WO2021054407A1 - Introduction device, method for cellular introduction of macromolecule, dna nanoparticle crystal, and method for producing dna nanoparticle crystal inclusion body - Google Patents

Introduction device, method for cellular introduction of macromolecule, dna nanoparticle crystal, and method for producing dna nanoparticle crystal inclusion body Download PDF

Info

Publication number
WO2021054407A1
WO2021054407A1 PCT/JP2020/035332 JP2020035332W WO2021054407A1 WO 2021054407 A1 WO2021054407 A1 WO 2021054407A1 JP 2020035332 W JP2020035332 W JP 2020035332W WO 2021054407 A1 WO2021054407 A1 WO 2021054407A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
crystal
dna
cells
polymer
Prior art date
Application number
PCT/JP2020/035332
Other languages
French (fr)
Japanese (ja)
Inventor
陽子 山西
美穂 田川
茂夫 菅野
文敬 黄
真麻 横森
Original Assignee
国立大学法人九州大学
国立大学法人東海国立大学機構
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 国立大学法人東海国立大学機構, 国立研究開発法人産業技術総合研究所 filed Critical 国立大学法人九州大学
Priority to JP2021546955A priority Critical patent/JPWO2021054407A1/ja
Publication of WO2021054407A1 publication Critical patent/WO2021054407A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to an apparatus for introducing a polymer such as a nucleic acid or a protein into a cell, and a DNA nanoparticle crystal and a method used therein.
  • a polymer such as a nucleic acid or a protein
  • a DNA nanoparticle crystal and a method used therein are incorporated herein by reference.
  • a problem when using long-chain DNA in cells is that it is difficult to handle long-chain DNA and the introduction technique is limited.
  • artificial chromosomes exceeding 100 kbp are introduced into cells mainly by using cell fusion by PEG or electricity, but physical introduction means such as electroporation or particle gun can be used as they are for long-chain DNA. It is not easy to apply for the following reasons.
  • long-chain DNA has a large exclusion volume. Even supercoil plasmid DNA having a higher-order structure has a volume of several tens of nm to 200 nm, and the number of cells that can be physically introduced is limited.
  • long-chain DNA or plasmid DNA having a large exclusion volume is introduced with high efficiency.
  • long-chain DNA is physically fragile.
  • Long-chain DNA is also known to be cleaved by mechanical stimuli such as pipetting. When a physical phenomenon that causes a hole in a cell occurs around the long-chain DNA, the long-chain DNA is likely to be adversely affected.
  • RNA like DNA
  • proteins are similarly physically vulnerable because bulk due to higher-order structures is also a matter of excluded volume, and when these higher-order structures are altered by physical impact, they easily lose their biological activity. There is a problem.
  • the present inventors are developing an injection method using bubbles as a method for introducing molecules, particles, etc. into cells.
  • the present inventors include a bubble ejection member and an outer outer shell portion, and the bubble ejection member is formed of a core material formed of a conductive material and an insulating material, and extends from the tip of the core material.
  • An outer shell portion that includes the stretched portion and at least a part of which is in close contact with the core material to cover the core material, and a void formed between the stretched portion and the tip of the core material and having a bubble spout.
  • a thick portion thicker than the other stretched portion is formed at the tip of the stretched portion, and the outer outer shell portion is formed outside the outer shell portion of the bubble ejection member and is between the outer shell portion and the outer shell portion.
  • the gas-liquid ejection member is formed at a position separated from the outer shell portion so as to have a space in the outer shell portion, and the outer outer shell portion and the bubble ejection member are formed so as to be able to move relative to each other.
  • This technology thickens the tip of the stretched part created by cutting the insulating material so that the tip will not be damaged even if a high voltage is applied to the bubble ejection member, and the tip will be thick. , It is hard to break by piercing the object to be processed, and when the tip part is processed to be thick, the diameter of the bubble outlet can be reduced, so the object to be processed can be finely processed without damaging the tip part.
  • the present inventors are also developing a physically stable nano-sized structure.
  • Patent Document 2 in the method for producing a superlattice structure in which nanoparticles are regularly arranged, the present inventors have a complementary binding portion that complementarily binds to at least a part of the base sequence with the nanoparticles.
  • the nanoparticles are complementarily bonded by the complementary binding portion of the nanoparticles.
  • the nanoparticles are bonded to each other to form a superlattice structure so that the volume ratio of the nanoparticles in the superlattice structure is 6% or more, and the superlattice structure is taken out from the solution.
  • a method for producing a superlattice structure which is characterized by drying while maintaining the symmetry of the superlattice, and a superlattice structure obtained by the method are disclosed. This technique can maintain superlattice symmetry even when the superlattice structure is taken out of solution and dried by controlling the volume fraction of nanoparticles in the superlattice structure in solution. Therefore, it is intended to obtain a structure that is physically stable even outside the solution.
  • the present inventors examined the application of the above-mentioned injection method using bubbles as a method for introducing a polymer into cells.
  • the introduction efficiency is not evaluated by the method described in Patent Document 1. Considering the introduction of DNA or protein having a large exclusion volume into cells, a large-sized perforation is required, and it cannot be said that a method for stable introduction has been sufficiently studied.
  • a polymer that is physically more fragile than particles such as beads may not be stably introduced while maintaining a sufficient structure and function through the injection method using bubbles as in Patent Document 1.
  • the conventional bubble injection method mainly injects cells floating in a suspension of cells stored in a chamber or the like or cells adhering to a flat plate.
  • the cell suspension required a high cell concentration and a high concentration of the polymer to be introduced.
  • highly designed polymers generally have a limited amount that can be adjusted, and it is preferable that the concentration and frequency are small. Therefore, as high as possible introduction efficiency and transfection efficiency into cells are required. Be done.
  • Patent Document 2 discloses stable nano-sized crystals, but does not disclose or suggest application to a technique for introducing a polymer into cells, and how can it be applied? It is unknown whether it will be applied.
  • the purpose of using the nanoparticle structure of Patent Document 2 includes the development of materials such as optical materials and nanotechnology engineering, and its application to the biological field has not been shown.
  • the present invention has been made in view of the above background, and the function of the polymer is maintained, the cell viability is high, the polymer can be introduced into the cell with high efficiency, and the polymer can be introduced into the cell. It is an object of the present invention to provide an introduction device, a cell introduction method, a method for producing a DNA nanoparticle crystal and a DNA nanoparticle crystal enclosure, which can be used for the functional expression of the above.
  • the embodiment of the present application has the following embodiments.
  • the solution is fed toward the surface of the cells, and the polymer is provided with a liquid feeding unit for introducing the polymer into the cells.
  • the cells are introduced.
  • An introduction device performed on the bottom of a container containing a solution containing a polymer.
  • the introduction is the introduction device in which the solution containing the cells has a shear viscosity of 0.01 Pa ⁇ s or more at a shear rate of 1.0 / s or less.
  • the introduction device in which the container containing the solution containing the cells has a pyramid-shaped bottom in the container.
  • the introduction device includes a cell perforation portion that introduces the porous crystal into a bubble ejection member and applies a voltage to the bubble ejection member to generate bubbles.
  • the introduction device in which the polymer is enclosed in a porous crystal.
  • the introduction device, wherein the porous crystal is a DNA nanoparticle crystal composed of a nanomaterial and a DNA molecule.
  • the introduction device for introducing the porous crystal into the cell and then slowly releasing the encapsulated polymer.
  • the introduction device wherein the polymer contains a nucleic acid molecule (DNA molecule, RNA molecule, artificial nucleic acid), a protein, and a polyamide having a molecular weight of 1000 or more.
  • the introduction device wherein the polymer is Cas9 or a long-chain DNA molecule.
  • a method for introducing a polymer cell comprising an encapsulation step of encapsulating a polymer in a porous crystal and a cell introduction step of introducing the porous crystal into a cell.
  • the method for introducing a polymer cell wherein the cell introduction step is a step of perforating the surface of cells by a physical impact including crushing of atmospheric pressure.
  • the porous crystal is introduced into a bubble ejection member, a voltage is applied to the bubble ejection member to generate a bubble, and a physical impact including crushing of the cell is used to perforate the cell membrane and the porous structure.
  • a method for introducing a polymer into cells wherein the porous crystals are introduced into the cells by an electric field-induced bubble method in which the sex crystals are introduced into the cells.
  • a method for introducing a polymer into cells further comprising a sustained-release step of cutting the porous crystal and slowly releasing the polymer from the porous crystal into the cell.
  • the sustained-release step is a method for introducing cells of the polymer, wherein the porous crystals are irradiated with light to cleave the porous crystals, or the porous crystals are cleaved by an enzyme.
  • the DNA nanoparticle crystal which is configured to be able to hold molecules or particles inside the DNA nanoparticle crystal by the specific interaction.
  • the DNA nanoparticle crystal wherein the specific interaction is an interaction between biotin and another molecule.
  • a DNA nanoparticle crystal having a sex functional group or a configuration having a nuclease recognition sequence.
  • the embodiment of the present application also has the following aspects.
  • a method for introducing a polymer cell comprising a sustained release step of cutting a sex crystal and slowly releasing the polymer from the porous crystal into the cell.
  • the porous crystal is introduced into a bubble ejection member, a voltage is applied to the bubble ejection member to generate a bubble, and a physical impact including crushing of the cell causes a membrane of the cell.
  • the sustained-release step is a method for introducing cells of the polymer, wherein the porous crystal is irradiated with light to cleave the porous crystal, or the porous crystal is cleaved by an enzyme.
  • the introduction device is the introduction device for introducing the porous crystal into a bubble ejection member and applying a voltage to the bubble ejection member to generate bubbles.
  • the introduction device, wherein the porous crystal is a DNA nanoparticle crystal composed of a nanomaterial and a DNA molecule.
  • the introduction device for introducing the porous crystal into cells and then slowly releasing the encapsulated polymer.
  • 10B The introduction device, wherein the polymer contains a nucleic acid molecule (DNA molecule, RNA molecule, artificial nucleic acid), protein, and polyamide having a molecular weight of 450,000 or more.
  • the function of the polymer is maintained, the survival rate of the cell is high, the polymer can be introduced into the cell with high efficiency, and the polymer is used for the expression of the function in the cell. It is possible to obtain an introduction device, a cell introduction method, and a method for producing a DNA nanoparticle crystal and a DNA nanoparticle crystal enclosure.
  • the introduction device 100 of the present invention includes an injector 20, and the injector 20 includes a storage unit 21 and a liquid feeding unit 22.
  • the liquid feeding unit 22 faces the bottom of the container 30.
  • the injector 20 is a member that perforates the surface of a cell by a physical impact including crushing of bubbles to introduce a polymer into the cell.
  • the storage unit 21 is a storage means included in the injector 20, and is a container capable of storing a liquid in the present embodiment.
  • the reservoir 21 contains a solution containing the polymer to be introduced into cells.
  • the liquid feeding unit 22 is formed so that the solution can flow.
  • the liquid feeding unit 22 is a tubular member connected to the storage unit 21. When the amount of the solution is small, the liquid feeding unit 22 may also serve as the storage unit 21. That is, the solution may be stored in the space inside the pipe of the liquid feeding unit 22.
  • the injector 20 of the present embodiment includes a bubble ejection member that generates bubbles.
  • the bubble ejection member is provided at the end of the liquid feeding unit 22.
  • the tubular member of the liquid feeding portion 22 is made of an insulating material, and the tubular member is provided with a core portion (none of which is shown) made of a conductive material connected to the power supply means 40 described later.
  • the tubular member and the core form the bubble generating member.
  • the inner diameter of the core portion is sufficiently smaller than that of the liquid feeding portion 22 so that a gap through which the solution or air bubbles can flow is sufficiently secured in the liquid feeding portion 22. That is, as will be described later, by applying a voltage to the core portion, bubbles are generated and circulate in the pipe portion, and the bubbles are ejected from the vicinity of the end portion of the liquid feeding portion 22.
  • the end portion of the liquid feeding portion 22 is a cell perforation portion.
  • the solution containing the bubbles and the porous crystals is circulated in the liquid feeding part in a state where the cell perforation part at the end of the liquid feeding part 22 is in contact with the cells.
  • the bubble creates a physical shock. Physical impacts include, for example, crushing of air bubbles. This physical impact perforates the surface of the cell.
  • the condition of the electric power applied to the electrode at the tip of the liquid feeding unit 22 at the time of introducing the cells varies depending on the conditions such as the structure of the injector 20 and the type of cells, but it is preferably 2 to 15 W.
  • the container 30 contains a solution containing cells.
  • the solution component of the solution containing cells can be appropriately selected as long as it is a solution that does not damage cells through the introduction operation, but may be, for example, a cell culture solution.
  • the number of cells per volume of the solution, that is, the cell concentration is preferably 0.25 to 3.0 ⁇ 10 6 cells per 7 ⁇ L as a guide. When the number is 0.75 ⁇ 10 6 or more, the viscosity of the cell mass or cell suspension becomes high, and the physical impact of bubbles is easily transmitted to the cells, which is preferable. 1.0 ⁇ 10 6 or more is more preferable, and 1.5 ⁇ 10 6 or more is particularly preferable.
  • the following can be considered as the principle that the introduction can be performed efficiently by introducing the container to the bottom of the container.
  • the concentration of cells in the solution containing cells is high, but the following effects can be considered due to the high concentration of cells.
  • the present inventors have found that by increasing the concentration of cells, the viscosity of a solution containing cells increases, and the impact of bubbles in a liquid showing high viscosity increases. Specifically, the cell concentration in the cell number 0.75 ⁇ 10 6 / 7 ⁇ l or more, viscosity at a specific shear strength dramatically increased.
  • a shear viscosity is 0.01 Pa ⁇ s or more.
  • a shear viscosity is 1.0 Pa ⁇ s or more. It is known that the physical condition of the viscosity of a solution containing cells changes the properties of electric field-induced bubbles. From the results of Test Example 1 described later, the gene transfer efficiency increases when the cell concentration is above a certain level.
  • the introduction is for a solution containing cells having a shear viscosity of 0.01 Pa ⁇ s or more at a shear rate of 10.0 / s or less as measured by a viscoelasticity measuring device such as a rheometer. It is preferable to carry out. Further, it is more preferable that the solution containing cells is applied to a solution having a shear viscosity of 0.1 Pa ⁇ s or more at a shear rate of 10.0 / s or less.
  • the inner diameter of the container 30 becomes narrower toward the bottom. More preferably, the container 30 has a weight-like bottom shape. Specific examples of the container 30 include a centrifuge tube and the like. As the container 30, it is preferable to use a container having a volume of about 0.5 to 2 ml or the like because a solution containing cells is stored as described later. Further, it is preferable to use a container having a height to the bottom of about 0.5 to 3 cm. If the container is too small or too large, the physical impact of air bubbles will not be transmitted easily.
  • microtubes As the container having the above-mentioned volume and depth and a weight-shaped bottom, so-called microtubes, microcentrifuge tubes (microcentrifuge tubes), etc. are preferably used. Further, a container in which the vicinity of the bottom of a larger container (for example, a centrifuge tube having a length of 5 cm or more) is cut and the volume and depth are adjusted may be used. As for the larger container, a container having a weight shape near the bottom can be preferably used.
  • the polymer When the polymer is introduced into the cells, it is applied to the bottom of the container 30 containing the solution containing the cells.
  • the number of cells per volume of the cell solution that is, the so-called cell concentration, is high, so that the number of cells affected is large, and physical shocks caused by shock waves such as bubbles and their crushing are transmitted. It is easy to perforate the surface of cells, and it is easy to open pores in the cell membrane.
  • the cells may be introduced into a site having a high cell concentration due to natural sedimentation at the bottom of the container 30, or the container 30 may be centrifuged to further increase the cell concentration at the bottom, or the bottom may be introduced. It may be performed on a cell mass consisting of many cells.
  • a high-concentration cell suspension in which the cell mass is suspended in a constant solution may be prepared.
  • the high-concentration cell suspension makes it easy to adjust the cell concentration (number of cells) and has a higher cell survival rate than working with the cell mass as it is, so that injection can be performed with high efficiency as a result. ..
  • the introduction is carried out on the cell mass formed at the bottom of the container by centrifuging the solution containing the cells in the container 30.
  • the introduction can be almost certainly performed on the surface cells regardless of the concentration of the solution containing the cells before centrifugation.
  • the conditions for centrifugation vary depending on the cells used, the device for centrifugation, and the container, but as a guide, the concentration is 0 to 15,000 xg.
  • cells can be collected at the bottom by natural sedimentation instead of centrifugation. Therefore, there is no particular lower limit on the conditions for centrifugation, and the cells can be separated by 0 ⁇ g or more.
  • cells When it is 100 ⁇ g or more, cells can be sufficiently accumulated in a short time of about 5 minutes, which will be described later, which is preferable. If the upper limit of centrifugation conditions exceeds 15,000 xg, cells may be damaged. It is preferably 12000 ⁇ g or less, and more preferably 10000 ⁇ g or less. At 12000 xg, for example, 3T3 cells survive approximately 86%. At 10000 ⁇ g, 3T3 cells survive to the same extent (about 94%) as when they spontaneously settle without centrifugation, which is the upper limit when the maximum survival rate is taken.
  • the centrifugation is preferably performed under the condition of 100 to 12000 ⁇ g, and more preferably performed under the condition of 100 to 10000 ⁇ g.
  • organelles organelles smaller in scale than cells, such as mitochondria, lysosomes, and peroxisomes, can be accumulated.
  • the time for centrifugation is not particularly limited, but can be appropriately selected from, for example, about 1 to 30 minutes, and in the case of 100 to 400 ⁇ g, it is preferably about 2 to 10 minutes. Under this condition, cells can be sufficiently accumulated at the bottom of the container in a shorter time than spontaneous sedimentation.
  • the polymer introduced into the cell in the present embodiment is a molecule having a molecular weight of 1000 or more as described later in the introduction method, and is mainly a biopolymer nucleic acid molecule, a protein, a polyamide, or a combination of a plurality of types thereof. Includes the complex. Further, as will be described later, it may be combined with another molecule such as a porous crystal. When introducing the polymer into cells, it is also preferable that the polymer is encapsulated in a porous crystal described later, and a solution containing the porous crystal is stored in the storage portion for use.
  • the introduction device 100 may further include a power supply means 40.
  • the power output means 40 may include a power supply device 41, an injector 20, and an electric wire 43 for forming a circuit with the counter electrode 42.
  • the injector 20 is wired so that the tip of the liquid feeding portion 22 forms an electrode.
  • the power supply means 40 may be provided with a resistor, a voltage amplifier circuit, a DIO (Digital Input-output) port, or the like, if necessary.
  • the injector 20 a known so-called bubble injector 20, for example, the device described in Patent Document 1 may be used.
  • the polymer when the polymer is introduced into the cells, it is applied to the bottom of the container containing the solution containing the cells, so that the cell concentration at the time of introduction is high and the injection efficiency is high.
  • the bubble injection method has the advantage of higher cell viability than the electrical (electroporation) and chemical methods (PEG method, etc.). Conventionally, injection was performed on a solution in which cells were cultured, or injection was performed on cells attached to a flat plate such as a petri dish or a plate. With these means, only a small area can be taken as the injection area, and as a result, the introduction efficiency tends to be low.
  • the energy required for perforation of animal cells, algae, and plant cells varies depending on the thickness and composition of a specific membrane, but can be adjusted by electrical parameters and the distance between the electrode and the target, and the cell concentration is high. Then, the adjustment is easier. In addition, adjusting the cell concentration changes the mechanical environment (characteristics) of the cell suspension and the energy acting on specific types of cells, leading to an improvement in introduction efficiency.
  • the cells at the bottom of the container are centrifuged to form pellet-shaped cell clusters that adhere to the bottom of the container, so that the consumption of the plasmid to be used can be suppressed to the utmost limit. As a result, it can be widely used as a general-purpose injection method that can be applied to a wide range of cells and the like in research in the biomedical field.
  • the cell suspension contains the solution containing the porous crystals, and the injector 20 supplies the cells to the cell suspension.
  • the storage unit 21 may be a container in which cells described later are stored.
  • the cell perforation portion at the tip of the liquid feeding portion 22 of the injector 20 is immersed in the cell suspension. Subsequently, when bubbles are generated from the injector 20 as described above and the surface of the cells is perforated by a physical impact including crushing the bubbles, the porous crystals in the cell suspension can be introduced into the cells.
  • the method for introducing a polymer cell of the present embodiment includes an encapsulation step of encapsulating the polymer in a porous crystal and a cell introduction step of introducing the porous crystal into the cell.
  • a porous crystal is a crystal having a large number of pores through which molecules can enter and exit.
  • the porous crystal constitutes a crystal in which elements such as metals and nucleic acids are gathered and the interparticle distance is nano-sized.
  • the porous crystal 500 is composed of unit lattices 50.
  • the porous crystal is a DNA nanoparticle crystal composed of a nanomaterial and a DNA molecule.
  • the unit cell 50 is composed of nanoparticles 51 and an intracrystal DNA molecule 52 that modifies the nanoparticles 51.
  • Nanoparticle 51 is a particle having a particle size of nano-order (1 to 1000 nm, preferably 1 to 100 nm) and having a nanomaterial as a constituent material.
  • the nanomaterial which is a constituent material of the nanoparticles 51 any material capable of modifying DNA described later can be used on the surface thereof, and various materials such as metal, semiconductor, dielectric or magnetic material can be used, and the nanomaterial is inorganic. It may be a compound, an organic compound or an alloy.
  • the nanoparticles 51 may contain these plurality of nanomaterials. Further, nanoparticles 51 of different materials may be mixed and used in the unit cell 50.
  • the nanomaterial which is a constituent material of the nanoparticles 51 Au, Pt, Pd, Li, Ag, Rh, Ru, V, Cu, Al, Co, Ni, Fe, Mg or the like should be used as long as it is a simple substance of metal. Can be done. If it is an alloy, a Ni—Mg alloy or the like can be used. Further, semiconductors such as Si, Cd, Se and CdS, and dielectrics such as SiO2 and TiO2 can also be used.
  • the shape of the nanoparticles 51 may be arbitrary, such as a sphere, an ellipsoid, or a polyhedron.
  • the nanomaterial constituting the nanoparticles 51 and the terminal of the DNA molecule 52 in the crystal may be chemically bonded.
  • the end of the DNA molecule 52 in the crystal may be substituted with a substituent capable of binding to the nanomaterial, and the substituent may be bonded to the nanomaterial.
  • the intracrystal DNA molecule 52 is a single-stranded DNA, and one nanoparticle 51 is modified by at least two types of intracrystal DNA molecules 52. These two types of intracrystal DNA molecules 52 have regions that are complementary to each other, that is, complementary to each other (hybridization).
  • the metal elements are arranged at a certain distance from each other to form a unit lattice 50 having a lattice structure.
  • the unit lattice 50 can have any three-dimensional structure such as a polyhedron due to the interaction of the DNA molecules 52 in the crystal.
  • the unit lattice 50 may have a regular tetrahedron as a basic unit.
  • the skeleton of the DNA regular tetrahedron has a rigid structure based on the DNA Double Crossover tile or DNA origami, so that single-stranded DNA that can bind to a part of the sequence of long-chain DNA grows from the center of the six sides. Structure can be made.
  • the lattice structure of the unit cell 50 is substantially cubic.
  • the nanoparticles 51 are arranged by the complementary bonds between the intracrystal DNA molecules 52. Therefore, the distance between the nanoparticles 51 can be determined by designing the region where the intracrystal DNA molecules 52 can be complementarily bonded. Has been decided. That is, depending on this distance, the unit lattice 50 has pores 53, which are spaces in which molecules can enter and exit the lattice. In addition to the design of the DNA molecule 52 in the crystal, the unit cell 50 can expand the unit cell 50 by adding these because the distance between the molecules increases due to the presence of water molecules, anions, and the like. On the other hand, since the distance between the molecules is shortened by drying, addition of cations, addition of PEG, etc., the unit cell 50 can be contracted by these.
  • the unit crystal 50 and the porous crystal 500 can be subjected to structures such as the size, crystal structure, and shape of the pores 53, which will be described later, by designing the in-crystal DNA molecule. It can be designed in various ways, and it is easy to control physical properties such as rigidity and viscoelasticity, and it is suitable for achieving the purposes of encapsulation of polymers, introduction into cells, and sustained release, which will be described later. Further, as will be described later, the DNA molecule 52 in the crystal can be modified to impart a specific interaction, and can be imparted with a function suitable for encapsulation of a specific molecule.
  • the size of the pores 53 is the so-called nano size, but in the present embodiment, it is mainly 1-400 nm, preferably 1-100 nm, and more preferably designed in the range of 5-50 nm. Designed at this size, it is suitable for introducing and retaining proteins, long-chain DNA, and protein-nucleic acid complexes.
  • the porous crystal 500 in which a large number of lattice structures of the unit lattice are gathered is also called a superlattice structure.
  • the porous crystal 500 is composed of a unit cell 50 having pores 53, it is porous having pores 53 as pores.
  • the structure of the porous crystal 500 is also called a crystal sponge because it has pores 53 and therefore has a structure similar to a sponge having many fine voids inside. It can be said that the porous crystal 500 is self-assembled by gathering unit lattices 50 having pores 53.
  • the shape of the porous crystal 500 can also be any three-dimensional structure such as a polyhedron due to the interaction of the DNA molecules 52 in the crystal.
  • the structure of the porous crystal 500 is almost a regular dodecahedron.
  • the size of the porous crystal 500 in which the unit lattices 50 are gathered can be appropriately selected, but in the present embodiment, the porous crystal 500 on the order of several hundred nm to several ⁇ m may be used.
  • Specific examples of the superlattice structure are described in, for example, Patent Document 2.
  • the porous crystal 500 can be produced with a uniform crystal shape and a uniform particle size due to the design of the DNA molecule 52 in the crystal, the resistance at the time of cell introduction is small, and the conditions required for the operation at the time of introduction are satisfied. Easy to optimize.
  • the unit cell 50 is configured to be able to hold the polymer 60 via the pores 53.
  • the polymer 60 preferably contains a nucleic acid molecule (DNA molecule, RNA molecule, artificial nucleic acid) having a molecular weight of 1000 or more, a protein, a polyamide, or a complex obtained by combining a plurality of types thereof.
  • the polymer 60 is also preferably RNP, that is, a complex of RNA and protein.
  • Nucleic acid molecules having a molecular weight of 1000 or more (so-called long-chain DNA or long-chain RNA) have a large exclusion volume, are physically fragile, and tend to lose their primary to higher-order structures.
  • the polymer is compactly organized in the porous crystal by encapsulating the polymer in the porous crystal, and physical impact or the like is formed by encapsulating the polymer in the porous crystal.
  • the cell introduction method of the present embodiment is particularly effective when introducing so-called long-chain DNA or long-chain RNA into cells.
  • proteins and polyamides having a particularly large molecular weight have a large exclusion volume and are physically fragile. Therefore, the cell introduction method of the present embodiment is particularly effective when introducing these molecules into cells.
  • the polymer preferably has a molecular weight of 450,000 or more.
  • a large molecule having a molecular weight of 450,000 or more has a particularly large exclusion volume and is physically particularly fragile, and its structure or the like may change due to a physical force and lose its function.
  • the cell introduction method of the present embodiment can be applied to such a molecule having a large molecular weight.
  • the polymer 60 is also preferably a molecule used for genome editing.
  • the molecule used for genome editing include genome editing factors such as Cas family protein and TAL protein as candidates.
  • a more specific example of a genome editing factor is Cas9.
  • Cas9 is a protein known as a DNA endonuclease and a DNA cleavage factor. By encapsulating Cas9 as a polymer 60 in a porous crystal and introducing it into cells, it can be widely used for editing intracellular DNA or similarly, editing DNA introduced into cells.
  • Cas9 of the present embodiment contains a mutant of Cas9 protein, a substitute, and a complex with other molecules (for example, deaminase, reverse transcriptase, etc.).
  • Cas9 of the present embodiment which is an RNA-bound RNP. More specifically, it is more preferable that Cas9 is a Cas9-gRNA complex.
  • gRNA guide RNA, or sgRNA refers to RNA used in the nucleic acid editing process.
  • the gRNA can specify the target site on the nucleic acid of the Cas9 protein.
  • the Cas9 protein is preferable because it can cleave the target DNA and can be used for DNA editing by designing an RNA to be a gRNA and forming a complex with the gRNA.
  • DNA cleavage using RNP such as Cas9-gRNA is a DNA-free (DNA-free) genome editing technology, and since it does not contain foreign DNA, it does not correspond to so-called genetic recombination, especially in the breeding of plants and livestock. It is useful.
  • the polymer 60 is also preferably a long-chain DNA molecule.
  • DNA containing a large amount of genetic information can be introduced into the cell and widely used for editing the genetic information of the cell.
  • the DNA nanoparticle crystal 500 is a DNA nanoparticle crystal composed of a nanomaterial and a DNA molecule
  • the DNA nanoparticle crystal is modified with a molecule having a specific interaction function that interacts with a specific molecule. It is also preferable that It is also preferable that the DNA nanoparticle crystal is configured to be able to hold molecules or particles inside the DNA nanoparticle crystal by the specific interaction.
  • a specific molecule refers to a molecule having a certain elemental sequence, particularly an amino acid sequence or a nucleic acid sequence. A specific interaction that interacts with a particular molecule is one that interacts with this particular elemental sequence.
  • a specific molecule is a nucleic acid having a specific nucleic acid sequence
  • a nucleic acid sequence complementary to the specific nucleic acid sequence is used.
  • the porous crystal 500 has a site modified with a molecule having a specific interaction function that interacts with a specific molecule, so that the specific molecule is selectively and highly retained and porous. It can be held and encapsulated in the sex crystal 500.
  • one of the intracrystal DNA molecules 52 modifying the nanoparticles 51 has a sequence complementary to the nucleic acid having the specific nucleic acid sequence. Therefore, the nucleic acid having the specific nucleic acid sequence can be selectively held and encapsulated in the porous crystal 500 with high holding power.
  • a specific interaction in the solution may be used for encapsulation.
  • the unit cell 50 is modified with a molecule having a specific interaction function that interacts with a specific polymer 60. Therefore, the specific polymer 60 incorporated into the unit cell 50 is also retained in the unit cell 50 by the specific interaction.
  • the specific interaction broadly refers to an action in which a molecule having a certain structure specifically interacts (bonds, etc.) with another certain structure. Specific examples thereof include biotin-streptavidin interaction, RNA-protein interaction, metal complex-protein interaction, lectin-polysaccharide interaction, protein-protein interaction, or click chemical interaction. Among these actions, the interaction between biotin and other molecules, such as the biotin-streptavidin interaction, can be preferably used.
  • the specific polymer 60 can be encapsulated in the porous crystal 500 by performing an operation of shrinking the porous crystal 500 by drying or the like as described above. Due to the shrinkage of the porous crystal 500, the polymer 60 is sealed in the unit cell 50 in a state where it does not easily fall off. By encapsulating the polymer 60, the unit lattice 50 and the porous crystal 500) become DNA nanoparticle crystal inclusion bodies 50A and 500A. The methods of these encapsulation steps may be used separately or in combination.
  • this operation modifies the DNA nanoparticle crystal with the specific molecule.
  • This is a method for producing a DNA nanoparticle crystal encapsulation body that encapsulates the encapsulation target.
  • the cells used in the cell introduction step of the present embodiment can be any type of cells. That is, both animal cells and plant cells can be used. In addition, both cells on biological tissues and cultured cells can be used.
  • the protoplast from which the cell wall of the plant cell was removed was able to introduce a molecule having a large molecular weight relatively easily using PEG.
  • the particle gun method was also able to introduce porous crystals into plant cells.
  • the plant cell has an advantage that the cell size is large and a large amount of porous crystals of the present embodiment can be contained.
  • animal cells for example, mouse-derived cells, human cultured cells and the like can be used.
  • mouse-derived cells 3T3 cells and the like can be used.
  • rat-derived cell bone cell UMR-106 or the like can be used.
  • mammalian-derived cultured cells and insect-derived cultured cells can be used, and MEF, HeLa, 293-T, CHO, Jurkat, MCF-7, Vero cells, YAC-1, and the like can be considered.
  • animal cells not only the immortalized cultured cells but also cells of living tissues such as sperm, sperm cells, eggs or egg progenitor cells, primary cultured cells, tumor cells or diseased tissue-derived cells, which are difficult to transform, are used. You can also do it.
  • Plant cells are generally known to be difficult transformative, algae cells (eg, petroleum-producing algae such as clamidmonas, euglena, or oranthiochitrium), and land plants (wheat, barley, oat wheat).
  • algae cells eg, petroleum-producing algae such as clamidmonas, euglena, or oranthiochitrium
  • land plants wheat, barley, oat wheat.
  • Grains such as soybeans or corn, fruit or vegetables such as tomato, eggplant, pumpkin, spinach, quinoa or hakusai, medicinal plants or industrial crops such as cotton, flax, switchgrass, sunflower, pine, paragom tree, urushi, auren or chosen carrot,
  • fruit trees such as grapes, peaches, bananas, quinoa fruits, citrus fruits, and oysters
  • aspergillus or mushroom fungi for which a gene transfer system does not exist in the prior art, can also be used.
  • the algae and the plant-derived mesophyll cells, hypocotyl cells, root cells, cells obtained from fungi and the like can be used.
  • cells on biological tissues epidermal cells, sheep meat cells, shoot apical meristems, callus or adventitious embryos on mature leaves, which are particularly difficult to introduce into genes, can be used, and quiescent center cells, pollen or embryo cells. Etc. can also be used.
  • the means used for introducing the molecule into the cell and the conditions such as the number of cells may be appropriately selected, but in the present embodiment, the surface of the cell is perforated by a physical impact including crushing of atmospheric pressure. It is preferable to carry out the step of causing.
  • An electric field-induced bubble method is used in which a voltage is applied to the bubble ejection member to generate bubbles, the membrane of the cells is perforated by a physical impact including crushing of the cells, and the porous crystals are introduced into the cells. Is particularly preferred.
  • the electric field-induced bubble method may be carried out by using the above-mentioned introduction device or other device described in, for example, Patent Document 1, but it is particularly preferable to use the above-mentioned introduction device and the device shown in FIG. ..
  • the porous crystal 500 since the porous crystal 500 has a size on the order of several hundred nm to several ⁇ m as described above, the influence of gravity cannot be ignored, and the porous crystal 500 may sink in the solution. There is sex.
  • the porous crystal 500 is introduced into the cell surface by a physical impact, so that a certain number of the porous crystal 500 having a relatively large mass can be introduced into the cell. It can be done and is particularly suitable.
  • the method for introducing a polymer cell of the present embodiment further includes a step of introducing the porous crystal into cells and then slowly releasing the encapsulated polymer.
  • the step of slowly releasing the polymer enclosed in the porous crystal is not particularly limited as a means for separating the porous crystal and the polymer, but for example, a means for decomposing the structure of the porous crystal can be used. ..
  • the step of slowly releasing the polymer enclosed in the porous crystal the polymer is slowly released into the cells into which the polymer has been introduced, and the function can be exhibited.
  • the polymer is Cas9-gRNA having a DNA editing function
  • the editing of intracellular DNA is started by sustained release.
  • the timing at which the polymer exerts its function can also be controlled.
  • the porous crystal has a structure capable of reducing the bonding force between the molecules constituting the crystal.
  • a structure in which the binding force between molecules can be attenuated is a structure in which the bonds of the molecules constituting the porous crystal can be weakened and the distance can be increased by adding an external factor. That is what the molecule does.
  • the structure is such that the bonds between the nanoparticles can be weakened, the distance can be increased, and the nanoparticles can be dispersed.
  • the external factor has a small influence on other molecules on the porous crystal in the cell.
  • a specific example of such a configuration is that when the porous crystal is a DNA nanoparticle, the DNA molecule has a sequence that decomposes or dissociates due to an external factor.
  • examples of this external factor include light and enzymes.
  • the sustained-release step uses means for decomposing or dissociating the DNA molecules constituting the porous crystal. be able to. At this time, the DNA molecules constituting the porous crystal may be cleaved to decompose the porous crystal.
  • the polymer when the polymer is encapsulated in the porous crystal by the interaction between the polymer and the DNA of the porous crystal, even if the polymer is slowly released from the porous crystal by cutting the DNA molecule of the porous crystal. Good.
  • the polymer when the polymer is encapsulated in the porous crystal by a specific interaction molecule in the DNA of the polymer and the porous crystal, a factor that cleaves the DNA molecule of the porous crystal or inhibits the specific interaction.
  • the introduction may dissociate the polymer from the porous crystal.
  • the porous crystal As a means for decomposing or dissociating the DNA molecules constituting the porous crystal, the porous crystal is irradiated with light to cleave the porous crystal, or the porous crystal is cleaved by an enzyme. Is also preferable.
  • the DNA nanoparticle crystal which is a porous crystal, preferably has a photoresponsive functional group or has a nuclease recognition sequence, as described in detail below.
  • a method of irradiating the porous crystal with light to decompose the porous crystal a method of irradiating various types of light (electromagnetic waves), for example, ultraviolet rays, can be taken.
  • the porous crystal is composed of nanoparticles 51 and an intracrystal DNA molecule 52 and a THER-nitrobenzyl group is added to a part of the intracrystal DNA, the intracrystal DNA molecule 52 can be cleaved by light.
  • the structure of the porous crystal can be decomposed, and the polymer can be slowly released into the cell. Since the DNA molecule 52 in the crystal is cleaved by light, it is less likely to damage other molecules in the cell.
  • the functional group for decomposing the porous crystal by light not only the o-nitrobenzyl group but also CNVK and the like can be used.
  • an enzyme that cleaves DNA
  • an enzyme specific to or non-specific to specific DNA can be appropriately used.
  • a restriction enzyme specific for a specific sequence of the DNA molecule 52 in the crystal By using a restriction enzyme specific for a specific sequence of the DNA molecule 52 in the crystal, only the specific sequence of the DNA molecule 52 in the crystal is cleaved, so that other molecules including other DNA in the cell are cleaved. Can be sustained-release without affecting.
  • intracellular nucleases can be used as non-specific cleavage enzymes.
  • the present inventors When introducing a polymer into cells, the present inventors introduce a polymer having a large exclusion volume into the cells, so that the cells are not irreversibly damaged as much as possible, and a large-sized perforation is performed without causing cell death in particular.
  • a method for stably introducing polymers that can be excessively and efficiently inserted and are physically fragile for example, a method for introducing these polymers without directly handling them.
  • the polymer having a large exclusion volume can be compactly enclosed in the crystal, and there is no need to perform an operation that imposes a heavy burden on the cells at the time of introduction, for example, perforation of an excessively large size. .. Since the polymer is encapsulated in the crystal, it is not necessary to directly handle the physically fragile polymer, and it is possible to perform an operation for introducing the polymer into the cell.
  • the porous crystal can be subjected to an operation for encapsulating the polymer and an operation for sustained release.
  • the polymer can be released into the cell by means such as cutting the DNA without damaging the cell.
  • the polymer cell introduction method of the present embodiment it is possible to control the length and arrangement of the DNA molecules forming the skeleton to create a crystal structure (superlattice structure) of nanoparticles of various sizes.
  • the ability to arrange nanoparticles and design superlattice structures with nanoscale accuracy can greatly contribute to easy introduction technology.
  • a physical introduction method is possible, and the unit and crystal structure are controlled to control the physical rigidity. , Enables introduction to a wide range of biological objects.
  • the DNA sequence used in the DNA nanoparticle crystal introduced into the cell is decomposed by using a molecular biological tool including genome editing or a reversible photolinking reaction.
  • a molecular biological tool including genome editing or a reversible photolinking reaction.
  • the long-chain DNA in the DNA nanoparticle crystal can be sustained-release and the function can be expressed. Crystals can be decomposed and cleaved in the process of isothermal or slight temperature rise, released inside the cell without destroying the long-chain DNA, and transported into the nucleus to make it functional in the cell.
  • the NIH / 3T3 cell solution cultured in OPTI-MEM medium for 48 hours was centrifuged in a container.
  • the final concentration of the pEGFP-N1 plasmid becomes 2.1 ⁇ g / ml and the total amount of the suspension becomes 7 ⁇ l with respect to the cell mass at the bottom of the container. And suspended again to give a cell suspension.
  • FIG. 3 shows a comparative example in which lipofectamine treatment was performed without using an injector.
  • the upper row is a fluorescence micrograph of cells into which the plasmid pEGFP-N1 has been introduced after 48 hours, and the lower row is a bright field (BF) micrograph.
  • the transfection efficiency is shown graphically in FIG.
  • the horizontal axis is the number of cells used (106 ⁇ , respectively), the percentage of cells that vertical axis is introduced (%).
  • Using an injector on the bottom of the cell suspension tube increased efficiency with a large number of cells, but between 0.25 ⁇ 10 6 and 0.75 ⁇ 10 6 1.5 ⁇ 10 was no significant difference in the six and 3.0 ⁇ 10 6 between. That is, according to the introduction device and method of this example, it was shown that a certain efficiency can be obtained even if the concentration of the cells used is low.
  • Test Example 2 Evaluation of introduction efficiency: Electric power
  • a voltage was applied to the injector 20 to the bottom of the tube of the cell suspension to generate bubbles.
  • the tests were conducted with the electric power when applying the voltage as 4W, 6W, 8W, 10W, and 12W, respectively.
  • the number of cells was carried out both at 1.5 ⁇ 10 6 cells.
  • a comparative example treated with lipofectamine and a comparative example in which the plasmid was not added to the suspension are shown in FIG. 5 (Test Example 2).
  • the upper row is a fluorescence micrograph of cells into which the plasmid pEGFP-N1 has been introduced after 48 hours, and the lower row is a bright field (BF) micrograph.
  • the exposure time is 600 ms.
  • the ratio (%) of the introduced cells is shown in FIG. 6, and the number of cells is shown in FIG. (1) to (4) and the like represent the number of tests, and the value in the bar graph represents the average value of a plurality of measurements.
  • the numbers on the horizontal axis (4 to 15) are the power at the time of injection, "I12" is the one to which the power of 12 W is applied without adding the plasmid as shown in FIG. 7, and "P” is the one to which the plasmid is added but the injection is performed. Those that have not been introduced, “L” refers to those that have been introduced by lipofectamine treatment.
  • the highest transfection efficiency was shown when the power at the time of transfection was 12 W. The efficiency is high at 8 to 15W, but the efficiency at 15W is slightly lower than that at 12W.
  • FIG. 8 shows a micrograph of GFP and RFP staining and a bright field (BF) for the test example in which the power of Test Example 2 was set to 12 W and the test example was adjusted in the same manner as the one in which lipofectamine was introduced.
  • the upper two rows show before the selection treatment with puromycin (exposure time 600 ms), and the lower two rows show after the selection treatment with puromycin (exposure time 2000 ms).
  • the puromycin treatment was performed for 48 hours. It was shown that the introduction by the introduction device of this example introduced GFP and RFP as well as puromycin and expressed normally.
  • Test Example 4 Evaluation of plasmid damage
  • lanes 1 to 3 were introduced into cells, and 5 to 8 were cell-free plasmids only.
  • the plasmid was purified by centrifugation at 10 krpm, and the molecular weight of the plasmid was examined by agarose gel electrophoresis.
  • the cell introduction device and the introduction method of the present embodiment have a low risk of damaging the plasmid. Therefore, in the cell introduction device and introduction method of the present embodiment, it can be expected that macromolecules such as nucleic acids and proteins can be introduced into cells while maintaining their functions without changing their primary to higher-order structures.
  • Test Example 5 (Introduction to difficult-to-introduce cells: bone cells) Bone cells UMR-106 were used, and the cells were introduced under the same conditions as in Test Example 1 with a power of 12 W.
  • FIG. 10 shows a comparison of the cell culture time of 24 hours and 48 hours for the case of introduction with the above power of 12 W and the case of introduction with lipofectamine, respectively.
  • the cell introduction method of the present embodiment succeeded in transfection of 10% or more at 24h and 20% or more at 48h, as in the case of lipofectamine, showing close values. From this result, it was clarified that the cell introduction method of the present embodiment can also be used for introduction into bone cells which are difficult-to-introduce cells.
  • Biotin-modified DNA nanoparticle crystals were prepared as porous crystals.
  • a colloidal solution in which gold (Au) nanoparticles having a diameter of 10 nm are mixed and dispersed is mixed with a phosphate buffer solution containing a 33-base pair single-stranded DNA (DNA # 1) having a thiol group at the end of the DNA, and the nanoparticles are mixed.
  • DNA-AuNP (A) modified with DNA # 1 on the surface was prepared.
  • DNA-AuNP (B) modified with DNA # 2 of 33 base pairs was prepared.
  • DNAs # 1 and 2 have complementary bonds at the ends, but are designed so that the complementary bonds of DNA # 1 and the complementary bonds of DNA # 2 do not complement each other.
  • a 27-base pair single-stranded DNA (DNA # 3) that complementarily binds to the complementary binding portion of DNA # 1 and a 27-base pair single-stranded DNA (DNA #) that complementarily binds to the complementary binding portion of DNA # 2. 4) was prepared.
  • a biotin molecule is bound to the 3'end of DNA # 3 and 4 via a C6 spacer.
  • DNA-AuNP (A) (B) and DNA # 3 and 4 were put into a phosphate buffer solution having a sodium ion concentration of 500 ⁇ 10 -3 mol / L and mixed.
  • a phosphate buffer solution having a sodium ion concentration of 500 ⁇ 10 -3 mol / L and mixed.
  • the dispersion is slowly cooled from 65 ° C. to 0.01 ° C./min to form DNA nanoparticle superlattice crystals (porous crystals) (Test Example 7) at room temperature (25 ° C.), and the porous crystals are contained in the solution. Agglomerates were formed.
  • a streptavidin-modified quantum dot aqueous solution (Encapsulation of streptavidin-modified quantum dots in porous crystals) A streptavidin-modified quantum dot aqueous solution (QdotTM 585 Streptavidin Conjugate, Invitrogen, Cat #: Q10113MP) having a concentration of 1 ⁇ M was prepared. Quantum dots are composed of nanometer-scale semiconductor crystals (CdSe) coated on a semiconductor shell (ZnS). The streptavidin-modified quantum dot is a complex in which approximately 5 to 10 streptavidin are covalently bonded to the quantum dot. The diameter of the complex is 15-20 nm. The porous crystals of Test Example 7 were mixed with the streptavidin-modified quantum dot aqueous solution.
  • FIG. 12A shows a crystal (SYBR-Safe)
  • FIG. 12B shows a quantum dot (Q-dot) (fluorescence)
  • FIG. 12C shows a confocal microscope image of superposition of a crystal and a quantum dot.
  • FIGS. 12A to 12C were photographed using an FV3000 (manufactured by Olympus Corporation).
  • FIG. 12D shows the fluorescence profile of the quantum dots on the line in FIG. 12C.
  • the positions of the fluorescence indicating the streptavidin-modified quantum dot aqueous solution and the porous crystal stained with SYBR-Safe correspond to each other.
  • fluorescence derived from quantum dots was detected not only on the surface of the crystal but also on the inner part. Therefore, it was shown that the streptavidin-modified quantum dot aqueous solution was retained in the porous crystal.
  • the length of a piece of unit cell is considered to be about 40 nm. Therefore, it is considered that the porous crystal of Test Example 7 has a size sufficient to hold a polymer having a size of several nm to several tens of nm.
  • DNA # 5 and DNA # 7 were thiol-modified at the ends and bound to Au nanoparticles (10 nm in diameter on the product label) in the same manner as in Test Example 7, and DNA-AuNP (C) and DNA-AuNP (D) were obtained, respectively. Created. When this DNA-AuNP forms a unit cell and retains the Cas9-gRNA molecule, DNA # 5 and # 6 complementarily bind to the gRNA as shown in FIG. 13, and DNA # 6 is bound to DNA # 6. 7 is combined. Since DNA # 5 and # 7 are bound to Au nanoparticles, the distance between Au nanoparticles can be adjusted by the length of DNA # 5 to # 7 and the length of the complementary sequence, and the size of the lattice unit. Can be adjusted.
  • the porous crystal (Test Example 8) in which the DNA-AuNP (C) (D) formed a cubic unit cell was incubated in an aqueous solution having a Cas9-gRNA concentration of 0.1 ⁇ M for 1 hour, and Cas9 was incorporated into the crystal. -GRNA was retained.
  • the interparticle distance of this crystal was determined by SAXS (Small Angle X-ray Scattering) measurement. The length of one side of the unit cell (distance between the centers between nanoparticles) was about 40 nm.
  • the DNA nanoparticle crystal and Cas9 protein were labeled with different fluorescent dyes, and the encapsulation of the protein in the crystal was observed three-dimensionally.
  • the DNA # 6 in the DNA nanoparticle crystal is TAMRA-modified and can be detected at an excitation wavelength of 555 nm and a fluorescence wavelength of 580 nm.
  • Cas9 is modified with GFP and can be detected at an excitation wavelength of 488 nm and a fluorescence wavelength of 509 nm.
  • FIG. 14a shows a crystal (TAMRA), b shows Cas9 (fluorescence), and c shows a micrograph in a bright field. Further, an enlarged view of one of the porous crystals is shown in d for crystals and e for Cas9. The superposition of d and e is shown in f. From the figure of f, it was shown that the signals of the crystal and Cas9 almost overlapped, and Cas9 was enclosed in the porous crystal.
  • RNP Alt-R CRISPR-Cas9 tracrRNA, ATTO 550 (IDT, Cat #: 1075928) and crRNA (AML5 or AtPDS3, IDT) are mixed with RNase-free water to a final concentration of 10 ⁇ M, and mixed for 2 minutes 95. It was heated at ° C. and gradually cooled (10 ⁇ M gRNA). 10 ⁇ M gRNA was mixed with a 25 ⁇ M Cas9-GFP protein solution (Cas9-GFP Protein, SIGMA, Cat #: CAS9GFPRO-50UG) in a SEC buffer to a final concentration of 2.5 ⁇ M (2.5 ⁇ M RNP). ). As the DNA nanoparticle crystal, the one of Test Example 8 was used. As a comparative example, 1.0 ⁇ m gold particles (BioRad 165-2263) in a microcarrier package for PDS / Helios were used as the gold particles to be encapsulated instead of RNP.
  • FIG. 15 shows a state in which gold particles and DNA nanoparticle crystals were mixed with a fluorescent label RNP and observed under a microscope.
  • Bright Field is a diagram in which bright field is detected
  • Cas9-GFP is a diagram in which GFP is detected by fluorescence. No fluorescence derived from RNP was detected in the gold particles, but fluorescence was observed in the DNA nanoparticle crystals. Therefore, it was considered that the DNA nanoparticle crystal has a stronger RNP-binding force than the gold particle.
  • FIG. 1 A photomicrograph of a protoplast introduced with TAMRA fluorescent label crystals is shown in FIG.
  • Each figure is a four-time example of the same cell under the same conditions.
  • the arrows in the figure indicate the bright spots of TAMRA fluorescence. Fluorescence derived from TAMRA was observed in the cells, although the number of cells was very small. In addition, it is expected that the bright spots in the cells are inside the cells, as some photographs show that the bright spots in the cells move due to cytoplasmic streaming.
  • Test Example 11 (Intracellular introduction of porous crystals using a particle gun device)
  • DNA nanoparticle crystal the one of Test Example 8 was used. Mature leaves of Arabidopsis thaliana 3-4 weeks after germination were used. 5 ⁇ L of DNA nanoparticle crystals were dried on a rupture disk attached to a particle gun device (BioRad particle gun PDS-1000 / He system) and introduced by a normal protocol (pressure 1100 ps). Microscopic observation was performed 1 hour after the introduction.
  • Fig. 17 The results are shown in Fig. 17.
  • the arrows in the figure indicate the porous crystals present in the leaves of Arabidopsis thaliana. It was revealed that DNA nanoparticle crystals are ejected by wind pressure and carried into plant cells by the particle gun method.
  • the supernatant (RNP only) of the first step in the above step was used, and as a negative control, simply 1x Cas9 buffer 10 ⁇ L was used for introduction.
  • the prepared RNP-bound DNA nanoparticle crystal was introduced into a protoplast by the PEG method and allowed to stand for 3 days.
  • the genome was extracted from protoplast by isopropanol extraction, and the gene was amplified using KOD FX Neo Kit (TOYOBO) and the following primers.
  • the amplified gene product was analyzed with a Miseq sequencer (Illumina) using Miseq nano Kit v3 (500 cycles).
  • Primer information is as follows.
  • AML5_amplicon_F (5'-3') :( SEQ ID NO: 3) TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACGGCTGTTTCTCGCACAAACA
  • AML5_amplicon_R (5'-3') :( SEQ ID NO: 4) GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCAACTGTTCCTGCACCATTTGG
  • FIGS. 18A to 18C The analysis results are shown in FIGS. 18A to 18C. 7 sequences from the one in which RNP was introduced in FIG. 18A (SEQ ID NO: 5 to 11), 10 sequences from the one in which the RNP-encapsulated crystal was introduced in FIG. 18B (SEQ ID NO: 12 to 21), and negative in FIG. 18C. As a control (comparative example), 10 sequences (SEQ ID NOs: 22 to 31) are shown from those in which only colloidal crystals are introduced. In FIGS. 18A to 18C, the leftmost number corresponds to the sequence number.
  • TAMRA fluorescent label DNA nanoparticle crystal As the TAMRA fluorescent label DNA nanoparticle crystal, the same DNA nanoparticle crystal as in Test Example 8 was used, but the following sequences 12-1 (SEQ ID NO: 32), 12-2, 12-3 were used as DNA inside. A DNA sequence of (SEQ ID NO: 33) having a double strand was used. Sequence 12-1 5'-CATCCATCCTTATCAACT-3' Sequence 12-2 5'-AAGGAA-3' Array 12-3 5'-AGGTGAGTATGAGTCGTT-3' BccI, XhoI, and DpnI (NEB) were prepared as restriction enzymes.
  • FIG. 19 shows a photomicrograph of TAMRA fluorescently labeled DNA nanoparticle crystals treated with restriction enzymes at 37 ° C. for 6 hours.
  • the upper row is fluorescence and the lower row is bright field. Arrows are typical DNA nanoparticle crystals.
  • the results of A: BccI treatment, B: XhoI treatment, and C: DpnI treatment are shown.
  • BccI is the only enzyme having a recognition site in the sequence (SEQ ID NOs: 5 to 7) of the DNA nanoparticle crystal.
  • Degradation of TAMRA fluorescently labeled DNA nanoparticle crystals occurred with BccI alone. From this result, it was shown that the DNA nanoparticle crystal can be decomposed by an enzyme and the encapsulated polymer can be released slowly.
  • Test Example 14 Photodegradation of DNA nanoparticle crystals
  • a test was conducted in which DNA nanoparticle crystals were decomposed by light.
  • the same DNA nanoparticle crystal as in Test Example 8 was used, but a sequence containing a pc-linker (o-nitrobenzyl group) inside was used as the DNA.
  • the above-mentioned pc-linker was added to the DNA corresponding to DNA # 6 of Test Example 8 and used.
  • Crystals containing a pc-linker were dropped on a slide glass and irradiated with ultraviolet rays under a fluorescence microscope.
  • FIG. 20 shows micrographs of DNA nanoparticle crystals before and after being irradiated with ultraviolet rays for 1 hour.
  • the left row is before irradiation, and the lower row is after irradiation.
  • Arrows indicate DNA nanoparticle crystals decomposed by light. From this result, it was shown that the DNA nanoparticle crystal can be decomposed by light and the encapsulated polymer can be released slowly.
  • the DNA nanoparticle crystals used in these tests can be bound to a genome editing factor, the DNA nanoparticle crystals can be introduced into cells, and the DNA nanoparticle crystals can be used. It was shown that the bound RNP can cause genome editing of plant cells and that DNA nanoparticle crystals can be degraded by enzymes and light.
  • Test Example 15 (Introduction of protein into plant cells by electric field-induced bubble method) The introduction of proteins into plant cells was verified by the electric field-induced bubble method.
  • the introduction device the same device as in FIG. 1 was used, and the introduction was performed in the same manner as in Test Example 1 except that the cells were matured leaf cells.
  • the mature leaves of Arabidopsis thaliana were used, and the female was approached at an angle to the leaves using a manipulator.
  • the position of the scalpel tip and the sample was adjusted using a general manipulator for the cells and introduced.
  • Hypercator2000 (TypeA, TypeB) (Commed Japan Co., Ltd.) and an electric pulse output device (CFB) (Bex Co., Ltd.) were used.
  • Hybridator 2000 is a high frequency that emits a pulse every 5 ms for both Type A and Type B
  • CFB is a low frequency that emits a pulse every 0.5 ms for about 5 ⁇ s.
  • RNP is a protein and has a volume almost equal to that of GFP. Therefore, in this experiment, an experiment was conducted to introduce the GFP protein.
  • sfGFP-NLS 270 amino acids, molecular weight 30637 in which Nuclear localization signal (NLS) was added to superfolder GFP (sfGFP) was expressed in Escherichia coli.
  • Protein was applied to the mature leaves (back) of Arabidopsis thaliana while changing parameters such as applied voltage (or energy), distance from the tip of the female to the sample, sample concentration, and power supply (voltage was applied). .. After introducing the protein, the leaves were washed with a buffer for 1 hour to wash off the GFP protein bound to the surface of the leaves. Then, observation was performed 1 to 24 hours later.
  • FIG. 21 shows a micrograph of sfGFP-NLS introduced in Hyprecator Type B, LO mode, taken 24 hours later.
  • the upper and lower rows show the detection results of GFP fluorescence, the bright field, and their superposition, and the lower row is a larger view (detection of migration to the nucleus) than the upper row.
  • FIG. 22 shows a photomicrograph taken after 1 hour of sfGFP-NLS introduced in Hypercator Type A, LO mode. It shows ultraviolet (UV) and GFP fluorescence (GFP 500 ms and GFP 50 ms).
  • Lower rows A and B show further enlarged views of the locations indicated by the upper rows of fluorescence signals A and B.
  • Hyprecator A and B which emit high-frequency pulse voltage, were used as a power source, it was observed that the GFP protein was introduced into plant cells.
  • a low-frequency CFB when used, many introduction experiments were performed, but no introduction was observed. From the above results, it was shown that the GFP protein can be introduced into the leaves of plants by the electric field-induced bubble method, and that a high-frequency pulse voltage is required for the introduction. It was shown that the polymer cell introduction method of the present embodiment enables the introduction of macromolecules into animal cells and plant cells with less irreversible damage to cells (less toxicity and prevention of cell death). ..
  • FIG. 23a shows a diagram in which DNA nanoparticle crystals were treated with restriction enzymes under the same conditions as in Test Example 13. In both cases, the crystals that can be confirmed in the target area in the left figure at the points indicated by the arrows disappear in the restriction enzyme treatment area in the right figure, indicating that the DNA nanoparticle crystals are decomposed by the restriction enzymes.
  • FIG. 23b shows a graph in which DNA nanoparticle crystals were fluorescently labeled and visualized under the same conditions as in Test Example 13. The left figure is a view in which fluorescence of GFP is detected, and the right figure is a figure in which fluorescence of GFP is detected.
  • FIG. 23c shows a diagram in which the fluorescently labeled DNA nanoparticle crystal of Test Example 13 was introduced into protoplasts under the same conditions as in Test Example 10.
  • the left figure is a bright field
  • the right figure is a figure in which fluorescence of GFP was detected, and it was shown that a fluorescence-labeled DNA nanoparticle crystal was introduced as shown by an arrow.
  • the function of the polymer is maintained, the survival rate of the cell is high, the polymer can be introduced into the cell with high efficiency, and the polymer is used for the expression of the function in the cell. It is possible to obtain an introduction device, a cell introduction method, and a method for producing a DNA nanoparticle crystal and a DNA nanoparticle crystal enclosure.

Abstract

Provided is an introduction device that can introduce a macromolecule into a cell with high efficiency while maintaining the function of the macromolecule and having a high survival rate of the cell, and can be used to express the function of the macromolecule inside the cell. Also provided are a method for cellular introduction, a DNA nanoparticle crystal, and a method for producing a DNA nanoparticle crystal inclusion body. In regards to the introduction device, method for cellular introduction, DNA nanoparticle crystal, and method for producing a DNA nanoparticle crystal inclusion body, the introduction device perforates the surface of a cell through physical impact including crushing by air bubbles, and introduces a macromolecule into the cell. The introduction device comprises a storage unit for storing a solution that includes the macromolecule, and a liquid feeding part that feeds the solution towards the surface of the perforated cell, and introduces the macromolecule into the cell, and when the macromolecule is to be introduced into the cell, the introduction device introduces the macromolecule at a bottom section inside a container accommodating a solution containing the cells.

Description

導入装置、高分子の細胞導入方法、DNAナノ粒子結晶及びDNAナノ粒子結晶封入体の製造方法Introduction device, polymer cell introduction method, DNA nanoparticle crystal and DNA nanoparticle crystal inclusion body production method
 本発明は、核酸や蛋白質等の高分子を細胞に導入する装置、それに用いるDNAナノ粒子結晶及び方法に関する。
 本願は、2019年9月18日に、米国に出願された米国仮出願番号62/901,803に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an apparatus for introducing a polymer such as a nucleic acid or a protein into a cell, and a DNA nanoparticle crystal and a method used therein.
The present application claims priority based on US Provisional Application No. 62 / 901,803 filed in the United States on September 18, 2019, the contents of which are incorporated herein by reference.
 近年、核酸や蛋白質といった生体高分子、例えば長鎖DNAや高分子量蛋白質といった特に大きな高分子を扱う技術が求められている。合成生物学の発展とともに、世界的に長鎖DNAを活用した研究が加速しているが、細胞を任意に制御するためのゲノム設計指針まで踏み込んだ研究開発は限定的である。現在、多くの遺伝子は、配列情報だけでは機能が不明である上に、繰り返し、相同、相似配列が存在し、改変は困難であることにより従来のゲノム編集や組換え技術では解析困難な状況が続いている。そのような背景において、低コストなゲノムスケールのDNA合成技術と、長鎖DNAの細胞への容易な導入技術の確立が研究発展の律速点となっており喫緊の課題となっている。 In recent years, there has been a demand for technology for handling biopolymers such as nucleic acids and proteins, for example, particularly large polymers such as long-chain DNA and high molecular weight proteins. With the development of synthetic biology, research using long-chain DNA is accelerating worldwide, but research and development that goes into genome design guidelines for controlling cells arbitrarily is limited. At present, the functions of many genes are unknown only by sequence information, and there are repeated, homologous, and similar sequences, and it is difficult to modify them, which makes it difficult to analyze with conventional genome editing and recombination techniques. in the process of. Against this background, the establishment of low-cost genome-scale DNA synthesis technology and easy introduction technology of long-chain DNA into cells has become a rate-determining point for research and development, and is an urgent issue.
 長鎖DNAを細胞内で利用する際の問題として、長鎖DNAのハンドリングが難しく、導入技術が限られることが挙げられる。例えば、100kbpを超える人工染色体は、主にPEGや電気による細胞融合を利用して細胞への導入が行われているが、エレクトロポレーション又はパーティクルガンといった物理的な導入手段をそのまま長鎖DNAに適用するのは、以下の理由で容易ではない。まず、長鎖DNAは排除体積が大きいことが挙げられる。高次構造を持つスーパーコイルプラスミドDNAにおいても、数十nm~200nmといった体積を持っており、物理的導入が可能な細胞は限られる。例えば、エレクトロポレーションを用いた無処理の受精卵のゲノム編集では、排除体積が大きい長鎖DNAやプラスミドDNAを高効率に導入した報告はない。
 加えて、長鎖DNAは物理的に脆弱である。長鎖DNAはピペッティングのような、機械刺激によっても切断を受けることが知られている。細胞に穴が空くような物理現象が長鎖DNAの周辺で起こると、長鎖DNAに悪影響が及ぶ可能性が高い。
A problem when using long-chain DNA in cells is that it is difficult to handle long-chain DNA and the introduction technique is limited. For example, artificial chromosomes exceeding 100 kbp are introduced into cells mainly by using cell fusion by PEG or electricity, but physical introduction means such as electroporation or particle gun can be used as they are for long-chain DNA. It is not easy to apply for the following reasons. First, long-chain DNA has a large exclusion volume. Even supercoil plasmid DNA having a higher-order structure has a volume of several tens of nm to 200 nm, and the number of cells that can be physically introduced is limited. For example, in genome editing of untreated fertilized eggs using electroporation, there is no report that long-chain DNA or plasmid DNA having a large exclusion volume is introduced with high efficiency.
In addition, long-chain DNA is physically fragile. Long-chain DNA is also known to be cleaved by mechanical stimuli such as pipetting. When a physical phenomenon that causes a hole in a cell occurs around the long-chain DNA, the long-chain DNA is likely to be adversely affected.
 他の生体高分子でも、細胞への導入においてはDNAと同様又は類似の問題が考えられる。例えば、RNAはDNAと同様に排除体積や物理的な脆弱さの問題があり、加えてDNAよりも化学的、物理的に不安定である。蛋白質は、高次構造による嵩が同様に排除体積の問題となり、また、物理的衝撃によってこれらの高次構造が変化すると、生物学的活性を容易に喪失するので、同様の物理的な脆弱さの問題がある。 Other biopolymers may have the same or similar problems as DNA when introduced into cells. For example, RNA, like DNA, has problems of exclusion volume and physical fragility, and is more chemically and physically unstable than DNA. Proteins are similarly physically vulnerable because bulk due to higher-order structures is also a matter of excluded volume, and when these higher-order structures are altered by physical impact, they easily lose their biological activity. There is a problem.
 したがって、高分子を効率的に細胞に導入するためには、排除体積が大きい高分子を導入するため、細胞を殺さないで、大きなサイズの穿孔を一過的・効率的に入れるような物理的な導入方法が必要である。加えて、物理的に脆弱な高分子を安定に導入する方法、例えばこれらの高分子を直接に扱わずに導入するための方法が必要である。 Therefore, in order to efficiently introduce a polymer into cells, a polymer having a large exclusion volume is introduced, so that a large-sized perforation can be temporarily and efficiently inserted without killing the cells. Introductory method is required. In addition, there is a need for a method for stably introducing physically fragile polymers, for example, a method for introducing these polymers without directly handling them.
 本発明者らは、分子や粒子等を細胞に導入する方法として、気泡によるインジェクション方法を開発している。例えば、特許文献1において本発明者らは、気泡噴出部材および外側外郭部を含み、前記気泡噴出部材は、導電材料で形成された芯材、絶縁材料で形成され、前記芯材の先端より延伸した延伸部を含み、且つ前記芯材に少なくとも一部が密着して芯材を覆う外郭部、及び、前記延伸部及び前記芯材の先端との間に形成され且つ気泡噴出口を有する空隙、を含み、前記延伸部の先端に、他の延伸部より肉厚の肉厚部が形成され、前記外側外郭部は、前記気泡噴出部材の外郭部の外側に形成され、前記外郭部との間に空間を有するように前記外郭部から離間した位置に形成され、前記外側外郭部と前記気泡噴出部材とが、相対移動が可能となるように形成されていることを特徴とする気液噴出部材、それを用いた気液噴出部材、局所アブレーション装置及び局所インジェクション装置を開示している。この技術は、絶縁材料を引き切って作成した延伸部の先端を肉厚にすることで、気泡噴出部材に高電圧を印加しても先端部分が破損しないこと、先端部分が肉厚となるため、加工対象物を突き刺して破損し難くなること、先端部分を肉厚に加工する際に、気泡噴出口の口径を小さくできるので、先端部分が破損することなく加工対象物をより微細加工できること、気泡噴出部材と外側外郭部とが相対移動できるように気液噴出部材を作製することで、局所アブレーション又は局所インジェクションする際の気泡噴出部材と加工対象物の位置調整が容易になること、そして、外側外郭部を加工対象物に押し当てることでインジェクション物質を含む溶液が外側外郭部から外に漏れだすことを防止でき、その状態で気泡噴出部材と加工対象物の位置関係を調整できる。そのため、大気中でも使用することができ、例えば、針なし注射装置へ応用が可能である気泡噴出部材、気液噴出部材、局所アブレーション装置又は局所インジェクション装置の技術を提供しようとするものである。 The present inventors are developing an injection method using bubbles as a method for introducing molecules, particles, etc. into cells. For example, in Patent Document 1, the present inventors include a bubble ejection member and an outer outer shell portion, and the bubble ejection member is formed of a core material formed of a conductive material and an insulating material, and extends from the tip of the core material. An outer shell portion that includes the stretched portion and at least a part of which is in close contact with the core material to cover the core material, and a void formed between the stretched portion and the tip of the core material and having a bubble spout. A thick portion thicker than the other stretched portion is formed at the tip of the stretched portion, and the outer outer shell portion is formed outside the outer shell portion of the bubble ejection member and is between the outer shell portion and the outer shell portion. The gas-liquid ejection member is formed at a position separated from the outer shell portion so as to have a space in the outer shell portion, and the outer outer shell portion and the bubble ejection member are formed so as to be able to move relative to each other. , A gas-liquid ejection member using the same, a local ablation device, and a local injection device are disclosed. This technology thickens the tip of the stretched part created by cutting the insulating material so that the tip will not be damaged even if a high voltage is applied to the bubble ejection member, and the tip will be thick. , It is hard to break by piercing the object to be processed, and when the tip part is processed to be thick, the diameter of the bubble outlet can be reduced, so the object to be processed can be finely processed without damaging the tip part. By manufacturing the gas-liquid ejection member so that the bubble ejection member and the outer outer shell can move relative to each other, it becomes easy to adjust the positions of the bubble ejection member and the object to be processed at the time of local ablation or local injection. By pressing the outer outer shell against the object to be processed, it is possible to prevent the solution containing the injection substance from leaking out from the outer outer shell, and in that state, the positional relationship between the bubble ejection member and the object to be processed can be adjusted. Therefore, it is intended to provide a technique of a bubble ejection member, a gas-liquid ejection member, a local ablation device, or a local injection device, which can be used in the atmosphere and can be applied to, for example, a needleless injection device.
 本発明者らはまた、物理的に安定なナノサイズの構造体を開発している。例えば、特許文献2において本発明者らは、ナノ粒子が規則的に配列された超格子構造体の製造方法において、前記ナノ粒子と、塩基配列の少なくとも一部に相補結合する相補結合部を有した核酸と、を溶液中に混合して、前記ナノ粒子の表面に核酸を修飾し、所定温度まで加熱後に徐冷することで、前記ナノ粒子間を前記核酸の相補結合部により相補結合させて、前記ナノ粒子間を結合して超格子構造体を形成し、その超格子構造体における前記ナノ粒子の体積率が6%以上となるようにし、前記溶液から前記超格子構造体を取り出して、超格子の対称性を維持したまま乾燥させることを特徴とする超格子構造体の製造方法、及びそれにより得られた超格子構造体を開示している。この技術は、溶液中の超格子構造体におけるナノ粒子の体積率の制御により、超格子構造体を溶液から取り出して乾燥しても超格子の対称性を維持することができる。そのため、溶液外などにおいても物理的に安定して存在する構造体を得ようとするものである。 The present inventors are also developing a physically stable nano-sized structure. For example, in Patent Document 2, in the method for producing a superlattice structure in which nanoparticles are regularly arranged, the present inventors have a complementary binding portion that complementarily binds to at least a part of the base sequence with the nanoparticles. By mixing the above-mentioned nucleic acid in a solution, modifying the surface of the nanoparticles with the nucleic acid, heating to a predetermined temperature, and then slowly cooling the nanoparticles, the nanoparticles are complementarily bonded by the complementary binding portion of the nanoparticles. , The nanoparticles are bonded to each other to form a superlattice structure so that the volume ratio of the nanoparticles in the superlattice structure is 6% or more, and the superlattice structure is taken out from the solution. A method for producing a superlattice structure, which is characterized by drying while maintaining the symmetry of the superlattice, and a superlattice structure obtained by the method are disclosed. This technique can maintain superlattice symmetry even when the superlattice structure is taken out of solution and dried by controlling the volume fraction of nanoparticles in the superlattice structure in solution. Therefore, it is intended to obtain a structure that is physically stable even outside the solution.
特許6385453号Patent No. 6385453 特開2018-149615号公報JP-A-2018-149615
 本発明者らは、高分子を細胞内に導入する方法として、上述の気泡によるインジェクション方法の応用を検討した。特許文献1に記載の方法では導入効率の評価は行われていない。排除体積の大きいDNAや蛋白質を細胞に導入することを考えると大きなサイズの穿孔が必要であり、安定して導入する方法は充分に検討されているとはいえない。加えて、ビーズ等の粒子よりも物理的に脆弱な高分子は、特許文献1などの気泡によるインジェクション方法を経ると、充分に構造及び機能を保ったまま安定に導入できない可能性がある。 The present inventors examined the application of the above-mentioned injection method using bubbles as a method for introducing a polymer into cells. The introduction efficiency is not evaluated by the method described in Patent Document 1. Considering the introduction of DNA or protein having a large exclusion volume into cells, a large-sized perforation is required, and it cannot be said that a method for stable introduction has been sufficiently studied. In addition, a polymer that is physically more fragile than particles such as beads may not be stably introduced while maintaining a sufficient structure and function through the injection method using bubbles as in Patent Document 1.
 また、従来の気泡インジェクション法は、主にチャンバー等に収納された細胞の懸濁液に浮遊している細胞や、平板に付着した細胞に対してインジェクションを行っていた。細胞の懸濁液は、高いトランスフェクション効率を得るには、細胞濃度及び導入する高分子の濃度を高くする必要があった。また、平板に付着した細胞におけるインジェクションの場合は、インジェクション領域が小さいため、インジェクションの回数を増やす必要があった。しかし、高度に設計された高分子は一般に調整できる量が限られており、濃度や回数も小さいことが好ましいため、従来に比べても可能な限り高い細胞への導入効率、トランスフェクション効率が求められる。 In addition, the conventional bubble injection method mainly injects cells floating in a suspension of cells stored in a chamber or the like or cells adhering to a flat plate. In order to obtain high transfection efficiency, the cell suspension required a high cell concentration and a high concentration of the polymer to be introduced. Further, in the case of injection in cells attached to a flat plate, since the injection region is small, it is necessary to increase the number of injections. However, highly designed polymers generally have a limited amount that can be adjusted, and it is preferable that the concentration and frequency are small. Therefore, as high as possible introduction efficiency and transfection efficiency into cells are required. Be done.
 特許文献2には、安定したナノサイズの結晶が開示されているが、高分子を細胞に導入する技術への応用については開示又は示唆されておらず、応用が可能であるか、どのように応用するかについては未知である。例えば特許文献2のナノ粒子構造体の使用目的としては、光学材料などの材料開発やナノテクノロジー工学が挙げられており、生物学的分野への応用は示されていない。 Patent Document 2 discloses stable nano-sized crystals, but does not disclose or suggest application to a technique for introducing a polymer into cells, and how can it be applied? It is unknown whether it will be applied. For example, the purpose of using the nanoparticle structure of Patent Document 2 includes the development of materials such as optical materials and nanotechnology engineering, and its application to the biological field has not been shown.
 また、高分子を構造体に封入し、細胞に導入し、細胞内で機能を発現させるにあたって、導入対象がどのような高分子であればこのような操作を行うのに適しているか、また構造体に封入された状態から細胞内で機能を発現させるかについても未知である。 In addition, when encapsulating a polymer in a structure, introducing it into a cell, and expressing its function in the cell, what kind of polymer is suitable for such an operation, and the structure. It is also unknown whether the function is expressed intracellularly from the state of being encapsulated in the body.
 本発明は上述の背景を鑑みてなされたものであり、高分子の機能を保ち、かつ細胞の生存率が高く、高分子を高効率で細胞に導入することができ、高分子の細胞内での機能発現に用いることのできる導入装置、細胞導入方法、DNAナノ粒子結晶及びDNAナノ粒子結晶封入体の製造方法を提供することを課題とする。 The present invention has been made in view of the above background, and the function of the polymer is maintained, the cell viability is high, the polymer can be introduced into the cell with high efficiency, and the polymer can be introduced into the cell. It is an object of the present invention to provide an introduction device, a cell introduction method, a method for producing a DNA nanoparticle crystal and a DNA nanoparticle crystal enclosure, which can be used for the functional expression of the above.
 本願の実施態様は、以下のような形態を有する。
(1)気泡の圧潰を含む物理的衝撃により細胞の表面を穿孔させて、高分子を前記細胞内に導入する導入装置であって、前記高分子を含む溶液を貯留する貯留部と、前記穿孔した前記細胞の表面に向けて前記溶液を送液し、前記高分子を前記細胞内に導入するための送液部とを有し、前記高分子を前記細胞内に導入する際は、前記細胞を含む溶液を収納した容器内の底部に対して行う、導入装置。
(2) 前記導入は、前記容器内において前記細胞を含む溶液を遠心分離することにより前記容器内の底部に形成された細胞塊に対して行う、前記導入装置。
(3) 前記導入は、前記細胞を含む溶液が、せん断速度1.0/s以下において、せん断粘性が0.01Pa・s以上である、前記導入装置。
(4) 前記細胞を含む溶液を収納した容器は、前記容器内の底部形状が錘状である、前記導入装置。
(5) 前記導入装置は、前記多孔性結晶を気泡噴出部材に導入し、前記気泡噴出部材に電圧を印加して気泡を発生させる細胞穿孔部を備える、前記導入装置。
(6)前記高分子は、多孔性結晶に封入されている、前記導入装置。
(7) 前記多孔性結晶は、ナノ材料とDNA分子とから成るDNAナノ粒子結晶である、前記導入装置。
(8) 前記多孔性結晶を前記細胞に導入した後に、前記封入していた前記高分子を徐放する前記導入装置。
(9) 前記高分子は分子量が1000以上である核酸分子(DNA分子、RNA分子、人工核酸)、タンパク質、ポリアミドを含む、前記導入装置。
(10) 前記高分子は、Cas9又は長鎖DNA分子である、前記導入装置。
(11) 高分子を多孔性結晶内に封入する封入工程と、前記多孔性結晶を細胞内に導入する細胞導入工程と、を有する、高分子の細胞導入方法。
(12) 前記細胞導入工程は、気圧の圧壊を含む物理的衝撃により細胞の表面を穿孔させる工程である、前記高分子の細胞導入方法。
(13) 前記多孔性結晶を気泡噴出部材に導入し、前記気泡噴出部材に電圧を印加して気泡を発生させ、前記気泡の圧壊を含む物理的衝撃によって前記細胞の膜を穿孔させると共に前記多孔性結晶を前記細胞に導入する電界誘起気泡法により、前記多孔性結晶を前記細胞に導入する、前記高分子の細胞導入方法。
(14) 前記多孔性結晶を前記細胞に導入する際は、前記細胞を含む溶液を収納した容器内の底部に形成された細胞塊に対して前記導入する、前記高分子の細胞導入方法。
(15) 前記多孔性結晶はナノ材料とDNA分子とを含むDNAナノ粒子結晶である、前記高分子の細胞導入方法。
(16) 前記高分子は分子量が1000以上である核酸分子(DNA分子、RNA分子、人工核酸)、タンパク質、ポリアミドを含む、前記高分子の細胞導入方法。
(17) 前記高分子はタンパク質である、前記高分子の細胞導入方法。
(18) 前記多孔性結晶を切断して、前記多孔性結晶から前記高分子を前記細胞内に徐放させる徐放工程をさらに有する、前記高分子の細胞導入方法。
(19) 前記徐放工程は、前記多孔性結晶に光を照射して前記多孔性結晶を切断し、又は、酵素によって前記多孔性結晶を切断する、前記高分子の細胞導入方法。
(20) 特定の分子に対して相互作用する、特異的相互作用の機能をもつ分子で修飾されたDNAナノ粒子結晶。
(21) 前記特異的相互作用によりDNAナノ粒子結晶の内部に分子又は粒子を保持可能に構成されてなる、前記DNAナノ粒子結晶。
(22) 前記特異的相互作用が、ビオチンと他の分子の相互作用である、前記DNAナノ粒子結晶。
(23) 前記DNAナノ粒子結晶に、前記特定の分子で修飾された封入対象を封入する、DNAナノ粒子結晶封入体の製造方法。
(24) ナノ材料とDNA分子とを含むDNAナノ粒子結晶であって、前記DNAナノ粒子結晶を構成する分子同士の結合力を減弱可能な構成を備え、前記構成は、前記DNA分子が光応答性官能基を有する、又は、ヌクレアーゼ認識配列を有する構成である、DNAナノ粒子結晶。
The embodiment of the present application has the following embodiments.
(1) An introduction device for perforating the surface of a cell by a physical impact including crushing of bubbles to introduce a polymer into the cell, a storage portion for storing a solution containing the polymer, and the perforation. The solution is fed toward the surface of the cells, and the polymer is provided with a liquid feeding unit for introducing the polymer into the cells. When the polymer is introduced into the cells, the cells are introduced. An introduction device performed on the bottom of a container containing a solution containing a polymer.
(2) The introduction device, wherein the introduction is performed on a cell mass formed at the bottom of the container by centrifuging the solution containing the cells in the container.
(3) The introduction is the introduction device in which the solution containing the cells has a shear viscosity of 0.01 Pa · s or more at a shear rate of 1.0 / s or less.
(4) The introduction device in which the container containing the solution containing the cells has a pyramid-shaped bottom in the container.
(5) The introduction device includes a cell perforation portion that introduces the porous crystal into a bubble ejection member and applies a voltage to the bubble ejection member to generate bubbles.
(6) The introduction device in which the polymer is enclosed in a porous crystal.
(7) The introduction device, wherein the porous crystal is a DNA nanoparticle crystal composed of a nanomaterial and a DNA molecule.
(8) The introduction device for introducing the porous crystal into the cell and then slowly releasing the encapsulated polymer.
(9) The introduction device, wherein the polymer contains a nucleic acid molecule (DNA molecule, RNA molecule, artificial nucleic acid), a protein, and a polyamide having a molecular weight of 1000 or more.
(10) The introduction device, wherein the polymer is Cas9 or a long-chain DNA molecule.
(11) A method for introducing a polymer cell, comprising an encapsulation step of encapsulating a polymer in a porous crystal and a cell introduction step of introducing the porous crystal into a cell.
(12) The method for introducing a polymer cell, wherein the cell introduction step is a step of perforating the surface of cells by a physical impact including crushing of atmospheric pressure.
(13) The porous crystal is introduced into a bubble ejection member, a voltage is applied to the bubble ejection member to generate a bubble, and a physical impact including crushing of the cell is used to perforate the cell membrane and the porous structure. A method for introducing a polymer into cells, wherein the porous crystals are introduced into the cells by an electric field-induced bubble method in which the sex crystals are introduced into the cells.
(14) The method for introducing a polymer cell into a cell mass formed at the bottom of a container containing a solution containing the cell when the porous crystal is introduced into the cell.
(15) The method for introducing a polymer into cells, wherein the porous crystal is a DNA nanoparticle crystal containing a nanomaterial and a DNA molecule.
(16) A method for introducing a polymer into cells, wherein the polymer contains a nucleic acid molecule (DNA molecule, RNA molecule, artificial nucleic acid), a protein, and a polyamide having a molecular weight of 1000 or more.
(17) A method for introducing a polymer into cells, wherein the polymer is a protein.
(18) A method for introducing a polymer into cells, further comprising a sustained-release step of cutting the porous crystal and slowly releasing the polymer from the porous crystal into the cell.
(19) The sustained-release step is a method for introducing cells of the polymer, wherein the porous crystals are irradiated with light to cleave the porous crystals, or the porous crystals are cleaved by an enzyme.
(20) A DNA nanoparticle crystal modified with a molecule having a specific interaction function that interacts with a specific molecule.
(21) The DNA nanoparticle crystal, which is configured to be able to hold molecules or particles inside the DNA nanoparticle crystal by the specific interaction.
(22) The DNA nanoparticle crystal, wherein the specific interaction is an interaction between biotin and another molecule.
(23) A method for producing a DNA nanoparticle crystal inclusion body, in which an inclusion target modified with the specific molecule is encapsulated in the DNA nanoparticle crystal.
(24) A DNA nanoparticle crystal containing a nanomaterial and a DNA molecule, which comprises a structure capable of diminishing the binding force between the molecules constituting the DNA nanoparticle crystal, and the structure is such that the DNA molecule has a photoresponse. A DNA nanoparticle crystal having a sex functional group or a configuration having a nuclease recognition sequence.
 また、本願の実施態様は、以下のような側面も有する。
(1B)高分子を多孔性結晶内に封入する封入工程と、気圧の圧壊を含む物理的衝撃により細胞の表面を穿孔させて、前記多孔性結晶を細胞に導入する細胞導入工程と、前記多孔性結晶を切断して、前記多孔性結晶から前記高分子を前記細胞内に徐放させる徐放工程と、を有する、高分子の細胞導入方法。
(2B)前記細胞導入工程は、前記多孔性結晶を気泡噴出部材に導入し、前記気泡噴出部材に電圧を印加して気泡を発生させ、前記気泡の圧壊を含む物理的衝撃によって前記細胞の膜を穿孔させると共に前記多孔性結晶を前記細胞に導入する電界誘起気泡法により、前記多孔性結晶を前記細胞に導入する、前記高分子の細胞導入方法。
(3B)前記高分子は分子量が450000以上である核酸分子(DNA分子、RNA分子、人工核酸)、タンパク質、ポリアミドを含む、前記細胞導入方法。
(4B)前記多孔性結晶はナノ材料とDNA分子とを含むDNAナノ粒子結晶である、前記高分子の細胞導入方法。
(5B)前記徐放工程は、前記多孔性結晶に光を照射して前記多孔性結晶を切断し、又は、酵素によって前記多孔性結晶を切断する、前記高分子の細胞導入方法。
(6B)高分子を多孔性結晶に封入し、気泡の圧壊により細胞膜を穿孔させて前記高分子を細胞に導入する導入装置。
(7B)前記導入装置は、前記多孔性結晶を気泡噴出部材に導入し、前記気泡噴出部材に電圧を印加して気泡を発生させる前記導入装置。
(8B)前記多孔性結晶はナノ材料とDNA分子とから成るDNAナノ粒子結晶である、前記導入装置。
(9B)前記多孔性結晶を細胞に導入した後に、前記封入していた前記高分子を徐放する前記導入装置。
(10B)前記高分子は分子量が450000以上である核酸分子(DNA分子、RNA分子、人工核酸)、タンパク質、ポリアミドを含む、前記導入装置。
The embodiment of the present application also has the following aspects.
(1B) An encapsulation step of encapsulating a polymer in a porous crystal, a cell introduction step of perforating the surface of a cell by a physical impact including crushing of pressure, and introducing the porous crystal into a cell, and the porous. A method for introducing a polymer cell, comprising a sustained release step of cutting a sex crystal and slowly releasing the polymer from the porous crystal into the cell.
(2B) In the cell introduction step, the porous crystal is introduced into a bubble ejection member, a voltage is applied to the bubble ejection member to generate a bubble, and a physical impact including crushing of the cell causes a membrane of the cell. A method for introducing a polymer cell into the cell by an electric field-induced bubble method in which the porous crystal is introduced into the cell while perforating the cell.
(3B) The method for introducing a cell, wherein the polymer contains a nucleic acid molecule (DNA molecule, RNA molecule, artificial nucleic acid), a protein, and a polyamide having a molecular weight of 450,000 or more.
(4B) The method for introducing a polymer into cells, wherein the porous crystal is a DNA nanoparticle crystal containing a nanomaterial and a DNA molecule.
(5B) The sustained-release step is a method for introducing cells of the polymer, wherein the porous crystal is irradiated with light to cleave the porous crystal, or the porous crystal is cleaved by an enzyme.
(6B) An introduction device in which a polymer is enclosed in a porous crystal, the cell membrane is perforated by crushing bubbles, and the polymer is introduced into cells.
(7B) The introduction device is the introduction device for introducing the porous crystal into a bubble ejection member and applying a voltage to the bubble ejection member to generate bubbles.
(8B) The introduction device, wherein the porous crystal is a DNA nanoparticle crystal composed of a nanomaterial and a DNA molecule.
(9B) The introduction device for introducing the porous crystal into cells and then slowly releasing the encapsulated polymer.
(10B) The introduction device, wherein the polymer contains a nucleic acid molecule (DNA molecule, RNA molecule, artificial nucleic acid), protein, and polyamide having a molecular weight of 450,000 or more.
 本発明の一実施形態によれば、高分子の機能を保ち、かつ細胞の生存率が高く、高分子を高効率で細胞に導入することができ、高分子の細胞内での機能発現に用いることのできる導入装置、細胞導入方法、DNAナノ粒子結晶及びDNAナノ粒子結晶封入体の製造方法を得ることができる。 According to one embodiment of the present invention, the function of the polymer is maintained, the survival rate of the cell is high, the polymer can be introduced into the cell with high efficiency, and the polymer is used for the expression of the function in the cell. It is possible to obtain an introduction device, a cell introduction method, and a method for producing a DNA nanoparticle crystal and a DNA nanoparticle crystal enclosure.
本実施形態の導入装置を示す概略図である。It is the schematic which shows the introduction apparatus of this embodiment. 本実施形態の多孔性結晶(DNAナノ粒子結晶)、単位格子及びDNAナノ粒子結晶封入体を示す概略図である。It is the schematic which shows the porous crystal (DNA nanoparticle crystal) of this embodiment, the unit lattice and the DNA nanoparticle crystal inclusion body. 本実施例の試験例1の高分子の細胞導入を示す顕微鏡写真図である。It is a micrograph which shows the cell introduction of the polymer of Test Example 1 of this Example. 図3の細胞導入のトランスフェクション効率を示すグラフ図である。It is a graph which shows the transfection efficiency of the cell introduction of FIG. 本実施例の試験例2の高分子の細胞導入を示す顕微鏡写真図である。It is a micrograph which shows the cell introduction of the polymer of Test Example 2 of this Example. 図5の細胞導入のトランスフェクション効率を示すグラフ図である。It is a graph which shows the transfection efficiency of the cell introduction of FIG. 図5の細胞導入のトランスフェクション細胞数を示すグラフ図である。It is a graph which shows the number of transfection cells of the cell introduction of FIG. 本実施例の試験例3の高分子の細胞導入を示す顕微鏡写真図である。It is a micrograph which shows the cell introduction of the polymer of Test Example 3 of this Example. 本実施例の試験例4の細胞導入プラスミド分子量を示すゲル電気泳動の写真図である。It is a photograph figure of the gel electrophoresis which shows the molecular weight of the cell introduction plasmid of Test Example 4 of this Example. 本実施例の試験例5の難導入細胞への導入のトランスフェクション効率を示すグラフ図である。It is a graph which shows the transfection efficiency of introduction into the poorly introduced cell of Test Example 5 of this Example. 本実施例の試験例6の高分子の細胞導入を示す顕微鏡写真図である。It is a micrograph which shows the cell introduction of the polymer of Test Example 6 of this Example. 本実施例の試験例7の多孔性結晶を示す顕微鏡写真図である。It is a micrograph which shows the porous crystal of Test Example 7 of this Example. 本実施例の試験例7のストレプトアビジン修飾量子ドットを示す顕微鏡写真図である。It is a micrograph which shows the streptavidin modified quantum dot of the test example 7 of this example. 本実施例の試験例7の多孔性結晶へのストレプトアビジン修飾量子ドットの封入を示す顕微鏡写真図である。It is a micrograph showing the encapsulation of streptavidin-modified quantum dots in the porous crystal of Test Example 7 of this example. 本実施例の試験例7の多孔性結晶へのストレプトアビジン修飾量子ドットの封入を示すグラフ図である。It is a graph which shows the encapsulation of streptavidin-modified quantum dots in the porous crystal of Test Example 7 of this Example. 本実施例の試験例8に用いたCas9-gRNA及びDNAナノ粒子結合体を示す概略図である。It is a schematic diagram which shows Cas9-gRNA and DNA nanoparticle conjugate used for Test Example 8 of this Example. 本実施例の試験例8の多孔性結晶へのCas9-gRNA封入を示す顕微鏡写真図である。It is a micrograph which shows Cas9-gRNA encapsulation in the porous crystal of Test Example 8 of this Example. 本実施例の試験例9の多孔性結晶及び金粒子へのCas9-gRNAの結合性を示す顕微鏡写真図である。It is a micrograph which shows the binding property of Cas9-gRNA to the porous crystal and the gold particle of Test Example 9 of this Example. 本実施例の試験例10の高分子の細胞導入を示す顕微鏡写真図である。It is a micrograph which shows the cell introduction of the polymer of Test Example 10 of this Example. 本実施例の試験例11の高分子の細胞導入を示す顕微鏡写真図である。It is a micrograph which shows the cell introduction of the polymer of Test Example 11 of this Example. 本実施例の試験例12の高分子の細胞導入によるゲノム編集のポジティブ対照の結果を示す図である。It is a figure which shows the result of the positive control of the genome editing by the cell introduction of the polymer of Test Example 12 of this Example. 本実施例の試験例12の高分子の細胞導入によるゲノム編集のRNP封入結晶の導入の結果を示す図である。It is a figure which shows the result of the introduction of the RNP-encapsulated crystal of genome editing by the cell introduction of the polymer of Test Example 12 of this Example. 本実施例の試験例12の高分子の細胞導入によるゲノム編集のネガティブ対照の結果を示す図である。It is a figure which shows the result of the negative control of genome editing by cell introduction of the polymer of Test Example 12 of this Example. 本実施例の試験例13のDNAナノ粒子結晶の酵素分解を示す顕微鏡写真図である。It is a micrograph which shows the enzymatic decomposition of the DNA nanoparticle crystal of Test Example 13 of this Example. 本実施例の試験例14のDNAナノ粒子結晶の光分解を示す顕微鏡写真図である。It is a micrograph which shows the photolysis of the DNA nanoparticle crystal of Test Example 14 of this Example. 本実施例の試験例15の高分子の細胞導入(Hyfrecator Type B)を示す顕微鏡写真図である。It is a micrograph which shows the cell introduction (Hyfrector Type B) of the polymer of Test Example 15 of this Example. 本実施例の試験例15の高分子の細胞導入(Hyfrecator Type A)を示す顕微鏡写真図である。It is a micrograph which shows the cell introduction (Hyfrector Type A) of the polymer of Test Example 15 of this Example. 本実施例の参考例の高分子の細胞導入を示す顕微鏡写真図である。It is a micrograph which shows the cell introduction of the polymer of the reference example of this Example.
 以下、実施形態を挙げて本発明を詳細に説明する。
(導入装置)
 本願発明の導入装置100は、インジェクター20を備えており、インジェクター20は、貯留部21と、送液部22を備えている。送液部22は、容器30の底部に対面してなる。
Hereinafter, the present invention will be described in detail with reference to embodiments.
(Introduction device)
The introduction device 100 of the present invention includes an injector 20, and the injector 20 includes a storage unit 21 and a liquid feeding unit 22. The liquid feeding unit 22 faces the bottom of the container 30.
 インジェクター20は、気泡の圧潰を含む物理的衝撃により細胞の表面を穿孔させて、高分子を前記細胞内に導入する部材である。
 貯留部21は、インジェクター20が備える貯留手段で、本実施形態では液体を貯留可能な容器である。細胞に導入する前記高分子を含む溶液が、貯留部21に含まれている。
 送液部22は、前記溶液が流通可能に形成されている。本実施形態では、送液部22は、貯留部21に接続された管状部材である。
 なお、前記溶液が少量である場合は、送液部22が貯留部21を兼ねていてもよい。すなわち、送液部22の管内の空間に、前記溶液が貯留されていてもよい。
The injector 20 is a member that perforates the surface of a cell by a physical impact including crushing of bubbles to introduce a polymer into the cell.
The storage unit 21 is a storage means included in the injector 20, and is a container capable of storing a liquid in the present embodiment. The reservoir 21 contains a solution containing the polymer to be introduced into cells.
The liquid feeding unit 22 is formed so that the solution can flow. In the present embodiment, the liquid feeding unit 22 is a tubular member connected to the storage unit 21.
When the amount of the solution is small, the liquid feeding unit 22 may also serve as the storage unit 21. That is, the solution may be stored in the space inside the pipe of the liquid feeding unit 22.
 本実施形態のインジェクター20は、気泡を発生させる気泡噴出部材を備えている。本実施形態では、気泡噴出部材は送液部22の端部に備えられている。具体的には、送液部22の管状部材は絶縁材料からなり、その管状部材内に、後述する電力供給手段40に接続された導電材料からなる芯部(いずれも図示せず)を備えてなり、この管状部材と芯部が気泡発生部材となっている。芯部は、送液部22内に溶液や気泡が流通可能な隙間が充分に確保されるよう送液部22より充分に内径が小さい。すなわち、後述するように芯部に電圧を印加することで、気泡が発生し管部内を流通し、送液部22の端部近傍から気泡が噴出するように構成されてなる。 The injector 20 of the present embodiment includes a bubble ejection member that generates bubbles. In the present embodiment, the bubble ejection member is provided at the end of the liquid feeding unit 22. Specifically, the tubular member of the liquid feeding portion 22 is made of an insulating material, and the tubular member is provided with a core portion (none of which is shown) made of a conductive material connected to the power supply means 40 described later. The tubular member and the core form the bubble generating member. The inner diameter of the core portion is sufficiently smaller than that of the liquid feeding portion 22 so that a gap through which the solution or air bubbles can flow is sufficiently secured in the liquid feeding portion 22. That is, as will be described later, by applying a voltage to the core portion, bubbles are generated and circulate in the pipe portion, and the bubbles are ejected from the vicinity of the end portion of the liquid feeding portion 22.
 送液部22の端部は、細胞穿孔部となっている。高分子を細胞内に導入する際は、送液部22の端部の細胞穿孔部が細胞に接触した状態で、送液部内を気泡及び前記多孔性結晶を含む溶液を流通させる。気泡が細胞に衝突すると、気泡により物理的衝撃が生じる。物理的衝撃には、例えば気泡の圧潰が含まれる。この物理的衝撃により、細胞の表面が穿孔される。前記穿孔された細胞に前記多孔性結晶を含む溶液が送液されることで、前記溶液が細胞内に導入される。
 細胞導入の際に送液部22の先端の電極に加えられる電力の条件は、インジェクター20の構造や細胞の種類等の条件によって変わってくるが、2~15Wとなるよう行うことが好ましい。
The end portion of the liquid feeding portion 22 is a cell perforation portion. When the polymer is introduced into the cells, the solution containing the bubbles and the porous crystals is circulated in the liquid feeding part in a state where the cell perforation part at the end of the liquid feeding part 22 is in contact with the cells. When a bubble collides with a cell, the bubble creates a physical shock. Physical impacts include, for example, crushing of air bubbles. This physical impact perforates the surface of the cell. By sending a solution containing the porous crystals to the perforated cells, the solution is introduced into the cells.
The condition of the electric power applied to the electrode at the tip of the liquid feeding unit 22 at the time of introducing the cells varies depending on the conditions such as the structure of the injector 20 and the type of cells, but it is preferably 2 to 15 W.
 容器30は、細胞を含む溶液を収納している。細胞を含む溶液の溶液成分は、導入の操作を通じて細胞を損傷しない溶液であれば適宜選択できるが、例えば細胞培養液などであってもよい。
 溶液の容積あたりの細胞数、すなわち細胞濃度は、目安として7μLあたり0.25~3.0×10個が好ましい。0.75×10個以上であると、細胞塊又は細胞懸濁液の粘度が高くなり、気泡による物理的衝撃が細胞に伝わりやすいので好ましい。1.0×10個以上がより好ましく、1.5×10個以上が特に好ましい。
The container 30 contains a solution containing cells. The solution component of the solution containing cells can be appropriately selected as long as it is a solution that does not damage cells through the introduction operation, but may be, for example, a cell culture solution.
The number of cells per volume of the solution, that is, the cell concentration is preferably 0.25 to 3.0 × 10 6 cells per 7 μL as a guide. When the number is 0.75 × 10 6 or more, the viscosity of the cell mass or cell suspension becomes high, and the physical impact of bubbles is easily transmitted to the cells, which is preferable. 1.0 × 10 6 or more is more preferable, and 1.5 × 10 6 or more is particularly preferable.
 容器の底部に対して導入を行うことで効率的に導入を行うことができる原理として、以下のように考察ができる。容器の底部は細胞を含む溶液の細胞の濃度が高くなっているが、細胞の濃度が高くなることで、以下のような作用が考えられる。本発明者らは、細胞を高濃度化することにより、細胞を含む溶液の粘性が上がり、高い粘性を示す液体では気泡の衝撃が強まることを見出している。具体的には、細胞濃度が、細胞数0.75×10/7μl以上において、特定せん断強度における粘性が飛躍的に上昇する。本発明者らの研究において、細胞数0.75×10/7μl以上では、せん断速度1.0/s以下において、せん断粘性が0.01Pa・s以上となる。また、細胞数1.5×10/7μl以上において、せん断速度1.0/s以下において、せん断粘性が1.0Pa・s以上となる。
 細胞を含む溶液の粘性という物理条件は、電界誘起気泡の性質を変化させることが知られている。後述する試験例1の結果より、細胞濃度が一定以上で遺伝子導入効率が上がる。したがって、細胞濃度が一定以上においては、細胞を含む溶液の粘性が向上し、導入効率が向上すると考えられる。
 これらの見地より、前記導入は、細胞を含む溶液が、レオメータ等の粘弾性測定装置の測定で、せん断速度10.0/s以下において、せん断粘性が0.01Pa・s以上となる溶液に対して行うことが好ましい。また、細胞を含む溶液が、せん断速度10.0/s以下において、せん断粘性が0.1Pa・s以上となる溶液に対して行うことがさらに好ましい。
The following can be considered as the principle that the introduction can be performed efficiently by introducing the container to the bottom of the container. At the bottom of the container, the concentration of cells in the solution containing cells is high, but the following effects can be considered due to the high concentration of cells. The present inventors have found that by increasing the concentration of cells, the viscosity of a solution containing cells increases, and the impact of bubbles in a liquid showing high viscosity increases. Specifically, the cell concentration in the cell number 0.75 × 10 6 / 7μl or more, viscosity at a specific shear strength dramatically increased. In our study, the cell number 0.75 × 10 6 / 7μl or more, below a shear rate of 1.0 / s, a shear viscosity is 0.01 Pa · s or more. Also, in the cell number 1.5 × 10 6 / 7μl above, below a shear rate of 1.0 / s, a shear viscosity is 1.0 Pa · s or more.
It is known that the physical condition of the viscosity of a solution containing cells changes the properties of electric field-induced bubbles. From the results of Test Example 1 described later, the gene transfer efficiency increases when the cell concentration is above a certain level. Therefore, when the cell concentration is above a certain level, it is considered that the viscosity of the solution containing the cells is improved and the introduction efficiency is improved.
From these points of view, the introduction is for a solution containing cells having a shear viscosity of 0.01 Pa · s or more at a shear rate of 10.0 / s or less as measured by a viscoelasticity measuring device such as a rheometer. It is preferable to carry out. Further, it is more preferable that the solution containing cells is applied to a solution having a shear viscosity of 0.1 Pa · s or more at a shear rate of 10.0 / s or less.
 容器30は、容器内の形状が、底部に向かうにしたがって内径が狭くなっていることが好ましい。より好ましくは、容器30は底部形状が錘状である。
 容器30の具体例としては、遠沈管等が挙げられる。
 容器30としては、後述するように細胞を含む溶液を収納することから、容積およそ0.5~2mlなどの容器を用いることが好ましい。また、底部までの高さが0.5~3cm程度の容器を用いるのが好ましい。容器が小さすぎても大きすぎても気泡による物理的衝撃が伝わりにくい。
It is preferable that the inner diameter of the container 30 becomes narrower toward the bottom. More preferably, the container 30 has a weight-like bottom shape.
Specific examples of the container 30 include a centrifuge tube and the like.
As the container 30, it is preferable to use a container having a volume of about 0.5 to 2 ml or the like because a solution containing cells is stored as described later. Further, it is preferable to use a container having a height to the bottom of about 0.5 to 3 cm. If the container is too small or too large, the physical impact of air bubbles will not be transmitted easily.
 上述の容積、深さで底部が錘状の容器としては、いわゆるマイクロチューブ、微量遠心管(微小遠沈管)などが好適に用いられる。また、より大きい容器(例えば、長さ5cm以上の遠沈管など)の底部近傍を切断し、容積や深さを調整したものを用いても良い。より大きい容器も、底部近傍が錘状となっているものを好適に用いることができる。 As the container having the above-mentioned volume and depth and a weight-shaped bottom, so-called microtubes, microcentrifuge tubes (microcentrifuge tubes), etc. are preferably used. Further, a container in which the vicinity of the bottom of a larger container (for example, a centrifuge tube having a length of 5 cm or more) is cut and the volume and depth are adjusted may be used. As for the larger container, a container having a weight shape near the bottom can be preferably used.
 高分子を前記細胞内に導入する際は、細胞を含む溶液を収納した容器30内の底部に対して行う。
 容器30の底部は、細胞の溶液の容積あたりの細胞数、いわゆる細胞濃度が高くなっているので、影響を受ける細胞数が多い他、気泡やその圧潰時など衝撃波によって引き起こされる物理的衝撃が伝わりやすく、細胞の表面を穿孔しやすく、細胞膜の細孔を開きやすい。
 細胞の導入は、容器30の底部の自然沈降により細胞濃度が高い部位に対して行ってもよく、また、容器30を遠心分離して、底部の細胞濃度をさらに高くしても、また底部の容積の多くが細胞からなる細胞塊に対して行ってもよい。
 さらに、細胞塊を再度一定の溶液に懸濁した、高濃度細胞懸濁液を調整して行ってもよい。高濃度細胞懸濁液は、細胞の濃度(細胞数)を調整しやすく、また細胞塊のまま作業を行うよりも細胞の生存率が高いため、結果的に高い効率でインジェクションを行うことができる。
When the polymer is introduced into the cells, it is applied to the bottom of the container 30 containing the solution containing the cells.
At the bottom of the container 30, the number of cells per volume of the cell solution, that is, the so-called cell concentration, is high, so that the number of cells affected is large, and physical shocks caused by shock waves such as bubbles and their crushing are transmitted. It is easy to perforate the surface of cells, and it is easy to open pores in the cell membrane.
The cells may be introduced into a site having a high cell concentration due to natural sedimentation at the bottom of the container 30, or the container 30 may be centrifuged to further increase the cell concentration at the bottom, or the bottom may be introduced. It may be performed on a cell mass consisting of many cells.
Further, a high-concentration cell suspension in which the cell mass is suspended in a constant solution may be prepared. The high-concentration cell suspension makes it easy to adjust the cell concentration (number of cells) and has a higher cell survival rate than working with the cell mass as it is, so that injection can be performed with high efficiency as a result. ..
 導入は、容器30内において前記細胞を含む溶液を遠心分離することにより前記容器内の底部に形成された細胞塊に対して行うことがより好ましい。細胞塊を形成し、その細胞塊に対して導入を行うことで、遠心分離前の細胞を含む溶液の濃度にかかわらず、表面細胞に対してほぼ確実に導入を行うことができる。
 遠心分離の条件は、用いる細胞や遠心分離の装置、容器によっても異なってくるが、目安として0~15000×gで行う。
 本実施形態では、上述したように遠心分離でなく自然沈降によって細胞を底部に集めることもできるので、遠心分離の条件に下限は特になく、0×g以上で行うことができるが、目安として、100×g以上であると、後述する5分程度の短時間で細胞を充分に集積できるので好ましい。
 遠心分離の条件の上限は、15000×gをこえると細胞が破損する可能性がある。12000×g以下であることが好ましく、10000×g以下であることがより好ましい。12000×gでは、例えば3T3細胞がおよそ86%生存する。10000×gでは、3T3細胞は遠心分離せず自然沈降した場合と同程度(およそ94%)生存するので、最大限の生存率とした場合の上限である。
 これらの結果から、遠心分離は100~12000×gの条件で行うことが好ましく、100~10000×gの条件で行うことがより好ましい。
 なお、10000×g以上で遠心分離することで、細胞よりもスケールの小さい細胞小器官(オルガネラ)、例えばミトコンドリア、リソソーム又はペルオキシソーム等を集積することができる。
 遠心分離の時間は特に限らないが、例えば1~30分程度から適宜選択でき、100~400×gの場合、2~10分程度行うのが好ましい。この条件により、自然沈降よりも短い時間で充分に細胞を容器の底部に集積することができる。
It is more preferable that the introduction is carried out on the cell mass formed at the bottom of the container by centrifuging the solution containing the cells in the container 30. By forming a cell mass and introducing the cell mass, the introduction can be almost certainly performed on the surface cells regardless of the concentration of the solution containing the cells before centrifugation.
The conditions for centrifugation vary depending on the cells used, the device for centrifugation, and the container, but as a guide, the concentration is 0 to 15,000 xg.
In the present embodiment, as described above, cells can be collected at the bottom by natural sedimentation instead of centrifugation. Therefore, there is no particular lower limit on the conditions for centrifugation, and the cells can be separated by 0 × g or more. When it is 100 × g or more, cells can be sufficiently accumulated in a short time of about 5 minutes, which will be described later, which is preferable.
If the upper limit of centrifugation conditions exceeds 15,000 xg, cells may be damaged. It is preferably 12000 × g or less, and more preferably 10000 × g or less. At 12000 xg, for example, 3T3 cells survive approximately 86%. At 10000 × g, 3T3 cells survive to the same extent (about 94%) as when they spontaneously settle without centrifugation, which is the upper limit when the maximum survival rate is taken.
From these results, the centrifugation is preferably performed under the condition of 100 to 12000 × g, and more preferably performed under the condition of 100 to 10000 × g.
By centrifuging at 10,000 × g or more, organelles (organelles) smaller in scale than cells, such as mitochondria, lysosomes, and peroxisomes, can be accumulated.
The time for centrifugation is not particularly limited, but can be appropriately selected from, for example, about 1 to 30 minutes, and in the case of 100 to 400 × g, it is preferably about 2 to 10 minutes. Under this condition, cells can be sufficiently accumulated at the bottom of the container in a shorter time than spontaneous sedimentation.
 本実施形態において細胞に導入される高分子は、導入方法において後述するように、分子量が1000以上である分子で、主に生体高分子である核酸分子、タンパク質、ポリアミド、又はそれらが複数種組み合わさった複合体を含む。また、後述するように多孔性結晶等の他の分子と複合していてもよい。
 高分子を細胞に導入する際は、高分子は、後述する多孔性結晶に封入され、その多孔性結晶を含む溶液を上記貯留部に貯留して用いることも好ましい。
The polymer introduced into the cell in the present embodiment is a molecule having a molecular weight of 1000 or more as described later in the introduction method, and is mainly a biopolymer nucleic acid molecule, a protein, a polyamide, or a combination of a plurality of types thereof. Includes the complex. Further, as will be described later, it may be combined with another molecule such as a porous crystal.
When introducing the polymer into cells, it is also preferable that the polymer is encapsulated in a porous crystal described later, and a solution containing the porous crystal is stored in the storage portion for use.
 導入装置100はさらに、電力供給手段40を備えていてもよい。電力出力手段40は、電源装置41、インジェクター20と対向電極42とで回路を形成するための電線43とを含んでいてもよい。インジェクター20は、送液部22の先端が電極を形成するように配線されている。電力供給手段40は、図示しないが、必要に応じて、抵抗、電圧増幅回路、DIO(Digital Input-output)ポートなどを設けてあってもよい。
 インジェクター20としては、公知のいわゆる気泡インジェクター20、例えば特許文献1に記載の装置を使用してもよい。
The introduction device 100 may further include a power supply means 40. The power output means 40 may include a power supply device 41, an injector 20, and an electric wire 43 for forming a circuit with the counter electrode 42. The injector 20 is wired so that the tip of the liquid feeding portion 22 forms an electrode. Although not shown, the power supply means 40 may be provided with a resistor, a voltage amplifier circuit, a DIO (Digital Input-output) port, or the like, if necessary.
As the injector 20, a known so-called bubble injector 20, for example, the device described in Patent Document 1 may be used.
(本実施形態の導入装置の効果)
 本実施形態では、高分子を前記細胞内に導入する際は、前記細胞を含む溶液を収納した容器内の底部に対して行うので、導入時の細胞濃度が高く、インジェクション効率が高い。
 気泡によるインジェクション方法は、電気的(エレクトロポレーション)、化学的な方法(PEG法など)に比べて細胞の生存率が高いという利点がある。従来はインジェクションは細胞を培養した溶液に対して行っていたか、または、シャーレ、プレートなどの平板に付着した細胞に対してインジェクションを行っていた。これらの手段では、インジェクション領域を小さい領域しかとることができず結果として導入効率が低い傾向があった。また、多数の細胞に、また多数のサンプル数に対して行うには向かない面があった。
 これに対して、本実施形態では容器の底にある高濃度の細胞に対してインジェクションを行うので、遠心分離後に細胞ペレットに目的の容量の培地を加えることで達成される。細胞濃度が高いと、マイクロバブルや衝撃波によって引き起こされる衝撃が伝わり、細胞数が増え、細胞膜の細孔を開くのに十分なヒットが得られる。
 細胞懸濁液の機械的環境は、細胞濃度によって調整されるため、幅広い種類(動物細胞、藻類又は植物細胞など)の細胞の注入に適した方法となる。動物細胞、藻類、植物細胞の穿孔に必要なエネルギーは、特定の膜の厚さと組成によって変化するが、電気的パラメータや電極と対象との距離によって調整可能であり、細胞濃度が高い本実施形態では、より調整が容易となっている。また、細胞濃度を調整すると、細胞懸濁液の機械的環境(特性)と特定の種類の細胞に作用するエネルギーが変化するため、導入効率向上につながる。
 本実施形態では、容器の底の細胞に遠心分離処理を行い、容器底に固着するペレット状の細胞塊を形成するため、使用するプラスミドの消費量を極限まで抑えることができる。これにより、バイオメディカル分野の研究における幅広い細胞等へ適用できる汎用インジェクション法として広く利用することができる。
(Effect of the introduction device of this embodiment)
In the present embodiment, when the polymer is introduced into the cells, it is applied to the bottom of the container containing the solution containing the cells, so that the cell concentration at the time of introduction is high and the injection efficiency is high.
The bubble injection method has the advantage of higher cell viability than the electrical (electroporation) and chemical methods (PEG method, etc.). Conventionally, injection was performed on a solution in which cells were cultured, or injection was performed on cells attached to a flat plate such as a petri dish or a plate. With these means, only a small area can be taken as the injection area, and as a result, the introduction efficiency tends to be low. In addition, there were some aspects that were not suitable for a large number of cells and a large number of samples.
On the other hand, in the present embodiment, since injection is performed on the high-concentration cells at the bottom of the container, it is achieved by adding a target volume of medium to the cell pellet after centrifugation. At high cell concentrations, the impact caused by microbubbles and shock waves is transmitted, increasing the number of cells and providing sufficient hits to open the pores of the cell membrane.
The mechanical environment of the cell suspension is regulated by cell concentration, making it a suitable method for injecting a wide variety of cells (such as animal cells, algae or plant cells). The energy required for perforation of animal cells, algae, and plant cells varies depending on the thickness and composition of a specific membrane, but can be adjusted by electrical parameters and the distance between the electrode and the target, and the cell concentration is high. Then, the adjustment is easier. In addition, adjusting the cell concentration changes the mechanical environment (characteristics) of the cell suspension and the energy acting on specific types of cells, leading to an improvement in introduction efficiency.
In the present embodiment, the cells at the bottom of the container are centrifuged to form pellet-shaped cell clusters that adhere to the bottom of the container, so that the consumption of the plasmid to be used can be suppressed to the utmost limit. As a result, it can be widely used as a general-purpose injection method that can be applied to a wide range of cells and the like in research in the biomedical field.
 (その他の態様)
 以上は、細胞に対してインジェクター20から気泡及び溶液を供給する形態に対して説明したが、細胞懸濁液が前記多孔性結晶を含む溶液を含み、この細胞懸濁液に対してインジェクター20から気泡を発生させて、前記溶液内の多孔性結晶を細胞に導入するという態様であってもよい。
 この場合、貯留部21は、後述する細胞を収納した容器であってもよい。
 この態様の作用としては、インジェクター20の送液部22の先端の細胞穿孔部を細胞懸濁液に対して浸漬する。続いて上述のようにインジェクター20から気泡を発生させ、気泡の圧潰を含む物理的衝撃により細胞の表面を穿孔させると、細胞懸濁液内の多孔性結晶を細胞に導入することができる。
(Other aspects)
The above has been described for the form in which the cells and the solution are supplied from the injector 20 to the cells, but the cell suspension contains the solution containing the porous crystals, and the injector 20 supplies the cells to the cell suspension. It may be an embodiment in which bubbles are generated and the porous crystals in the solution are introduced into cells.
In this case, the storage unit 21 may be a container in which cells described later are stored.
As an action of this aspect, the cell perforation portion at the tip of the liquid feeding portion 22 of the injector 20 is immersed in the cell suspension. Subsequently, when bubbles are generated from the injector 20 as described above and the surface of the cells is perforated by a physical impact including crushing the bubbles, the porous crystals in the cell suspension can be introduced into the cells.
(高分子の細胞導入方法)
 ついで、本実施形態の高分子の細胞導入方法について説明する。
 本実施形態の高分子の細胞導入方法は、高分子を多孔性結晶内に封入する封入工程と、多孔性結晶を細胞内に導入する細胞導入工程とを有する
(Method of introducing polymer cells)
Next, a method for introducing a polymer cell of the present embodiment will be described.
The method for introducing a polymer cell of the present embodiment includes an encapsulation step of encapsulating the polymer in a porous crystal and a cell introduction step of introducing the porous crystal into the cell.
(封入工程)
(多孔性結晶)
 まず、高分子を封入する多孔性結晶について説明する。多孔性結晶は、分子が出入りできる孔部を多数有する結晶である。本実施形態では、多孔性結晶は、金属、核酸等の元素が集まって、粒子間距離がナノサイズの結晶を構成している。
(Encapsulation process)
(Porous crystal)
First, a porous crystal that encloses a polymer will be described. A porous crystal is a crystal having a large number of pores through which molecules can enter and exit. In the present embodiment, the porous crystal constitutes a crystal in which elements such as metals and nucleic acids are gathered and the interparticle distance is nano-sized.
 本実施形態では、図2に示すように、多孔性結晶500は、単位格子50が集まって構成されている。本実施形態において、多孔性結晶は、ナノ材料とDNA分子からなる、DNAナノ粒子結晶である。単位格子50は、ナノ粒子51と、該ナノ粒子51を修飾する結晶内DNA分子52からなる。 In the present embodiment, as shown in FIG. 2, the porous crystal 500 is composed of unit lattices 50. In this embodiment, the porous crystal is a DNA nanoparticle crystal composed of a nanomaterial and a DNA molecule. The unit cell 50 is composed of nanoparticles 51 and an intracrystal DNA molecule 52 that modifies the nanoparticles 51.
 ナノ粒子51は、粒径がナノオーダー(1~1000nm、好ましくは1~100nm)で、ナノ材料を構成素材とする粒子である。ナノ粒子51の構成素材であるナノ材料は、その表面に後述するDNAを修飾可能な任意の材料を用いることができ、金属、半導体、誘電体又は磁性体など各種材料を用いることができ、無機化合物、有機化合物や合金でもよい。ナノ粒子51はこれらの複数のナノ材料を含んでいても良い。また、単位格子50内に、異なる材料のナノ粒子51を混合して用いてもよい。ナノ粒子51の構成素材であるナノ材料は、金属単体であれば、Au、Pt、Pd、Li、Ag、Rh、Ru、V、Cu、Al、Co、Ni、Fe、又はMg等を用いることができる。合金であれば、Ni-Mg合金などを用いることができる。また、Si、Cd、Se、CdSなどの半導体、SiO2、TiO2などの誘電体を用いることもできる。ナノ粒子51の形状は任意でよく、球、楕円球又は多面体などである。 Nanoparticle 51 is a particle having a particle size of nano-order (1 to 1000 nm, preferably 1 to 100 nm) and having a nanomaterial as a constituent material. As the nanomaterial which is a constituent material of the nanoparticles 51, any material capable of modifying DNA described later can be used on the surface thereof, and various materials such as metal, semiconductor, dielectric or magnetic material can be used, and the nanomaterial is inorganic. It may be a compound, an organic compound or an alloy. The nanoparticles 51 may contain these plurality of nanomaterials. Further, nanoparticles 51 of different materials may be mixed and used in the unit cell 50. As the nanomaterial which is a constituent material of the nanoparticles 51, Au, Pt, Pd, Li, Ag, Rh, Ru, V, Cu, Al, Co, Ni, Fe, Mg or the like should be used as long as it is a simple substance of metal. Can be done. If it is an alloy, a Ni—Mg alloy or the like can be used. Further, semiconductors such as Si, Cd, Se and CdS, and dielectrics such as SiO2 and TiO2 can also be used. The shape of the nanoparticles 51 may be arbitrary, such as a sphere, an ellipsoid, or a polyhedron.
 ナノ粒子51を結晶内DNA分子52で修飾するには、適宜公知の方法を用いてよい。例えば、ナノ粒子51を構成するナノ材料と、結晶内DNA分子52の末端が化学結合していてもよい。この場合、結晶内DNA分子52の末端をナノ材料に結合可能な置換基に置換し、該置換基とナノ材料を結合してもよい。
 結晶内DNA分子52は1本鎖DNAで、1つのナノ粒子51が少なくとも2種類の結晶内DNA分子52によって修飾されている。この2種類の結晶内DNA分子52は、互いに相補的、すなわち相補結合(ハイブリダイゼーション)可能な領域を有している。この2種類の結晶内DNA分子52が相補結合可能な領域において互いにアニールすることで、金属元素が互いに一定の距離をとって配置され、格子構造の単位格子50となっている。単位格子50は、結晶内DNA分子52の相互作用により、格子構造が多面体等いずれの立体構造でもあり得る。
 例えば単位格子50は、正四面体を基本の単位としたものであってもよい。DNA正四面体の骨格はDNA Double Crossoverタイル、あるいはDNA origamiを基本とした剛性のある構造とし、6つの辺の中央部から長鎖DNAの一部の配列に結合できる一本鎖DNAが生えるような構造にすることができる。
 図に示した例では、単位格子50の格子構造はほぼ立方体となっている。
In order to modify the nanoparticles 51 with the DNA molecule 52 in the crystal, a known method may be used as appropriate. For example, the nanomaterial constituting the nanoparticles 51 and the terminal of the DNA molecule 52 in the crystal may be chemically bonded. In this case, the end of the DNA molecule 52 in the crystal may be substituted with a substituent capable of binding to the nanomaterial, and the substituent may be bonded to the nanomaterial.
The intracrystal DNA molecule 52 is a single-stranded DNA, and one nanoparticle 51 is modified by at least two types of intracrystal DNA molecules 52. These two types of intracrystal DNA molecules 52 have regions that are complementary to each other, that is, complementary to each other (hybridization). By annealing these two types of intracrystal DNA molecules 52 to each other in a region where they can complementarily bind to each other, the metal elements are arranged at a certain distance from each other to form a unit lattice 50 having a lattice structure. The unit lattice 50 can have any three-dimensional structure such as a polyhedron due to the interaction of the DNA molecules 52 in the crystal.
For example, the unit lattice 50 may have a regular tetrahedron as a basic unit. The skeleton of the DNA regular tetrahedron has a rigid structure based on the DNA Double Crossover tile or DNA origami, so that single-stranded DNA that can bind to a part of the sequence of long-chain DNA grows from the center of the six sides. Structure can be made.
In the example shown in the figure, the lattice structure of the unit cell 50 is substantially cubic.
 単位格子50は、結晶内DNA分子52同士の相補的な結合によってナノ粒子51間同士が配置されているので、結晶内DNA分子52の相補結合可能な領域の設計によって、ナノ粒子51間の距離が決まっている。すなわち、この距離によって、単位格子50には格子内に分子が出入りできる空間である細孔53を有する。
 また、結晶内DNA分子52の設計の他、単位格子50は水分子の存在、陰イオンの存在などによって分子間の距離が広まるので、これらの添加によって、単位格子50を膨張させることができる。
 一方、乾燥、陽イオンの添加、PEGの添加などによって分子間の距離が縮まるので、これらによって単位格子50を収縮させることができる。
In the unit cell 50, the nanoparticles 51 are arranged by the complementary bonds between the intracrystal DNA molecules 52. Therefore, the distance between the nanoparticles 51 can be determined by designing the region where the intracrystal DNA molecules 52 can be complementarily bonded. Has been decided. That is, depending on this distance, the unit lattice 50 has pores 53, which are spaces in which molecules can enter and exit the lattice.
In addition to the design of the DNA molecule 52 in the crystal, the unit cell 50 can expand the unit cell 50 by adding these because the distance between the molecules increases due to the presence of water molecules, anions, and the like.
On the other hand, since the distance between the molecules is shortened by drying, addition of cations, addition of PEG, etc., the unit cell 50 can be contracted by these.
 ナノ粒子51に結晶内DNA分子52を組み合わせて用いることで、結晶内DNA分子のデザインにより、単位結晶50や多孔性結晶500について、後述する細孔53の大きさ、結晶構造、形状といった構造を様々にデザインすることができ、剛性や粘弾性といった物性も制御しやすく、後述する高分子の封入、細胞への導入、徐放といった目的を実現するのに適している。また、後述するように結晶内DNA分子52は修飾することで特異的相互作用を付与することができ、特定の分子の封入に適した機能を付与することもできる。 By using the in-crystal DNA molecule 52 in combination with the nanoparticles 51, the unit crystal 50 and the porous crystal 500 can be subjected to structures such as the size, crystal structure, and shape of the pores 53, which will be described later, by designing the in-crystal DNA molecule. It can be designed in various ways, and it is easy to control physical properties such as rigidity and viscoelasticity, and it is suitable for achieving the purposes of encapsulation of polymers, introduction into cells, and sustained release, which will be described later. Further, as will be described later, the DNA molecule 52 in the crystal can be modified to impart a specific interaction, and can be imparted with a function suitable for encapsulation of a specific molecule.
 細孔53の大きさは、いわゆるナノサイズであるが、本実施形態では主に1-400nmであり、1-100nmであることが好ましく、5-50nmの範囲で設計することがより好ましい。このサイズで設計することで、タンパク質、長鎖DNA、タンパク質-核酸複合体を導入、保持するのに適している。 The size of the pores 53 is the so-called nano size, but in the present embodiment, it is mainly 1-400 nm, preferably 1-100 nm, and more preferably designed in the range of 5-50 nm. Designed at this size, it is suitable for introducing and retaining proteins, long-chain DNA, and protein-nucleic acid complexes.
 単位格子50が格子構造なので、この単位格子の格子構造が多数集まった多孔性結晶500は超格子構造とも呼ぶ。また、多孔性結晶500は細孔53を有する単位格子50からなっているので、孔部として細孔53を有する多孔性となっている。多孔性結晶500の構造は、細孔53を有することから内部に微細な空隙を多数有するスポンジに似た構造となっていることから、結晶スポンジとも呼ぶ。多孔性結晶500は、細孔53を有する単位格子50が集まり自己組織化しているともいえる。多孔性結晶500の形状も、結晶内DNA分子52の相互作用により、多面体等いずれの立体構造でもあり得る。図に示した例では、多孔性結晶500の構造はほぼ正十二面体となっている。
 単位格子50が集まった多孔性結晶500のサイズは、適宜最適なサイズを用いることができるが、本実施形態では数百nm~数μmオーダーの多孔性結晶500であってもよい。
 超格子構造体の具体例は、例えば特許文献2などに記載されている。
Since the unit lattice 50 has a lattice structure, the porous crystal 500 in which a large number of lattice structures of the unit lattice are gathered is also called a superlattice structure. Further, since the porous crystal 500 is composed of a unit cell 50 having pores 53, it is porous having pores 53 as pores. The structure of the porous crystal 500 is also called a crystal sponge because it has pores 53 and therefore has a structure similar to a sponge having many fine voids inside. It can be said that the porous crystal 500 is self-assembled by gathering unit lattices 50 having pores 53. The shape of the porous crystal 500 can also be any three-dimensional structure such as a polyhedron due to the interaction of the DNA molecules 52 in the crystal. In the example shown in the figure, the structure of the porous crystal 500 is almost a regular dodecahedron.
The size of the porous crystal 500 in which the unit lattices 50 are gathered can be appropriately selected, but in the present embodiment, the porous crystal 500 on the order of several hundred nm to several μm may be used.
Specific examples of the superlattice structure are described in, for example, Patent Document 2.
 多孔性結晶500は、結晶内DNA分子52のデザインにより、結晶形状が均一で、粒径もそろったものを作製可能であるため、細胞導入時の抵抗が小さく、導入時の操作に要する条件の最適化も行いやすい。 Since the porous crystal 500 can be produced with a uniform crystal shape and a uniform particle size due to the design of the DNA molecule 52 in the crystal, the resistance at the time of cell introduction is small, and the conditions required for the operation at the time of introduction are satisfied. Easy to optimize.
 単位格子50は、細孔53を介して、高分子60を保持可能に構成されてなる。
 高分子60は、分子量が1000以上である核酸分子(DNA分子、RNA分子、人工核酸)、タンパク質、ポリアミド、又はそれらが複数種組み合わさった複合体を含むことが好ましい。その中でも特に、高分子60は、RNPすなわちRNAと蛋白質の複合体であることも好ましい。
 分子量が1000以上である核酸分子(いわゆる長鎖DNAや長鎖RNA)は、排除体積が大きく、また物理的に脆弱で、一次~高次構造を失いやすい。本実施形態の細胞導入方法は、多孔性結晶に前記高分子を封入することで前記高分子が多孔性結晶内にコンパクトにまとまり、また多孔性結晶内に封入されることで物理的な衝撃等から守られる。したがって、本実施形態の細胞導入方法はいわゆる長鎖DNAや長鎖RNAを細胞に導入する際に特に有効である。
 また、タンパク質やポリアミドも、特に分子量が大きいものは、排除体積が大きく、また物理的に脆弱である。したがって、本実施形態の細胞導入方法はこれらの分子を細胞に導入する際にも特に有効である。
 さらに、高分子は分子量450000以上であることも好ましい。分子量450000以上の大きな分子は、排除体積が特に大きく、物理的に特に脆弱であり、物理的力によって構造等が変化し、機能を失うことがある。本実施形態の細胞導入方法は、このような分子量が大きい分子にも適用することができる。
The unit cell 50 is configured to be able to hold the polymer 60 via the pores 53.
The polymer 60 preferably contains a nucleic acid molecule (DNA molecule, RNA molecule, artificial nucleic acid) having a molecular weight of 1000 or more, a protein, a polyamide, or a complex obtained by combining a plurality of types thereof. Among them, the polymer 60 is also preferably RNP, that is, a complex of RNA and protein.
Nucleic acid molecules having a molecular weight of 1000 or more (so-called long-chain DNA or long-chain RNA) have a large exclusion volume, are physically fragile, and tend to lose their primary to higher-order structures. In the cell introduction method of the present embodiment, the polymer is compactly organized in the porous crystal by encapsulating the polymer in the porous crystal, and physical impact or the like is formed by encapsulating the polymer in the porous crystal. Protected from. Therefore, the cell introduction method of the present embodiment is particularly effective when introducing so-called long-chain DNA or long-chain RNA into cells.
Further, proteins and polyamides having a particularly large molecular weight have a large exclusion volume and are physically fragile. Therefore, the cell introduction method of the present embodiment is particularly effective when introducing these molecules into cells.
Further, the polymer preferably has a molecular weight of 450,000 or more. A large molecule having a molecular weight of 450,000 or more has a particularly large exclusion volume and is physically particularly fragile, and its structure or the like may change due to a physical force and lose its function. The cell introduction method of the present embodiment can be applied to such a molecule having a large molecular weight.
 高分子60は、ゲノム編集に用いられる分子であることも好ましい。ゲノム編集に用いられる分子としては、例えばCasファミリー蛋白質、TAL蛋白質などのゲノム編集因子が候補としてあげられる。
 ゲノム編集因子のさらに具体的な例としては、Cas9が挙げられる。Cas9は、DNAエンドヌクレアーゼとして知られ、DNA切断因子として知られるタンパク質である。Cas9を高分子60として多孔性結晶内に封入し、細胞内に導入することで、細胞内のDNAの編集、又は同様に細胞内に導入されたDNAの編集に広く用いることができる。
 本実施形態のCas9は、Cas9蛋白質の変異体、置換体や他の分子との複合体(例えば、デアミナーゼ、逆転写酵素等)を含む。特に、本実施形態のCas9は、RNAが結合したRNPであるものを用いることが好ましい。さらに具体的には、前記Cas9がCas9-gRNA複合体であることがさらに好ましい。ここでgRNA(ガイドRNA、又はsgRNA)は、核酸編集プロセスで用いられるRNAを指す。gRNAは、Cas9蛋白質の核酸上のターゲット部位を指定することができる。Cas9蛋白質は、gRNAとなるRNAを設計しそのgRNAと複合体を形成することで、標的DNAを切断することができ、DNA編集に用いることができるので好ましい。
 Cas9-gRNAなどのRNPを利用したDNA切断は、DNA-free(DNAを利用しない)ゲノム編集技術であり、外来DNAを含まないことからいわゆる遺伝子組み換えにはあたらず、植物や畜産の育種において特に有用である。
The polymer 60 is also preferably a molecule used for genome editing. Examples of the molecule used for genome editing include genome editing factors such as Cas family protein and TAL protein as candidates.
A more specific example of a genome editing factor is Cas9. Cas9 is a protein known as a DNA endonuclease and a DNA cleavage factor. By encapsulating Cas9 as a polymer 60 in a porous crystal and introducing it into cells, it can be widely used for editing intracellular DNA or similarly, editing DNA introduced into cells.
Cas9 of the present embodiment contains a mutant of Cas9 protein, a substitute, and a complex with other molecules (for example, deaminase, reverse transcriptase, etc.). In particular, it is preferable to use Cas9 of the present embodiment which is an RNA-bound RNP. More specifically, it is more preferable that Cas9 is a Cas9-gRNA complex. Here, gRNA (guide RNA, or sgRNA) refers to RNA used in the nucleic acid editing process. The gRNA can specify the target site on the nucleic acid of the Cas9 protein. The Cas9 protein is preferable because it can cleave the target DNA and can be used for DNA editing by designing an RNA to be a gRNA and forming a complex with the gRNA.
DNA cleavage using RNP such as Cas9-gRNA is a DNA-free (DNA-free) genome editing technology, and since it does not contain foreign DNA, it does not correspond to so-called genetic recombination, especially in the breeding of plants and livestock. It is useful.
 高分子60は、長鎖DNA分子であることも好ましい。
 長鎖DNA分子を細胞内に導入することで、多くの遺伝情報を含むDNAを細胞に導入し、細胞の遺伝情報の編集に広く用いることができる。
The polymer 60 is also preferably a long-chain DNA molecule.
By introducing a long-chain DNA molecule into a cell, DNA containing a large amount of genetic information can be introduced into the cell and widely used for editing the genetic information of the cell.
 多孔性結晶500は、ナノ材料とDNA分子とからなるDNAナノ粒子結晶であるとき、DNAナノ粒子結晶が、特定の分子に対して相互作用する、特異的相互作用の機能をもつ分子で修飾されていることも好ましい。また、前記DNAナノ粒子結晶は、前記特異的相互作用によりDNAナノ粒子結晶の内部に分子又は粒子を保持可能に構成されてなることも好ましい。
 ここで、特定の分子とはある一定の元素配列、特にアミノ酸配列や核酸配列を有する分子を指す。特定の分子に対して相互作用する特異的相互作用とは、この特定の元素配列、に対して相互作用することである。例えば、特定の分子が特定の核酸配列を有する核酸である場合、特定の分子に対して相互作用する特異的相互作用の機能を持つ分子としては、前記特定の核酸配列と相補的な核酸配列を有する核酸などがある。
 多孔性結晶500が、特定の分子に対して相互作用する、特異的相互作用の機能をもつ分子で修飾された部位を有することで、前記特定の分子を選択的に、かつ保持力を高く多孔性結晶500内に保持、封入することができる。
 本実施形態では、ナノ粒子51を修飾している結晶内DNA分子52のうち一種が、前記特定の核酸配列を有する核酸と相補的な配列を有している。このため、前記特定の核酸配列を有する核酸を選択的に、かつ保持力を高く多孔性結晶500内に保持、封入することができる。
When the porous crystal 500 is a DNA nanoparticle crystal composed of a nanomaterial and a DNA molecule, the DNA nanoparticle crystal is modified with a molecule having a specific interaction function that interacts with a specific molecule. It is also preferable that It is also preferable that the DNA nanoparticle crystal is configured to be able to hold molecules or particles inside the DNA nanoparticle crystal by the specific interaction.
Here, a specific molecule refers to a molecule having a certain elemental sequence, particularly an amino acid sequence or a nucleic acid sequence. A specific interaction that interacts with a particular molecule is one that interacts with this particular elemental sequence. For example, when a specific molecule is a nucleic acid having a specific nucleic acid sequence, as a molecule having a specific interaction function that interacts with the specific molecule, a nucleic acid sequence complementary to the specific nucleic acid sequence is used. There are nucleic acids and the like.
The porous crystal 500 has a site modified with a molecule having a specific interaction function that interacts with a specific molecule, so that the specific molecule is selectively and highly retained and porous. It can be held and encapsulated in the sex crystal 500.
In the present embodiment, one of the intracrystal DNA molecules 52 modifying the nanoparticles 51 has a sequence complementary to the nucleic acid having the specific nucleic acid sequence. Therefore, the nucleic acid having the specific nucleic acid sequence can be selectively held and encapsulated in the porous crystal 500 with high holding power.
(封入工程の操作)
 ついで、多孔性結晶の作用、すなわち封入工程の操作について説明する。多孔性結晶500は、前述したように水溶液中などでは単位格子50の分子間の距離が大きく、細孔53の径が大きい状態にある。この状態で、多孔性結晶500を高分子60を含む溶液などに浸漬させ、細孔53を通過させて、高分子60を単位格子50内に取り込ませる。
(Operation of encapsulation process)
Next, the action of the porous crystal, that is, the operation of the encapsulation step will be described. As described above, the porous crystal 500 is in a state where the distance between the molecules of the unit cell 50 is large and the diameter of the pores 53 is large in an aqueous solution or the like. In this state, the porous crystal 500 is immersed in a solution containing the polymer 60 or the like, passed through the pores 53, and the polymer 60 is incorporated into the unit cell 50.
 このとき、封入には溶液内の特異的相互作用を利用しても良い。その場合、単位格子50は特定の高分子60に対して相互作用する、特異的相互作用の機能をもつ分子で修飾する。したがって、単位格子50内に取り込まれた特定の高分子60は、前記特異的相互作用によっても単位格子50内に保持される。
 前記特異的相互作用としては、ある一定の構造の分子が別の一定の構造に特異的に相互作用(結合等)を行う作用を広く指す。具体的には、ビオチン-ストレプトアビジン相互作用、RNA-蛋白質相互作用、金属錯体-蛋白質相互作用、レクチン-多糖相互作用、蛋白質-蛋白質相互作用、又はクリック化学相互作用、などが挙げられる。これらの作用のうち、ビオチン-ストレプトアビジン相互作用などの、ビオチンと他の分子の相互作用を好適に用いることができる。
At this time, a specific interaction in the solution may be used for encapsulation. In that case, the unit cell 50 is modified with a molecule having a specific interaction function that interacts with a specific polymer 60. Therefore, the specific polymer 60 incorporated into the unit cell 50 is also retained in the unit cell 50 by the specific interaction.
The specific interaction broadly refers to an action in which a molecule having a certain structure specifically interacts (bonds, etc.) with another certain structure. Specific examples thereof include biotin-streptavidin interaction, RNA-protein interaction, metal complex-protein interaction, lectin-polysaccharide interaction, protein-protein interaction, or click chemical interaction. Among these actions, the interaction between biotin and other molecules, such as the biotin-streptavidin interaction, can be preferably used.
 また、多孔性結晶500を、上述したように乾燥等によって収縮させる操作を行うことによって、特定の高分子60を多孔性結晶500に封入することもできる。多孔性結晶500の収縮によって、高分子60は単位格子50内に、容易に脱落しない状態に封入される。高分子60を封入することによって、単位格子50、多孔性結晶500)はDNAナノ粒子結晶封入体50A、500Aとなる。
 これらの封入工程の方法は、別々に用いても、組み合わせて用いてもよい。
Further, the specific polymer 60 can be encapsulated in the porous crystal 500 by performing an operation of shrinking the porous crystal 500 by drying or the like as described above. Due to the shrinkage of the porous crystal 500, the polymer 60 is sealed in the unit cell 50 in a state where it does not easily fall off. By encapsulating the polymer 60, the unit lattice 50 and the porous crystal 500) become DNA nanoparticle crystal inclusion bodies 50A and 500A.
The methods of these encapsulation steps may be used separately or in combination.
 多孔性結晶500が、前記した前記特異的相互作用によりDNAナノ粒子結晶の内部に分子又は粒子を保持可能に構成されているときは、この操作はDNAナノ粒子結晶に、前記特定の分子で修飾された封入対象を封入する、DNAナノ粒子結晶封入体の製造方法となる。 When the porous crystal 500 is configured to hold molecules or particles inside the DNA nanoparticle crystal by the specific interaction described above, this operation modifies the DNA nanoparticle crystal with the specific molecule. This is a method for producing a DNA nanoparticle crystal encapsulation body that encapsulates the encapsulation target.
(細胞導入工程)
 次に、前記多孔性結晶500(DNAナノ粒子結晶封入体500A)を細胞に導入する細胞導入工程を行う。
 本実施形態の細胞導入工程で用いる細胞は、いずれの種類の細胞でも用いることができる。すなわち、動物細胞及び植物細胞のいずれも用いることができる。また、生物組織上の細胞及び培養細胞のいずれも用いることができる。
 植物細胞の細胞壁を取り除いたプロトプラストは、PEGを利用して比較的容易に分子量の大きい分子を導入することができた。それに加えて、パーティクルガン法でも多孔性結晶を植物細胞に導入することができた。植物細胞は細胞のサイズが大きく、本実施形態の多孔性結晶を多く含むことができるという利点もある。
(Cell introduction process)
Next, a cell introduction step of introducing the porous crystal 500 (DNA nanoparticle crystal inclusion body 500A) into cells is performed.
The cells used in the cell introduction step of the present embodiment can be any type of cells. That is, both animal cells and plant cells can be used. In addition, both cells on biological tissues and cultured cells can be used.
The protoplast from which the cell wall of the plant cell was removed was able to introduce a molecule having a large molecular weight relatively easily using PEG. In addition, the particle gun method was also able to introduce porous crystals into plant cells. The plant cell has an advantage that the cell size is large and a large amount of porous crystals of the present embodiment can be contained.
 動物細胞としては、例えばマウス由来細胞、ヒト培養細胞等を用いることができる。マウス由来細胞としては、3T3細胞等を用いることができる。ラット由来細胞としては、骨細胞UMR-106等を用いることができる。その他、哺乳類由来培養細胞、昆虫由来培養細胞を用いることができ、MEF, HeLa, 293-T, CHO, Jurkat,MCF-7, Vero cells , YAC-1などが考えられる。動物細胞は、前記不死化培養細胞にとどまらず、難しい形質転換性である、精子、精原細胞、卵子もしくは卵原細胞、初代培養細胞、腫瘍細胞または疾患組織由来細胞など生体組織の細胞を用いることもできる。植物細胞は、一般的に難しい形質転換性であることが知られている、藻類細胞(例えば、クラミドモナス、ユーグレナ、またはオーランチオキトリウムなど石油生産性藻類)、および陸上植物(コムギ、オオムギ、オートムギ、ダイズもしくはトウモロコシといった穀類、トマト、ナス、カボチャ、ホウレンソウ、キヌアもしくはハクサイなどの果菜もしくは蔬菜、ワタ、アマ、スイッチグラス、ヒマワリ、カラマツ、パラゴムノキ、ウルシ、オウレンもしくはチョウセンニンジンといった薬用植物もしくは産業作物、または、ブドウ、モモ、バナナ、キウイフルーツ、カンキツ、カキといった果樹など)を用いることができる。また、遺伝子導入系が先行技術では存在しない、麹菌またはキノコ菌類等も用いることができる。加えて、プロトプラストとして、前記藻類および前記植物由来の葉肉細胞・胚軸細胞・根細胞、および菌類から取得した細胞等を用いることができる。
 生物組織上の細胞として、特に遺伝導入が難しいとされる、成熟した葉上の表皮細胞、羊肉細胞、茎頂分裂組織、カルスまたは不定胚を用いることができ、静止中心細胞、花粉または胚細胞等も用いることができる。
As the animal cells, for example, mouse-derived cells, human cultured cells and the like can be used. As mouse-derived cells, 3T3 cells and the like can be used. As the rat-derived cell, bone cell UMR-106 or the like can be used. In addition, mammalian-derived cultured cells and insect-derived cultured cells can be used, and MEF, HeLa, 293-T, CHO, Jurkat, MCF-7, Vero cells, YAC-1, and the like can be considered. As the animal cells, not only the immortalized cultured cells but also cells of living tissues such as sperm, sperm cells, eggs or egg progenitor cells, primary cultured cells, tumor cells or diseased tissue-derived cells, which are difficult to transform, are used. You can also do it. Plant cells are generally known to be difficult transformative, algae cells (eg, petroleum-producing algae such as clamidmonas, euglena, or oranthiochitrium), and land plants (wheat, barley, oat wheat). , Grains such as soybeans or corn, fruit or vegetables such as tomato, eggplant, pumpkin, spinach, quinoa or hakusai, medicinal plants or industrial crops such as cotton, flax, switchgrass, sunflower, pine, paragom tree, urushi, auren or chosen carrot, Alternatively, fruit trees such as grapes, peaches, bananas, quinoa fruits, citrus fruits, and oysters) can be used. In addition, aspergillus or mushroom fungi, for which a gene transfer system does not exist in the prior art, can also be used. In addition, as the protoplast, the algae and the plant-derived mesophyll cells, hypocotyl cells, root cells, cells obtained from fungi and the like can be used.
As cells on biological tissues, epidermal cells, sheep meat cells, shoot apical meristems, callus or adventitious embryos on mature leaves, which are particularly difficult to introduce into genes, can be used, and quiescent center cells, pollen or embryo cells. Etc. can also be used.
 細胞導入工程は、細胞に分子を導入するために用いる手段、及び細胞数等の条件を適宜選択してもよいが、本実施形態では、気圧の圧壊を含む物理的衝撃により細胞の表面を穿孔させる工程を行うことが好ましい。前記気泡噴出部材に電圧を印加して気泡を発生させ、前記気泡の圧壊を含む物理的衝撃によって前記細胞の膜を穿孔させると共に前記多孔性結晶を前記細胞に導入する、電界誘起気泡法を用いることが特に好ましい。
 電界誘起気泡法は、上述した導入装置、その他例えば特許文献1に記載した装置を用いて行ってもよいが、特に、上述の導入装置、図1に示した装置を用いて
導入することが好ましい。培養細胞を用いる場合、上述の導入装置及び集積した細胞に対して行うことのできるその使用方法を用いて導入することは特に好適である。
 本実施形態では、多孔性結晶500が、上述したように数百nm~数μmオーダーの大きさとなっているため、重力の影響が無視できず、多孔性結晶500が溶液中で沈んでしまう可能性がある。この場合、例えば導入方法によっては、多孔性結晶500を細胞に対して適当数導入することが難しくなることが予想される。上述の導入装置及びその使用方法によれば、細胞の表面に対して物理的衝撃によって多孔性結晶500を導入するので、比較的質量の大きい多孔性結晶500でも一定数を細胞に導入することができ、特に好適である。
In the cell introduction step, the means used for introducing the molecule into the cell and the conditions such as the number of cells may be appropriately selected, but in the present embodiment, the surface of the cell is perforated by a physical impact including crushing of atmospheric pressure. It is preferable to carry out the step of causing. An electric field-induced bubble method is used in which a voltage is applied to the bubble ejection member to generate bubbles, the membrane of the cells is perforated by a physical impact including crushing of the cells, and the porous crystals are introduced into the cells. Is particularly preferred.
The electric field-induced bubble method may be carried out by using the above-mentioned introduction device or other device described in, for example, Patent Document 1, but it is particularly preferable to use the above-mentioned introduction device and the device shown in FIG. .. When using cultured cells, it is particularly preferable to introduce them using the above-mentioned introduction device and the method of use which can be applied to the accumulated cells.
In the present embodiment, since the porous crystal 500 has a size on the order of several hundred nm to several μm as described above, the influence of gravity cannot be ignored, and the porous crystal 500 may sink in the solution. There is sex. In this case, for example, depending on the introduction method, it is expected that it will be difficult to introduce an appropriate number of porous crystals 500 into cells. According to the above-mentioned introduction device and the method of using the porous crystal 500, the porous crystal 500 is introduced into the cell surface by a physical impact, so that a certain number of the porous crystal 500 having a relatively large mass can be introduced into the cell. It can be done and is particularly suitable.
(徐放工程)
 本実施形態の高分子の細胞導入方法は、前記多孔性結晶を細胞に導入した後に、前記封入していた前記高分子を徐放する工程をさらに有する。
 多孔性結晶に封入していた高分子を徐放する工程としては、多孔性結晶と高分子を分離させる手段として特に制限されないが、例えば、多孔性結晶の構造を分解する手段を用いることができる。
 多孔性結晶に封入していた高分子を徐放する工程により、高分子が導入されていた細胞内に徐放され、機能を発揮することができる。例えば高分子がDNA編集機能を有するCas9-gRNAである場合は、徐放により細胞内のDNAの編集が開始される。この徐放工程により、高分子が機能を発揮するタイミングも制御することができる。
(Slow release process)
The method for introducing a polymer cell of the present embodiment further includes a step of introducing the porous crystal into cells and then slowly releasing the encapsulated polymer.
The step of slowly releasing the polymer enclosed in the porous crystal is not particularly limited as a means for separating the porous crystal and the polymer, but for example, a means for decomposing the structure of the porous crystal can be used. ..
By the step of slowly releasing the polymer enclosed in the porous crystal, the polymer is slowly released into the cells into which the polymer has been introduced, and the function can be exhibited. For example, when the polymer is Cas9-gRNA having a DNA editing function, the editing of intracellular DNA is started by sustained release. By this sustained release step, the timing at which the polymer exerts its function can also be controlled.
 この工程のため、多孔性結晶は、結晶を構成する分子同士の結合力を減弱可能な構成を備えていることが好ましい。分子同士の結合力を減弱可能な構成とは、外的要因を加えることにより、多孔性結晶を構成している分子の結合を弱め、距離を大きくすることのできるような構成を、結晶を構成する分子が有していることである。例えば、DNAナノ粒子であれば、ナノ粒子部分の相互の結合を弱め、距離を大きくし散開させることのできる構成である。また、外的要因は、細胞内の多孔性結晶に対して、他の分子に与える影響が小さいものであることが好ましい。
 本実施形態において、このような構成の具体例としては、多孔性結晶がDNAナノ粒子であるときに、DNA分子が外的要因により分解、又は乖離させる配列を有していることである。また、この外的要因としては、光や酵素等が挙げられる。
 具体的には、多孔性結晶がDNA分子及びナノ粒子を備えたDNAナノ粒子結晶である場合、前記徐放工程は、多孔性結晶を構成しているDNA分子を分解、又は乖離させる手段を用いることができる。このとき、多孔性結晶を構成しているDNA分子を切断して多孔性結晶を分解してもよい。また、高分子と多孔性結晶のDNAの相互作用により高分子が多孔性結晶に封入されている場合、多孔性結晶のDNA分子を切断することで、高分子を多孔性結晶から徐放してもよい。また、高分子と多孔性結晶のDNA中の特異的相互作用分子により高分子が多孔性結晶に封入されている場合、多孔性結晶のDNA分子を切断、あるいは特異的相互作用を阻害する因子の導入により高分子を多孔性結晶から乖離させてもよい。
 多孔性結晶を構成しているDNA分子を分解、又は乖離させる手段としては、前記多孔性結晶に光を照射して前記多孔性結晶を切断し、又は、酵素によって前記多孔性結晶を切断することも好ましい。この手段のため、多孔性結晶である前記DNAナノ粒子結晶は、以下に詳述するように、光応答性官能基を有する、又は、ヌクレアーゼ認識配列を有することも好ましい。
For this step, it is preferable that the porous crystal has a structure capable of reducing the bonding force between the molecules constituting the crystal. A structure in which the binding force between molecules can be attenuated is a structure in which the bonds of the molecules constituting the porous crystal can be weakened and the distance can be increased by adding an external factor. That is what the molecule does. For example, in the case of DNA nanoparticles, the structure is such that the bonds between the nanoparticles can be weakened, the distance can be increased, and the nanoparticles can be dispersed. Further, it is preferable that the external factor has a small influence on other molecules on the porous crystal in the cell.
In the present embodiment, a specific example of such a configuration is that when the porous crystal is a DNA nanoparticle, the DNA molecule has a sequence that decomposes or dissociates due to an external factor. In addition, examples of this external factor include light and enzymes.
Specifically, when the porous crystal is a DNA nanoparticle crystal including DNA molecules and nanoparticles, the sustained-release step uses means for decomposing or dissociating the DNA molecules constituting the porous crystal. be able to. At this time, the DNA molecules constituting the porous crystal may be cleaved to decompose the porous crystal. In addition, when the polymer is encapsulated in the porous crystal by the interaction between the polymer and the DNA of the porous crystal, even if the polymer is slowly released from the porous crystal by cutting the DNA molecule of the porous crystal. Good. In addition, when the polymer is encapsulated in the porous crystal by a specific interaction molecule in the DNA of the polymer and the porous crystal, a factor that cleaves the DNA molecule of the porous crystal or inhibits the specific interaction. The introduction may dissociate the polymer from the porous crystal.
As a means for decomposing or dissociating the DNA molecules constituting the porous crystal, the porous crystal is irradiated with light to cleave the porous crystal, or the porous crystal is cleaved by an enzyme. Is also preferable. For this means, the DNA nanoparticle crystal, which is a porous crystal, preferably has a photoresponsive functional group or has a nuclease recognition sequence, as described in detail below.
 多孔性結晶に光を照射して多孔性結晶を分解する方法としては、各種の光(電磁波)、例えば紫外線等を照射する方法をとることができる。多孔性結晶がナノ粒子51と結晶内DNA分子52からなり、結晶内DNAの一部にо-ニトロベンジル基が付与されているとき、光によって結晶内DNA分子52を切断することができるので、多孔性結晶の構造を分解することができ、高分子を細胞内に徐放することができる。光によって結晶内DNA分子52を切断するので、細胞内の他の分子に損傷を与えることが少ない。光によって多孔性結晶を分解させるための官能基は、o-ニトロベンジル基だけでなく、CNVKなども利用できる。 As a method of irradiating the porous crystal with light to decompose the porous crystal, a method of irradiating various types of light (electromagnetic waves), for example, ultraviolet rays, can be taken. When the porous crystal is composed of nanoparticles 51 and an intracrystal DNA molecule 52 and a о-nitrobenzyl group is added to a part of the intracrystal DNA, the intracrystal DNA molecule 52 can be cleaved by light. The structure of the porous crystal can be decomposed, and the polymer can be slowly released into the cell. Since the DNA molecule 52 in the crystal is cleaved by light, it is less likely to damage other molecules in the cell. As the functional group for decomposing the porous crystal by light, not only the o-nitrobenzyl group but also CNVK and the like can be used.
 酵素によって前記多孔性結晶を切断する方法としては、DNAを切断するような酵素(ヌクレアーゼ)を用いることができる。DNAを切断する酵素としては、特定のDNAに特異的なものでも非特異的なものでも適宜使用することができる。特に、結晶内DNA分子52の特定の配列に対して特異的な制限酵素を用いることが好ましい。結晶内DNA分子52の特定の配列に対して特異的な制限酵素を用いることで、結晶内DNA分子52の特定の配列のみが切断されるので、細胞内の他のDNAを含めた他の分子に影響を与えることなく、徐放を行うことができる。また、非特異的な切断酵素としては、細胞内のヌクレアーゼが利用できる。 As a method for cleaving the porous crystal with an enzyme, an enzyme (nuclease) that cleaves DNA can be used. As the enzyme that cleaves DNA, an enzyme specific to or non-specific to specific DNA can be appropriately used. In particular, it is preferable to use a restriction enzyme specific for a specific sequence of the DNA molecule 52 in the crystal. By using a restriction enzyme specific for a specific sequence of the DNA molecule 52 in the crystal, only the specific sequence of the DNA molecule 52 in the crystal is cleaved, so that other molecules including other DNA in the cell are cleaved. Can be sustained-release without affecting. In addition, intracellular nucleases can be used as non-specific cleavage enzymes.
 (本実施形態の高分子の細胞導入方法の効果)
 本実施形態の高分子の細胞導入方法によれば、高分子の機能を保ち、かつ細胞の生存率が高く、高分子を高効率で細胞に導入することができ、高分子の細胞内での機能発現に用いることができる。
(Effect of the polymer cell introduction method of the present embodiment)
According to the method for introducing a polymer cell of the present embodiment, the function of the polymer is maintained, the cell viability is high, the polymer can be introduced into the cell with high efficiency, and the polymer can be introduced into the cell. It can be used for functional expression.
 本発明者らは、高分子の細胞導入にあたって、排除体積が大きい高分子を細胞に導入するため、細胞をできるだけ不可逆的に損傷せず、特に細胞死を起こさないまま、大きなサイズの穿孔を一過的・効率的に入れることができ、物理的に脆弱な高分子を安定に導入する方法、例えばこれらの高分子を直接に扱わずに導入するための方法について研究を進めた。そして、高分子を直接に扱わずに細胞に導入する手段として、物理的に安定な構造体に高分子を封入することを検討した。そこで、高分子を封入する対象として、本実施形態の多孔性結晶に着目した。多孔性結晶に高分子を封入することで、排除体積の大きい高分子を結晶内にコンパクトに封入することができ、導入時に細胞に大きな負担かける操作、例えば大きすぎるサイズの穿孔を行う必要がない。高分子が結晶に封入されていることで、物理的に脆弱な高分子を直接に扱う必要がなく、結晶に対して細胞に導入するための操作を行うことができる。加えて、多孔性結晶は高分子を封入するための操作、徐放するための操作を行うことができる。特に、DNAナノ粒子結晶である多孔性結晶はDNAを切断するなどの手段で高分子を細胞内に、細胞に損傷を与えることなく除放することができる。 When introducing a polymer into cells, the present inventors introduce a polymer having a large exclusion volume into the cells, so that the cells are not irreversibly damaged as much as possible, and a large-sized perforation is performed without causing cell death in particular. We proceeded with research on a method for stably introducing polymers that can be excessively and efficiently inserted and are physically fragile, for example, a method for introducing these polymers without directly handling them. Then, as a means for introducing the polymer into cells without directly handling the polymer, it was examined to enclose the polymer in a physically stable structure. Therefore, we focused on the porous crystal of this embodiment as a target for encapsulating the polymer. By encapsulating the polymer in the porous crystal, the polymer having a large exclusion volume can be compactly enclosed in the crystal, and there is no need to perform an operation that imposes a heavy burden on the cells at the time of introduction, for example, perforation of an excessively large size. .. Since the polymer is encapsulated in the crystal, it is not necessary to directly handle the physically fragile polymer, and it is possible to perform an operation for introducing the polymer into the cell. In addition, the porous crystal can be subjected to an operation for encapsulating the polymer and an operation for sustained release. In particular, in the porous crystal which is a DNA nanoparticle crystal, the polymer can be released into the cell by means such as cutting the DNA without damaging the cell.
 本実施形態の高分子の細胞導入方法によれば、骨格を形成するDNA分子の長さや配列を制御して、様々なサイズのナノ粒子の結晶構造(超格子構造)を作ることができる。ナノスケールの精度でナノ粒子の配置及び超格子構造をデザインできる点が容易な導入技術へ大きく貢献することができる。ダメージを受けやすい長鎖DNAを物理的に安定な超格子構造に封入することにより、物理的導入法を可能にするものであり、さらにユニットや結晶構造を制御して物理的な剛性も制御し、幅広い生物対象への導入を可能にする。 According to the polymer cell introduction method of the present embodiment, it is possible to control the length and arrangement of the DNA molecules forming the skeleton to create a crystal structure (superlattice structure) of nanoparticles of various sizes. The ability to arrange nanoparticles and design superlattice structures with nanoscale accuracy can greatly contribute to easy introduction technology. By encapsulating vulnerable long-chain DNA in a physically stable superlattice structure, a physical introduction method is possible, and the unit and crystal structure are controlled to control the physical rigidity. , Enables introduction to a wide range of biological objects.
 本実施形態の高分子の細胞導入方法によれば、ゲノム編集を含む分子生物学的ツールや可逆性光連結反応を用いて、細胞内に導入したDNAナノ粒子結晶に用いているDNA配列を分解あるいは乖離させることによりDNAナノ粒子結晶内の長鎖DNAの徐放を行い、機能を発現させることができる。等温或いは微昇温過程で結晶を分解・開裂させ、長鎖DNAを破壊せずに細胞内で放出し、核内に輸送して細胞中で機能可能な状態にすることができる。 According to the polymer cell introduction method of the present embodiment, the DNA sequence used in the DNA nanoparticle crystal introduced into the cell is decomposed by using a molecular biological tool including genome editing or a reversible photolinking reaction. Alternatively, by dissociating it, the long-chain DNA in the DNA nanoparticle crystal can be sustained-release and the function can be expressed. Crystals can be decomposed and cleaved in the process of isothermal or slight temperature rise, released inside the cell without destroying the long-chain DNA, and transported into the nucleus to make it functional in the cell.
 以下、本実施形態を実施例に基づいてさらに詳細に説明するが、本発明はこれら実施例によって何ら制限されず、本発明の要旨を逸脱しない範囲で各種の材料変更、設計変更、設定調整等が可能であることは言うまでもない。 Hereinafter, the present embodiment will be described in more detail based on Examples, but the present invention is not limited by these Examples, and various material changes, design changes, setting adjustments, etc. are made without departing from the gist of the present invention. Needless to say, is possible.
 (細胞の調整)
 OPTI-MEM培地で48時間培養したNIH/3T3細胞溶液を容器内で遠心分離した。容器として微量遠心管である、1.5ml容量のエッペンドルフチューブを用いた。この容器に、容器1個あたり細胞数を0.25~3.0×10個となるように細胞懸濁液を収容し、1000rpm(200×g)で5分間遠心分離した。OPTI-MEM培地溶液を吸引除去した後、容器底部の細胞塊に対して、pEGFP-N1のプラスミド溶液をpEGFP-N1プラスミドの最終濃度が2.1μg/ml、懸濁液の総量が7μlとなるように加え、再び懸濁し、細胞懸濁液とした。
(Adjustment of cells)
The NIH / 3T3 cell solution cultured in OPTI-MEM medium for 48 hours was centrifuged in a container. An Eppendorf tube having a capacity of 1.5 ml, which is a microcentrifuge tube, was used as a container. The vessel, the number of cells per one container containing the cell suspension so that 0.25 ~ 3.0 × 10 6 cells were centrifuged for 5 min at 1000rpm (200 × g). After aspirating and removing the OPTI-MEM medium solution, the final concentration of the pEGFP-N1 plasmid becomes 2.1 μg / ml and the total amount of the suspension becomes 7 μl with respect to the cell mass at the bottom of the container. And suspended again to give a cell suspension.
 (試験例1)
 (導入効率の評価:細胞数)
 図1の装置を用い、前記細胞懸濁液のチューブの底部に対してインジェクター20に電圧を印加して気泡を発生させた。電圧の印加は12Wで行い、暴露時間は600msであった。細胞数をそれぞれ0.25、0.75、1.5、3.0(それぞれ×10個)とした場合と、細胞数が1.0×10個で48時間静置培養の条件で、インジェクターを用いず、リポフェクタミン処理を行った比較例について、図3に示す。上段は48時間後プラスミドpEGFP-N1を導入した細胞の蛍光顕微鏡写真、下段は明視野(BF)の顕微鏡写真である。また、トランスフェクション効率について図4にグラフ図で示す。横軸が用いた細胞数(それぞれ×10個)、縦軸が導入された細胞の割合(%)である。
 細胞懸濁液のチューブの底部に対してインジェクターを用いると、細胞数が多ければ効率が上昇したものの、0.25×10個と0.75×10個との間、1.5×10個と3.0×10個の間には大きな差がなかった。すなわち、本実施例の導入装置及び方法によれば、用いる細胞の濃度が低くとも一定の効率を得ることが示されていた。
(Test Example 1)
(Evaluation of introduction efficiency: number of cells)
Using the apparatus of FIG. 1, a voltage was applied to the injector 20 to the bottom of the tube of the cell suspension to generate bubbles. The voltage was applied at 12 W and the exposure time was 600 ms. And when the number of cells were respectively 0.25,0.75,1.5,3.0 (106 ×, respectively), under the conditions of a cell number 1.0 × 10 6 48 hours stationary culture , FIG. 3 shows a comparative example in which lipofectamine treatment was performed without using an injector. The upper row is a fluorescence micrograph of cells into which the plasmid pEGFP-N1 has been introduced after 48 hours, and the lower row is a bright field (BF) micrograph. The transfection efficiency is shown graphically in FIG. The horizontal axis is the number of cells used (106 ×, respectively), the percentage of cells that vertical axis is introduced (%).
Using an injector on the bottom of the cell suspension tube increased efficiency with a large number of cells, but between 0.25 × 10 6 and 0.75 × 10 6 1.5 × 10 was no significant difference in the six and 3.0 × 10 6 between. That is, according to the introduction device and method of this example, it was shown that a certain efficiency can be obtained even if the concentration of the cells used is low.
 (試験例2)
 (導入効率の評価:電力)
 図1の装置を用い、前記細胞懸濁液のチューブの底部に対してインジェクター20に電圧を印加して気泡を発生させた。電圧を印加する際の電力を4W、6W、8W、10W、12Wとしてそれぞれ試験を行った。細胞数はいずれも1.5×10個で行った。リポフェクタミン処理を行った比較例及び懸濁液中にプラスミドを加えなかった比較例について、図5に示す(試験例2)。上段は48時間後プラスミドpEGFP-N1を導入した細胞の蛍光顕微鏡写真、下段は明視野(BF)の顕微鏡写真である。露光時間は600msである。
(Test Example 2)
(Evaluation of introduction efficiency: Electric power)
Using the apparatus of FIG. 1, a voltage was applied to the injector 20 to the bottom of the tube of the cell suspension to generate bubbles. The tests were conducted with the electric power when applying the voltage as 4W, 6W, 8W, 10W, and 12W, respectively. The number of cells was carried out both at 1.5 × 10 6 cells. A comparative example treated with lipofectamine and a comparative example in which the plasmid was not added to the suspension are shown in FIG. 5 (Test Example 2). The upper row is a fluorescence micrograph of cells into which the plasmid pEGFP-N1 has been introduced after 48 hours, and the lower row is a bright field (BF) micrograph. The exposure time is 600 ms.
 この電力あたりのトランスフェクション効率について、導入された細胞の割合(%)を図6、細胞数を図7に示す。(1)~(4)等は試験回数を表し、棒グラフの値は複数回の測定の平均値を表している。横軸の数字(4~15)はインジェクション時の電力、「I12」は図7に示すようにプラスミドを添加せず12Wの電力を加えたもの、「P」はプラスミドを添加したがインジェクションを行っていないもの、「L」はリポフェクタミン処理による導入を行ったものを指す。トランスフェクション時の電力を12Wとした場合に最も高いトランスフェクション効率を示した。また効率が高いのは8~15Wだが、15Wの場合は12Wよりは効率がやや低下した。 Regarding the transfection efficiency per electric power, the ratio (%) of the introduced cells is shown in FIG. 6, and the number of cells is shown in FIG. (1) to (4) and the like represent the number of tests, and the value in the bar graph represents the average value of a plurality of measurements. The numbers on the horizontal axis (4 to 15) are the power at the time of injection, "I12" is the one to which the power of 12 W is applied without adding the plasmid as shown in FIG. 7, and "P" is the one to which the plasmid is added but the injection is performed. Those that have not been introduced, "L" refers to those that have been introduced by lipofectamine treatment. The highest transfection efficiency was shown when the power at the time of transfection was 12 W. The efficiency is high at 8 to 15W, but the efficiency at 15W is slightly lower than that at 12W.
 (試験例3)
 (導入効率の評価:発現性)
 試験例2の電力を12Wとしたもの及びリポフェクタミン導入を行ったものと同様に調整した試験例について、GFPとRFPの染色、明視野(BF)の顕微鏡写真を図8に示した。また、上2段はピューロマイシンによる選択処理前(露光時間600ms)、下2段はピューロマイシンによる選択処理後(露光時間2000ms)を示した。ピューロマイシン処理は48時間行った。
 本実施例の導入装置による導入は、ピューロマイシン同様GFP、RFPが導入され正常に発現することが示された。
(Test Example 3)
(Evaluation of introduction efficiency: expression)
FIG. 8 shows a micrograph of GFP and RFP staining and a bright field (BF) for the test example in which the power of Test Example 2 was set to 12 W and the test example was adjusted in the same manner as the one in which lipofectamine was introduced. The upper two rows show before the selection treatment with puromycin (exposure time 600 ms), and the lower two rows show after the selection treatment with puromycin (exposure time 2000 ms). The puromycin treatment was performed for 48 hours.
It was shown that the introduction by the introduction device of this example introduced GFP and RFP as well as puromycin and expressed normally.
 (試験例4)
 (プラスミドのダメージ評価)
 1~8の各レーンについて、それぞれ下記の条件の他は試験例1と同様(レーン1~3は細胞に導入したもの、5~8は細胞なしのプラスミドのみ)の操作を行った細胞サンプルから、10k rpmで遠心分離することによりプラスミドを精製し、アガロースゲル電気泳動にてプラスミドの分子量を調べた。
 1:20W、30回、細胞数1.5×10、15μg DNA
 2:12W、30回、細胞数1.5×10、15μg DNA
 3:4W、30回、細胞数1.5×10、15μg DNA
 4:マーカー(Gene Ladder Wide 2)
 5:導入操作なし、15μg DNA
 6:4W、30回、細胞なし、15μg DNA
 7:12W、30回、細胞なし、15μg DNA
 8:12W、30回、細胞なし、15μg DNA
(Test Example 4)
(Evaluation of plasmid damage)
For each lane 1 to 8, from a cell sample subjected to the same operation as in Test Example 1 except for the following conditions (lanes 1 to 3 were introduced into cells, and 5 to 8 were cell-free plasmids only). The plasmid was purified by centrifugation at 10 krpm, and the molecular weight of the plasmid was examined by agarose gel electrophoresis.
1: 20W, 30 times, cell number 1.5 × 10 6, 15μg DNA
2: 12W, 30 times, cell number 1.5 × 10 6, 15μg DNA
3: 4W, 30 times, cell number 1.5 × 10 6, 15μg DNA
4: Marker (Gene Ladder Wide 2)
5: No introduction operation, 15 μg DNA
6: 4W, 30 times, no cells, 15 μg DNA
7: 12W, 30 times, no cells, 15 μg DNA
8: 12W, 30 times, no cells, 15 μg DNA
 結果を図9に示す。導入操作を行ったレーン1~3と、導入操作を行わなかったレーン5、細胞のない容器で操作を行ったレーン6~8では、いずれもDNAの分子量分布のパターンにほとんど差が見られなかった。
 仮に導入操作を経てプラスミドの分解が起こっていれば、低分子量(図の下部)のバンドが強く見られ、プラスミドの切断等による構造の変化が起こっていれば別の箇所にバンドが生じると思われるが、導入操作を行ったレーン1~3にそのようなバンドの強さの変化は見られなかった。この結果から、本実施形態の細胞導入装置及び導入方法では、プラスミドを損傷するリスクが低いことが示された。よって、本実施形態の細胞導入装置及び導入方法では、核酸や蛋白質等の高分子をその一次~高次構造を変化させず、機能を保ったまま細胞に導入可能なことが期待できる。
The results are shown in FIG. There is almost no difference in the pattern of DNA molecular weight distribution between lanes 1 to 3 where the introduction operation was performed, lane 5 where the introduction operation was not performed, and lanes 6 to 8 where the operation was performed in a cell-free container. It was.
If the plasmid is degraded through the introduction operation, a band with a low molecular weight (lower part of the figure) is strongly seen, and if a structural change occurs due to cleavage of the plasmid, a band will be generated at another location. However, no such change in band strength was observed in lanes 1 to 3 where the introduction operation was performed. From this result, it was shown that the cell introduction device and the introduction method of the present embodiment have a low risk of damaging the plasmid. Therefore, in the cell introduction device and introduction method of the present embodiment, it can be expected that macromolecules such as nucleic acids and proteins can be introduced into cells while maintaining their functions without changing their primary to higher-order structures.
 (試験例5)
 (難導入細胞への導入:骨細胞)
 骨細胞UMR-106を用い、その他は試験例1と同様の条件で、電力を12Wとして細胞導入を行った。上記電力12Wで導入を行った場合と、リポフェクタミンによる導入について、それぞれ細胞培養時の時間が24時間、48時間の比較を図10に示す。本実施形態の細胞導入方法は、リポフェクタミン同様に24hで10%以上、48hで20%以上のトランスフェクションに成功しており、近い値を示していた。この結果により、本実施形態の細胞導入方法は、難導入細胞である骨細胞への導入にも用いることができることが明らかとなった。
(Test Example 5)
(Introduction to difficult-to-introduce cells: bone cells)
Bone cells UMR-106 were used, and the cells were introduced under the same conditions as in Test Example 1 with a power of 12 W. FIG. 10 shows a comparison of the cell culture time of 24 hours and 48 hours for the case of introduction with the above power of 12 W and the case of introduction with lipofectamine, respectively. The cell introduction method of the present embodiment succeeded in transfection of 10% or more at 24h and 20% or more at 48h, as in the case of lipofectamine, showing close values. From this result, it was clarified that the cell introduction method of the present embodiment can also be used for introduction into bone cells which are difficult-to-introduce cells.
 (試験例6)
 (難導入細胞への導入:藻類)
 難導入細胞として、藻類細胞Chlamydomonasを用い、電力を12Wとして細胞導入を行った。
 3~5k Da fluorescein isothiocyanate (FITC) - dextranの最終濃度が85μg/μl、懸濁液の総量が7μlになるように遠心分離した細胞の懸濁液を作成した。7μlの懸濁液の中にある細胞の数は5.0×10個となるよう調整した。
 図11に、下記の三つの条件の結果を示す。
左図)dextranの投与あり、インジェクションなし
中図)dextranの投与あり、インジェクションあり
右図)dextranの投与あり、インジェクションあり、細胞培養成分TAPで懸濁液を粘稠化したサンプル
 この結果により、本実施形態の細胞導入方法は、難導入細胞である藻類への導入にも用いることができることが明らかとなった。
(Test Example 6)
(Introduction to difficult-to-introduce cells: algae)
As the difficult-to-introduce cells, algae cells Chlamydomonas were used, and the cells were introduced at a power of 12 W.
Suspensions of cells were prepared by centrifugation so that the final concentration of 3 to 5 k Da fluorescein isothiocytoate (FITC) -dextran was 85 μg / μl and the total suspension volume was 7 μl. The number of cells that are in suspension in 7μl was adjusted 5.0 × 10 6 cells become so.
FIG. 11 shows the results of the following three conditions.
Left figure) With dextran administration, without injection Middle figure) With dextran administration, with injection Right figure) With dextran administration, with injection, sample in which the suspension was thickened with the cell culture component TAP. It was clarified that the cell introduction method of the embodiment can also be used for introduction into algae, which is a difficult-to-introduce cell.
 (多孔性結晶及び高分子の封入)
 (試験例7)
 (ビオチンを修飾した多孔性結晶の作成)
 多孔性結晶としてビオチン修飾DNAナノ粒子結晶を作成した。
 径10nmの金(Au)ナノ粒子を混合、分散したコロイド溶液とDNA末端にチオール基を付けた33塩基対の一本鎖DNA(DNA#1)を含むリン酸緩衝液を混合し、ナノ粒子表面にDNA#1を修飾したDNA-AuNP(A)を作製した。同様にして、33塩基対のDNA#2を修飾したDNA-AuNP(B)を作製した。
 DNA#1、2は、末端に相補結合部を有しているがDNA#1の相補結合部同士、およびDNA#2の相補結合部同士は相補結合しないように設計した。
 また、DNA#1の相補結合部と相補結合する27塩基対の一本鎖DNA(DNA#3)と、DNA#2の相補結合部と相補結合する27塩基対の一本鎖DNA(DNA#4)を用意した。DNA#3、4の3‘末端に、C6スペーサーを介してビオチン分子が結合している。
(Encapsulation of porous crystals and polymers)
(Test Example 7)
(Creation of biotin-modified porous crystals)
Biotin-modified DNA nanoparticle crystals were prepared as porous crystals.
A colloidal solution in which gold (Au) nanoparticles having a diameter of 10 nm are mixed and dispersed is mixed with a phosphate buffer solution containing a 33-base pair single-stranded DNA (DNA # 1) having a thiol group at the end of the DNA, and the nanoparticles are mixed. DNA-AuNP (A) modified with DNA # 1 on the surface was prepared. In the same manner, DNA-AuNP (B) modified with DNA # 2 of 33 base pairs was prepared.
DNAs # 1 and 2 have complementary bonds at the ends, but are designed so that the complementary bonds of DNA # 1 and the complementary bonds of DNA # 2 do not complement each other.
In addition, a 27-base pair single-stranded DNA (DNA # 3) that complementarily binds to the complementary binding portion of DNA # 1 and a 27-base pair single-stranded DNA (DNA #) that complementarily binds to the complementary binding portion of DNA # 2. 4) was prepared. A biotin molecule is bound to the 3'end of DNA # 3 and 4 via a C6 spacer.
 次に、作製した2種類のDNA-AuNP(A)(B)およびDNA♯3、4を、ナトリウムイオン濃度500×10-3mol/Lのリン酸緩衝液に投入して混合した。
 このDNA-ナノ粒子分散液は、徐冷すると(徐々に温度を下げると)相補結合部同士がゆるやかに結合し、40~53℃に達した時点で結晶となる。
 分散液を65℃から0.01℃/minで徐冷し、室温(25℃)においてDNAナノ粒子超格子結晶(多孔性結晶)(試験例7)を形成し、溶液中に多孔性結晶の凝集体の沈殿が形成された。
Next, the two types of prepared DNA-AuNP (A) (B) and DNA # 3 and 4 were put into a phosphate buffer solution having a sodium ion concentration of 500 × 10 -3 mol / L and mixed.
When the DNA-nanoparticle dispersion is slowly cooled (when the temperature is gradually lowered), the complementary bonds are loosely bonded to each other and crystallize when the temperature reaches 40 to 53 ° C.
The dispersion is slowly cooled from 65 ° C. to 0.01 ° C./min to form DNA nanoparticle superlattice crystals (porous crystals) (Test Example 7) at room temperature (25 ° C.), and the porous crystals are contained in the solution. Agglomerates were formed.
(多孔性結晶のストレプトアビジン修飾量子ドットの封入)
 濃度1μMのストレプトアビジン修飾量子ドット水溶液(QdotTM 585 Streptavidin Conjugate, Invitrogen、Cat#:Q10113MP)を準備した。量子ドットは半導体シェル(ZnS)にコーティングされたナノメートルスケールの半導体結晶(CdSe)から構成される。上記ストレプトアビジン修飾量子ドットは量子ドットにおよそ5~10のストレプトアビジンが共有結合した複合体である。複合体の径は15~20nmである。
 試験例7の多孔性結晶を前記ストレプトアビジン修飾量子ドット水溶液水溶液に混合した。
 多孔性結晶を水溶液に混合し、数時間インキュベーションすると、多孔性結晶の細孔にストレプトアビジン修飾量子ドット水溶液が保持された。図12Aに結晶(SYBR-Safe)、図12Bに量子ドット(Q-dot)(蛍光)、図12Cに結晶と量子ドットの重ね合わせの共焦点顕微鏡像を示す。図12A~Cは、FV3000(オリンパス社製)を用いて撮影した。図12Dに図12C中の線上の量子ドットの蛍光プロファイルを示す。SYBR-Safeで染色した多孔性結晶とストレプトアビジン修飾量子ドット水溶液を示す蛍光の位置がほぼ対応している。また、結晶の表面だけでなく内部部分からも量子ドット由来の蛍光が検出された。したがって、多孔性結晶にストレプトアビジン修飾量子ドット水溶液が保持されたことが示された。
 DNA#1-#4の大きさから、単位格子の一片の長さ(ナノ粒子の中心間の距離)は、およそ40nmと考えられる。したがって、試験例7の多孔性結晶は、数nm~数十nmの高分子を保持するのに充分な大きさがあると考えられる。
(Encapsulation of streptavidin-modified quantum dots in porous crystals)
A streptavidin-modified quantum dot aqueous solution (QdotTM 585 Streptavidin Conjugate, Invitrogen, Cat #: Q10113MP) having a concentration of 1 μM was prepared. Quantum dots are composed of nanometer-scale semiconductor crystals (CdSe) coated on a semiconductor shell (ZnS). The streptavidin-modified quantum dot is a complex in which approximately 5 to 10 streptavidin are covalently bonded to the quantum dot. The diameter of the complex is 15-20 nm.
The porous crystals of Test Example 7 were mixed with the streptavidin-modified quantum dot aqueous solution.
When the porous crystals were mixed with the aqueous solution and incubated for several hours, the streptavidin-modified quantum dot aqueous solution was retained in the pores of the porous crystals. FIG. 12A shows a crystal (SYBR-Safe), FIG. 12B shows a quantum dot (Q-dot) (fluorescence), and FIG. 12C shows a confocal microscope image of superposition of a crystal and a quantum dot. FIGS. 12A to 12C were photographed using an FV3000 (manufactured by Olympus Corporation). FIG. 12D shows the fluorescence profile of the quantum dots on the line in FIG. 12C. The positions of the fluorescence indicating the streptavidin-modified quantum dot aqueous solution and the porous crystal stained with SYBR-Safe correspond to each other. In addition, fluorescence derived from quantum dots was detected not only on the surface of the crystal but also on the inner part. Therefore, it was shown that the streptavidin-modified quantum dot aqueous solution was retained in the porous crystal.
From the size of DNA # 1- # 4, the length of a piece of unit cell (distance between the centers of nanoparticles) is considered to be about 40 nm. Therefore, it is considered that the porous crystal of Test Example 7 has a size sufficient to hold a polymer having a size of several nm to several tens of nm.
 (試験例8)
 (多孔性結晶へのCas9-gRNA封入)
 Cas9-gRNA分子(およそ分子径7.5nm)に対して、このgRNA(およそ5.5nm)の4配列に相補的な配列を有する33塩基対のDNA#5、gRNAの6配列に相補的な配列を有する27塩基対のDNA#6を作成した。また、DNA#6のうち18配列に相補的な配列を有する33塩基対のDNA#7を作成した。
 DNA#5とDNA#7は、試験例7と同様に末端をチオール修飾し、Auナノ粒子(製品ラベルでは径10nm)と結合させ、それぞれDNA-AuNP(C)、DNA-AuNP(D)を作成した。
 このDNA-AuNPが単位格子を形成し、Cas9-gRNA分子を保持した際は、図13に示すように、gRNAに対してDNA#5と#6が相補的に結合し、#6にDNA#7が結合する。DNA#5と#7はAuナノ粒子と結合しているので、DNA#5~#7の長さ及び相補的な配列の長さによって、Auナノ粒子間の距離が調整でき、格子単位の大きさが調整できる。
(Test Example 8)
(Cas9-gRNA encapsulation in porous crystals)
For Cas9-gRNA molecule (approximately 7.5 nm in diameter), it is complementary to 6 sequences of DNA # 5 and gRNA of 33 base pairs having a sequence complementary to 4 sequences of this gRNA (approximately 5.5 nm). A 27-base pair DNA # 6 having a sequence was prepared. In addition, a 33-base pair DNA # 7 having a sequence complementary to 18 sequences of DNA # 6 was prepared.
DNA # 5 and DNA # 7 were thiol-modified at the ends and bound to Au nanoparticles (10 nm in diameter on the product label) in the same manner as in Test Example 7, and DNA-AuNP (C) and DNA-AuNP (D) were obtained, respectively. Created.
When this DNA-AuNP forms a unit cell and retains the Cas9-gRNA molecule, DNA # 5 and # 6 complementarily bind to the gRNA as shown in FIG. 13, and DNA # 6 is bound to DNA # 6. 7 is combined. Since DNA # 5 and # 7 are bound to Au nanoparticles, the distance between Au nanoparticles can be adjusted by the length of DNA # 5 to # 7 and the length of the complementary sequence, and the size of the lattice unit. Can be adjusted.
 このDNA-AuNP(C)(D)が立方体の単位格子を形成した多孔性結晶(試験例8)について、前記Cas9-gRNAの濃度0.1μMの水溶液内で1時間インキュベーションし、結晶内にCas9-gRNAを保持させた。この結晶の粒子間距離をSAXS(X線小角散乱)測定により求めた。単位格子の一辺の長さ(ナノ粒子間の中心間の距離)は、およそ40nmであった。 The porous crystal (Test Example 8) in which the DNA-AuNP (C) (D) formed a cubic unit cell was incubated in an aqueous solution having a Cas9-gRNA concentration of 0.1 μM for 1 hour, and Cas9 was incorporated into the crystal. -GRNA was retained. The interparticle distance of this crystal was determined by SAXS (Small Angle X-ray Scattering) measurement. The length of one side of the unit cell (distance between the centers between nanoparticles) was about 40 nm.
 (多孔性結晶へのCas9-gRNA封入)
 DNAナノ粒子結晶とCas9タンパク質をそれぞれ異なる蛍光色素で標識し、結晶内へのタンパク質の封入を3次元的に観察した。DNAナノ粒子結晶内の前記DNA#6はTAMRA修飾されており、励起波長555nm、蛍光波長580nmで検出できる。Cas9はGFPで修飾されており、励起波長488nm、蛍光波長509nmで検出できる。
(Cas9-gRNA encapsulation in porous crystals)
The DNA nanoparticle crystal and Cas9 protein were labeled with different fluorescent dyes, and the encapsulation of the protein in the crystal was observed three-dimensionally. The DNA # 6 in the DNA nanoparticle crystal is TAMRA-modified and can be detected at an excitation wavelength of 555 nm and a fluorescence wavelength of 580 nm. Cas9 is modified with GFP and can be detected at an excitation wavelength of 488 nm and a fluorescence wavelength of 509 nm.
 図14のaに結晶(TAMRA)、bにCas9(蛍光)、cに明視野での顕微鏡写真を示す。また、多孔性結晶の一つをさらに拡大した図を、dに結晶、eにCas9について示す。fにはdとeの重ね合わせを示した。fの図より、ほぼ結晶とCas9のシグナルは重なっており、多孔性結晶にCas9が封入されていることが示された。 FIG. 14a shows a crystal (TAMRA), b shows Cas9 (fluorescence), and c shows a micrograph in a bright field. Further, an enlarged view of one of the porous crystals is shown in d for crystals and e for Cas9. The superposition of d and e is shown in f. From the figure of f, it was shown that the signals of the crystal and Cas9 almost overlapped, and Cas9 was enclosed in the porous crystal.
 (試験例9)
 (多孔性結晶へのCas9-gRNAの結合性の検討)
 多孔性結晶へのCas9-gRNAの結合性について、特にgRNAに関しては、RNPが含有する配列が異なると結晶への結合性が異なる可能性も鑑みて、AML5配列(配列番号:1)、AtPDS3配列(配列番号:2)をターゲットするgRNAをそれぞれ準備して、結合するかを調べた。
 AML5のターゲット配列:5’-CGAGACAACTTGAGTATGAG-3’
 AtPDS3のターゲット配列:5’-GCCTGACCGCCGACCATGGC-3’
(Test Example 9)
(Examination of Cas9-gRNA binding to porous crystals)
Regarding the binding property of Cas9-gRNA to the porous crystal, especially regarding gRNA, considering that the binding property to the crystal may be different if the sequence contained in RNP is different, the AML5 sequence (SEQ ID NO: 1) and the AtPDS3 sequence Each gRNA targeting (SEQ ID NO: 2) was prepared and examined for binding.
AML5 target sequence: 5'-CGAGACAACTTGAGTATGAG-3'
AtPDS3 target sequence: 5'-GCCTGACCGCCGACCATGGC-3'
 RNP:Alt-R CRISPR-Cas9 tracrRNA、 ATTO 550 (IDT、 Cat#: 1075928)とcrRNA(AML5 or AtPDS3、 IDT)を最終濃度10μMになるようにRNase-free水を加えて混ぜ合わせ、2分間95℃で加熱して、徐々に冷却した(10μM gRNAとした)。10μM gRNAを25μM Cas9-GFPタンパク質溶液(Cas9-GFP Protein、SIGMA、 Cat#: CAS9GFPPRO-50UG)とそれぞれ終濃度2.5μMとなるように、SEC buffer中で混ぜ合わせた(2.5μM RNPとした)。
 DNAナノ粒子結晶は試験例8のものを用いた。また、比較例としてRNPにかえて封入する金粒子は、PDS/Helios 用マイクロキャリアパッケージ 1.0 μm金粒子(BioRad 165-2263)を用いた。
RNP: Alt-R CRISPR-Cas9 tracrRNA, ATTO 550 (IDT, Cat #: 1075928) and crRNA (AML5 or AtPDS3, IDT) are mixed with RNase-free water to a final concentration of 10 μM, and mixed for 2 minutes 95. It was heated at ° C. and gradually cooled (10 μM gRNA). 10 μM gRNA was mixed with a 25 μM Cas9-GFP protein solution (Cas9-GFP Protein, SIGMA, Cat #: CAS9GFPRO-50UG) in a SEC buffer to a final concentration of 2.5 μM (2.5 μM RNP). ).
As the DNA nanoparticle crystal, the one of Test Example 8 was used. As a comparative example, 1.0 μm gold particles (BioRad 165-2263) in a microcarrier package for PDS / Helios were used as the gold particles to be encapsulated instead of RNP.
 DNAナノ粒子結晶あるいは金粒子1μLと2.5μM RNPを0.5μL混ぜ合わせ、 250mM NaCl 1x Phos bufferを加え、20μLに調整した。ピペッティング後、1時間静置し、卓上遠心機で遠心後、上清を捨てた。再び250mM NaCl 1x Phos buffer 20μLを加えてピペッティングし、卓上遠心機で遠心後、上清を捨てた。この操作をもう一度くりかえし、最後に250mM NaCl 1x Phos buffer 20μL加えた。ピペッティングして結晶あるいは金粒子を含むように、2μL吸引して、スライドガラスに滴下して顕微鏡観察を行った。 1 μL of DNA nanoparticle crystal or gold particle and 0.5 μL of 2.5 μM RNP were mixed, and 250 mM NaCl 1x Phos buffer was added to adjust to 20 μL. After pipetting, the mixture was allowed to stand for 1 hour, centrifuged in a desktop centrifuge, and the supernatant was discarded. 250 mM NaCl 1x Phos buffer 20 μL was added again for pipetting, centrifugation was performed with a desktop centrifuge, and the supernatant was discarded. This operation was repeated once again, and finally 250 mM NaCl 1x Phos buffer 20 μL was added. 2 μL was sucked by pipetting so as to contain crystals or gold particles, and the mixture was dropped onto a slide glass for microscopic observation.
 金粒子およびDNAナノ粒子結晶を蛍光ラベルRNPと混ぜ合わせ顕微鏡観察した様子を図15に示す。Bright Fieldは明視野、Cas9-GFPはGFPを蛍光で検出した図である。
 金粒子にはRNP由来の蛍光が検出されなかったが、DNAナノ粒子結晶では蛍光が見られた。したがって、金粒子よりもDNAナノ粒子結晶の方がRNPを結合する力が強いと考えられた。
FIG. 15 shows a state in which gold particles and DNA nanoparticle crystals were mixed with a fluorescent label RNP and observed under a microscope. Bright Field is a diagram in which bright field is detected, and Cas9-GFP is a diagram in which GFP is detected by fluorescence.
No fluorescence derived from RNP was detected in the gold particles, but fluorescence was observed in the DNA nanoparticle crystals. Therefore, it was considered that the DNA nanoparticle crystal has a stronger RNP-binding force than the gold particle.
 (試験例10)
 (多孔性結晶の細胞内導入の検討)
 多孔性結晶を、シロイヌナズナのプロトプラストに導入できるかを検討した。蛍光分子TAMRAラベルのDNAナノ粒子結晶は、試験例8のものを用いた。シロイヌナズナのプロトプラストとして、発芽後3-4週間目のシロイヌナズナの葉肉細胞を利用した。
 蛍光分子TAMRAラベルのDNAナノ粒子結晶5μLを25mM Tris-HCl 5μLを混ぜ合わせた。そこに100μL のプロトプラスト(細胞数:5.0×10個)を準備した。通常のPEG法を利用して分子を導入後3時間後に顕微鏡観察を行った。
(Test Example 10)
(Examination of intracellular introduction of porous crystals)
We investigated whether porous crystals could be introduced into Arabidopsis protoplasts. As the DNA nanoparticle crystal of the fluorescent molecule TAMRA label, the one of Test Example 8 was used. As a protoplast of Arabidopsis thaliana, mesophyll cells of Arabidopsis thaliana 3-4 weeks after germination were used.
5 μL of DNA nanoparticle crystals labeled as fluorescent molecule TAMRA were mixed with 5 μL of 25 mM Tris-HCl 5 μL. A 100 μL protoplast (number of cells: 5.0 × 10 4 cells) was prepared there. Microscopic observation was performed 3 hours after the introduction of the molecule using a normal PEG method.
 TAMRA蛍光ラベル結晶を導入したプロトプラストの顕微鏡写真を図16に示す。各図は同条件、同一細胞の4時点例である。図中の矢印は、TAMRA蛍光の輝点を示す。
 非常に細胞数が少ないながら、細胞中にTAMRA由来の蛍光が見られた。また、細胞内の輝点が原形質流動によって動く写真もみられたことから、細胞内に入っていると期待される。
A photomicrograph of a protoplast introduced with TAMRA fluorescent label crystals is shown in FIG. Each figure is a four-time example of the same cell under the same conditions. The arrows in the figure indicate the bright spots of TAMRA fluorescence.
Fluorescence derived from TAMRA was observed in the cells, although the number of cells was very small. In addition, it is expected that the bright spots in the cells are inside the cells, as some photographs show that the bright spots in the cells move due to cytoplasmic streaming.
 (試験例11)
 (多孔性結晶のパーティクルガン装置による細胞内導入)
 多孔性結晶を、パーティクルガン装置を利用してシロイヌナズナの葉に導入できるかを検討した。DNAナノ粒子結晶は、試験例8のものを用いた。発芽後3-4週間目のシロイヌナズナの成熟葉を利用した。
 DNAナノ粒子結晶5μLをパーティクルガン装置(BioRadパーティクルガンPDS-1000/Heシステム)に付属するラプチャーディスク上で乾燥させ、通常のプロトコールで(圧力1100ps)導入を行った。導入1時間後に顕微鏡観察を行った。
(Test Example 11)
(Intracellular introduction of porous crystals using a particle gun device)
We investigated whether porous crystals could be introduced into Arabidopsis leaves using a particle gun device. As the DNA nanoparticle crystal, the one of Test Example 8 was used. Mature leaves of Arabidopsis thaliana 3-4 weeks after germination were used.
5 μL of DNA nanoparticle crystals were dried on a rupture disk attached to a particle gun device (BioRad particle gun PDS-1000 / He system) and introduced by a normal protocol (pressure 1100 ps). Microscopic observation was performed 1 hour after the introduction.
 結果を図17に示す。図中の矢印は、シロイヌナズナの葉の細胞の中に存在する多孔質結晶を示す。パーティクルガン法によってDNAナノ粒子結晶が風圧で飛び出し、植物細胞中に運ばれることが明らかになった。 The results are shown in Fig. 17. The arrows in the figure indicate the porous crystals present in the leaves of Arabidopsis thaliana. It was revealed that DNA nanoparticle crystals are ejected by wind pressure and carried into plant cells by the particle gun method.
 (試験例12)
 (高分子の細胞内導入によるゲノム編集の確認)
 RNPを結合させたDNAナノ粒子結晶を細胞に導入した場合にゲノム編集が起こるかを確認した。
 RNPとして、Alt-R CRISPR-Cas9 tracrRNA (IDT、 Cat#: 1072533)とcrRNA(AML5 crRNA、 IDT)を最終濃度10μMになるようにRNase-free水を加えて混ぜ合わせ、2分間95℃で加熱して、徐々に冷却した(10μM gRNAとした)。10 μM gRNAを25μM Cas9-GFPタンパク質溶液(Cas9-GFP Protein、SIGMA、 Cat#: CAS9GFPPRO-50UG)とそれぞれ終濃度2.5μMとなるように、SEC buffer中で混ぜ合わせた(2.5μM RNPとした)。
 DNAナノ粒子結晶は試験例8と同様のものを用いた。
 シロイヌナズナのプロトプラストは、発芽後3-4週間目のシロイヌナズナの葉肉細胞を利用した。
(Test Example 12)
(Confirmation of genome editing by intracellular introduction of macromolecules)
It was confirmed whether genome editing occurs when a DNA nanoparticle crystal to which RNP is bound is introduced into a cell.
As RNP, Alt-R CRISPR-Cas9 tracrRNA (IDT, Cat #: 10725333) and crRNA (AML5 crRNA, IDT) are mixed with RNase-free water to a final concentration of 10 μM, and heated at 95 ° C. for 2 minutes. Then, it was gradually cooled (10 μM gRNA). 10 μM gRNA was mixed with a 25 μM Cas9-GFP protein solution (Cas9-GFP Protein, SIGMA, Cat #: CAS9GFPRO-50UG) in a SEC buffer to a final concentration of 2.5 μM (2.5 μM RNP). did).
As the DNA nanoparticle crystal, the same one as in Test Example 8 was used.
Arabidopsis protoplasts used Arabidopsis mesophyll cells 3-4 weeks after germination.
 DNAナノ粒子結晶5μLと2.5μM RNPを5μL混ぜ合わせ、 1 x Cas9 bufferを加え、20 μLに調整した。ピペッティング後、1時間静置し、卓上遠心機で遠心後、上清を捨てた。再び1x Cas9 buffer 20μLを加えてピペッティングし、卓上遠心機で遠心後、上清を捨てた。この操作をもう一度くりかえし、最後に1x Cas9 buffer 10μLに調整した。ポジティブ対照としては、上記工程での1度目の上清(RNPのみ)を利用し、ネガティブ対照としては単なる1x Cas9 buffer 10μLを導入に利用した。調整したRNP結合DNAナノ粒子結晶は、PEG法でプロトプラストに導入を行い3日間静置した。プロトプラストからイソプロパノール抽出によりゲノムを抽出し、KOD FX Neo Kit (TOYOBO)を用いて、下記のプライマーを用いて、遺伝子を増幅した。増幅した遺伝子産物は、Miseq nano Kit v3 (500 cycles)を利用してMiseqシークエンサー(Illumina)で分析した。 5 μL of DNA nanoparticle crystal and 5 μL of 2.5 μM RNP were mixed, and 1 x Cas9 buffer was added to adjust to 20 μL. After pipetting, the mixture was allowed to stand for 1 hour, centrifuged in a desktop centrifuge, and the supernatant was discarded. 20 μL of 1x Cas9 buffer was added again for pipetting, centrifugation was performed with a desktop centrifuge, and the supernatant was discarded. This operation was repeated once again, and finally adjusted to 1x Cas9 buffer 10 μL. As a positive control, the supernatant (RNP only) of the first step in the above step was used, and as a negative control, simply 1x Cas9 buffer 10 μL was used for introduction. The prepared RNP-bound DNA nanoparticle crystal was introduced into a protoplast by the PEG method and allowed to stand for 3 days. The genome was extracted from protoplast by isopropanol extraction, and the gene was amplified using KOD FX Neo Kit (TOYOBO) and the following primers. The amplified gene product was analyzed with a Miseq sequencer (Illumina) using Miseq nano Kit v3 (500 cycles).
 プライマー情報は以下の通りである。
 AML5_amplicon_F (5’-3’):(配列番号3)
 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACGGCTGTTTCTCGCACAAACA
 AML5_amplicon_R (5’-3’):(配列番号4)
 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCAACTGTTCCTGCACCATTTGG
Primer information is as follows.
AML5_amplicon_F (5'-3') :( SEQ ID NO: 3)
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACGGCTGTTTCTCGCACAAACA
AML5_amplicon_R (5'-3') :( SEQ ID NO: 4)
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCAACTGTTCCTGCACCATTTGG
 図18A~Cに分析結果を示す。図18AにRNPの導入を行ったものから7配列(配列番号:5~11)、図18BにRNP封入結晶の導入を行ったものから10配列(配列番号:12~21)、図18Cにネガティブ対照(比較例)としてコロイド結晶のみ導入したものから10配列(配列番号:22~31)を示す。図18A~Cのうち、左端の数字は配列番号に対応する。
 Amplicon-seqで分析したリードの中に、ポジティブ対照およびRNP封入のナノ粒子結晶の導入では、ゲノム編集のターゲット箇所の近傍にゲノム編集由来と思われる変異配列(シロイヌナズナでは欠失もしくは挿入がみられる)が検出された(図中の枠線で示す)。一方で、ネガティブ対照では変異配列は見られなかった。したがって、RNP結合したDNAナノ粒子結晶を細胞に導入することによりゲノム編集を誘導できることが示唆された。
The analysis results are shown in FIGS. 18A to 18C. 7 sequences from the one in which RNP was introduced in FIG. 18A (SEQ ID NO: 5 to 11), 10 sequences from the one in which the RNP-encapsulated crystal was introduced in FIG. 18B (SEQ ID NO: 12 to 21), and negative in FIG. 18C. As a control (comparative example), 10 sequences (SEQ ID NOs: 22 to 31) are shown from those in which only colloidal crystals are introduced. In FIGS. 18A to 18C, the leftmost number corresponds to the sequence number.
In the reads analyzed by Amplicon-seq, the introduction of positive control and RNP-encapsulated nanoparticle crystals shows a mutation sequence (deletion or insertion in Arabidopsis thaliana) that appears to be derived from genome editing near the target site of genome editing. ) Was detected (indicated by the frame in the figure). On the other hand, no mutant sequence was found in the negative control. Therefore, it was suggested that genome editing can be induced by introducing RNP-bound DNA nanoparticle crystals into cells.
 (試験例13)
 (DNAナノ粒子結晶の酵素分解)
 DNAナノ粒子結晶を酵素により分解する試験を行った。
 TAMRA蛍光ラベルDNAナノ粒子結晶は、DNAナノ粒子結晶に試験例8と同様のものを用いたが、DNAとして内部に下記の配列12-1(配列番号:32)、12-2、12-3(配列番号:33)のDNA配列を二重鎖に有しているものを用いた。
配列12-1 5’-CATCCATCCTTATCAACT-3’
配列12-2 5’-AAGGAA-3’
配列12-3 5’-AGGTGAGTATGAGTCGTT-3’
 制限酵素としてBccI、XhoI、DpnI(NEB社)を準備した。
(Test Example 13)
(Enzymatic decomposition of DNA nanoparticle crystals)
A test was conducted in which DNA nanoparticle crystals were enzymatically decomposed.
As the TAMRA fluorescent label DNA nanoparticle crystal, the same DNA nanoparticle crystal as in Test Example 8 was used, but the following sequences 12-1 (SEQ ID NO: 32), 12-2, 12-3 were used as DNA inside. A DNA sequence of (SEQ ID NO: 33) having a double strand was used.
Sequence 12-1 5'-CATCCATCCTTATCAACT-3'
Sequence 12-2 5'-AAGGAA-3'
Array 12-3 5'-AGGTGAGTATGAGTCGTT-3'
BccI, XhoI, and DpnI (NEB) were prepared as restriction enzymes.
 PCRチューブに対してDNAナノ粒子結晶1μLと10x CutSmart buffer、 1μLの制限酵素(BccI、 XhoI、 もしくはDpnI)を加え、MilliQ水で10μLに調整した。ピペッティング後、37℃で6時間静置し、卓上遠心機で遠心した。チューブの底から1μLとり、スライドガラスに滴下して蛍光顕微鏡で観察した。 1 μL of DNA nanoparticle crystals, 10 x CutSmart buffer, and 1 μL of restriction enzymes (BccI, XhoI, or DpnI) were added to the PCR tube, and the mixture was adjusted to 10 μL with MilliQ water. After pipetting, the mixture was allowed to stand at 37 ° C. for 6 hours and centrifuged in a tabletop centrifuge. 1 μL was taken from the bottom of the tube, dropped on a slide glass, and observed with a fluorescence microscope.
 図19に、6時間37℃で制限酵素処理したTAMRA蛍光ラベルDNAナノ粒子結晶の顕微鏡写真を示す。上段は蛍光、下段は明視野である。矢印は典型的なDNAナノ粒子結晶である。A:BccI処理、B:XhoI処理、C:DpnI処理の結果を示す。
 実験を行った制限酵素のうち、DNAナノ粒子結晶が持つ配列(前記配列番号5~7)の中に認識サイトを持つ酵素はBccIのみである。BccIのみで、TAMRA蛍光ラベルDNAナノ粒子結晶の分解が起こった。この結果より、酵素によってDNAナノ粒子結晶を分解し、封入した高分子を徐放できることが示された。
FIG. 19 shows a photomicrograph of TAMRA fluorescently labeled DNA nanoparticle crystals treated with restriction enzymes at 37 ° C. for 6 hours. The upper row is fluorescence and the lower row is bright field. Arrows are typical DNA nanoparticle crystals. The results of A: BccI treatment, B: XhoI treatment, and C: DpnI treatment are shown.
Among the restriction enzymes tested, BccI is the only enzyme having a recognition site in the sequence (SEQ ID NOs: 5 to 7) of the DNA nanoparticle crystal. Degradation of TAMRA fluorescently labeled DNA nanoparticle crystals occurred with BccI alone. From this result, it was shown that the DNA nanoparticle crystal can be decomposed by an enzyme and the encapsulated polymer can be released slowly.
 (試験例14)
 (DNAナノ粒子結晶の光分解)
 DNAナノ粒子結晶を光により分解する試験を行った。
 DNAナノ粒子結晶に試験例8と同様のものを用いたが、DNAとして内部にpc-linker(o-ニトロベンジル基)を含む配列を利用した。試験例8のDNA#6に相当するDNAに、前記pc-linkerを付与して用いた。
(Test Example 14)
(Photodegradation of DNA nanoparticle crystals)
A test was conducted in which DNA nanoparticle crystals were decomposed by light.
The same DNA nanoparticle crystal as in Test Example 8 was used, but a sequence containing a pc-linker (o-nitrobenzyl group) inside was used as the DNA. The above-mentioned pc-linker was added to the DNA corresponding to DNA # 6 of Test Example 8 and used.
 pc-linkerを含む結晶をスライドガラスに滴下して蛍光顕微鏡下で紫外線を照射した。 Crystals containing a pc-linker were dropped on a slide glass and irradiated with ultraviolet rays under a fluorescence microscope.
 図20に、1時間紫外線照射した前・後のDNAナノ粒子結晶の顕微鏡写真を示す。左段は照射前、下段は照射後である。矢印は光によって分解したDNAナノ粒子結晶を示す。
 この結果より、光によってDNAナノ粒子結晶を分解し、封入した高分子を徐放できることが示された。
FIG. 20 shows micrographs of DNA nanoparticle crystals before and after being irradiated with ultraviolet rays for 1 hour. The left row is before irradiation, and the lower row is after irradiation. Arrows indicate DNA nanoparticle crystals decomposed by light.
From this result, it was shown that the DNA nanoparticle crystal can be decomposed by light and the encapsulated polymer can be released slowly.
 試験例7~14から、これらの試験で用いたDNAナノ粒子結晶にはゲノム編集因子の結合が可能であること、DNAナノ粒子結晶は細胞への導入が可能であること、DNAナノ粒子結晶に結合させたRNPにより、植物細胞のゲノム編集が起きうること、酵素および光によりDNAナノ粒子結晶を分解可能であることが示された。 From Test Examples 7 to 14, the DNA nanoparticle crystals used in these tests can be bound to a genome editing factor, the DNA nanoparticle crystals can be introduced into cells, and the DNA nanoparticle crystals can be used. It was shown that the bound RNP can cause genome editing of plant cells and that DNA nanoparticle crystals can be degraded by enzymes and light.
 (試験例15)
 (電界誘起気泡法による植物細胞への蛋白質の導入)
 電界誘起気泡法によって、植物細胞への蛋白質の導入を検証した。
 導入装置としては図1の装置と同様のものを用い、細胞として成熟した葉の細胞に対して行う他は、試験例1と同様の方法にて導入を行った。シロイヌナズナの成熟した葉を利用し、メスをマニュピレータを利用して葉に対して角度をつけてアプローチする形を利用した。細胞に対して一般的なマニュピレータを利用してメス先とサンプルの位置を調整して導入を行った。
 電源装置(パルス発生源)として、Hyfrecator2000 (TypeA、 TypeB)(コンメッド・ジャパン株式会社)、電気パルス出力装置(CFB)(株式会社ベックス)を利用した。Hyfrecator 2000はType A,Type Bいずれも5msごとにパルスを発する高周波で、CFBは0.5msごとに、およそ5μsの間パルスを発する低周波である。
 導入する対象としては、RNPはタンパク質であり、GFPとほぼ同等の体積を持つ。したがって、本実験ではGFPタンパク質を導入する実験を行った。導入に用いるGFPタンパク質として、superfolder GFP (sfGFP)にNuclear localization signal (NLS)を付与したsfGFP-NLS(270アミノ酸、分子量30367)を大腸菌で発現させたものを準備した。
(Test Example 15)
(Introduction of protein into plant cells by electric field-induced bubble method)
The introduction of proteins into plant cells was verified by the electric field-induced bubble method.
As the introduction device, the same device as in FIG. 1 was used, and the introduction was performed in the same manner as in Test Example 1 except that the cells were matured leaf cells. The mature leaves of Arabidopsis thaliana were used, and the female was approached at an angle to the leaves using a manipulator. The position of the scalpel tip and the sample was adjusted using a general manipulator for the cells and introduced.
As a power supply device (pulse generation source), Hypercator2000 (TypeA, TypeB) (Commed Japan Co., Ltd.) and an electric pulse output device (CFB) (Bex Co., Ltd.) were used. Hybridator 2000 is a high frequency that emits a pulse every 5 ms for both Type A and Type B, and CFB is a low frequency that emits a pulse every 0.5 ms for about 5 μs.
As a target to be introduced, RNP is a protein and has a volume almost equal to that of GFP. Therefore, in this experiment, an experiment was conducted to introduce the GFP protein. As the GFP protein used for introduction, sfGFP-NLS (270 amino acids, molecular weight 30637) in which Nuclear localization signal (NLS) was added to superfolder GFP (sfGFP) was expressed in Escherichia coli.
 印加電圧(もしくはエネルギー)、メスの先端とのサンプルとの距離、サンプルの濃度、電源などのパラメーターを変化させながら、シロイヌナズナの成熟葉(裏)に対してタンパク質を打ち込んだ(電圧を印加した)。タンパク質を導入した後の葉は、bufferで1時間洗浄を行い、葉の表面に結合したGFPタンパク質を洗い落とした。その後、1-24時間後に観察を行った。
 導入条件:
 Target: Arabidopsis mature leaves
 Energy: 3W
 Distance: ~25μm
 Solution: 1/2MS+2%Mannitol
 Delivered: sfGFP-NLS protein、 750ng/μL  (導入6時間後、 核が光る)
 Wash: 1mL of 1/2MS+2% Mannitol for 1hour
 Power supply: Hyfrecator 2000 or CFB
Protein was applied to the mature leaves (back) of Arabidopsis thaliana while changing parameters such as applied voltage (or energy), distance from the tip of the female to the sample, sample concentration, and power supply (voltage was applied). .. After introducing the protein, the leaves were washed with a buffer for 1 hour to wash off the GFP protein bound to the surface of the leaves. Then, observation was performed 1 to 24 hours later.
Installation conditions:
Target: Arabidopsis mate leaves
Energy: 3W
Distance: ~ 25 μm
Solution: 1 / 2MS + 2% Mannitol
Delivered: sfGFP-NLS protein, 750 ng / μL (6 hours after introduction, the nucleus glows)
Wash: 1mL of 1 / 2MS + 2% Mannitol for 1hour
Power supply: Hyfrecator 2000 or CFB
 Hyfrecator Type B、 LO modeにて導入されたsfGFP-NLSについて、24時間後に撮影した顕微鏡写真を図21に示す。上段、下段にGFP蛍光の検出結果、明視野、その重ね合わせを示し、上段に比べて下段はより拡大した図(核への移行を検出)である。
 Hyfrecator Type A、 LO modeにて導入されたsfGFP-NLS:1時間後に撮影した顕微鏡写真を図22に示す。紫外線(UV)、GFPの蛍光(GFP 500ms及びGFP 50ms)を示す。下段A、Bは、上段の蛍光シグナルA,Bで示した箇所のさらなる拡大図を示す。
 高周波のパルス電圧を発するHyfrecatorA、Bを電源として用いた場合、GFPタンパク質が植物細胞内に導入されているのが観察された。一方で、低周波のCFBを用いた場合では、導入実験を多数行ったものの導入が見られなかった。
 以上の結果から、電界誘起気泡法によって植物の葉にGFPタンパク質が導入できること、導入には高周波のパルス電圧が必要であることが示された。本実施形態の高分子の細胞導入方法により、細胞への不可逆的な損傷が少なく(毒性が少なく、細胞死を防ぎ)動物細胞、植物細胞への高分子の導入が可能なことが示された。
FIG. 21 shows a micrograph of sfGFP-NLS introduced in Hyprecator Type B, LO mode, taken 24 hours later. The upper and lower rows show the detection results of GFP fluorescence, the bright field, and their superposition, and the lower row is a larger view (detection of migration to the nucleus) than the upper row.
FIG. 22 shows a photomicrograph taken after 1 hour of sfGFP-NLS introduced in Hypercator Type A, LO mode. It shows ultraviolet (UV) and GFP fluorescence (GFP 500 ms and GFP 50 ms). Lower rows A and B show further enlarged views of the locations indicated by the upper rows of fluorescence signals A and B.
When Hyprecator A and B, which emit high-frequency pulse voltage, were used as a power source, it was observed that the GFP protein was introduced into plant cells. On the other hand, when a low-frequency CFB was used, many introduction experiments were performed, but no introduction was observed.
From the above results, it was shown that the GFP protein can be introduced into the leaves of plants by the electric field-induced bubble method, and that a high-frequency pulse voltage is required for the introduction. It was shown that the polymer cell introduction method of the present embodiment enables the introduction of macromolecules into animal cells and plant cells with less irreversible damage to cells (less toxicity and prevention of cell death). ..
 (参考例)
 図23aに、試験例13と同様の条件で、DNAナノ粒子結晶を制限酵素により処理した図を示した。いずれも明視野で、左図の対象区で矢印に示した箇所に確認できる結晶が、右図の制限酵素処理区では消失しており、DNAナノ粒子結晶が制限酵素により分解されることが示された。
 図23bに、試験例13と同様の条件でDNAナノ粒子結晶を蛍光ラベルし可視化した図を示した。左図は明視野、右図はGFPの蛍光を検出した図で、明視野で確認できる結晶が蛍光ラベルされており、また矢印に示したさらに小さな結晶も蛍光ラベルにより確認できることが示された。
 図23cに、試験例13の蛍光ラベルしたDNAナノ粒子結晶を、試験例10と同様の条件でプロトプラストに対して導入した図を示した。左図は明視野、右図はGFPの蛍光を検出した図で、矢印に示すように蛍光ラベルされたDNAナノ粒子結晶が導入されていることが示された。
(Reference example)
FIG. 23a shows a diagram in which DNA nanoparticle crystals were treated with restriction enzymes under the same conditions as in Test Example 13. In both cases, the crystals that can be confirmed in the target area in the left figure at the points indicated by the arrows disappear in the restriction enzyme treatment area in the right figure, indicating that the DNA nanoparticle crystals are decomposed by the restriction enzymes. Was done.
FIG. 23b shows a graph in which DNA nanoparticle crystals were fluorescently labeled and visualized under the same conditions as in Test Example 13. The left figure is a view in which fluorescence of GFP is detected, and the right figure is a figure in which fluorescence of GFP is detected. It is shown that crystals that can be confirmed in the bright field are fluorescently labeled, and smaller crystals indicated by arrows can also be confirmed by the fluorescence label.
FIG. 23c shows a diagram in which the fluorescently labeled DNA nanoparticle crystal of Test Example 13 was introduced into protoplasts under the same conditions as in Test Example 10. The left figure is a bright field, and the right figure is a figure in which fluorescence of GFP was detected, and it was shown that a fluorescence-labeled DNA nanoparticle crystal was introduced as shown by an arrow.
 本発明の実施形態によれば、高分子の機能を保ち、かつ細胞の生存率が高く、高分子を高効率で細胞に導入することができ、高分子の細胞内での機能発現に用いることのできる導入装置、細胞導入方法、DNAナノ粒子結晶及びDNAナノ粒子結晶封入体の製造方法を得ることができる。 According to the embodiment of the present invention, the function of the polymer is maintained, the survival rate of the cell is high, the polymer can be introduced into the cell with high efficiency, and the polymer is used for the expression of the function in the cell. It is possible to obtain an introduction device, a cell introduction method, and a method for producing a DNA nanoparticle crystal and a DNA nanoparticle crystal enclosure.
 20 インジェクター
 21 貯留部
 22 送液部
 30 容器
 40 電力供給手段
 41 電源装置
 42 対向電極
 43 電線
 50 単位格子
 50A DNAナノ粒子結晶封入体
 51 ナノ粒子
 52 結晶内DNA分子
 53 細孔
 60 高分子
 100 導入装置
 500 多孔性結晶
20 Injector 21 Storage unit 22 Liquid supply unit 30 Container 40 Power supply means 41 Power supply device 42 Counter electrode 43 Wire wire 50 Unit lattice 50A DNA nanoparticles Crystal enclosure 51 Nanoparticles 52 Intracrystal DNA molecules 53 Pore 60 Polymer 100 Introduction device 500 porous crystals

Claims (24)

  1.  気泡の圧潰を含む物理的衝撃により細胞の表面を穿孔させて、高分子を前記細胞内に導入する導入装置であって、
     前記高分子を含む溶液を貯留する貯留部と、
     前記穿孔した前記細胞の表面に向けて前記溶液を送液し、前記高分子を前記細胞内に導入するための送液部とを有し、
     前記高分子を前記細胞内に導入する際は、前記細胞を含む溶液を収納した容器内の底部に対して行う、導入装置。
    An introduction device that perforates the surface of a cell by a physical impact including crushing of bubbles and introduces a polymer into the cell.
    A storage unit for storing the solution containing the polymer and
    It has a liquid feeding unit for feeding the solution toward the surface of the perforated cell and introducing the polymer into the cell.
    When introducing the polymer into the cells, the introduction device is performed on the bottom of the container containing the solution containing the cells.
  2.  前記導入は、前記容器内において前記細胞を含む溶液を遠心分離することにより前記容器内の底部に形成された細胞塊に対して行う、請求項1に記載の導入装置。 The introduction device according to claim 1, wherein the introduction is performed on a cell mass formed at the bottom of the container by centrifuging the solution containing the cells in the container.
  3.  前記導入は、前記細胞を含む溶液が、せん断速度10.0/s以下において、せん断粘性が0.01Pa・s以上である、請求項1又は2に記載の導入装置。 The introduction device according to claim 1 or 2, wherein the solution containing the cells has a shear viscosity of 0.01 Pa · s or more at a shear rate of 10.0 / s or less.
  4.  前記細胞を含む溶液を収納した容器は、前記容器内の底部形状が錘状である、請求項1から3のいずれか1項に記載の導入装置。 The introduction device according to any one of claims 1 to 3, wherein the container containing the solution containing the cells has a weight-like bottom shape in the container.
  5.  前記導入装置は、気泡噴出部材に電圧を印加して気泡を発生させる細胞穿孔部を備える、請求項1から4のいずれか1項に記載の導入装置。 The introduction device according to any one of claims 1 to 4, wherein the introduction device includes a cell perforation portion that applies a voltage to a bubble ejection member to generate bubbles.
  6.  前記高分子は、多孔性結晶に封入されている、請求項1から5のいずれか1項に記載の導入装置。 The introduction device according to any one of claims 1 to 5, wherein the polymer is enclosed in a porous crystal.
  7.  前記多孔性結晶は、ナノ材料とDNA分子とから成るDNAナノ粒子結晶である、請求項6に記載の導入装置。 The introduction device according to claim 6, wherein the porous crystal is a DNA nanoparticle crystal composed of a nanomaterial and a DNA molecule.
  8.  前記多孔性結晶を前記細胞に導入した後に、前記封入していた前記高分子を徐放する請求項7に記載の導入装置。 The introduction device according to claim 7, wherein after introducing the porous crystal into the cell, the encapsulated polymer is slowly released.
  9.  前記高分子は分子量が1000以上である核酸分子(DNA分子、RNA分子、人工核酸)、タンパク質、ポリアミドを含む、請求項1から8のいずれか1項に記載の導入装置。 The introduction device according to any one of claims 1 to 8, wherein the polymer contains a nucleic acid molecule (DNA molecule, RNA molecule, artificial nucleic acid), protein, and polyamide having a molecular weight of 1000 or more.
  10.  前記高分子は、Cas9又は長鎖DNA分子である、請求項9に記載の導入装置。 The introduction device according to claim 9, wherein the polymer is Cas9 or a long-chain DNA molecule.
  11.  高分子を多孔性結晶内に封入する封入工程と、
     前記多孔性結晶を細胞内に導入する細胞導入工程と、
     を有する、高分子の細胞導入方法。
    The encapsulation process of encapsulating the polymer in the porous crystal and
    The cell introduction step of introducing the porous crystal into the cell and
    A method for introducing macromolecular cells.
  12.  前記細胞導入工程は、気圧の圧壊を含む物理的衝撃により細胞の表面を穿孔させる工程である、請求項11に記載の高分子の細胞導入方法。 The method for introducing a polymer cell according to claim 11, wherein the cell introduction step is a step of perforating the surface of cells by a physical impact including crushing of atmospheric pressure.
  13.  前記多孔性結晶を気泡噴出部材に導入し、
     前記気泡噴出部材に電圧を印加して気泡を発生させ、
     前記気泡の圧壊を含む物理的衝撃によって前記細胞の膜を穿孔させると共に前記多孔性結晶を前記細胞に導入する電界誘起気泡法により、前記多孔性結晶を前記細胞に導入する、請求項12に記載の高分子の細胞導入方法。
    The porous crystal is introduced into the bubble ejection member, and the porous crystal is introduced into the bubble ejection member.
    A voltage is applied to the bubble ejection member to generate bubbles, and the bubbles are generated.
    The twelfth aspect of claim 12, wherein the porous crystal is introduced into the cell by an electric field-induced bubble method in which the membrane of the cell is perforated by a physical impact including crushing of the cell and the porous crystal is introduced into the cell. Method of introducing high molecular weight cells.
  14.  前記多孔性結晶を前記細胞に導入する際は、前記細胞を含む溶液を収納した容器内の底部に形成された細胞塊に対して前記導入する、請求項13に記載の高分子の細胞導入方法。 The method for introducing a polymer cell according to claim 13, wherein when the porous crystal is introduced into the cell, the porous crystal is introduced into a cell mass formed at the bottom of a container containing the solution containing the cell. ..
  15.  前記多孔性結晶はナノ材料とDNA分子とを含むDNAナノ粒子結晶である、請求項11から14のいずれか1項に記載の高分子の細胞導入方法。 The method for introducing a polymer cell according to any one of claims 11 to 14, wherein the porous crystal is a DNA nanoparticle crystal containing a nanomaterial and a DNA molecule.
  16.  前記高分子は分子量が1000以上である核酸分子(DNA分子、RNA分子、人工核酸)、タンパク質、ポリアミドを含む、請求項11から15のいずれか1項に記載の高分子の細胞導入方法。 The method for introducing a polymer into cells according to any one of claims 11 to 15, wherein the polymer contains a nucleic acid molecule (DNA molecule, RNA molecule, artificial nucleic acid), protein, and polyamide having a molecular weight of 1000 or more.
  17.  前記高分子はタンパク質である、請求項16に記載の高分子の細胞導入方法。 The method for introducing a polymer into cells according to claim 16, wherein the polymer is a protein.
  18.  前記多孔性結晶を切断して、前記多孔性結晶から前記高分子を前記細胞内に徐放させる徐放工程をさらに有する、請求項11から17のいずれか1項に記載の高分子の細胞導入方法。 The cell introduction of the polymer according to any one of claims 11 to 17, further comprising a sustained release step of cutting the porous crystal and slowly releasing the polymer from the porous crystal into the cell. Method.
  19.  前記徐放工程は、前記多孔性結晶に光を照射して前記多孔性結晶を切断し、又は、酵素によって前記多孔性結晶を切断する、請求項18に記載の高分子の細胞導入方法。 The method for introducing a polymer cell according to claim 18, wherein the sustained-release step is a method for introducing a polymer cell according to claim 18, wherein the porous crystal is irradiated with light to cut the porous crystal, or the porous crystal is cut by an enzyme.
  20.  ナノ材料とDNA分子とを含むDNAナノ粒子結晶であって、
     特定の分子に対して相互作用する、特異的相互作用の機能をもつ分子で修飾されたDNAナノ粒子結晶。
    A DNA nanoparticle crystal containing nanomaterials and DNA molecules.
    A DNA nanoparticle crystal modified with a molecule having a specific interaction function that interacts with a specific molecule.
  21.  前記特異的相互作用によりDNAナノ粒子結晶の内部に分子又は粒子を保持可能に構成されてなる、請求項20に記載のDNAナノ粒子結晶。 The DNA nanoparticle crystal according to claim 20, wherein the molecule or particle can be retained inside the DNA nanoparticle crystal by the specific interaction.
  22.  前記特異的相互作用が、ビオチンと他の分子の相互作用である、請求項20又は21に記載のDNAナノ粒子結晶。 The DNA nanoparticle crystal according to claim 20 or 21, wherein the specific interaction is an interaction between biotin and another molecule.
  23.  請求項20から22のいずれか1項に記載のDNAナノ粒子結晶に、前記特定の分子で修飾された封入対象を封入する、DNAナノ粒子結晶封入体の製造方法。 A method for producing a DNA nanoparticle crystal inclusion body, wherein the inclusion target modified with the specific molecule is encapsulated in the DNA nanoparticle crystal according to any one of claims 20 to 22.
  24.  ナノ材料とDNA分子とを含むDNAナノ粒子結晶であって、
     前記DNAナノ粒子結晶を構成する分子同士の結合力を減弱可能な構成を備え、前記構成は、前記DNA分子が光応答性官能基を有する、又は、ヌクレアーゼ認識配列を有する構成である、DNAナノ粒子結晶。
    A DNA nanoparticle crystal containing nanomaterials and DNA molecules.
    The DNA nanoparticle has a structure capable of diminishing the binding force between the molecules constituting the DNA nanoparticle crystal, and the structure is such that the DNA molecule has a photoresponsive functional group or has a nuclease recognition sequence. Particle crystal.
PCT/JP2020/035332 2019-09-18 2020-09-17 Introduction device, method for cellular introduction of macromolecule, dna nanoparticle crystal, and method for producing dna nanoparticle crystal inclusion body WO2021054407A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021546955A JPWO2021054407A1 (en) 2019-09-18 2020-09-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962901803P 2019-09-18 2019-09-18
US62/901,803 2019-09-18

Publications (1)

Publication Number Publication Date
WO2021054407A1 true WO2021054407A1 (en) 2021-03-25

Family

ID=74884018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035332 WO2021054407A1 (en) 2019-09-18 2020-09-17 Introduction device, method for cellular introduction of macromolecule, dna nanoparticle crystal, and method for producing dna nanoparticle crystal inclusion body

Country Status (2)

Country Link
JP (1) JPWO2021054407A1 (en)
WO (1) WO2021054407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048670A1 (en) * 2022-08-30 2024-03-07 国立大学法人九州大学 Introduction device and delivery method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024147A (en) * 2008-07-15 2010-02-04 National Institute For Materials Science Photoresponsive drug transporter and photoresponsive drug transporter with drug
WO2013129657A1 (en) * 2012-03-02 2013-09-06 独立行政法人科学技術振興機構 Bubble-spraying member and method for producing same, gas-liquid-spraying member and method for producing same, local ablation device and local ablation method, injection device and injection method, plasma-bubble-spraying member, and healing device and healing method
WO2016072408A1 (en) * 2014-11-07 2016-05-12 国立研究開発法人科学技術振興機構 Gas-bubble spray member, gas-liquid spray member, local ablation device, and local injection device
WO2017151748A1 (en) * 2016-03-01 2017-09-08 Trustees Of Boston University Light-stimulated release of cargo from oligonucleotides
JP2017527554A (en) * 2014-08-19 2017-09-21 ノースウェスタン ユニバーシティ Protein / oligonucleotide core-shell nanoparticle therapeutics
JP2018149615A (en) * 2017-03-10 2018-09-27 国立大学法人名古屋大学 Superlattice structure, and method of producing the same
WO2019032241A1 (en) * 2017-07-13 2019-02-14 Northwestern University General and direct method for preparing oligonucleotide-functionalized metal-organic framework nanoparticles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024147A (en) * 2008-07-15 2010-02-04 National Institute For Materials Science Photoresponsive drug transporter and photoresponsive drug transporter with drug
WO2013129657A1 (en) * 2012-03-02 2013-09-06 独立行政法人科学技術振興機構 Bubble-spraying member and method for producing same, gas-liquid-spraying member and method for producing same, local ablation device and local ablation method, injection device and injection method, plasma-bubble-spraying member, and healing device and healing method
JP2017527554A (en) * 2014-08-19 2017-09-21 ノースウェスタン ユニバーシティ Protein / oligonucleotide core-shell nanoparticle therapeutics
WO2016072408A1 (en) * 2014-11-07 2016-05-12 国立研究開発法人科学技術振興機構 Gas-bubble spray member, gas-liquid spray member, local ablation device, and local injection device
WO2017151748A1 (en) * 2016-03-01 2017-09-08 Trustees Of Boston University Light-stimulated release of cargo from oligonucleotides
JP2018149615A (en) * 2017-03-10 2018-09-27 国立大学法人名古屋大学 Superlattice structure, and method of producing the same
WO2019032241A1 (en) * 2017-07-13 2019-02-14 Northwestern University General and direct method for preparing oligonucleotide-functionalized metal-organic framework nanoparticles

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KURIKI H, TAKASAWA S, IWABUCHI M, OHSUMI K, SUZUKI T, HIGASHIYAMA T, SAKUMA S, ARAI F, YAMANISHI Y: "Multiphase-laden gas-liquid interface injection for the versatile gene transfer", 17TH INTERNATIONAL CONFERENCE ON MINIATURIZED SYSTEMS FOR CHEMISTRY AND LIFE SCIENCES, 2013, pages 1173 - 1175, XP055807439 *
LIFE SCIENCE CATALOG, 2012, pages 18.18, Retrieved from the Internet <URL:https://www.promega.co.jp/cat/cat18_2012.pdf> [retrieved on 20201106] *
TAGAWA, MIHO ET AL.: "DNA-guided crystallization of nanoparticles", SUMMARIES OF 2020 ANNUAL (THE 75TH) MEETING OF THE PHYSICAL SOCIETY OF JAPAN, vol. 75, 16 March 2020 (2020-03-16), pages 2121 - 2122 *
TAKAHASHI, KAZUKI ET AL.: "Mapping and Pattering of Biological Materials by electrically-induced bubbles", IEICE TECHNICAL REPORT, vol. 115, 2015, pages 17 - 20, XP008183945 *
UEMACHI, AZUSA ET AL.: "Discrimination of Trachelospermum plants commercially distributed in Japan based on PCR-RFLP analysis", JOURNAL OF THE JAPANESE SOCIETY OF REVEGETATION TECHNOLOGY, vol. 41, 2015, pages 151 - 156 *
YAMANISHI, YOKO ET AL.: "Emerging Functions of Electrically-induced Bubbles", JOURNAL OF THE VISUALIZATION SOCIETY OF JAPAN, vol. 39, July 2019 (2019-07-01), pages 8 - 13 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048670A1 (en) * 2022-08-30 2024-03-07 国立大学法人九州大学 Introduction device and delivery method

Also Published As

Publication number Publication date
JPWO2021054407A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
Jat et al. Nanomaterial based gene delivery: a promising method for plant genome engineering
Yan et al. Nanotechnology strategies for plant genetic engineering
Burlaka et al. Plant genetic transformation using carbon nanotubes for DNA delivery
JP4469959B2 (en) Method for introducing a foreign substance into a cell having a cell wall
US7132289B2 (en) Method for introducing foreign matters into living cells
US20220251585A1 (en) Novel plant cells, plants, and seeds
US20230193303A1 (en) Methods for improved plant gene-editing
JPS63258525A (en) Characteristic transformation of plant through pollen
Amani et al. Ultrasound-enhanced gene delivery to alfalfa cells by hPAMAM dendrimer nanoparticles
US11718845B2 (en) Methods for increasing gene-editing frequencies in maize cells
WO2021054407A1 (en) Introduction device, method for cellular introduction of macromolecule, dna nanoparticle crystal, and method for producing dna nanoparticle crystal inclusion body
US20230235349A1 (en) Novel maize cells and maize plants
Vats et al. Opportunity and challenges for nanotechnology application for genome editing in plants
Okuzaki et al. Efficient plastid transformation in tobacco using small gold particles (0.07–0.3 µm)
Sashidhar et al. Nanobiotechnology for plant genome engineering and crop protection
US20220186248A1 (en) Genetically enhanced maize plants
JP3780333B2 (en) A novel method for introducing foreign genetic material or physiologically active substance into cells
Begum et al. A review of nanotechnology as a novel method of gene transfer in plants
RU2663347C1 (en) Method of delivering biologically active macromolecules into the cells of plants
Ulusoy et al. The cellular uptake, distribution and toxicity of Poly (lactic-co-glycolic) acid nanoparticles in Medicago sativa suspension culture
JP2011067176A (en) Introduction of material into animal cell by utilizing pressure change
JP4022614B2 (en) New biobead manufacturing method
Mostafa et al. Inorganic smart nanoparticles: a new tool to deliver CRISPR systems into plant cells
Liu et al. A biomimetic nanoparticle for pDNA delivery and expression in plant cells in a pH-dependent manner
Yadav et al. Nanotechnology mediated gene transfer in plants: a novel approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864925

Country of ref document: EP

Kind code of ref document: A1