number average molecular weight obtained from GPC measurement.
  • the molecular weight distribution (Mw / Mn) means the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) in terms of standard polystyrene obtained by GPC measurement.
  • the melt viscosity of the conjugated diene-based graft polymer of the present invention measured at 38 ° C. is preferably 0.1 to 2,000 Pa ⁇ s, more preferably 0.1 to 1500 Pa ⁇ s, and 0.1 to 1000 Pa ⁇ s. More preferred.
  • the melt viscosity of the conjugated diene-based graft polymer is within the above range, the process passability during production tends to be excellent and the economic efficiency tends to be good.
  • the melt viscosity of the conjugated diene-based graft polymer is a value measured by a Brookfield viscometer at 38 ° C.
  • the vinyl content of the conjugated diene-based graft polymer of the present invention is not particularly limited, but is preferably 90 mol% or less, more preferably 80 mol% or less, still more preferably 70 mol% or less.
  • the vinyl content of the conjugated diene-based graft polymer is preferably 0.5 mol% or more, more preferably 1 mol% or more.
  • the vinyl content of the conjugated diene-based graft polymer can be designed according to the purpose. For example, when the vinyl content is less than 50 mol%, the glass transition temperature (Tg) of the conjugated diene-based graft polymer described later. Tends to be low, and the fluidity and low temperature characteristics of the conjugated diene-based graft polymer tend to be excellent. Further, when it is 50 mol% or more, the reactivity of the conjugated diene-based graft polymer tends to be excellent.
  • Tg glass transition temperature
  • the glass transition temperature (Tg) of the conjugated diene-based graft polymer is derived from butadiene unit, isoprene unit and butadiene unit, vinyl content of conjugated diene unit other than isoprene unit, type of conjugated diene unit, and monomer other than conjugated diene. Although it may vary depending on the content of the unit to be used, it is preferably ⁇ 150 to 50 ° C., more preferably ⁇ 130 to 50 ° C., and even more preferably ⁇ 130 to 30 ° C. When Tg is in the above range, for example, it is possible to suppress an increase in viscosity and facilitate handling.
  • the mass ratio of the main chain to the side chain in the conjugated diene-based graft polymer of the present invention is preferably in the range of 10/90 to 90/10, more preferably in the range of 15/85 to 80/20, and 20/80 to 70. A range of / 30 is even more preferred.
  • the mass ratio of the main chain to the side chain is in the above range, the processability of the polymer composition containing the conjugated diene-based graft polymer tends to be improved.
  • the conjugated diene-based graft polymer of the present invention preferably has a catalyst residue amount derived from the polymerization catalyst used for its production in the range of 0 to 200 ppm in terms of metal.
  • a catalyst residue amount derived from the polymerization catalyst used for its production in the range of 0 to 200 ppm in terms of metal.
  • the metal that serves as a reference for the amount of catalyst residue is an alkali such as lithium. Become metal.
  • the amount of the catalyst residue is in the above range, the tack does not decrease during processing and the like, and the heat resistance of the conjugated diene-based graft polymer of the present invention is improved.
  • the amount of catalyst residue derived from the polymerization catalyst used in the production of the conjugated diene-based graft polymer is more preferably 0 to 150 ppm, still more preferably 0 to 100 ppm in terms of metal.
  • the amount of catalyst residue can be measured by using, for example, an inductively coupled plasma mass spectrometer (ICP-MS) or a polarized Zeeman atomic absorption spectrophotometer.
  • Examples of the method for setting the amount of the catalyst residue of the conjugated diene-based graft polymer to such a specific amount include a method of purifying the conjugated diene-based graft polymer and sufficiently removing the catalyst residue.
  • a method for purification washing with water or warm water, an organic solvent typified by methanol, acetone, or supercritical fluid carbon dioxide is preferable. From an economical point of view, the number of washings is preferably 1 to 20 times, more preferably 1 to 10 times.
  • the cleaning temperature is preferably 20 to 100 ° C, more preferably 40 to 90 ° C.
  • the amount of polymerization catalyst required can be reduced by removing impurities that inhibit polymerization by distillation or an adsorbent before the polymerization reaction to increase the purity of the monomer and then performing polymerization.
  • the amount of catalyst residue can be reduced.
  • the conjugated diene-based graft polymer of the present invention preferably has a halogen content of 0 to 1,000 ppm.
  • the reference halogen is chlorine.
  • the halogen content of the conjugated diene-based graft polymer is more preferably 0 to 500 ppm, still more preferably 0 to 100 ppm.
  • the halogen content can be measured by using, for example, combustion ion chromatography.
  • a functional group-modified conjugated diene-based polymer (F) which is a raw material for producing the conjugated diene-based graft polymer, is used.
  • a method using an alkoxysilane-modified conjugated diene-based polymer that does not produce a halide can be mentioned.
  • the method for producing the conjugated diene-based graft polymer of the present invention is not particularly limited, and for example, a macromonomer (a compound having a polymerizable functional group at the active end of a polymer obtained by polymerizing a monomer as a constituent unit of a side chain).
  • a macromonomer a compound having a polymerizable functional group at the active end of a polymer obtained by polymerizing a monomer as a constituent unit of a side chain.
  • a method of polymerizing a monomer that is a constituent unit of a side chain after the main chain is lithiated by allowing the polymer to form a polymer having two active terminals that are constituents of the main chain and a polymer that is a constituent of the side chain.
  • the weight average molecular weight and vinyl content of the main chain and side chains of the conjugated diene-based graft polymer, the number of side chains, etc. can be freely controlled, and a desired functional group can be easily introduced. Therefore, a method of reacting the functional group-modified polymer, which is a constituent element of the main chain, with the active end of the polymer obtained by polymerizing a monomer, which is a constituent unit of the side chain, is preferable.
  • a production method including the following steps (A-1) and (B) is preferable.
  • P represents a polymer chain containing at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units, and X represents the active end of anionic polymerization).
  • V represents an alkoxy group or a hydroxyl group
  • Z is Si, Sn, Ge, Pb, P, B, or Al
  • R 1 is an aryl group having 6 to 12 carbon atoms and a carbon number of carbons. It represents an alkyl group of 1 to 12 or a hydrogen atom
  • N represents the valence of Z
  • n is an integer satisfying the following formula (5); 1 ⁇ n ⁇ N-1 (5)
  • V may be the same or different, and when Nn is 2 or more, R 1 may be the same or different, and when a plurality of branched chains are contained in the main chain.
  • Z may be the same or different.
  • B A step of recovering the obtained conjugated diene-based graft polymer.
  • the branched chain of the functional group-modified conjugated diene-based polymer (F) means a portion other than the main chain of the functional group-modified conjugated diene-based polymer (F), and this main chain is a conjugated diene-based graft. Similar to the main chain (a) in the polymer, it refers to the entire portion derived from all the monomer units including the conjugated diene unit constituting the main chain.
  • the active terminal polymer (I) used in the above step (A-1) can be produced by using a known polymerization method.
  • the active terminal weight is obtained by anionic polymerization of the monomer in the presence of a polar compound, if necessary, using an anionically polymerizable active metal or active metal compound as an initiator in a solvent inert to the polymerization terminal.
  • Coalescence (I) can be obtained.
  • the P of this active terminal polymer (I) becomes the side chain (b) of the graft polymer obtained in the present invention.
  • an organic alkali metal compound is preferable, and an organic lithium compound is more preferable.
  • the organic lithium compound include methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, and pentyllithium.
  • the solvent examples include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; benzene. , Aromatic hydrocarbons such as toluene and xylene.
  • a polar compound may be added during the above anionic polymerization.
  • Polar compounds are usually used in anionic polymerization to adjust the microstructure (vinyl content) of conjugated diene units without inactivating the reaction.
  • the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphine compounds.
  • the polar compound is usually used in an amount of 0.01 to 1000 mol per 1 mol of the organic alkali metal compound.
  • the temperature of the anionic polymerization is usually in the range of ⁇ 80 to 150 ° C., preferably in the range of 0 to 100 ° C., and more preferably in the range of 10 to 90 ° C.
  • the polymerization mode may be either a batch type or a continuous type.
  • the P of the active terminal polymer (I) finally becomes the side chain (b) of the conjugated diene-based graft polymer of the present invention.
  • the description of the weight average molecular weight (Mw) of P of the active terminal polymer (I), the vinyl content, the preferred embodiment of Tg, and the like is the same as that for the side chain (b) of the graft polymer of the present invention.
  • the functional group-modified conjugated diene-based polymer (F) can be obtained, for example, by modifying the unmodified conjugated diene-based polymer (F') with a functional group in the modification step described later.
  • the method for producing the unmodified conjugated diene polymer (F') is not particularly limited, but for example, an emulsion polymerization method and a solution polymerization method are preferable, and a solution polymerization method is more preferable from the viewpoint of the molecular weight distribution of the obtained polymer. ..
  • the portion of the functional group-modified conjugated diene-based polymer (F) other than the functional group-modified portion becomes the main chain (a) of the conjugated diene-based graft polymer of the present invention.
  • conjugated diene which is a monomer unit constituting the unmodified conjugated diene polymer (F'), and monomers other than conjugated diene (aromatic vinyl).
  • Specific examples, preferred examples, suitable contents and the like of the compound) are the same as those relating to the main chain (a) of the conjugated diene-based graft polymer.
  • the description of the weight average molecular weight (Mw), vinyl content, preferred embodiment of Tg, etc. of the unmodified conjugated diene polymer (F') is the same as the description regarding the main chain (a) of the conjugated diene graft polymer. is there.
  • emulsification polymerization method which is an example of the method for producing an unmodified conjugated diene polymer (F')
  • a known or known method can be applied.
  • a monomer containing a predetermined amount of conjugated diene is emulsified and dispersed in a dispersion medium in the presence of an emulsifier, and emulsion polymerization is carried out with a radical polymerization initiator.
  • Examples of the emulsifier include long-chain fatty acid salts having 10 or more carbon atoms and rosin salts.
  • Examples of the long-chain fatty acid salt include potassium salts or sodium salts of fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and stearic acid.
  • the dispersion medium may contain a water-soluble organic solvent such as methanol or ethanol as long as the stability during polymerization is not impaired.
  • radical polymerization initiator examples include persulfates such as ammonium persulfate and potassium persulfate, organic peroxides, hydrogen peroxide and the like.
  • a chain transfer agent may be used to adjust the molecular weight of the obtained unmodified conjugated diene polymer (F').
  • the chain transfer agent include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan; carbon tetrachloride, thioglycolic acid, diterpenes, turpinolene, ⁇ -terpinene, ⁇ -methylstyrene dimer and the like.
  • the temperature of emulsion polymerization can be appropriately set depending on the type of radical polymerization initiator used, but is usually in the range of 0 to 100 ° C, preferably in the range of 0 to 60 ° C.
  • the polymerization mode may be either continuous polymerization or batch polymerization.
  • the polymerization reaction can be stopped by adding a polymerization inhibitor.
  • the polymerization terminator include amine compounds such as isopropylhydroxylamine, diethylhydroxylamine and hydroxylamine, quinone compounds such as hydroquinone and benzoquinone, and sodium nitrite.
  • an anti-aging agent may be added if necessary.
  • unreacted monomers are removed from the obtained latex as needed, and then salts such as sodium chloride, calcium chloride and potassium chloride are used as coagulants, and nitric acid, sulfuric acid and the like are used as necessary.
  • the unmodified conjugated diene polymer (F') is coagulated while adjusting the pH of the coagulation system to a predetermined value by adding an acid, and then the polymer is recovered by separating the dispersion medium. Then, the unmodified conjugated diene polymer (F') is obtained by washing with water, dehydrating, and then drying.
  • latex and an emulsified dispersion may be mixed in advance and recovered as an oil-expanded unmodified conjugated diene polymer (F').
  • a known or known method can be applied. For example, using a Ziegler-based catalyst, a metallocene-based catalyst, or an anionically polymerizable active metal or active metal compound as an initiator in a solvent, a single amount containing a conjugated diene, optionally in the presence of a polar compound. Polymerize the body.
  • the solvent examples include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; benzene, Examples include aromatic hydrocarbons such as toluene and xylene.
  • an anionic polymerizable active metal or an active metal compound is preferable, and an anionic polymerizable active metal compound is more preferable.
  • anionic polymerizable active metals examples include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; and lanthanoid rare earth metals such as lanthanum and neodymium. .. Among these, alkali metals and alkaline earth metals are preferable, and alkali metals are more preferable.
  • an organic alkali metal compound is preferable.
  • the organic alkali metal compound include organic monolithium compounds such as methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium and stillbenlithium; , 1,4-Dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene and other polyfunctional organic lithium compounds; sodium naphthalene, potassium naphthalene and the like.
  • an organic lithium compound is preferable, and an organic monolithium compound is more preferable.
  • the amount of the initiator used can be appropriately set according to the melt viscosity, molecular weight, etc. of the unmodified conjugated diene polymer (F') and the functionally modified conjugated diene polymer (F), but the total amount including the conjugated diene is included. It is usually used in an amount of 0.01 to 3 parts by mass with respect to 100 parts by mass of the polymer.
  • the organic alkali metal compound can also be used as an organic alkali metal amide by reacting with a secondary amine such as dibutylamine, dihexylamine or dibenzylamine. ..
  • Polar compounds are usually used in anionic polymerization to adjust the microstructure (vinyl content) of conjugated diene units without inactivating the reaction.
  • the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphine compounds.
  • the polar compound is usually used in an amount of 0.01 to 1000 mol per 1 mol of the organic alkali metal compound.
  • the temperature of solution polymerization is usually in the range of ⁇ 80 to 150 ° C., preferably in the range of 0 to 100 ° C., and more preferably in the range of 10 to 90 ° C.
  • the polymerization mode may be either a batch type or a continuous type.
  • the polymerization reaction of the above solution polymerization can be stopped by adding a polymerization terminator.
  • the polymerization terminator include alcohols such as methanol and isopropanol.
  • the obtained polymerization reaction solution is poured into a poor solvent such as methanol to precipitate an unmodified conjugated diene polymer (F'), or the polymerization reaction solution is washed with water, separated, and dried.
  • a modified conjugated diene polymer (F') can be isolated.
  • the functional group-modified conjugated diene-based polymer (F) having a moiety containing a functional group represented by the above formula (II) as a branched chain.
  • the method for producing the above is not particularly limited, but from the viewpoint of introducing a functional group having a preferable structure, for example, a mercapto group (-SH) is added to the carbon-carbon unsaturated bond contained in the unmodified conjugated diene-based polymer (F').
  • a method of introducing a functional group derived from an alkoxysilane compound by hydrosilylation in the presence of a co-catalyst used as needed can be mentioned.
  • these production methods from the viewpoint of availability of modification reagents and catalysts and production cost, a method of radical addition reaction of a compound having a mercapto group (-SH) is preferable, and the obtained functional group-modified conjugated diene system weight is preferable.
  • a method of introducing a functional group derived from an alkoxysilane compound by hydrosilylation is preferable.
  • a functional group derived from an alkoxysilane compound is introduced by radically adding a compound having a mercapto group (-SH) to a carbon-carbon unsaturated bond contained in the unmodified conjugated diene-based polymer (F').
  • a method of radical addition reaction of the silane compound (IV) represented by the following formula (IV) to the carbon-carbon unsaturated bond contained in the unmodified conjugated diene-based polymer (F') is preferable.
  • R 4 represents a divalent alkylene group having 1 to 6 carbon atoms
  • R 5 and R 6 are independently aryl groups having 6 to 12 carbon atoms and alkyl having 1 to 12 carbon atoms, respectively.
  • n is an integer of 1 to 3
  • R 5 may be the same or different
  • R 6 may be the same. It may be different.
  • silane compound (IV) examples include mercaptomethylenemethyldiethoxysilane, mercaptomethylenetriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 2-mercaptoethylmethoxydimethylsilane, and 2-.
  • the mercapto group (-SH) of the silane compound (IV) is derived from the silane compound (IV) by radical addition reaction to the carbon-carbon unsaturated bond contained in the unmodified conjugated diene polymer (F').
  • a functional group-modified conjugated diene-based polymer (F) having a functional group to be treated, specifically, a partial structure represented by the following formula (V) as a functional group can be obtained.
  • the method for adding the silane compound (IV) to the unmodified conjugated diene polymer (F') is not particularly limited, and for example, the silane compound (IV) is added to the unmodified conjugated diene polymer (F'). Further, if necessary, a method of adding a radical generator and heating in the presence or absence of an organic solvent can be adopted.
  • the radical generator to be used is not particularly limited, and commercially available organic peroxides, azo compounds, hydrogen peroxide and the like can be used.
  • organic peroxide examples include methyl ethyl ketone peroxide, cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide, methylcyclohexanone peroxide, acetylacetone peroxide, and 1,1-bis (t-butylperoxy).
  • azo compound examples include 2,2'-azobisisobutyronitrile, 1,1'-azobis (cyclohexane-1-carbonitrile), and 2,2'-azobis (2-methylbutyronitrile). , 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2,4-dimethyl-4-methoxyvaleronitrile), 2,2'-azobis (2- (2-imidazoline) -2-yl) propane), 2,2'-azobis (2,4,4-trimethylpentane), 2,2'-azobis (2-methylpropane), 2,2'-azobis (2-hydroxymethylpropion) Nitrile), 4,4'-azobis (4-cyanovaleric acid), dimethyl 2,2'-azobis (2-methylpropionate), 2-cyano-2-propylazoformamide, 2-phenylazo-4- Examples thereof include methoxy-2,4-dimethylvaleronitrile.
  • the radical generator may be used alone or in combination of two or more.
  • Examples of the organic solvent used in the above method generally include a hydrocarbon solvent and a halogenated hydrocarbon solvent.
  • hydrocarbon solvents such as n-butane, n-hexane, n-heptane, cyclohexane, benzene, toluene, and xylene are preferable.
  • the organic solvent may be used alone or in combination of two or more.
  • an anti-aging agent may be added from the viewpoint of suppressing side reactions.
  • Preferred anti-aging agents used at this time include, for example, 2,6-dit-butyl-4-methylphenol (BHT), 2,2'-methylenebis (4-methyl-6-t-butylphenol), 4,4.
  • the amount of the antiaging agent added is preferably 0 to 10 parts by mass, more preferably 0 to 5 parts by mass with respect to 100 parts by mass of the unmodified conjugated diene polymer (F').
  • the temperature in the reaction of adding the silane compound (IV) to the unmodified conjugated diene polymer (F') is preferably 10 to 200 ° C, more preferably 50 ° C to 180 ° C.
  • the reaction time is preferably 1 to 200 hours, more preferably 1 to 100 hours, still more preferably 1 to 50 hours.
  • R 7 and R 8 independently represent an aryl group having 6 to 12 carbon atoms or an alkyl group having 1 to 12 carbon atoms, where n is an integer of 1 to 3 and n is. If it is 2 or more, R 7 may be the same or different, and if 3-n is 2 or more, R 8 may be the same or different.
  • silane compound (VI) examples include trimethoxysilane, methyldimethoxysilane, dimethylmethoxysilane, triethoxysilane, methyldiethoxysilane, and dimethylethoxysilane. These silane compounds may be used alone or in combination of two or more.
  • a functional group-modified conjugated diene polymer (F) having a partial structure represented by the following formula (VII) as a functional group can be obtained.
  • the platinum compound-containing catalyst used in the hydrosilylation reaction is not particularly limited, and is, for example, platinum chloride, an alcohol solution of platinum chloride, platinum-1,3-divinyl-1,1,3,3-tetramethyl. Toluene or xylene solution of disiloxane complex, tetraxtriphenylphosphine platinum, dichlorobistriphenylphosphine platinum, dichlorobis acetonitrile platinum, dichlorobisbenzonitrile platinum, dichlorocyclooctadien platinum, etc., platinum-carbon, platinum-alumina, platinum- Examples thereof include a carrying catalyst such as silica.
  • a zero-valent platinum complex is preferable, and a toluene or xylene solution of a platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex is more preferable.
  • the amount of the platinum compound-containing catalyst used is not particularly limited, but from the viewpoint of reactivity, productivity, etc., the amount of platinum atoms contained in 1 mol of the silane compound (VI) is 1 ⁇ 10 -7.
  • the amount to be ⁇ 1 ⁇ 10 ⁇ 2 mol is preferable, and the amount to be 1 ⁇ 10 -7 to 1 ⁇ 10 -3 mol is more preferable.
  • the co-catalyst in the above reaction it is preferable to use one or more selected from ammonium salts of inorganic acids, acid amide compounds and carboxylic acids.
  • ammonium salt of the inorganic acid examples include ammonium chloride, ammonium sulfate, ammonium amidosulfate, ammonium nitrate, monoammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium diaphosphate, ammonium carbonate, and ammonium hydrogencarbonate. , Ammonium sulfide, ammonium borate, ammonium borofluoride and the like. Among these, ammonium salts of inorganic acids having a pKa of 2 or more are preferable, and ammonium carbonate and ammonium hydrogen carbonate are more preferable.
  • Examples of the acid amide compound include formamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, acrylamide, malonamide, succinamide, maleamide, fumalamide, benzamide, phthalamide, palmitate amide and stearate amide. Can be mentioned.
  • carboxylic acid examples include formic acid, acetic acid, propionic acid, butyric acid, methoxyacetic acid, pentanoic acid, caproic acid, heptanic acid, octanoic acid, lactic acid, and glycolic acid.
  • formic acid, acetic acid and lactic acid are preferable, and acetic acid is more preferable.
  • the amount of the co-catalyst used is not particularly limited, but 1 ⁇ 10 -5 to 5 ⁇ 10 -1 mol per 1 mol of the silane compound (VI) is used from the viewpoint of reactivity, selectivity, cost and the like. Preferably, 1 ⁇ 10 -4 to 5 ⁇ 10 -1 mol is more preferable.
  • a solvent can also be used.
  • the solvent examples include hydrocarbon solvents such as pentane, hexane, cyclohexane, heptane, isooctane, benzene, toluene and xylene; ether solvents such as diethyl ether, tetrahydrofuran and dioxane; ethyl acetate, butyl acetate and the like.
  • Ester-based solvents; aprotonic polar solvents such as N, N-dimethylformamide; chlorinated hydrocarbon-based solvents such as dichloromethane and chloroform. These solvents may be used alone or in admixture of two or more.
  • the reaction temperature in the hydrosilylation reaction is not particularly limited, and can usually be carried out at a temperature of 0 ° C. or higher, and if necessary, under heating conditions, but 0 to 200 ° C. is preferable. In order to obtain an appropriate reaction rate, the reaction is preferably carried out under heating, and from such a viewpoint, the reaction temperature is more preferably 40 to 110 ° C, further preferably 40 to 90 ° C.
  • the reaction time is also not particularly limited, and is usually about 1 to 60 hours, but 1 to 30 hours is preferable, and 1 to 20 hours is more preferable.
  • the functional group-modified conjugated diene polymer (F) one functional group having a partial structure represented by the above formula (V) or the above formula (VII) may be contained alone, or two or more thereof are contained. You may. Therefore, the functional group-modified conjugated diene-based polymer (F) may be a diene-based polymer modified with one compound selected from the group consisting of the above-mentioned silane compound (IV) and silane compound (VI). Alternatively, it may be a diene-based polymer modified with two or more kinds of compounds.
  • Z in the above formula (II) is preferably Si or Sn, and more preferably Si.
  • an alkoxy group is preferable as V in the above formula (II), and the number of carbon atoms is 1.
  • Alkoxy groups of ⁇ 5 are more preferred, and methoxy groups and ethoxy groups are particularly preferred.
  • n in the above formula (II) is an integer satisfying the above formula (5), it is the reactivity in the coupling step described later and the number of side chains bonded to the branch point of the obtained conjugated diene graft polymer. From the viewpoint of control, 2 or more is preferable, 3 or more is more preferable, and it is particularly preferable that the valence is the same as Z.
  • the average number of portions represented by the above formula (II) per molecule of the functional group-modified conjugated diene polymer (F) is preferably 1 to 50, more preferably 2 to 30, and further 3 to 20. preferable.
  • the average number of functional groups V in the above formula (II) per molecule of the functional group-modified conjugated diene polymer (F) is preferably 2 to 150, more preferably 4 to 90, and 6 to 60. More preferred.
  • the average number of functional groups V in the above formula (II) per molecule of the functional group-modified conjugated diene polymer (F) is the functional group of the functional group V contained in the functional group-modified conjugated diene polymer (F). It is calculated from the following formula (10) using the equivalent amount (g / eq) and the number average molecular weight (Mn) converted to standard polystyrene.
  • the functional group equivalent of the functional group V contained in the functional group-modified conjugated diene polymer (F) is other than the conjugated diene bonded to one functional group V and the conjugated diene contained as necessary. It means the mass of the monomer.
  • the functional group equivalent is calculated from the area ratio of the peak derived from the functional group V to the peak derived from the polymer main chain using 1 H-NMR.
  • the peak derived from the functional group V refers to the peak derived from the alkoxy group and the hydroxyl group.
  • the mixing ratio of the unmodified conjugated diene polymer (F') and the above-mentioned silane compound (IV) or silane compound (VI) is, for example, the formula (II) per molecule of the functionally modified conjugated diene polymer (F).
  • the average number of functional groups V contained in) may be appropriately set to a desired value.
  • the unmodified conjugated diene polymer (F') and the above-mentioned silane compound (IV) or silane compound (VI) may be set.
  • May be mixed so that the mass ratio with) is 0.3 to 100.
  • the preferred range of Mw and vinyl content of the functional group-modified conjugated diene-based polymer (F) is the same as that of the unmodified conjugated diene-based polymer (F').
  • the melt viscosity of the functional group-modified conjugated diene polymer (F) measured at 38 ° C. is preferably 0.1 to 2,000 Pa ⁇ s, more preferably 0.1 to 1500 Pa ⁇ s, and 0.1 to 1000 Pa ⁇ s. -S is more preferable.
  • the melt viscosity of the functional group-modified conjugated diene polymer (F) is within the above range, the process passability during production tends to be excellent and the economic efficiency tends to be good.
  • the active terminal polymer (I) is reacted with the functional group-modified conjugated diene polymer (F) to cause the functional group V in the portion represented by the above formula (II) and the above.
  • the substitution reaction of the active terminal polymer (I) occurs, and a conjugated diene-based graft polymer in which the active terminal polymer (I) serving as a side chain is bonded to the hetero atom Z which is a branch point is formed (hereinafter referred to as the present invention).
  • the reaction is called a coupling reaction).
  • the functional group V (at least one remaining functional group selected from the group consisting of an alkoxy group and a hydroxyl group) that has not reacted in the coupling reaction and the inactivation step described later remains as it is or is hydrolyzed.
  • at least one functional group (c) selected from the group consisting of an alkoxy group and a hydroxyl group bonded to the branch point of the conjugated diene-based graft polymer is formed.
  • the molar ratio of (amount of active terminal polymer (I) charged) / (amount of functional group-modified conjugated diene polymer (F) charged) is directly bonded to the above-mentioned branch point per molecule of conjugated diene-based graft polymer.
  • the average number W of the side chains (b) to be subjected may be appropriately set so as to be a desired value. For example, it is preferably 1 to 200, more preferably 2 to 100, and 3 to 50. It is more preferable to have.
  • the molar ratio of (amount of active terminal polymer (I) charged) / (amount of functional group-modified conjugated diene polymer (F) charged) is less than 1, the number of side chains that can be introduced decreases, and is greater than 200. If it is large, the coupling rate described later tends to decrease.
  • the coupling reaction is usually carried out in a temperature range of 0 to 100 ° C. for 0.5 to 50 hours.
  • the functional group-modified conjugated diene polymer (F) may be diluted and used, and the diluting solvent is not particularly limited as long as it is inactive with respect to the active terminal and does not adversely affect the reaction.
  • the diluting solvent is not particularly limited as long as it is inactive with respect to the active terminal and does not adversely affect the reaction.
  • hexane or cyclohexane Saturated aliphatic hydrocarbons such as heptane, octane, decane, toluene, benzene and xylene, or aromatic hydrocarbons.
  • a Lewis base may be added as an additive during the coupling reaction.
  • Lewis base examples include ethers such as dimethyl ether, diethyl ether and tetrahydrofuran; glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; triethylamine, N, N, N', N'-tetramethylethylenediamine and N-methylmorpholine. And the like, amines and the like. These Lewis bases may be used alone or in combination of two or more.
  • the functional group-modified conjugated diene polymer (F) may be added to the reaction vessel in which the active terminal polymer (I) is synthesized, or conversely, the functional group-modified conjugated diene system may be added.
  • the active terminal polymer (I) may be added to the polymer (F).
  • both the active terminal polymer (I) and the functional group-modified conjugated diene polymer (F) may be diluted with a solvent and used if necessary.
  • the active terminal polymer (I) may be used alone or in combination of two or more, and the functional group-modified conjugated diene polymer (F) may also be used alone. Also, two or more types may be used in combination.
  • the coupling rate in the coupling reaction is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more. If the coupling ratio is less than 50%, the mechanical properties of the obtained conjugated diene-based graft polymer are deteriorated, which is not preferable.
  • the coupling rate is increased by increasing the amount of the functional group-modified conjugated diene polymer (F) added, increasing the amount of Lewis base added, increasing the reaction temperature, or increasing the reaction time. be able to.
  • the coupling reaction can be carried out until the coupling rate reaches a desired range. After that, the coupling reaction can be stopped by adding a polymerization terminator such as methanol or isopropanol.
  • the number of functional groups (c) directly bonded to the branch point is determined by the molar ratio of the amount of the active terminal polymer (I) and the functional group-modified conjugated diene polymer (F) charged in the coupling reaction, and the molar ratio of the amount charged.
  • the number of functional groups (c) directly bonded to the branch point to a desired range
  • the amount of the active terminal polymer (I) and the functional group-modified conjugated diene polymer (F) charged was carried out at a molar ratio such that the average number (X / Y) of the functional groups (c) per branch point contained in the conjugated diene-based graft polymer was 1 or more, and then (X / Y). Examples thereof include a method of inactivating a part of the remaining functional group (unreacted functional group V) described above so that the value is less than 1.
  • Step (A-2) In the method for producing a conjugated diene-based graft polymer (G) of the present invention, after the step (A-1), in order to adjust the number of functional groups (c) directly bonded to the branch point to a desired range, (A-2) A step of inactivating a part of at least one remaining functional group (unreacted functional group V) selected from the group consisting of an alkoxy group and a hydroxyl group in the conjugated diene-based graft polymer. (Hereinafter referred to as the inactivation step); Is a preferred embodiment.
  • the inactivation step (A-2) is preferably performed before the recovery step (B) because it is considered that they are likely to cause a condensation reaction with each other.
  • Examples of the reagent used for inactivating the alkoxy group and the hydroxyl group include methyl lithium, ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, and the like.
  • Alkyl lithiums such as sec-butyl lithium and t-butyl lithium; alkyl sodiums such as methyl sodium, ethyl sodium, n-propyl sodium, isopropyl sodium, n-butyl sodium, sec-butyl sodium and t-butyl sodium; methyl Alkyl potassiums such as potassium, ethyl potassium, n-propyl potassium, isopropyl potassium, n-butyl potassium, sec-butyl potassium, t-butyl potassium; methylmagnesium bromide, ethylmagnesium bromide, t-butylmagnesium bromide, t-butyl Alkyl magnesium halides such as magnesium chloride and sec-butylmagnesium iodide; dialkyl copper lithium such as dimethyl copper lithium, diethyl copper lithium, methyl ethyl copper lithium, methyl n-propyl copper lithium, ethyl n-butyl copper lithium
  • Luis bases such as lithium diisopropylamide, lithium diisoethylamide, lithium dit-butylamide and the like; Among these, n-butyllithium, sec-butyllithium, methyllithium, methylmagnesium bromide, and dimethylcopper lithium are preferable because it is desirable that the steric hindrance is small in order for the inactivation reaction to proceed rapidly.
  • Amount of Inactivating Reagent Used in Step (A-2) / Molar Ratio of Total Amount of Alkoxy Group and Hydroxyl Group Derived from Group V in Conjugated Diene Graft Polymer Obtained in Step (A-1) Is preferably 0.5 or more, more preferably 1.0 or more, and even more preferably 2.0 or more. Further, it is preferably 100 or less, more preferably 50 or less, and further preferably 20 or less.
  • the amount of the inactivating reagent is small, the number of functional groups (c) directly bonded to the branch point cannot be adjusted to a desired range, and when the amount of the inactivating reagent is large, it is economical. Tends to get worse.
  • the inactivation reaction of the above step (A-2) is usually carried out in a temperature range of 0 to 100 ° C. for 0.1 to 50 hours.
  • the inactivating reagent may be diluted and used, and the diluting solvent is not particularly limited as long as it is inactive with respect to the inactivating reagent and does not adversely affect the reaction.
  • the diluting solvent is not particularly limited as long as it is inactive with respect to the inactivating reagent and does not adversely affect the reaction.
  • Saturated aliphatic hydrocarbons such as decane, toluene, benzene and xylene or aromatic hydrocarbons can be mentioned.
  • a Lewis base may be added as an additive during the inactivation reaction, and examples of the Lewis base include ethers such as dimethyl ether, diethyl ether and tetrahydrofuran; glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether. Examples thereof include amines such as triethylamine, N, N, N', N'-tetramethylethylenediamine and N-methylmorpholin. These Lewis bases may be used alone or in combination of two or more.
  • the inactivation reaction can be carried out until the number of functional groups (c) directly bonded to the branch point reaches a desired range.
  • the inactivating reagent can be inactivated by adding a polymerization terminator such as methanol or isopropanol.
  • Step (B) The method for producing a conjugated diene-based graft polymer of the present invention is (B) Step of recovering the obtained conjugated diene-based graft polymer; including.
  • step (B) the obtained conjugated diene-based graft polymer of the present invention is recovered.
  • the method for recovering the conjugated diene-based graft polymer is not particularly limited, but when a solution containing the conjugated diene-based graft polymer is obtained in step (A-1) or step (A-2), for example, it can be obtained.
  • the above-mentioned conjugated diene-based graft polymer is isolated by pouring the solution into a poor solvent such as methanol to precipitate the conjugated diene-based graft polymer, or by washing the polymerization reaction solution with water, separating and drying. It can be recovered by.
  • the polymer composition of the present invention contains the conjugated diene-based graft polymer of the present invention (hereinafter, also referred to as a conjugated diene-based graft polymer ( ⁇ )). Further, the polymer composition may further contain a polymer ( ⁇ ) other than the conjugated diene-based graft polymer ( ⁇ ).
  • the other polymer ( ⁇ ) may be a thermoplastic polymer ( ⁇ 1) or a curable polymer ( ⁇ 2).
  • thermoplastic polymer ( ⁇ 1) examples include acrylic resins such as polymethyl methacrylate and (meth) acrylic acid ester polymers or copolymers; polyethylene, ethylene-vinyl acetate copolymer, polypropylene, polybutene-. 1.
  • Olefin resins such as poly-4-methylpentene-1, polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene, AS resin, ABS resin, AES resin, AAS resin, Sterite resins such as ACS resin and MBS resin; styrene-methyl methacrylate copolymer; styrene-methyl methacrylate-maleic anhydride copolymer; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polylactic acid; nylon 6, Polyamides such as nylon 66 and polyamide elastomers; polycarbonate; polyvinyl chloride; polyvinylidene chloride; polyvinyl alcohol; ethylene-vinyl alcohol copolymer; polyacetal; vinylidene fluoride; polyurethane; modified polyphenylene ether; polyphenylene sulfide; silicone
  • Examples of the curable polymer ( ⁇ 2) include epoxy resin, unsaturated polyester resin, epoxy (meth) acrylate resin, ester (meth) acrylate resin, phenol resin, urea resin, melamine resin, thermosetting urethane resin, and silicon.
  • Examples thereof include resins, imide resins, furan resins, alkido resins, allyl resins, and diallyl phthalate resins.
  • epoxy resins and unsaturated polyesters are made from the viewpoints of availability and basic physical properties of the cured product, as well as the ability to remove air bubbles and the toughness of the obtained cured product to obtain a more excellent polymer composition.
  • Resins and epoxy (meth) acrylate resins are preferable, and among them, epoxy resins and unsaturated polyester resins are more preferable, and epoxy resins are even more preferable.
  • the curable polymer ( ⁇ 2) may be used alone or in combination of two or more.
  • the polymer composition contains a conjugated diene-based graft polymer ( ⁇ ) and another polymer ( ⁇ ), the mass ratio of the conjugated diene-based graft polymer ( ⁇ ) to the other polymer ( ⁇ ). It is preferable that ( ⁇ ) / ( ⁇ ) is 1/99 to 99/1.
  • additives may be added to the polymer composition of the present invention to the extent that the effects of the present invention are not impaired.
  • the other polymer ( ⁇ ) is a thermoplastic polymer ( ⁇ 1)
  • such additives include, for example, reinforcing agents or fillers such as calcium carbonate, silica, carbon black, glass fiber, clay, and process oils.
  • Polyethylene glycol, glycerin, phthalates and other plasticizers can be used as additives.
  • examples of other additives include heat stabilizers, antioxidants, ultraviolet absorbers, colorants, pigments, lubricants, and surfactants.
  • a foaming agent can be mentioned as the additive, and a foam can be prepared from a polymer composition containing the foaming agent and the thermoplastic polymer ( ⁇ 1).
  • the additive may be a curing agent, a curing accelerator, a known rubber, a thermoplastic elastomer, a core-shell particle, or the like.
  • examples include agents, fillers (inorganic particles such as silica, talc, calcium carbonate, aluminum hydroxide, etc.), flame retardants, defoaming agents, pigments, dyes, antioxidants, weather resistant agents, lubricants, mold release agents, and the like.
  • the polymer composition of the present invention can be prepared by a usual method of mixing a polymer substance according to the composition ratio of each component such as a conjugated diene-based graft polymer ( ⁇ ) and another polymer ( ⁇ ).
  • a polymer composition can be prepared by, for example, a mixing device such as an extruder, a mixing roll, a Banbury mixer, or a kneader.
  • a method of melt-kneading using these mixing devices is a preferable aspect.
  • the other polymer ( ⁇ ) is a curable polymer ( ⁇ 2)
  • the polymer composition is sufficiently mixed with a mixer or the like, then melt-kneaded with a mixing roll, an extruder or the like, and then cooled and pulverized to prepare the polymer composition. Can be made.
  • the polymer composition of the present invention can be made into a molded product by various conventionally known molding methods.
  • the other polymer ( ⁇ ) is a thermoplastic polymer ( ⁇ 1)
  • the polymer composition is molded by, for example, extrusion molding, injection molding, hollow molding, compression molding, vacuum molding, calendar molding, or the like.
  • a product can be manufactured.
  • molded products, sheets, films and the like having various shapes can be obtained.
  • a molded product in the form of a non-woven fabric or a fibrous material can be produced by a method such as a melt blow method or a spunbond method.
  • the other polymer ( ⁇ ) is a curable polymer ( ⁇ 2)
  • a molded product obtained by heat-curing the polymer composition for example, by a transfer molding method can be produced.
  • Other molding methods when the polymer composition contains the curable polymer ( ⁇ 2) include, for example, an injection molding method and a compression molding method.
  • the molded product obtained from the polymer composition is used, for example, for automobile interior / exterior parts such as bumpers and instrument panels, televisions, stereos, and cleaning.
  • Housing materials for home appliances such as machines, electrical and electronic parts such as connectors, materials for electric wires and cables, trays for meat and fresh fish, fruit and vegetable packs, food packaging materials such as frozen food containers, food containers, packaging materials such as industrial materials, sports Sporting goods such as shoe materials, fabric or leather products, toys, daily miscellaneous goods such as sandals, various films, sheets, laminated materials for molded products, elastic materials used for adhesives / adhesives, paper diapers, hoses, tubes, belts Various rubber products such as, medical supplies, etc. can be mentioned.
  • the other polymer ( ⁇ ) is a curable polymer ( ⁇ 2)
  • the use of the polymer composition, the cured product thereof, or the molded product is, for example, an adhesive for a fiber reinforcing composite material (fiber reinforcing composite material for concrete).
  • Various adhesives such as (adhesives for assembling parts in transportation equipment, etc.); various paints such as anticorrosion / waterproof paint for water and sewage, anticorrosion paint for metal;
  • Various coating primers such as coating primers; various lining materials such as metal lining materials, concrete lining materials, tank lining materials; various repair materials such as crack repair materials for concrete; printed wiring boards, insulating boards, semiconductor seals Examples include various electrical and electronic parts such as stopping materials and packaging materials.
  • Weight average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution (Mw / Mn) By gel permeation chromatography (GPC), the weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn) of the conjugated diene-based graft polymer and the polymer at each stage of its production are determined. It was calculated in terms of standard polystyrene.
  • the average number Y of Si atoms (branch points) per molecule of the conjugated diene-based graft polymer and the functional group-modified conjugated diene-based polymer (F) is the weight measured by an inductively coupled plasma mass spectrometer (ICP-MS). It is calculated from the following formula using the combined Si content (% by mass) and the number average molecular weight (Mn) in terms of standard polystyrene.
  • the average number (X / Y) of functional groups (c) per Si atom (branch point) contained in the conjugated diene-based graft polymer is the conjugated diene-based graft polymer. It is obtained from the results of measuring 29 Si-NMR of the graft polymer. Specifically, the integral value obtained by multiplying the integrated value of Si having one functional group (c) bonded and Si having two functional groups (c) bonded by the number of functional groups is added up and integrated.
  • Average number of functional groups (c) per molecule of conjugated diene-based graft polymer X The average number X of the functional groups (c) per molecule of the conjugated diene-based graft polymer is the average number of functional groups (c) per Si atom (branch point) contained in the conjugated diene-based graft polymer and the above-mentioned conjugated diene. It is calculated from the following formula using the average number of Si atoms per molecule of the system graft polymer.
  • (Average number of functional groups (c) per molecule of conjugated diene-based graft polymer X) (Average number of functional groups (c) per Si atom (branch point) contained in conjugated diene-based graft polymer) ⁇ (Average number of Si atoms per molecule of conjugated diene-based graft polymer)
  • the average number of functional groups (c) per B atom (branch point) contained in the conjugated diene-based graft polymer and the average number of B atoms per molecule of the conjugated diene-based graft polymer were used.
  • the average number X of the functional groups (c) per molecule of the conjugated diene-based graft polymer was determined.
  • the average number W of side chains (b) per molecule of the conjugated diene-based graft polymer is the active terminal polymer (b) that is a component of the side chain (b) of the conjugated diene-based graft polymer in the above-mentioned coupling step. It is calculated from the following formula using the charge amount (number of moles) per active terminal of I) and the charge amount (number of moles) of the functional group-modified conjugated diene polymer (F).
  • (Average number of side chains (b) per molecule of conjugated diene-based graft polymer W) (Amount of active terminal polymer (I) charged per active end (number of moles) which is a component of the side chain (b) )) / (Amount of functional group-modified conjugated diene polymer (F) charged (number of moles))
  • Average number of side chains (b) per Si atom (branch point) contained in the conjugated diene-based graft polymer (W / Y)
  • the average number (W / Y) of side chains (b) per Si atom (branch point) contained in the conjugated diene-based graft polymer is the average of the side chains (b) per molecule of the conjugated diene-based graft polymer. It is calculated from the following formula using the number W and the average number Y of Si atoms per molecule of the conjugated diene-based graft polymer.
  • (Average number of side chains (b) per Si atom contained in the conjugated diene-based graft polymer (W / Y)) (Average number of side chains (b) per molecule of the conjugated diene-based graft polymer W) / (Average number of Si atoms per molecule of conjugated diene-based graft polymer Y)
  • the conjugated diene system uses the average number W of side chains (b) per molecule of the conjugated diene graft polymer and the average number Y of B atoms per molecule of the conjugated diene graft polymer.
  • the average number (W / Y) of side chains (b) per B atom (branch point) contained in the graft polymer was determined.
  • Coupling rate of the conjugated diene-based graft polymer is calculated by the following formula using the sum of the peak areas of the unreacted polymer components obtained by the above GPC measurement and all the peak areas.
  • (Coupling rate (%)) [ ⁇ ((Sum of all peak areas)-(Peak area of components derived from active terminal polymer (I)) ⁇ / (Sum of all peak areas)] ⁇ 100
  • Example 1 (Step (1)) A fully dried 5 L autoclave is replaced with nitrogen, 1580 g of cyclohexane and 56 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is 50 ° C. under stirring conditions. While controlling in this manner, 2.9 g of tetrahydrofuran and 1250 g of butadiene were sequentially added and polymerized for 1 hour. Then, 3.3 g of methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water.
  • Step (2) Subsequently, 700 g of the unmodified conjugated diene polymer (F'-1) obtained in the step (1) was charged into an autoclave having a capacity of 1 L, and nitrogen degassed while stirring at 60 ° C. for 3 hours. 0.9 g of t-butylperoxypivalate and 51 g of 3-mercaptopropyltriethoxysilane were added and reacted at 80 ° C. for 8 hours to obtain a functional group-modified conjugated diene polymer (F-1).
  • the obtained functional group-modified conjugated diene polymer (F-1) revealed that the main chain (a) of the conjugated diene graft polymer (G-1) described later contains the weight average molecular weight, vinyl content, and styrene unit. The amount can be calculated.
  • the obtained functional group-modified conjugated diene polymer (F-1) has a weight average molecular weight of 26,000, a vinyl content of 30 mol%, a styrene unit content of 0% by mass, and Si atoms per polymer molecule. The average number was four.
  • Step (3) A sufficiently dried 5 L autoclave is replaced with nitrogen, 700 g of cyclohexane and 78 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is set to 50 ° C. under stirring conditions. While controlling in this manner, 340 g of butadiene was sequentially added and polymerized for 1 hour to obtain an active terminal polymer (I-1). By sampling and analyzing the polymer solution in the step (3), the weight average molecular weight, vinyl content, and styrene unit content of the side chain (b) of the conjugated diene-based graft polymer (G-1) described later can be determined. be able to. The weight average molecular weight of the obtained active terminal polymer (I-1) was 5,000, the vinyl content was 10 mol%, and the styrene unit content was 0% by mass.
  • Step (4) Subsequently, 7.0 g of tetrahydrofuran and the functional group-modified conjugated diene polymer (F-1) obtained in step (2) were added to the solution containing the active terminal polymer (I-1) obtained in step (3). 1480 g of the diluted solution was added, and the coupling reaction was carried out at 50 ° C. for 2 hours. Then, 190 g of sec-butyllithium (10.5 mass% cyclohexane solution) was added and reacted for 6 hours to seal a part of the remaining alkoxy groups. Then, 21 g of methanol was added to stop the polymerization reaction to obtain a polymer solution.
  • Step (5) Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated. After the washing was completed, the polymer solution was vacuum dried at 70 ° C. for 24 hours to obtain a conjugated diene-based graft polymer (G-1).
  • the weight average molecular weight of the obtained conjugated diene graft polymer (G-1) is 46,000, Mw / Mn is 1.5, the styrene unit content is 0% by mass, the coupling rate is 95%, and the polymer 1
  • the average number of Si atoms (branch points) per molecule is 4, the average number of functional groups (c) per polymer molecule is 0.4, and the average number of functional groups (c) per Si atom (branch point).
  • the average number was 0.1, the average number of side chains (b) per polymer molecule was 4, and the average number of side chains (b) per Si atom (branch point) was 1.
  • Table 1 shows the types and amounts of each reagent used in Example 1
  • Table 3 shows the molecular specifications and physical properties of the obtained conjugated diene-based graft polymer (G-1).
  • Example 15 (Step (1)) A fully dried 5 L autoclave is replaced with nitrogen, 1580 g of cyclohexane and 56 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is 50 ° C. under stirring conditions. While controlling in this manner, 2.9 g of tetrahydrofuran and 1250 g of butadiene were sequentially added and polymerized for 1 hour. Then, 3.3 g of methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water.
  • Step (2) Subsequently, 700 g of the unmodified conjugated diene polymer (F'-15) obtained in the step (1) and 1400 g of toluene were placed in a 5 L separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer. A toluene solution of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (2.1 ⁇ 10 -5 mol as platinum atom) and 0.12 g of acetic acid were charged. To this, 34 g of triethoxysilane was added dropwise at an internal temperature of 75 to 85 ° C.
  • the obtained functional group-modified conjugated diene polymer (F-15) has a weight average molecular weight of 26,000, a vinyl content of 30 mol%, a styrene unit content of 0% by mass, and Si atoms per polymer molecule. The average number was four. 1710 g of cyclohexane is added to the obtained functional group-modified conjugated diene polymer (F-15) to dilute it to a concentration of 30% by mass, and the functional group-modified conjugated diene polymer (F-15) used in the coupling reaction described later is used. ) was obtained.
  • Step (3) A sufficiently dried 5 L autoclave is replaced with nitrogen, 700 g of cyclohexane and 78 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is set to 50 ° C. under stirring conditions. While controlling in this manner, 340 g of butadiene was sequentially added and polymerized for 1 hour to obtain an active terminal polymer (I-15).
  • the weight average molecular weight, vinyl content, and styrene unit content of the side chain (b) of the conjugated diene-based graft polymer (G-15) described later can be determined. be able to.
  • the weight average molecular weight of the obtained active terminal polymer (I-15) was 5,000, the vinyl content was 10 mol%, and the styrene unit content was 0% by mass.
  • Step (4) Subsequently, 7.0 g of tetrahydrofuran and the functional group-modified conjugated diene polymer (F-15) obtained in step (2) were added to the solution containing the active terminal polymer (I-15) obtained in step (3). 1480 g of the diluted solution was added, and the coupling reaction was carried out at 50 ° C. for 2 hours. Then, 195 g of sec-butyllithium (10.5 mass% cyclohexane solution) was added and reacted for 6 hours to seal a part of the remaining alkoxy groups. Then, 21 g of methanol was added to stop the polymerization reaction to obtain a polymer solution.
  • Step (5) Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated. After the washing was completed, the polymer solution was vacuum dried at 70 ° C. for 24 hours to obtain a conjugated diene-based graft polymer (G-15).
  • the weight average molecular weight of the obtained conjugated diene graft polymer (G-15) is 46,000, Mw / Mn is 1.5, the styrene unit content is 0% by mass, the coupling rate is 95%, and the polymer 1
  • the average number of Si atoms (branch points) per molecule is 4, the average number of functional groups (c) per polymer molecule is 0.4, and the average number of functional groups (c) per Si atom (branch point).
  • the average number was 0.1, the average number of side chains (b) per polymer molecule was 4, and the average number of side chains (b) per Si atom (branch point) was 1.
  • Table 4 shows the molecular specifications and physical properties of the obtained conjugated diene-based graft polymer (G-15).
  • Step (1) A fully dried 5 L autoclave is replaced with nitrogen, 1580 g of cyclohexane and 56 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is 50 ° C. under stirring conditions. While controlling in this manner, 2.9 g of tetrahydrofuran and 1250 g of butadiene were sequentially added and polymerized for 1 hour. Then, 3.3 g of methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water.
  • Step (2) Subsequently, 700 g of the unmodified conjugated diene polymer (F'-16) and 1400 g of cyclohexane obtained in the step (1) were placed in a 5 L separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer. It was charged and replaced with nitrogen. To this, 22 g of trimethyl borate and 1.8 g of triethylamine borane were added, and the reaction was carried out at 80 ° C. for 10 hours. After completion of the reaction, the mixture was concentrated under reduced pressure and filtered to obtain a functional group-modified conjugated diene polymer (F-16).
  • the obtained functional group-modified conjugated diene polymer (F-16) revealed that the main chain (a) of the conjugated diene graft polymer (G-16) described later contains the weight average molecular weight, vinyl content, and styrene unit. The amount can be calculated.
  • the obtained functional group-modified conjugated diene polymer (F-16) has a weight average molecular weight of 26,000, a vinyl content of 30 mol%, a styrene unit content of 0% by mass, and B atoms per molecule of the polymer. The average number was four.
  • Step (3) A sufficiently dried 5 L autoclave is replaced with nitrogen, 700 g of cyclohexane and 78 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is set to 50 ° C. under stirring conditions. While controlling in this manner, 340 g of butadiene was sequentially added and polymerized for 1 hour to obtain an active terminal polymer (I-16). By sampling and analyzing the polymer solution in the step (3), the weight average molecular weight, vinyl content, and styrene unit content of the side chain (b) of the conjugated diene-based graft polymer (G-16) described later can be determined. be able to. The weight average molecular weight of the obtained active terminal polymer (I-16) was 5,000, the vinyl content was 10 mol%, and the styrene unit content was 0% by mass.
  • Step (4) Subsequently, 7.0 g of tetrahydrofuran and the functional group-modified conjugated diene polymer (F-16) obtained in step (2) were added to the solution containing the active terminal polymer (I-16) obtained in step (3). 1480 g of the diluted solution was added, and the coupling reaction was carried out at 50 ° C. for 2 hours. Then, 195 g of sec-butyllithium (10.5 mass% cyclohexane solution) was added and reacted for 6 hours to seal a part of the remaining alkoxy groups. Then, 21 g of methanol was added to stop the polymerization reaction to obtain a polymer solution.
  • Step (5) Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated. After the washing was completed, the polymer solution was vacuum dried at 70 ° C. for 24 hours to obtain a conjugated diene-based graft polymer (G-16).
  • the weight average molecular weight of the obtained conjugated diene graft polymer (G-16) is 46,000, Mw / Mn is 1.5, the styrene unit content is 0% by mass, the coupling rate is 95%, and the polymer 1
  • the average number of B atoms (branch points) per molecule is 4, the average number of functional groups (c) per polymer molecule is 0.4, and the average number of functional groups (c) per B atom (branch point).
  • the average number was 0.1, the average number of side chains (b) per polymer molecule was 4, and the average number of side chains (b) per B atom (branch point) was 1.
  • Table 4 shows the molecular specifications and physical properties of the obtained conjugated diene-based graft polymer (G-16).
  • Step (1) A fully dried 5 L autoclave is replaced with nitrogen, 1580 g of cyclohexane and 56 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is 50 ° C. under stirring conditions. While controlling in this manner, 2.9 g of tetrahydrofuran and 1250 g of butadiene were sequentially added and polymerized for 1 hour. Then, 3.3 g of methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water.
  • Step (2) Subsequently, 700 g of the unmodified conjugated diene polymer (F'-18) obtained in the step (1), 1400 g of cyclohexane, were placed in a 5 L separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer. Add 5.6 mL of a 2% xylene solution of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex ("PC072" manufactured by Polymer System) and 120 g of trimethylchlorosilane, and prepare them overnight. Stirred.
  • PC072 platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex
  • the obtained functional group-modified conjugated diene polymer (F-17) has a weight average molecular weight of 26,000, a vinyl content of 30 mol%, a styrene unit content of 0% by mass, and Si atoms per polymer molecule. The average number was four. 1680 g of cyclohexane is added to the obtained functional group-modified conjugated diene polymer (F-17) to dilute it to a concentration of 30% by mass, and the functional group-modified conjugated diene polymer (F-17) used in the coupling reaction described later is used. ) was obtained.
  • Step (3) A sufficiently dried 5 L autoclave is replaced with nitrogen, 700 g of cyclohexane and 78 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is set to 50 ° C. under stirring conditions. While controlling in this manner, 340 g of butadiene was sequentially added and polymerized for 1 hour to obtain an active terminal polymer (I-17).
  • the weight average molecular weight, vinyl content, and styrene unit content of the side chain (b) of the conjugated diene-based graft polymer (G-17) described later can be determined. be able to.
  • the weight average molecular weight of the obtained active terminal polymer (I-17) was 5,000, the vinyl content was 10 mol%, and the styrene unit content was 0% by mass.
  • Step (4) Subsequently, 7.0 g of tetrahydrofuran and the functional group-modified conjugated diene polymer (F-17) obtained in step (2) were added to the solution containing the active terminal polymer (I-17) obtained in step (3). 1480 g of the diluted solution was added, and the coupling reaction was carried out at 50 ° C. for 2 hours. Then, 195 g of sec-butyllithium (10.5 mass% cyclohexane solution) was added and reacted for 6 hours. Then, 21 g of methanol was added to stop the polymerization reaction to obtain a polymer solution.
  • Step (5) Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated. After the washing was completed, the polymer solution was vacuum dried at 70 ° C. for 24 hours to obtain a conjugated diene-based graft polymer (G-17).
  • the weight average molecular weight of the obtained conjugated diene graft polymer (G-17) is 46,000, Mw / Mn is 1.5, the styrene unit content is 0% by mass, the coupling rate is 99%, and the polymer 1
  • the average number of Si atoms (branch points) per molecule is 4, the average number of functional groups (c) per polymer molecule is 0, and the average number of functional groups (c) per Si atom (branch point).
  • the average number of side chains (b) per molecule of the polymer was 4, and the average number of side chains (b) per Si atom (branch point) was 1.
  • Table 4 shows the molecular specifications and physical properties of the obtained conjugated diene-based graft polymer (G-17).
  • Step (1) A fully dried 5 L autoclave is replaced with nitrogen, 1580 g of cyclohexane and 56 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is 50 ° C. under stirring conditions. While controlling in this manner, 2.9 g of tetrahydrofuran and 1250 g of butadiene were sequentially added and polymerized for 1 hour. Then, 3.3 g of methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water.
  • Step (2) Subsequently, 700 g of the unmodified conjugated diene polymer (F'-18) obtained in the step (1) was charged into an autoclave having a capacity of 1 L, and nitrogen degassed while stirring at 60 ° C. for 3 hours. 0.9 g of t-butylperoxypivalate and 51 g of 3-mercaptopropyltriethoxysilane were added and reacted at 80 ° C. for 8 hours to obtain a functional group-modified conjugated diene polymer (F-18).
  • the obtained functional group-modified conjugated diene polymer (F-18) revealed that the main chain (a) of the conjugated diene graft polymer (G-18) described later contains the weight average molecular weight, vinyl content, and styrene unit. The amount can be calculated.
  • the obtained functional group-modified conjugated diene polymer (F-18) has a weight average molecular weight of 26,000, a vinyl content of 30 mol%, a styrene unit content of 0% by mass, and Si atoms per polymer molecule. The average number was four.
  • Step (3) A sufficiently dried 5 L autoclave is replaced with nitrogen, 700 g of cyclohexane and 78 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is set to 50 ° C. under stirring conditions. While controlling in this manner, 340 g of butadiene was sequentially added and polymerized for 1 hour to obtain an active terminal polymer (I-18).
  • the weight average molecular weight, vinyl content, and styrene unit content of the side chain (b) of the conjugated diene-based graft polymer (G-18) described later can be determined. be able to.
  • the weight average molecular weight of the obtained active terminal polymer (I-18) was 5,000, the vinyl content was 10 mol%, and the styrene unit content was 0% by mass.
  • Step (4) Subsequently, 7.0 g of tetrahydrofuran and the functional group-modified conjugated diene polymer (F-18) obtained in step (2) were diluted in a solution containing the active terminal polymer (I-18) obtained in step (3). 1480 g of the solution was added and the coupling reaction was carried out at 50 ° C. for 2 hours. Then, 10 g of methanol was added to stop the polymerization reaction to obtain a polymer solution.
  • Step (5) Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated.
  • the conjugated diene-based graft polymer (G-18) was insolubilized and the gel fraction was 80% by mass or more.
  • the weight average molecular weight of the obtained conjugated diene graft polymer (G-18) is 46,000, Mw / Mn is 1.5, the styrene unit content is 0% by mass, the coupling rate is 95%, and the polymer 1
  • the average number of Si atoms (branch points) per molecule is 4, the average number of functional groups (c) per polymer molecule is 8, and the average number of functional groups (c) per Si atom (branch point).
  • the average number of side chains (b) per polymer molecule was 1.0, and the average number of side chains (b) per Si atom (branch point) was 1 (weight average molecular weight).
  • the average number per unit is a value obtained by measuring the polymer obtained by drying the polymer solution obtained in step (4) at room temperature and under normal pressure).
  • Table 4 shows the molecular specifications and physical properties of the obtained conjugated diene-based graft polymer (G-18).
  • the conjugated diene system of Examples 1 to 16 in which the average number (X / Y) of the functional groups (c) per Si atom (branch point) is in the range of 0 ⁇ (X / Y) ⁇ 1. Since the graft polymer has a high condensation reactivity, it can be seen that it has an excellent affinity with polar materials. Furthermore, it can be seen that the polymer solution containing the conjugated diene-based graft polymer has high stability because the ratio of the insoluble matter is small in the step of drying the polymer solution after the completion of washing.
  • the conjugated diene-based graft polymer of Comparative Example 1 in which the average number (X / Y) of the functional groups (c) per Si atom (branch point) is 0 has a low condensation reactivity, and thus is a polar material. Inferior in affinity with.
  • the conjugated diene-based graft polymer of Comparative Example 2 in which the average number (X / Y) of the functional groups (c) per Si atom (branch point) is in the range of 1 ⁇ (X / Y) is a polymer solution. In the process of drying the mixture, the ratio of insoluble matter was high and it was difficult to take it out.
  • the conjugated diene-based graft polymer of the present invention has excellent affinity with polar materials and has high stability. Therefore, interior and exterior parts for automobiles, electrical / electronic parts, packaging materials, sporting goods, daily miscellaneous goods, etc. It can be effectively used in a wide range of fields such as laminating materials, elastic materials, various rubber products, medical products, various adhesives, and various coating primers.

Abstract

The present invention provides a conjugated diene graft polymer which exhibits high stability, while having excellent affinity for a polar material. A conjugated diene graft polymer wherein side chains (b), each of which is composed of a polymer that contains at least one monomer unit selected from the group consisting of a conjugated diene unit and an aromatic vinyl compound unit, are bonded to a main chain (a), which is composed of a polymer that contains a conjugated diene unit, respectively via one heteroatom which serves as a branch point, while having a valence of 3 or more. With respect to this conjugated diene graft polymer, the main chain (a) is bonded to the branch points directly or via a linking chain; the side chains (b) are bonded to the branch points directly; the heteroatom is at least one atom selected from the group consisting of Si, Sn, Ge, Pb, P, B and Al; at least one functional group (c), which is selected from the group consisting of an alkoxy group and a hydroxyl group, is directly bonded to at least one of the branch points; if N is the valence of the heteroatom, B is the average number of the side chains (b) directly bonded to one branch point and C is the average number of the functional groups (c) bonded to one branch point, N, B and C satisfy a specific relationship; and if X is the average number of the functional groups (c) directly bonded to the branch points per one molecule of the conjugated diene graft polymer and Y is the average number of branch points per one molecule of the conjugated diene graft polymer, X and Y satisfy the relational expression 0 < (X/Y) < 1.

Description

共役ジエン系グラフト重合体、およびその製造方法Conjugated diene-based graft polymer and its production method
 本発明は、極性材料との親和性に優れるとともに、高い安定性を有する共役ジエン系グラフト重合体、およびその製造方法に関する。 The present invention relates to a conjugated diene-based graft polymer having excellent affinity with polar materials and high stability, and a method for producing the same.
 従来から、分岐を有するポリマーは同じ分子量の線状ポリマーに比べて流動性が高く、加工性と力学特性のバランスに優れることが知られている。例えば、ヒドロシリル化によりシリルクロリド基をグラフトしたポリブタジエンとリビングアニオン重合の活性末端を有するリビングポリマーを反応させることで、共役ジエン系グラフト重合体を形成させる方法が知られている(非特許文献1参照)。また、1つのケイ素原子につき平均して1つ以上のアルコキシ基および/または水酸基が結合した共役ジエン系星型重合体は、シリカの分散性に優れることが知られている(特許文献1参照)。 Conventionally, it has been known that a polymer having a branch has a higher fluidity than a linear polymer having the same molecular weight, and has an excellent balance between processability and mechanical properties. For example, a method is known in which a conjugated diene-based graft polymer is formed by reacting polybutadiene grafted with a silyl chloride group by hydrosilylation with a living polymer having an active terminal of living anionic polymerization (see Non-Patent Document 1). ). Further, it is known that a conjugated diene-based star polymer in which one or more alkoxy groups and / or hydroxyl groups are bonded on average per one silicon atom has excellent dispersibility of silica (see Patent Document 1). ..
国際公開第2018/034195号International Publication No. 2018/034195
 しかしながら、非特許文献1に記載の共役ジエン系グラフト重合体は、極性材料との親和性を有するアルコキシシリル基またはシラノール基を有さないため、ガラスやシリカなどの極性材料との親和性に改善の余地があった。また、特許文献1に記載の共役ジエン系星型重合体は、縮合反応を起こしうるアルコキシシリル基およびシラノール基の総含有量が多いため、重合体の安定性が低いという問題があった。 However, since the conjugated diene-based graft polymer described in Non-Patent Document 1 does not have an alkoxysilyl group or silanol group having an affinity with a polar material, the affinity with a polar material such as glass or silica is improved. There was room for. Further, the conjugated diene-based star polymer described in Patent Document 1 has a problem that the stability of the polymer is low because the total content of the alkoxysilyl group and the silanol group capable of causing a condensation reaction is large.
 本発明は、上記の実情に鑑みてなされたものであり、極性材料との親和性に優れるとともに、高い安定性を有する共役ジエン系グラフト重合体、および該共役ジエン系グラフト重合体の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a conjugated diene-based graft polymer having excellent affinity with polar materials and high stability, and a method for producing the conjugated diene-based graft polymer. The purpose is to provide.
 本発明者らが鋭意検討を行った結果、共役ジエン単位を含む重合体からなる主鎖に分岐点を介して、共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む重合体からなる側鎖が直接または連結鎖を通じて結合した共役ジエン系グラフト重合体であって、前記分岐点に結合するアルコキシ基および水酸基からなる群より選ばれる少なくとも1つの基の数が一定の範囲内である共役ジエン系グラフト重合体が、極性材料との親和性に優れるとともに、高い安定性を有することを見出し、本発明を完成するに至った。 As a result of diligent studies by the present inventors, at least one single amount selected from the group consisting of a conjugated diene unit and an aromatic vinyl compound unit via a branch point in a main chain composed of a polymer containing a conjugated diene unit. A conjugated diene-based graft polymer in which a side chain composed of a polymer containing a body unit is bonded directly or through a connecting chain, and the number of at least one group selected from the group consisting of an alkoxy group and a hydroxyl group bonded to the branch point. We have found that the conjugated diene-based graft polymer in which the amount is within a certain range has excellent affinity with polar materials and high stability, and has completed the present invention.
 すなわち、本発明は以下の[1]~[11]を提供するものである。
[1]共役ジエン単位を含む重合体からなる主鎖(a)に、
分岐点である価数が3以上のヘテロ原子1つを介して、共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む重合体からなる側鎖(b)が結合した共役ジエン系グラフト重合体であり、
前記主鎖(a)は、直接または連結鎖を通じて分岐点と結合し、
前記側鎖(b)は直接分岐点に結合しており、
前記ヘテロ原子がSi、Sn、Ge、Pb、P、B、およびAlからなる群より選ばれる少なくとも1つであり、
前記分岐点の少なくとも1つには、アルコキシ基および水酸基からなる群より選ばれる少なくとも1つの官能基(c)が直接結合しており、
共役ジエン系グラフト重合体1分子あたりの前記分岐点に直接結合する官能基(c)の平均個数Xと共役ジエン系グラフト重合体1分子あたりの分岐点の平均個数Yが下記式(2);
0<(X/Y)<1  (2)
の関係を満たす、
共役ジエン系グラフト重合体。
[2]共役ジエン系グラフト重合体1分子あたりの前記分岐点に直接結合する官能基(c)の平均個数Xが、下記式(3);
0<X≦10  (3)
の関係を満たす、[1]に記載の共役ジエン系グラフト重合体。
[3]前記ヘテロ原子がSiである、[1]または[2]に記載の共役ジエン系グラフト重合体。
[4]共役ジエン系グラフト重合体1分子あたりの前記分岐点に直接結合する側鎖(b)の平均本数Wと共役ジエン系グラフト重合体1分子あたりの分岐点の平均個数Yが下記式(4);
 0.5≦(W/Y)  (4)
の関係を満たす、[1]~[3]のいずれかに記載の共役ジエン系グラフト重合体。
That is, the present invention provides the following [1] to [11].
[1] In the main chain (a) composed of a polymer containing a conjugated diene unit,
A side chain (b) consisting of a polymer containing at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units via one heteroatom having a valence of 3 or more, which is a branching point. ) Is a conjugated diene-based graft polymer bonded to it.
The main chain (a) is connected to the branch point either directly or through a connecting chain.
The side chain (b) is directly connected to the branch point.
The heteroatom is at least one selected from the group consisting of Si, Sn, Ge, Pb, P, B, and Al.
At least one functional group (c) selected from the group consisting of an alkoxy group and a hydroxyl group is directly bonded to at least one of the branch points.
The average number X of functional groups (c) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer and the average number Y of branch points per molecule of the conjugated diene-based graft polymer are the following formula (2);
0 <(X / Y) <1 (2)
Satisfy the relationship,
Conjugated diene graft polymer.
[2] The average number X of the functional groups (c) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer is the following formula (3);
0 <X ≦ 10 (3)
The conjugated diene-based graft polymer according to [1], which satisfies the above relationship.
[3] The conjugated diene-based graft polymer according to [1] or [2], wherein the heteroatom is Si.
[4] The average number W of side chains (b) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer and the average number Y of branch points per molecule of the conjugated diene-based graft polymer are expressed by the following formulas (4). 4);
0.5 ≤ (W / Y) (4)
The conjugated diene-based graft polymer according to any one of [1] to [3], which satisfies the above relationship.
[5](A-1)下記式(I)で表される活性末端重合体(以下、この重合体を活性末端重合体(I)と称する。)と
P-X  (I)
(式(I)中、Pは共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む重合体鎖を示し、Xはアニオン重合の活性末端を示す)、
下記式(II)で示される官能基を含む部分を分岐鎖として有する官能基変性共役ジエン系重合体(以下、この重合体を官能基変性共役ジエン系重合体(F)と称する。)とを反応させて共役ジエン系グラフト重合体を作製する工程
[5] (A-1) An active terminal polymer represented by the following formula (I) (hereinafter, this polymer is referred to as an active terminal polymer (I)) and PX (I).
(In formula (I), P represents a polymer chain containing at least one monomeric unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units, and X represents the active end of anionic polymerization).
A functional group-modified conjugated diene-based polymer having a portion containing a functional group represented by the following formula (II) as a branched chain (hereinafter, this polymer is referred to as a functional group-modified conjugated diene-based polymer (F)). Step of reacting to prepare a conjugated diene-based graft polymer
Figure JPOXMLDOC01-appb-C000002
(式(II)中、Vは、アルコキシ基または水酸基を示し、ZはSi、Sn、Ge、Pb、P、B、またはAlであり、R1は炭素数6~12のアリール基、炭素数1~12のアルキル基、または水素原子を示し、Nは前記Zの価数を示し、nは下記式(5)を満たす整数であり
1≦n≦N-1  (5)
nが2以上の場合、Vは同一でも異なっていてもよく、N-nが2以上の場合、R1は同一でも異なっていてもよく、分岐鎖が主鎖に対し、複数含まれる場合には、Zは同一でも異なっていてもよい。);および
(B)得られた共役ジエン系グラフト重合体を回収する工程;
を含む、[1]に記載の共役ジエン系グラフト重合体の製造方法。
[6]さらに、工程(B)の前において、
(A-2)前記共役ジエン系グラフト重合体中のアルコキシ基および水酸基からなる群より選ばれる少なくとも1つの残存する官能基の一部を不活性化する工程;
を含む、[5]に記載の共役ジエン系グラフト重合体の製造方法。
[7]前記式(II)中のZがSiである、[5]または[6]に記載の共役ジエン系グラフト重合体の製造方法。
[8]前記式(II)中の官能基Vがアルコキシ基である、[5]~[7]のいずれかに記載の共役ジエン系グラフト重合体の製造方法。
[9][5]~[8]のいずれか1項に記載の製造方法により得られる、[1]~[4]のいずれかに記載の共役ジエン系グラフト重合体。
[10][1]~[4]および[9]のいずれかに記載の共役ジエン系グラフト重合体を含有する、重合体組成物。
[11][10]に記載の重合体組成物を成形してなる成形品。
Figure JPOXMLDOC01-appb-C000002
(In formula (II), V represents an alkoxy group or a hydroxyl group, Z is Si, Sn, Ge, Pb, P, B, or Al, and R 1 is an aryl group having 6 to 12 carbon atoms and a carbon number of carbons. It represents an alkyl group of 1 to 12 or a hydrogen atom, N represents the valence of Z, n is an integer satisfying the following formula (5), and 1 ≦ n ≦ N-1 (5).
When n is 2 or more, V may be the same or different, and when Nn is 2 or more, R 1 may be the same or different, and when a plurality of branched chains are contained in the main chain. Z may be the same or different. ); And (B) Step of recovering the obtained conjugated diene-based graft polymer;
The method for producing a conjugated diene-based graft polymer according to [1], which comprises.
[6] Further, before the step (B),
(A-2) A step of inactivating a part of at least one remaining functional group selected from the group consisting of an alkoxy group and a hydroxyl group in the conjugated diene-based graft polymer;
The method for producing a conjugated diene-based graft polymer according to [5], which comprises.
[7] The method for producing a conjugated diene-based graft polymer according to [5] or [6], wherein Z in the formula (II) is Si.
[8] The method for producing a conjugated diene-based graft polymer according to any one of [5] to [7], wherein the functional group V in the formula (II) is an alkoxy group.
[9] The conjugated diene-based graft polymer according to any one of [1] to [4], which is obtained by the production method according to any one of [5] to [8].
[10] A polymer composition containing the conjugated diene-based graft polymer according to any one of [1] to [4] and [9].
[11] A molded product obtained by molding the polymer composition according to [10].
 本発明によれば、極性材料との親和性に優れるとともに、高い安定性を有する共役ジエン系グラフト重合体、およびその製造方法を提供される。 According to the present invention, a conjugated diene-based graft polymer having excellent affinity with a polar material and having high stability, and a method for producing the same are provided.
 以下、本発明を詳細に説明する。
 本発明の共役ジエン系グラフト重合体は、
共役ジエン単位を含む重合体からなる主鎖(a)に、
分岐点である価数が3以上のヘテロ原子1つを介して、共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む重合体からなる側鎖(b)が結合した共役ジエン系グラフト重合体であり、
前記主鎖(a)は、直接または連結鎖を通じて分岐点と結合し、
前記側鎖(b)は直接分岐点に結合しており、
前記ヘテロ原子がSi、Sn、Ge、Pb、P、B、およびAlからなる群より選ばれる少なくとも1つであり、
前記分岐点の少なくとも1つには、アルコキシ基および水酸基からなる群より選ばれる少なくとも1つの官能基(c)が直接結合しており、
共役ジエン系グラフト重合体1分子あたりの前記分岐点に直接結合する官能基(c)の平均個数Xと共役ジエン系グラフト重合体1分子あたりの分岐点の平均個数Yが下記式(2);
0<(X/Y)<1  (2)
の関係を満たす。
 なお、本発明でグラフト重合体とは、高分子鎖からなる主鎖を幹、高分子鎖からなる側鎖を枝、として有する重合体をいい、主鎖となる高分子鎖を構成する単量体単位と、側鎖となる高分子鎖を構成する単量体単位とは、同一でも異なっていてもよい。
Hereinafter, the present invention will be described in detail.
The conjugated diene-based graft polymer of the present invention is
In the main chain (a) composed of a polymer containing a conjugated diene unit,
A side chain (b) consisting of a polymer containing at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units via one heteroatom having a valence of 3 or more, which is a branching point. ) Is a conjugated diene-based graft polymer bonded to it.
The main chain (a) is connected to the branch point either directly or through a connecting chain.
The side chain (b) is directly connected to the branch point.
The heteroatom is at least one selected from the group consisting of Si, Sn, Ge, Pb, P, B, and Al.
At least one functional group (c) selected from the group consisting of an alkoxy group and a hydroxyl group is directly bonded to at least one of the branch points.
The average number X of functional groups (c) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer and the average number Y of branch points per molecule of the conjugated diene-based graft polymer are the following formula (2);
0 <(X / Y) <1 (2)
Satisfy the relationship.
In the present invention, the graft polymer means a polymer having a main chain composed of a polymer chain as a trunk and a side chain composed of a polymer chain as a branch, and is a single amount constituting the polymer chain serving as the main chain. The body unit and the monomer unit constituting the polymer chain to be the side chain may be the same or different.
 <主鎖(a)>
 本発明の共役ジエン系グラフト重合体は、共役ジエン単位を含む重合体からなる主鎖(a)を有する。なお、本発明の共役ジエン系グラフト重合体に含まれる主鎖とは、主鎖を構成する共役ジエン単位を含む全単量体単位に由来する部分全体を指す。例えば、本発明の製造方法により共役ジエン系グラフト重合体を製造する場合には、その製造に使用する官能基変性共役ジエン系重合体(F)の前駆体である未変性の共役ジエン系重合体(F')に由来する部分全体を指す。例えば、その未変性の共役ジエン系重合体(F')にビニル結合をしたブタジエン単位が含まれる場合、重合体骨格(-(C-C)n-)中の炭素原子に接合する-CH=CH2部分(変性する化合物が付加した場合には、-CH-CH2-となる部分)までを含めて主鎖という。
<Main chain (a)>
The conjugated diene-based graft polymer of the present invention has a main chain (a) composed of a polymer containing a conjugated diene unit. The main chain contained in the conjugated diene-based graft polymer of the present invention refers to the entire portion derived from all the monomer units including the conjugated diene unit constituting the main chain. For example, when a conjugated diene-based graft polymer is produced by the production method of the present invention, an unmodified conjugated diene-based polymer which is a precursor of the functional group-modified conjugated diene-based polymer (F) used in the production thereof. Refers to the entire part derived from (F'). For example, when the unmodified conjugated diene-based polymer (F') contains a vinyl-bonded butadiene unit, it is bonded to a carbon atom in the polymer skeleton (-(CC) n-)-CH = It is called the main chain including the CH 2 portion (the portion that becomes -CH-CH 2 -when a modifying compound is added).
 主鎖(a)は、その重合体鎖骨格中に、共役ジエン、芳香族ビニル化合物などのビニル単量体に由来するビニル単量体単位以外のユニット(例えば、カップリング剤の残渣に由来するSi原子やN原子を有するユニット)を含まないことが好ましい。主鎖骨格中に前記ビニル単量体単位以外のユニットが含まれると、後述する分岐点であるヘテロ原子と炭素の結合が切断されるような条件下、又はせん断や熱によって主鎖骨格が開裂するため、物性が低下しやすい傾向にある。なお、主鎖となる重合体鎖末端には、単量体単位以外の基を有していてもよい。 The main chain (a) is derived from a unit other than a vinyl monomer unit derived from a vinyl monomer such as a conjugated diene or an aromatic vinyl compound (for example, a residue of a coupling agent) in the polymer chain skeleton. It is preferable not to contain a unit having a Si atom or an N atom). When a unit other than the vinyl monomer unit is contained in the main chain skeleton, the main chain skeleton is cleaved under conditions where the bond between the hetero atom and carbon, which is a branching point described later, is broken, or by shearing or heat. Therefore, the physical properties tend to deteriorate. The polymer chain terminal, which is the main chain, may have a group other than the monomer unit.
 主鎖(a)は、その重合体を構成する単量体単位として共役ジエン単位を含む。共役ジエンとしては、例えば、ブタジエン、イソプレン;2,3-ジメチルブタジエン、2-フェニルブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロヘキサジエン、2-メチル-1,3-オクタジエン、1,3,7-オクタトリエン、ミルセン、ファルネセン、およびクロロプレン等のブタジエンおよびイソプレン以外の共役ジエンが挙げられる。これら共役ジエンの中でも、ブタジエンおよびイソプレンが好ましく、ブタジエンがより好ましい。上記共役ジエン単位となる共役ジエンは1種単独で用いられても、2種以上併用されてもよい。 The main chain (a) contains a conjugated diene unit as a monomer unit constituting the polymer. Examples of the conjugated diene include butadiene and isoprene; 2,3-dimethylbutadiene, 2-phenylbutadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, and 1,3-octadien. , 1,3-Cyclohexadiene, 2-methyl-1,3-octadene, 1,3,7-octatriene, myrsen, farnesene, and conjugated diene other than butadiene and isoprene such as chloroprene. Among these conjugated diene, butadiene and isoprene are preferable, and butadiene is more preferable. The conjugated diene as the conjugated diene unit may be used alone or in combination of two or more.
 主鎖(a)は、その重合体を構成する全単量体単位のうち、50質量%以上がブタジエンおよびイソプレンからなる群より選ばれる少なくとも1つの単量体単位であることが好ましい一態様である。ブタジエン単位およびイソプレン単位の合計含有量は、主鎖(a)の全単量体単位に対して60~100質量%であることが好ましく、70~100質量%であることがより好ましい。 In one embodiment, the main chain (a) is preferably at least one monomer unit selected from the group consisting of butadiene and isoprene in an amount of 50% by mass or more of all the monomer units constituting the polymer. is there. The total content of the butadiene unit and the isoprene unit is preferably 60 to 100% by mass, more preferably 70 to 100% by mass, based on all the monomer units of the main chain (a).
 主鎖(a)に含まれ得るブタジエン単位およびイソプレン単位以外の他の単量体単位としては、前述したブタジエンおよびイソプレン以外の共役ジエン単位、芳香族ビニル化合物単位などが挙げられる。 Examples of the monomer unit other than the butadiene unit and the isoprene unit that can be contained in the main chain (a) include the above-mentioned conjugated diene unit other than butadiene and isoprene, and an aromatic vinyl compound unit.
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、2,4,6-トリメチルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレン、ビニルアントラセン、N,N-ジエチル-4-アミノエチルスチレン、ビニルピリジン、4-メトキシスチレン、モノクロロスチレン、ジクロロスチレン、およびジビニルベンゼンなどが挙げられる。これら芳香族ビニル化合物の中でも、スチレン、α-メチルスチレン、および4-メチルスチレンが好ましい。上記芳香族ビニル化合物単位となる芳香族ビニル化合物は1種単独で用いられても、2種以上併用されてもよい。 Examples of the aromatic vinyl compound include styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 4-t-butylstyrene, 4-cyclohexylstyrene, 4-. Dodecylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, 2- Examples thereof include vinylnaphthalene, vinylanthracene, N, N-diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene, and divinylbenzene. Among these aromatic vinyl compounds, styrene, α-methylstyrene, and 4-methylstyrene are preferable. The aromatic vinyl compound which is the unit of the aromatic vinyl compound may be used alone or in combination of two or more.
 主鎖(a)における、ブタジエン単位およびイソプレン単位以外の他の単量体単位の含有量は、50質量%以下であることが好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。例えば、芳香族ビニル化合物単位が上記範囲以下であると、得られる共役ジエン系グラフト重合体の加工性が向上する傾向にある。また、本発明の製造方法により共役ジエン系グラフト重合体を製造する場合には、未変性共役ジエン系重合体(F')を官能基により変性する際に、反応性が向上する傾向にある。 The content of the monomer unit other than the butadiene unit and the isoprene unit in the main chain (a) is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less. .. For example, when the aromatic vinyl compound unit is not more than the above range, the processability of the obtained conjugated diene-based graft polymer tends to be improved. Further, when the conjugated diene-based graft polymer is produced by the production method of the present invention, the reactivity tends to be improved when the unmodified conjugated diene-based polymer (F') is modified with a functional group.
 主鎖(a)の重量平均分子量(Mw)は1,000以上1,000,000以下であることが好ましい一態様であり、2,000以上500,000以下がより好ましく、3,000以上100,000以下がさらに好ましい。本発明において主鎖(a)のMwは、例えば、本発明の製造方法により共役ジエン系グラフト重合体を製造する場合には、後述する主鎖の構成要素となる官能基変性共役ジエン系重合体(F)、または未変性共役ジエン系重合体(F')のMwである。上記主鎖(a)のMwが前記範囲内であると、製造時の工程通過性に優れ、経済性が良好となる傾向にある。なお、本発明において、特に断りがない限り、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)の測定から求めた標準ポリスチレン換算の重量平均分子量である。 The weight average molecular weight (Mw) of the main chain (a) is preferably 1,000 or more and 1,000,000 or less, more preferably 2,000 or more and 500,000 or less, and 3,000 or more and 100. More preferably, it is 000 or less. In the present invention, the Mw of the main chain (a) is, for example, a functional group-modified conjugated diene polymer which is a component of the main chain described later when a conjugated diene-based graft polymer is produced by the production method of the present invention. (F), or Mw of the unmodified conjugated diene polymer (F'). When the Mw of the main chain (a) is within the above range, the process passability during manufacturing tends to be excellent and the economic efficiency tends to be good. In the present invention, unless otherwise specified, Mw is a standard polystyrene-equivalent weight average molecular weight obtained from gel permeation chromatography (GPC) measurements.
 主鎖(a)のビニル含量は特に制限されないが、90モル%以下であることが好ましい一態様であり、80モル%以下がより好ましく、70モル%以下がさらに好ましい。主鎖(a)のビニル含量は、0.5モル%以上が好ましく、1モル%以上がより好ましい。本発明において、「ビニル含量」とは、重合体に含まれる、共役ジエン単位の合計100モル%中、1,2-結合、3,4-結合(ファルネセン以外の場合)、及び3,13-結合(ファルネセンの場合)で結合をしている共役ジエン単位(1,4-結合(ファルネセン以外の場合)及び1,13-結合(ファルネセンの場合)以外で結合をしている共役ジエン単位)の合計モル%を意味する。ビニル含量は、1H-NMRを用いて1,2-結合、3,4-結合(ファルネセン以外の場合)、及び3,13-結合(ファルネセンの場合)で結合をしている共役ジエン単位由来のピークと1,4-結合(ファルネセン以外の場合)及び1,13-結合(ファルネセンの場合)で結合をしている共役ジエン単位に由来するピークの面積比から算出する。 The vinyl content of the main chain (a) is not particularly limited, but is preferably 90 mol% or less, more preferably 80 mol% or less, still more preferably 70 mol% or less. The vinyl content of the main chain (a) is preferably 0.5 mol% or more, more preferably 1 mol% or more. In the present invention, the "vinyl content" refers to 1,2-bonds, 3,4-bonds (in the case of other than farnesene), and 3,13- in a total of 100 mol% of conjugated diene units contained in the polymer. Conjugated diene units that are bonded by bonding (in the case of farnesene) (conjugated diene units that are bonded by other than 1,4-bonding (in the case of non-farnesene) and 1,13-bonding (in the case of farnesene)) Means total mol%. The vinyl content is derived from conjugated diene units that are 1,2-bonded, 3,4-bonded (for non-farnesene), and 3,13-bonded (for farnesene) using 1 H-NMR. It is calculated from the area ratio of the peak derived from the conjugated diene unit that is bonded to the peak of 1,4-bond (in the case of other than farnesene) and 1,13- bond (in the case of farnesene).
 主鎖(a)のビニル含量は目的に応じて設計することが可能であり、例えば、ビニル含量が50モル%未満であると、後述する主鎖(a)のガラス転移温度(Tg)が低くなり、得られる共役ジエン系グラフト重合体の流動性や低温特性が優れる傾向がある。また、50モル%以上であると、得られる共役ジエン系グラフト重合体の反応性に優れる傾向にある。 The vinyl content of the main chain (a) can be designed according to the purpose. For example, when the vinyl content is less than 50 mol%, the glass transition temperature (Tg) of the main chain (a) described later is low. Therefore, the obtained conjugated diene-based graft polymer tends to have excellent fluidity and low temperature characteristics. Further, when it is 50 mol% or more, the reactivity of the obtained conjugated diene-based graft polymer tends to be excellent.
 なお、主鎖(a)のビニル含量は、本発明の製造方法により共役ジエン系グラフト重合体を製造する場合には、例えば、主鎖(a)の構成要素となる未変性共役ジエン系重合体(F')を製造する際に使用する溶媒の種類、必要に応じて使用される極性化合物、重合温度などを制御することにより所望の値とすることができる。 When the conjugated diene-based graft polymer is produced by the production method of the present invention, the vinyl content of the main chain (a) is, for example, an unmodified conjugated diene-based polymer that is a component of the main chain (a). The desired value can be obtained by controlling the type of solvent used in producing (F'), the polar compound used if necessary, the polymerization temperature, and the like.
 主鎖(a)のガラス転移温度(Tg)は、ブタジエン単位、イソプレン単位およびブタジエン単位、イソプレン単位以外の共役ジエン単位のビニル含量、共役ジエン単位の種類、共役ジエン以外の単量体に由来する単位の含量などによって変化し得るが、-150~50℃が好ましく、-130~50℃がより好ましく、-130~30℃がさらに好ましい。Tgが上記範囲であると、例えば、粘度が高くなるのを抑えることができ、取り扱いが容易になる。なお、本発明において、Tgは示差走査熱量測定(DSC)測定により求めた、DDSCのピークトップの値である。 The glass transition temperature (Tg) of the main chain (a) is derived from butadiene units, isoprene units and butadiene units, vinyl content of conjugated diene units other than isoprene units, types of conjugated diene units, and monomers other than conjugated diene. Although it may vary depending on the content of the unit and the like, −150 to 50 ° C. is preferable, −130 to 50 ° C. is more preferable, and −130 to 30 ° C. is further preferable. When Tg is in the above range, for example, it is possible to suppress an increase in viscosity and facilitate handling. In the present invention, Tg is the peak top value of DDSC determined by differential scanning calorimetry (DSC) measurement.
 <側鎖(b)>
 本発明の共役ジエン系グラフト重合体は、共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む重合体からなる側鎖(b)を有する。
<Side chain (b)>
The conjugated diene-based graft polymer of the present invention has a side chain (b) composed of a polymer containing at least one monomer unit selected from the group consisting of a conjugated diene unit and an aromatic vinyl compound unit.
 側鎖(b)は、その重合体を構成する単量体単位として共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む。 The side chain (b) contains at least one monomer unit selected from the group consisting of a conjugated diene unit and an aromatic vinyl compound unit as the monomer unit constituting the polymer.
 側鎖(b)の単量体単位を構成し得る共役ジエンの具体例は、主鎖(a)の単量体単位を構成する共役ジエンの具体例と同一である。側鎖(b)に含まれる共役ジエン単位となる共役ジエンの中では、ブタジエンおよびイソプレンが好ましい。上記共役ジエン単位となる共役ジエンは1種単独で用いられても、2種以上併用されてもよい。 The specific example of the conjugated diene that can form the monomer unit of the side chain (b) is the same as the specific example of the conjugated diene that constitutes the monomer unit of the main chain (a). Among the conjugated diene to be the conjugated diene unit contained in the side chain (b), butadiene and isoprene are preferable. The conjugated diene as the conjugated diene unit may be used alone or in combination of two or more.
 側鎖(b)の単量体単位を構成し得る芳香族ビニル化合物の具体例は、主鎖(a)の単量体単位を構成し得る芳香族ビニル化合物の具体例と同一である。これら芳香族ビニル化合物の中でも、スチレン、α-メチルスチレン、および4-メチルスチレンが好ましい。上記芳香族ビニル化合物単位となる芳香族ビニル化合物は1種単独で用いられても、2種以上併用されてもよい。 The specific example of the aromatic vinyl compound that can form the monomer unit of the side chain (b) is the same as the specific example of the aromatic vinyl compound that can form the monomer unit of the main chain (a). Among these aromatic vinyl compounds, styrene, α-methylstyrene, and 4-methylstyrene are preferable. The aromatic vinyl compound which is the unit of the aromatic vinyl compound may be used alone or in combination of two or more.
 側鎖(b)はその重合体鎖の骨格が、共役ジエン単位1種若しくは芳香族ビニル化合物単位1種のみからなる単独重合体、共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる2種以上の単量体単位からなる共重合体、又は、共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる1種以上の単量体単位と共役ジエンおよび芳香族ビニル化合物以外のビニル単量体の単量体単位との共重合体であってもよい。また、側鎖(b)を構成する重合体は1種単独でもよく、異なる構造を有する2種以上であってもよい。 The side chain (b) is selected from the group in which the skeleton of the polymer chain consists of a homopolymer consisting of only one conjugated diene unit or one aromatic vinyl compound unit, a conjugated diene unit and an aromatic vinyl compound unit2. A copolymer consisting of more than one kind of monomer unit, or one or more monomer units selected from the group consisting of a conjugated diene unit and an aromatic vinyl compound unit, and a vinyl simple substance other than the conjugated diene and an aromatic vinyl compound. It may be a copolymer with a monomer unit of a metric. Further, the polymer constituting the side chain (b) may be one kind alone or two or more kinds having different structures.
 側鎖(b)を構成し得る共役ジエン単位の比率は特に制限されず、目的に応じて設計することが可能であるが、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが特に好ましく、100質量%であってもよい。共役ジエン単位の比率が50質量%以上であると、得られる共役ジエン系グラフト重合体の加工性が向上する傾向にある。 The ratio of the conjugated diene units that can form the side chain (b) is not particularly limited and can be designed according to the purpose, but it is preferably 50% by mass or more, and 60% by mass or more. Is more preferable, and is particularly preferably 70% by mass or more, and may be 100% by mass. When the ratio of the conjugated diene unit is 50% by mass or more, the processability of the obtained conjugated diene-based graft polymer tends to be improved.
 側鎖(b)を構成し得る芳香族ビニル化合物単位の比率は特に制限されず、目的に応じて設計することが可能であるが、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが特に好ましく、100質量%であってもよい。芳香族ビニル化合物単位の比率が50質量%以上であると、得られる共役ジエン系グラフト重合体の力学特性が向上する傾向にある。 The ratio of the aromatic vinyl compound unit that can form the side chain (b) is not particularly limited and can be designed according to the purpose, but it is preferably 50% by mass or more, and 60% by mass or more. It is more preferable, and it is particularly preferable that it is 70% by mass or more, and it may be 100% by mass. When the ratio of the aromatic vinyl compound unit is 50% by mass or more, the mechanical properties of the obtained conjugated diene-based graft polymer tend to be improved.
 側鎖(b)は、その重合体鎖骨格中に、共役ジエン、芳香族ビニル化合物などのビニル単量体に由来するビニル単量体単位以外のユニット(例えば、カップリング剤の残渣に由来するSi原子やN原子を有するユニット)を含まないことが好ましい。側鎖(b)の重合体鎖骨格中に前記ビニル単量体以外のユニットが含まれると、後述する分岐点であるヘテロ原子と炭素の結合が切断されるような条件下、またはせん断や熱によって側鎖(b)の重合体鎖骨格が開裂するため、物性が低下しやすい傾向にある。なお、側鎖となる重合体鎖末端には、単量体単位以外の基を有していてもよい。 The side chain (b) is derived from a unit other than a vinyl monomer unit derived from a vinyl monomer such as a conjugated diene or an aromatic vinyl compound (for example, a residue of a coupling agent) in the polymer chain skeleton. It is preferable not to contain (a unit having a Si atom or an N atom). When a unit other than the vinyl monomer is contained in the polymer chain skeleton of the side chain (b), the bond between the hetero atom and carbon, which is a branching point described later, is broken, or shear or heat. Since the polymer chain skeleton of the side chain (b) is cleaved by this, the physical properties tend to deteriorate. The end of the polymer chain to be the side chain may have a group other than the monomer unit.
 側鎖(b)の重量平均分子量(Mw)は1,000以上1,00,000以下であることが好ましい一態様であり、2,000以上80,000以下がより好ましく、3,000以上50,000以下がさらに好ましい。本発明において側鎖(b)のMwは、例えば、本発明の製造方法により共役ジエン系グラフト重合体を製造する場合には、後述する側鎖の構成要素となる活性末端重合体(I)のMwである。上記側鎖(b)のMwが前記範囲内であると、製造時の工程通過性に優れ、経済性が良好となる傾向にある。 The weight average molecular weight (Mw) of the side chain (b) is preferably 1,000 or more and 100,000 or less, more preferably 2,000 or more and 80,000 or less, and 3,000 or more and 50 or less. More preferably, it is 000 or less. In the present invention, the Mw of the side chain (b) is, for example, the active terminal polymer (I) which is a component of the side chain described later when a conjugated diene-based graft polymer is produced by the production method of the present invention. It is Mw. When the Mw of the side chain (b) is within the above range, the process passability during manufacturing tends to be excellent and the economic efficiency tends to be good.
 側鎖(b)のビニル含量は特に制限されないが、90モル%以下であることが好ましい一態様であり、80モル%以下がより好ましく、70モル%以下がさらに好ましい。側鎖(b)のビニル含量は、0.5モル%以上が好ましく、1モル%以上がより好ましい。側鎖(b)のビニル含量は、例えば、本発明の製造方法により共役ジエン系グラフト重合体を製造する場合には、後述する側鎖の構成要素となる活性末端重合体(I)の1H-NMRスペクトルにより、主鎖(a)の場合と同様にして算出する。 The vinyl content of the side chain (b) is not particularly limited, but is preferably 90 mol% or less, more preferably 80 mol% or less, still more preferably 70 mol% or less. The vinyl content of the side chain (b) is preferably 0.5 mol% or more, more preferably 1 mol% or more. The vinyl content of the side chain (b) is, for example, 1 H of the active terminal polymer (I) which is a component of the side chain, which will be described later, when a conjugated diene-based graft polymer is produced by the production method of the present invention. -Calculated from the NMR spectrum in the same manner as in the case of the main chain (a).
 側鎖(b)のビニル含量は目的に応じて設計することが可能であり、例えば、ビニル含量が50モル%未満であると、後述する側鎖(b)のガラス転移温度(Tg)が低くなり、得られる共役ジエン系グラフト重合体の流動性や低温特性が優れる傾向がある。また、50モル%以上であると、得られる共役ジエン系グラフト重合体の反応性に優れる傾向にある。 The vinyl content of the side chain (b) can be designed according to the purpose. For example, when the vinyl content is less than 50 mol%, the glass transition temperature (Tg) of the side chain (b) described later is low. Therefore, the obtained conjugated diene-based graft polymer tends to have excellent fluidity and low temperature characteristics. Further, when it is 50 mol% or more, the reactivity of the obtained conjugated diene-based graft polymer tends to be excellent.
 なお、側鎖(b)のビニル含量は、本発明の製造方法により共役ジエン系グラフト重合体を製造する場合には、例えば、側鎖(b)の構成要素となる活性末端重合体(I)を製造する際に使用する溶媒の種類、必要に応じて使用される極性化合物、重合温度などを制御することにより所望の値とすることができる。 The vinyl content of the side chain (b) is, for example, the active terminal polymer (I) which is a component of the side chain (b) when the conjugated diene-based graft polymer is produced by the production method of the present invention. The desired value can be obtained by controlling the type of solvent used in producing the above, the polar compound used as necessary, the polymerization temperature, and the like.
 側鎖(b)のガラス転移温度(Tg)は、共役ジエン単位のビニル含量、共役ジエン単位の種類、共役ジエン以外の単量体に由来する単位の含量などによって変化し得るが、-150~50℃が好ましく、-130~50℃がより好ましく、-130~30℃がさらに好ましい。Tgが上記範囲であると、例えば、粘度が高くなるのを抑えることができ取り扱いが容易になる。 The glass transition temperature (Tg) of the side chain (b) may vary depending on the vinyl content of the conjugated diene unit, the type of the conjugated diene unit, the content of units derived from a monomer other than the conjugated diene, etc., but is -150 to 50 ° C. is preferable, −130 to 50 ° C. is more preferable, and −130 to 30 ° C. is further preferable. When Tg is in the above range, for example, it is possible to suppress an increase in viscosity and facilitate handling.
 <共役ジエン系グラフト重合体>
 本発明の共役ジエン系グラフト重合体は、主鎖(a)に、分岐点である価数が3以上のヘテロ原子1つを介して、側鎖(b)が結合しており、前記分岐点の少なくとも1つには、アルコキシ基および水酸基からなる群より選ばれる少なくとも1つの官能基(c)が結合した共役ジエン系グラフト重合体である。
<Conjugated diene graft polymer>
In the conjugated diene-based graft polymer of the present invention, the side chain (b) is bonded to the main chain (a) via one heteroatom having a valence of 3 or more, which is the branch point. At least one of the above is a conjugated diene-based graft polymer to which at least one functional group (c) selected from the group consisting of an alkoxy group and a hydroxyl group is bonded.
 前記主鎖(a)は、直接または連結鎖を通じて分岐点と結合し、前記側鎖(b)は直接分岐点に結合し、前記官能基(c)は直接分岐点に結合している。ここで直接分岐点に結合とは、主鎖を構成する単量体単位に由来する部分に、分岐点が直接結合していることを意味する。連結鎖を通じて分岐点と結合とは、主鎖を構成する単量体単位に由来する部分に、連結鎖となる一方の末端が結合し、その連結鎖の他方の末端に、分岐点が直接結合していることを意味する。例えば、1,2-結合をしたブタジエン単位に分岐点が結合する場合、下記式(III-1)で示される場合が、主鎖に直接分岐点と結合している場合であり、下記式(III-2)で示される場合が、主鎖に連結鎖を通じて分岐点と結合している場合である。 The main chain (a) is bonded to the branch point directly or through a connecting chain, the side chain (b) is directly bonded to the branch point, and the functional group (c) is directly bonded to the branch point. Here, the term "bonded directly to the branch point" means that the branch point is directly bonded to the portion derived from the monomer unit constituting the main chain. A branch point and a bond through a connecting chain means that one end of the connecting chain is bonded to a portion derived from a monomer unit constituting the main chain, and the branch point is directly bonded to the other end of the connecting chain. It means that you are doing it. For example, when a branch point is bonded to a 1,2-bonded butadiene unit, the case represented by the following formula (III-1) is a case where the branch point is directly bonded to the main chain, and the following formula ( The case shown in III-2) is the case where the main chain is connected to the branch point through the connecting chain.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(III-1)および(III-2)中、Z0は分岐点となるヘテロ原子であり、R2aは連結鎖である。R2aは2価の有機基であるが、ヘテロ原子を有していてもよいアルキレン基が好ましい。 In the above formulas (III-1) and (III-2), Z 0 is a heteroatom serving as a branch point, and R 2a is a connecting chain. Although R 2a is a divalent organic group, an alkylene group which may have a hetero atom is preferable.
 前記主鎖(a)と分岐点との結合形態を含む主鎖からの分岐部分を化学式で示すと、下記式(III-3)のように主鎖(a)に直接分岐点が結合した形態を含む分岐部分、下記式(III-4)のように連結鎖を通じて分岐点と結合している形態を含む分岐部分がある。これらの分岐部分の中でも、式(III-4)のように連結鎖を通じて分岐点と結合している形態を含む分岐構造が望ましい。 When the branch portion from the main chain including the bond form between the main chain (a) and the branch point is represented by a chemical formula, the form in which the branch point is directly bonded to the main chain (a) as shown in the following formula (III-3). There is a branch portion including, and a branch portion including a form connected to the branch point through a connecting chain as shown in the following formula (III-4). Among these branching portions, a branching structure including a form in which the branch point is connected to the branch point through a connecting chain as shown in the formula (III-4) is desirable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(III-3)および(III-4)において、波線部分は主鎖(a)、Vは官能基(c)、Z1は分岐点、Pは側鎖(b)、R2bは連結鎖である。 In the above formulas (III-3) and (III-4), the wavy line portion is the main chain (a), V is the functional group (c), Z 1 is the branch point, P is the side chain (b), and R 2b is connected. It is a chain.
 式(III-3)および(III-4)中、Vはアルコキシ基または水酸基を示し、Z1はSi、Sn、Ge、Pb、P、B、またはAlであり、R2bはヘテロ原子を有していてもよい炭素数1~12のアルキレン基を示し、R3は炭素数6~12のアリール基、炭素数1~12のアルキル基、または水素原子を示し、Pは共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む重合体鎖を示す。Nは前記Zの価数を示し、mおよびnは各々独立して下記式(6)を満たす整数であり;
0≦m≦N-1,  0≦n≦N-1 (6)
mが2以上の場合、Pは同一でも異なっていてもよく、nが2以上の場合、Vは同一でも異なっていてもよく、N-m-nが2以上の場合、R3は同一でも異なっていてもよく、分岐点が主鎖に対し、複数含まれる場合には、Z1は同一でも異なっていてもよい。ただし、本発明の共役ジエン系グラフト重合体には、上記式(2)の関係を満たしながら、V(官能基(c))およびP(側鎖(b))が含まれる必要がある。また、本発明の共役ジエン系グラフト重合体では、主鎖1本に対して1本以上の側鎖があればよいため、側鎖が結合していないZ1(mが0であるZ1)が含まれ得るが、その場合もZ1を分岐点と定義する。
In formulas (III-3) and (III-4), V represents an alkoxy group or a hydroxyl group, Z 1 is Si, Sn, Ge, Pb, P, B, or Al, and R 2b has a heteroatom. Indicates an alkylene group having 1 to 12 carbon atoms which may be used, R 3 indicates an aryl group having 6 to 12 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or a hydrogen atom, and P indicates a conjugated diene unit and an aromatic group. A polymer chain containing at least one monomer unit selected from the group consisting of group vinyl compound units is shown. N represents the valence of Z, and m and n are integers that independently satisfy the following equation (6);
0 ≦ m ≦ N-1, 0 ≦ n ≦ N-1 (6)
When m is 2 or more, P may be the same or different, when n is 2 or more, V may be the same or different, and when N-mn is 2 or more, R 3 may be the same. It may be different, and Z 1 may be the same or different when a plurality of branch points are included in the main chain. However, the conjugated diene-based graft polymer of the present invention needs to contain V (functional group (c)) and P (side chain (b)) while satisfying the relationship of the above formula (2). Further, in the conjugated diene-based graft polymer of the present invention, the main chain 1 for it if there is one or more side chains with respect to this, (Z 1 m is 0) Z 1 in which the side chain is not bound Can be included, but Z 1 is also defined as a branch point.
 上記分岐点はヘテロ原子1つからなり、そのヘテロ原子は価数が3以上のヘテロ原子である。分岐点となる価数が3以上のヘテロ原子は、Si、Sn、Ge、Pb、P、B、およびAlからなる群より選ばれる少なくとも1つである。これらヘテロ原子の中でも、Si、Snが好ましく、Siがより好ましい。 The above branch point consists of one heteroatom, and the heteroatom is a heteroatom having a valence of 3 or more. The heteroatom having a valence of 3 or more as a branching point is at least one selected from the group consisting of Si, Sn, Ge, Pb, P, B, and Al. Among these heteroatoms, Si and Sn are preferable, and Si is more preferable.
 上記基Vとなる官能基(c)はアルコキシ基および水酸基からなる群より選ばれる少なくとも1つである。アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基などが挙げられる。上記官能基(c)の中では、極性材料との親和性の観点から、メトキシ基、エトキシ基、および水酸基が好ましい。官能基(c)は1種単独の基であってもよく、2種以上の複数の基であってもよい。 The functional group (c) serving as the group V is at least one selected from the group consisting of an alkoxy group and a hydroxyl group. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group and the like. Among the functional groups (c), a methoxy group, an ethoxy group, and a hydroxyl group are preferable from the viewpoint of affinity with a polar material. The functional group (c) may be a single group of one type or a plurality of groups of two or more types.
 上記式(III-3)および(III-4)中のR3は炭素数6~12のアリール基、炭素数1~12のアルキル基、または水素原子を示す。これらR3の中でも、炭素数1~6のアルキル基が好ましく、n-ブチル基、sec-ブチル基、n-プロピル基、イソプロピル基、エチル基、メチル基がより好ましい。R3は1種単独の基であってもよく、2種以上の複数の基であってもよい。 R 3 in the above formulas (III-3) and (III-4) represents an aryl group having 6 to 12 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or a hydrogen atom. Among these R 3 , alkyl groups having 1 to 6 carbon atoms are preferable, and n-butyl groups, sec-butyl groups, n-propyl groups, isopropyl groups, ethyl groups, and methyl groups are more preferable. R 3 may be a single group of one type or a plurality of groups of two or more types.
 R2bとなり得るヘテロ原子を有する炭素数1~12のアルキレン基としては、Sを有する炭素数1~12のアルキレン基が好ましく、SR2b'(R2b'は炭素数1~12のアルキレン基を示す)がより好ましい。 As the alkylene group having 1 to 12 carbon atoms having a hetero atom capable of becoming R 2b , an alkylene group having 1 to 12 carbon atoms having S is preferable, and SR 2b' (R 2b'is an alkylene group having 1 to 12 carbon atoms. Shown) is more preferable.
 本発明の共役ジエン系グラフト重合体では、そのグラフト重合体に含まれる分岐点であるヘテロ原子に着目した場合、そのヘテロ原子の価数をNとし、1つの分岐点に対して直接結合する側鎖(b)の平均本数をB、1つの分岐点に結合する前記官能基(c)の平均個数をCとした場合に、下記式(1)の関係を満たしていることになる。この条件を満たすことで、分岐点は、直接または連結鎖を通じて、主鎖(a)に結合し、本発明の共役ジエン系グラフト重合体には、少なくとも側鎖(b)と官能基(c)が含まれることになる。
N-1≧B+C, B>0, C>0  (1)
In the conjugated diene-based graft polymer of the present invention, when focusing on a hetero atom which is a branch point contained in the graft polymer, the valence of the hetero atom is N, and the side directly bonded to one branch point. When the average number of chains (b) is B and the average number of the functional groups (c) bonded to one branch point is C, the relationship of the following formula (1) is satisfied. By satisfying this condition, the branch point is bonded to the main chain (a) directly or through the connecting chain, and the conjugated diene-based graft polymer of the present invention has at least the side chain (b) and the functional group (c). Will be included.
N-1 ≧ B + C, B> 0, C> 0 (1)
 本発明の共役ジエン系グラフト重合体は、共役ジエン系グラフト重合体1分子あたりの上記分岐点に直接結合する官能基(c)の平均個数Xと共役ジエン系グラフト重合体1分子あたりの分岐点の平均個数Yが下記式(2)の関係を満たす。
 0<(X/Y)<1  (2)
 上記(X/Y)が0であると、共役ジエン系グラフト重合体は極性材料との親和性に劣る傾向があり、上記(X/Y)が1以上であると、共役ジエン系グラフト重合体の安定性が低下する傾向がある。
The conjugated diene-based graft polymer of the present invention has an average number X of functional groups (c) directly bonded to the above-mentioned branch point per molecule of the conjugated diene-based graft polymer and a branch point per molecule of the conjugated diene-based graft polymer. The average number Y of the above satisfies the relationship of the following equation (2).
0 <(X / Y) <1 (2)
When the above (X / Y) is 0, the conjugated diene-based graft polymer tends to be inferior in affinity with the polar material, and when the above (X / Y) is 1 or more, the conjugated diene-based graft polymer tends to be inferior. Tends to be less stable.
 極性材料との親和性および安定性により優れる観点からは、上記(X/Y)は0.01以上0.99以下の範囲であることが好ましく、0.01以上0.9以下の範囲であることがより好ましく、0.01以上0.5以下の範囲であることが特に好ましい。本発明において、(X/Y)(共役ジエン系グラフト重合体に含まれる分岐点1つあたりの官能基(c)の平均個数)は、例えば、ZがSiの場合には、共役ジエン系グラフト重合体の29Si-NMRを測定した結果から求める。具体的には、官能基(c)が1個結合しているSi、官能基(c)が2個結合しているSiなどの積分値に官能基の個数を乗じたものを合計し、積分値の単純合計と比較することにより算出する。ZがSi以外のヘテロ原子の場合も同様にして共役ジエン系グラフト重合体1分子あたりの該ヘテロ原子の平均個数を求めることができる。 From the viewpoint of being more excellent in affinity and stability with polar materials, the above (X / Y) is preferably in the range of 0.01 or more and 0.99 or less, and preferably in the range of 0.01 or more and 0.9 or less. It is more preferable, and it is particularly preferable that the range is 0.01 or more and 0.5 or less. In the present invention, (X / Y) (average number of functional groups (c) per branch point contained in the conjugated diene graft polymer) is, for example, when Z is Si, the conjugated diene graft. Obtained from the results of measuring 29 Si-NMR of the polymer. Specifically, the integral value obtained by multiplying the integrated value of Si having one functional group (c) bonded and Si having two functional groups (c) bonded by the number of functional groups is added up and integrated. Calculated by comparing with a simple sum of values. When Z is a heteroatom other than Si, the average number of the heteroatoms per molecule of the conjugated diene-based graft polymer can be obtained in the same manner.
 また、共役ジエン系グラフト重合体1分子あたりの分岐点の平均個数Yは、誘導結合プラズマ質量分析装置(ICP-MS)により測定した共役ジエン系グラフト重合体中の特定のヘテロ原子(Si、Sn、Ge、Pb、P、B、およびAl)の含量(質量%)と標準ポリスチレン換算の数平均分子量(Mn)を用いて下記式(8)より求める。
(共役ジエン系グラフト重合体1分子あたりの分岐点の平均個数Y)=[(ヘテロ原子の含量(質量%))/100]×[(数平均分子量Mn)/(スチレン単位の分子量)×(共役ジエンおよび必要に応じて含まれる共役ジエン以外の他の単量体単位の平均分子量)]/(ヘテロ原子の原子量)  (8)
Further, the average number Y of branch points per molecule of the conjugated diene graft polymer is a specific hetero atom (Si, Sn) in the conjugated diene graft polymer measured by an inductively coupled plasma mass spectrometer (ICP-MS). , Ge, Pb, P, B, and Al) and the number average molecular weight (Mn) converted to standard polystyrene are used to obtain from the following formula (8).
(Average number of bifurcation points per molecule of conjugated diene graft polymer Y) = [(heteroatom content (mass%)) / 100] × [(number average molecular weight Mn) / (molecular weight in styrene unit) × ( Conjugated diene and, if necessary, average molecular weight of other monomeric units other than conjugated diene)] / (Atomic weight of heteroatom) (8)
 本発明の共役ジエン系グラフト重合体は、共役ジエン系グラフト重合体1分子あたりの上記分岐点に直接結合する官能基(c)の平均個数Xが、下記式(3)の関係を満たすことが好ましい。
 0<X≦10  (3)
 官能基(c)の平均個数Xは、後述する方法により算出される。上記Xが0であると、共役ジエン系グラフト重合体は極性材料との親和性に劣る傾向があり、上記Xが10を超えると、共役ジエン系グラフト重合体の安定性が低下する傾向がある。
In the conjugated diene-based graft polymer of the present invention, the average number X of functional groups (c) directly bonded to the above-mentioned branch point per molecule of the conjugated diene-based graft polymer satisfies the relationship of the following formula (3). preferable.
0 <X ≦ 10 (3)
The average number X of the functional groups (c) is calculated by the method described later. When the X is 0, the conjugated diene-based graft polymer tends to have inferior affinity with the polar material, and when the X exceeds 10, the stability of the conjugated diene-based graft polymer tends to decrease. ..
 極性材料との親和性および安定性により優れる観点からは、Xは0.01以上9.9以下の範囲であることが好ましく、0.02以上9以下の範囲であることがより好ましく、0.05以上5以下の範囲であることが特に好ましい。本発明において、共役ジエン系グラフト重合体1分子あたりの上記分岐点に直接結合する官能基(c)の平均個数Xは、上記共役ジエン系グラフト重合体に含まれる分岐点1つあたりの官能基(c)の平均個数(X/Y)と上記共役ジエン系グラフト重合体1分子あたりの分岐点の平均個数Yを用いて求める。 From the viewpoint of being more excellent in affinity and stability with polar materials, X is preferably in the range of 0.01 or more and 9.9 or less, more preferably 0.02 or more and 9 or less, and 0. It is particularly preferable that the range is 05 or more and 5 or less. In the present invention, the average number X of the functional groups (c) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer is the functional group per branch point contained in the conjugated diene-based graft polymer. It is determined by using the average number (X / Y) of (c) and the average number Y of branching points per molecule of the conjugated diene-based graft polymer.
 なお、上記分岐点に直接結合する側鎖(b)の本数および官能基(c)の個数は、本発明の製造方法により共役ジエン系グラフト重合体を製造する場合には、例えば、後述する工程(A-1)における活性末端重合体(I)と官能基変性共役ジエン系重合体(F)の仕込み量のモル比や、後述する工程(A-2)におけるアルコキシ基および水酸基からなる群より選ばれる少なくとも1つの残存する官能基(未反応で存在する官能基V)の一部を不活性化するために使用する試薬の使用量や反応時間、および必要に応じて使用される極性化合物の種類や添加量により、所望の範囲に調整することができる。 The number of side chains (b) and the number of functional groups (c) directly bonded to the branch point are determined by, for example, the steps described later when the conjugated diene-based graft polymer is produced by the production method of the present invention. From the molar ratio of the charged amount of the active terminal polymer (I) and the functional group-modified conjugated diene polymer (F) in (A-1), and the group consisting of alkoxy groups and hydroxyl groups in the step (A-2) described later. The amount and reaction time of the reagent used to inactivate some of the at least one remaining functional group selected (unreacted functional group V), and of the polar compounds used as needed. It can be adjusted to a desired range depending on the type and the amount of addition.
 共役ジエン系グラフト重合体の安定性は、例えば常温、常圧下で長期間保存した際の外観変化や不溶分(ゲル化物)の生成により評価できる。また、共役ジエン系グラフト重合体を加熱、減圧して、アルコキシシリル基またはシラノール基の縮合反応を促進させる条件にて評価することも可能である。 The stability of the conjugated diene-based graft polymer can be evaluated, for example, by the appearance change and the formation of insoluble matter (gelled product) when stored for a long period of time at normal temperature and pressure. It is also possible to evaluate the conjugated diene-based graft polymer under conditions that promote the condensation reaction of the alkoxysilyl group or silanol group by heating and reducing the pressure.
 極性材料との親和性は、例えば、ガラス基材上に共役ジエン系グラフト重合体、または共役ジエン系グラフト重合体組成物を塗布し、一定時間加熱することにより硬化した後に、剥離強度の測定や碁盤目試験等を実施することにより評価できる。また、アルコキシシリル基またはシラノール基の縮合反応性により、ガラスやシリカなどの極性材料との反応性、および親和性を評価することができる。共役ジエン系グラフト重合体を含む溶液を、酸性または塩基性条件下で振盪した際、縮合反応性が高い場合には不溶分(ゲル化物)が生成するため、その有無でガラスやシリカなどの極性材料との反応性を評価することができる。 Affinity with polar materials can be determined by, for example, measuring the peel strength after applying a conjugated diene-based graft polymer or a conjugated diene-based graft polymer composition on a glass substrate and heating it for a certain period of time to cure it. It can be evaluated by conducting a grid test or the like. In addition, the reactivity and affinity with polar materials such as glass and silica can be evaluated by the condensation reactivity of the alkoxysilyl group or silanol group. When a solution containing a conjugated diene-based graft polymer is shaken under acidic or basic conditions, insoluble matter (gelled product) is generated when the condensation reactivity is high. The reactivity with the material can be evaluated.
 本発明の共役ジエン系グラフト重合体は、共役ジエン系グラフト重合体1分子あたりの上記分岐点に直接結合する側鎖(b)の平均本数をW、共役ジエン系グラフト重合体1分子あたりの分岐点の平均個数をYとしたとき、(W/Y)が下記式(4)の関係を満たすことが好ましい。
 0.5≦(W/Y)  (4)
In the conjugated diene-based graft polymer of the present invention, the average number of side chains (b) directly bonded to the above-mentioned branch point per molecule of the conjugated diene-based graft polymer is W, and the number of branches per molecule of the conjugated diene-based graft polymer is W. When the average number of points is Y, it is preferable that (W / Y) satisfies the relationship of the following equation (4).
0.5 ≤ (W / Y) (4)
 上記(W/Y)は、0.6以上(0.6≦(W/Y))がより好ましく、0.8以上(0.8≦(W/Y))がさらに好ましい。本発明において、共役ジエン系グラフト重合体1分子あたりの上記分岐点に直接結合する側鎖(b)の平均本数Wは、本発明の製造方法により共役ジエン系グラフト重合体を製造する場合には、下記工程(A-1)における、共役ジエン系グラフト重合体の側鎖(b)となる活性末端重合体(I)の活性末端あたりの仕込み量(モル数)と官能基変性共役ジエン系重合体(F)の仕込み量(モル数)を用いて下記式(9)より求める。
(共役ジエン系グラフト重合体1分子あたりの上記分岐点に直接結合する側鎖(b)の平均本数W)=(側鎖(b)となる活性末端重合体(I)の活性末端あたりの仕込み量(モル数))/(官能基変性共役ジエン系重合体(F)の仕込み量(モル数))  (9)
The above (W / Y) is more preferably 0.6 or more (0.6 ≦ (W / Y)), and further preferably 0.8 or more (0.8 ≦ (W / Y)). In the present invention, the average number W of side chains (b) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer is the case where the conjugated diene-based graft polymer is produced by the production method of the present invention. , The amount (number of moles) of the active terminal polymer (I) to be the side chain (b) of the conjugated diene-based graft polymer per active terminal and the weight of the functional group-modified conjugated diene system in the following step (A-1). It is calculated from the following formula (9) using the charge amount (number of moles) of the coalescence (F).
(Average number W of side chains (b) directly bonded to the above-mentioned branch point per molecule of conjugated diene-based graft polymer) = (Preparation per active end of active terminal polymer (I) having side chain (b)) Amount (number of moles)) / (Amount of functional group-modified conjugated diene polymer (F) charged (number of moles)) (9)
 また、共役ジエン系グラフト重合体1分子あたりの分岐点の平均個数Yは、上述した方法により算出される。上記(W/Y)が0.5未満であると、共役ジエン系グラフト重合体の流動性が低下し、加工性と力学特性のバランスに劣る傾向がある。 Further, the average number Y of branch points per molecule of the conjugated diene-based graft polymer is calculated by the method described above. If the above (W / Y) is less than 0.5, the fluidity of the conjugated diene-based graft polymer is lowered, and the balance between processability and mechanical properties tends to be poor.
 共役ジエン系グラフト重合体の分岐の度合いは、共役ジエン系グラフト重合体の絶対法による重量平均分子量(Mw)に対して、その回転半径(R)を両対数プロットしたときの傾き(αs)、または共役ジエン系グラフト重合体の絶対法による重量平均分子量(Mw)に対して、その固有粘度(η)を両対数プロットしたときの傾き(αη)から判断することができる。通常の直鎖状重合体のランダムコイル鎖は、αs、αηのいずれも0.6~0.8程度の値を示し、0.6未満であると分岐鎖の存在が示唆される。本発明の共役ジエン系グラフト重合体のαsまたはαηの値は、0.6未満であることが好ましく、0.55以下であることがより好ましく、0.50以下であることがさらに好ましい。なお、共役ジエン系グラフト重合体の絶対法による重量平均分子量(Mw)と回転半径(R)または固有粘度(η)の両対数プロットは、例えばSEC-MALS-VISCO法により取得することができる。SEC-MALS-VISCO法は、分子サイズ(流体力学的体積)の違いにより高分子鎖の分離を行う液体クロマトグラフィー(SEC)の一種であり、示差屈折率計(RI)、多角光散乱検出器(MALS)、粘度検出器(VISCO)を組み合わせることで、SECでサイズ分別された高分子溶液の分子量ごとの回転半径、固有粘度を算出できる。本発明の共役ジエン系グラフト重合体のαsまたはαηの値が上記の範囲であると、共役ジエン系グラフト重合体の流動性が向上し、加工性と力学特性のバランスに優れる傾向にある。 The degree of branching of the conjugated diene-based graft polymer is the slope (α s ) when the radius of gyration (R) is plotted in both logarithmic ratios with respect to the weight average molecular weight (Mw) of the conjugated diene-based graft polymer by the absolute method. , Or the intrinsic viscosity (η) of the conjugated diene-based graft polymer obtained by the absolute method can be determined from the slope (αη) when both logarithmic plots are made. The random coil chain of a normal linear polymer shows a value of about 0.6 to 0.8 for both α s and α η, and if it is less than 0.6, the existence of a branched chain is suggested. The value of α s or α η of the conjugated diene-based graft polymer of the present invention is preferably less than 0.6, more preferably 0.55 or less, and further preferably 0.50 or less. The log-log plot of the weight average molecular weight (Mw) and the radius of gyration (R) or the intrinsic viscosity (η) by the absolute method of the conjugated diene-based graft polymer can be obtained by, for example, the SEC-MALS-VISCO method. The SEC-MALS-VISCO method is a type of liquid chromatography (SEC) that separates polymer chains according to the difference in molecular size (hydrodynamic volume), and is a differential refractometer (RI) and a polygonal light scattering detector. By combining (MALS) and a viscosity detector (VISCO), the radius of gyration and intrinsic viscosity of each molecular weight of the polymer solution size-sorted by SEC can be calculated. When the value of α s or α η of the conjugated diene-based graft polymer of the present invention is in the above range, the fluidity of the conjugated diene-based graft polymer is improved, and the balance between processability and mechanical properties tends to be excellent.
 本発明の共役ジエン系グラフト重合体は、共役ジエン系グラフト重合体1分子あたりの上記分岐点に直接結合する側鎖(b)の平均本数Wが1以上であることが好ましく、2以上であることがより好ましく、3以上であることがさらに好ましい。上記側鎖(b)の平均本数Wは、上述した方法により算出される。上記側鎖(b)の平均本数Wが1未満であると、共役ジエン系グラフト重合体の流動性が低下し、加工性と力学特性のバランスに劣る傾向がある。 In the conjugated diene-based graft polymer of the present invention, the average number W of side chains (b) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer is preferably 1 or more, and preferably 2 or more. More preferably, it is more preferably 3 or more. The average number W of the side chains (b) is calculated by the method described above. If the average number W of the side chains (b) is less than 1, the fluidity of the conjugated diene-based graft polymer tends to decrease, and the balance between processability and mechanical properties tends to be poor.
 なお、上記側鎖(b)の平均本数Wは、本発明の製造方法により共役ジエン系グラフト重合体を製造する場合には、例えば、後述する工程(A-1)における活性末端重合体(I)と官能基変性共役ジエン系重合体(F)の仕込み量の比により、所望の範囲に調整することができる。例えば、(活性末端重合体(I)の仕込み量(モル数))/(官能基変性共役ジエン系重合体(F)の仕込み量(モル数))=4/1の場合、側鎖(b)の平均本数Wは4本となる。ただし、Wの上限は、官能基変性共役ジエン系重合体(F)1分子あたりが有する官能基Vの個数である。 When the conjugated diene-based graft polymer is produced by the production method of the present invention, the average number W of the side chains (b) is, for example, the active terminal polymer (I) in the step (A-1) described later. ) And the amount of the functional group-modified conjugated diene polymer (F) charged can be adjusted to a desired range. For example, when (amount of active terminal polymer (I) charged (number of moles)) / (amount of functional group-modified conjugated diene polymer (F) charged (number of moles)) = 4/1, the side chain (b) ) Has an average number of W of 4. However, the upper limit of W is the number of functional groups V per molecule of the functional group-modified conjugated diene polymer (F).
 共役ジエン系グラフト重合体に含まれる主鎖(a)となる重合体と側鎖(b)となる重合体の組合せは特に制限されず、同一でも異なっていてもよく、目的に応じて設計することが可能である。主鎖(a)となる重合体と側鎖(b)となる重合体が異なるとは、以下(i)~(iv)からなる群より選ばれる少なくとも1つが異なることを意味する。
(i)主鎖(a)となる重合体の分子量が、側鎖(b)となる重合体の分子量と異なる。
(ii)主鎖(a)となる重合体の単量体単位の種類または種類の組み合わせが、側鎖(b)となる重合体の単量体単位の種類または種類の組み合わせと異なる。
(iii)主鎖(a)および側鎖(b)が、それぞれ複数の同一種の単量体単位を含んでいる場合、主鎖(a)となる重合体の単量体単位組成比が側鎖(b)となる重合体の単量体単位組成比と異なる。
(iv)主鎖(a)および側鎖(b)が、それぞれ共役ジエン単位を含んでいる場合、主鎖(a)となる重合体の共役ジエン単位のビニル含量が、側鎖(b)となる重合体の共役ジエン単位のビニル含量と異なる。
The combination of the polymer that becomes the main chain (a) and the polymer that becomes the side chain (b) contained in the conjugated diene-based graft polymer is not particularly limited and may be the same or different, and is designed according to the purpose. It is possible. The difference between the polymer serving as the main chain (a) and the polymer serving as the side chain (b) means that at least one selected from the group consisting of the following (i) to (iv) is different.
(I) The molecular weight of the polymer that becomes the main chain (a) is different from the molecular weight of the polymer that becomes the side chain (b).
(Ii) The type or combination of the monomer units of the polymer serving as the main chain (a) is different from the type or combination of the monomer units of the polymer serving as the side chain (b).
(Iii) When the main chain (a) and the side chain (b) each contain a plurality of monomer units of the same type, the monomer unit composition ratio of the polymer to be the main chain (a) is on the side. It is different from the monomer unit composition ratio of the polymer to be the chain (b).
(Iv) When the main chain (a) and the side chain (b) each contain a conjugated diene unit, the vinyl content of the conjugated diene unit of the polymer to be the main chain (a) is the same as that of the side chain (b). It differs from the vinyl content of the conjugated diene unit of the polymer.
 本発明の共役ジエン系グラフト重合体は、その重合体を構成する全単量体単位のうち、50質量%以上がブタジエンおよびイソプレンからなる群より選ばれる少なくとも1つの単量体単位であることが好ましい一態様である。ブタジエン単位およびイソプレン単位の合計含有量は、共役ジエン系グラフト重合体の全単量体単位に対して60~100質量%であることがより好ましく、70~100質量%であることがさらに好ましい。 The conjugated diene-based graft polymer of the present invention may be at least one monomer unit selected from the group consisting of butadiene and isoprene in an amount of 50% by mass or more among all the monomer units constituting the polymer. This is a preferred embodiment. The total content of the butadiene unit and the isoprene unit is more preferably 60 to 100% by mass and further preferably 70 to 100% by mass with respect to all the monomer units of the conjugated diene-based graft polymer.
 本発明の共役ジエン系グラフト重合体における、ブタジエン単位およびイソプレン単位以外の他の単量体単位の含有量は、50質量%以下であることが好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。例えば、芳香族ビニル化合物単位が上記範囲以下であると、本発明の共役ジエン系グラフト重合体の加工性が向上する傾向にある。 The content of monomer units other than the butadiene unit and the isoprene unit in the conjugated diene-based graft polymer of the present invention is preferably 50% by mass or less, more preferably 40% by mass or less, and 30% by mass. The following is more preferable. For example, when the aromatic vinyl compound unit is not more than the above range, the processability of the conjugated diene-based graft polymer of the present invention tends to be improved.
 本発明の共役ジエン系グラフト重合体の重量平均分子量(Mw)は5,000以上1,000,000以下であることが好ましい一態様であり、30,000以上1,000,000以下が好ましく、100,000超1,000,000以下がより好ましい。共役ジエン系グラフト重合体のMwが前記範囲内であると、製造時の工程通過性に優れ、経済性が良好となる傾向にある。また、共役ジエン系グラフト重合体を含む重合体組成物の加工性が向上する傾向にある。 The weight average molecular weight (Mw) of the conjugated diene-based graft polymer of the present invention is preferably 5,000 or more and 1,000,000 or less, preferably 30,000 or more and 1,000,000 or less. More preferably, it is more than 100,000 and less than 1,000,000. When the Mw of the conjugated diene-based graft polymer is within the above range, the process passability during production tends to be excellent and the economic efficiency tends to be good. Further, the processability of the polymer composition containing the conjugated diene-based graft polymer tends to be improved.
 本発明の共役ジエン系グラフト重合体の分子量分布(Mw/Mn)は1.0~20.0が好ましく、1.0~10.0がより好ましく、1.0~5.0がさらに好ましく、1.0~2.0が特に好ましい。Mw/Mnが前記範囲内であると、共役ジエン系グラフト重合体の粘度のばらつきが小さく、より好ましい。なお、本発明において、Mnは数平均分子量を意味し、MnはGPCの測定から求めた標準ポリスチレン換算の数平均分子量である。また、分子量分布(Mw/Mn)は、GPCの測定により求めた標準ポリスチレン換算の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)を意味する。 The molecular weight distribution (Mw / Mn) of the conjugated diene-based graft polymer of the present invention is preferably 1.0 to 20.0, more preferably 1.0 to 10.0, still more preferably 1.0 to 5.0. 1.0 to 2.0 is particularly preferable. When Mw / Mn is within the above range, the variation in viscosity of the conjugated diene-based graft polymer is small, which is more preferable. In the present invention, Mn means a number average molecular weight, and Mn is a standard polystyrene-equivalent number average molecular weight obtained from GPC measurement. The molecular weight distribution (Mw / Mn) means the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) in terms of standard polystyrene obtained by GPC measurement.
 本発明の共役ジエン系グラフト重合体の38℃で測定した溶融粘度は、0.1~2,000Pa・sが好ましく、0.1~1500Pa・sがより好ましく、0.1~1000Pa・sがさらに好ましい。共役ジエン系グラフト重合体の溶融粘度が前記範囲内であると、製造時の工程通過性に優れ、経済性が良好となる傾向にある。なお、本発明において共役ジエン系グラフト重合体の溶融粘度は、38℃においてブルックフィールド型粘度計により測定した値である。 The melt viscosity of the conjugated diene-based graft polymer of the present invention measured at 38 ° C. is preferably 0.1 to 2,000 Pa · s, more preferably 0.1 to 1500 Pa · s, and 0.1 to 1000 Pa · s. More preferred. When the melt viscosity of the conjugated diene-based graft polymer is within the above range, the process passability during production tends to be excellent and the economic efficiency tends to be good. In the present invention, the melt viscosity of the conjugated diene-based graft polymer is a value measured by a Brookfield viscometer at 38 ° C.
 本発明の共役ジエン系グラフト重合体のビニル含量は特に制限されないが、90モル%以下であることが好ましい一態様であり、80モル%以下がより好ましく、70モル%以下がさらに好ましい。共役ジエン系グラフト重合体のビニル含量は、0.5モル%以上が好ましく、1モル%以上がより好ましい。 The vinyl content of the conjugated diene-based graft polymer of the present invention is not particularly limited, but is preferably 90 mol% or less, more preferably 80 mol% or less, still more preferably 70 mol% or less. The vinyl content of the conjugated diene-based graft polymer is preferably 0.5 mol% or more, more preferably 1 mol% or more.
 共役ジエン系グラフト重合体のビニル含量は目的に応じて設計することが可能であり、例えば、ビニル含量が50モル%未満であると、後述する共役ジエン系グラフト重合体のガラス転移温度(Tg)が低くなり、共役ジエン系グラフト重合体の流動性や低温特性が優れる傾向がある。また、50モル%以上であると、共役ジエン系グラフト重合体の反応性に優れる傾向にある。 The vinyl content of the conjugated diene-based graft polymer can be designed according to the purpose. For example, when the vinyl content is less than 50 mol%, the glass transition temperature (Tg) of the conjugated diene-based graft polymer described later. Tends to be low, and the fluidity and low temperature characteristics of the conjugated diene-based graft polymer tend to be excellent. Further, when it is 50 mol% or more, the reactivity of the conjugated diene-based graft polymer tends to be excellent.
 共役ジエン系グラフト重合体のガラス転移温度(Tg)は、ブタジエン単位、イソプレン単位およびブタジエン単位、イソプレン単位以外の共役ジエン単位のビニル含量、共役ジエン単位の種類、共役ジエン以外の単量体に由来する単位の含量などによって変化し得るが、-150~50℃が好ましく、-130~50℃がより好ましく、-130~30℃がさらに好ましい。Tgが上記範囲であると、例えば、粘度が高くなるのを抑えることができ、取り扱いが容易になる。 The glass transition temperature (Tg) of the conjugated diene-based graft polymer is derived from butadiene unit, isoprene unit and butadiene unit, vinyl content of conjugated diene unit other than isoprene unit, type of conjugated diene unit, and monomer other than conjugated diene. Although it may vary depending on the content of the unit to be used, it is preferably −150 to 50 ° C., more preferably −130 to 50 ° C., and even more preferably −130 to 30 ° C. When Tg is in the above range, for example, it is possible to suppress an increase in viscosity and facilitate handling.
 本発明の共役ジエン系グラフト重合体における主鎖と側鎖の質量比は、10/90~90/10の範囲が好ましく、15/85~80/20の範囲がより好ましく、20/80~70/30の範囲がさらに好ましい。主鎖と側鎖の質量比が上記範囲であると、共役ジエン系グラフト重合体を含む重合体組成物の加工性が向上する傾向にある。 The mass ratio of the main chain to the side chain in the conjugated diene-based graft polymer of the present invention is preferably in the range of 10/90 to 90/10, more preferably in the range of 15/85 to 80/20, and 20/80 to 70. A range of / 30 is even more preferred. When the mass ratio of the main chain to the side chain is in the above range, the processability of the polymer composition containing the conjugated diene-based graft polymer tends to be improved.
 本発明の共役ジエン系グラフト重合体は、その製造に用いる重合触媒に由来する触媒残渣量が、金属換算で0~200ppmの範囲にあることが好ましい。例えば、共役ジエン系グラフト重合体を製造するための重合触媒として、後述するような有機リチウム化合物等の有機アルカリ金属を用いた場合には、触媒残渣量の基準となる金属は、リチウム等のアルカリ金属になる。触媒残渣量が上記範囲にあることにより、加工等する際にタックが低下せず、また本発明の共役ジエン系グラフト重合体の耐熱性が向上する。共役ジエン系グラフト重合体の製造に用いる重合触媒に由来する触媒残渣量としては、金属換算で、より好ましくは0~150ppm、さらに好ましくは0~100ppmである。なお、触媒残渣量は、例えば誘導結合プラズマ質量分析装置(ICP-MS)や偏光ゼーマン原子吸光分光光度計を用いることにより測定できる。 The conjugated diene-based graft polymer of the present invention preferably has a catalyst residue amount derived from the polymerization catalyst used for its production in the range of 0 to 200 ppm in terms of metal. For example, when an organic alkali metal such as an organic lithium compound described later is used as a polymerization catalyst for producing a conjugated diene-based graft polymer, the metal that serves as a reference for the amount of catalyst residue is an alkali such as lithium. Become metal. When the amount of the catalyst residue is in the above range, the tack does not decrease during processing and the like, and the heat resistance of the conjugated diene-based graft polymer of the present invention is improved. The amount of catalyst residue derived from the polymerization catalyst used in the production of the conjugated diene-based graft polymer is more preferably 0 to 150 ppm, still more preferably 0 to 100 ppm in terms of metal. The amount of catalyst residue can be measured by using, for example, an inductively coupled plasma mass spectrometer (ICP-MS) or a polarized Zeeman atomic absorption spectrophotometer.
 共役ジエン系グラフト重合体の触媒残渣量をこのような特定の量とする方法としては、共役ジエン系グラフト重合体を精製し、触媒残渣を十分に除去する方法などが挙げられる。精製する方法としては、水若しくは温水、またはメタノール、アセトンなどに代表される有機溶媒若しくは超臨界流体二酸化炭素による洗浄が好ましい。洗浄回数としては、経済的な観点から1~20回が好ましく、1~10回がより好ましい。また、洗浄温度としては、20~100℃が好ましく、40~90℃がより好ましい。また重合反応前に、重合の阻害を行うような不純物を蒸留や吸着剤により除去し、単量体の純度を高めた後に重合を行うことによっても、必要な重合触媒量が少なくてすむため、触媒残渣量を低減することができる。 Examples of the method for setting the amount of the catalyst residue of the conjugated diene-based graft polymer to such a specific amount include a method of purifying the conjugated diene-based graft polymer and sufficiently removing the catalyst residue. As a method for purification, washing with water or warm water, an organic solvent typified by methanol, acetone, or supercritical fluid carbon dioxide is preferable. From an economical point of view, the number of washings is preferably 1 to 20 times, more preferably 1 to 10 times. The cleaning temperature is preferably 20 to 100 ° C, more preferably 40 to 90 ° C. In addition, the amount of polymerization catalyst required can be reduced by removing impurities that inhibit polymerization by distillation or an adsorbent before the polymerization reaction to increase the purity of the monomer and then performing polymerization. The amount of catalyst residue can be reduced.
 本発明の共役ジエン系グラフト重合体は、ハロゲン含有量が0~1,000ppmであることが好ましい。例えば、共役ジエン系グラフト重合体を製造するための官能基変性共役ジエン系重合体(F)として、シリルクロリド変性共役ジエン系重合体を用いた場合には、基準となるハロゲンは塩素となる。ハロゲン含有量が上記範囲にあることにより、透明性、耐熱性、耐候性が良好となる傾向がある。共役ジエン系グラフト重合体のハロゲン含有量としては、より好ましくは0~500ppm、さらに好ましくは0~100ppmである。なお、ハロゲン含有量は、例えば燃焼イオンクロマトグラフィーを用いることにより測定できる。 The conjugated diene-based graft polymer of the present invention preferably has a halogen content of 0 to 1,000 ppm. For example, when a silyl chloride-modified conjugated diene-based polymer is used as the functional group-modified conjugated diene-based polymer (F) for producing a conjugated diene-based graft polymer, the reference halogen is chlorine. When the halogen content is in the above range, transparency, heat resistance, and weather resistance tend to be good. The halogen content of the conjugated diene-based graft polymer is more preferably 0 to 500 ppm, still more preferably 0 to 100 ppm. The halogen content can be measured by using, for example, combustion ion chromatography.
 共役ジエン系グラフト重合体のハロゲン含有量をこのような特定の量とする方法としては、共役ジエン系グラフト重合体を製造するための原料である官能基変性共役ジエン系重合体(F)として、副生成物としてハロゲン化物が生成しないアルコキシシラン変性共役ジエン系重合体を用いる方法が挙げられる。 As a method for setting the halogen content of the conjugated diene-based graft polymer to such a specific amount, a functional group-modified conjugated diene-based polymer (F), which is a raw material for producing the conjugated diene-based graft polymer, is used. As a by-product, a method using an alkoxysilane-modified conjugated diene-based polymer that does not produce a halide can be mentioned.
 <共役ジエン系グラフト重合体の製造方法>
 本発明の共役ジエン系グラフト重合体の製造方法は特に制限されず、例えば、マクロモノマー(側鎖の構成単位となる単量体を重合した重合体の活性末端に、重合性官能基を有する化合物を反応させて得られるマクロモノマー)と主鎖の構成単位となる単量体とを重合する方法、テトラメチルエチレンジアミン存在下であらかじめ合成した主鎖を構成する重合体と有機アルカリ金属化合物とを反応させることで主鎖をリチオ化した後に、側鎖の構成単位となる単量体を重合する方法、主鎖の構成要素となる2つの活性末端を有する重合体と側鎖の構成要素となる1つの活性末端を有する重合体の混合物を調製し、この混合物に3以上の反応性部位を有するカップリング剤を加えて反応させる方法、あらかじめ合成した主鎖の構成要素となる重合体を官能基で変性し、該官能基変性重合体と側鎖の構成単位となる単量体を重合した重合体の活性末端とを反応させる方法などが挙げられる。これらの製造方法の中でも、共役ジエン系グラフト重合体の主鎖、および側鎖の重量平均分子量やビニル含量、側鎖の本数などを自由に制御できること、また、所望の官能基を簡便に導入できることから、上記主鎖の構成要素となる官能基変性重合体と側鎖の構成単位となる単量体を重合した重合体の活性末端とを反応させる方法が好ましい。
<Manufacturing method of conjugated diene-based graft polymer>
The method for producing the conjugated diene-based graft polymer of the present invention is not particularly limited, and for example, a macromonomer (a compound having a polymerizable functional group at the active end of a polymer obtained by polymerizing a monomer as a constituent unit of a side chain). A method of polymerizing a macromonomer obtained by reacting) with a monomer that is a constituent unit of the main chain, and reacting a polymer that constitutes the main chain synthesized in advance in the presence of tetramethylethylenediamine with an organic alkali metal compound. A method of polymerizing a monomer that is a constituent unit of a side chain after the main chain is lithiated by allowing the polymer to form a polymer having two active terminals that are constituents of the main chain and a polymer that is a constituent of the side chain. A method of preparing a mixture of polymers having two active terminals, adding a coupling agent having three or more reactive sites to the mixture and reacting the mixture, and using a functional group to prepare a polymer that is a component of a pre-synthesized main chain. Examples thereof include a method of reacting the functional group-modified polymer with the active end of the polymer obtained by polymerizing a monomer as a constituent unit of the side chain. Among these production methods, the weight average molecular weight and vinyl content of the main chain and side chains of the conjugated diene-based graft polymer, the number of side chains, etc. can be freely controlled, and a desired functional group can be easily introduced. Therefore, a method of reacting the functional group-modified polymer, which is a constituent element of the main chain, with the active end of the polymer obtained by polymerizing a monomer, which is a constituent unit of the side chain, is preferable.
 本発明の共役ジエン系グラフト重合体の製造方法としては下記工程(A-1)および工程(B)を含む製造方法が好ましい。 As a method for producing the conjugated diene-based graft polymer of the present invention, a production method including the following steps (A-1) and (B) is preferable.
 (A-1)下記式(I)で表される活性末端重合体(I)と、下記式(II)で示される官能基を含む部分を分岐鎖として有する官能基変性共役ジエン系重合体(F)とを反応させて共役ジエン系グラフト重合体(G)を作製する工程 (A-1) A functional group-modified conjugated diene-based polymer having an active terminal polymer (I) represented by the following formula (I) and a portion containing a functional group represented by the following formula (II) as a branched chain (A-1). Step of reacting with F) to prepare a conjugated diene-based graft polymer (G)
P-X  (I)
(式(I)中、Pは共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む重合体鎖を示し、Xはアニオン重合の活性末端を示す。)
PX (I)
(In formula (I), P represents a polymer chain containing at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units, and X represents the active end of anionic polymerization).
Figure JPOXMLDOC01-appb-C000005
(式(II)中、Vは、アルコキシ基または水酸基を示し、ZはSi、Sn、Ge、Pb、P、B、またはAlであり、R1は炭素数6~12のアリール基、炭素数1~12のアルキル基、または水素原子を示し、Nは前記Zの価数を示し、nは下記式(5)を満たす整数であり;
1≦n≦N-1  (5)
nが2以上の場合、Vは同一でも異なっていてもよく、N-nが2以上の場合、R1は同一でも異なっていてもよく、分岐鎖が主鎖に対し、複数含まれる場合には、Zは同一でも異なっていてもよい。);および
(B)得られた共役ジエン系グラフト重合体を回収する工程。
Figure JPOXMLDOC01-appb-C000005
(In formula (II), V represents an alkoxy group or a hydroxyl group, Z is Si, Sn, Ge, Pb, P, B, or Al, and R 1 is an aryl group having 6 to 12 carbon atoms and a carbon number of carbons. It represents an alkyl group of 1 to 12 or a hydrogen atom, N represents the valence of Z, and n is an integer satisfying the following formula (5);
1 ≦ n ≦ N-1 (5)
When n is 2 or more, V may be the same or different, and when Nn is 2 or more, R 1 may be the same or different, and when a plurality of branched chains are contained in the main chain. Z may be the same or different. ); And (B) A step of recovering the obtained conjugated diene-based graft polymer.
 なお、官能基変性共役ジエン系重合体(F)の分岐鎖とは、官能基変性共役ジエン系重合体(F)の主鎖以外の部分を意味し、この主鎖とは、共役ジエン系グラフト重合体における主鎖(a)と同様、主鎖を構成する共役ジエン単位を含む全単量体単位に由来する部分全体を指す。 The branched chain of the functional group-modified conjugated diene-based polymer (F) means a portion other than the main chain of the functional group-modified conjugated diene-based polymer (F), and this main chain is a conjugated diene-based graft. Similar to the main chain (a) in the polymer, it refers to the entire portion derived from all the monomer units including the conjugated diene unit constituting the main chain.
 [工程(A-1)]
 上記工程(A-1)で使用する、活性末端重合体(I)は、公知の重合方法を用いて製造することができる。例えば、重合末端に不活性な溶媒中、アニオン重合可能な活性金属または活性金属化合物を開始剤として、必要に応じて極性化合物の存在下で、単量体をアニオン重合させることにより、活性末端重合体(I)を得ることができる。この活性末端重合体(I)のPが本発明で得られるグラフト重合体の側鎖(b)となる。
[Step (A-1)]
The active terminal polymer (I) used in the above step (A-1) can be produced by using a known polymerization method. For example, the active terminal weight is obtained by anionic polymerization of the monomer in the presence of a polar compound, if necessary, using an anionically polymerizable active metal or active metal compound as an initiator in a solvent inert to the polymerization terminal. Coalescence (I) can be obtained. The P of this active terminal polymer (I) becomes the side chain (b) of the graft polymer obtained in the present invention.
 活性末端重合体(I)を構成する単量体単位となる単量体の具体例、好適態様等の説明、および活性末端重合体(I)に含まれる単量体単位の具体例および好適態様の説明は、共役ジエン系グラフト重合体の側鎖(b)に関する説明と同様である。 Specific examples and preferred embodiments of the monomer that is the monomer unit constituting the active terminal polymer (I), and specific examples and preferred embodiments of the monomer unit contained in the active terminal polymer (I). The description of the above is the same as that of the side chain (b) of the conjugated diene-based graft polymer.
 アニオン重合可能な活性金属または活性金属化合物としては、有機アルカリ金属化合物が好ましく、有機リチウム化合物がより好ましい。上記有機リチウム化合物としては、例えば、メチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ペンチルリチウムなどが挙げられる。 As the anionic polymerizable active metal or active metal compound, an organic alkali metal compound is preferable, and an organic lithium compound is more preferable. Examples of the organic lithium compound include methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, and pentyllithium.
 上記溶媒としては、例えば、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などが挙げられる。 Examples of the solvent include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; benzene. , Aromatic hydrocarbons such as toluene and xylene.
 上記アニオン重合の際には、極性化合物を添加してもよい。極性化合物は、アニオン重合において、通常、反応を失活させず、共役ジエン単位のミクロ構造(ビニル含量)を調整するため用いられる。極性化合物としては、例えば、ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;アルカリ金属アルコキシド、ホスフィン化合物などが挙げられる。極性化合物は、有機アルカリ金属化合物1モルに対して、通常0.01~1000モルの量で使用される。 A polar compound may be added during the above anionic polymerization. Polar compounds are usually used in anionic polymerization to adjust the microstructure (vinyl content) of conjugated diene units without inactivating the reaction. Examples of the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphine compounds. The polar compound is usually used in an amount of 0.01 to 1000 mol per 1 mol of the organic alkali metal compound.
 上記アニオン重合の温度は、通常-80~150℃の範囲、好ましくは0~100℃の範囲、より好ましくは10~90℃の範囲である。重合様式は回分式あるいは連続式のいずれでもよい。 The temperature of the anionic polymerization is usually in the range of −80 to 150 ° C., preferably in the range of 0 to 100 ° C., and more preferably in the range of 10 to 90 ° C. The polymerization mode may be either a batch type or a continuous type.
 上記活性末端重合体(I)のPは、最終的に、本発明の共役ジエン系グラフト重合体の側鎖(b)となる。上記活性末端重合体(I)のPの重量平均分子量(Mw)、ビニル含量、Tgの好適態様等の説明は、本発明のグラフト重合体の側鎖(b)に関するものと同様である。 The P of the active terminal polymer (I) finally becomes the side chain (b) of the conjugated diene-based graft polymer of the present invention. The description of the weight average molecular weight (Mw) of P of the active terminal polymer (I), the vinyl content, the preferred embodiment of Tg, and the like is the same as that for the side chain (b) of the graft polymer of the present invention.
 上記工程(A-1)において、官能基変性共役ジエン系重合体(F)は、例えば、未変性共役ジエン系重合体(F')を後述する変性工程において官能基により変性することで得られる。前記未変性共役ジエン系重合体(F')の製造方法は特に制限されないが、例えば、乳化重合法、溶液重合法が好ましく、得られる重合体の分子量分布の観点から、溶液重合法がより好ましい。官能基変性共役ジエン系重合体(F)の官能基変性されている以外の部分が本発明の共役ジエン系グラフト重合体の主鎖(a)となる。 In the above step (A-1), the functional group-modified conjugated diene-based polymer (F) can be obtained, for example, by modifying the unmodified conjugated diene-based polymer (F') with a functional group in the modification step described later. .. The method for producing the unmodified conjugated diene polymer (F') is not particularly limited, but for example, an emulsion polymerization method and a solution polymerization method are preferable, and a solution polymerization method is more preferable from the viewpoint of the molecular weight distribution of the obtained polymer. .. The portion of the functional group-modified conjugated diene-based polymer (F) other than the functional group-modified portion becomes the main chain (a) of the conjugated diene-based graft polymer of the present invention.
 未変性共役ジエン系重合体(F')を構成する単量体単位となる共役ジエンの具体例、好適例、およびその好適含有量、ならびに、共役ジエン以外の他の単量体(芳香族ビニル化合物)の具体例、好適例、好適含有量等の説明は、共役ジエン系グラフト重合体の主鎖(a)に関する説明と同様である。また、未変性共役ジエン系重合体(F')の重量平均分子量(Mw)、ビニル含量、Tgの好適態様等の説明は、共役ジエン系グラフト重合体の主鎖(a)に関する説明と同様である。 Specific examples, preferred examples, and suitable contents of conjugated diene, which is a monomer unit constituting the unmodified conjugated diene polymer (F'), and monomers other than conjugated diene (aromatic vinyl). Specific examples, preferred examples, suitable contents and the like of the compound) are the same as those relating to the main chain (a) of the conjugated diene-based graft polymer. Further, the description of the weight average molecular weight (Mw), vinyl content, preferred embodiment of Tg, etc. of the unmodified conjugated diene polymer (F') is the same as the description regarding the main chain (a) of the conjugated diene graft polymer. is there.
 未変性共役ジエン系重合体(F')の製造方法の一例である上記乳化重合法としては、公知または公知に準ずる方法を適用できる。例えば、所定量の共役ジエンを含む単量体を乳化剤の存在下に分散媒中に乳化分散し、ラジカル重合開始剤により乳化重合する。 As the emulsification polymerization method, which is an example of the method for producing an unmodified conjugated diene polymer (F'), a known or known method can be applied. For example, a monomer containing a predetermined amount of conjugated diene is emulsified and dispersed in a dispersion medium in the presence of an emulsifier, and emulsion polymerization is carried out with a radical polymerization initiator.
 乳化剤としては、例えば炭素数10以上の長鎖脂肪酸塩およびロジン酸塩などが挙げられる。長鎖脂肪酸塩としては、例えば、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン酸等の脂肪酸のカリウム塩またはナトリウム塩などが挙げられる。 Examples of the emulsifier include long-chain fatty acid salts having 10 or more carbon atoms and rosin salts. Examples of the long-chain fatty acid salt include potassium salts or sodium salts of fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and stearic acid.
 分散媒としては通常、水が使用される。重合時の安定性が阻害されない範囲で、分散媒はメタノール、エタノールなどの水溶性有機溶媒を含んでいてもよい。 Water is usually used as the dispersion medium. The dispersion medium may contain a water-soluble organic solvent such as methanol or ethanol as long as the stability during polymerization is not impaired.
 ラジカル重合開始剤としては、例えば過硫酸アンモニウムや過硫酸カリウムのような過硫酸塩、有機過酸化物、過酸化水素等が挙げられる。 Examples of the radical polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate, organic peroxides, hydrogen peroxide and the like.
 得られる未変性共役ジエン系重合体(F')の分子量を調整するため、連鎖移動剤を使用してもよい。連鎖移動剤としては、例えば、t-ドデシルメルカプタン、n-ドデシルメルカプタン等のメルカプタン類;四塩化炭素、チオグリコール酸、ジテルペン、ターピノーレン、γ-テルピネン、α-メチルスチレンダイマーなどが挙げられる。 A chain transfer agent may be used to adjust the molecular weight of the obtained unmodified conjugated diene polymer (F'). Examples of the chain transfer agent include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan; carbon tetrachloride, thioglycolic acid, diterpenes, turpinolene, γ-terpinene, α-methylstyrene dimer and the like.
 乳化重合の温度は、使用するラジカル重合開始剤の種類などにより適宜設定できるが、通常0~100℃の範囲、好ましくは0~60℃の範囲である。重合様式は、連続重合、回分重合のいずれでもよい。 The temperature of emulsion polymerization can be appropriately set depending on the type of radical polymerization initiator used, but is usually in the range of 0 to 100 ° C, preferably in the range of 0 to 60 ° C. The polymerization mode may be either continuous polymerization or batch polymerization.
 重合反応は、重合停止剤の添加により停止できる。重合停止剤としては、例えば、イソプロピルヒドロキシルアミン、ジエチルヒドロキシルアミン、ヒドロキシルアミン等のアミン化合物、ヒドロキノンやベンゾキノン等のキノン系化合物、亜硝酸ナトリウム等が挙げられる。 The polymerization reaction can be stopped by adding a polymerization inhibitor. Examples of the polymerization terminator include amine compounds such as isopropylhydroxylamine, diethylhydroxylamine and hydroxylamine, quinone compounds such as hydroquinone and benzoquinone, and sodium nitrite.
 重合反応停止後、必要に応じて老化防止剤を添加してもよい。重合反応停止後、得られたラテックスから必要に応じて未反応単量体を除去し、次いで、塩化ナトリウム、塩化カルシウム、塩化カリウム等の塩を凝固剤とし、必要に応じて硝酸、硫酸等の酸を添加して凝固系のpHを所定の値に調整しながら、上記未変性共役ジエン系重合体(F')を凝固させた後、分散媒を分離することによって重合体を回収する。次いで水洗、および脱水後、乾燥することで、上記未変性共役ジエン系重合体(F')が得られる。なお、凝固の際に、必要に応じて予めラテックスと乳化分散液にした伸展油とを混合し、油展した未変性共役ジエン系重合体(F')として回収してもよい。 After the polymerization reaction is stopped, an anti-aging agent may be added if necessary. After terminating the polymerization reaction, unreacted monomers are removed from the obtained latex as needed, and then salts such as sodium chloride, calcium chloride and potassium chloride are used as coagulants, and nitric acid, sulfuric acid and the like are used as necessary. The unmodified conjugated diene polymer (F') is coagulated while adjusting the pH of the coagulation system to a predetermined value by adding an acid, and then the polymer is recovered by separating the dispersion medium. Then, the unmodified conjugated diene polymer (F') is obtained by washing with water, dehydrating, and then drying. At the time of solidification, if necessary, latex and an emulsified dispersion may be mixed in advance and recovered as an oil-expanded unmodified conjugated diene polymer (F').
 未変性共役ジエン系重合体(F')の製造方法の一例である上記溶液重合法としては、公知または公知に準ずる方法を適用できる。例えば、溶媒中で、チーグラー系触媒、メタロセン系触媒、またはアニオン重合可能な活性金属もしくは活性金属化合物を開始剤として使用して、必要に応じて極性化合物の存在下で、共役ジエンを含む単量体を重合する。 As the above solution polymerization method, which is an example of a method for producing an unmodified conjugated diene polymer (F'), a known or known method can be applied. For example, using a Ziegler-based catalyst, a metallocene-based catalyst, or an anionically polymerizable active metal or active metal compound as an initiator in a solvent, a single amount containing a conjugated diene, optionally in the presence of a polar compound. Polymerize the body.
 溶媒としては、例えば、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などが挙げられる。 Examples of the solvent include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; benzene, Examples include aromatic hydrocarbons such as toluene and xylene.
 上記開始剤としては、アニオン重合可能な活性金属または活性金属化合物が好ましく、アニオン重合可能な活性金属化合物がより好ましい。 As the above-mentioned initiator, an anionic polymerizable active metal or an active metal compound is preferable, and an anionic polymerizable active metal compound is more preferable.
 アニオン重合可能な活性金属としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属;ランタン、ネオジム等のランタノイド系希土類金属等が挙げられる。これらの中でもアルカリ金属およびアルカリ土類金属が好ましく、アルカリ金属がより好ましい。 Examples of anionic polymerizable active metals include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; and lanthanoid rare earth metals such as lanthanum and neodymium. .. Among these, alkali metals and alkaline earth metals are preferable, and alkali metals are more preferable.
 アニオン重合可能な活性金属化合物としては、有機アルカリ金属化合物が好ましい。有機アルカリ金属化合物としては、例えば、メチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム等の有機モノリチウム化合物;ジリチオメタン、ジリチオナフタレン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等の多官能性有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン等が挙げられる。これら有機アルカリ金属化合物の中でも有機リチウム化合物が好ましく、有機モノリチウム化合物がより好ましい。 As the anionic polymerizable active metal compound, an organic alkali metal compound is preferable. Examples of the organic alkali metal compound include organic monolithium compounds such as methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium and stillbenlithium; , 1,4-Dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene and other polyfunctional organic lithium compounds; sodium naphthalene, potassium naphthalene and the like. Among these organic alkali metal compounds, an organic lithium compound is preferable, and an organic monolithium compound is more preferable.
 上記開始剤の使用量は、未変性共役ジエン系重合体(F')および官能基変性共役ジエン系重合体(F)の溶融粘度、分子量などに応じて適宜設定できるが、共役ジエンを含む全単量体100質量部に対して、通常0.01~3質量部の量で使用される。 The amount of the initiator used can be appropriately set according to the melt viscosity, molecular weight, etc. of the unmodified conjugated diene polymer (F') and the functionally modified conjugated diene polymer (F), but the total amount including the conjugated diene is included. It is usually used in an amount of 0.01 to 3 parts by mass with respect to 100 parts by mass of the polymer.
 有機アルカリ金属化合物を開始剤として用いる場合には、上記有機アルカリ金属化合物は、ジブチルアミン、ジヘキシルアミン、ジベンジルアミンなどの第2級アミンと反応させて、有機アルカリ金属アミドとして使用することもできる。 When an organic alkali metal compound is used as an initiator, the organic alkali metal compound can also be used as an organic alkali metal amide by reacting with a secondary amine such as dibutylamine, dihexylamine or dibenzylamine. ..
 極性化合物は、アニオン重合において、通常、反応を失活させず、共役ジエン単位のミクロ構造(ビニル含量)を調整するため用いられる。極性化合物としては、例えば、ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;アルカリ金属アルコキシド、ホスフィン化合物などが挙げられる。極性化合物は、有機アルカリ金属化合物1モルに対して、通常0.01~1000モルの量で使用される。 Polar compounds are usually used in anionic polymerization to adjust the microstructure (vinyl content) of conjugated diene units without inactivating the reaction. Examples of the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphine compounds. The polar compound is usually used in an amount of 0.01 to 1000 mol per 1 mol of the organic alkali metal compound.
 溶液重合の温度は、通常-80~150℃の範囲、好ましくは0~100℃の範囲、より好ましくは10~90℃の範囲である。重合様式は回分式あるいは連続式のいずれでもよい。 The temperature of solution polymerization is usually in the range of −80 to 150 ° C., preferably in the range of 0 to 100 ° C., and more preferably in the range of 10 to 90 ° C. The polymerization mode may be either a batch type or a continuous type.
 上記溶液重合の重合反応は、重合停止剤の添加により停止できる。重合停止剤としては、例えば、メタノール、イソプロパノール等のアルコールが挙げられる。得られた重合反応液をメタノール等の貧溶媒に注いで、未変性共役ジエン系重合体(F')を析出させるか、重合反応液を水で洗浄し、分離後、乾燥することにより上記未変性共役ジエン系重合体(F')を単離できる。 The polymerization reaction of the above solution polymerization can be stopped by adding a polymerization terminator. Examples of the polymerization terminator include alcohols such as methanol and isopropanol. The obtained polymerization reaction solution is poured into a poor solvent such as methanol to precipitate an unmodified conjugated diene polymer (F'), or the polymerization reaction solution is washed with water, separated, and dried. A modified conjugated diene polymer (F') can be isolated.
 上記未変性共役ジエン系重合体(F')を官能基により変性することで、上記式(II)で示される官能基を含む部分を分岐鎖として有する官能基変性共役ジエン系重合体(F)を製造する方法としては特に制限されないが、好ましい構造の官能基を導入する観点から、例えば、未変性共役ジエン系重合体(F')に含まれる炭素-炭素不飽和結合にメルカプト基(-SH)を有する化合物をラジカル付加反応させることにより、アルコキシシラン化合物に由来する官能基を導入する方法、未変性共役ジエン系重合体(F')に含まれる炭素-炭素不飽和結合を白金化合物含有触媒および必要に応じて用いられる助触媒の存在下でヒドロシリル化することで、アルコキシシラン化合物に由来する官能基を導入する方法などが挙げられる。これらの製造方法の中でも、変性試薬、触媒の入手性や、製造コストの観点からは、メルカプト基(-SH)を有する化合物をラジカル付加反応させる方法が好ましく、得られる官能基変性共役ジエン系重合体(F)の安定性の観点からは、ヒドロシリル化によりアルコキシシラン化合物に由来する官能基を導入する方法が好ましい。 By modifying the unmodified conjugated diene-based polymer (F') with a functional group, the functional group-modified conjugated diene-based polymer (F) having a moiety containing a functional group represented by the above formula (II) as a branched chain. The method for producing the above is not particularly limited, but from the viewpoint of introducing a functional group having a preferable structure, for example, a mercapto group (-SH) is added to the carbon-carbon unsaturated bond contained in the unmodified conjugated diene-based polymer (F'). A method of introducing a functional group derived from an alkoxysilane compound by subjecting a compound having () to a radical addition reaction, a carbon-carbon unsaturated bond contained in an unmodified conjugated diene polymer (F') with a platinum compound-containing catalyst. And a method of introducing a functional group derived from an alkoxysilane compound by hydrosilylation in the presence of a co-catalyst used as needed can be mentioned. Among these production methods, from the viewpoint of availability of modification reagents and catalysts and production cost, a method of radical addition reaction of a compound having a mercapto group (-SH) is preferable, and the obtained functional group-modified conjugated diene system weight is preferable. From the viewpoint of the stability of the coalescence (F), a method of introducing a functional group derived from an alkoxysilane compound by hydrosilylation is preferable.
 上記未変性共役ジエン系重合体(F')に含まれる炭素-炭素不飽和結合にメルカプト基(-SH)を有する化合物をラジカル付加反応させることにより、アルコキシシラン化合物に由来する官能基を導入する方法としては、下記式(IV)で示されるシラン化合物(IV)を未変性共役ジエン系重合体(F')に含まれる炭素-炭素不飽和結合にラジカル付加反応する方法が好ましい。 A functional group derived from an alkoxysilane compound is introduced by radically adding a compound having a mercapto group (-SH) to a carbon-carbon unsaturated bond contained in the unmodified conjugated diene-based polymer (F'). As a method, a method of radical addition reaction of the silane compound (IV) represented by the following formula (IV) to the carbon-carbon unsaturated bond contained in the unmodified conjugated diene-based polymer (F') is preferable.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(IV)中、R4は炭素数1~6の2価のアルキレン基を示し、R5、およびR6はそれぞれ独立に炭素数6~12のアリール基、炭素数1~12のアルキル基、または水素原子を示し、nは1~3の整数であり、nが2以上の場合、R5は同一でも異なっていてもよく、3-nが2以上の場合、R6は同一でも異なっていてもよい。) (In formula (IV), R 4 represents a divalent alkylene group having 1 to 6 carbon atoms, and R 5 and R 6 are independently aryl groups having 6 to 12 carbon atoms and alkyl having 1 to 12 carbon atoms, respectively. Indicates a group or hydrogen atom, n is an integer of 1 to 3, and when n is 2 or more, R 5 may be the same or different, and when 3-n is 2 or more, R 6 may be the same. It may be different.)
 上記シラン化合物(IV)としては、例えば、メルカプトメチレンメチルジエトキシシラン、メルカプトメチレントリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルメトキシジメチルシラン、2-メルカプトエチルエトキシジメチルシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルジメトキシメチルシラン、3-メルカプトプロピルジエトキシメチルシラン、3-メルカプトプロピルジメトキシエチルシラン、3-メルカプトプロピルジエトキシエチルシラン、3-メルカプトプロピルメトキシジメチルシラン、3-メルカプトプロピルエトキシジメチルシランなどが挙げられる。これらシラン化合物は1種単独で用いられても、2種以上併用されてもよい。 Examples of the silane compound (IV) include mercaptomethylenemethyldiethoxysilane, mercaptomethylenetriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 2-mercaptoethylmethoxydimethylsilane, and 2-. Mercaptoethylethoxydimethylsilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyldiethoxymethylsilane, 3-mercaptopropyldimethoxyethylsilane, 3-mercapto Examples thereof include propyldiethoxyethylsilane, 3-mercaptopropylmethoxydimethylsilane, and 3-mercaptopropylethoxydimethylsilane. These silane compounds may be used alone or in combination of two or more.
 上記シラン化合物(IV)のメルカプト基(-SH)が、未変性共役ジエン系重合体(F')に含まれる炭素-炭素不飽和結合にラジカル付加反応することにより、シラン化合物(IV)に由来する官能基、具体的には下記式(V)で示される部分構造を官能基として有する官能基変性共役ジエン系重合体(F)が得られる。 The mercapto group (-SH) of the silane compound (IV) is derived from the silane compound (IV) by radical addition reaction to the carbon-carbon unsaturated bond contained in the unmodified conjugated diene polymer (F'). A functional group-modified conjugated diene-based polymer (F) having a functional group to be treated, specifically, a partial structure represented by the following formula (V) as a functional group can be obtained.
Figure JPOXMLDOC01-appb-C000007
(式(V)中、R4、R5、R6、およびnの定義は式(IV)と同一である。)
Figure JPOXMLDOC01-appb-C000007
(In formula (V), the definitions of R 4 , R 5 , R 6 , and n are the same as in formula (IV).)
 上記シラン化合物(IV)を、未変性共役ジエン系重合体(F')に付加させる方法は特に限定されず、例えば、未変性共役ジエン系重合体(F')中にシラン化合物(IV)、さらに必要に応じてラジカル発生剤を加えて、有機溶媒の存在下または非存在下に加熱する方法を採用することができる。使用するラジカル発生剤には特に制限はなく、通常市販されている有機過酸化物、アゾ系化合物、過酸化水素等が使用できる。 The method for adding the silane compound (IV) to the unmodified conjugated diene polymer (F') is not particularly limited, and for example, the silane compound (IV) is added to the unmodified conjugated diene polymer (F'). Further, if necessary, a method of adding a radical generator and heating in the presence or absence of an organic solvent can be adopted. The radical generator to be used is not particularly limited, and commercially available organic peroxides, azo compounds, hydrogen peroxide and the like can be used.
 上記有機過酸化物としては、例えば、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、3,3,5-トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、アセチルアセトンパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、2,5-ジメチルヘキサン2,5-ジハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジt-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、ビス(t-ブチルパーオキシイソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2.5-ヘキサノイルパーオキサイド、ラウロイルパーオキサイド、過酸化こはく酸、過酸化ベンゾイルおよびその置換体、2,4-ジクロロベンゾイルパーオキサイド、メタトルオイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、t-ブチル-2-エチルヘキサノエート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジメトキシイソプロピルパーオキシカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシピバレート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシオクタノエート、t-ブチルパーオキシ3,3,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシカーボネート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソブチレートなどが挙げられる。 Examples of the organic peroxide include methyl ethyl ketone peroxide, cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide, methylcyclohexanone peroxide, acetylacetone peroxide, and 1,1-bis (t-butylperoxy). -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 2,2-bis (t-butylperoxy) Butan, t-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, paramentan hydroperoxide, 2,5-dimethylhexane 2,5-dihydroperoxide, 1,1,3,3-tetra Methylbutyl hydroperoxide, dit-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, bis (t-butylperoxyisopropyl) benzene, 2,5-dimethyl-2,5-di (t-) Butyl peroxy) hexane, 2.5-hexanoyl peroxide, lauroyl peroxide, succinic peroxide, benzoyl peroxide and its substitutions, 2,4-dichlorobenzoyl peroxide, metattle oil peroxide, diisopropyl peroxy Dicarbonate, t-Butyl-2-ethylhexanoate, di-2-ethylhexyl peroxydicarbonate, dimethoxyisopropylperoxycarbonate, di (3-methyl-3-methoxybutyl) peroxydicarbonate, t-butylper Oxyacetate, t-butylperoxypivalate, t-butylperoxyneodecanoate, t-butylperoxyoctanoate, t-butylperoxy3,3,5-trimethylhexanoate, t-butylper Oxylaurate, t-butylperoxycarbonate, t-butylperoxybenzoate, t-butylperoxyisobutyrate and the like can be mentioned.
 上記アゾ系化合物としては、例えば、2,2'-アゾビスイソブチロニトリル、1,1'-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2'-アゾビス(2-メチルブチロニトリル)、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)、2,2'-アゾビス(2-(2-イミダゾリン-2-イル)プロパン)、2,2'-アゾビス(2,4,4-トリメチルペンタン)、2,2'-アゾビス(2-メチルプロパン)、2,2'-アゾビス(2-ヒドロキシメチルプロピオンニトリル)、4,4'-アゾビス(4-シアノバレリックアシッド)、ジメチル2,2'-アゾビス(2-メチルプロピオネート)、2-シアノ-2-プロピルアゾホルムアミド、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリルなどが挙げられる。
 上記ラジカル発生剤は、1種単独で用いられても、2種以上併用されてもよい。
Examples of the azo compound include 2,2'-azobisisobutyronitrile, 1,1'-azobis (cyclohexane-1-carbonitrile), and 2,2'-azobis (2-methylbutyronitrile). , 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2,4-dimethyl-4-methoxyvaleronitrile), 2,2'-azobis (2- (2-imidazoline) -2-yl) propane), 2,2'-azobis (2,4,4-trimethylpentane), 2,2'-azobis (2-methylpropane), 2,2'-azobis (2-hydroxymethylpropion) Nitrile), 4,4'-azobis (4-cyanovaleric acid), dimethyl 2,2'-azobis (2-methylpropionate), 2-cyano-2-propylazoformamide, 2-phenylazo-4- Examples thereof include methoxy-2,4-dimethylvaleronitrile.
The radical generator may be used alone or in combination of two or more.
 上記方法で使用される有機溶媒としては、一般的には炭化水素系溶媒、ハロゲン化炭化水素系溶媒が挙げられる。これら有機溶媒の中でも、n-ブタン、n-ヘキサン、n-ヘプタン、シクロヘキサン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒が好ましい。
 上記有機溶媒は、1種単独で用いられても、2種以上併用されてもよい。
Examples of the organic solvent used in the above method generally include a hydrocarbon solvent and a halogenated hydrocarbon solvent. Among these organic solvents, hydrocarbon solvents such as n-butane, n-hexane, n-heptane, cyclohexane, benzene, toluene, and xylene are preferable.
The organic solvent may be used alone or in combination of two or more.
 さらに、上記方法により変性化合物を付加する反応を行う時には、副反応を抑制する観点等から老化防止剤を添加してもよい。
 この時に用いる好ましい老化防止剤としては、例えば、2,6-ジt-ブチル-4-メチルフェノール(BHT)、2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4'-チオビス(3-メチル-6-t-ブチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-t-ブチルフェノール)(AO-40)、3,9-ビス[1,1-ジメチル-2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン(AO-80)、2,4-ビス[(オクチルチオ)メチル]-6-メチルフェノール(Irganox1520L)、2,4-ビス[(ドデシルチオ)メチル]-6-メチルフェノール(Irganox1726)、2-[1-(2-ヒドロキシ-3,5-ジt-ペンチルフェニル)エチル]-4,6-ジt-ペンチルフェニルアクリレート(SumilizerGS)、2-tブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(SumilizerGM)、6-t-ブチル-4-[3-(2,4,8,10-テトラ-t-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イルオキシ)プロピル]-2-メチルフェノール(SumilizerGP)、亜りん酸トリス(2,4-ジt-ブチルフェニル)(Irgafos168)、ジオクタデシル3,3'-ジチオビスプロピオネート、ヒドロキノン、p-メトキシフェノール、N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン(ノクラック6C)、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(LA-77Y)、N,N-ジオクタデシルヒドロキシルアミン(IrgastabFS042)、ビス(4-t-オクチルフェニル)アミン(Irganox5057)などが挙げられる。
 上記老化防止剤は、1種単独で用いられても、2種以上併用されてもよい。
Further, when the reaction for adding the modified compound is carried out by the above method, an anti-aging agent may be added from the viewpoint of suppressing side reactions.
Preferred anti-aging agents used at this time include, for example, 2,6-dit-butyl-4-methylphenol (BHT), 2,2'-methylenebis (4-methyl-6-t-butylphenol), 4,4. '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol) (AO-40), 3,9-bis [1,1-dimethyl- 2- [3- (3-t-Butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane (AO-80), 2,4-bis [(octylthio) methyl] -6-methylphenol (Irganox1520L), 2,4-bis [(dodecylthio) methyl] -6-methylphenol (Irganox1726), 2- [1- (2-hydroxy-) 3,5-Dit-pentylphenyl) ethyl] -4,6-dit-pentylphenyl acrylate (SumilizerGS), 2-t butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-Methylphenyl acrylate (Sumiiser GM), 6-t-butyl-4- [3- (2,4,8,10-tetra-t-butyldibenzo [d, f] [1,3,2] dioxa Phosfepin-6-yloxy) propyl] -2-methylphenol (SumilizerGP), tris phosphite (2,4-dit-butylphenyl) (Irgafos168), dioctadecyl 3,3'-dithiobispropionate , Hydroquinone, p-methoxyphenol, N-phenyl-N'-(1,3-dimethylbutyl) -p-phenylenediamine (Nocrack 6C), bis (2,2,6,6-tetramethyl-4-piperidyl) Examples thereof include sebacate (LA-77Y), N, N-dioctadecyl hydroxylamine (IrgastabFS042), bis (4-t-octylphenyl) amine (Irganox5057) and the like.
The above-mentioned anti-aging agent may be used alone or in combination of two or more.
 老化防止剤の添加量は、未変性共役ジエン系重合体(F')100質量部に対して0~10質量部が好ましく、0~5質量部がより好ましい。 The amount of the antiaging agent added is preferably 0 to 10 parts by mass, more preferably 0 to 5 parts by mass with respect to 100 parts by mass of the unmodified conjugated diene polymer (F').
 未変性共役ジエン系重合体(F')に上記シラン化合物(IV)を付加させる反応における温度は10~200℃が好ましく、50℃~180℃がより好ましい。また反応時間は1~200時間が好ましく、1~100時間がより好ましく、1~50時間がさらに好ましい。 The temperature in the reaction of adding the silane compound (IV) to the unmodified conjugated diene polymer (F') is preferably 10 to 200 ° C, more preferably 50 ° C to 180 ° C. The reaction time is preferably 1 to 200 hours, more preferably 1 to 100 hours, still more preferably 1 to 50 hours.
 未変性共役ジエン系重合体(F')に含まれる炭素-炭素不飽和結合を白金化合物含有触媒および必要に応じて用いられる助触媒の存在下でヒドロシリル化することで、アルコキシシラン化合物に由来する官能基を導入する方法としては、未変性共役ジエン系重合体(F')に含まれる炭素-炭素不飽和結合を、白金化合物含有触媒の存在下、好ましくは白金化合物含有触媒および助触媒の存在下で、下記式(VI)で示されるシラン化合物(VI)によりヒドロシリル化する方法が好ましい。 It is derived from the alkoxysilane compound by hydrosilylating the carbon-carbon unsaturated bond contained in the unmodified conjugated diene polymer (F') in the presence of a platinum compound-containing catalyst and, if necessary, a co-catalyst used. As a method for introducing a functional group, a carbon-carbon unsaturated bond contained in an unmodified conjugated diene polymer (F') is introduced in the presence of a platinum compound-containing catalyst, preferably a platinum compound-containing catalyst and a co-catalyst. Below, a method of hydrosilylation with a silane compound (VI) represented by the following formula (VI) is preferable.
Figure JPOXMLDOC01-appb-C000008
(式(VI)中、R7、およびR8はそれぞれ独立に炭素数6~12のアリール基、または炭素数1~12のアルキル基を示し、nは1~3の整数であり、nが2以上の場合、R7は同一でも異なっていてもよく、3-nが2以上の場合、R8は同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000008
(In formula (VI), R 7 and R 8 independently represent an aryl group having 6 to 12 carbon atoms or an alkyl group having 1 to 12 carbon atoms, where n is an integer of 1 to 3 and n is. If it is 2 or more, R 7 may be the same or different, and if 3-n is 2 or more, R 8 may be the same or different.)
 上記シラン化合物(VI)としては、例えば、トリメトキシシラン、メチルジメトキシシラン、ジメチルメトキシシラン、トリエトキシシラン、メチルジエトキシシラン、ジメチルエトキシシランなどが挙げられる。これらシラン化合物は1種単独で用いられても、2種以上併用されてもよい。 Examples of the silane compound (VI) include trimethoxysilane, methyldimethoxysilane, dimethylmethoxysilane, triethoxysilane, methyldiethoxysilane, and dimethylethoxysilane. These silane compounds may be used alone or in combination of two or more.
 上記シラン化合物(VI)により、未変性共役ジエン系重合体(F')に含まれる炭素-炭素不飽和結合がヒドロシリル化反応されることにより、シラン化合物(VI)に由来する官能基、具体的には下記式(VII)で示される部分構造を官能基として有する官能基変性共役ジエン系重合体(F)が得られる。 A functional group derived from the silane compound (VI), specifically, by hydrosilylating the carbon-carbon unsaturated bond contained in the unmodified conjugated diene polymer (F') with the silane compound (VI). A functional group-modified conjugated diene polymer (F) having a partial structure represented by the following formula (VII) as a functional group can be obtained.
Figure JPOXMLDOC01-appb-C000009
(式(VII)中、R7、R8、およびnの定義は式(IV)と同一である。)
Figure JPOXMLDOC01-appb-C000009
(In formula (VII), the definitions of R 7 , R 8 , and n are the same as in formula (IV).)
 上記ヒドロシリル化反応に用いられる白金化合物含有触媒としては、特に限定されないが、例えば、塩化白金酸、塩化白金酸のアルコール溶液、白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のトルエンまたはキシレン溶液、テトラキストリフェニルホスフィン白金、ジクロロビストリフェニルホスフィン白金、ジクロロビスアセトニトリル白金、ジクロロビスベンゾニトリル白金、ジクロロシクロオクタジエン白金等や、白金-炭素、白金-アルミナ、白金-シリカ等の担持触媒などが挙げられる。
 ヒドロシリル化の際の選択性の面から、0価の白金錯体が好ましく、白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のトルエンまたはキシレン溶液がより好ましい。
The platinum compound-containing catalyst used in the hydrosilylation reaction is not particularly limited, and is, for example, platinum chloride, an alcohol solution of platinum chloride, platinum-1,3-divinyl-1,1,3,3-tetramethyl. Toluene or xylene solution of disiloxane complex, tetraxtriphenylphosphine platinum, dichlorobistriphenylphosphine platinum, dichlorobis acetonitrile platinum, dichlorobisbenzonitrile platinum, dichlorocyclooctadien platinum, etc., platinum-carbon, platinum-alumina, platinum- Examples thereof include a carrying catalyst such as silica.
From the viewpoint of selectivity during hydrosilylation, a zero-valent platinum complex is preferable, and a toluene or xylene solution of a platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex is more preferable.
 白金化合物含有触媒の使用量は特に限定されるものではないが、反応性や、生産性等の点から、上記シラン化合物(VI)1モルに対し、含有される白金原子が1×10-7~1×10-2モルとなる量が好ましく、1×10-7~1×10-3モルとなる量がより好ましい
The amount of the platinum compound-containing catalyst used is not particularly limited, but from the viewpoint of reactivity, productivity, etc., the amount of platinum atoms contained in 1 mol of the silane compound (VI) is 1 × 10 -7. The amount to be ~ 1 × 10 −2 mol is preferable, and the amount to be 1 × 10 -7 to 1 × 10 -3 mol is more preferable.
 上記反応における助触媒としては、無機酸のアンモニウム塩、酸アミド化合物およびカルボン酸から選ばれる1種以上を用いることが好ましい。 As the co-catalyst in the above reaction, it is preferable to use one or more selected from ammonium salts of inorganic acids, acid amide compounds and carboxylic acids.
 無機酸のアンモニウム塩としては、例えば、塩化アンモニウム、硫酸アンモニウム、アミド硫酸アンモニウム、硝酸アンモニウム、リン酸二水素一アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ジ亜リン酸アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、硫化アンモニウム、ホウ酸アンモニウム、ホウフッ化アンモニウムなどが挙げられる。これらの中でも、pKaが2以上の無機酸のアンモニウム塩が好ましく、炭酸アンモニウム、炭酸水素アンモニウムがより好ましい。 Examples of the ammonium salt of the inorganic acid include ammonium chloride, ammonium sulfate, ammonium amidosulfate, ammonium nitrate, monoammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium diaphosphate, ammonium carbonate, and ammonium hydrogencarbonate. , Ammonium sulfide, ammonium borate, ammonium borofluoride and the like. Among these, ammonium salts of inorganic acids having a pKa of 2 or more are preferable, and ammonium carbonate and ammonium hydrogen carbonate are more preferable.
 酸アミド化合物としては、例えば、ホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、アクリルアミド、マロンアミド、スクシンアミド、マレアミド、フマルアミド、ベンズアミド、フタルアミド、パルミチン酸アミド、ステアリン酸アミドなどが挙げられる。 Examples of the acid amide compound include formamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, acrylamide, malonamide, succinamide, maleamide, fumalamide, benzamide, phthalamide, palmitate amide and stearate amide. Can be mentioned.
 カルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、メトキシ酢酸、ペンタン酸、カプロン酸、ヘプタン酸、オクタン酸、乳酸、グリコール酸などが挙げられる。これらの中でも、ギ酸、酢酸、乳酸が好ましく、酢酸がより好ましい。 Examples of the carboxylic acid include formic acid, acetic acid, propionic acid, butyric acid, methoxyacetic acid, pentanoic acid, caproic acid, heptanic acid, octanoic acid, lactic acid, and glycolic acid. Among these, formic acid, acetic acid and lactic acid are preferable, and acetic acid is more preferable.
 助触媒の使用量は特に限定されるものではないが、反応性、選択性、コスト等の観点から上記シラン化合物(VI)1モルに対して1×10-5~5×10-1モルが好ましく、1×10-4~5×10-1モルがより好ましい。 The amount of the co-catalyst used is not particularly limited, but 1 × 10 -5 to 5 × 10 -1 mol per 1 mol of the silane compound (VI) is used from the viewpoint of reactivity, selectivity, cost and the like. Preferably, 1 × 10 -4 to 5 × 10 -1 mol is more preferable.
 なお、上記ヒドロシリル化反応は無溶媒でも進行するが、溶媒を用いることもできる。使用可能な溶媒としては、例えば、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、イソオクタン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;N,N-ジメチルホルムアミド等の非プロトン性極性溶媒;ジクロロメタン、クロロホルム等の塩素化炭化水素系溶媒などが挙げられる。これら溶媒は、1種単独で用いられても、2種以上混合して用いられてもよい。 Although the hydrosilylation reaction proceeds without a solvent, a solvent can also be used. Examples of the solvent that can be used include hydrocarbon solvents such as pentane, hexane, cyclohexane, heptane, isooctane, benzene, toluene and xylene; ether solvents such as diethyl ether, tetrahydrofuran and dioxane; ethyl acetate, butyl acetate and the like. Ester-based solvents; aprotonic polar solvents such as N, N-dimethylformamide; chlorinated hydrocarbon-based solvents such as dichloromethane and chloroform. These solvents may be used alone or in admixture of two or more.
 上記ヒドロシリル化反応における反応温度は特に限定されるものではなく、通常0℃以上の温度、必要に応じて加熱条件下で行うことができるが、0~200℃が好ましい。適度な反応速度を得るためには加熱下で反応させることが好ましく、このような観点から、反応温度は40~110℃がより好ましく、40~90℃がさらに好ましい。また、反応時間も特に限定されるものではなく、通常1~60時間程度であるが、1~30時間が好ましく、1~20時間がより好ましい。 The reaction temperature in the hydrosilylation reaction is not particularly limited, and can usually be carried out at a temperature of 0 ° C. or higher, and if necessary, under heating conditions, but 0 to 200 ° C. is preferable. In order to obtain an appropriate reaction rate, the reaction is preferably carried out under heating, and from such a viewpoint, the reaction temperature is more preferably 40 to 110 ° C, further preferably 40 to 90 ° C. The reaction time is also not particularly limited, and is usually about 1 to 60 hours, but 1 to 30 hours is preferable, and 1 to 20 hours is more preferable.
 上記官能基変性共役ジエン系重合体(F)において、上記式(V)または式(VII)で示される部分構造を有する官能基は1種単独で含まれていてもよく2種以上含まれていてもよい。したがって、官能基変性共役ジエン系重合体(F)は、上記シラン化合物(IV)およびシラン化合物(VI)からなる群から選ばれる1種の化合物により変性されたジエン系重合体であってもよく、また2種以上の化合物により変性されたジエン系重合体であってもよい。 In the functional group-modified conjugated diene polymer (F), one functional group having a partial structure represented by the above formula (V) or the above formula (VII) may be contained alone, or two or more thereof are contained. You may. Therefore, the functional group-modified conjugated diene-based polymer (F) may be a diene-based polymer modified with one compound selected from the group consisting of the above-mentioned silane compound (IV) and silane compound (VI). Alternatively, it may be a diene-based polymer modified with two or more kinds of compounds.
 得られる共役ジエン系グラフト重合体の極性材料との親和性や安定性の観点から、上記式(II)中のZは、Si、Snであることが好ましく、Siであることがより好ましい。 From the viewpoint of affinity and stability of the obtained conjugated diene-based graft polymer with the polar material, Z in the above formula (II) is preferably Si or Sn, and more preferably Si.
 得られる共役ジエン系グラフト重合体の極性材料との親和性や安定性、後述するカップリング工程における反応性の観点から、上記式(II)中のVとしては、アルコキシ基が好ましく、炭素数1~5のアルコキシ基がより好ましく、メトキシ基、およびエトキシ基が特に好ましい。 From the viewpoint of affinity and stability of the obtained conjugated diene-based graft polymer with the polar material and reactivity in the coupling step described later, an alkoxy group is preferable as V in the above formula (II), and the number of carbon atoms is 1. Alkoxy groups of ~ 5 are more preferred, and methoxy groups and ethoxy groups are particularly preferred.
 上記式(II)中のnは上記式(5)を満たす整数であるが、後述するカップリング工程における反応性や、得られる共役ジエン系グラフト重合体の分岐点に結合する側鎖の本数の制御の観点から、2以上が好ましく、3以上がより好ましく、Zの価数と同一であることが特に好ましい。 Although n in the above formula (II) is an integer satisfying the above formula (5), it is the reactivity in the coupling step described later and the number of side chains bonded to the branch point of the obtained conjugated diene graft polymer. From the viewpoint of control, 2 or more is preferable, 3 or more is more preferable, and it is particularly preferable that the valence is the same as Z.
 官能基変性共役ジエン系重合体(F)1分子あたりの上記式(II)で示される部分の平均個数は、1~50個が好ましく、2~30個がより好ましく、3~20個がさらに好ましい。 The average number of portions represented by the above formula (II) per molecule of the functional group-modified conjugated diene polymer (F) is preferably 1 to 50, more preferably 2 to 30, and further 3 to 20. preferable.
 官能基変性共役ジエン系重合体(F)1分子あたりの上記式(II)中の官能基Vの平均個数は、2~150個が好ましく、4~90個がより好ましく、6~60個がさらに好ましい。 The average number of functional groups V in the above formula (II) per molecule of the functional group-modified conjugated diene polymer (F) is preferably 2 to 150, more preferably 4 to 90, and 6 to 60. More preferred.
 官能基変性共役ジエン系重合体(F)1分子あたりの上記式(II)中の官能基Vの平均個数は、官能基変性共役ジエン系重合体(F)に含まれる官能基Vの官能基当量(g/eq)と標準ポリスチレン換算の数平均分子量(Mn)を用いて下記式(10)より求める。
(官能基変性共役ジエン系重合体(F)1分子あたりの上記式(II)中の官能基Vの平均個数)=[(数平均分子量Mn)/(スチレン単位の分子量)×(共役ジエンおよび必要に応じて含まれる共役ジエン以外の他の単量体単位の平均分子量)]/(官能基Vの官能基当量)  (10)
The average number of functional groups V in the above formula (II) per molecule of the functional group-modified conjugated diene polymer (F) is the functional group of the functional group V contained in the functional group-modified conjugated diene polymer (F). It is calculated from the following formula (10) using the equivalent amount (g / eq) and the number average molecular weight (Mn) converted to standard polystyrene.
(Average number of functional groups V in the above formula (II) per molecule of the functional group-modified conjugated diene polymer (F)) = [(number average molecular weight Mn) / (molecular weight of styrene unit) × (conjugated diene and Average molecular weight of monomeric units other than conjugated diene contained as needed)] / (functional group equivalent of functional group V) (10)
 なお、官能基変性共役ジエン系重合体(F)に含まれる官能基Vの官能基当量は、官能基V1個あたりに結合している共役ジエンおよび必要に応じて含まれる共役ジエン以外の他の単量体の質量を意味する。官能基の当量は、1H-NMRを用いて官能基V由来のピークと重合体主鎖に由来するピークの面積比から算出する。なお、官能基V由来のピークとは、アルコキシ基および水酸基由来のピークを指す。 The functional group equivalent of the functional group V contained in the functional group-modified conjugated diene polymer (F) is other than the conjugated diene bonded to one functional group V and the conjugated diene contained as necessary. It means the mass of the monomer. The functional group equivalent is calculated from the area ratio of the peak derived from the functional group V to the peak derived from the polymer main chain using 1 H-NMR. The peak derived from the functional group V refers to the peak derived from the alkoxy group and the hydroxyl group.
 未変性共役ジエン系重合体(F')と上記シラン化合物(IV)またはシラン化合物(VI)との混合割合は、例えば、官能基変性共役ジエン系重合体(F)1分子当たりの式(II)に含まれる官能基Vの平均個数が所望の値になるように適宜設定すればよいが、例えば、未変性共役ジエン系重合体(F')と上記シラン化合物(IV)またはシラン化合物(VI)との質量比が0.3~100となるように混合すればよい。 The mixing ratio of the unmodified conjugated diene polymer (F') and the above-mentioned silane compound (IV) or silane compound (VI) is, for example, the formula (II) per molecule of the functionally modified conjugated diene polymer (F). The average number of functional groups V contained in) may be appropriately set to a desired value. For example, the unmodified conjugated diene polymer (F') and the above-mentioned silane compound (IV) or silane compound (VI) may be set. ) May be mixed so that the mass ratio with) is 0.3 to 100.
 官能基変性共役ジエン系重合体(F)のMwおよびビニル含量の好適範囲は、未変性共役ジエン系重合体(F')の場合と同一である。 The preferred range of Mw and vinyl content of the functional group-modified conjugated diene-based polymer (F) is the same as that of the unmodified conjugated diene-based polymer (F').
 上記官能基変性共役ジエン系重合体(F)の38℃で測定した溶融粘度は、0.1~2,000Pa・sが好ましく、0.1~1500Pa・sがより好ましく、0.1~1000Pa・sがさらに好ましい。官能基変性共役ジエン系重合体(F)の溶融粘度が前記範囲内であると、製造時の工程通過性に優れ、経済性が良好となる傾向にある。 The melt viscosity of the functional group-modified conjugated diene polymer (F) measured at 38 ° C. is preferably 0.1 to 2,000 Pa · s, more preferably 0.1 to 1500 Pa · s, and 0.1 to 1000 Pa · s. -S is more preferable. When the melt viscosity of the functional group-modified conjugated diene polymer (F) is within the above range, the process passability during production tends to be excellent and the economic efficiency tends to be good.
 工程(A-1)において、活性末端重合体(I)と上記官能基変性共役ジエン系重合体(F)を反応させることで、上記式(II)で示される部分中の官能基Vと前記活性末端重合体(I)の置換反応が起こり、分岐点であるヘテロ原子Zに側鎖となる前記活性末端重合体(I)が結合した共役ジエン系グラフト重合体が形成される(以下、本反応をカップリング反応と称する)。該カップリング反応、および後述する不活性化工程において未反応であった官能基V(アルコキシ基および水酸基からなる群より選ばれる少なくとも1つの残存する官能基)が、そのまま残存するか、または加水分解されることで、共役ジエン系グラフト重合体の分岐点に結合したアルコキシ基および水酸基からなる群より選ばれる少なくとも1つの官能基(c)が形成される。 In the step (A-1), the active terminal polymer (I) is reacted with the functional group-modified conjugated diene polymer (F) to cause the functional group V in the portion represented by the above formula (II) and the above. The substitution reaction of the active terminal polymer (I) occurs, and a conjugated diene-based graft polymer in which the active terminal polymer (I) serving as a side chain is bonded to the hetero atom Z which is a branch point is formed (hereinafter referred to as the present invention). The reaction is called a coupling reaction). The functional group V (at least one remaining functional group selected from the group consisting of an alkoxy group and a hydroxyl group) that has not reacted in the coupling reaction and the inactivation step described later remains as it is or is hydrolyzed. By doing so, at least one functional group (c) selected from the group consisting of an alkoxy group and a hydroxyl group bonded to the branch point of the conjugated diene-based graft polymer is formed.
 共役ジエン系グラフト重合体1分子あたりの上記分岐点に直接結合する側鎖(b)の平均本数Wは、上記カップリング反応における活性末端重合体(I)と官能基変性共役ジエン系重合体(F)の仕込み量の比により、所望の範囲に調整することができる。例えば、(活性末端重合体(I)の仕込み量(モル数))/(官能基変性共役ジエン系重合体(F)の仕込み量(モル数))=4/1の場合、側鎖(b)の平均本数Wは4本となる。ただし、Wの上限は、官能基変性共役ジエン系重合体(F)1分子あたりが有する官能基Vの個数である。 The average number W of side chains (b) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer is the active terminal polymer (I) in the coupling reaction and the functional group-modified conjugated diene-based polymer ( It can be adjusted to a desired range by the ratio of the charged amount of F). For example, when (amount of active terminal polymer (I) charged (number of moles)) / (amount of functional group-modified conjugated diene polymer (F) charged (number of moles)) = 4/1, the side chain (b) ) Has an average number of W of 4. However, the upper limit of W is the number of functional groups V per molecule of the functional group-modified conjugated diene polymer (F).
 (活性末端重合体(I)の仕込み量)/(官能基変性共役ジエン系重合体(F)の仕込み量)のモル比は、共役ジエン系グラフト重合体1分子あたりの上記分岐点に直接結合する側鎖(b)の平均本数Wが所望の値となるように適宜設定すればよいが、例えば、1~200であることが好ましく、2~100であることがより好ましく、3~50であることがさらに好ましい。(活性末端重合体(I)の仕込み量)/(官能基変性共役ジエン系重合体(F)の仕込み量)のモル比が1より小さいと、導入できる側鎖の本数が少なくなり、200より大きいと、後述するカップリング率が低下する傾向にある。 The molar ratio of (amount of active terminal polymer (I) charged) / (amount of functional group-modified conjugated diene polymer (F) charged) is directly bonded to the above-mentioned branch point per molecule of conjugated diene-based graft polymer. The average number W of the side chains (b) to be subjected may be appropriately set so as to be a desired value. For example, it is preferably 1 to 200, more preferably 2 to 100, and 3 to 50. It is more preferable to have. If the molar ratio of (amount of active terminal polymer (I) charged) / (amount of functional group-modified conjugated diene polymer (F) charged) is less than 1, the number of side chains that can be introduced decreases, and is greater than 200. If it is large, the coupling rate described later tends to decrease.
 上記カップリング反応は、通常、0~100℃の温度範囲で、0.5~50時間行う。官能基変性共役ジエン系重合体(F)は希釈して用いてもよく、希釈溶媒としては、活性末端に対して不活性で反応に悪影響を及ぼさなければ特に制限はなく、例えば、ヘキサン、シクロヘキサン、ヘプタン、オクタン、デカン、トルエン、ベンゼン、キシレン等の飽和脂肪族炭化水素または芳香族炭化水素が挙げられる。
 また、カップリング反応の際に添加剤としてルイス塩基を加えてもよい。ルイス塩基としては、例えば、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン等のエーテル類;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のグリコールエーテル類;トリエチルアミン、N,N,N',N'-テトラメチルエチレンジアミン、N-メチルモルホリン等のアミン類などが挙げられる。これらルイス塩基は、1種単独で用いても、2種以上を併用してもよい。
The coupling reaction is usually carried out in a temperature range of 0 to 100 ° C. for 0.5 to 50 hours. The functional group-modified conjugated diene polymer (F) may be diluted and used, and the diluting solvent is not particularly limited as long as it is inactive with respect to the active terminal and does not adversely affect the reaction. For example, hexane or cyclohexane. , Saturated aliphatic hydrocarbons such as heptane, octane, decane, toluene, benzene and xylene, or aromatic hydrocarbons.
Further, a Lewis base may be added as an additive during the coupling reaction. Examples of the Lewis base include ethers such as dimethyl ether, diethyl ether and tetrahydrofuran; glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; triethylamine, N, N, N', N'-tetramethylethylenediamine and N-methylmorpholine. And the like, amines and the like. These Lewis bases may be used alone or in combination of two or more.
 上記カップリング反応においては、上記活性末端重合体(I)を合成した反応容器に上記官能基変性共役ジエン系重合体(F)を添加してもよいし、逆に上記官能基変性共役ジエン系重合体(F)に対して上記活性末端重合体(I)を添加してもよい。また、上述のように、上記活性末端重合体(I)、上記官能基変性共役ジエン系重合体(F)のいずれも、必要に応じて溶媒で希釈して用いてもよい。また、上記活性末端重合体(I)は1種単独で用いられても、2種以上併用されてもよく、上記官能基変性共役ジエン系重合体(F)も、1種単独で用いられても、2種以上併用されてもよい。 In the coupling reaction, the functional group-modified conjugated diene polymer (F) may be added to the reaction vessel in which the active terminal polymer (I) is synthesized, or conversely, the functional group-modified conjugated diene system may be added. The active terminal polymer (I) may be added to the polymer (F). Further, as described above, both the active terminal polymer (I) and the functional group-modified conjugated diene polymer (F) may be diluted with a solvent and used if necessary. Further, the active terminal polymer (I) may be used alone or in combination of two or more, and the functional group-modified conjugated diene polymer (F) may also be used alone. Also, two or more types may be used in combination.
 上記カップリング反応におけるカップリング率は50%以上が好ましく、60%以上がより好ましく、70%以上がさらに好ましい。上記カップリング率が50%未満では、得られる共役ジエン系グラフト重合体の力学特性が低下するため好ましくない。カップリング率は、GPC測定で得られたカップリング未反応の上記活性末端重合体(I)に由来する成分のピーク面積と全てのピーク面積の総和を用いて下記式(10)より求める。
(カップリング率(%))=[{(全てのピーク面積の総和)-(活性末端重合体(I)に由来する成分のピーク面積)}/(全てのピーク面積の総和)]×100  (10)
The coupling rate in the coupling reaction is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more. If the coupling ratio is less than 50%, the mechanical properties of the obtained conjugated diene-based graft polymer are deteriorated, which is not preferable. The coupling rate is calculated by the following formula (10) using the sum of the peak areas of the components derived from the unreacted active terminal polymer (I) obtained by GPC measurement and all the peak areas.
(Coupling rate (%)) = [{(Sum of all peak areas)-(Peak area of components derived from active terminal polymer (I))} / (Sum of all peak areas)] × 100 ( 10)
 カップリング率は官能基変性共役ジエン系重合体(F)の添加量を多くしたり、ルイス塩基の添加量を多くしたり、反応温度を高くしたり、反応時間を長くしたりすることによって高めることができる。カップリング反応は、カップリング率が所望の範囲になるまで行うことができる。その後、メタノール、イソプロパノール等の重合停止剤を添加することで、カップリング反応を停止できる。 The coupling rate is increased by increasing the amount of the functional group-modified conjugated diene polymer (F) added, increasing the amount of Lewis base added, increasing the reaction temperature, or increasing the reaction time. be able to. The coupling reaction can be carried out until the coupling rate reaches a desired range. After that, the coupling reaction can be stopped by adding a polymerization terminator such as methanol or isopropanol.
 上記分岐点に直接結合する官能基(c)の個数は、上記カップリング反応における上記活性末端重合体(I)と官能基変性共役ジエン系重合体(F)の仕込み量のモル比や、後述するアルコキシ基および水酸基からなる群より選ばれる少なくとも1つの残存する官能基(未反応の官能基V)の一部を不活性化する工程における試薬の使用量や反応時間、および必要に応じて使用される極性化合物の種類や添加量により、所望の範囲に調整することができる。
 上記分岐点に直接結合する官能基(c)の個数を所望の範囲に調整する方法としては、例えば、上記活性末端重合体(I)と官能基変性共役ジエン系重合体(F)の仕込み量を共役ジエン系グラフト重合体に含まれる分岐点あたりの官能基(c)の平均個数(X/Y)が1以上となるようなモル比でカップリング反応を行い、その後、(X/Y)が1未満となるように上述した残存する官能基(未反応の官能基V)の一部を不活性化する方法が挙げられる。
The number of functional groups (c) directly bonded to the branch point is determined by the molar ratio of the amount of the active terminal polymer (I) and the functional group-modified conjugated diene polymer (F) charged in the coupling reaction, and the molar ratio of the amount charged. The amount and reaction time of the reagent used in the step of inactivating a part of at least one remaining functional group (unreacted functional group V) selected from the group consisting of the alkoxy group and the hydroxyl group to be used, and if necessary. It can be adjusted to a desired range depending on the type and amount of the polar compound to be added.
As a method for adjusting the number of functional groups (c) directly bonded to the branch point to a desired range, for example, the amount of the active terminal polymer (I) and the functional group-modified conjugated diene polymer (F) charged. The coupling reaction was carried out at a molar ratio such that the average number (X / Y) of the functional groups (c) per branch point contained in the conjugated diene-based graft polymer was 1 or more, and then (X / Y). Examples thereof include a method of inactivating a part of the remaining functional group (unreacted functional group V) described above so that the value is less than 1.
 [工程(A-2)]
 本発明の共役ジエン系グラフト重合体(G)の製造方法は、上記分岐点に直接結合する官能基(c)の個数を所望の範囲に調整するために、工程(A-1)の後に、
(A-2)前記共役ジエン系グラフト重合体中のアルコキシ基および水酸基からなる群より選ばれる少なくとも1つの残存する官能基(未反応で存在する官能基V)の一部を不活性化する工程(以下、不活性化工程と称する);
を含むことが好ましい一態様である。
 回収工程(B)で加えられる水や酸により、得られる共役ジエン系グラフト重合体に含まれるアルコキシ基が反応して水酸基を生成し比較的多くの水酸基が含まれるようになると、これら多量の水酸基同士が縮合反応を起こしやすくなると考えられるため、不活性化工程(A-2)は、回収工程(B)よりも前に行うことが好ましい。
[Step (A-2)]
In the method for producing a conjugated diene-based graft polymer (G) of the present invention, after the step (A-1), in order to adjust the number of functional groups (c) directly bonded to the branch point to a desired range,
(A-2) A step of inactivating a part of at least one remaining functional group (unreacted functional group V) selected from the group consisting of an alkoxy group and a hydroxyl group in the conjugated diene-based graft polymer. (Hereinafter referred to as the inactivation step);
Is a preferred embodiment.
When the alkoxy groups contained in the obtained conjugated diene-based graft polymer react with water or acid added in the recovery step (B) to generate hydroxyl groups and contain a relatively large number of hydroxyl groups, a large amount of these hydroxyl groups The inactivation step (A-2) is preferably performed before the recovery step (B) because it is considered that they are likely to cause a condensation reaction with each other.
 アルコキシ基および水酸基を不活性化するために用いる試薬(以下、不活性化試薬と称することがある)としては、例えば、メチルリチウム、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム等のアルキルリチウム類;メチルナトリウム、エチルナトリウム、n-プロピルナトリウム、イソプロピルナトリウム、n-ブチルナトリウム、sec-ブチルナトリウム、t-ブチルナトリウム等のアルキルナトリウム類;メチルカリウム、エチルカリウム、n-プロピルカリウム、イソプロピルカリウム、n-ブチルカリウム、sec-ブチルカリウム、t-ブチルカリウム等のアルキルカリウム類;メチルマグネシウム臭化物、エチルマグネシウム臭化物、t-ブチルマグネシウム臭化物、t-ブチルマグネシウム塩化物、sec-ブチルマグネシウムヨウ化物等のアルキルマグネシウムハロゲン化物類;ジメチル銅リチウム、ジエチル銅リチウム、メチルエチル銅リチウム、メチルn-プロピル銅リチウム、エチルn-ブチル銅リチウム等のジアルキル銅リチウム類;リチウムジイソプロピルアミド、リチウムジイソエチルアミド、リチウムジt-ブチルアミド等のリチウムアミド類;等のルイス塩基が挙げられる。これらの中でも、不活性化反応を速やかに進行させるには立体障害が小さいことが望ましいため、n-ブチルリチウム、sec-ブチルリチウム、メチルリチウム、メチルマグネシウム臭化物、ジメチル銅リチウムが好ましい。 Examples of the reagent used for inactivating the alkoxy group and the hydroxyl group (hereinafter, may be referred to as an inactivating reagent) include methyl lithium, ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, and the like. Alkyl lithiums such as sec-butyl lithium and t-butyl lithium; alkyl sodiums such as methyl sodium, ethyl sodium, n-propyl sodium, isopropyl sodium, n-butyl sodium, sec-butyl sodium and t-butyl sodium; methyl Alkyl potassiums such as potassium, ethyl potassium, n-propyl potassium, isopropyl potassium, n-butyl potassium, sec-butyl potassium, t-butyl potassium; methylmagnesium bromide, ethylmagnesium bromide, t-butylmagnesium bromide, t-butyl Alkyl magnesium halides such as magnesium chloride and sec-butylmagnesium iodide; dialkyl copper lithium such as dimethyl copper lithium, diethyl copper lithium, methyl ethyl copper lithium, methyl n-propyl copper lithium, ethyl n-butyl copper lithium, etc. Luis bases such as lithium diisopropylamide, lithium diisoethylamide, lithium dit-butylamide and the like; Among these, n-butyllithium, sec-butyllithium, methyllithium, methylmagnesium bromide, and dimethylcopper lithium are preferable because it is desirable that the steric hindrance is small in order for the inactivation reaction to proceed rapidly.
 工程(A-2)における不活性化試薬の使用量/工程(A-1)で得られた共役ジエン系グラフト重合体中に含まれる基Vに由来するアルコキシ基および水酸基の合計量のモル比は、0.5以上であることが好ましく、1.0以上であることがより好ましく、2.0以上であることがさらに好ましい。また、100以下であることが好ましく、50以下であることがより好ましく、20以下であることがさらに好ましい。不活性化試薬の量が少ない場合、上記分岐点に直接結合する官能基(c)の個数を所望の範囲に調整することができず、また、不活性化試薬の量が多い場合、経済性が悪化する傾向にある。 Amount of Inactivating Reagent Used in Step (A-2) / Molar Ratio of Total Amount of Alkoxy Group and Hydroxyl Group Derived from Group V in Conjugated Diene Graft Polymer Obtained in Step (A-1) Is preferably 0.5 or more, more preferably 1.0 or more, and even more preferably 2.0 or more. Further, it is preferably 100 or less, more preferably 50 or less, and further preferably 20 or less. When the amount of the inactivating reagent is small, the number of functional groups (c) directly bonded to the branch point cannot be adjusted to a desired range, and when the amount of the inactivating reagent is large, it is economical. Tends to get worse.
 上記工程(A-2)の不活性化反応は、通常、0~100℃の温度範囲で、0.1~50時間行う。不活性化試薬は希釈して用いてもよく、希釈溶媒としては、不活性化試薬に対して不活性で反応に悪影響を及ぼさなければ特に制限はなく、例えば、ヘキサン、シクロヘキサン、ヘプタン、オクタン、デカン、トルエン、ベンゼン、キシレン等の飽和脂肪族炭化水素または芳香族炭化水素が挙げられる。また、上記不活性化反応の際に添加剤としてルイス塩基を加えてもよく、ルイス塩基としては、例えば、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン等のエーテル類;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のグリコールエーテル類;トリエチルアミン、N,N,N',N'-テトラメチルエチレンジアミン、N-メチルモルホリン等のアミン類などが挙げられる。これらルイス塩基は、1種単独で用いられても、2種以上併用されてもよい。 The inactivation reaction of the above step (A-2) is usually carried out in a temperature range of 0 to 100 ° C. for 0.1 to 50 hours. The inactivating reagent may be diluted and used, and the diluting solvent is not particularly limited as long as it is inactive with respect to the inactivating reagent and does not adversely affect the reaction. For example, hexane, cyclohexane, heptane, octane, etc. Saturated aliphatic hydrocarbons such as decane, toluene, benzene and xylene or aromatic hydrocarbons can be mentioned. Further, a Lewis base may be added as an additive during the inactivation reaction, and examples of the Lewis base include ethers such as dimethyl ether, diethyl ether and tetrahydrofuran; glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether. Examples thereof include amines such as triethylamine, N, N, N', N'-tetramethylethylenediamine and N-methylmorpholin. These Lewis bases may be used alone or in combination of two or more.
 上記不活性化反応は、上記分岐点に直接結合する官能基(c)の個数が所望の範囲になるまで行うことができる。その後、メタノール、イソプロパノール等の重合停止剤を添加することで、不活性化試薬を失活できる。 The inactivation reaction can be carried out until the number of functional groups (c) directly bonded to the branch point reaches a desired range. After that, the inactivating reagent can be inactivated by adding a polymerization terminator such as methanol or isopropanol.
 [工程(B)]
 本発明の共役ジエン系グラフト重合体の製造方法は、
(B)得られた共役ジエン系グラフト重合体を回収する工程;
を含む。
[Step (B)]
The method for producing a conjugated diene-based graft polymer of the present invention is
(B) Step of recovering the obtained conjugated diene-based graft polymer;
including.
 工程(B)では、得られた本発明の共役ジエン系グラフト重合体を回収する。共役ジエン系グラフト重合体の回収方法は特に制限はないが、共役ジエン系グラフト重合体を含む溶液を工程(A-1)または工程(A-2)で得ている場合は、例えば、得られた溶液をメタノール等の貧溶媒に注いで、共役ジエン系グラフト重合体を析出させるか、重合反応液を水で洗浄し、分離後、乾燥することにより上記共役ジエン系グラフト重合体を単離することにより回収できる。 In step (B), the obtained conjugated diene-based graft polymer of the present invention is recovered. The method for recovering the conjugated diene-based graft polymer is not particularly limited, but when a solution containing the conjugated diene-based graft polymer is obtained in step (A-1) or step (A-2), for example, it can be obtained. The above-mentioned conjugated diene-based graft polymer is isolated by pouring the solution into a poor solvent such as methanol to precipitate the conjugated diene-based graft polymer, or by washing the polymerization reaction solution with water, separating and drying. It can be recovered by.
 [重合体組成物]
 本発明の重合体組成物は、本発明の共役ジエン系グラフト重合体(以下共役ジエン系グラフト重合体(α)とも称する。)を含む。また上記重合体組成物は、さらに共役ジエン系グラフト重合体(α)以外の他の重合体(β)を含んでもよい。他の重合体(β)は、熱可塑性重合体(β1)であっても、硬化性重合体(β2)であってもよい。
[Polymer composition]
The polymer composition of the present invention contains the conjugated diene-based graft polymer of the present invention (hereinafter, also referred to as a conjugated diene-based graft polymer (α)). Further, the polymer composition may further contain a polymer (β) other than the conjugated diene-based graft polymer (α). The other polymer (β) may be a thermoplastic polymer (β1) or a curable polymer (β2).
 上記熱可塑性重合体(β1)としては、例えば、ポリメタクリル酸メチルおよび(メタ)アクリル酸エステル重合体又は共重合体などのアクリル系樹脂;ポリエチレン、エチレン-酢酸ビニル共重合体、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1、ポリノルボルネン等のオレフィン系樹脂;エチレン系アイオノマー;ポリスチレン、スチレン-無水マレイン酸共重合体、ハイインパクトポリスチレン、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、MBS樹脂等のスチレン系樹脂;スチレン-メタクリル酸メチル共重合体;スチレン-メタクリル酸メチル-無水マレイン酸共重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸等のポリエステル樹脂;ナイロン6、ナイロン66、ポリアミドエラストマー等のポリアミド;ポリカーボネート;ポリ塩化ビニル;ポリ塩化ビニリデン;ポリビニルアルコール;エチレン-ビニルアルコール共重合体;ポリアセタール;ポリフッ化ビニリデン;ポリウレタン;変性ポリフェニレンエーテル;ポリフェニレンスルフィド;シリコーンゴム変性樹脂;アクリル系ゴム;シリコーン系ゴム;SEPS、SEBS、SIS等のスチレン系熱可塑性エラストマー;IR、EPR、EPDM等のオレフィン系ゴムなどが挙げられる。 Examples of the thermoplastic polymer (β1) include acrylic resins such as polymethyl methacrylate and (meth) acrylic acid ester polymers or copolymers; polyethylene, ethylene-vinyl acetate copolymer, polypropylene, polybutene-. 1. Olefin resins such as poly-4-methylpentene-1, polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene, AS resin, ABS resin, AES resin, AAS resin, Sterite resins such as ACS resin and MBS resin; styrene-methyl methacrylate copolymer; styrene-methyl methacrylate-maleic anhydride copolymer; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polylactic acid; nylon 6, Polyamides such as nylon 66 and polyamide elastomers; polycarbonate; polyvinyl chloride; polyvinylidene chloride; polyvinyl alcohol; ethylene-vinyl alcohol copolymer; polyacetal; vinylidene fluoride; polyurethane; modified polyphenylene ether; polyphenylene sulfide; silicone rubber modified resin; Acrylic rubbers; silicone rubbers; styrene-based thermoplastic polymers such as SEPS, SEBS, and SIS; olefin-based rubbers such as IR, EPR, and EPDM.
 硬化性重合体(β2)としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、エポキシ(メタ)アクリレート樹脂、エステル(メタ)アクリレート樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、熱硬化性ウレタン樹脂、ケイ素樹脂、イミド樹脂、フラン樹脂、アルキド樹脂、アリル樹脂、ジアリルフタレート樹脂が挙げられる。これらの中でも、入手性および硬化物の基本物性の観点や、また、気泡の抜け性、得られる硬化物の靱性により一層優れる重合体組成物が得られるなどの観点から、エポキシ樹脂、不飽和ポリエステル樹脂およびエポキシ(メタ)アクリレート樹脂が好ましく、中でも、エポキシ樹脂および不飽和ポリエステル樹脂がより好ましく、エポキシ樹脂であることがさらに好ましい。硬化性重合体(β2)は、1種単独で用いられてもよく、2種以上を併用してもよい。 Examples of the curable polymer (β2) include epoxy resin, unsaturated polyester resin, epoxy (meth) acrylate resin, ester (meth) acrylate resin, phenol resin, urea resin, melamine resin, thermosetting urethane resin, and silicon. Examples thereof include resins, imide resins, furan resins, alkido resins, allyl resins, and diallyl phthalate resins. Among these, epoxy resins and unsaturated polyesters are made from the viewpoints of availability and basic physical properties of the cured product, as well as the ability to remove air bubbles and the toughness of the obtained cured product to obtain a more excellent polymer composition. Resins and epoxy (meth) acrylate resins are preferable, and among them, epoxy resins and unsaturated polyester resins are more preferable, and epoxy resins are even more preferable. The curable polymer (β2) may be used alone or in combination of two or more.
 上記重合体組成物に、共役ジエン系グラフト重合体(α)と他の重合体(β)が含まれる場合、共役ジエン系グラフト重合体(α)と他の重合体(β)との質量比(α)/(β)が、1/99~99/1であることが好ましい。 When the polymer composition contains a conjugated diene-based graft polymer (α) and another polymer (β), the mass ratio of the conjugated diene-based graft polymer (α) to the other polymer (β). It is preferable that (α) / (β) is 1/99 to 99/1.
 また、本発明の重合体組成物には、本発明の効果を損なわない程度に、種々の添加剤を添加してもよい。例えば、他の重合体(β)が熱可塑性重合体(β1)の場合、かかる添加剤としては、例えば、炭酸カルシウム、シリカ、カーボンブラック、ガラス繊維、クレーなどの補強剤又は充填剤、プロセスオイル、ポリエチレングリコール、グリセリン、フタル酸エステルなどの可塑剤を添加剤として用いることができる。また、その他の添加剤として、例えば、熱安定剤、酸化防止剤、紫外線吸収剤、着色剤、顔料、滑剤、界面活性剤などが挙げられる。さらに、該添加剤として発泡剤が挙げられ、発泡剤と熱可塑性重合体(β1)を含む重合体組成物からは発泡体を作製することが可能である。
 例えば、他の重合体(β)が硬化性重合体(β2)の場合、かかる添加剤としては、硬化剤、硬化促進剤、公知のゴム、熱可塑性エラストマー、コア-シェル粒子等の衝撃改質剤、充填剤(シリカ、タルク、炭酸カルシウム、水酸化アルミニウム等の無機粒子など)、難燃剤、消泡剤、顔料、染料、酸化防止剤、耐候剤、滑剤、離型剤などが挙げられる。
In addition, various additives may be added to the polymer composition of the present invention to the extent that the effects of the present invention are not impaired. For example, when the other polymer (β) is a thermoplastic polymer (β1), such additives include, for example, reinforcing agents or fillers such as calcium carbonate, silica, carbon black, glass fiber, clay, and process oils. , Polyethylene glycol, glycerin, phthalates and other plasticizers can be used as additives. In addition, examples of other additives include heat stabilizers, antioxidants, ultraviolet absorbers, colorants, pigments, lubricants, and surfactants. Further, a foaming agent can be mentioned as the additive, and a foam can be prepared from a polymer composition containing the foaming agent and the thermoplastic polymer (β1).
For example, when the other polymer (β) is a curable polymer (β2), the additive may be a curing agent, a curing accelerator, a known rubber, a thermoplastic elastomer, a core-shell particle, or the like. Examples include agents, fillers (inorganic particles such as silica, talc, calcium carbonate, aluminum hydroxide, etc.), flame retardants, defoaming agents, pigments, dyes, antioxidants, weather resistant agents, lubricants, mold release agents, and the like.
 本発明の重合体組成物は、共役ジエン系グラフト重合体(α)と他の重合体(β)などの各成分の組成比等に応じ、通常の高分子物質の混合方法により調製できる。 The polymer composition of the present invention can be prepared by a usual method of mixing a polymer substance according to the composition ratio of each component such as a conjugated diene-based graft polymer (α) and another polymer (β).
 他の重合体(β)が熱可塑性重合体(β1)の場合、例えば、押出機、ミキシングロール、バンバリーミキサー、ニーダー等の混合装置により重合体組成物が作製できる。特に本発明においては、これら混合装置を用いて、溶融混練する方法が好ましい一態様である。 When the other polymer (β) is a thermoplastic polymer (β1), a polymer composition can be prepared by, for example, a mixing device such as an extruder, a mixing roll, a Banbury mixer, or a kneader. In particular, in the present invention, a method of melt-kneading using these mixing devices is a preferable aspect.
 他の重合体(β)が硬化性重合体(β2)の場合、例えばミキサーなどで十分混合し、次いでミキシングロール、押出し機等によって溶融混練したあと、冷却、粉砕する方法により重合体組成物は作製できる。 When the other polymer (β) is a curable polymer (β2), for example, the polymer composition is sufficiently mixed with a mixer or the like, then melt-kneaded with a mixing roll, an extruder or the like, and then cooled and pulverized to prepare the polymer composition. Can be made.
 本発明の重合体組成物は、従来から知られている各種の成形法により、成形品とすることが可能である。 The polymer composition of the present invention can be made into a molded product by various conventionally known molding methods.
 他の重合体(β)が熱可塑性重合体(β1)の場合、重合体組成物を、例えば押出成形、射出成形、中空成形、圧縮成形、真空成形、カレンダー成形等により成形することにより、成形品が作製できる。これら方法によって各種形状の成形品、シート、フィルムなどが得られる。また、メルトブロー法、スパンボンド法等の方法により、不織布、繊維状物となった成形品を作製することもできる。 When the other polymer (β) is a thermoplastic polymer (β1), the polymer composition is molded by, for example, extrusion molding, injection molding, hollow molding, compression molding, vacuum molding, calendar molding, or the like. A product can be manufactured. By these methods, molded products, sheets, films and the like having various shapes can be obtained. In addition, a molded product in the form of a non-woven fabric or a fibrous material can be produced by a method such as a melt blow method or a spunbond method.
 他の重合体(β)が硬化性重合体(β2)の場合、重合体組成物を、例えば、トランスファー成形法により、熱により硬化した成形品が作製できる。硬化性重合体(β2)を重合体組成物が含む場合のその他の成形方法としては、例えば、インジェクション成形法、圧縮成形法が挙げられる。 When the other polymer (β) is a curable polymer (β2), a molded product obtained by heat-curing the polymer composition, for example, by a transfer molding method can be produced. Other molding methods when the polymer composition contains the curable polymer (β2) include, for example, an injection molding method and a compression molding method.
 他の重合体(β)が熱可塑性重合体(β1)の場合、重合体組成物から得られる成形品の用途としては、例えば、バンパー、インパネなどの自動車用内外装品、テレビ、ステレオ、掃除機等の家電用のハウジング材、コネクターなどの電気・電子部品、電線ケーブル用素材、食肉鮮魚用トレー、青果物パック、冷凍食品容器等の食品包装材若しくは食品容器、工業資材等の包装材料、スポーツシューズ素材などのスポーツ用品、布帛若しくは皮革製品、玩具、サンダルなどの日用雑貨、各種フィルム、シート、成形品のラミネート材、粘・接着剤、紙おむつなどに用いられる伸縮材料、ホース、チューブ、ベルト等の各種ゴム製品、医療用品などが挙げられる。 When the other polymer (β) is a thermoplastic polymer (β1), the molded product obtained from the polymer composition is used, for example, for automobile interior / exterior parts such as bumpers and instrument panels, televisions, stereos, and cleaning. Housing materials for home appliances such as machines, electrical and electronic parts such as connectors, materials for electric wires and cables, trays for meat and fresh fish, fruit and vegetable packs, food packaging materials such as frozen food containers, food containers, packaging materials such as industrial materials, sports Sporting goods such as shoe materials, fabric or leather products, toys, daily miscellaneous goods such as sandals, various films, sheets, laminated materials for molded products, elastic materials used for adhesives / adhesives, paper diapers, hoses, tubes, belts Various rubber products such as, medical supplies, etc. can be mentioned.
 他の重合体(β)が硬化性重合体(β2)の場合、重合体組成物、その硬化物又は成形品の用途としては、例えば、繊維補強複合材用接着剤(コンクリート用繊維補強複合材料用接着剤、自動車・鉄道車両・航空機といった運輸運送装置用繊維補強複合材料用接着剤、各種スポーツ用品用繊維補強複合材料用接着剤等)、組み立て用接着剤(自動車・鉄道車両・航空機といった運輸運送装置における部品組み立て用接着剤等)などの各種接着剤;上下水道用防食・防水塗料、金属用防食塗料などの各種塗料;建築土木用塗装プライマー、自動車・鉄道車両・航空機といった運輸運送装置用の塗装プライマーなどの各種塗装プライマー;金属用ライニング材、コンクリート用ライニング材、タンク類用ライニング材などの各種ライニング材;コンクリート用亀裂補修材などの各種補修材;プリント配線基板、絶縁ボード、半導体封止材、パッケージ材などの各種電気電子部品などが挙げられる。 When the other polymer (β) is a curable polymer (β2), the use of the polymer composition, the cured product thereof, or the molded product is, for example, an adhesive for a fiber reinforcing composite material (fiber reinforcing composite material for concrete). Adhesives for, fiber-reinforced composite materials for transportation equipment such as automobiles, railroad vehicles, and aircraft, adhesives for fiber-reinforced composite materials for various sports equipment, etc.), assembly adhesives (transportation for automobiles, railroad vehicles, aircraft, etc.) Various adhesives such as (adhesives for assembling parts in transportation equipment, etc.); various paints such as anticorrosion / waterproof paint for water and sewage, anticorrosion paint for metal; Various coating primers such as coating primers; various lining materials such as metal lining materials, concrete lining materials, tank lining materials; various repair materials such as crack repair materials for concrete; printed wiring boards, insulating boards, semiconductor seals Examples include various electrical and electronic parts such as stopping materials and packaging materials.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例および比較例において共役ジエン系グラフト重合体の物性は次の方法により評価した。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. In the following examples and comparative examples, the physical characteristics of the conjugated diene-based graft polymer were evaluated by the following method.
 (1)重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)
 ゲルパーミエーションクロマトグラフィー(GPC)によって、共役ジエン系グラフト重合体、およびその製造の各段階における重合体の重量平均分子量(Mw)、数平均分子量(Mn)、および分子量分布(Mw/Mn)を標準ポリスチレン換算で求めた。
装置:東ソー株式会社製 GPC装置「HLC-8220」
分離カラム:東ソー株式会社製 「TSKgel SuperMultiporeHZ-M(カラム径=4.6mm、カラム長=15cm)」(2本を直列に繋いで使用)
溶離液:テトラヒドロフラン
溶離液流量:0.35mL/分
カラム温度:40℃
検出方法:示差屈折率(RI)
注入量:10μl
濃度:1mg/1cc(共役ジエン系グラフト重合体/THF)
(1) Weight average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution (Mw / Mn)
By gel permeation chromatography (GPC), the weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn) of the conjugated diene-based graft polymer and the polymer at each stage of its production are determined. It was calculated in terms of standard polystyrene.
Equipment: GPC equipment "HLC-8220" manufactured by Tosoh Corporation
Separation column: "TSKgel SuperMultipore HZ-M (column diameter = 4.6 mm, column length = 15 cm)" manufactured by Tosoh Corporation (used by connecting two in series)
Eluent: Tetrahydrofuran Eluent Flow rate: 0.35 mL / min Column temperature: 40 ° C
Detection method: Differential refractometer (RI)
Injection volume: 10 μl
Concentration: 1 mg / 1 cc (conjugated diene graft polymer / THF)
 (2)ビニル含量、スチレン単位含有量
 1H-NMRによって、共役ジエン系グラフト重合体、およびその製造の各段階における重合体のビニル含量、およびスチレン単位含有量を算出した。得られたスペクトルのビニル化された共役ジエン単位由来の二重結合のピークと、ビニル化されていない共役ジエン単位由来の二重結合のピークとの面積比からビニル含量を算出し、スチレン単位に由来する芳香環のピークと、共役ジエン単位由来の二重結合のピークとの面積比からスチレン単位含有量を算出した。
装置:日本電子株式会社製核磁気共鳴装置 「JNM-ECX400」
溶媒:重クロロホルム
測定温度:50℃
積算回数:1024回
(2) Vinyl content, styrene unit content 1 The vinyl content and styrene unit content of the conjugated diene-based graft polymer and the polymer at each stage of its production were calculated by 1 H-NMR. The vinyl content was calculated from the area ratio of the double bond peak derived from the vinylized conjugated diene unit and the double bond peak derived from the non-vinylized conjugated diene unit in the obtained spectrum, and converted to the styrene unit. The styrene unit content was calculated from the area ratio of the peak of the derived aromatic ring and the peak of the double bond derived from the conjugated diene unit.
Equipment: Nuclear magnetic resonance equipment "JNM-ECX400" manufactured by JEOL Ltd.
Solvent: Deuterated chloroform Measurement temperature: 50 ° C
Accumulation number: 1024 times
 (3)重合体1分子あたりのSi原子(分岐点)の平均個数Y
 共役ジエン系グラフト重合体、および官能基変性共役ジエン系重合体(F)1分子あたりのSi原子(分岐点)の平均個数Yは、誘導結合プラズマ質量分析装置(ICP-MS)により測定した重合体のSi含量(質量%)と標準ポリスチレン換算の数平均分子量(Mn)を用いて下式より求める。
(重合体1分子あたりのSi原子の個数)=[(Si含量(質量%))/100]×[(数平均分子量Mn)/(スチレン単位の分子量)×(共役ジエンおよび必要に応じて含まれる共役ジエン以外の他の単量体単位の平均分子量)]/Siの原子量
 実施例16に関しては、同様の手法により重合体1分子あたりのB原子(分岐点)の平均個数Yを求めた。
(3) Average number of Si atoms (branch points) per polymer molecule Y
The average number Y of Si atoms (branch points) per molecule of the conjugated diene-based graft polymer and the functional group-modified conjugated diene-based polymer (F) is the weight measured by an inductively coupled plasma mass spectrometer (ICP-MS). It is calculated from the following formula using the combined Si content (% by mass) and the number average molecular weight (Mn) in terms of standard polystyrene.
(Number of Si atoms per polymer molecule) = [(Si content (mass%)) / 100] x [(number average molecular weight Mn) / (molecular weight in styrene units) x (conjugated diene and optionally included) Average molecular weight of other monomeric units other than conjugated diene)] / Atomic weight of Si For Example 16, the average number Y of B atoms (branching points) per polymer molecule was determined by the same method.
 (4)共役ジエン系グラフト重合体に含まれるSi原子(分岐点)あたりの官能基(c)の平均個数(X/Y)
 共役ジエン系グラフト重合体に含まれるSi原子(分岐点)あたりの官能基(c)(アルコキシ基および水酸基からなる群より選ばれる少なくとも1つ)の平均個数(X/Y)は、共役ジエン系グラフト重合体の29Si-NMRを測定した結果から求められる。具体的には、官能基(c)が1個結合しているSi、官能基(c)が2個結合しているSiなどの積分値に官能基の個数を乗じたものを合計し、積分値の単純合計と比較することにより算出する。
 実施例16に関しては、11B-NMRを測定することで、同様の手法により共役ジエン系グラフト重合体に含まれるB原子(分岐点)あたりの官能基(c)の平均個数(X/Y)を求めた。
(4) Average number (X / Y) of functional groups (c) per Si atom (branch point) contained in the conjugated diene-based graft polymer.
The average number (X / Y) of the functional group (c) (at least one selected from the group consisting of an alkoxy group and a hydroxyl group) per Si atom (branch point) contained in the conjugated diene-based graft polymer is the conjugated diene-based graft polymer. It is obtained from the results of measuring 29 Si-NMR of the graft polymer. Specifically, the integral value obtained by multiplying the integrated value of Si having one functional group (c) bonded and Si having two functional groups (c) bonded by the number of functional groups is added up and integrated. Calculated by comparing with a simple sum of values.
Regarding Example 16, by measuring 11 B-NMR, the average number (X / Y) of the functional groups (c) per B atom (branch point) contained in the conjugated diene-based graft polymer was obtained by the same method. Asked.
 (5)共役ジエン系グラフト重合体1分子あたりの官能基(c)の平均個数X
 共役ジエン系グラフト重合体1分子あたりの官能基(c)の平均個数Xは、共役ジエン系グラフト重合体に含まれるSi原子(分岐点)あたりの官能基(c)の平均個数と上記共役ジエン系グラフト重合体1分子あたりのSi原子の平均個数を用いて下式より求める。
(共役ジエン系グラフト重合体1分子あたりの官能基(c)の平均個数X)=(共役ジエン系グラフト重合体に含まれるSi原子(分岐点)あたりの官能基(c)の平均個数)×(共役ジエン系グラフト重合体1分子あたりのSi原子の平均個数)
 実施例16に関しては、上記共役ジエン系グラフト重合体に含まれるB原子(分岐点)あたりの官能基(c)の平均個数と共役ジエン系グラフト重合体1分子あたりのB原子の平均個数を用いて、共役ジエン系グラフト重合体1分子あたりの官能基(c)の平均個数Xを求めた。
(5) Average number of functional groups (c) per molecule of conjugated diene-based graft polymer X
The average number X of the functional groups (c) per molecule of the conjugated diene-based graft polymer is the average number of functional groups (c) per Si atom (branch point) contained in the conjugated diene-based graft polymer and the above-mentioned conjugated diene. It is calculated from the following formula using the average number of Si atoms per molecule of the system graft polymer.
(Average number of functional groups (c) per molecule of conjugated diene-based graft polymer X) = (Average number of functional groups (c) per Si atom (branch point) contained in conjugated diene-based graft polymer) × (Average number of Si atoms per molecule of conjugated diene-based graft polymer)
In Example 16, the average number of functional groups (c) per B atom (branch point) contained in the conjugated diene-based graft polymer and the average number of B atoms per molecule of the conjugated diene-based graft polymer were used. The average number X of the functional groups (c) per molecule of the conjugated diene-based graft polymer was determined.
 (6)共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数W
 共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数Wは、上述したカップリング工程における、共役ジエン系グラフト重合体の側鎖(b)の構成要素となる活性末端重合体(I)の活性末端あたりの仕込み量(モル数)と官能基変性共役ジエン系重合体(F)の仕込み量(モル数)を用いて下式より求める。
(共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数W)=(側鎖(b)の構成要素となる活性末端重合体(I)の活性末端あたりの仕込み量(モル数))/(官能基変性共役ジエン系重合体(F)の仕込み量(モル数))
(6) Average number of side chains (b) per molecule of conjugated diene-based graft polymer W
The average number W of side chains (b) per molecule of the conjugated diene-based graft polymer is the active terminal polymer (b) that is a component of the side chain (b) of the conjugated diene-based graft polymer in the above-mentioned coupling step. It is calculated from the following formula using the charge amount (number of moles) per active terminal of I) and the charge amount (number of moles) of the functional group-modified conjugated diene polymer (F).
(Average number of side chains (b) per molecule of conjugated diene-based graft polymer W) = (Amount of active terminal polymer (I) charged per active end (number of moles) which is a component of the side chain (b) )) / (Amount of functional group-modified conjugated diene polymer (F) charged (number of moles))
 (7)共役ジエン系グラフト重合体に含まれるSi原子(分岐点)あたりの側鎖(b)の平均本数(W/Y)
 共役ジエン系グラフト重合体に含まれるSi原子(分岐点)あたりの側鎖(b)の平均本数(W/Y)は、上記共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数Wと上記共役ジエン系グラフト重合体1分子あたりのSi原子の平均個数Yを用いて下式より求める。
(共役ジエン系グラフト重合体に含まれるSi原子あたりの側鎖(b)の平均本数(W/Y))=(共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数W)/(共役ジエン系グラフト重合体1分子あたりのSi原子の平均個数Y)
 実施例16に関しては、上記共役ジエン系グラフト重合体1分子あたりの側鎖(b)の平均本数Wと上記共役ジエン系グラフト重合体1分子あたりのB原子の平均個数Yを用いて共役ジエン系グラフト重合体に含まれるB原子(分岐点)あたりの側鎖(b)の平均本数(W/Y)を求めた。
(7) Average number of side chains (b) per Si atom (branch point) contained in the conjugated diene-based graft polymer (W / Y)
The average number (W / Y) of side chains (b) per Si atom (branch point) contained in the conjugated diene-based graft polymer is the average of the side chains (b) per molecule of the conjugated diene-based graft polymer. It is calculated from the following formula using the number W and the average number Y of Si atoms per molecule of the conjugated diene-based graft polymer.
(Average number of side chains (b) per Si atom contained in the conjugated diene-based graft polymer (W / Y)) = (Average number of side chains (b) per molecule of the conjugated diene-based graft polymer W) / (Average number of Si atoms per molecule of conjugated diene-based graft polymer Y)
In Example 16, the conjugated diene system uses the average number W of side chains (b) per molecule of the conjugated diene graft polymer and the average number Y of B atoms per molecule of the conjugated diene graft polymer. The average number (W / Y) of side chains (b) per B atom (branch point) contained in the graft polymer was determined.
 (8)カップリング率
 共役ジエン系グラフト重合体のカップリング率は、上記GPC測定で得られたカップリング未反応のポリマー成分のピーク面積と全てのピーク面積の総和を用いて下式より求める。
(カップリング率(%))=[{((全てのピーク面積の総和)-(活性末端重合体(I)に由来する成分のピーク面積)}/(全てのピーク面積の総和)]×100
(8) Coupling rate The coupling rate of the conjugated diene-based graft polymer is calculated by the following formula using the sum of the peak areas of the unreacted polymer components obtained by the above GPC measurement and all the peak areas.
(Coupling rate (%)) = [{((Sum of all peak areas)-(Peak area of components derived from active terminal polymer (I))} / (Sum of all peak areas)] × 100
 (9)安定性
 共役ジエン系グラフト重合体の安定性は、共役ジエン系グラフト重合体を含む洗浄終了後の重合体溶液を乾燥する工程(下記工程(5))における性状変化により評価した。70℃で24時間真空乾燥した重合体に100倍量のシクロヘキサンを加えて室温で12h振盪した後に、ろ過により不溶分を回収して乾燥した。仕込みの重合体の質量をM1、ろ過、乾燥後の不溶分の質量をM2として、不溶分の比率(ゲル分率)を下式より算出し、以下の指標で安定性を評価した。
(ゲル分率(%))=(M2/M1)×100
 A:乾燥後のゲル分率が50質量%未満
 B:乾燥後のゲル分率が50質量%以上
(9) Stability The stability of the conjugated diene-based graft polymer was evaluated by the change in properties in the step of drying the polymer solution containing the conjugated diene-based graft polymer after completion of washing (step (5) below). A 100-fold amount of cyclohexane was added to the polymer vacuum-dried at 70 ° C. for 24 hours, and the mixture was shaken at room temperature for 12 hours, and then the insoluble matter was recovered by filtration and dried. The insoluble matter ratio (gel fraction) was calculated from the following formula, where the mass of the charged polymer was M1 and the mass of the insoluble matter after filtration and drying was M2, and the stability was evaluated by the following index.
(Gel fraction (%)) = (M2 / M1) x 100
A: Gel fraction after drying is less than 50% by mass B: Gel fraction after drying is 50% by mass or more
 (10)縮合反応性
 共役ジエン系グラフト重合体の極性材料との親和性は、酸性条件におけるアルコキシシラン基の縮合反応性により評価した。共役ジエン系グラフト重合体を固形分濃度が10質量%となるようにシクロヘキサンに溶解し、1質量%酢酸水溶液と重量比1:1で混合して室温で12h振盪した後に、不溶分(ゲル)の生成があるかどうかを目視で確認し、以下の指標で縮合反応性を評価した。不溶分が有る場合の方が縮合反応性が高いといえ、極性材料との親和性が高い。
 A:不溶分有り
 B:不溶分無し
(10) Condensation Reactivity The affinity of the conjugated diene-based graft polymer with the polar material was evaluated by the condensation reactivity of the alkoxysilane group under acidic conditions. The conjugated diene-based graft polymer is dissolved in cyclohexane so that the solid content concentration is 10% by mass, mixed with a 1% by mass acetic acid aqueous solution at a weight ratio of 1: 1 and shaken at room temperature for 12 hours, and then insoluble (gel). Was visually confirmed, and the condensation reactivity was evaluated using the following indexes. It can be said that the condensation reactivity is higher when there is an insoluble matter, and the affinity with the polar material is higher.
A: With insoluble matter B: No insoluble matter
 [実施例1]
 (工程(1))
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1580gおよびsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)56gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、テトラヒドロフラン2.9gと、ブタジエン1250gを逐次添加して、1時間重合した。その後メタノール3.3gを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、未変性共役ジエン系重合体(F'-1)を得た。
[Example 1]
(Step (1))
A fully dried 5 L autoclave is replaced with nitrogen, 1580 g of cyclohexane and 56 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is 50 ° C. under stirring conditions. While controlling in this manner, 2.9 g of tetrahydrofuran and 1250 g of butadiene were sequentially added and polymerized for 1 hour. Then, 3.3 g of methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated. After the washing was completed, the polymer solution was vacuum dried at 70 ° C. for 24 hours to obtain an unmodified conjugated diene polymer (F'-1).
 (工程(2))
 続いて、容量1Lのオートクレーブ中に、工程(1)で得られた未変性共役ジエン系重合体(F'-1)700gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。t-ブチルパーオキシピバレート0.9gと3-メルカプトプロピルトリエトキシシラン51gを添加し、80℃で8時間反応させて、官能基変性共役ジエン系重合体(F-1)を得た。得られた官能基変性共役ジエン系重合体(F-1)の分析により、後述する共役ジエン系グラフト重合体(G-1)の主鎖(a)の重量平均分子量、ビニル含量、スチレン単位含有量を求めることができる。得られた官能基変性共役ジエン系重合体(F-1)の重量平均分子量は26,000、ビニル含量は30モル%、スチレン単位含有量は0質量%、重合体1分子あたりのSi原子の平均個数は4個であった。得られた官能基変性共役ジエン系重合体(F-1)にシクロヘキサン1750gを加えて濃度30質量%に希釈し、後述のカップリング反応で使用する官能基変性共役ジエン系重合体(F-1)の希釈溶液を得た。
(Step (2))
Subsequently, 700 g of the unmodified conjugated diene polymer (F'-1) obtained in the step (1) was charged into an autoclave having a capacity of 1 L, and nitrogen degassed while stirring at 60 ° C. for 3 hours. 0.9 g of t-butylperoxypivalate and 51 g of 3-mercaptopropyltriethoxysilane were added and reacted at 80 ° C. for 8 hours to obtain a functional group-modified conjugated diene polymer (F-1). Analysis of the obtained functional group-modified conjugated diene polymer (F-1) revealed that the main chain (a) of the conjugated diene graft polymer (G-1) described later contains the weight average molecular weight, vinyl content, and styrene unit. The amount can be calculated. The obtained functional group-modified conjugated diene polymer (F-1) has a weight average molecular weight of 26,000, a vinyl content of 30 mol%, a styrene unit content of 0% by mass, and Si atoms per polymer molecule. The average number was four. 1750 g of cyclohexane is added to the obtained functional group-modified conjugated diene polymer (F-1) to dilute it to a concentration of 30% by mass, and the functional group-modified conjugated diene polymer (F-1) used in the coupling reaction described later is used. ) Was obtained.
 (工程(3))
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン700gおよびsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)78gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、ブタジエン340gを逐次添加して、1時間重合し活性末端重合体(I-1)を得た。工程(3)における重合体溶液をサンプリングして分析することで、後述する共役ジエン系グラフト重合体(G-1)の側鎖(b)の重量平均分子量、ビニル含量、スチレン単位含有量を求めることができる。得られた活性末端重合体(I-1)の重量平均分子量は5,000、ビニル含量は10モル%、スチレン単位含有量は0質量%であった。
(Step (3))
A sufficiently dried 5 L autoclave is replaced with nitrogen, 700 g of cyclohexane and 78 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is set to 50 ° C. under stirring conditions. While controlling in this manner, 340 g of butadiene was sequentially added and polymerized for 1 hour to obtain an active terminal polymer (I-1). By sampling and analyzing the polymer solution in the step (3), the weight average molecular weight, vinyl content, and styrene unit content of the side chain (b) of the conjugated diene-based graft polymer (G-1) described later can be determined. be able to. The weight average molecular weight of the obtained active terminal polymer (I-1) was 5,000, the vinyl content was 10 mol%, and the styrene unit content was 0% by mass.
 (工程(4))
 続いて、工程(3)で得た活性末端重合体(I-1)を含む溶液に、テトラヒドロフラン7.0gおよび工程(2)で得た官能基変性共役ジエン系重合体(F-1)の希釈溶液1480gを添加し50℃で2時間カップリング反応をさせた。その後、sec-ブチルリチウム(10.5質量%シクロヘキサン溶液)190gを添加し6時間反応させて残存するアルコキシ基の一部を封止した。その後メタノール21gを添加して重合反応を停止させ、重合体溶液を得た。
(Step (4))
Subsequently, 7.0 g of tetrahydrofuran and the functional group-modified conjugated diene polymer (F-1) obtained in step (2) were added to the solution containing the active terminal polymer (I-1) obtained in step (3). 1480 g of the diluted solution was added, and the coupling reaction was carried out at 50 ° C. for 2 hours. Then, 190 g of sec-butyllithium (10.5 mass% cyclohexane solution) was added and reacted for 6 hours to seal a part of the remaining alkoxy groups. Then, 21 g of methanol was added to stop the polymerization reaction to obtain a polymer solution.
 (工程(5))
 得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、共役ジエン系グラフト重合体(G-1)を得た。得られた共役ジエン系グラフト重合体(G-1)の重量平均分子量は46,000、Mw/Mnは1.5、スチレン単位含有量は0質量%、カップリング率は95%、重合体1分子あたりのSi原子(分岐点)の平均個数は4個、重合体一分子あたりの官能基(c)の平均個数は0.4個、Si原子(分岐点)あたりの官能基(c)の平均個数は0.1個、重合体一分子あたりの側鎖(b)の平均本数は4本、Si原子あたり(分岐点)の側鎖(b)の平均本数は1本であった。実施例1において使用した各試薬の種類、量を表1に、得られた共役ジエン系グラフト重合体(G-1)の分子仕様、物性を表3に示す。
(Step (5))
Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated. After the washing was completed, the polymer solution was vacuum dried at 70 ° C. for 24 hours to obtain a conjugated diene-based graft polymer (G-1). The weight average molecular weight of the obtained conjugated diene graft polymer (G-1) is 46,000, Mw / Mn is 1.5, the styrene unit content is 0% by mass, the coupling rate is 95%, and the polymer 1 The average number of Si atoms (branch points) per molecule is 4, the average number of functional groups (c) per polymer molecule is 0.4, and the average number of functional groups (c) per Si atom (branch point). The average number was 0.1, the average number of side chains (b) per polymer molecule was 4, and the average number of side chains (b) per Si atom (branch point) was 1. Table 1 shows the types and amounts of each reagent used in Example 1, and Table 3 shows the molecular specifications and physical properties of the obtained conjugated diene-based graft polymer (G-1).
 [実施例2~14]
 工程(1)~(6)で使用する各試薬の種類、量を表1および2に記載されるように変更したこと以外は、実施例1と同じ方法によって、共役ジエン系グラフト重合体(G-2)~(G-14)を得た。得られた共役ジエン系グラフト重合体(G-2)~(G-14)の分子仕様、物性を表3および4に示す。
[Examples 2 to 14]
Conjugated diene graft polymer (G) by the same method as in Example 1 except that the type and amount of each reagent used in steps (1) to (6) were changed as shown in Tables 1 and 2. -2)-(G-14) were obtained. The molecular specifications and physical properties of the obtained conjugated diene-based graft polymers (G-2) to (G-14) are shown in Tables 3 and 4.
 [実施例15]
 (工程(1))
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1580gおよびsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)56gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、テトラヒドロフラン2.9gと、ブタジエン1250gを逐次添加して、1時間重合した。その後メタノール3.3gを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、未変性共役ジエン系重合体(F'-15)を得た。
[Example 15]
(Step (1))
A fully dried 5 L autoclave is replaced with nitrogen, 1580 g of cyclohexane and 56 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is 50 ° C. under stirring conditions. While controlling in this manner, 2.9 g of tetrahydrofuran and 1250 g of butadiene were sequentially added and polymerized for 1 hour. Then, 3.3 g of methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated. The polymer solution after washing was vacuum dried at 70 ° C. for 24 hours to obtain an unmodified conjugated diene polymer (F'-15).
 (工程(2))
 続いて、撹拌機、還流冷却器、滴下ロートおよび温度計を備えた5Lセパラブルフラスコに、工程(1)で得られた未変性共役ジエン系重合体(F'-15)700g、トルエン1400g、白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のトルエン溶液(白金原子として2.1×10-5モル)、および酢酸0.12gを仕込んだ。この中に、トリエトキシシラン34gを内温75~85℃で2時間かけて滴下した後、80℃で1時間撹拌した。撹拌終了後、減圧濃縮および濾過し、官能基変性共役ジエン系重合体(F-15)を得た。得られた官能基変性共役ジエン系重合体(F-15)の分析により、後述する共役ジエン系グラフト重合体(G-15)の主鎖(a)の重量平均分子量、ビニル含量、スチレン単位含有量を求めることができる。得られた官能基変性共役ジエン系重合体(F-15)の重量平均分子量は26,000、ビニル含量は30モル%、スチレン単位含有量は0質量%、重合体1分子あたりのSi原子の平均個数は4個であった。得られた官能基変性共役ジエン系重合体(F-15)にシクロヘキサン1710gを加えて濃度30質量%に希釈し、後述のカップリング反応で使用する官能基変性共役ジエン系重合体(F-15)の希釈溶液を得た。
(Step (2))
Subsequently, 700 g of the unmodified conjugated diene polymer (F'-15) obtained in the step (1) and 1400 g of toluene were placed in a 5 L separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer. A toluene solution of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (2.1 × 10 -5 mol as platinum atom) and 0.12 g of acetic acid were charged. To this, 34 g of triethoxysilane was added dropwise at an internal temperature of 75 to 85 ° C. over 2 hours, and then the mixture was stirred at 80 ° C. for 1 hour. After completion of stirring, the mixture was concentrated under reduced pressure and filtered to obtain a functional group-modified conjugated diene polymer (F-15). Analysis of the obtained functional group-modified conjugated diene polymer (F-15) revealed that the main chain (a) of the conjugated diene graft polymer (G-15) described later contains the weight average molecular weight, vinyl content, and styrene unit. The amount can be calculated. The obtained functional group-modified conjugated diene polymer (F-15) has a weight average molecular weight of 26,000, a vinyl content of 30 mol%, a styrene unit content of 0% by mass, and Si atoms per polymer molecule. The average number was four. 1710 g of cyclohexane is added to the obtained functional group-modified conjugated diene polymer (F-15) to dilute it to a concentration of 30% by mass, and the functional group-modified conjugated diene polymer (F-15) used in the coupling reaction described later is used. ) Was obtained.
 (工程(3))
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン700gおよびsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)78gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、ブタジエン340gを逐次添加して、1時間重合し活性末端重合体(I-15)を得た。工程(3)における重合体溶液をサンプリングして分析することで、後述する共役ジエン系グラフト重合体(G-15)の側鎖(b)の重量平均分子量、ビニル含量、スチレン単位含有量を求めることができる。得られた活性末端重合体(I-15)の重量平均分子量は5,000、ビニル含量は10モル%、スチレン単位含有量は0質量%であった。
(Step (3))
A sufficiently dried 5 L autoclave is replaced with nitrogen, 700 g of cyclohexane and 78 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is set to 50 ° C. under stirring conditions. While controlling in this manner, 340 g of butadiene was sequentially added and polymerized for 1 hour to obtain an active terminal polymer (I-15). By sampling and analyzing the polymer solution in the step (3), the weight average molecular weight, vinyl content, and styrene unit content of the side chain (b) of the conjugated diene-based graft polymer (G-15) described later can be determined. be able to. The weight average molecular weight of the obtained active terminal polymer (I-15) was 5,000, the vinyl content was 10 mol%, and the styrene unit content was 0% by mass.
 (工程(4))
 続いて、工程(3)で得た活性末端重合体(I-15)を含む溶液に、テトラヒドロフラン7.0gおよび工程(2)で得た官能基変性共役ジエン系重合体(F-15)の希釈溶液1480gを添加し50℃で2時間カップリング反応をさせた。その後、sec-ブチルリチウム(10.5質量%シクロヘキサン溶液)195gを添加し6時間反応させて残存するアルコキシ基の一部を封止した。その後メタノール21gを添加して重合反応を停止させ、重合体溶液を得た。
(Step (4))
Subsequently, 7.0 g of tetrahydrofuran and the functional group-modified conjugated diene polymer (F-15) obtained in step (2) were added to the solution containing the active terminal polymer (I-15) obtained in step (3). 1480 g of the diluted solution was added, and the coupling reaction was carried out at 50 ° C. for 2 hours. Then, 195 g of sec-butyllithium (10.5 mass% cyclohexane solution) was added and reacted for 6 hours to seal a part of the remaining alkoxy groups. Then, 21 g of methanol was added to stop the polymerization reaction to obtain a polymer solution.
 (工程(5))
 得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、共役ジエン系グラフト重合体(G-15)を得た。得られた共役ジエン系グラフト重合体(G-15)の重量平均分子量は46,000、Mw/Mnは1.5、スチレン単位含有量は0質量%、カップリング率は95%、重合体1分子あたりのSi原子(分岐点)の平均個数は4個、重合体一分子あたりの官能基(c)の平均個数は0.4個、Si原子(分岐点)あたりの官能基(c)の平均個数は0.1個、重合体一分子あたりの側鎖(b)の平均本数は4本、Si原子(分岐点)あたりの側鎖(b)の平均本数は1本であった。得られた共役ジエン系グラフト重合体(G-15)の分子仕様、物性を表4に示す。
(Step (5))
Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated. After the washing was completed, the polymer solution was vacuum dried at 70 ° C. for 24 hours to obtain a conjugated diene-based graft polymer (G-15). The weight average molecular weight of the obtained conjugated diene graft polymer (G-15) is 46,000, Mw / Mn is 1.5, the styrene unit content is 0% by mass, the coupling rate is 95%, and the polymer 1 The average number of Si atoms (branch points) per molecule is 4, the average number of functional groups (c) per polymer molecule is 0.4, and the average number of functional groups (c) per Si atom (branch point). The average number was 0.1, the average number of side chains (b) per polymer molecule was 4, and the average number of side chains (b) per Si atom (branch point) was 1. Table 4 shows the molecular specifications and physical properties of the obtained conjugated diene-based graft polymer (G-15).
 [実施例16]
 (工程(1))
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1580gおよびsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)56gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、テトラヒドロフラン2.9gと、ブタジエン1250gを逐次添加して、1時間重合した。その後メタノール3.3gを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、未変性共役ジエン系重合体(F'-16)を得た。
[Example 16]
(Step (1))
A fully dried 5 L autoclave is replaced with nitrogen, 1580 g of cyclohexane and 56 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is 50 ° C. under stirring conditions. While controlling in this manner, 2.9 g of tetrahydrofuran and 1250 g of butadiene were sequentially added and polymerized for 1 hour. Then, 3.3 g of methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated. The polymer solution after washing was vacuum dried at 70 ° C. for 24 hours to obtain an unmodified conjugated diene polymer (F'-16).
 (工程(2))
 続いて、撹拌機、還流冷却器、滴下ロートおよび温度計を備えた5Lセパラブルフラスコに、工程(1)で得られた未変性共役ジエン系重合体(F'-16)700g、シクロヘキサン1400gを仕込み、窒素置換を行った。ここに、ホウ酸トリメチル22gおよびトリエチルアミンボラン1.8gを加え80℃で10時間反応を行った。反応終了後、減圧濃縮および濾過し、官能基変性共役ジエン系重合体(F-16)を得た。得られた官能基変性共役ジエン系重合体(F-16)の分析により、後述する共役ジエン系グラフト重合体(G-16)の主鎖(a)の重量平均分子量、ビニル含量、スチレン単位含有量を求めることができる。得られた官能基変性共役ジエン系重合体(F-16)の重量平均分子量は26,000、ビニル含量は30モル%、スチレン単位含有量は0質量%、重合体1分子あたりのB原子の平均個数は4個であった。得られた官能基変性共役ジエン系重合体(F-16)にシクロヘキサン1680gを加えて濃度30質量%に希釈し、後述のカップリング反応で使用する官能基変性共役ジエン系重合体(F-16)の希釈溶液を得た。
(Step (2))
Subsequently, 700 g of the unmodified conjugated diene polymer (F'-16) and 1400 g of cyclohexane obtained in the step (1) were placed in a 5 L separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer. It was charged and replaced with nitrogen. To this, 22 g of trimethyl borate and 1.8 g of triethylamine borane were added, and the reaction was carried out at 80 ° C. for 10 hours. After completion of the reaction, the mixture was concentrated under reduced pressure and filtered to obtain a functional group-modified conjugated diene polymer (F-16). Analysis of the obtained functional group-modified conjugated diene polymer (F-16) revealed that the main chain (a) of the conjugated diene graft polymer (G-16) described later contains the weight average molecular weight, vinyl content, and styrene unit. The amount can be calculated. The obtained functional group-modified conjugated diene polymer (F-16) has a weight average molecular weight of 26,000, a vinyl content of 30 mol%, a styrene unit content of 0% by mass, and B atoms per molecule of the polymer. The average number was four. 1680 g of cyclohexane is added to the obtained functional group-modified conjugated diene polymer (F-16) to dilute it to a concentration of 30% by mass, and the functional group-modified conjugated diene polymer (F-16) used in the coupling reaction described later is used. ) Was obtained.
 (工程(3))
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン700gおよびsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)78gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、ブタジエン340gを逐次添加して、1時間重合し活性末端重合体(I-16)を得た。工程(3)における重合体溶液をサンプリングして分析することで、後述する共役ジエン系グラフト重合体(G-16)の側鎖(b)の重量平均分子量、ビニル含量、スチレン単位含有量を求めることができる。得られた活性末端重合体(I-16)の重量平均分子量は5,000、ビニル含量は10モル%、スチレン単位含有量は0質量%であった。
(Step (3))
A sufficiently dried 5 L autoclave is replaced with nitrogen, 700 g of cyclohexane and 78 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is set to 50 ° C. under stirring conditions. While controlling in this manner, 340 g of butadiene was sequentially added and polymerized for 1 hour to obtain an active terminal polymer (I-16). By sampling and analyzing the polymer solution in the step (3), the weight average molecular weight, vinyl content, and styrene unit content of the side chain (b) of the conjugated diene-based graft polymer (G-16) described later can be determined. be able to. The weight average molecular weight of the obtained active terminal polymer (I-16) was 5,000, the vinyl content was 10 mol%, and the styrene unit content was 0% by mass.
 (工程(4))
 続いて、工程(3)で得た活性末端重合体(I-16)を含む溶液に、テトラヒドロフラン7.0gおよび工程(2)で得た官能基変性共役ジエン系重合体(F-16)の希釈溶液1480gを添加し50℃で2時間カップリング反応をさせた。その後、sec-ブチルリチウム(10.5質量%シクロヘキサン溶液)195gを添加し6時間反応させて残存するアルコキシ基の一部を封止した。その後メタノール21gを添加して重合反応を停止させ、重合体溶液を得た。
(Step (4))
Subsequently, 7.0 g of tetrahydrofuran and the functional group-modified conjugated diene polymer (F-16) obtained in step (2) were added to the solution containing the active terminal polymer (I-16) obtained in step (3). 1480 g of the diluted solution was added, and the coupling reaction was carried out at 50 ° C. for 2 hours. Then, 195 g of sec-butyllithium (10.5 mass% cyclohexane solution) was added and reacted for 6 hours to seal a part of the remaining alkoxy groups. Then, 21 g of methanol was added to stop the polymerization reaction to obtain a polymer solution.
 (工程(5))
 得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、共役ジエン系グラフト重合体(G-16)を得た。得られた共役ジエン系グラフト重合体(G-16)の重量平均分子量は46,000、Mw/Mnは1.5、スチレン単位含有量は0質量%、カップリング率は95%、重合体1分子あたりのB原子(分岐点)の平均個数は4個、重合体一分子あたりの官能基(c)の平均個数は0.4個、B原子(分岐点)あたりの官能基(c)の平均個数は0.1個、重合体一分子あたりの側鎖(b)の平均本数は4本、B原子(分岐点)あたりの側鎖(b)の平均本数は1本であった。得られた共役ジエン系グラフト重合体(G-16)の分子仕様、物性を表4に示す。
(Step (5))
Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated. After the washing was completed, the polymer solution was vacuum dried at 70 ° C. for 24 hours to obtain a conjugated diene-based graft polymer (G-16). The weight average molecular weight of the obtained conjugated diene graft polymer (G-16) is 46,000, Mw / Mn is 1.5, the styrene unit content is 0% by mass, the coupling rate is 95%, and the polymer 1 The average number of B atoms (branch points) per molecule is 4, the average number of functional groups (c) per polymer molecule is 0.4, and the average number of functional groups (c) per B atom (branch point). The average number was 0.1, the average number of side chains (b) per polymer molecule was 4, and the average number of side chains (b) per B atom (branch point) was 1. Table 4 shows the molecular specifications and physical properties of the obtained conjugated diene-based graft polymer (G-16).
 [比較例1]
 (工程(1))
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1580gおよびsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)56gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、テトラヒドロフラン2.9gと、ブタジエン1250gを逐次添加して、1時間重合した。その後メタノール3.3gを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、未変性共役ジエン系重合体(F'-17)を得た。
[Comparative Example 1]
(Step (1))
A fully dried 5 L autoclave is replaced with nitrogen, 1580 g of cyclohexane and 56 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is 50 ° C. under stirring conditions. While controlling in this manner, 2.9 g of tetrahydrofuran and 1250 g of butadiene were sequentially added and polymerized for 1 hour. Then, 3.3 g of methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated. The polymer solution after washing was vacuum dried at 70 ° C. for 24 hours to obtain an unmodified conjugated diene polymer (F'-17).
 (工程(2))
 続いて、撹拌機、還流冷却器、滴下ロートおよび温度計を備えた5Lセパラブルフラスコに、工程(1)で得られた未変性共役ジエン系重合体(F'-18)700g、シクロヘキサン1400g、白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体の2%キシレン溶液(Petrarch System社製「PC072」)5.6mL、トリメチルクロロシラン120gを仕込んで、終夜でこれらを撹拌した。その後、この中に、ジメチルクロロシラン20gを滴下した後に、内温が70℃になるまで徐々に加熱し、内温を70℃に保ったまま還流下で24時間撹拌した。撹拌終了後、減圧濃縮および濾過し、官能基変性共役ジエン系重合体(F-17)を得た。得られた官能基変性共役ジエン系重合体(F-17)の分析により、後述する共役ジエン系グラフト重合体(G-17)の主鎖(a)の重量平均分子量、ビニル含量、スチレン単位含有量を求めることができる。得られた官能基変性共役ジエン系重合体(F-17)の重量平均分子量は26,000、ビニル含量は30モル%、スチレン単位含有量は0質量%、重合体1分子あたりのSi原子の平均個数は4個であった。得られた官能基変性共役ジエン系重合体(F-17)にシクロヘキサン1680gを加えて濃度30質量%に希釈し、後述のカップリング反応で使用する官能基変性共役ジエン系重合体(F-17)の希釈溶液を得た。
(Step (2))
Subsequently, 700 g of the unmodified conjugated diene polymer (F'-18) obtained in the step (1), 1400 g of cyclohexane, were placed in a 5 L separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer. Add 5.6 mL of a 2% xylene solution of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex ("PC072" manufactured by Polymer System) and 120 g of trimethylchlorosilane, and prepare them overnight. Stirred. Then, 20 g of dimethylchlorosilane was added dropwise thereto, and then the mixture was gradually heated until the internal temperature reached 70 ° C., and the mixture was stirred under reflux while maintaining the internal temperature at 70 ° C. for 24 hours. After completion of stirring, the mixture was concentrated under reduced pressure and filtered to obtain a functional group-modified conjugated diene polymer (F-17). Analysis of the obtained functional group-modified conjugated diene polymer (F-17) revealed that the main chain (a) of the conjugated diene graft polymer (G-17) described later contains the weight average molecular weight, vinyl content, and styrene unit. The amount can be calculated. The obtained functional group-modified conjugated diene polymer (F-17) has a weight average molecular weight of 26,000, a vinyl content of 30 mol%, a styrene unit content of 0% by mass, and Si atoms per polymer molecule. The average number was four. 1680 g of cyclohexane is added to the obtained functional group-modified conjugated diene polymer (F-17) to dilute it to a concentration of 30% by mass, and the functional group-modified conjugated diene polymer (F-17) used in the coupling reaction described later is used. ) Was obtained.
 (工程(3))
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン700gおよびsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)78gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、ブタジエン340gを逐次添加して、1時間重合し活性末端重合体(I-17)を得た。工程(3)における重合体溶液をサンプリングして分析することで、後述する共役ジエン系グラフト重合体(G-17)の側鎖(b)の重量平均分子量、ビニル含量、スチレン単位含有量を求めることができる。得られた活性末端重合体(I-17)の重量平均分子量は5,000、ビニル含量は10モル%、スチレン単位含有量は0質量%であった。
(Step (3))
A sufficiently dried 5 L autoclave is replaced with nitrogen, 700 g of cyclohexane and 78 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is set to 50 ° C. under stirring conditions. While controlling in this manner, 340 g of butadiene was sequentially added and polymerized for 1 hour to obtain an active terminal polymer (I-17). By sampling and analyzing the polymer solution in the step (3), the weight average molecular weight, vinyl content, and styrene unit content of the side chain (b) of the conjugated diene-based graft polymer (G-17) described later can be determined. be able to. The weight average molecular weight of the obtained active terminal polymer (I-17) was 5,000, the vinyl content was 10 mol%, and the styrene unit content was 0% by mass.
 (工程(4))
 続いて、工程(3)で得た活性末端重合体(I-17)を含む溶液に、テトラヒドロフラン7.0gおよび工程(2)で得た官能基変性共役ジエン系重合体(F-17)の希釈溶液1480gを添加し50℃で2時間カップリング反応をさせた。その後、sec-ブチルリチウム(10.5質量%シクロヘキサン溶液)195gを添加し6時間反応させた。その後メタノール21gを添加して重合反応を停止させ、重合体溶液を得た。
(Step (4))
Subsequently, 7.0 g of tetrahydrofuran and the functional group-modified conjugated diene polymer (F-17) obtained in step (2) were added to the solution containing the active terminal polymer (I-17) obtained in step (3). 1480 g of the diluted solution was added, and the coupling reaction was carried out at 50 ° C. for 2 hours. Then, 195 g of sec-butyllithium (10.5 mass% cyclohexane solution) was added and reacted for 6 hours. Then, 21 g of methanol was added to stop the polymerization reaction to obtain a polymer solution.
 (工程(5))
 得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、共役ジエン系グラフト重合体(G-17)を得た。得られた共役ジエン系グラフト重合体(G-17)の重量平均分子量は46,000、Mw/Mnは1.5、スチレン単位含有量は0質量%、カップリング率は99%、重合体1分子あたりのSi原子(分岐点)の平均個数は4個、重合体一分子あたりの官能基(c)の平均個数は0個、Si原子(分岐点)あたりの官能基(c)の平均個数は0個、重合体一分子あたりの側鎖(b)の平均本数は4本、Si原子(分岐点)あたりの側鎖(b)の平均本数は1本であった。得られた共役ジエン系グラフト重合体(G-17)の分子仕様、物性を表4に示す。
(Step (5))
Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated. After the washing was completed, the polymer solution was vacuum dried at 70 ° C. for 24 hours to obtain a conjugated diene-based graft polymer (G-17). The weight average molecular weight of the obtained conjugated diene graft polymer (G-17) is 46,000, Mw / Mn is 1.5, the styrene unit content is 0% by mass, the coupling rate is 99%, and the polymer 1 The average number of Si atoms (branch points) per molecule is 4, the average number of functional groups (c) per polymer molecule is 0, and the average number of functional groups (c) per Si atom (branch point). The average number of side chains (b) per molecule of the polymer was 4, and the average number of side chains (b) per Si atom (branch point) was 1. Table 4 shows the molecular specifications and physical properties of the obtained conjugated diene-based graft polymer (G-17).
 [比較例2]
 (工程(1))
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1580gおよびsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)56gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、テトラヒドロフラン2.9gと、ブタジエン1250gを逐次添加して、1時間重合した。その後メタノール3.3gを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、未変性共役ジエン系重合体(F'-18)を得た。
[Comparative Example 2]
(Step (1))
A fully dried 5 L autoclave is replaced with nitrogen, 1580 g of cyclohexane and 56 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is 50 ° C. under stirring conditions. While controlling in this manner, 2.9 g of tetrahydrofuran and 1250 g of butadiene were sequentially added and polymerized for 1 hour. Then, 3.3 g of methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated. The polymer solution after washing was vacuum dried at 70 ° C. for 24 hours to obtain an unmodified conjugated diene polymer (F'-18).
 (工程(2))
 続いて、容量1Lのオートクレーブ中に、工程(1)で得られた未変性共役ジエン系重合体(F'-18)700gを仕込み、60℃で3時間撹拌をしながら窒素脱気をした。t-ブチルパーオキシピバレート0.9gと3-メルカプトプロピルトリエトキシシラン51gを添加し、80℃で8時間反応させて、官能基変性共役ジエン系重合体(F-18)を得た。得られた官能基変性共役ジエン系重合体(F-18)の分析により、後述する共役ジエン系グラフト重合体(G-18)の主鎖(a)の重量平均分子量、ビニル含量、スチレン単位含有量を求めることができる。得られた官能基変性共役ジエン系重合体(F-18)の重量平均分子量は26,000、ビニル含量は30モル%、スチレン単位含有量は0質量%、重合体1分子あたりのSi原子の平均個数は4個であった。得られた官能基変性共役ジエン系重合体(F-18)にシクロヘキサン1750gを加えて濃度30質量%に希釈し、後述のカップリング反応で使用する官能基変性共役ジエン系重合体(F-18)の希釈溶液を得た。
(Step (2))
Subsequently, 700 g of the unmodified conjugated diene polymer (F'-18) obtained in the step (1) was charged into an autoclave having a capacity of 1 L, and nitrogen degassed while stirring at 60 ° C. for 3 hours. 0.9 g of t-butylperoxypivalate and 51 g of 3-mercaptopropyltriethoxysilane were added and reacted at 80 ° C. for 8 hours to obtain a functional group-modified conjugated diene polymer (F-18). Analysis of the obtained functional group-modified conjugated diene polymer (F-18) revealed that the main chain (a) of the conjugated diene graft polymer (G-18) described later contains the weight average molecular weight, vinyl content, and styrene unit. The amount can be calculated. The obtained functional group-modified conjugated diene polymer (F-18) has a weight average molecular weight of 26,000, a vinyl content of 30 mol%, a styrene unit content of 0% by mass, and Si atoms per polymer molecule. The average number was four. 1750 g of cyclohexane is added to the obtained functional group-modified conjugated diene polymer (F-18) to dilute it to a concentration of 30% by mass, and the functional group-modified conjugated diene polymer (F-18) used in the coupling reaction described later is used. ) Was obtained.
 (工程(3))
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン700gおよびsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)78gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、ブタジエン340gを逐次添加して、1時間重合し活性末端重合体(I-18)を得た。工程(3)における重合体溶液をサンプリングして分析することで、後述する共役ジエン系グラフト重合体(G-18)の側鎖(b)の重量平均分子量、ビニル含量、スチレン単位含有量を求めることができる。得られた活性末端重合体(I-18)の重量平均分子量は5,000、ビニル含量は10モル%、スチレン単位含有量は0質量%であった。
(Step (3))
A sufficiently dried 5 L autoclave is replaced with nitrogen, 700 g of cyclohexane and 78 g of sec-butyllithium (10.5 mass% cyclohexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is set to 50 ° C. under stirring conditions. While controlling in this manner, 340 g of butadiene was sequentially added and polymerized for 1 hour to obtain an active terminal polymer (I-18). By sampling and analyzing the polymer solution in the step (3), the weight average molecular weight, vinyl content, and styrene unit content of the side chain (b) of the conjugated diene-based graft polymer (G-18) described later can be determined. be able to. The weight average molecular weight of the obtained active terminal polymer (I-18) was 5,000, the vinyl content was 10 mol%, and the styrene unit content was 0% by mass.
 (工程(4))
 続いて、工程(3)で得た活性末端重合体(I-18)を含む溶液にテトラヒドロフラン7.0gおよび工程(2)で得た官能基変性共役ジエン系重合体(F-18)の希釈溶液1480gを添加し50℃で2時間カップリング反応をさせた。その後、メタノール10gを添加して重合反応を停止させ、重合体溶液を得た。
(Step (4))
Subsequently, 7.0 g of tetrahydrofuran and the functional group-modified conjugated diene polymer (F-18) obtained in step (2) were diluted in a solution containing the active terminal polymer (I-18) obtained in step (3). 1480 g of the solution was added and the coupling reaction was carried out at 50 ° C. for 2 hours. Then, 10 g of methanol was added to stop the polymerization reaction to obtain a polymer solution.
 (工程(5))
 得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥したところ、共役ジエン系グラフト重合体(G-18)は不溶化しており、ゲル分率は80質量%以上であった。得られた共役ジエン系グラフト重合体(G-18)の重量平均分子量は46,000、Mw/Mnは1.5、スチレン単位含有量は0質量%、カップリング率は95%、重合体1分子あたりのSi原子(分岐点)の平均個数は4個、重合体一分子あたりの官能基(c)の平均個数は8個、Si原子(分岐点)あたりの官能基(c)の平均個数は1.0個、重合体一分子あたりの側鎖(b)の平均本数は4本、Si原子(分岐点)あたりの側鎖(b)の平均本数は1本であった(重量平均分子量、Mw/Mn、ビニル含量、スチレン単位含有量、重合体1分子あたりのSi原子(分岐点)の平均個数、重合体一分子あたりの官能基(c)の平均個数、Si原子(分岐点)あたりの平均個数は、工程(4)で得られた重合体溶液を常温、常圧下で乾燥して得られた重合体を測定した値である)。得られた共役ジエン系グラフト重合体(G-18)の分子仕様、物性を表4に示す。
(Step (5))
Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated. When the polymer solution after washing was vacuum-dried at 70 ° C. for 24 hours, the conjugated diene-based graft polymer (G-18) was insolubilized and the gel fraction was 80% by mass or more. The weight average molecular weight of the obtained conjugated diene graft polymer (G-18) is 46,000, Mw / Mn is 1.5, the styrene unit content is 0% by mass, the coupling rate is 95%, and the polymer 1 The average number of Si atoms (branch points) per molecule is 4, the average number of functional groups (c) per polymer molecule is 8, and the average number of functional groups (c) per Si atom (branch point). The average number of side chains (b) per polymer molecule was 1.0, and the average number of side chains (b) per Si atom (branch point) was 1 (weight average molecular weight). , Mw / Mn, vinyl content, styrene unit content, average number of Si atoms (branch points) per polymer molecule, average number of functional groups (c) per polymer molecule, Si atoms (branch points) The average number per unit is a value obtained by measuring the polymer obtained by drying the polymer solution obtained in step (4) at room temperature and under normal pressure). Table 4 shows the molecular specifications and physical properties of the obtained conjugated diene-based graft polymer (G-18).
 実施例1~14における工程(1)~(5)で使用した各試薬の種類、量を以下の表1および2に、実施例1~16および比較例1、2で得られた共役ジエン系グラフト重合体の物性を表3および4に示す。 The types and amounts of the reagents used in the steps (1) to (5) in Examples 1 to 14 are shown in Tables 1 and 2 below, and the conjugated diene systems obtained in Examples 1 to 16 and Comparative Examples 1 and 2 are shown. The physical characteristics of the graft polymer are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
表1および2中、略字はそれぞれ下記を示す
SBL:sec-ブチルリチウム
THF:テトラヒドロフラン
t-BPOP:t-ブチルパーオキシピバレート
Bd:1,3-ブタジエン
Ip:イソプレン
St:スチレン
MPTES:(3-メルカプトプロピル)トリエトキシシラン
MPTMS:(3-メルカプトプロピル)トリメトキシシラン
In Tables 1 and 2, the abbreviations are as follows: SBL: sec-butyllithium THF: tetrahydrofurant-BPOP: t-butylperoxypivalate Bd: 1,3-butadieneIp: isoprene St: styrene MPTES: (3- Mercaptopropyl) Triethoxysilane MFPS: (3-mercaptopropyl) Trimethoxysilane
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表3および4より、Si原子(分岐点)あたりの官能基(c)の平均個数(X/Y)が0<(X/Y)<1の範囲である実施例1~16の共役ジエン系グラフト重合体は、縮合反応性が高いことから、極性材料との親和性に優れることがわかる。さらに、共役ジエン系グラフト重合体を含む洗浄終了後の重合体溶液を乾燥する工程において不溶分の比率が小さいことから、高い安定性を有することがわかる。
 一方で、Si原子(分岐点)あたりの官能基(c)の平均個数(X/Y)が0である比較例1の共役ジエン系グラフト重合体は、縮合反応性が低いことから、極性材料との親和性に劣る。また、Si原子(分岐点)あたりの官能基(c)の平均個数(X/Y)が1<(X/Y)の範囲である比較例2の共役ジエン系グラフト重合体は、重合体溶液を乾燥する工程において不溶分の比率が多く取出しが困難であった。
From Tables 3 and 4, the conjugated diene system of Examples 1 to 16 in which the average number (X / Y) of the functional groups (c) per Si atom (branch point) is in the range of 0 <(X / Y) <1. Since the graft polymer has a high condensation reactivity, it can be seen that it has an excellent affinity with polar materials. Furthermore, it can be seen that the polymer solution containing the conjugated diene-based graft polymer has high stability because the ratio of the insoluble matter is small in the step of drying the polymer solution after the completion of washing.
On the other hand, the conjugated diene-based graft polymer of Comparative Example 1 in which the average number (X / Y) of the functional groups (c) per Si atom (branch point) is 0 has a low condensation reactivity, and thus is a polar material. Inferior in affinity with. Further, the conjugated diene-based graft polymer of Comparative Example 2 in which the average number (X / Y) of the functional groups (c) per Si atom (branch point) is in the range of 1 <(X / Y) is a polymer solution. In the process of drying the mixture, the ratio of insoluble matter was high and it was difficult to take it out.
 本発明の共役ジエン系グラフト重合体は、極性材料との親和性に優れるとともに、高い安定性を有することから、自動車用内外装品、電気・電子部品、包装材料、スポーツ用品、日用雑貨、ラミネート材、伸縮材料、各種ゴム製品、医療用品、各種接着剤、各種塗装プライマーなど幅広い分野に有効に使用することができる。 The conjugated diene-based graft polymer of the present invention has excellent affinity with polar materials and has high stability. Therefore, interior and exterior parts for automobiles, electrical / electronic parts, packaging materials, sporting goods, daily miscellaneous goods, etc. It can be effectively used in a wide range of fields such as laminating materials, elastic materials, various rubber products, medical products, various adhesives, and various coating primers.

Claims (11)

  1.  共役ジエン単位を含む重合体からなる主鎖(a)に、
     分岐点である価数が3以上のヘテロ原子1つを介して、共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む重合体からなる側鎖(b)が結合した共役ジエン系グラフト重合体であり、
     前記主鎖(a)は、直接または連結鎖を通じて分岐点と結合し、
     前記側鎖(b)は直接分岐点に結合しており、
     前記ヘテロ原子がSi、Sn、Ge、Pb、P、B、およびAlからなる群より選ばれる少なくとも1つであり、
     前記分岐点の少なくとも1つには、アルコキシ基および水酸基からなる群より選ばれる少なくとも1つの官能基(c)が直接結合しており、
     共役ジエン系グラフト重合体1分子あたりの前記分岐点に直接結合する官能基(c)の平均個数Xと共役ジエン系グラフト重合体1分子あたりの分岐点の平均個数Yが下記式(2);
     0<(X/Y)<1  (2)
    の関係を満たす、
    共役ジエン系グラフト重合体。
    In the main chain (a) composed of a polymer containing a conjugated diene unit,
    A side chain (b) consisting of a polymer containing at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units via one heteroatom having a valence of 3 or more, which is a branching point. ) Is a conjugated diene-based graft polymer bonded to it.
    The main chain (a) is connected to the branch point either directly or through a connecting chain.
    The side chain (b) is directly connected to the branch point.
    The heteroatom is at least one selected from the group consisting of Si, Sn, Ge, Pb, P, B, and Al.
    At least one functional group (c) selected from the group consisting of an alkoxy group and a hydroxyl group is directly bonded to at least one of the branch points.
    The average number X of functional groups (c) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer and the average number Y of branch points per molecule of the conjugated diene-based graft polymer are the following formula (2);
    0 <(X / Y) <1 (2)
    Satisfy the relationship,
    Conjugated diene graft polymer.
  2.  共役ジエン系グラフト重合体1分子あたりの前記分岐点に直接結合する官能基(c)の平均個数Xが、下記式(3);
     0<X≦10  (3)
    の関係を満たす、請求項1に記載の共役ジエン系グラフト重合体。
    The average number X of the functional groups (c) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer is the following formula (3);
    0 <X ≦ 10 (3)
    The conjugated diene-based graft polymer according to claim 1, which satisfies the above relationship.
  3.  前記ヘテロ原子がSiである、請求項1または2に記載の共役ジエン系グラフト重合体。 The conjugated diene-based graft polymer according to claim 1 or 2, wherein the heteroatom is Si.
  4.  共役ジエン系グラフト重合体1分子あたりの前記分岐点に直接結合する側鎖(b)の平均本数Wと共役ジエン系グラフト重合体1分子あたりの分岐点の平均個数Yが下記式(4);
     0.5≦(W/Y)  (4)
    の関係を満たす、請求項1~3のいずれか1項に記載の共役ジエン系グラフト重合体。
    The average number W of side chains (b) directly bonded to the branch point per molecule of the conjugated diene-based graft polymer and the average number Y of branch points per molecule of the conjugated diene-based graft polymer are the following formula (4);
    0.5 ≤ (W / Y) (4)
    The conjugated diene-based graft polymer according to any one of claims 1 to 3, which satisfies the above relationship.
  5.  (A-1)下記式(I)で表される活性末端重合体と
    P-X  (I)
    (式(I)中、Pは共役ジエン単位および芳香族ビニル化合物単位からなる群より選ばれる少なくとも1つの単量体単位を含む重合体鎖を示し、Xはアニオン重合の活性末端を示す。)、
    下記式(II)で示される官能基を含む部分を分岐鎖として有する官能基変性共役ジエン系重合体とを反応させて共役ジエン系グラフト重合体を作製する工程
    Figure JPOXMLDOC01-appb-C000001
    (式(II)中、Vは、アルコキシ基または水酸基を示し、ZはSi、Sn、Ge、Pb、P、B、またはAlであり、R1は炭素数6~12のアリール基、炭素数1~12のアルキル基、または水素原子を示し、Nは前記Zの価数を示し、nは下記式(5)を満たす整数であり;
    1≦n≦N-1  (5)
    nが2以上の場合、Vは同一でも異なっていてもよく、N-nが2以上の場合、R1は同一でも異なっていてもよく、分岐鎖が主鎖に対し、複数含まれる場合には、Zは同一でも異なっていてもよい。);および
    (B)得られた共役ジエン系グラフト重合体を回収する工程;
    を含む、請求項1に記載の共役ジエン系グラフト重合体の製造方法。
    (A-1) The active terminal polymer represented by the following formula (I) and PX (I)
    (In formula (I), P represents a polymer chain containing at least one monomer unit selected from the group consisting of conjugated diene units and aromatic vinyl compound units, and X represents the active end of anionic polymerization). ,
    A step of producing a conjugated diene-based graft polymer by reacting with a functional group-modified conjugated diene-based polymer having a portion containing a functional group represented by the following formula (II) as a branched chain.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (II), V represents an alkoxy group or a hydroxyl group, Z is Si, Sn, Ge, Pb, P, B, or Al, and R 1 is an aryl group having 6 to 12 carbon atoms and a carbon number of carbons. It represents an alkyl group of 1 to 12 or a hydrogen atom, N represents the valence of Z, and n is an integer satisfying the following formula (5);
    1 ≦ n ≦ N-1 (5)
    When n is 2 or more, V may be the same or different, and when Nn is 2 or more, R 1 may be the same or different, and when a plurality of branched chains are contained in the main chain. Z may be the same or different. ); And (B) Step of recovering the obtained conjugated diene-based graft polymer;
    The method for producing a conjugated diene-based graft polymer according to claim 1.
  6.  さらに、工程(B)の前において、
    (A-2)前記共役ジエン系グラフト重合体中のアルコキシ基および水酸基からなる群より選ばれる少なくとも1つの残存する官能基の一部を不活性化する工程;
    を含む、請求項5に記載の共役ジエン系グラフト重合体の製造方法。
    Further, before the step (B),
    (A-2) A step of inactivating a part of at least one remaining functional group selected from the group consisting of an alkoxy group and a hydroxyl group in the conjugated diene-based graft polymer;
    5. The method for producing a conjugated diene-based graft polymer according to claim 5.
  7.  前記式(II)中のZがSiである、請求項5または6に記載の共役ジエン系グラフト重合体の製造方法。 The method for producing a conjugated diene-based graft polymer according to claim 5 or 6, wherein Z in the formula (II) is Si.
  8.  前記式(II)中の官能基Vがアルコキシ基である、請求項5~7のいずれか1項に記載の共役ジエン系グラフト重合体の製造方法。 The method for producing a conjugated diene-based graft polymer according to any one of claims 5 to 7, wherein the functional group V in the formula (II) is an alkoxy group.
  9.  請求項5~8のいずれか1項に記載の製造方法により得られる、請求項1~4のいずれか1項に記載の共役ジエン系グラフト重合体。 The conjugated diene-based graft polymer according to any one of claims 1 to 4, which is obtained by the production method according to any one of claims 5 to 8.
  10.  請求項1~4および9のいずれか1項に記載の共役ジエン系グラフト重合体を含有する、重合体組成物。 A polymer composition containing the conjugated diene-based graft polymer according to any one of claims 1 to 4 and 9.
  11.  請求項10に記載の重合体組成物を成形してなる成形品。 A molded product obtained by molding the polymer composition according to claim 10.
PCT/JP2020/035407 2019-09-20 2020-09-18 Conjugated diene graft polymer and method for producing same WO2021054427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021546967A JP7240787B2 (en) 2019-09-20 2020-09-18 Conjugated diene-based graft polymer and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-172168 2019-09-20
JP2019172168 2019-09-20

Publications (1)

Publication Number Publication Date
WO2021054427A1 true WO2021054427A1 (en) 2021-03-25

Family

ID=74883260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035407 WO2021054427A1 (en) 2019-09-20 2020-09-18 Conjugated diene graft polymer and method for producing same

Country Status (3)

Country Link
JP (1) JP7240787B2 (en)
TW (1) TW202116837A (en)
WO (1) WO2021054427A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308932A (en) * 2001-02-01 2002-10-23 Kuraray Co Ltd Block copolymer and thermoplastic resin composition
WO2008004686A1 (en) * 2006-07-07 2008-01-10 The Yokohama Rubber Co., Ltd. Modified diene rubber and rubber composition containing the same
JP2017031363A (en) * 2015-08-05 2017-02-09 横浜ゴム株式会社 Rubber composition and tire
JP2017128647A (en) * 2016-01-19 2017-07-27 株式会社ブリヂストン Method for producing rubber composition, rubber composition, and tire
WO2018034195A1 (en) * 2016-08-19 2018-02-22 旭化成株式会社 Modified conjugated diene polymer, rubber composition thereof, and tire
WO2018043700A1 (en) * 2016-09-02 2018-03-08 株式会社クラレ Rubber composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2248386T3 (en) * 2000-08-18 2006-03-16 Bridgestone Corporation RUBBER AND VULCANIZED COMPOSITIONS THAT INCLUDE A RAMMED POLYMER IN PEINE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308932A (en) * 2001-02-01 2002-10-23 Kuraray Co Ltd Block copolymer and thermoplastic resin composition
WO2008004686A1 (en) * 2006-07-07 2008-01-10 The Yokohama Rubber Co., Ltd. Modified diene rubber and rubber composition containing the same
JP2017031363A (en) * 2015-08-05 2017-02-09 横浜ゴム株式会社 Rubber composition and tire
JP2017128647A (en) * 2016-01-19 2017-07-27 株式会社ブリヂストン Method for producing rubber composition, rubber composition, and tire
WO2018034195A1 (en) * 2016-08-19 2018-02-22 旭化成株式会社 Modified conjugated diene polymer, rubber composition thereof, and tire
WO2018043700A1 (en) * 2016-09-02 2018-03-08 株式会社クラレ Rubber composition

Also Published As

Publication number Publication date
TW202116837A (en) 2021-05-01
JP7240787B2 (en) 2023-03-16
JPWO2021054427A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
CN109923152B (en) Method for producing conjugated diene rubber
JP5716736B2 (en) Conjugated diene rubber, rubber composition, rubber cross-linked product, tire, and method for producing conjugated diene rubber
JP5845883B2 (en) Method for producing modified conjugated diene rubber composition, method for producing rubber composition, method for producing crosslinked rubber, and method for producing tire
KR20060045835A (en) Process for producing modified polymer rubber
WO2014050341A1 (en) Method for producing conjugated diene rubber
WO2012086496A1 (en) Conjugated diene rubber, rubber composition, rubber crosslink product, and tire
JP2004331940A (en) Modified diene polymer rubber and its production method
JP7273982B2 (en) Conjugated diene-based graft polymer and method for producing the same
WO2019069904A1 (en) Modified liquid diene-based rubber
JP6421521B2 (en) Conjugated diene polymer and rubber composition
TW200920755A (en) Method for producing conjugated diene polymer, conjugated diene polymer, and polymer composition
EP3655442B1 (en) Star-branched diene rubber
WO2020067336A1 (en) Polyfunctional vinyl aromatic copolymer and method for manufacturing same, copolymer rubber obtained therefrom, rubber composition, rubber crosslinked material, and tire member
WO2021054429A1 (en) Rubber composition, tire rubber composition, and shoe sole rubber composition
JP7329622B2 (en) Hydrogenated conjugated diene-based graft polymer and method for producing the same
JP7240787B2 (en) Conjugated diene-based graft polymer and method for producing the same
WO1996016091A1 (en) Curable resin and composition
WO2022044633A1 (en) Polymer composition containing modified polymer having boron-containing functional group, and method for producing same
JP5559160B2 (en) Low chlorine polybutadiene
JP2022051051A (en) Conjugated diene-based graft polymer, polymer composition, molded article, and cross-liked matter
JPH051298B2 (en)
JP2003119223A (en) Coupled diene polymer modified with electrophilic group
JP7458204B2 (en) Method for producing macromonomers, macromonomers, methods for producing graft copolymers using the same, polymer compositions, and molded articles
JP2022051052A (en) Conjugated diene-based graft polymer, and method of producing the same
JPH06228246A (en) Rubber-modified impact-resistant styrene-based resin composition and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546967

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866220

Country of ref document: EP

Kind code of ref document: A1