WO2021054325A1 - Light measurement device and microplate reader - Google Patents

Light measurement device and microplate reader Download PDF

Info

Publication number
WO2021054325A1
WO2021054325A1 PCT/JP2020/034922 JP2020034922W WO2021054325A1 WO 2021054325 A1 WO2021054325 A1 WO 2021054325A1 JP 2020034922 W JP2020034922 W JP 2020034922W WO 2021054325 A1 WO2021054325 A1 WO 2021054325A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
microplate
light guide
unit
light receiving
Prior art date
Application number
PCT/JP2020/034922
Other languages
French (fr)
Japanese (ja)
Inventor
金市 森田
雄司 興
Original Assignee
ウシオ電機株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019168048A external-priority patent/JP2022172412A/en
Priority claimed from JP2019185047A external-priority patent/JP2022172414A/en
Application filed by ウシオ電機株式会社, 国立大学法人九州大学 filed Critical ウシオ電機株式会社
Publication of WO2021054325A1 publication Critical patent/WO2021054325A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to an optical measuring device and a microplate reader that perform optical measurement on a sample.
  • reagent separation, synthesis, extraction, analysis, cell culture, etc. have been performed using a flat plate-shaped microplate made of, for example, acrylic, polyethylene, polystyrene, glass, etc., and provided with a large number of recesses (wells).
  • a flat plate-shaped microplate made of, for example, acrylic, polyethylene, polystyrene, glass, etc., and provided with a large number of recesses (wells).
  • measurement of antibody-antigen reaction enzyme-linked immunosorbent assay
  • ELISA Enzyme-Linked Immuno Sorbent Assay
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2014-41121
  • the microplate reader described in Patent Document 1 Japanese Unexamined Patent Publication No. 2014-41121
  • the microplate reader described in Patent Document 1 is an optical device for irradiating a sample with light or observing light emission from the light-irradiated sample to perform light measurement. It has a target measurement / detection device (measurement head). Light irradiation from the measuring head to the microplate is performed from below each well of the microplate, and the measuring head measures the observed light emitted above each well.
  • the measuring head is fixed, and the microplate is two-dimensionally oriented by the drive mechanism of the microplate reader so that the wells are located on the detection axis of the measuring head (the axis perpendicular to the microplate (Z axis)). (X direction, Y direction) is scanned.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2009-103480 discloses a microplate reader that is miniaturized to a portable degree.
  • the microplate reader described in Patent Document 2 Japanese Unexamined Patent Publication No. 2009-103480 has a space into which eight microplates in which eight wells are arranged in a row can be inserted, and the microplate can be inserted into the space. It is configured to be slidable.
  • the microplate reader has a configuration in which light is applied to the sample held in the well from a position facing the upper surface of the well of the microplate from the upper part of the space. Further, in the lower part of the space, a photodiode for detecting the light emitted from the sample is provided. The microplate reader performs light measurement while sliding the microplate in the space.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2014-41121
  • POCT point-of-care
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2009-103480
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2009-103480
  • an object of the present invention is to provide an optical measuring device and a microplate reader that can be miniaturized and can perform optical measurement of a sample with high accuracy.
  • one aspect of the light measuring device is a light measuring device that measures light from a sample, that is, a light detecting unit that detects light from the sample and a light detecting unit that detects light from the sample.
  • a light guide path that guides the light of the light to the light detection unit, and a light guide unit that surrounds the light guide path with a surrounding member made of a pigment-containing resin containing a pigment having a property of absorbing light.
  • the light guide path has one incident end and one exit end, the incident end is for incidenting light from the sample, and the exit end is optically connected to the light detection unit. are doing.
  • the light guide path that guides the light from the sample to the light detection unit is surrounded by a surrounding member made of a pigment-containing resin that can absorb external light and scattered light, so that external light, scattered light, and the like are stray light ( It is possible to prevent the light from being incident on the light detection unit as noise light).
  • the light guide unit surrounds a light guide path group having a plurality of the light guide paths by a surrounding member, and the projected area of the light guided by the light guide path group is the light detection.
  • a diffusion unit that is larger than the area of the light receiving surface of the unit and diffuses the light that has passed through the light guide path group may be arranged between the light guide path group and the light detection unit.
  • the light passing through the light guide path group can be diffused and made uniform, and the light detection unit can receive the light. Therefore, even when the light receiving area of the photodetector is small, the light passing through the light guide path group can be appropriately received by the photodetector. Therefore, the optical measurement can be performed with high accuracy.
  • one aspect of the microplate reader is from a housing, a light projecting unit corresponding to one well of a microplate having a plurality of wells arranged in the housing, and the light projecting unit.
  • the emitted light is arranged between a light receiving portion that receives the transmitted light transmitted through one well of the microplate and the light receiving portion and the microplate, is emitted from the light projecting portion, and is transmitted through the well.
  • a light guide path for guiding the light to the light receiving section is provided, and a plurality of pairs of the light projecting section, the light receiving section, and the light guide path corresponding to one well are provided, and the light guide path is provided.
  • a plurality of light guide portions surrounded by a surrounding member made of a pigment-containing resin containing a pigment having a property of absorbing light are further provided, and the light emitted from one of the light projecting portions is one of the above-mentioned guides. It passes through the optical path and reaches one of the light receiving parts.
  • the light projecting unit, the light receiving unit, and the light guide path are provided in one well correspondingly, and a plurality of pairs of the light projecting unit, the light receiving unit, and the light guide path are provided.
  • a light guide portion is further provided in which a plurality of light guide paths are surrounded by a pigment-containing resin capable of absorbing external light and scattered light. Therefore, it is possible to suppress that external light, scattered light, or the like becomes stray light (noise light) and is incident on the light receiving portion. Further, since the light emitted from the plurality of light projecting units can be prevented from passing through the light receiving light path corresponding to one well and reaching one light receiving unit, the measurement error can be appropriately reduced. Can be done. Therefore, highly accurate measurement is possible.
  • the light guide path is a light guide path group composed of a plurality of light receiving light paths
  • the projected area of light guided by one light guide path group is one light receiving portion.
  • a diffuser portion that diffuses the light that has passed through the light guide path group is arranged between the light guide path group and the light receiving portion, which is larger than the area of the light receiving surface of the light receiving path group.
  • the emitted light may pass through one of the light guide paths and be diffused by the diffusing portion to reach the one light receiving portion. In this way, by providing a plurality of light receiving light paths (light guide paths) for one well, the light passing through one well is efficiently guided to the light receiving portion with a good S / N ratio. be able to.
  • the light passing through the light guide path group can be diffused and made uniform, and the light receiving portion can receive the light. Therefore, even when the light receiving area of the light receiving unit is small, the light passing through the light guide path group can be appropriately received by the light receiving unit.
  • At least the number of pairs of the light emitting unit, the light receiving unit, and the light guide path group corresponding to the one well may be provided as many as the number of wells of the microplate.
  • all the optical measurements of the sample contained in each well of the microplate can be performed at almost the same time, and the measurement time can be shortened.
  • miniaturization can be realized.
  • the number of pairs of the light emitting unit, the light receiving unit, and the light guide path group corresponding to the one well is less than the number of wells of the microplate, and all of the microplates.
  • a moving mechanism for sequentially moving the microplate relative to the pair of the light emitting unit, the light receiving unit, and the light guide path group may be provided so as to correspond to the wells. In this case, it is not necessary to provide a pair of the light emitting unit and the light receiving unit corresponding to all the wells of the microplate, and the size can be significantly reduced. Further, by sequentially moving the microplate relative to the pair of the light emitting unit and the light receiving unit, it is possible to measure all the light of the sample contained in each well of the microplate.
  • the number of pairs of the light emitting unit, the light receiving unit, and the light guide path group corresponding to the one well is provided as many as the number of wells on one side of the microplate.
  • the moving mechanism may sequentially move the microplate relative to the pair of the light emitting unit, the light receiving unit, and the light guide path group only in a direction orthogonal to the one side. ..
  • the movement by the movement mechanism can be the movement in only one axial direction. Therefore, the structure of the moving mechanism can be simplified and can be constructed at low cost. Further, since the thickness can be reduced, it can be installed in a limited space such as a culture space in an incubator.
  • the light emitting portion is arranged on one side of the micro plate, and the light receiving portion is arranged on the opposite side of the micro plate from the light emitting portion. May be good.
  • the light measurement of the sample contained in each well of the microplate is performed. It can be done easily and with high accuracy.
  • the light projecting unit and the light receiving unit are arranged on one side of the micro plate, and the light guide path group is arranged between the light emitting unit and the light receiving unit.
  • a reflective member which is arranged on the opposite side of the light emitting portion and the light receiving portion with the micro plate interposed therebetween and reflects the light emitted from the light emitting portion and transmitted through the well to the light receiving portion, and the light receiving portion. It may further include a limiting portion that limits the angular component of the light incident on the portion.
  • the mean free path of photons in the diffusing portion may be shorter than the thickness of the diffusing portion in the light passing direction. In this case, scattering can be reliably caused in the diffusion portion.
  • the diffusion portion may be composed of a resin in which dielectric fine particles are dispersed inside. In this case, scattering can be appropriately caused in the diffusion portion.
  • the dielectric fine particles may contain any one of titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), zinc oxide (ZnO) and magnesium oxide (MgO). In this case, scattering can be appropriately caused in the diffusion portion.
  • the same number of light guide paths are provided corresponding to the wells of the microplate, and the light guide portions are fitted into recesses formed on the bottom surface side of the microplate. It may be in close contact with the bottom surface of the microplate. In this way, the light guide portion may be fitted into the recess formed on the bottom surface side of the microplate and may be in close contact with the bottom surface of the microplate. In this case, the positioning of each well and the light guide path corresponding to each well can be easily performed, and the misalignment between the two during optical measurement can be suppressed. Further, since it is possible to appropriately suppress the formation of a gap between the microplate and the light guide portion, it is possible to appropriately suppress the wraparound of external light into the light guide path.
  • the pair of the light emitting unit and the light receiving unit corresponding to the one well may be provided at least as many as the number of wells of the microplate. In this case, all the optical measurements of the sample contained in each well of the microplate can be performed at almost the same time, and the measurement time can be shortened. Further, since a complicated drive mechanism or the like for scanning the microplate as in the conventional case is not required, miniaturization can be realized.
  • the pair of the light emitting part and the light receiving part corresponding to the one well is less than the number of wells of the microplate, and corresponds to all the wells of the microplate.
  • it may have a moving mechanism for sequentially moving the microplate in which the light guide portion is fitted with respect to the pair of the light emitting portion and the light receiving portion. In this case, it is not necessary to provide a pair of the light emitting unit and the light receiving unit corresponding to all the wells of the microplate, and the size can be significantly reduced. Further, by sequentially moving the microplate relative to the pair of the light emitting unit and the light receiving unit, it is possible to measure all the light of the sample contained in each well of the microplate.
  • the pair of the light emitting unit and the light receiving unit corresponding to the one well is provided as many as the number of wells on one side of the microplate, and the moving mechanism. May sequentially move the microplate in which the light guide portion is fitted to the pair of the light emitting portion and the light receiving portion only in a direction orthogonal to the one side.
  • the movement by the movement mechanism can be the movement in only one axial direction. Therefore, the structure of the moving mechanism can be simplified and can be constructed at low cost. Further, since the thickness can be reduced, it can be installed in a limited space such as a culture space in an incubator.
  • the light emitting portion is arranged on the side opposite to the bottom surface of the micro plate, and the light receiving portion is arranged on the opposite side of the micro plate with the micro plate in between. You may be.
  • the light measured in each well of the microplate is measured by a microplate reader having a configuration in which the light emitted from the light projecting unit passes through the wells, passes through the light receiving light path, and reaches the light receiving unit. Can be performed easily and with high accuracy.
  • the light emitting portion and the light receiving portion are arranged on the bottom surface side of the micro plate, and are arranged on the opposite side of the light emitting portion and the light receiving portion with the micro plate interposed therebetween.
  • a reflecting member that reflects the light emitted from the light projecting unit to the light receiving unit, and arranged between the light projecting unit and the microplate, and guides the light emitted from the light projecting unit to the well.
  • a light guide path for light projection is further provided, and the light guide unit may surround each of the light guide path and the light guide path for light projection with the surrounding member made of the pigment-containing resin.
  • the microplate reader having a configuration in which the light emitted from the light projecting portion passes through the well, is reflected by the reflecting member, passes through the light guide path (light receiving light path), and reaches the light receiving portion, the microplate
  • the optical measurement of the sample contained in each well can be easily and accurately performed.
  • the light guide portion may be surrounded by the side wall portion of the recess in a state of being fitted in the recess.
  • the light guide portion can be appropriately positioned with respect to the microplate, and the misalignment of the light guide portion with respect to the microplate can be reliably suppressed.
  • the light guide portion may be configured to be detachably attached to the recess. In this case, the light guide can be removed from the microplate and only the microplate can be replaced. Further, since the light guide portion can be made of a soft resin, the light guide portion can be removed even when the sample is in the well.
  • a plurality of the light guide paths may be provided for the one well.
  • the light that has passed through one well can be efficiently guided to the light receiving portion with a good S / N ratio. Therefore, the light guide portion can be made thinner.
  • the bottom surface of the well of the microplate is spherical, and in a state where the light guide portion is fitted in the recess, the light guide path corresponding to the one well is described.
  • the light that has passed through the well may be arranged at a position where it is focused on the spherical bottom surface. In this case, the light that has passed through the well can be appropriately guided to the light receiving portion.
  • the microplate reader may further include a pressing member that presses the light guide portion in a direction in which the micro plate and the light guide portion are in close contact with each other in a state where the light guide portion is fitted in the recess.
  • the adhesion between the bottom surface of the microplate and the top surface of the light guide portion can be improved. Therefore, it is possible to reliably suppress the formation of a gap between the microplate and the light guide portion.
  • the microplate reader further includes a positioning member for positioning the microplate in which the light guide portion is fitted in the recess at a position where the light emitting end of the light guide path and the light receiving portion face each other. You may. In this case, each well of the microplate, the light receiving light path, and the light receiving portion can be easily positioned.
  • the light receiving light path may be made of a silicone resin having a light transmissive property. In this case, the light receiving light path can be formed relatively easily.
  • the pigment-containing resin is a resin having a light-transmitting property containing the pigment
  • the light guide path is made of a resin equivalent to the resin having the light-transmitting property. It may have been done. In this case, it is possible to effectively suppress the reflection and scattering of light at the interface between the light receiving light guide path and the surrounding member. Therefore, the measurement error due to stray light can be suppressed more effectively.
  • one aspect of the microplate reader unit is a unit light emitting unit unit having a light emitting unit corresponding to one well of the microplate, a light receiving unit corresponding to one well of the microplate, and the above-mentioned projection.
  • the light guide path group consisting of a plurality of light receiving light guide paths that guide the light emitted from the light unit and passing through the sample contained in the corresponding well to the light receiving unit, and each of the light receiving light guide paths are illuminated.
  • a unit light guide unit unit including a surrounding member surrounded by a pigment-containing resin containing a pigment having a property of absorbing light, and a diffuser unit for diffusing light that has passed through the light guide path group.
  • the projected area of the light guided by the light guide path group of the unit light guide unit unit is larger than the area of the light receiving surface of one light receiving unit, and is emitted from the light projecting unit of one unit light emitting unit.
  • the generated light passes through the light guide path group included in the unit light guide unit unit, is diffused by the diffusion unit, and reaches the light receiving unit.
  • one aspect of the microplate reader unit includes a light projecting unit and a light receiving unit corresponding to one well of the microplate, and a sample emitted from the light emitting unit and accommodated in the corresponding well.
  • a characteristic of absorbing light in each of a light receiving path group consisting of a plurality of light receiving light guide paths for guiding the light that has passed through the sample and passing through the sample to the light receiving portion and each of the light receiving light guide paths. Limits the angle component of the light incident on the light receiving portion and the light guide portion having the surrounding member surrounded by the pigment-containing resin containing the pigment having the above, and the diffusing portion for diffusing the light passing through the light guide path group.
  • the projected area of the light guided by the light guide path group of the light guide unit is larger than the area of the light receiving surface of the light receiving unit, and the light projecting is one.
  • the light emitted from the unit passes through the light guide path group included in the light guide unit, is diffused by the diffusion unit, and reaches the light receiving unit.
  • one aspect of the optical plate according to the present invention corresponds to a plurality of wells of the microplate, and guides the light passing through the sample contained in the wells and the light guide path to guide the light. It is provided with a surrounding member surrounded by a pigment-containing resin containing a pigment having a property of absorbing, and can be brought into close contact with the bottom surface of the microplate by being fitted into a recess formed on the bottom surface side of the microplate.
  • the structure can be fitted into the recess of the microplate, the positioning of each well and the light guide path corresponding to each well can be easily performed. Further, since the structure can be brought into close contact with the bottom surface of the microplate, it is possible to suppress the formation of a gap between the microplate and the light guide portion, and to suppress the wraparound of external light into the light guide path.
  • the optical measuring device and the microplate reader of the present invention can be miniaturized and can perform optical measurement of a sample with high accuracy.
  • the above-mentioned purpose, aspect and effect of the present invention and the above-mentioned purpose, aspect and effect of the present invention not described above are to be used by those skilled in the art to carry out the following invention by referring to the attached drawings and the description of the scope of claims. Can be understood from the form of (detailed description of the invention).
  • FIG. 1 is a schematic configuration diagram of a microplate reader according to the first embodiment.
  • FIG. 2 is an example of a power supply line for a light source and a sensor.
  • FIG. 3 is a diagram for explaining external light entering the light guide path.
  • FIG. 4 is a diagram illustrating a setting method of the microplate reader.
  • FIG. 5 is a diagram illustrating a setting method of the microplate reader.
  • FIG. 6 is a diagram illustrating a setting method of the microplate reader.
  • FIG. 7 is a schematic configuration diagram of a microplate reader in the second embodiment.
  • FIG. 8 is a diagram illustrating a setting method of the microplate reader.
  • FIG. 9 is a diagram illustrating a setting method of the microplate reader.
  • FIG. 1 is a schematic configuration diagram of a microplate reader according to the first embodiment.
  • FIG. 2 is an example of a power supply line for a light source and a sensor.
  • FIG. 3 is a diagram for explaining external light entering the light
  • FIG. 10 is a diagram illustrating a setting method of the microplate reader.
  • FIG. 11 is a diagram showing another example of the mirror plate.
  • FIG. 12 is a diagram showing another example of the mirror plate.
  • FIG. 13 is a diagram showing another example of the mirror plate.
  • FIG. 14 is a diagram showing a configuration for batch processing measurement data.
  • FIG. 15 is a diagram showing a configuration of a microplate reader unit.
  • FIG. 16 is an arrangement example of the microplate reader unit.
  • FIG. 17 is another example of a microplate reader unit.
  • FIG. 18 is a diagram showing a configuration of a microplate reader unit.
  • FIG. 19 is a measurement example of a 96-well microplate.
  • FIG. 20 is a measurement example of a 6-well microplate.
  • FIG. 19 is a measurement example of a 96-well microplate.
  • FIG. 20 is a measurement example of a 6-well microplate.
  • FIG. 19 is a measurement example of a 96
  • FIG. 21 is a schematic configuration diagram of a microplate reader according to the present embodiment.
  • FIG. 22 is a diagram for explaining another example of the microplate.
  • FIG. 23 is a diagram showing an example of a light receiving light path.
  • FIG. 24 is a diagram showing a comparative example of a light receiving light path.
  • FIG. 25 is a diagram illustrating a setting method of the microplate reader.
  • FIG. 26 is a diagram illustrating a setting method of the microplate reader.
  • FIG. 27 is a diagram illustrating a setting method of the microplate reader.
  • FIG. 28 is a diagram showing another example of the light guide plate portion.
  • FIG. 29 is a diagram showing another example of the microplate.
  • FIG. 30 is a side view showing a pressing member and a positioning member.
  • FIG. 30 is a side view showing a pressing member and a positioning member.
  • FIG. 31 is a top view showing a pressing member and a positioning member.
  • FIG. 32 is a schematic configuration diagram showing another example of a microplate reader.
  • FIG. 33 is a schematic configuration diagram showing another example of a microplate reader.
  • FIG. 34 is a schematic configuration diagram showing another example of a microplate reader.
  • FIG. 35 is a schematic configuration diagram of a microplate reader using a condenser lens.
  • FIG. 36 is an example of a scanning microplate reader.
  • FIG. 37 is a diagram showing a main part of a scanning type microplate reader.
  • FIG. 38 is another example of a scanning microplate reader.
  • FIG. 39 is a diagram showing the position of the microplate at the time of the first light measurement.
  • FIG. 39 is a diagram showing the position of the microplate at the time of the first light measurement.
  • FIG. 40 is a diagram showing the position of the microplate at the time of the second light measurement.
  • FIG. 41 is another example of a scanning microplate reader.
  • FIG. 42 is a diagram showing a main part of a scan-type microplate reader.
  • FIG. 43 is another example of a scanning microplate reader.
  • FIG. 44 is another example of a scanning microplate reader.
  • FIG. 1 is a schematic configuration diagram of a microplate reader 10A according to the present embodiment.
  • the microplate reader 10A includes a light projecting substrate 11a, a measuring board 11b, a plurality of light sources (light emitting units) 12a, a plurality of light receiving sensors (light receiving units) 12b, and a light guide plate unit (light guide unit).
  • a 13, a housing 15, a power supply unit 16, and power supply cables 17a and 17b are provided.
  • the light projecting substrate 11a, the measuring substrate 11b, the plurality of light sources 12a, the plurality of light receiving sensors 12b, the light guide plate portion 13, the power supply portion 16, and the power supply cables 17a and 17b are housed in a housing 15 having an opening at the top. It is placed and fixed.
  • a plurality of light receiving sensors 12b are provided on the measurement substrate 11b
  • a light guide plate portion 13 is provided on the measurement substrate 11b
  • the light guide plate portion in the housing 15 is provided.
  • the microplate 20 can be installed on the upper part of the 13th.
  • the microplate reader 10A in the present embodiment is configured such that the light projecting substrate 11a is arranged above the microplate 20 installed above the light guide plate portion 13.
  • a plurality of light sources 12a are provided on the light projecting substrate 11a, and the light source 12a is arranged so that the light source 12a faces the microplate 20.
  • the microplate 20 is a flat plate-shaped member made of, for example, acrylic, polyethylene, polystyrene, glass, or the like.
  • the microplate 20 is, for example, a rectangular flat plate, and a large number of wells 21 are provided on the surface thereof.
  • the shape of the well 21 is, for example, a cylindrical shape having a flat bottom.
  • the number of wells 21 is 6, 24, 96, 384, 1536, etc., and the capacity is several ⁇ l to several mL.
  • each well is arranged in 8x12.
  • the light source 12a is a light projecting unit that emits light, and is arranged on one surface (lower surface) of the light projecting substrate 11a.
  • the light receiving sensor 12b is a light receiving unit that receives light, and is arranged on one surface (upper surface) of the measurement substrate 11b.
  • the light source 12a is, for example, a light emitting diode (LED), and the light receiving sensor 12b is, for example, an RGB color sensor.
  • the light source 12a can be, for example, a chip LED (surface mount LED). In this case, one light source 12a includes a chip LED having a plurality of light emitting units (light emitting points).
  • the microplate reader 10A includes the same number of light sources 12a and light receiving sensors 12b as the number of wells 21 of the microplate 20. That is, one light source 12a and one light receiving sensor 12b are provided corresponding to one well 21 of the microplate 20. When there are 96 wells 21 of the microplate 20, 96 light sources 12a are provided on the light projecting substrate 11a, and 96 light receiving sensors 12b are provided on the measuring substrate 11b.
  • the light projecting substrate 11a has a light source power supply line to which the light source 12a is connected.
  • the plurality of light sources 12a are connected to a light source power supply line provided on the light projecting substrate 11a, and power is obtained from the light source power supply line. Power is supplied from the power supply unit 16 to the light source power supply line of the light projection board 11a via the power supply cable 17a.
  • the measurement substrate 11b has a sensor power supply line to which the light receiving sensor 12b is connected.
  • the plurality of light receiving sensors 12b are connected to a sensor power supply line provided on the measurement substrate 11b, and power is obtained from the sensor power supply line. Power is supplied from the power supply unit 16 to the sensor power supply line of the measurement board 11b via the power supply cable 17b.
  • the plurality of light sources 12a are connected in parallel to the light source power supply line.
  • a plurality of light receiving sensors 12b are connected in parallel to the sensor power supply line, for example, as shown in FIG.
  • the floodlight substrate 11a and the measurement substrate 11b are configured as a printed circuit board on which the wiring pattern (feeding circuit) is formed.
  • the measurement substrate 11b may be provided with not only a power supply circuit for the light receiving sensor 12b but also a sensor output circuit, a communication circuit for the outside of the sensor output, and the like.
  • the light guide plate unit 13 includes a light receiving light path 13a.
  • the light receiving light guide path 13a is emitted from the light source 12a provided on the light projecting substrate 11a, is incident on the well 21 of the microplate 20, and is emitted after passing through the sample 30 or the like housed in the well 21 as described later. The light is guided toward the light receiving sensor 12b.
  • the light guide plate unit 13 includes a plurality of light receiving light paths 13a. Specifically, a plurality of light receiving light guide paths 13a (light guide path groups) are provided correspondingly to one well 21 of the microplate 20. In FIG. 1, three light receiving light guide paths 13a are shown as a light receiving path group corresponding to one well 21, but the number of light receiving light guide paths 13a constituting the light receiving path group corresponding to one well 21. Can be set arbitrarily.
  • the light incident end of the light guide path group is arranged at a position corresponding to the bottom surface of the well 21 of the microplate 20.
  • it is provided in the light guide plate portion 13. That is, the bottom surface of each well 21 of the microplate 20 is positioned at a position facing the light incident end of the light guide path group by the positioning means (not shown).
  • the light receiving light guide path 13a is provided in the light guide plate portion 13 so that the light emitting end of the light guide path group is arranged at a position corresponding to the light receiving sensor 12b provided on the measurement substrate 11b.
  • the light source 12a is projected so as to be arranged at a position corresponding to each well 21 of the microplate 20 when the light projecting substrate 11a is installed above the microplate 20 positioned as described above. It is provided on the optical substrate 11a.
  • the microplate 20 is arranged on the light guide plate portion 13, and the light projection substrate 11a is arranged on the microplate 20, the light source 12a and the light receiving light are received.
  • the sensors 12b are arranged in a row in the vertical direction.
  • the arrangement of the light source 12a and the light receiving sensor 12b does not have to be strictly in a row in the vertical direction, and the light source 12a and the light receiving sensor 12b are emitted from the light source 12a and passed through the sample 30 or the like housed in the well 21 of the microplate 20.
  • the arrangement may be such that the light can reach the light receiving sensor 12b.
  • the light receiving light path 13a is made of a resin (for example, silicone resin) that is transparent to light emitted from the light source 12a and passed through the sample 30 or the like housed in the well 21 of the microplate 20. .. Further, the light receiving light path 13a is surrounded by a surrounding member 13b made of a pigment-containing resin.
  • the pigment-containing resin is a resin having a light transmitting property (for example, a silicone resin) containing a pigment having a property of absorbing stray light.
  • the pigment for example, carbon black, which is a black pigment, or the like can be adopted.
  • the material of the transparent resin constituting the light receiving light guide path 13a and the light-transmitting resin constituting the pigment-containing resin are the same. As a result, reflection and scattering at the interface between the two resins are suppressed. Further, the stray light incident on the pigment-containing resin is absorbed by the pigment-containing resin and hardly returns to the light receiving light guide path 13a, so that complicated multiple reflection of the stray light hardly occurs. As shown in FIG. 3, among the noise light L11 such as external light entering the light receiving light guide path 13a, very few components travel in the same direction as the optical axis of the light receiving light guide path 13a, and most of them are for receiving light.
  • the external light incident on the pigment and the scattered light thereof are substantially absorbed by the pigment, but are slightly scattered on the surface of the pigment.
  • the scattered light is often incident on the surrounding member 13b made of the pigment-containing resin again, and is absorbed by the pigment of the pigment-containing resin. Therefore, as shown in FIG. 3, most of the light extracted from the light receiving light guide path 13a is straight light L1 along the optical axis of the light receiving light guide path 13a.
  • the cross-sectional area of the light receiving light guide path 13a As the area of the light incident end of the light receiving light guide path 13a increases, the amount of light incident on the light receiving light guide path 13a increases.
  • the intensity of the straight light traveling through the light receiving light guide path 13a is also scattered at the light incident end of the light receiving light guide path 13a and reaches the light emitting end as scattered light.
  • the strength of is also increased.
  • the present inventor investigated the intensity dependence of straight light and the intensity dependence of external light with respect to the area of the light incident end of the light receiving light guide path 13a.
  • the amount of increase in the intensity of the external light with respect to the increase in the diameter of the light receiving light guide path 13a is larger than the amount of increase in the intensity of the measured light. That is, it was found that the smaller the area of the light incident end of the light receiving light guide path 13a, the better the S / N ratio.
  • the ratio ( ⁇ A / L) of the square root of the area (A) of the light incident end of the light receiving light guide path 13a to the distance (L) from the light incident end to the light emitting end is 0.4 or less.
  • the optical measurement with a sufficiently high S / N ratio becomes possible. Therefore, it is preferable to set the cross-sectional area and the optical path length of the light receiving light guide path 13a so as to satisfy the above conditions. Thereby, the adverse effect of the scattered light on the light measurement can be appropriately suppressed.
  • a light guide path group composed of a plurality of light receiving light guide paths 13a is arranged for one well 21.
  • one light receiving guide can obtain the same measured light intensity as when the plurality of light receiving light guide paths 13a are used.
  • the influence of noise light can be reduced. In this way, light with a good S / N ratio can be guided.
  • the irradiation region (projected area) of the light guided by the light guide path group provided for one well 21 is set to be larger than the area of the light receiving surface of the light receiving sensor 12b. ..
  • the light guide plate unit 13 includes the light guide path group and the light receiving sensor 12b.
  • a diffusion unit 13c is provided between the two. The diffusion unit 13c diffuses and homogenizes the light that has passed through the light guide path group corresponding to one well 21, and causes one light receiving sensor 12b to receive light.
  • the diffusion portion 13c is made of a flat plate-shaped member.
  • the diffusion unit 13c can be made of, for example, a resin in which dielectric fine particles are dispersed inside.
  • the resin can be a resin (silicone resin) that is transparent to the light that has passed through the light receiving light guide path 13a.
  • the dielectric fine particles may contain any of oxide-based high dielectric fine particles, for example, titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), zinc oxide (ZnO) and magnesium oxide (MgO). it can.
  • the particle size of the dielectric fine particles is preferably such that Mie scattering occurs when light having a wavelength of visible light emitted from the light source 12a is incident.
  • the mean free path of photons in the diffusing portion 13c is set shorter than the thickness of the diffusing portion 13c in the light passing direction.
  • the light passing direction is the vertical direction in FIG. 1, that is, the direction from the light emitting end of the light guide path group toward the light receiving surface of the light receiving sensor 12b.
  • the light guide plate portion 13c is such that when the light guide plate portion 13 is installed above the measurement substrate 11b, the central portion of the diffuser portion 13c is located above the light receiving surface of the light receiving sensor 12b. It is buried in.
  • one light source 12a and one light receiving sensor 12b are correspondingly arranged in one well 21 of the microplate 20. That is, the light emitted from one light source 12a irradiates the sample 30 housed in the well 21 of the microplate 20, passes through the sample 30 and the well 21, and enters the plurality of light receiving light paths 13a. The light emitted from the plurality of light receiving light paths 13a is diffused by the diffusing unit 13c and sensed by one light receiving sensor 12b.
  • the light that reaches the light receiving sensor 12b through the light guide path group including the plurality of light receiving light guide paths 13a corresponding to one well 21 is the light emitted from one light source 12a.
  • the arrangement of the light sources 12a, the shape of the light receiving light guide path 13a, the arrangement and the number of the light receiving light guide paths 13a constituting the light guide path group is defined.
  • the setting method of the microplate reader 10A in the present embodiment will be described.
  • FIG. 4 with respect to the microplate reader 10A in which the measurement substrate 11b, the plurality of light receiving sensors 12b, the light guide plate portion 13, the power supply portion 16 and the power supply cable 17b are fixed inside the housing 15.
  • the operator installs a microplate 20 containing the sample 30 in each well 21.
  • the microplate 20 is placed on the light guide plate portion 13.
  • the microplate 20 is positioned so that the bottom surface of each well 21 is arranged at a position facing each of the light incident ends of the plurality of light receiving light guide paths 13a.
  • the operator installs the light projecting substrate 11a above the microplate 20.
  • the operator sets the light projecting substrate 11a on the microplate so that the plurality of light sources 12a on the light projecting substrate 11a are arranged at positions corresponding to the wells 21 of the microplate 20 one by one. Install above 20.
  • the plurality of light sources 12a on the light projecting substrate 11a are arranged at positions corresponding to the wells 21 of the microplate 20 when the light projecting substrate 11a is aligned above the microplate 20.
  • the distance between the adjacent light sources 12a is set in advance.
  • the light projecting substrate 11a may be positioned in the vertical direction by a positioning member (not shown).
  • the operator After installing the light projecting board 11a above the microplate 20, the operator connects the light projecting board 11a and the power supply unit 16 with the power supply cable 17a. After that, the operator operates a power switch (not shown) or the like to supply power from the power supply unit 16 to each light source 12a and each light receiving sensor 12b via the power supply cables 17a and 17b. As a result, light is emitted from each light source 12a.
  • each light source 12a passes through the sample 30 housed in each well 21 of the microplate 20.
  • the light that has passed through the well 21 passes through the plurality of light receiving light guide paths 13a of the light guide plate unit 13 and is diffused by the diffusion unit 13c.
  • the light diffused and homogenized by the diffusing unit 13c is received by the light receiving sensor 12b.
  • the optical characteristics for example, absorption characteristics
  • the measurement result by the light receiving sensor 12b may be transmitted as light intensity information to an external device via a data communication unit (not shown).
  • the external device measures the optical characteristics of the sample 30 based on the above light intensity information.
  • the microplate reader 10A in the present embodiment is arranged above the horizontally arranged microplate 20, and is horizontal to the light source 12a as a light projecting unit corresponding to one well 21 of the microplate 20.
  • the microplate reader 10A is arranged between the light receiving sensor 12b and the microplate 20, and guides the light emitted from the light source 12a and passing through the sample 30 housed in the well 21 to the light receiving sensor 12b.
  • a light guide plate portion 13 having an optical path 13a and a surrounding member 13b that surrounds the light receiving light guide path 13a with a pigment-containing resin is provided.
  • a light receiving sensor 12b for measuring the light emitted from the sample 30 is provided.
  • the microplate 20 is scanned each time each light measurement is performed, and all the wells 21 are measured by a plurality of measurements. I was measuring the light of. Therefore, it took time to measure the light of all the wells 21.
  • all the light measurements of the sample 30 housed in each well 21 of the microplate 20 can be substantially performed in one measurement without scanning the microplate 20 for each light measurement as in the conventional case. It can be done at the same time. Therefore, the measurement time can be shortened. Further, since a complicated drive mechanism or the like for scanning the microplate 20 is not required, the device size can be reduced.
  • the light guide plate portion 13 has a structure in which a light receiving light guide path 13a made of a transparent resin (silicone resin) is surrounded by a surrounding member 13b made of a pigment-containing resin capable of absorbing external light and scattered light. .. Therefore, it is possible to suppress the influence of noise light (stray light) from the outside light or scattered light.
  • stray light noise light
  • the transparent resin and the pigment-containing resin reflection and scattering at the interface between the two resins can be appropriately suppressed. That is, the stray light incident on the pigment-containing resin is absorbed by the pigment-containing resin and hardly returns to the light guide path, and complicated multiple reflection of the stray light hardly occurs.
  • the influence of external light can be remarkably suppressed.
  • the monolithic optical system technology using the above-mentioned silicone resin is called SOT (Silicone Optical Technologies).
  • SOT Silicon Optical Technologies
  • a plurality of light receiving light guide paths 13a are provided for one well 21 of the microplate 20.
  • the projected area of the light guided by the plurality of light receiving light guide paths 13a corresponding to one well 21 is larger than the area of the light receiving surface of one light receiving sensor 12b corresponding to one well 21.
  • the microplate reader 10A receives the plurality of light receiving light between the plurality of light receiving light guide paths 13a corresponding to one well 21 and one light receiving sensor 12b corresponding to one well 21. It is provided with one diffusion unit 13c that diffuses the light that has passed through the light guide path 13a.
  • the microplate reader 10A passes through a plurality of light receiving light guide paths 13a corresponding to one well 21, and the light diffused by the diffuser 13c and reaches the light receiving sensor 12b is emitted from one light source 12a. It is configured to be light.
  • the diameter of one well is 7.1 mm.
  • the light receiving area of the light receiving unit is, for example, 0.5 mm ⁇ 1 mm, and further, there is a very small one such as 0.25 mm ⁇ 0.5 mm.
  • the area of the bottom surface of the well 20 is larger than the light receiving area of the light receiving portion. Therefore, when the light transmitted through the sample 30 housed in the well 20 is guided to the light receiving portion by using the light receiving light path having the same cross-sectional area as the light receiving area of the light receiving portion, the light transmitted through the sample 30 is guided. All of the above cannot be incident on the light receiving portion, and the optical information obtained at the time of optical measurement becomes insufficient.
  • a plurality of light receiving light guide paths 13a are provided for one well 21 so that the projected area of light is larger than the area of the light receiving surface of the light receiving sensor 12b.
  • the light transmitted through the sample 30 housed in one well 21 can be efficiently guided toward the light receiving sensor 12b.
  • the area of the light receiving surface of the light receiving sensor 12b is the projected area of the light guided by the light guide path group. Even if it is smaller than the above, the light receiving sensor 12b can appropriately receive the light that has passed through the light guide path group.
  • the light guided by the light receiving light guide path 13a that is not located directly above the light receiving surface of the light receiving sensor 12b is also diffused and received by the light receiving sensor 12b. Therefore, most of the light that has passed through one well can be received by the light receiving sensor 12b at a good S / N ratio, and the accuracy of light measurement can be improved.
  • the diffusing portion 13c can be made of a resin in which dielectric fine particles are dispersed inside. Further, the mean free path of photons in the diffusing portion 13c is set to be shorter than the thickness of the diffusing portion 13c in the light passing direction. As a result, scattering can be reliably caused in the diffusion unit 13c, and the light that has passed through the light guide path group can be reliably received by the light receiving sensor 12b.
  • the microplate reader 10A includes a housing 15 on which the microplate 20 is arranged.
  • the housing 15 can also be made of, for example, a material having a light-shielding property or a heat-insulating property. In this case, the influence of the external light incident from the side surface of the microplate 20 and the influence of the temperature can be suppressed. Therefore, the reliability of the measurement data of the well 21 located at the end of the microplate 20 can be ensured.
  • the microplate reader 10A in the present embodiment is miniaturized to a portable degree in the field of POCT inspection and the like, and the optical measurement of all the samples 30 housed in each well 21 of the microplate 20 can be performed in a short time. Can be done with high accuracy.
  • the light source plate portion 13 is arranged on the light receiving portion composed of the light receiving sensor 12b, the microplate 20 is arranged on the light guide plate portion 13, and the microplate is arranged.
  • the case where the light source 12a is arranged on the 20 has been described. That is, the above-mentioned microplate reader 10A has a structure that irradiates light from above the well 21 of the microplate 20 and receives the light that has passed through the well 21 on the bottom surface side of the well 21.
  • the structure may be such that light is irradiated from below the well 21 of the microplate 20 and the light that has passed through the well 21 is received above the well 21.
  • FIG. 7 is a schematic configuration diagram of the microplate reader 10B according to the present embodiment.
  • the microplate reader 10B includes a light projecting substrate 11a', a measuring substrate 11b, a plurality of light sources (light emitting units) 12a, a plurality of light receiving sensors (light receiving units) 12b, and a light guide plate unit (light guide unit). ) 13, a mirror plate (reflection member) 14, a housing 15, a power supply unit 16, and power supply cables 17a and 17b.
  • a plurality of light receiving sensors 12b are provided on the measurement substrate 11b, the light guide plate portion 13 is provided on the measurement substrate 11b, and the light guide plate portion 13 is thrown onto the light guide plate portion 13.
  • An optical substrate 11a' is provided.
  • a plurality of light sources 12a are provided on the light projecting substrate 11a'.
  • the microplate 20 can be installed on the upper part of the light projecting substrate 11a'in the housing 15.
  • the microplate reader 10B is configured such that the mirror plate 14 is arranged on the microplate 20 installed on the light guide plate portion 13.
  • the surface 14a of the mirror plate 14 facing the microplate 20 is a reflective surface (mirror surface).
  • the mirror plate 14 closes the opening of the housing 15 and functions as an upper lid of the microplate 20.
  • the configurations other than the light projecting substrate 11a'and the mirror plate 14 are the same as the configurations included in the microplate reader 10A of FIG. 1 described above. Therefore, the parts having different configurations will be mainly described below.
  • the light projecting substrate 11a ′ has a light source power supply line to which the light source 12a is connected, similarly to the above-described light projecting board 11a.
  • the method of supplying power to the plurality of light sources 12a is the same as that of the light projecting substrate 11a.
  • the light projecting substrate 11a' is provided with the same number of aperture portions 11c as the light receiving light guide path 13a.
  • the aperture portion 11c can pass the light emitted from the light source 12a, passing through the sample 30 or the like housed in the well 21, reflected by the mirror plate described later, and passing through the sample 30 or the like again. ..
  • the light emitting end of the aperture portion 11c is the light incident end of the light receiving light guide path 13a of the light guide plate portion 13.
  • the light projecting substrate 11a' is provided so as to be arranged at a position corresponding to the above.
  • the light incident end of the aperture portion 11c is arranged at a position corresponding to the bottom surface of the well 21 of the microplate 20.
  • the light projecting substrate 11a' is provided so as to be used.
  • the light source 12a is provided adjacent to the aperture portion 11c, and the light source 12a is also arranged at a position corresponding to the bottom surface of the well 21 of the microplate 20.
  • the aperture portion 11c may have a diameter smaller than the opening of the light incident end of the light receiving light path 13a in order to limit the angular component of the light incident on the light receiving light path 13a.
  • the configuration of the light guide plate portion 13 is the same as that of the first embodiment described above.
  • the light receiving light path 13a is emitted from the light source 12a provided on the light projecting substrate 11a', passes through the sample 30 or the like housed in the well 21, is reflected by the mirror plate described later, and is again reflected. The light emitted through the sample 30 or the like is guided to the light receiving sensor 12b.
  • the light incident end of the light receiving light guide path 13a corresponds to the aperture portion 11c of the light emitting substrate 11a'.
  • the light guide plate portion 13 is provided so as to be arranged at such a position.
  • the light incident end of the light receiving light guide path 13a is arranged at a position corresponding to the bottom surface of the well 21 of the microplate 20 installed on the light guide plate 13.
  • the surface 14a of the mirror plate 14 facing the microplate 20 is a reflective surface (mirror surface). Therefore, the light emitted from each light source 12a and passing through the sample 30 housed in each well 21 of the microplate 20 reaches the mirror plate 14 and is reflected by the reflecting surface 14a of the mirror plate 14. The light reflected by the reflecting surface 14a of the mirror plate 14 passes through the sample 30 housed in each well 21 of the microplate 20 again. The light that has passed through the sample 30 passes through each aperture portion 11c provided on the light projecting substrate 11a'and each light receiving light guide path 13a of the light guide plate portion 13 and is incident on each light receiving sensor 12b.
  • the reflective surface of the mirror plate 14 may be processed so as not to be a perfect mirror surface but a reflective surface having a certain degree of diffusion action. As a result, even if the light incident on the mirror plate 14 has a certain spread, it is possible to secure the amount of light passing through each light receiving light guide path 13a.
  • a measurement substrate 11b, a plurality of light receiving sensors 12b, a light guide plate portion 13, a light projection substrate 11a', a plurality of light sources 12a, a power supply portion 16, and a power supply cable 17a, 17b are inside the housing 15.
  • the operator installs the microplate 20 containing the sample 30 in each well 21 with respect to the microplate reader 10B in which the sample 30 is fixed. At this time, the microplate 20 is placed on the light projecting substrate 11a'.
  • the microplate 20 is arranged at a position where the bottom surface of each well 21 faces the light incident end of the light receiving light guide path 13a via the aperture portion 11c provided on the light emitting substrate 11a'. It is positioned so that it does.
  • the operator installs the mirror plate 14 on the microplate 20.
  • the operator holds the grip portion 14b provided on the surface of the mirror plate 14 opposite to the reflective surface 14a, and places the mirror plate 14 on the microplate 20 so as to close the opening of the housing 15.
  • the mirror plate 14 may be positioned in the vertical direction by a positioning member (not shown).
  • the operator operates a power switch (not shown) or the like to power the light source 12a and the light receiving sensor 12b from the power supply unit 16 via the power supply cables 17a and 17b. To supply. As a result, light is emitted from each light source 12a.
  • each light source 12a passes through the sample 30 housed in each well 21 of the microplate 20 and reaches the mirror plate 14. Then, the light that has reached the mirror plate 14 is reflected by the reflecting surface 14a of the mirror plate 14 and passes through each well 21 again.
  • the light that has passed through each well 21 passes through the aperture portion 11c of the light projecting substrate 11a'and the light receiving light path 13a of the light guide plate portion 13, is diffused by the diffusing portion 13c, and is received by the light receiving sensor 12b.
  • the optical characteristics for example, absorption characteristics
  • the measurement result by the light receiving sensor 12b may be transmitted as light intensity information to an external device via a data communication unit (not shown). In this case, the external device measures the optical characteristics of the sample 30 based on the above light intensity information.
  • the microplate reader 10B in the present embodiment is arranged below the horizontally arranged microplate 20, and is a light source 12a and a light receiving unit as a light emitting unit corresponding to one well 21 of the microplate 20. There are as many sets of light receiving sensors 12b as the number of wells 21 of the microplate 20. Further, the microplate reader 10B is provided above the microplate 20 and includes a mirror plate 14 that reflects light that has passed through the sample 30 housed in the well 21 from the light emitting portion side to the light receiving portion side.
  • the plurality of light sources 12a are provided on the light projecting substrate 11a', and the light emitting substrate 11a' passes through the sample 30 emitted from the light source 12a and housed in the well 21, and the mirror plate 14 There is provided an aperture portion 11c that is reflected by the reflecting surface 14a of the above and allows the light that has passed through the sample 30 to pass through again.
  • the aperture portions 11c are provided in a number corresponding to the light receiving light guide paths 13a, and may have a diameter smaller than the opening of the light incident end of the light receiving light guide paths 13a.
  • the microplate reader 10B includes a light guide plate portion 13 arranged between the light emitting portion and the light receiving portion.
  • the present embodiment similarly to the first embodiment described above, it is possible to perform all the optical measurements of the sample 30 housed in each well 21 of the microplate 20 at almost the same time in one measurement. .. Therefore, the measurement time can be shortened. Further, since a complicated drive mechanism or the like for scanning the microplate 20 is not required, the device size can be reduced. Further, in the present embodiment, as in the first embodiment described above, since the SOT structure is adopted for the optical system of the microplate reader, the influence of external light (noise light) can be almost ignored, and the apparatus can be used. It can be a microplate reader that realizes miniaturization and high-precision optical measurement.
  • a plurality of light receiving light guide paths 13a are provided for one well 21 of the microplate 20 as in the first embodiment described above.
  • the projected area of the light guided by the plurality of light receiving light guide paths 13a corresponding to one well 21 is larger than the area of the light receiving surface of one light receiving sensor 12b corresponding to one well 21.
  • the microplate reader 10B in the present embodiment has a plurality of light receiving light paths 13a corresponding to one well 21 and one light receiving sensor corresponding to one well 21 as in the first embodiment described above.
  • a diffuser 13c is provided between the 12b and the light receiving sensor 12b to diffuse and homogenize the light passing through the plurality of light receiving light guide paths 13a.
  • the microplate reader 10B passes through a plurality of light receiving light guide paths 13a corresponding to one well 21, and the light diffused by the diffuser 13c and reaches the light receiving sensor 12b is emitted from one light source 12a. It is configured to be light. Therefore, as in the first embodiment described above, most of the light that has passed through one well can be received by the light receiving sensor 12b at a good S / N ratio, and the accuracy of light measurement can be improved. it can.
  • the microplate reader 10B in the present embodiment is miniaturized to a portable degree in the field of POCT inspection and the like, and the optical measurement of all the samples 30 housed in each well 21 of the microplate 20 can be performed in a short time. Can be done with high accuracy.
  • the region of the reflecting surface 14a of the mirror plate 14 may be limited so that the light that has passed through the well 21 is incident on only the well 21 again.
  • FIG. 11 is an example of the mirror plate 14 in which the reflection surface 14a region is limited.
  • the reflective surface 14a of the mirror plate 14 is restricted above each well 21 of the microplate 20, and the periphery of the reflective surface 14a is a non-reflective surface 14c.
  • the shape of the reflecting surface 14a can be circular, for example, as shown in FIG. When the reflecting surface 14a is circular, the reflecting surface 14a is provided at a position on the mirror plate 14 such that the center of the circle is substantially the same as the central axis of each well 21.
  • the reflecting surface 14a may be selectively provided according to the formation position of the light receiving light guide path 13a.
  • the reflecting surface 14a it is possible to limit the angular component of the light incident on the light receiving sensor 12b so as not to reflect a part of the light spread from the light source 12a. That is, by providing the mirror plate 14 with the reflective surface 14a and the non-reflective surface 14c, it is possible to realize a limiting portion that limits the angular component of the light incident on the light receiving sensor 12b. This makes it possible to prevent a part of the light that has passed through one well 21 and reached the mirror plate 14 from entering another well 21 adjacent to the well 21.
  • the non-reflective surface 14c of the mirror plate 14 When the non-reflective surface 14c of the mirror plate 14 is irradiated with light, light reflection may occur slightly on the non-reflective surface 14c. When the intensity of such reflected light may adversely affect the measurement result, the AR corresponding to the wavelength of the light emitted through the sample 30 housed in the well 21 in the non-reflective surface region. (Anti-Reflection) coating may be applied.
  • a light absorbing member 14d made of the same pigment-containing resin as the surrounding member may be provided in the non-reflective surface region.
  • the light guide plate portion 13 is arranged on the light receiving portion composed of the light receiving sensor 12b, and the light emitting portion composed of the light source 12a is arranged on the light guide plate portion 13.
  • the microplate 20 is arranged on the light projecting portion and the mirror plate is arranged on the microplate 20 has been described. That is, the above-mentioned microplate reader 10B irradiates light from below the well 21 of the microplate 20, reflects the light that has passed through the well 21 above the well 21, and passes the well 21 again to the well 21. It has a structure that receives light on the bottom side.
  • the structure may be such that light is irradiated from above the well 21 of the microplate 20, the light that has passed through the well 21 is reflected on the bottom surface side, and the light is passed through the well 21 again and received above the well 21.
  • a structure that irradiates light from the bottom surface side of the well 21 of the microplate 20 is preferable because the setting of the microplate 20 is easy.
  • the microplate reader in the first embodiment and the second embodiment can acquire measurement data for all the wells 21 of the microplate 20 at almost the same time.
  • the processing of the measurement data is not always performed at the same time. For example, one data processing may be performed on eight wells, and this may be performed 12 times. In this case, it takes some data processing time.
  • the microplate reader may have a structure capable of collectively processing the measurement data corresponding to each well 21 at the same time.
  • the microplate reader 10A in the first embodiment as shown in FIG. 14, the light emitted from the sample 30 housed in each well 21 and guided by the light receiving light guide path 13a is transmitted by an optical fiber. It may have a structure that receives light at 51. That is, the tip (incident end) 51a of the optical fiber 51 may be arranged as the light receiving portion instead of the light receiving sensor 12b.
  • Each optical fiber 51 that receives light that has passed through the light receiving light guide path 13a corresponding to each well 21 can be bundled on the light emitting end side.
  • the light emitted from the optical fiber bundle in which the optical fibers 51 are bundled can be captured by the image sensor 52.
  • the image data captured by the image sensor 52 is optical measurement data corresponding to all wells 21 of the microplate 20, and by arithmetically processing the image data, the optical measurement data corresponding to all wells 21 are collectively collected. Data can be processed at the same time.
  • FIG. 14 shows the microplate reader 10A in the first embodiment, the same applies to the microplate reader 10B in the second embodiment.
  • a third embodiment of the present invention will be described.
  • a microplate reader corresponding to a predetermined number of wells (96 wells) of microplates has been described.
  • a microplate reader corresponding to microplates having different numbers of wells will be described.
  • a microplate reader corresponding to microplates having different numbers of wells For example, when cell culture is performed using a microplate and light measurement is performed on the cultured cells, a microplate having a small number of wells (for example, 6 wells) is used.
  • the present embodiment uses a unit unit (microplate reader unit) corresponding to only one well.
  • FIG. 15 is a diagram showing a configuration example of the microplate reader unit 18A.
  • the microplate reader unit 18A includes a unit light source unit unit 181 and a unit light guide unit unit 182.
  • the unit light source unit unit 181 includes a light source 181a, a holding substrate 181b provided with the light source 181a, and a light source connector unit 181c.
  • the unit light guide unit unit 182 includes a light receiving sensor 182a, a light receiving light path 182b, a surrounding member 182c, and a diffusion unit 182d.
  • the light source 181a and the light receiving sensor 182a are the same as the light source 12a and the light receiving sensor 12b in the first embodiment described above.
  • the light receiving light guide path 182b, the surrounding member 182c, and the diffusion portion 182d are the same as the light receiving light guide path 13a, the surrounding member 13b, and the diffusion portion 13c constituting the light guide plate portion 13 in the first embodiment described above. ..
  • the light source 181a and the light source connector 181c are provided on substantially the same axis with the holding substrate 181b interposed therebetween, and are electrically connected to each other. Further, the unit light source unit unit 181 is configured to be detachably attached to the light projecting substrate 111a.
  • the light source substrate 111a is a light source connector portion that can be electrically connected to the light source connector portion 181c of the unit light source unit unit 181 on the surface of the substrate similar to the light projector substrate 12a in the first embodiment described above. It has a configuration including 112a.
  • a power feeding circuit is formed on the surface of the light projecting board 111a, and the light source connector portion 112a is electrically connected to the power feeding circuit.
  • the light source connector portion 181c of the unit light source unit unit 181 is attached to the light source connector portion 112a of the light projecting substrate 111a, the light source 181a is electrically connected to the light source connector portion 112a via the light source connector portion 181c. Is connected.
  • the unit light guide unit unit 182 is configured to be detachably attached to and detachable from the measurement substrate 111b.
  • the measurement substrate 111b is provided with a sensor connector portion 112b that can be electrically connected to the light receiving sensor 182a of the unit light guide unit portion 182 on the surface of the substrate similar to the measurement substrate 12b in the first embodiment described above.
  • a power feeding circuit is formed on the surface of the light projecting board 111a, and the sensor connector portion 112b is electrically connected to the power feeding circuit.
  • the light projecting substrate 111a and the measuring substrate 111b are aligned and installed so as to have a certain positional relationship with the microplate.
  • the light source connector portion 112a and the sensor connector portion 112b are placed on the projection substrate 111a and the measurement substrate 111b, respectively, so as to correspond to each well of the 96-well microplate, for example. 96 pieces are provided at a time.
  • the light source connector portion 112a is provided on the light projecting substrate 111a at a position corresponding to, for example, the light source 12a shown in FIG.
  • the sensor connector portion 112b is provided on the measurement substrate 111b at a position corresponding to, for example, the light receiving sensor 12b shown in FIG.
  • the microplate reader unit 18A including the unit light source unit unit 181 and the unit light guide unit unit 182 has a size corresponding to one well of a 96-well microplate.
  • a maximum of 96 unit light source unit units 181 can be mounted on the light projecting substrate 111a corresponding to each well of the 96-well microplate.
  • a maximum of 96 unit light guide unit units 182 can be mounted on the measurement substrate 111b corresponding to each well of the 96-well microplate.
  • the light source 181a is arranged at a position corresponding to each of the 96 wells 21 of the microplate. Similarly, when the 96 unit light guide unit units 182 are attached to the 96 sensor connector portions 112b on the measurement substrate 111b, the light receiving sensor 182a is located at a position corresponding to each of the 96 wells 21 of the microplate. Are placed in each.
  • FIG. 16 is a diagram showing an example of the microplate reader 10A'using the unit unit in the present embodiment, in which a plurality of unit light source unit units 181 of the microplate reader unit 18A are adjacent to each other on the light projecting substrate 111a. It is a figure when a plurality of unit light source unit portions 182 are mounted adjacent to each other on the measurement substrate 111b.
  • the structure in which the plurality of microplate reader units 18A are connected to the light projection substrate 111a and the measurement substrate 111b is a part of the microplate reader 10A in the first embodiment shown in FIG.
  • the microplate reader 10A'in which 96 sets of the microplate reader units 18A are connected to the light projecting substrate 111a and the measurement substrate 111b has the same structure as the microplate reader 10A in the first embodiment shown in FIG. Become.
  • FIGS. 15 and 16 show an example in which the microplate reader unit 18A is a unit unit corresponding to only one well 21, the microplate reader unit 18A is not limited to this, and the microplate reader unit 18A may have a plurality of units. It may be a unit unit corresponding to the well 21. Further, at least one of the unit light source unit unit 181 and the unit light guide unit unit 182 constituting the microplate reader unit 18A may correspond to a plurality of wells 21.
  • the unit light guide unit unit 182 may be a unit unit corresponding to the eight wells 21, and twelve unit light guide unit units 182 may be used for the 96-well microplate 20.
  • FIG. 17 shows an example in which the unit light source unit unit 181 corresponds to only one well 21, and the unit light source unit 182 corresponds to a plurality of wells 21.
  • FIG. 18 is a diagram showing another configuration example of the microplate reader unit.
  • the microplate reader unit 18B shown in FIG. 18 includes a light source 18a, a light receiving sensor 18b, a unit light emitting substrate 18c, an aperture portion 18d, a light receiving light guide path 18e, a surrounding member 18f, and a diffusion portion 18g. , Equipped with.
  • the light source 18a and the light receiving sensor 18b are the same as the light source 12a and the light receiving sensor 12b in the second embodiment described above.
  • the aperture portion 18c is the same as the aperture portion 11c in the second embodiment described above.
  • the light receiving light guide path 18e, the surrounding member 18f, and the diffusing portion 18g are the same as the light receiving light guide path 13a, the surrounding member 13b, and the diffusing portion 13c constituting the light guide plate portion 13 in the second embodiment described above. ..
  • the microplate reader unit 18B is configured to be removable from the measurement substrate 111.
  • the measurement substrate 111 can be electrically connected to the surface of the substrate similar to the measurement substrate 11b in the second embodiment described above with the power supply circuit formed on the substrate and the light receiving sensor 18b of the microplate reader unit 18B. It has a configuration including a connector portion 112. That is, the measurement substrate 111 has the same configuration as the measurement substrate 111b shown in FIG.
  • the microplate reader unit 18B has a size corresponding to one well of a 96-well microplate, and a maximum of 96 can be mounted on the measurement substrate 111 corresponding to each well of the 96-well microplate. Is.
  • the unit projection substrates 18c of the microplate reader unit 18B can be electrically connected to each other adjacent unit projection substrates. It is configured as follows. As a result, for example, when 96 unit light projecting boards 18c are electrically connected, the electric circuit configuration is equivalent to that of the light projecting board 11a'shown in FIG. 7.
  • the microplate reader unit 18B can be mounted on the measurement substrate 111 in a plurality of adjacent positions.
  • the structure in which the plurality of microplate reader units 18B are connected to the measurement substrate 111 is a part of the microplate reader 10B in the second embodiment shown in FIG. 7 (light projection substrate 11a', light source 12a, measurement. It has the same structure as the substrate 11b, the light receiving sensor 12b, and the light guide plate portion 13). Therefore, the microplate reader in which the 96 microplate reader units 18B are connected to the measurement substrate 111 has the same structure as the microplate reader 10B in the second embodiment shown in FIG. 7.
  • the microplate reader unit 18B may be a unit unit corresponding to a plurality of wells 21, similar to the microplate reader unit 18A shown in FIG. 17 described above.
  • the microplate reader units 18A or 18B are appropriately arranged according to the number and position of the wells 21 of the microplate 20 used for the light measurement and the light measurement method. It is a thing. For example, when a 96-well microplate 20 is used and the optical measurement method of the first embodiment is adopted, as shown in FIG. 19, 96 sets of microplate reader units 18A are provided in each of the 96 wells 21. It is placed in the corresponding position. In this case, of these 96 sets of microplate reader units 18A, the unit light source unit unit 181 is connected to the wiring 60a formed on the light projecting substrate 111a so that electric power can be supplied.
  • the unit light guide unit unit 182 is connected to the wiring 60b formed on the measurement substrate 111b, and is configured to be able to supply electric power.
  • the 96-well microplate 20 is used and the optical measurement method according to the second embodiment is adopted, 96 sets of microplate reader units 18B are arranged at positions corresponding to each of the 96 wells 21. Will be done.
  • these 96 microplate reader units 18B are connected to the wiring formed on the measurement board 111, and are configured to be able to supply electric power.
  • power is similarly supplied to the light projecting board to which the plurality of unit light projecting boards 18c are connected.
  • the wiring connection method a multi-drop connection or a daisy chain connection can be used.
  • the unit light source unit unit 181 is connected to the wiring 60a formed on the light projecting substrate 111a so that electric power can be supplied.
  • the unit light guide unit unit 182 is connected to the wiring 60b formed on the measurement substrate 111b, and is configured to be able to supply electric power.
  • 6 sets of microplate reader units 18B are arranged at positions corresponding to each of the 6 wells 21. Will be done. Also in this case, these six microplate reader units 18B are connected to the wiring formed on the measurement substrate 111, and are configured to be able to supply electric power. At this time, power is similarly supplied to the light projecting board to which the plurality of unit light projecting boards 18c are connected.
  • a plurality of microplate reader units 18A may be arranged in one well 21. ..
  • the statistics of the measurement data of the plurality of microplate reader units 18A corresponding to one well 21 may be adopted as the measurement data for the one well 21. The same applies to the case where the microplate reader unit 18B is arranged.
  • the number of wells can be changed by arranging the required number of microplate reader units 18A or 18B at the required positions. It can be a microplate reader compatible with the microplate 20.
  • the microplate reader units 18A and 18B include a light emitting unit, a light receiving unit, and a light guide plate unit has been described, but the light sources 181a and 18a constituting the light emitting unit and the light receiving unit have been described. It may include up to a substrate having wiring connected to each of the light receiving sensors 182a and 18b constituting the unit.
  • the substrate constituting the unit can be connected to the power supply cable connected to the power supply unit. All you need is.
  • the irradiation region (projected area) of the light guided by the light guide path group provided for one well 21 is set on the light receiving surface of the light receiving sensor 12b.
  • the irradiation region (projected area) of the light guided by the light guide path group may be equal to or smaller than the area of the light receiving surface of the light receiving sensor 12b. In this case, the diffusion portion 13c may not be provided.
  • FIG. 21 is a schematic configuration diagram of a microplate reader 10 in which the light guide plate portion 13 is in close contact with the bottom surface of the microplate 20.
  • parts having the same configuration as the microplate reader 10A shown in FIG. 1 are designated by the same reference numerals as those in FIG.
  • a wall portion 20a is formed on the outer edge portion of the bottom surface of the microplate 20 over the entire circumference.
  • the wall portion 20a projects downward from the bottom surface of the microplate 20, and the bottom surface of the microplate 20 and the wall portion 20a form a recess on the bottom surface side of the microplate 20. That is, the wall portion 20a is a side wall portion of the recess.
  • the light guide plate portion 13 can be fitted into the recess of the microplate 20.
  • the height of the wall portion 20a from the bottom surface can be any height.
  • the height of the wall portion 20a may be lower than the thickness of the light guide plate portion 13 as shown in FIG. 21, for example, or is equivalent to the thickness of the light guide plate portion 13 as shown in FIG. 22. May be good. Further, although not particularly shown, the height of the wall portion 20a may be higher than the thickness of the light guide plate portion 13.
  • the light guide plate portion 13 is an optical plate that can be fitted in close contact with a recess formed on the bottom surface side of the microplate 20.
  • the light guide plate portion 13 is configured to be removable from the recess.
  • the light receiving light guide path 13a is provided in the light guide plate portion 13 so that the light emitting end of the light guide path group is arranged at a position corresponding to the light receiving sensor 12b provided on the measurement substrate 11b. That is, the microplate 20 into which the light guide plate portion 13 is fitted is positioned at a position where the light emitting end of the light receiving light path 13a faces the light receiving sensor 12b. Further, the light source 12a is projected so as to be arranged at a position corresponding to each well 21 of the microplate 20 when the light projecting substrate 11a is installed above the microplate 20 positioned as described above. It is provided on the optical substrate 11a.
  • the light source 12a and the light receiving sensor 12b are vertically aligned. Arranged in a row in the direction.
  • the arrangement of the light source 12a and the light receiving sensor 12b does not have to be strictly in a row in the vertical direction, and the light source 12a and the light receiving sensor 12b are emitted from the light source 12a and passed through the sample 30 or the like housed in the well 21 of the microplate 20.
  • the arrangement may be such that the light can reach the light receiving sensor 12b.
  • a light guide path group composed of a plurality of light receiving light guide paths 13a is arranged for one well 21.
  • the number of light receiving light guide paths 13a constituting the light guide path group corresponding to one well can be seven.
  • the diameter of one light receiving light guide path 13a shown in FIG. 23 is 0.5 mm.
  • FIG. 24 is a diagram showing a light guide plate portion 13A having one light receiving light path 13a'for one well as a comparative example.
  • the diameter of one light receiving light path 13a'shown in FIG. 24 is 10 mm.
  • the light guide plate portion 13 shown in FIG. 23 and the light guide plate portion 13A shown in FIG. 24 have the same thickness, a plurality of thin light receiving light guide paths 13a are arranged for one well as shown in FIG. 23.
  • the noise component can be significantly reduced as compared with the case where one thick light receiving light path 13a'is arranged for one well.
  • the light guide plate portion 13 in which a plurality of light receiving light guide paths 13a are arranged for one well has one light receiving light guide path for one well. Even if the thickness is thinner than the light guide plate portion 13A on which the 13a'is arranged, the same characteristics (S / N ratio) as the light guide plate portion 13A can be obtained.
  • the length of the light receiving light guide path 13a that is, the guide. It is desirable that the thickness of the optical plate portion 13 is 1 mm or more. Further, in the light guide plate portion 13A shown in FIG. 24, it is preferable to secure at least 3 mm or more in the width of the surrounding member 13b that separates one light receiving light guide path 13a'arranged from each other in the adjacent wells. .. As a result, the mixing rate of signals between adjacent wells can be reduced to 1/1000000 or less.
  • a surrounding member that separates the light receiving light guide paths 13a that are adjacent to each other is used.
  • the thickness may be as thin as 0.15 mm. This is because even if the light is transmitted to each other by about 1/100, it may be about the same as the mixing rate due to reflection and scattering.
  • the irradiation region (projected area) of the light guided by the light guide path group provided for one well 21 is set to the same size as the area of the light receiving surface of the light receiving sensor 12b. Has been done. Therefore, all the light guided by the light guide path group including the plurality of light receiving light guide paths 13a can be incident on the light receiving surface of the light receiving sensor 12b.
  • FIG. 25 With respect to the microplate reader 10 in which the measurement substrate 11b, the plurality of light receiving sensors 12b, the power supply unit 16 and the power supply cable 17b are fixed inside the housing 15, the operator is shown in FIG. 26.
  • the light guide plate portion 13 is fitted on the bottom surface side, and the microplate 20 containing the sample 30 is installed in each well 21. At this time, the light guide plate portion 13 is placed on the light receiving sensor 12b. At this time, the microplate 20 into which the light guide plate portion 13 is fitted is positioned so that the light emitting end of the light receiving light guide path 13a faces the light receiving surface of the light receiving sensor 12b.
  • the operator installs the light projecting substrate 11a above the microplate 20.
  • the operator sets the light projecting substrate 11a on the microplate so that the plurality of light sources 12a on the light projecting substrate 11a are arranged at positions corresponding to the wells 21 of the microplate 20 one by one. Install above 20.
  • the plurality of light sources 12a on the light projecting substrate 11a are arranged at positions corresponding to the wells 21 of the microplate 20 when the light projecting substrate 11a is aligned above the microplate 20.
  • the distance between the adjacent light sources 12a is set in advance.
  • the light projecting substrate 11a may be positioned in the vertical direction by a positioning member (not shown).
  • the operator After installing the light projecting board 11a above the microplate 20, the operator connects the light projecting board 11a and the power supply unit 16 with the power supply cable 17a. After that, the operator operates a power switch (not shown) or the like to supply power from the power supply unit 16 to each light source 12a and each light receiving sensor 12b via the power supply cables 17a and 17b. As a result, light is emitted from each light source 12a.
  • each light source 12a passes through the sample 30 housed in each well 21 of the microplate 20.
  • the light that has passed through the well 21 passes through a plurality of light receiving light guide paths 13a of the light guide plate portion 13 and is received by the light receiving sensor 12b.
  • the optical characteristics for example, absorption characteristics
  • the measurement result by the light receiving sensor 12b may be transmitted as light intensity information to an external device via a data communication unit (not shown).
  • the external device measures the optical characteristics of the sample 30 based on the above light intensity information.
  • the light guide plate portion 13 can be fitted into the recess formed on the bottom surface side of the microplate 20. Therefore, by fitting the light guide plate portion 13 into the bottom surface side of the microplate 20, it is possible to easily position each well 21 of the microplate 20 and the light guide path group corresponding to each well 21. Since the surface of the light guide plate portion 13 on the side that contacts the bottom surface side of the microplate 20 can be deformed corresponding to the fine uneven structure of the bottom surface of the microplate 29, the bottom surface side of the microplate 20 It can be closely attached to the recess formed in the above without any gap. Further, a surrounding member 13b made of a pigment-containing resin is exposed on the upper surface of the light guide plate portion 13.
  • the surface of the surrounding member 13b is rough, simply placing the microplate 20 on the light guide plate portion 13 may cause a positional shift between the microplate 20 and the light guide plate portion 13 during light measurement. ..
  • the light guide plate portion 13 can be fitted into the recess formed on the bottom surface side of the microplate 20, the above-mentioned misalignment during light measurement can be appropriately suppressed. ..
  • the light guide plate portion 13 can be brought into close contact with the bottom surface of the microplate 20 by being fitted into the recess formed on the bottom surface side of the microplate 20. In this way, since the microplate 20 and the light guide plate portion 13 can be brought into close contact with each other, it is possible to suppress the formation of a gap between the microplate 20 and the light guide plate portion 13, and the light receiving light guide path from the gap. It is possible to appropriately suppress the invasion of external light into 13a. Further, since the light guide plate portion 13 is made of silicone resin and is relatively soft, it can be easily removed from the microplate 20 even when the sample 30 is contained in the well 21.
  • the microplate has a wall portion protruding downward from the bottom surface at the outer edge portion of the bottom surface, and a space (recess) is provided by the bottom surface and the wall portion on the bottom surface side of the microplate. .. Therefore, if this existing space (recess) is used as a recess into which the light guide plate portion 13 is fitted, it is not necessary to prepare a dedicated microplate.
  • the wall portion 20a may surround at least a part of the light guide plate portion 13.
  • a plurality of light receiving light guide paths 13a are provided for one well 21 of the microplate 20.
  • the projected area of the light guided by the plurality of light receiving light guide paths 13a corresponding to one well 21 is equivalent to the area of the light receiving surface of one light receiving sensor 12b corresponding to one well 21. Therefore, the light that has passed through one well can be received by the light receiving sensor 12b at a good S / N ratio, and the accuracy of light measurement can be improved.
  • the light guide plate portion 13 can be made thinner. As a result, the height of the microplate reader 10 can be reduced.
  • the light guide plate portion 13 is thinned as described above with a thickness of 1.6 mm, it can be manufactured by, for example, a 3D printer instead of molding, and the manufacturing cost can be reduced.
  • the microplate reader 10 includes a housing 15 on which the microplate 20 is arranged.
  • the housing 15 can also be made of, for example, a material having a light-shielding property or a heat-insulating property. In this case, the influence of the external light incident from the side surface of the microplate 20 and the influence of the temperature can be suppressed. Therefore, the reliability of the measurement data of the well 21 located at the end of the microplate 20 can be ensured.
  • the microplate reader 10 has been miniaturized to the extent that it can be carried in fields such as POCT inspection, and the optical measurement of all the samples 30 housed in each well 21 of the microplate 20 can be performed with high accuracy in a short time. It can be carried out.
  • the microplate reader 10 in the present embodiment can easily position each well 21 of the microplate 20 and the light receiving light guide path 13a corresponding to each well 21, and both of them during light measurement. Positional deviation can be suppressed.
  • the microplate reader 10 in the present embodiment can appropriately suppress the intrusion of external light into the light receiving light guide path 13a through the gap between the microplate 20 and the light guide plate portion 13, and is not applicable. The adverse effect of light on light measurement can be appropriately suppressed.
  • the case where the light guide plate unit 13 is provided with a plurality of light receiving light guide paths 13a corresponding to one well 21 of the microplate 20 has been described.
  • a light guide plate portion 13A provided with one light receiving light path 13a'corresponding to one well 21 of the microplate 20 can also be used.
  • the light guide plate portion 13A may be fitted in close contact with the bottom surface side of the microplate 20.
  • the bottom surface of the well of the microplate 20 has a flat plate shape
  • the adhesion with the light guide plate portion 13 is good, but the shape of the bottom surface of the well does not necessarily have to be a flat plate shape.
  • the shape of the bottom surface of the well 22 may be spherical.
  • the light guide plate portion 13 can be partially fitted in close contact with the bottom surface of the microplate 20A.
  • the light receiving guide is provided on the light guide plate portion 13 so that the light incident end of the light guide path group is arranged at a position (condensing region) where the light passing through the well 22 is collected on the spherical bottom surface. It forms an optical path 13a. As a result, the light that has passed through the well 22 can be appropriately guided to the light receiving sensor 12b.
  • the microplate reader 10 presses the light guide plate portion 13 in a direction in which the micro plate 20 and the light guide plate portion 13 are in close contact with each other in a state where the light guide plate portion 13 is fitted in a recess formed on the bottom surface side of the micro plate 20.
  • a pressing member may be provided.
  • the microplate reader 10 may include a positioning member for positioning the microplate 20 into which the light guide plate portion 13 is fitted at a position where the light emitting end of the light receiving light path 13a and the light receiving sensor 12b face each other. Good.
  • a plurality of (for example, four) rod-shaped positioning members 11c are provided on the measurement substrate 11b, and the light guide plate portion 13 is fitted by these positioning members 11c.
  • the microplate 20 may be positioned with respect to the measurement substrate 11b by supporting the side surface of the microplate 20.
  • the number of positioning members 11c is not limited to the numbers shown in FIGS. 30 and 31. Further, the shape of the positioning member 11c is not limited to the shapes shown in FIGS. 30 and 31.
  • a pressing member 11d that comes into contact with a part of the upper surface of the microplate 20 placed on the measuring substrate 11b via the light guide plate portion 13 is provided, and the pressing member 11d is provided.
  • the microplate 20 may be pressed downward by 11d.
  • the pressing member 11d is engaged with, for example, a support column 11e (see FIG. 31) provided on the measurement substrate 11b, is movable along the axial direction of the support column 11e, and has a shaft of the support column 11e.
  • the configuration can be fixed at any position in the direction.
  • the pressing member and the positioning member are not limited to the configurations shown in FIGS. 30 and 31.
  • the pressing member may be a binding tool (rubber band, surface tape, etc.) that binds the measuring substrate 11b and the microplate 20 placed on the measuring substrate 11b via the light guide plate portion 13. ..
  • FIG. 32 is a schematic configuration diagram of a microplate reader 10AA in which a light source 12a and a light receiving sensor 12b are arranged below the microplate 20.
  • portions having the same configuration as the microplate reader 10 shown in FIG. 21 are designated by the same reference numerals as those in FIG. 21, and the portions having different configurations will be mainly described below.
  • the microplate reader 10AA includes a substrate 11, a plurality of light sources 12a, a plurality of light receiving sensors 12b, a light guide plate portion (light guide portion) 13B, a mirror plate (reflection member) 14, a housing 15, and a power supply.
  • a unit 16 and a power supply cable 17 are provided.
  • a plurality of light sources 12a and a plurality of light receiving sensors 12b are provided on a substrate 11, and a light guide plate portion 13B is fitted on the light source 12a and the light receiving sensor 12b on the bottom surface side. 20 is configured to be installable.
  • the microplate reader 10AA is configured such that the mirror plate 14 is arranged on the microplate 20.
  • the surface 14a of the mirror plate 14 facing the microplate 20 is a reflective surface (mirror surface).
  • the mirror plate 14 closes the opening of the housing 15 and functions as an upper lid of the microplate 20.
  • the substrate 11 has a light source power supply line to which the light source 12a is connected and a sensor power supply line to which the light receiving sensor 12b is connected.
  • the plurality of light sources 12a are connected to a light source power supply line provided on the substrate 11 and obtain power from the light source power supply line.
  • the plurality of light receiving sensors 12b are connected to the sensor power supply line provided on the substrate 11 and obtain power from the sensor power supply line. Power is supplied from the power supply unit 16 to the light source power supply line and the sensor power supply line of the substrate 11 via the power supply cable 17.
  • the light guide plate portion 13B has an SOT structure as in the above embodiment. Specifically, the light guide plate portion 13B accommodates the light emitting light path 13d for guiding the light emitted from the light source 12a provided on the substrate 11 to the well 21 of the microplate 20 and the well 21.
  • the light receiving light guide path 13a “that guides the light emitted through the sample 30 or the like to the light receiving sensor 12b is provided.
  • the light emitting light guide path 13d and the light receiving light guide path 13a" are each pigment. It is surrounded by a surrounding member 13b made of a contained resin.
  • the light incident end of the light emitting light guide path 13d and the light emitting end of the light receiving light guide path 13a are installed on the substrate 11, respectively, as a light source 12a and a light receiving sensor 12b. It is placed on the substrate 11 so as to be arranged at a position facing the light source. Further, by fitting the light guide plate 13B into the microplate 20, the light emitting end and the light receiving guide of the light emitting light path 13d The light incident ends of the optical path 13a "are positioned so as to be arranged at positions facing the bottom surface of the well 21 of the microplate 20.
  • the surface 14a of the mirror plate 14 facing the microplate 20 is a reflective surface (mirror surface). Therefore, the light emitted from each light source 12a, passing through each light projecting light guide path 13d of the light guide plate portion 13B, and passing through the sample 30 housed in each well 21 of the micro plate 20 reaches the mirror plate 14. After that, it is reflected by the reflecting surface 14a of the mirror plate 14. Then, the light reflected by the reflecting surface 14a passes through the sample 30 housed in each well 21 of the microplate 20 again, passes through each light receiving light path 13a of the light guide plate portion 13B, and receives each light. The light is received by the sensor 12b. In this way, the optical measurement (for example, the absorption characteristic) of the sample 30 is measured.
  • the optical measurement for example, the absorption characteristic
  • the light guide plate portion 13B is fitted into the recess formed on the bottom surface side of the microplate 20. It can be configured to be in close contact with the bottom surface of the microplate 20. Therefore, each well 21 of the microplate 20 and the light guide path provided in the light guide plate portion 13B can be easily positioned, and it is possible to suppress the formation of a gap between the microplate 20 and the light guide plate portion 13B. , It is possible to suppress the wraparound of outside light.
  • the light guide plate portion 13 is guided by a light guide path group provided for one well 21 like the light guide plate portion 13 provided in the micro plate reader 10A of FIG. Even if the irradiation region (projected area) of the emitted light is set to be larger than the area of the light receiving surface of the light receiving sensor 12b and the diffuser portion 13c is provided between the light guide path group and the light receiving sensor 12b. Good.
  • the bottom surface of the well of the microplate 20 has a flat plate shape.
  • the bottom surface of the well has a flat plate shape, it is preferable because the contact with the light guide plate portion 13 is good, but the shape of the bottom surface of the well does not necessarily have to be a flat plate shape.
  • a light emitting unit (light source) and a light receiving unit (light receiving sensor) may be individually driven by one set.
  • the number of light emitting parts (light source), the number of light receiving parts (light receiving sensor) and the number of wells do not necessarily have to match, and the number of microplates has a smaller number of wells than the number of light emitting parts and the number of light receiving parts. Can also be placed.
  • the microplate is not necessarily arranged horizontally, and the light emitting portion and the light receiving portion are arranged in the vertical direction thereof.
  • the microplate may be arranged vertically or the microplate may be arranged vertically.
  • the sample contained in the well can be appropriately deformed within a range in which light can be measured, such as by arranging a light emitting part and a light receiving part in an oblique direction of the plate.
  • FIG. 33 is a schematic configuration diagram of a microplate reader 10C including a light source 12d, which is a general-purpose LED.
  • a microplate reader 10C including a light source 12d which is a general-purpose LED.
  • portions having the same configuration as the microplate reader 10A shown in FIG. 1 are designated by the same reference numerals as those in FIG.
  • the general-purpose LED is a larger LED than the chip LED. Therefore, the light from one light source (for example, the leftmost light source) 12d is likely to enter the well 21 corresponding to the adjacent light source (second light source from the left) 12d. Further, the light from one light source (for example, the leftmost light source) 12d reaches the surface of the adjacent light source (second light source from the left) 12d and is reflected, resulting in the adjacent light source (2 from the left). It may be incident on the well 21 corresponding to the second light source) 12d. In this way, the light from the adjacent light source 12d may enter the light receiving light guide path 13a as stray light, which may adversely affect the measurement result.
  • the shielding member 19a may be arranged between the light sources 12d adjacent to each other.
  • the shielding member 19a is a limiting member for limiting the light emitted from the light source 12d adjacent to one light source 12d from entering the light receiving light guide path 13a corresponding to the one light source 12d.
  • the shielding member 19a is made of a material that shields light from the light source 12d.
  • the shielding member 19a can also be made of a pigment-containing resin containing a pigment having a property of absorbing light.
  • the arrangement position and shape (length, thickness) of the shielding member 19a is such that the light emitted from one light source 12d does not enter the well 21 corresponding to the other light source 12d, and eventually the light receiving light path 13a. As appropriate.
  • the light guide plate portion 19b having the same configuration as the light guide plate portion 13 arranged between the microplate 20 and the light receiving sensor 12b is referred to the light source 12a. It may be arranged between the microplate 20 and the microplate 20.
  • the light guide plate portion 19b includes a light projection path 191 corresponding to each of the plurality of light sources 12d.
  • the light emitting light path 191 is made of a resin (for example, silicone resin) that is transparent to the light emitted from the light source 12a. Further, the light emitting light path 191 is surrounded by a surrounding member 192 made of a pigment-containing resin.
  • the surrounding member 192 made of the pigment-containing resin is arranged between the light sources 12d adjacent to each other, and the light emitted from the light source 12d adjacent to the one light source 12d is used for receiving light corresponding to the one light source 12d. It functions as a limiting member for limiting the incident on the light guide path 13a.
  • the limiting member By arranging the limiting member between the light sources 12d adjacent to each other in this way, the light emitted from one light source 12d can be directly incident on the well 21 corresponding to the other light source 12d, or the other light source 12d. It is possible to prevent the light source 12d from being reflected by the surface of the light source and incident on the well 21 corresponding to the other light source 12d.
  • a pigment-containing resin as the limiting member, it is possible to appropriately absorb the light directed from one light source 12d to another well 21 or another light source 12d. As a result, the light from each light source 12d can enter the sample 30 housed in each well 21 corresponding as substantially straight light.
  • the diameter of the aperture portion 11c is smaller than the diameter of the light incident end of the light receiving light guide path 13a as a limiting portion for limiting the angular component of the light incident on the light receiving sensor 12b.
  • the restriction portion is not limited to the above.
  • the light source 12a may be provided with a condenser lens 11d.
  • the portions having the same configuration as the microplate reader 10B shown in FIG. 7 are designated by the same reference numerals as those in FIG. 7.
  • the condenser lens 11d can be made of, for example, a resin (for example, PDMS resin) that is solidified after being dropped on the chip LED.
  • a resin for example, PDMS resin
  • the condenser lens 11d in this way, the spread of the light emitted from the light source 12a can be limited, and as a result, the angular component of the light incident on the light receiving sensor 12b can be limited.
  • the limiting portion for limiting the angular component of the light incident on the light receiving sensor 12b is the limitation using the aperture portion 11c of the above-mentioned light projecting substrate 11a'and the limitation using the non-reflective surface 14c of the mirror plate 14.
  • at least one of the restrictions using the condenser lens 11d of the light source 12a may be used in combination as appropriate.
  • the restriction portion is a restriction using the non-reflective surface 14c of the mirror plate 14 or a restriction using the condensing lens 11d of the light source 12a
  • the diameter of the aperture portion 11c of the light projecting substrate 11a' is determined. It may be equal to or larger than the opening at the light incident end of the light receiving light guide path 13a.
  • the light guide path group is surrounded by a surrounding member made of a pigment-containing resin capable of absorbing external light and scattered light, so that external light, scattered light and the like are stray light ( It is possible to prevent the light from being incident on the light receiving portion as noise light). Further, since the light emitted from the plurality of light projecting units can be prevented from passing through one light guide path group and reaching one light receiving unit, the measurement error can be appropriately reduced. Therefore, highly accurate measurement is possible. Further, since the microplate reader in the above embodiment is provided with a plurality of light receiving light paths for one well, the light passing through one well is efficiently guided to the light receiving portion with a good S / N ratio.
  • the diffusing portion is provided between the light guide path group and the light receiving portion, the light passing through the light guide path group can be diffused and made uniform, and the light receiving portion can receive the light. Therefore, even when the light receiving area of the light receiving unit is small, the light passing through the light guide path group can be appropriately received by the light receiving unit.
  • a microplate reader of a method hereinafter referred to as "scan type" in which a microplate is scanned relative to a set of a light projecting unit, a light receiving unit, and a light receiving light guide path. can do.
  • a drive mechanism for relatively scanning the microplate is indispensable, and the device itself is generally large-scale. Further, in the conventional microplate reader, complicated multiple reflection of stray light may occur, and it is necessary to design an optical system corresponding to the complicated multiple reflection.
  • the optical system configuration (SOT structure) of each of the above-described embodiments it is not necessary to design an optical system corresponding to stray light in which multiple scattering or the like occurs as in the conventional case. Since the SOT structure has a relatively simple structure, the scan-type microplate reader that employs the SOT structure can be miniaturized as compared with the conventional scan-type microplate reader. In addition, by adopting the SOT structure, it is possible to improve the accuracy of measurement as compared with the conventional case.
  • FIG. 37 is a cross-sectional view taken along the line XX of FIG. 36. A detailed description of the same components as those in the above-described embodiment will be omitted.
  • the microplate reader 10F includes a light projecting substrate 11a ", a measuring substrate 11b", a light source 12a ", a light receiving sensor 12b", and a light guide plate portion 13 ".
  • a plurality of light receiving sensors 12b are provided on the measurement substrate 11b", and a light guide plate portion 13 "is provided on the measurement substrate 11b".
  • a diffusion unit 13c is provided between the light guide path group and the light receiving sensor 12b.
  • the microplate 20 is inserted into a gap provided with a certain distance between the light guide plate portion 13 "and the light projecting substrate 11a". That is, the gap between the gaps is set to be larger than the thickness of the microplate 20 so that the microplate 20 can be inserted.
  • the plurality of light sources 12a "provided on the light projecting substrate 11a" are respectively placed in a plurality of predetermined wells 21 of the microplate 20 inserted in the gap. Arranged so as to face each other.
  • the microplate reader 10F includes the same number of light sources 12a “, light receiving sensors 12b", and light guide paths as the number of wells 21 for one row of the microplate 20. That is, one light source 12a “, one light receiving sensor 12b” and one light guide path group are provided corresponding to each well for one row of the microplate 20.
  • a plurality of sets of the light source 12a ", the light guide path group, and the light receiving sensor 12b" corresponding to the one well 21 are arranged in the row direction (the direction of one side) of the wells 21 of the microplate 20.
  • the number of sets of the plurality of light sources 12a ”, the light receiving sensor 12b”, and the light guide path group is 8 or 12.
  • one light source 12a "and one light receiving sensor 12b' are arranged in a row in the vertical direction.
  • the arrangement interval of the pair of the light source 12a", the light receiving sensor 12b "and the light guide path group to be arranged is set. Equal to the pitch of each well 21 of the microplate 20.
  • the light source 12a "and the light receiving sensor 12b are arranged so as to correspond to each well 21 for one row.
  • a set of light guide paths is arranged. That is, in each well 21 for one row of the microplate 20, the light emitted from one light source 12a ”has a plurality of light paths included in one light guide path group via the sample 30 and the like housed in one well 21. It passes through the light receiving light path 13a "and reaches one light receiving sensor 12b" via the diffuser 13c ". This makes it possible to simultaneously measure the light for one row of wells of the microplate 20.
  • the arrangement of the light source 12a "and the light receiving sensor 12b” does not have to be strictly in a row in the vertical direction, and the sample 30 or the like emitted from one light source 12a "and housed in one well 21 of the microplate 20".
  • the light emitted through the light source may be arranged so as to pass through one light source group and reach one light receiving sensor 12b "via the diffuser 13c".
  • the microplate 20 is attached to the set of the plurality of light sources 12a ", the light receiving sensor 12b" and the light guide path group arranged in the row direction of the wells 21 of the microplate 20.
  • the direction of relative sequential movement is the direction in which 12 wells 21 are lined up.
  • the relative sequential movement described above can be performed by a movement mechanism (not shown).
  • the moving mechanism moves the microplate 20 in a direction orthogonal to the row direction of the wells 21, or arranges a set of light sources 12a ", a light guide path group, and a light receiving sensor 12b" arranged in a vertical row in a positional relationship with each other. While holding it, it is moved in a direction orthogonal to the row direction of the wells 21.
  • the set of the light projecting substrate 11a ", the light guide plate portion 13", and the measuring substrate 11b " in which the microplate 20 is fixed and integrally held by the support column 11f, is sequentially moved by the moving mechanism. It shows the case where it is done.
  • the moving mechanism can have, for example, a control function for a servo motor or a stepping motor.
  • a control function for a servo motor or a stepping motor When the pitch of each well 21 of the microplate 20 is relatively large, high-precision position control is not required, so that the moving mechanism can be realized by a mechanical stopper or the like.
  • the scan-type microplate reader 10F uses a set of light measuring units (light source 12a ”, light guide path group and light receiving sensor 12b”) that is smaller than the number of wells 21 of the microplate 20.
  • Optical measurements can be made on all wells 21 of. Therefore, as shown in FIG. 1 and the like described above, the device can be miniaturized as compared with the case where the same number of sets of optical measuring units as the number of wells 21 are provided. Further, in the case of a configuration in which as many sets of light measurement units as the number of wells 21 for one row of the microplate 20 are provided and these sets of light measurement units are moved in a direction orthogonal to the row direction of the wells 21, only in one axial direction.
  • the movement mechanism can be configured relatively easily.
  • the moving mechanism becomes larger in the height direction, for example, by making the guide rails two steps, but if the movement is in only one axial direction, the moving mechanism becomes larger. Can be prevented from increasing in the height direction, and as a result, the thickness of the device can be reduced.
  • a predetermined gap is formed between the microplate and the light measuring unit. Therefore, external light is likely to enter or scattered light is likely to be generated in this gap.
  • the light guide plate portion 13 "of the SOT structure is adopted, and only straight light can be taken out. Therefore, for example, the lower surface of the micro plate 20 and the upper surface of the light guide plate 13 " Even if a gap is formed between the two, the influence of stray light (noise light) such as external light and scattered light can be ignored. In addition, since it is not affected by outside light, highly accurate light measurement is possible even outdoors.
  • the scan-type microplate reader 10F is compact and capable of high-precision optical measurement, it is possible to perform optical measurement at the site (on-site) where the sample to be measured is obtained. For example, it can be applied to mold poison inspection on imported grains at ports.
  • the moving mechanism is used for light projection as described above.
  • the power supply cables 17a and 17b for supplying power from the power supply unit 16 to the light projection substrate 11a" and the measurement substrate 11b "
  • the configuration (for example, length and arrangement) can follow the movement of the light projecting substrate 11a ", the light guide plate portion 13", and the measuring substrate 11b ".
  • the set of the light measuring unit including the light projecting substrate 11a ", the light guide plate unit 13" and the measuring substrate 11b "is sequentially moved has been described.
  • the set may be fixed and the microplate 20 may be moved sequentially.
  • the microplate 20 it takes time for the liquid level of the liquid sample 30 contained in each well 21 to move and stabilize. Therefore, it is possible to keep the liquid level stable by moving the set of light measuring units instead of moving the microplate 20, and it is possible to complete the light measurement for all the wells 21 in a short time. It is preferable because it can be done.
  • the microplate reader 10F shown in FIGS. 36 and 37 includes a set of an optical measuring unit including the same number of light sources 12a ", a light guide path group, and a light receiving sensor 12b" as the wells 21 for one row of the microplate 20. explained. However, in the scanning type microplate reader, the number of sets of the optical measuring unit may be smaller than the number of wells of the microplate 20, and is not limited to the above.
  • the number of sets of the light measuring units may be smaller than the number of wells 21 for one row of the microplate 20, and the sets of the light measuring units may be sequentially moved two-dimensionally with respect to the microplate 20. In this case as well, light measurement can be performed on all the wells of the microplate 20.
  • the number of sets of the optical measuring units may be larger than the number of wells 21 for one row of the microplate 20.
  • the number of sets of the optical measuring units is set to be the same as the number of wells 21 for a plurality of rows such as two rows or three rows of the microplate 20, and the sets of the optical measuring units are sequentially moved by a plurality of rows. May be good.
  • the set of optical measuring units does not necessarily have to be arranged so as to correspond to the adjacent wells of the microplate 20.
  • the set of light measuring units including the same number of light sources 12a, light guide paths and light receiving sensors 12b as the number of wells 21 is provided, the larger the number of wells in the microplate 20, the more the light measuring unit The cost is high. Further, as the number of wells in the microplate 20 increases, the pitch of each well 21 becomes narrower, which makes it difficult to align the optical measuring unit.
  • every other set of the light source 12a ", the light guide path group, and the light receiving sensor 12b" may be arranged corresponding to each well 21.
  • a set of a light source 12a ", a light guide path group, and a light receiving sensor 12b" is arranged in a checkered pattern with respect to the position of each well 21 of the microplate 20. It may be arranged. In this case, by moving the microplate 20 by one row in the direction of the arrow in FIG. 39, it is possible to perform optical measurement on all the wells 21 of the microplate 20 as shown in FIG. 40.
  • the first light measurement as shown in FIG. 39, the light measurement is performed on the wells 21 in which the light sources 12a ”are arranged to face each other, and in the second light measurement, as shown in FIG. 40, the first light measurement is performed.
  • the light measurement is performed on the well 21 for which the light measurement has not been performed in the light measurement.
  • the black-painted well 21' is the well for which the light measurement was performed for the first time.
  • the moving mechanism can be inexpensively configured with a simple actuator. be able to.
  • the above-mentioned microplate reader 10G can be used, for example, in an incubator (incubator).
  • the incubator is provided with a storage space (culture space) for accommodating the culture container.
  • a storage space for accommodating the culture container.
  • a plurality of shelves are arranged horizontally separated in the vertical direction, and a culture container is placed on these shelves. Therefore, in order to increase the number of shelves, the microplate reader used in the incubator is required to be thin.
  • the microplate reader 10G moves only in the uniaxial direction, it is possible to configure the device so that it does not increase in the height direction. Further, since the microplate reader 10G moves only between two positions, scanning can be limited to the minimum that does not give a stimulus such as vibration as much as possible. Therefore, the microplate reader 10G can be a microplate reader suitable for use in an incubator.
  • the light source 12a " is arranged above the microplate 20, and the light receiving sensor 12b" is arranged on the opposite side of the microplate 20 from the light source 12a ".
  • a scan-type microplate reader 10H in which the light source 12a "and the light receiving sensor 12b" are arranged on one side (lower in this case) of the microplate 20 is used.
  • the same components as those in the above-described embodiment are designated by the same reference numerals.
  • the light emitted from the light source 12a "passes through the sample 30 and the like, is reflected by the reflecting member 14, passes through a light guide path group composed of a plurality of light receiving light guide paths 13a", and is a diffuser. It is diffused by 13c "and received by one light receiving sensor 12b". Then, by moving the pair of the light source 12a ", the light receiving sensor 12b", and the light guide path group relative to the microplate 20, light measurement can be performed on all the wells 21 of the microplate 20. It is possible.
  • the mirror plate 14 arranged on the upper side of the microplate 20 is fixed, and the pair of the light source 12a ", the light receiving sensor 12b" and the light guide path group arranged on the lower side of the microplate 20 is moved by the moving mechanism. It can be configured. In this way, since the member arranged on the upper side of the microplate 20 can be fixed, it is possible to prevent dust accompanying the scanning from falling on the microplate 20.
  • the light guide plate portion 13 may be fitted into a recess formed on the bottom surface side of the microplate 20 to form a microplate reader 10I which is in close contact with the bottom surface of the microplate 20.
  • the same components as those in the above-described embodiment are designated by the same reference numerals.
  • the microplate reader 10I shown in FIG. 42 since the light guide portion is fitted into the recess formed on the bottom surface side of the micro plate and brought into close contact with the bottom surface of the micro plate, the light guide path corresponding to each well and each well, respectively. It is possible to easily perform positioning with and, and it is possible to suppress a misalignment between the two during optical measurement. Further, since it is possible to appropriately suppress the formation of a gap between the microplate and the light guide portion, it is possible to appropriately suppress the wraparound of external light into the light guide path.
  • the microplate 20 in which the light guide plate portion 13 is fitted to the set of the plurality of light sources 12a "and the light receiving sensor 12b" arranged in the row direction of the wells 21 of the microplate 20 is provided.
  • the wells 21 in a direction substantially orthogonal to the row direction it is possible to perform optical measurement on all the wells 21 of the microplate 20.
  • every other set of the light source 12a "and the light receiving sensor 12b" may be arranged corresponding to each well 21.
  • the case where the 12b "is arranged has been described.
  • a scanning type microplate reader 10K in which the light source 12a" and the light receiving sensor 12b "are arranged below the microplate 20 can also be used.
  • FIG. 44 the same components as those in the above-described embodiment (FIG. 32) are designated by the same reference numerals.
  • the light emitted from the light source 12a "passes through the light emitting light guide path 13d, passes through the sample 30 and the like, is reflected by the reflecting member 14, and passes through the light receiving light guide path 13a".
  • the light is received by the light receiving sensor 12b ".
  • the pair of the light source 12a” and the light receiving sensor 12b is moved relative to the microplate 20 in which the light guide plate portion 13 is fitted, thereby causing the microplate. It is possible to make optical measurements on all 20 wells 21.
  • the mirror plate 14 arranged on the upper side of the microplate 20 is fixed, and the set of the light source 12a "arranged on the lower side of the microplate 20 into which the light guide plate portion 13 is fitted and the light receiving sensor 12b" ( The substrate 11 ") can be moved by a moving mechanism.
  • the member arranged on the upper side of the microplate 20 can be fixed, so that dust accompanying scanning falls on the microplate 20. Can be prevented.
  • the present invention is applied to a microplate reader, but it can also be applied to an optical measuring device such as an absorbance meter or a LIF (Laser-Induce Fluorescence) device that measures light from a sample.
  • the light measuring device includes a light detection unit that detects light from the sample, a light guide path that guides the light from the sample to the light detection unit, and a light guide that surrounds the light guide path with a surrounding member made of a pigment-containing resin. It can be configured to include a unit and a unit.
  • the light guide path can have one incident end for incident light from the sample and one emission end optically connected to the photodetector.
  • the light guide path may be a light guide path group having a plurality of light guide paths.
  • the projected area of the light guided by the light guide path group is larger than the area of the light receiving surface of the light detection unit, and the light passing through the light guide path group is diffused between the light guide path group and the light detection unit. It is possible to have a configuration in which a diffusion portion is arranged. In this case as well, compact and highly accurate optical measurement is possible.
  • Microplate reader 11a, 11a'... Floodlight substrate, 11b ... Measurement substrate, 11c ... Aperture section, 12a ... Light source, 12b ... Light receiving sensor, 13 ... Light guide plate section, 13a ... Light receiving guide Optical path, 13b ... Encircling member, 13c ... Diffusing part, 14 ... Mirror plate, 14a ... Reflective surface, 15 ... Housing, 18A, 18B ... Microplate reader unit, 20 ... Microplate, 21 ... Well

Abstract

Disclosed are a light measurement device and microplate reader that can be made to be compact and can highly accurately measure light from a sample. The microplate reader comprises a housing, light projection units, light reception units, and light guide paths. A plurality of sets of a light projection unit, a light reception unit, and light guide paths are provided so as to correspond to single wells. The microplate reader further comprises a light guide part that is formed by enclosing a plurality of groups of the light guide paths in an enclosing member comprising a pigment-containing resin. The light emitted from one light projection unit passes through one light guide path and arrives at one light reception unit.

Description

光測定装置およびマイクロプレートリーダーOptical measuring device and microplate reader
 本発明は、試料に対して光学的測定を行う光測定装置およびマイクロプレートリーダーに関する。 The present invention relates to an optical measuring device and a microplate reader that perform optical measurement on a sample.
 従来、例えばアクリル、ポリエチレン、ポリスチレン、ガラス等からなり、多数の窪み(ウェル)が設けられた平板状のマイクロプレートを用いて、試薬の分離、合成、抽出、分析、細胞培養などが行われている。例えば、抗体が固定された各ウェルに抗原を含む試薬を注入することにより発生する抗体抗原反応(酵素免疫反応)に関する測定(例えば、ELISA(Enzyme-Linked Immuno Sorbent Assay)法による測定)が、マイクロプレートを用いて行われる。
 マイクロプレートの各ウェルに収容された試料に対しては、例えば、当該試料の光学的性質が測定される。この測定は、上記試料に対して光学的測定を行う測定装置であるマイクロプレートリーダーによって行われる。マイクロプレートリーダーは、例えば、吸光、蛍光、化学発光、蛍光偏光等の光学的性質を測定可能である。
Conventionally, reagent separation, synthesis, extraction, analysis, cell culture, etc. have been performed using a flat plate-shaped microplate made of, for example, acrylic, polyethylene, polystyrene, glass, etc., and provided with a large number of recesses (wells). There is. For example, measurement of antibody-antigen reaction (enzyme-linked immunosorbent assay) generated by injecting a reagent containing an antigen into each well on which an antibody is immobilized (for example, measurement by ELISA (Enzyme-Linked Immuno Sorbent Assay) method) is microscopic. It is done using a plate.
For the sample contained in each well of the microplate, for example, the optical properties of the sample are measured. This measurement is performed by a microplate reader, which is a measuring device that performs optical measurement on the sample. The microplate reader can measure optical properties such as absorption, fluorescence, chemiluminescence, and fluorescence polarization.
 従来のマイクロプレートリーダーとして、例えば特許文献1(特開2014-41121号公報)に記載の技術がある。特許文献1(特開2014-41121号公報)に記載のマイクロプレートリーダーは、試料に対して光照射を行ったり、光照射された試料からの発光を観測し光測定を行ったりするための光学的測定/検出装置(測定ヘッド)を有する。測定ヘッドからマイクロプレートへの光照射は、マイクロプレートの各ウェルの下方向から行われ、測定ヘッドは、各ウェルの上方へ放出される観測光を測定する。測定ヘッドは固定されており、マイクロプレートは、マイクロプレートリーダーの駆動機構により、測定ヘッドの検出軸(マイクロプレートに垂直な方向の軸(Z軸))にウェルが位置するように、2次元方向(X方向、Y方向)に走査される。 As a conventional microplate reader, for example, there is a technique described in Patent Document 1 (Japanese Unexamined Patent Publication No. 2014-41121). The microplate reader described in Patent Document 1 (Japanese Unexamined Patent Publication No. 2014-41121) is an optical device for irradiating a sample with light or observing light emission from the light-irradiated sample to perform light measurement. It has a target measurement / detection device (measurement head). Light irradiation from the measuring head to the microplate is performed from below each well of the microplate, and the measuring head measures the observed light emitted above each well. The measuring head is fixed, and the microplate is two-dimensionally oriented by the drive mechanism of the microplate reader so that the wells are located on the detection axis of the measuring head (the axis perpendicular to the microplate (Z axis)). (X direction, Y direction) is scanned.
 また、特許文献2(特開2009-103480号公報)には、携帯可能な程度に小型化されたマイクロプレートリーダーが開示されている。特許文献2(特開2009-103480号公報)に記載のマイクロプレートリーダーは、8つのウェルが一列に配置された8連のマイクロプレートを挿入可能な空間を有し、当該空間内をマイクロプレートがスライド可能に構成されている。このマイクロプレートリーダーは、上記空間の上部かつ、マイクロプレートのウェル上面に対向する位置から、当該ウェルに保持される試料へ光が照射される構成を有する。また、上記空間の下部には、上記試料から放出される光を検出するフォトダイオードが設けられている。マイクロプレートリーダーは、マイクロプレートを上記空間内においてスライドさせながら光測定を行う。 Further, Patent Document 2 (Japanese Unexamined Patent Publication No. 2009-103480) discloses a microplate reader that is miniaturized to a portable degree. The microplate reader described in Patent Document 2 (Japanese Unexamined Patent Publication No. 2009-103480) has a space into which eight microplates in which eight wells are arranged in a row can be inserted, and the microplate can be inserted into the space. It is configured to be slidable. The microplate reader has a configuration in which light is applied to the sample held in the well from a position facing the upper surface of the well of the microplate from the upper part of the space. Further, in the lower part of the space, a photodiode for detecting the light emitted from the sample is provided. The microplate reader performs light measurement while sliding the microplate in the space.
特開2014-41121号公報Japanese Unexamined Patent Publication No. 2014-41121 特開2009-103480号公報Japanese Unexamined Patent Publication No. 2009-103480
 しかしながら、上記特許文献1(特開2014-41121号公報)に記載されたマイクロプレートリーダーは、1回の光測定毎に都度、マイクロプレートを走査させるための駆動機構が必須となり、装置自体が大がかりとなる。
 そのため、ライフサイエンス分野におけるポイントオブケア(POCT)検査のような分野で要請される装置の小型化への対応は難しい。
However, the microplate reader described in Patent Document 1 (Japanese Unexamined Patent Publication No. 2014-41121) requires a drive mechanism for scanning the microplate each time each optical measurement is performed, and the apparatus itself is large-scale. It becomes.
Therefore, it is difficult to respond to the miniaturization of equipment required in fields such as point-of-care (POCT) inspection in the life science field.
 また、上記特許文献2(特開2009-103480号公報)に記載されたマイクロプレートリーダーは、マイクロプレートを挿入する空間に対して外光がノイズ光として入射するおそれがあり、各ウェルに収容されている試料の光測定を高精度に行うことができない。 Further, the microplate reader described in Patent Document 2 (Japanese Unexamined Patent Publication No. 2009-103480) is accommodated in each well because external light may be incident as noise light in the space where the microplate is inserted. It is not possible to measure the light of the sample with high accuracy.
 そこで、本発明は、小型化が可能であり、試料の光測定を高精度に行うことができる光測定装置およびマイクロプレートリーダーを提供することを課題としている。 Therefore, an object of the present invention is to provide an optical measuring device and a microplate reader that can be miniaturized and can perform optical measurement of a sample with high accuracy.
 上記課題を解決するために、本発明に係る光測定装置の一態様は、試料からの光を測定する光測定装置であって、前記試料からの光を検出する光検出部と、前記試料からの光を前記光検出部に導光する導光路と、前記導光路を、光を吸収する特性を有する顔料を含有する顔料含有樹脂によりなる包囲部材により包囲した導光部と、を備え、前記導光路は、1つの入射端と1つの出射端とを有し、前記入射端は、前記試料からの光を入射させるものであって、前記出射端は、前記光検出部に光学的に接続している。 In order to solve the above problems, one aspect of the light measuring device according to the present invention is a light measuring device that measures light from a sample, that is, a light detecting unit that detects light from the sample and a light detecting unit that detects light from the sample. A light guide path that guides the light of the light to the light detection unit, and a light guide unit that surrounds the light guide path with a surrounding member made of a pigment-containing resin containing a pigment having a property of absorbing light. The light guide path has one incident end and one exit end, the incident end is for incidenting light from the sample, and the exit end is optically connected to the light detection unit. are doing.
 このように、試料からの光を光検出部に導光する導光路を、外光や散乱光を吸収可能な顔料含有樹脂によりなる包囲部材により包囲するので、外光や散乱光等が迷光(ノイズ光)となって光検出部に入射されることを抑制することができる。 In this way, the light guide path that guides the light from the sample to the light detection unit is surrounded by a surrounding member made of a pigment-containing resin that can absorb external light and scattered light, so that external light, scattered light, and the like are stray light ( It is possible to prevent the light from being incident on the light detection unit as noise light).
 また、上記の光測定装置において、前記導光部は、複数の前記導光路を有する導光路群を包囲部材により包囲し、前記導光路群により導光される光の投影面積は、前記光検出部の受光面の面積よりも大きく、前記導光路群と前記光検出部との間に、前記導光路群を通過した光を拡散する拡散部が配置されていてもよい。
 このように、試料からの光を光検出部に導光する複数の導光路を有する導光路群を設けることで、試料からの光を良好なS/N比で効率的に光検出部へ導光させることができる。また、導光路群と受光部との間に拡散部を設けることで、導光路群を通過した光を拡散して均一化し、光検出部に受光させることができる。そのため、光検出部の受光面積が小さい場合であっても、導光路群を通過した光を適切に光検出部に受光させることができる。したがって、光測定を高精度に行うことができる。
Further, in the above-mentioned optical measuring device, the light guide unit surrounds a light guide path group having a plurality of the light guide paths by a surrounding member, and the projected area of the light guided by the light guide path group is the light detection. A diffusion unit that is larger than the area of the light receiving surface of the unit and diffuses the light that has passed through the light guide path group may be arranged between the light guide path group and the light detection unit.
In this way, by providing a light guide path group having a plurality of light guide paths for guiding the light from the sample to the light detection unit, the light from the sample is efficiently guided to the light detection unit with a good S / N ratio. It can be made to shine. Further, by providing a diffusing portion between the light guide path group and the light receiving portion, the light passing through the light guide path group can be diffused and made uniform, and the light detection unit can receive the light. Therefore, even when the light receiving area of the photodetector is small, the light passing through the light guide path group can be appropriately received by the photodetector. Therefore, the optical measurement can be performed with high accuracy.
 また、本発明に係るマイクロプレートリーダーの一態様は、筐体と、前記筐体内において、配置される複数のウェルを有するマイクロプレートの1つのウェルに対応した投光部と、前記投光部から放出された光が前記マイクロプレートの1つのウェルを透過した透過光を受光する受光部と、前記受光部と前記マイクロプレートとの間に配置され、前記投光部から放出され、前記ウェルを透過した光を、前記受光部へ導光する導光路と、を備え、1つのウェルに対応した前記投光部と前記受光部と前記導光路との組が複数設けられていて、前記導光路の複数を、光を吸収する特性を有する顔料を含有する顔料含有樹脂によりなる包囲部材により包囲した導光部と、をさらに備え、1つの前記投光部から放出された光は、1つの前記導光路を通過して1つの前記受光部に到達する。 Further, one aspect of the microplate reader according to the present invention is from a housing, a light projecting unit corresponding to one well of a microplate having a plurality of wells arranged in the housing, and the light projecting unit. The emitted light is arranged between a light receiving portion that receives the transmitted light transmitted through one well of the microplate and the light receiving portion and the microplate, is emitted from the light projecting portion, and is transmitted through the well. A light guide path for guiding the light to the light receiving section is provided, and a plurality of pairs of the light projecting section, the light receiving section, and the light guide path corresponding to one well are provided, and the light guide path is provided. A plurality of light guide portions surrounded by a surrounding member made of a pigment-containing resin containing a pigment having a property of absorbing light are further provided, and the light emitted from one of the light projecting portions is one of the above-mentioned guides. It passes through the optical path and reaches one of the light receiving parts.
 このように、1つのウェルに投光部と受光部と導光路とが対応して設けられており、投光部と受光部と導光路との組が複数設けられている。そして、導光路の複数を、外光や散乱光を吸収可能な顔料含有樹脂により包囲した導光部をさらに備える。したがって、外光や散乱光等が迷光(ノイズ光)となって受光部に入射されることを抑制することができる。
 また、複数の投光部から放出された光が1つのウェルに対応する受光用導光路を通過して1つの受光部に到達しないようにすることができるため、適切に測定誤差を低減することができる。したがって、高精度な測定が可能となる。
As described above, the light projecting unit, the light receiving unit, and the light guide path are provided in one well correspondingly, and a plurality of pairs of the light projecting unit, the light receiving unit, and the light guide path are provided. Further, a light guide portion is further provided in which a plurality of light guide paths are surrounded by a pigment-containing resin capable of absorbing external light and scattered light. Therefore, it is possible to suppress that external light, scattered light, or the like becomes stray light (noise light) and is incident on the light receiving portion.
Further, since the light emitted from the plurality of light projecting units can be prevented from passing through the light receiving light path corresponding to one well and reaching one light receiving unit, the measurement error can be appropriately reduced. Can be done. Therefore, highly accurate measurement is possible.
 また、上記のマイクロプレートリーダーにおいて、前記導光路は、複数の受光用導光路からなる導光路群であり、1つの前記導光路群により導光される光の投影面積は、1つの前記受光部の受光面の面積よりも大きく、前記導光路群と前記受光部との間に、1つの前記導光路群を通過した光を拡散する拡散部が配置されており、1つの前記投光部から放出された光は、1つの前記導光路群を通過して前記拡散部により拡散されて1つの前記受光部に到達するようにしてもよい。
 このように、1つのウェルに対して複数の受光用導光路(導光路群)を設けることで、1つのウェルを通過した光を良好なS/N比で効率的に受光部へ導光させることができる。また、導光路群と受光部との間に拡散部を設けることで、導光路群を通過した光を拡散して均一化し、受光部に受光させることができる。そのため、受光部の受光面積が小さい場合であっても、導光路群を通過した光を適切に受光部に受光させることができる。
Further, in the above-mentioned microplate reader, the light guide path is a light guide path group composed of a plurality of light receiving light paths, and the projected area of light guided by one light guide path group is one light receiving portion. A diffuser portion that diffuses the light that has passed through the light guide path group is arranged between the light guide path group and the light receiving portion, which is larger than the area of the light receiving surface of the light receiving path group. The emitted light may pass through one of the light guide paths and be diffused by the diffusing portion to reach the one light receiving portion.
In this way, by providing a plurality of light receiving light paths (light guide paths) for one well, the light passing through one well is efficiently guided to the light receiving portion with a good S / N ratio. be able to. Further, by providing a diffusing portion between the light guide path group and the light receiving portion, the light passing through the light guide path group can be diffused and made uniform, and the light receiving portion can receive the light. Therefore, even when the light receiving area of the light receiving unit is small, the light passing through the light guide path group can be appropriately received by the light receiving unit.
 また、上記のマイクロプレートリーダーにおいて、前記1つのウェルに対応した前記投光部と前記受光部と前記導光路群との組は、少なくとも前記マイクロプレートのウェルの数だけ設けられていてもよい。
 この場合、マイクロプレートの各ウェルに収容される試料の全ての光測定をほぼ同時に行うことが可能となり、測定時間を短縮することができる。また、従来のようなマイクロプレートを走査させるための複雑な駆動機構等が不要であるため、小型化を実現することができる。
Further, in the microplate reader, at least the number of pairs of the light emitting unit, the light receiving unit, and the light guide path group corresponding to the one well may be provided as many as the number of wells of the microplate.
In this case, all the optical measurements of the sample contained in each well of the microplate can be performed at almost the same time, and the measurement time can be shortened. Further, since a complicated drive mechanism or the like for scanning the microplate as in the conventional case is not required, miniaturization can be realized.
 さらに、上記のマイクロプレートリーダーにおいて、前記1つのウェルに対応した前記投光部と前記受光部と前記導光路群との組は、前記マイクロプレートのウェルの数より少なく、前記マイクロプレートの全てのウェルに対応するように、前記投光部と前記受光部と前記導光路群との組に対して、前記マイクロプレートを相対的に逐次移動させる移動機構を有していてもよい。
 この場合、投光部と受光部との組をマイクロプレートの全てのウェルに対応させて設ける必要がなく、大幅に小型化することができる。また、投光部と受光部との組に対してマイクロプレートを相対的に逐次移動させることで、マイクロプレートの各ウェルに収容される試料の全ての光測定を行うことが可能である。
Further, in the microplate reader, the number of pairs of the light emitting unit, the light receiving unit, and the light guide path group corresponding to the one well is less than the number of wells of the microplate, and all of the microplates. A moving mechanism for sequentially moving the microplate relative to the pair of the light emitting unit, the light receiving unit, and the light guide path group may be provided so as to correspond to the wells.
In this case, it is not necessary to provide a pair of the light emitting unit and the light receiving unit corresponding to all the wells of the microplate, and the size can be significantly reduced. Further, by sequentially moving the microplate relative to the pair of the light emitting unit and the light receiving unit, it is possible to measure all the light of the sample contained in each well of the microplate.
 また、上記のマイクロプレートリーダーにおいて、前記1つのウェルに対応した前記投光部と前記受光部と前記導光路群との組は、前記マイクロプレートの一つの辺のウェルの数だけ設けられており、前記移動機構は、前記投光部と前記受光部と前記導光路群との組に対して、前記マイクロプレートを、前記一つの辺に直交する方向にのみ相対的に逐次移動させてもよい。
 この場合、移動機構による移動を1軸方向のみの移動とすることができる。そのため、移動機構の構造を簡略化することができ、安価に構成することができる。また、薄型化を実現することができるので、例えばインキュベータ内の培養空間などの限られた空間内にも設置することが可能となる。
Further, in the microplate reader, the number of pairs of the light emitting unit, the light receiving unit, and the light guide path group corresponding to the one well is provided as many as the number of wells on one side of the microplate. The moving mechanism may sequentially move the microplate relative to the pair of the light emitting unit, the light receiving unit, and the light guide path group only in a direction orthogonal to the one side. ..
In this case, the movement by the movement mechanism can be the movement in only one axial direction. Therefore, the structure of the moving mechanism can be simplified and can be constructed at low cost. Further, since the thickness can be reduced, it can be installed in a limited space such as a culture space in an incubator.
 さらに、上記のマイクロプレートリーダーにおいて、前記投光部は、前記マイクロプレートの一方の側に配置され、前記受光部は、前記マイクロプレートを挟んで前記投光部とは反対側に配置されていてもよい。
 この場合、投光部から放出された光がウェルを透過し、導光路群を通過して受光部に到達する構成のマイクロプレートリーダーにおいて、マイクロプレートの各ウェルに収容された試料の光測定を容易かつ高精度に行うことができる。
Further, in the microplate reader, the light emitting portion is arranged on one side of the micro plate, and the light receiving portion is arranged on the opposite side of the micro plate from the light emitting portion. May be good.
In this case, in a microplate reader having a configuration in which the light emitted from the light projecting unit passes through the wells, passes through the light guide path group, and reaches the light receiving unit, the light measurement of the sample contained in each well of the microplate is performed. It can be done easily and with high accuracy.
 また、上記のマイクロプレートリーダーにおいて、前記投光部および前記受光部は、前記マイクロプレートの一方の側に配置され、前記導光路群は、前記投光部と前記受光部との間に配置され、前記マイクロプレートを挟んで前記投光部および前記受光部とは反対側に配置され、前記投光部から放出され前記ウェルを透過した光を、前記受光部へ反射させる反射部材と、前記受光部に入射する光の角度成分を制限する制限部と、をさらに備えていてもよい。
 この場合、投光部から放出された光がウェルを透過し、反射部材によって反射され、導光路群を通過して受光部に到達する構成のマイクロプレートリーダーにおいて、マイクロプレートの各ウェルに収容された試料の光測定を容易かつ高精度に行うことができる。
Further, in the microplate reader, the light projecting unit and the light receiving unit are arranged on one side of the micro plate, and the light guide path group is arranged between the light emitting unit and the light receiving unit. A reflective member which is arranged on the opposite side of the light emitting portion and the light receiving portion with the micro plate interposed therebetween and reflects the light emitted from the light emitting portion and transmitted through the well to the light receiving portion, and the light receiving portion. It may further include a limiting portion that limits the angular component of the light incident on the portion.
In this case, in a microplate reader having a configuration in which the light emitted from the light projecting portion passes through the wells, is reflected by the reflecting member, passes through the light guide path group, and reaches the light receiving portion, it is accommodated in each well of the microplate. The optical measurement of the sample can be performed easily and with high accuracy.
 さらに、上記のマイクロプレートリーダーにおいて、前記拡散部における光子の平均自由行程は、前記拡散部の光通過方向における厚みよりも短くてもよい。この場合、拡散部において確実に散乱を起こすことができる。
 また、上記のマイクロプレートリーダーにおいて、前記拡散部は、誘電体微粒子が内部に分散された樹脂により構成されていてもよい。この場合、拡散部において適切に散乱を起こすことができる。
 さらに、上記のマイクロプレートリーダーにおいて、前記誘電体微粒子は、酸化チタン(TiO2)、酸化ケイ素(SiO2)、酸化亜鉛(ZnO)および酸化マグネシウム(MgO)のいずれかを含むことができる。この場合、拡散部において適切に散乱を起こすことができる。
Further, in the above-mentioned microplate reader, the mean free path of photons in the diffusing portion may be shorter than the thickness of the diffusing portion in the light passing direction. In this case, scattering can be reliably caused in the diffusion portion.
Further, in the above-mentioned microplate reader, the diffusion portion may be composed of a resin in which dielectric fine particles are dispersed inside. In this case, scattering can be appropriately caused in the diffusion portion.
Further, in the above-mentioned microplate reader, the dielectric fine particles may contain any one of titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), zinc oxide (ZnO) and magnesium oxide (MgO). In this case, scattering can be appropriately caused in the diffusion portion.
 また、上記のマイクロプレートリーダーにおいて、前記導光路は、前記マイクロプレートのウェルに対応して同数設けられており、前記導光部は、前記マイクロプレートの底面側に形成された凹部に嵌め込まれて当該マイクロプレートの底面と密着していてもよい。
 このように、導光部は、マイクロプレートの底面側に形成された凹部に嵌め込まれて当該マイクロプレートの底面と密着していてもよい。この場合、各ウェルと各ウェルにそれぞれ対応する導光路との位置決めを容易に行うことができるとともに、光測定中の両者の位置ずれを抑制することができる。また、マイクロプレートと導光部と間に隙間が生じることを適切に抑制することができるので、導光路への外光の回り込みを適切に抑制することができる。
Further, in the microplate reader, the same number of light guide paths are provided corresponding to the wells of the microplate, and the light guide portions are fitted into recesses formed on the bottom surface side of the microplate. It may be in close contact with the bottom surface of the microplate.
In this way, the light guide portion may be fitted into the recess formed on the bottom surface side of the microplate and may be in close contact with the bottom surface of the microplate. In this case, the positioning of each well and the light guide path corresponding to each well can be easily performed, and the misalignment between the two during optical measurement can be suppressed. Further, since it is possible to appropriately suppress the formation of a gap between the microplate and the light guide portion, it is possible to appropriately suppress the wraparound of external light into the light guide path.
 さらに、上記のマイクロプレートリーダーにおいて、前記1つのウェルに対応した前記投光部と前記受光部との組は、少なくとも前記マイクロプレートのウェルの数だけ設けられていてもよい。
 この場合、マイクロプレートの各ウェルに収容される試料の全ての光測定をほぼ同時に行うことが可能となり、測定時間を短縮することができる。また、従来のようなマイクロプレートを走査させるための複雑な駆動機構等が不要であるため、小型化を実現することができる。
Further, in the microplate reader, the pair of the light emitting unit and the light receiving unit corresponding to the one well may be provided at least as many as the number of wells of the microplate.
In this case, all the optical measurements of the sample contained in each well of the microplate can be performed at almost the same time, and the measurement time can be shortened. Further, since a complicated drive mechanism or the like for scanning the microplate as in the conventional case is not required, miniaturization can be realized.
 また、上記のマイクロプレートリーダーにおいて、前記1つのウェルに対応した前記投光部と前記受光部との組は、前記マイクロプレートのウェルの数より少なく、前記マイクロプレートの全てのウェルに対応するように、前記投光部と前記受光部との組に対して、前記導光部が嵌め込まれた前記マイクロプレートを相対的に逐次移動させる移動機構を有していてもよい。
 この場合、投光部と受光部との組をマイクロプレートの全てのウェルに対応させて設ける必要がなく、大幅に小型化することができる。また、投光部と受光部との組に対してマイクロプレートを相対的に逐次移動させることで、マイクロプレートの各ウェルに収容される試料の全ての光測定を行うことが可能である。
Further, in the above-mentioned microplate reader, the pair of the light emitting part and the light receiving part corresponding to the one well is less than the number of wells of the microplate, and corresponds to all the wells of the microplate. In addition, it may have a moving mechanism for sequentially moving the microplate in which the light guide portion is fitted with respect to the pair of the light emitting portion and the light receiving portion.
In this case, it is not necessary to provide a pair of the light emitting unit and the light receiving unit corresponding to all the wells of the microplate, and the size can be significantly reduced. Further, by sequentially moving the microplate relative to the pair of the light emitting unit and the light receiving unit, it is possible to measure all the light of the sample contained in each well of the microplate.
 さらにまた、上記のマイクロプレートリーダーにおいて、前記1つのウェルに対応した前記投光部と前記受光部との組は、前記マイクロプレートの一つの辺のウェルの数だけ設けられており、前記移動機構は、前記投光部と前記受光部との組に対して、前記導光部が嵌め込まれた前記マイクロプレートを、前記一つの辺に直交する方向にのみ相対的に逐次移動させてもよい。
 この場合、移動機構による移動を1軸方向のみの移動とすることができる。そのため、移動機構の構造を簡略化することができ、安価に構成することができる。また、薄型化を実現することができるので、例えばインキュベータ内の培養空間などの限られた空間内にも設置することが可能となる。
Furthermore, in the microplate reader, the pair of the light emitting unit and the light receiving unit corresponding to the one well is provided as many as the number of wells on one side of the microplate, and the moving mechanism. May sequentially move the microplate in which the light guide portion is fitted to the pair of the light emitting portion and the light receiving portion only in a direction orthogonal to the one side.
In this case, the movement by the movement mechanism can be the movement in only one axial direction. Therefore, the structure of the moving mechanism can be simplified and can be constructed at low cost. Further, since the thickness can be reduced, it can be installed in a limited space such as a culture space in an incubator.
 また、上記のマイクロプレートリーダーにおいて、前記投光部は、前記マイクロプレートの底面とは反対側に配置され、前記受光部は、前記マイクロプレートを挟んで前記投光部とは反対側に配置されていてもよい。
 この場合、投光部から放出された光がウェルを透過し、受光用導光路を通過して受光部に到達する構成のマイクロプレートリーダーにおいて、マイクロプレートの各ウェルに収容された試料の光測定を容易かつ高精度に行うことができる。
Further, in the microplate reader, the light emitting portion is arranged on the side opposite to the bottom surface of the micro plate, and the light receiving portion is arranged on the opposite side of the micro plate with the micro plate in between. You may be.
In this case, the light measured in each well of the microplate is measured by a microplate reader having a configuration in which the light emitted from the light projecting unit passes through the wells, passes through the light receiving light path, and reaches the light receiving unit. Can be performed easily and with high accuracy.
 また、上記のマイクロプレートリーダーにおいて、前記投光部および前記受光部は、前記マイクロプレートの底面側に配置され、前記マイクロプレートを挟んで前記投光部および前記受光部とは反対側に配置され、前記投光部から放出された光を前記受光部へ反射させる反射部材と、前記投光部と前記マイクロプレートとの間に配置され、前記投光部から放出される光を前記ウェルに導光する投光用導光路と、をさらに備え、前記導光部は、前記導光路および前記投光用導光路のそれぞれを、前記顔料含有樹脂によりなる前記包囲部材により包囲してもよい。
 この場合、投光部から放出された光がウェルを透過し、反射部材によって反射され、導光路(受光用導光路)を通過して受光部に到達する構成のマイクロプレートリーダーにおいて、マイクロプレートの各ウェルに収容された試料の光測定を容易かつ高精度に行うことができる。
Further, in the microplate reader, the light emitting portion and the light receiving portion are arranged on the bottom surface side of the micro plate, and are arranged on the opposite side of the light emitting portion and the light receiving portion with the micro plate interposed therebetween. , A reflecting member that reflects the light emitted from the light projecting unit to the light receiving unit, and arranged between the light projecting unit and the microplate, and guides the light emitted from the light projecting unit to the well. A light guide path for light projection is further provided, and the light guide unit may surround each of the light guide path and the light guide path for light projection with the surrounding member made of the pigment-containing resin.
In this case, in the microplate reader having a configuration in which the light emitted from the light projecting portion passes through the well, is reflected by the reflecting member, passes through the light guide path (light receiving light path), and reaches the light receiving portion, the microplate The optical measurement of the sample contained in each well can be easily and accurately performed.
 さらに、上記のマイクロプレートリーダーにおいて、前記導光部は、前記凹部に嵌め込まれた状態において、当該凹部の側壁部によって全周が包囲されていてもよい。この場合、マイクロプレートに対して導光部を適切に位置決めすることができるとともに、マイクロプレートに対する導光部の位置ずれを確実に抑制することができる。
 また、上記のマイクロプレートリーダーにおいて、前記導光部は、前記凹部に対して着脱可能に構成されていてもよい。この場合、マイクロプレートから導光部を取り外し、マイクロプレートのみを交換することが可能となる。また、導光部は柔らかい樹脂により構成することができるため、ウェルに試料が入ったままでも導光部の取り外しが可能である。
 さらに、上記のマイクロプレートリーダーにおいて、前記導光路は、前記1つのウェルに対して複数設けられていてもよい。この場合、1つのウェルを通過した光を良好なS/N比で効率的に受光部へ導光させることができる。したがって、導光部の薄型化が可能となる。
Further, in the above-mentioned microplate reader, the light guide portion may be surrounded by the side wall portion of the recess in a state of being fitted in the recess. In this case, the light guide portion can be appropriately positioned with respect to the microplate, and the misalignment of the light guide portion with respect to the microplate can be reliably suppressed.
Further, in the above-mentioned microplate reader, the light guide portion may be configured to be detachably attached to the recess. In this case, the light guide can be removed from the microplate and only the microplate can be replaced. Further, since the light guide portion can be made of a soft resin, the light guide portion can be removed even when the sample is in the well.
Further, in the above-mentioned microplate reader, a plurality of the light guide paths may be provided for the one well. In this case, the light that has passed through one well can be efficiently guided to the light receiving portion with a good S / N ratio. Therefore, the light guide portion can be made thinner.
 また、上記のマイクロプレートリーダーにおいて、前記マイクロプレートの前記ウェルの底面は球面状であり、前記導光部が前記凹部に嵌め込まれた状態において、前記1つのウェルに対応する前記導光路は、前記ウェルを通過した光が前記球面状の底面にて集光される位置に配置されていてもよい。
 この場合、ウェルを通過した光を適切に受光部へ導光させることができる。
Further, in the microplate reader, the bottom surface of the well of the microplate is spherical, and in a state where the light guide portion is fitted in the recess, the light guide path corresponding to the one well is described. The light that has passed through the well may be arranged at a position where it is focused on the spherical bottom surface.
In this case, the light that has passed through the well can be appropriately guided to the light receiving portion.
 さらに、上記のマイクロプレートリーダーは、前記導光部が前記凹部に嵌め込まれた状態において、前記マイクロプレートと前記導光部とが密着する方向に押圧する押圧部材をさらに備えていてもよい。この場合、マイクロプレートの底面と導光部の上面との密着性を向上させることができる。したがって、マイクロプレートと導光部との隙間が生じることを確実に抑制することができる。
 また、上記のマイクロプレートリーダーは、前記導光部が前記凹部に嵌め込まれた前記マイクロプレートを、前記導光路の光出射端と前記受光部とが対向する位置に位置決めする位置決め部材をさらに備えていてもよい。この場合、マイクロプレートの各ウェル、受光用導光路および受光部の位置決めを容易に行うことができる。
Further, the microplate reader may further include a pressing member that presses the light guide portion in a direction in which the micro plate and the light guide portion are in close contact with each other in a state where the light guide portion is fitted in the recess. In this case, the adhesion between the bottom surface of the microplate and the top surface of the light guide portion can be improved. Therefore, it is possible to reliably suppress the formation of a gap between the microplate and the light guide portion.
Further, the microplate reader further includes a positioning member for positioning the microplate in which the light guide portion is fitted in the recess at a position where the light emitting end of the light guide path and the light receiving portion face each other. You may. In this case, each well of the microplate, the light receiving light path, and the light receiving portion can be easily positioned.
 また、上記のマイクロプレートリーダーにおいて、前記受光用導光路は、光透過性特性を有するシリコーン樹脂により構成されていてもよい。この場合、比較的容易に受光用導光路を形成することができる。
 さらに、上記のマイクロプレートリーダーにおいて、前記顔料含有樹脂は、光透過特性を有する樹脂に前記顔料を含有させたものであり、前記導光路は、前記光透過特性を有する樹脂と同等の樹脂により構成されていてもよい。この場合、受光用導光路と包囲部材との界面における光の反射や散乱を効果的に抑制することができる。したがって、より効果的に迷光による測定誤差を抑制することができる。
Further, in the above-mentioned microplate reader, the light receiving light path may be made of a silicone resin having a light transmissive property. In this case, the light receiving light path can be formed relatively easily.
Further, in the above-mentioned microplate reader, the pigment-containing resin is a resin having a light-transmitting property containing the pigment, and the light guide path is made of a resin equivalent to the resin having the light-transmitting property. It may have been done. In this case, it is possible to effectively suppress the reflection and scattering of light at the interface between the light receiving light guide path and the surrounding member. Therefore, the measurement error due to stray light can be suppressed more effectively.
 また、本発明に係るマイクロプレートリーダーユニットの一態様は、マイクロプレートの1つのウェルに対応した投光部を有する単位光源ユニット部と、マイクロプレートの1つのウェルに対応した受光部と、前記投光部から放出され、対応する前記ウェルが収容する試料を通過した光を、前記受光部へ導光する複数の受光用導光路からなる導光路群と、前記受光用導光路の各々を、光を吸収する特性を有する顔料を含有する顔料含有樹脂により包囲する包囲部材と、前記導光路群を通過した光を拡散する拡散部と、を有する単位導光ユニット部と、を備え、1つの前記単位導光ユニット部が有する前記導光路群により導光される光の投影面積は、1つの前記受光部の受光面の面積よりも大きく、1つの前記単位光源ユニットが有する前記投光部から放出された光は、1つの前記単位導光ユニット部が有する前記導光路群を通過し、前記拡散部により拡散されて1つの前記受光部に到達する。
 これにより、小型化が可能であり、マイクロプレートの各ウェルに収容された試料全ての光測定を短時間で高精度に行うことができるマイクロプレートリーダーを構成することができる。
Further, one aspect of the microplate reader unit according to the present invention is a unit light emitting unit unit having a light emitting unit corresponding to one well of the microplate, a light receiving unit corresponding to one well of the microplate, and the above-mentioned projection. The light guide path group consisting of a plurality of light receiving light guide paths that guide the light emitted from the light unit and passing through the sample contained in the corresponding well to the light receiving unit, and each of the light receiving light guide paths are illuminated. A unit light guide unit unit including a surrounding member surrounded by a pigment-containing resin containing a pigment having a property of absorbing light, and a diffuser unit for diffusing light that has passed through the light guide path group. The projected area of the light guided by the light guide path group of the unit light guide unit unit is larger than the area of the light receiving surface of one light receiving unit, and is emitted from the light projecting unit of one unit light emitting unit. The generated light passes through the light guide path group included in the unit light guide unit unit, is diffused by the diffusion unit, and reaches the light receiving unit.
As a result, it is possible to construct a microplate reader that can be miniaturized and can perform optical measurement of all the samples contained in each well of the microplate in a short time with high accuracy.
 さらに、本発明に係るマイクロプレートリーダーユニットの一態様は、マイクロプレートの1つのウェルにそれぞれ対応した投光部および受光部と、前記投光部から放出され、対応する前記ウェルが収容する試料を通過した光が折り返されて再び前記試料を通過した光を、前記受光部へ導光する複数の受光用導光路からなる導光路群と、前記受光用導光路の各々を、光を吸収する特性を有する顔料を含有する顔料含有樹脂により包囲する包囲部材と、前記導光路群を通過した光を拡散する拡散部と、を有する導光部と、前記受光部に入射する光の角度成分を制限する制限部と、を備え、1つの前記導光部が有する前記導光路群により導光される光の投影面積は、1つの前記受光部の受光面の面積よりも大きく、 1つの前記投光部から放出された光は、1つの前記導光部が有する前記導光路群を通過し、前記拡散部により拡散されて1つの前記受光部に到達する。
 これにより、小型化が可能であり、マイクロプレートの各ウェルに収容された試料全ての光測定を短時間で高精度に行うことができるマイクロプレートリーダーを構成することができる。
Further, one aspect of the microplate reader unit according to the present invention includes a light projecting unit and a light receiving unit corresponding to one well of the microplate, and a sample emitted from the light emitting unit and accommodated in the corresponding well. A characteristic of absorbing light in each of a light receiving path group consisting of a plurality of light receiving light guide paths for guiding the light that has passed through the sample and passing through the sample to the light receiving portion and each of the light receiving light guide paths. Limits the angle component of the light incident on the light receiving portion and the light guide portion having the surrounding member surrounded by the pigment-containing resin containing the pigment having the above, and the diffusing portion for diffusing the light passing through the light guide path group. The projected area of the light guided by the light guide path group of the light guide unit is larger than the area of the light receiving surface of the light receiving unit, and the light projecting is one. The light emitted from the unit passes through the light guide path group included in the light guide unit, is diffused by the diffusion unit, and reaches the light receiving unit.
As a result, it is possible to construct a microplate reader that can be miniaturized and can perform optical measurement of all the samples contained in each well of the microplate in a short time with high accuracy.
 また、本発明に係る光学プレートの一態様は、マイクロプレートの複数のウェルにそれぞれ対応し、前記ウェルに収容された試料を通過した光を導光する導光路と、前記導光路を、光を吸収する特性を有する顔料を含有する顔料含有樹脂により包囲する包囲部材と、を備え、前記マイクロプレートの底面側に形成された凹部に嵌め込まれることで前記マイクロプレートの底面と密着可能である。
 このように、マイクロプレートの凹部に嵌め込み可能な構成であるため、各ウェルと各ウェルにそれぞれ対応する導光路との位置決めを容易に行うことができる。さらに、マイクロプレートの底面と密着可能な構成であるため、マイクロプレートと導光部と間に隙間が生じることを抑制し、導光路への外光の回り込みを抑制することができる。
Further, one aspect of the optical plate according to the present invention corresponds to a plurality of wells of the microplate, and guides the light passing through the sample contained in the wells and the light guide path to guide the light. It is provided with a surrounding member surrounded by a pigment-containing resin containing a pigment having a property of absorbing, and can be brought into close contact with the bottom surface of the microplate by being fitted into a recess formed on the bottom surface side of the microplate.
As described above, since the structure can be fitted into the recess of the microplate, the positioning of each well and the light guide path corresponding to each well can be easily performed. Further, since the structure can be brought into close contact with the bottom surface of the microplate, it is possible to suppress the formation of a gap between the microplate and the light guide portion, and to suppress the wraparound of external light into the light guide path.
 本発明の光測定装置およびマイクロプレートリーダーは、小型化が可能であり、試料の光測定を高精度に行うことができる。
 上記した本発明の目的、態様及び効果並びに上記されなかった本発明の目的、態様及び効果は、当業者であれば添付図面及び請求の範囲の記載を参照することにより下記の発明を実施するための形態(発明の詳細な説明)から理解できるであろう。
The optical measuring device and the microplate reader of the present invention can be miniaturized and can perform optical measurement of a sample with high accuracy.
The above-mentioned purpose, aspect and effect of the present invention and the above-mentioned purpose, aspect and effect of the present invention not described above are to be used by those skilled in the art to carry out the following invention by referring to the attached drawings and the description of the scope of claims. Can be understood from the form of (detailed description of the invention).
図1は、第一の実施形態におけるマイクロプレートリーダーの概略構成図である。FIG. 1 is a schematic configuration diagram of a microplate reader according to the first embodiment. 図2は、光源およびセンサの電源ラインの一例である。FIG. 2 is an example of a power supply line for a light source and a sensor. 図3は、導光路に侵入する外光について説明する図である。FIG. 3 is a diagram for explaining external light entering the light guide path. 図4は、マイクロプレートリーダーのセッティング方法を説明する図である。FIG. 4 is a diagram illustrating a setting method of the microplate reader. 図5は、マイクロプレートリーダーのセッティング方法を説明する図である。FIG. 5 is a diagram illustrating a setting method of the microplate reader. 図6は、マイクロプレートリーダーのセッティング方法を説明する図である。FIG. 6 is a diagram illustrating a setting method of the microplate reader. 図7は、第二の実施形態におけるマイクロプレートリーダーの概略構成図である。FIG. 7 is a schematic configuration diagram of a microplate reader in the second embodiment. 図8は、マイクロプレートリーダーのセッティング方法を説明する図である。FIG. 8 is a diagram illustrating a setting method of the microplate reader. 図9は、マイクロプレートリーダーのセッティング方法を説明する図である。FIG. 9 is a diagram illustrating a setting method of the microplate reader. 図10は、マイクロプレートリーダーのセッティング方法を説明する図である。FIG. 10 is a diagram illustrating a setting method of the microplate reader. 図11は、ミラープレートの別の例を示す図である。FIG. 11 is a diagram showing another example of the mirror plate. 図12は、ミラープレートの別の例を示す図である。FIG. 12 is a diagram showing another example of the mirror plate. 図13は、ミラープレートの別の例を示す図である。FIG. 13 is a diagram showing another example of the mirror plate. 図14は、測定データを一括処理するための構成を示す図である。FIG. 14 is a diagram showing a configuration for batch processing measurement data. 図15は、マイクロプレートリーダーユニットの構成を示す図である。FIG. 15 is a diagram showing a configuration of a microplate reader unit. 図16は、マイクロプレートリーダーユニットの配置例である。FIG. 16 is an arrangement example of the microplate reader unit. 図17は、マイクロプレートリーダーユニットの別の例である。FIG. 17 is another example of a microplate reader unit. 図18は、マイクロプレートリーダーユニットの構成を示す図である。FIG. 18 is a diagram showing a configuration of a microplate reader unit. 図19は、96ウェルのマイクロプレートの測定例である。FIG. 19 is a measurement example of a 96-well microplate. 図20は、6ウェルのマイクロプレートの測定例である。FIG. 20 is a measurement example of a 6-well microplate. 図21は、本実施形態におけるマイクロプレートリーダーの概略構成図である。FIG. 21 is a schematic configuration diagram of a microplate reader according to the present embodiment. 図22は、マイクロプレートの別の例を説明するための図である。FIG. 22 is a diagram for explaining another example of the microplate. 図23は、受光用導光路の一例を示す図である。FIG. 23 is a diagram showing an example of a light receiving light path. 図24は、受光用導光路の比較例を示す図である。FIG. 24 is a diagram showing a comparative example of a light receiving light path. 図25は、マイクロプレートリーダーのセッティング方法を説明する図である。FIG. 25 is a diagram illustrating a setting method of the microplate reader. 図26は、マイクロプレートリーダーのセッティング方法を説明する図である。FIG. 26 is a diagram illustrating a setting method of the microplate reader. 図27は、マイクロプレートリーダーのセッティング方法を説明する図である。FIG. 27 is a diagram illustrating a setting method of the microplate reader. 図28は、導光プレート部の別の例を示す図である。FIG. 28 is a diagram showing another example of the light guide plate portion. 図29は、マイクロプレートの別の例を示す図である。FIG. 29 is a diagram showing another example of the microplate. 図30は、押圧部材および位置決め部材を示す側面図である。FIG. 30 is a side view showing a pressing member and a positioning member. 図31は、押圧部材および位置決め部材を示す上面図である。FIG. 31 is a top view showing a pressing member and a positioning member. 図32は、マイクロプレートリーダーの別の例を示す概略構成図である。FIG. 32 is a schematic configuration diagram showing another example of a microplate reader. 図33は、マイクロプレートリーダーの別の例を示す概略構成図である。FIG. 33 is a schematic configuration diagram showing another example of a microplate reader. 図34は、マイクロプレートリーダーの別の例を示す概略構成図である。FIG. 34 is a schematic configuration diagram showing another example of a microplate reader. 図35は、集光レンズを用いたマイクロプレートリーダーの概略構成図である。FIG. 35 is a schematic configuration diagram of a microplate reader using a condenser lens. 図36は、スキャン式のマイクロプレートリーダーの一例である。FIG. 36 is an example of a scanning microplate reader. 図37は、スキャン式のマイクロプレートリーダーの要部を示す図である。FIG. 37 is a diagram showing a main part of a scanning type microplate reader. 図38は、スキャン式のマイクロプレートリーダーの別の例である。FIG. 38 is another example of a scanning microplate reader. 図39は、1回目の光測定時のマイクロプレートの位置を示す図である。FIG. 39 is a diagram showing the position of the microplate at the time of the first light measurement. 図40は、2回目の光測定時のマイクロプレートの位置を示す図である。FIG. 40 is a diagram showing the position of the microplate at the time of the second light measurement. 図41は、スキャン式のマイクロプレートリーダーの別の例である。FIG. 41 is another example of a scanning microplate reader. 図42は、スキャン式のマイクロプレートリーダーの要部を示す図である。FIG. 42 is a diagram showing a main part of a scan-type microplate reader. 図43は、スキャン式のマイクロプレートリーダーの別の例である。FIG. 43 is another example of a scanning microplate reader. 図44は、スキャン式のマイクロプレートリーダーの別の例である。FIG. 44 is another example of a scanning microplate reader.
 以下、本発明の実施形態を図面に基づいて説明する。
(第一の実施形態)
 図1は、本実施形態におけるマイクロプレートリーダー10Aの概略構成図である。
 マイクロプレートリーダー10Aは、投光用基板11aと、測定用基板11bと、複数の光源(投光部)12aと、複数の受光センサ(受光部)12bと、導光プレート部(導光部)13と、筐体15と、電源部16と、給電ケーブル17a、17bと、を備える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First Embodiment)
FIG. 1 is a schematic configuration diagram of a microplate reader 10A according to the present embodiment.
The microplate reader 10A includes a light projecting substrate 11a, a measuring board 11b, a plurality of light sources (light emitting units) 12a, a plurality of light receiving sensors (light receiving units) 12b, and a light guide plate unit (light guide unit). A 13, a housing 15, a power supply unit 16, and power supply cables 17a and 17b are provided.
 投光用基板11a、測定用基板11b、複数の光源12a、複数の受光センサ12b、導光プレート部13、電源部16および給電ケーブル17a、17bは、上方に開口部を有する筐体15内に配置され、固定されている。本実施形態におけるマイクロプレートリーダー10Aは、測定用基板11bに複数の受光センサ12bが設けられ、当該測定用基板11bの上に導光プレート部13が設けられ、筐体15内における導光プレート部13の上部にマイクロプレート20が設置可能に構成されている。
 また、本実施形態におけるマイクロプレートリーダー10Aは、導光プレート部13の上部に設置されたマイクロプレート20の上方に、投光用基板11aが配置されるよう構成されている。投光用基板11aには複数の光源12aが設けられており、投光用基板11aは、光源12aがマイクロプレート20に対向するように配置される。
The light projecting substrate 11a, the measuring substrate 11b, the plurality of light sources 12a, the plurality of light receiving sensors 12b, the light guide plate portion 13, the power supply portion 16, and the power supply cables 17a and 17b are housed in a housing 15 having an opening at the top. It is placed and fixed. In the microplate reader 10A of the present embodiment, a plurality of light receiving sensors 12b are provided on the measurement substrate 11b, a light guide plate portion 13 is provided on the measurement substrate 11b, and the light guide plate portion in the housing 15 is provided. The microplate 20 can be installed on the upper part of the 13th.
Further, the microplate reader 10A in the present embodiment is configured such that the light projecting substrate 11a is arranged above the microplate 20 installed above the light guide plate portion 13. A plurality of light sources 12a are provided on the light projecting substrate 11a, and the light source 12a is arranged so that the light source 12a faces the microplate 20.
(マイクロプレート)
 マイクロプレート20は、例えばアクリル、ポリエチレン、ポリスチレン、ガラス等からなる平板状の部材である。マイクロプレート20は、例えば長方形状の平板であり、表面に多数のウェル21が設けられている。ウェル21の形状は、例えば平底を有する円柱形状である。また、ウェル21の数は、6個、24個、96個、384個、1536個等であり、容量は数μリットル~数mリットルである。例えば96ウェルのマイクロプレートの場合、各ウェルは8×12で配置される。
(Microplate)
The microplate 20 is a flat plate-shaped member made of, for example, acrylic, polyethylene, polystyrene, glass, or the like. The microplate 20 is, for example, a rectangular flat plate, and a large number of wells 21 are provided on the surface thereof. The shape of the well 21 is, for example, a cylindrical shape having a flat bottom. The number of wells 21 is 6, 24, 96, 384, 1536, etc., and the capacity is several μl to several mL. For example, in the case of a 96-well microplate, each well is arranged in 8x12.
(投光部および受光部)
 光源12aは、光を放出する投光部であり、投光用基板11aの一方の表面(下部表面)に配置される。受光センサ12bは、光を受光する受光部であり、測定用基板11bの一方の表面(上部表面)に配置される。光源12aは、例えば発光ダイオード(LED)であり、受光センサ12bは、例えばRGBカラーセンサである。光源12aは、例えばチップLED(表面実装型LED)とすることができる。この場合、1つの光源12aは、複数の発光部(発光点)を有するチップLEDを含む。
 マイクロプレートリーダー10Aは、光源12aおよび受光センサ12bを、それぞれマイクロプレート20のウェル21と同じ数だけ備える。つまり、マイクロプレート20の1つのウェル21に対し、1つの光源12aおよび1つの受光センサ12bが対応して設けられている。マイクロプレート20のウェル21が96個ある場合、投光用基板11aには96個の光源12aが設けられ、測定用基板11bには96個の受光センサ12bが設けられる。
(Light emitting part and light receiving part)
The light source 12a is a light projecting unit that emits light, and is arranged on one surface (lower surface) of the light projecting substrate 11a. The light receiving sensor 12b is a light receiving unit that receives light, and is arranged on one surface (upper surface) of the measurement substrate 11b. The light source 12a is, for example, a light emitting diode (LED), and the light receiving sensor 12b is, for example, an RGB color sensor. The light source 12a can be, for example, a chip LED (surface mount LED). In this case, one light source 12a includes a chip LED having a plurality of light emitting units (light emitting points).
The microplate reader 10A includes the same number of light sources 12a and light receiving sensors 12b as the number of wells 21 of the microplate 20. That is, one light source 12a and one light receiving sensor 12b are provided corresponding to one well 21 of the microplate 20. When there are 96 wells 21 of the microplate 20, 96 light sources 12a are provided on the light projecting substrate 11a, and 96 light receiving sensors 12b are provided on the measuring substrate 11b.
(投光用基板および測定用基板)
 投光用基板11aは、光源12aが接続される光源用電源ラインを有する。複数の光源12aは、投光用基板11aに設けられた光源用電源ラインに接続され、光源用電源ラインから電力を得ている。投光用基板11aの光源用電源ラインには、電源部16から給電ケーブル17aを介して電力が供給される。
 同様に、測定用基板11bは、受光センサ12bが接続されるセンサ用電源ラインを有する。複数の受光センサ12bは、測定用基板11bに設けられたセンサ用電源ラインに接続され、センサ用電源ラインから電力を得ている。測定用基板11bのセンサ用電源ラインには、電源部16から給電ケーブル17bを介して電力が供給される。
(Light projection board and measurement board)
The light projecting substrate 11a has a light source power supply line to which the light source 12a is connected. The plurality of light sources 12a are connected to a light source power supply line provided on the light projecting substrate 11a, and power is obtained from the light source power supply line. Power is supplied from the power supply unit 16 to the light source power supply line of the light projection board 11a via the power supply cable 17a.
Similarly, the measurement substrate 11b has a sensor power supply line to which the light receiving sensor 12b is connected. The plurality of light receiving sensors 12b are connected to a sensor power supply line provided on the measurement substrate 11b, and power is obtained from the sensor power supply line. Power is supplied from the power supply unit 16 to the sensor power supply line of the measurement board 11b via the power supply cable 17b.
 複数の光源12aは、例えば図2に示すように、光源用電源ラインに対し並列に接続されている。また、同様に複数の受光センサ12bは、例えば図2に示すように、センサ用電源ラインに対し並列に接続されている。
 光源12aおよび受光センサ12bに接続される給電用の配線部は、それぞれ2つである。そのため、本実施形態のように投光部および受光部がそれぞれ96個設けられる場合は、384個の配線が必要となる。このように膨大な配線をコンパクトにまとめるために、投光用基板11aおよび測定用基板11bは、上記配線のパターン(給電回路)が形成されたプリント基板として構成される。なお、測定用基板11bには、受光センサ12bへの給電回路のみならず、センサ出力回路やセンサ出力の外部への通信回路等が設けられていてもよい。
As shown in FIG. 2, for example, the plurality of light sources 12a are connected in parallel to the light source power supply line. Similarly, a plurality of light receiving sensors 12b are connected in parallel to the sensor power supply line, for example, as shown in FIG.
There are two wiring portions for power supply connected to the light source 12a and the light receiving sensor 12b, respectively. Therefore, when 96 light emitting parts and 96 light receiving parts are provided as in the present embodiment, 384 wirings are required. In order to compactly organize such a huge amount of wiring, the floodlight substrate 11a and the measurement substrate 11b are configured as a printed circuit board on which the wiring pattern (feeding circuit) is formed. The measurement substrate 11b may be provided with not only a power supply circuit for the light receiving sensor 12b but also a sensor output circuit, a communication circuit for the outside of the sensor output, and the like.
(導光プレート部)
 導光プレート部13は、受光用導光路13aを備える。受光用導光路13aは、投光用基板11aに設けられた光源12aから放出され、マイクロプレート20のウェル21に入射し、後述するようにウェル21に収容された試料30等を通過して放出される光を受光センサ12bに向けて導光する。
 導光プレート部13は、受光用導光路13aを複数備える。具体的には、マイクロプレート20の1つのウェル21に対し、複数の受光用導光路13a(導光路群)が対応して設けられる。図1では、1つのウェル21に対応する導光路群として、3本の受光用導光路13aを示しているが、1つのウェル21に対応する導光路群を構成する受光用導光路13aの数は、任意に設定することができる。
(Light guide plate)
The light guide plate unit 13 includes a light receiving light path 13a. The light receiving light guide path 13a is emitted from the light source 12a provided on the light projecting substrate 11a, is incident on the well 21 of the microplate 20, and is emitted after passing through the sample 30 or the like housed in the well 21 as described later. The light is guided toward the light receiving sensor 12b.
The light guide plate unit 13 includes a plurality of light receiving light paths 13a. Specifically, a plurality of light receiving light guide paths 13a (light guide path groups) are provided correspondingly to one well 21 of the microplate 20. In FIG. 1, three light receiving light guide paths 13a are shown as a light receiving path group corresponding to one well 21, but the number of light receiving light guide paths 13a constituting the light receiving path group corresponding to one well 21. Can be set arbitrarily.
 受光用導光路13aは、導光プレート部13上にマイクロプレート20が載置された場合に、上記導光路群の光入射端が、マイクロプレート20のウェル21の底面に対応する位置に配置されるように、導光プレート部13に設けられている。すなわち、図示を省略した位置決め手段により、マイクロプレート20は、各ウェル21の底面が、導光路群の光入射端に対向する位置に位置決めされる。また、受光用導光路13aは、上記導光路群の光出射端が、測定用基板11bに設けられた受光センサ12bに対応する位置に配置されるように、導光プレート部13に設けられている。
 また、光源12aは、上記のように位置決めされたマイクロプレート20の上方に投光用基板11aが設置された場合に、マイクロプレート20の各ウェル21に対応する位置に配置されるように、投光用基板11aに設けられている。
In the light receiving light guide path 13a, when the microplate 20 is placed on the light guide plate portion 13, the light incident end of the light guide path group is arranged at a position corresponding to the bottom surface of the well 21 of the microplate 20. As such, it is provided in the light guide plate portion 13. That is, the bottom surface of each well 21 of the microplate 20 is positioned at a position facing the light incident end of the light guide path group by the positioning means (not shown). Further, the light receiving light guide path 13a is provided in the light guide plate portion 13 so that the light emitting end of the light guide path group is arranged at a position corresponding to the light receiving sensor 12b provided on the measurement substrate 11b. There is.
Further, the light source 12a is projected so as to be arranged at a position corresponding to each well 21 of the microplate 20 when the light projecting substrate 11a is installed above the microplate 20 positioned as described above. It is provided on the optical substrate 11a.
 測定用基板11b上に導光プレート部13が配置され、導光プレート部13上にマイクロプレート20が配置され、マイクロプレート20上に投光用基板11aが配置された状態では、光源12aと受光センサ12bとは、鉛直方向に一列に配置される。
 なお、光源12aおよび受光センサ12bの配置は、厳密に鉛直方向に一列である必要はなく、光源12aから放出され、マイクロプレート20のウェル21に収容された試料30等を通過して放出される光が、受光センサ12bに到達可能な配置であればよい。
In a state where the light guide plate portion 13 is arranged on the measurement substrate 11b, the microplate 20 is arranged on the light guide plate portion 13, and the light projection substrate 11a is arranged on the microplate 20, the light source 12a and the light receiving light are received. The sensors 12b are arranged in a row in the vertical direction.
The arrangement of the light source 12a and the light receiving sensor 12b does not have to be strictly in a row in the vertical direction, and the light source 12a and the light receiving sensor 12b are emitted from the light source 12a and passed through the sample 30 or the like housed in the well 21 of the microplate 20. The arrangement may be such that the light can reach the light receiving sensor 12b.
 受光用導光路13aは、光源12aから放出され、マイクロプレート20のウェル21に収容された試料30等を通過して放出される光に対して透明な樹脂(例えば、シリコーン樹脂)により構成される。また、受光用導光路13aは、顔料含有樹脂からなる包囲部材13bにより包囲されている。ここで、顔料含有樹脂は、光透過特性を有する樹脂(例えば、シリコーン樹脂)に、迷光を吸収する特性を有する顔料を含有したものである。上記顔料は、例えば、黒色顔料であるカーボンブラック等を採用することができる。 The light receiving light path 13a is made of a resin (for example, silicone resin) that is transparent to light emitted from the light source 12a and passed through the sample 30 or the like housed in the well 21 of the microplate 20. .. Further, the light receiving light path 13a is surrounded by a surrounding member 13b made of a pigment-containing resin. Here, the pigment-containing resin is a resin having a light transmitting property (for example, a silicone resin) containing a pigment having a property of absorbing stray light. As the pigment, for example, carbon black, which is a black pigment, or the like can be adopted.
 本実施形態では、受光用導光路13aを構成する透明な樹脂と、顔料含有樹脂を構成する光透過性を有する樹脂との材質を同じにする。これにより、両樹脂の界面での反射および散乱が抑制される。また、顔料含有樹脂に入射した迷光は、その顔料含有樹脂で吸収され、受光用導光路13aにほとんど戻らず、迷光の複雑な多重反射がほとんど発生しない。
 図3に示すように、受光用導光路13aに侵入する外光等のノイズ光L11のうち、受光用導光路13aの光軸と同方向に進む成分は非常に少なく、大部分は、受光用導光路13aと顔料含有樹脂からなる包囲部材13bとの界面から顔料含有樹脂へと入射し、顔料により吸収される。このとき、上記界面での反射は、受光用導光路13aを構成する透明な樹脂と、包囲部材13bを構成する顔料含有樹脂との材質を同じとすることにより、発生しない。
In the present embodiment, the material of the transparent resin constituting the light receiving light guide path 13a and the light-transmitting resin constituting the pigment-containing resin are the same. As a result, reflection and scattering at the interface between the two resins are suppressed. Further, the stray light incident on the pigment-containing resin is absorbed by the pigment-containing resin and hardly returns to the light receiving light guide path 13a, so that complicated multiple reflection of the stray light hardly occurs.
As shown in FIG. 3, among the noise light L11 such as external light entering the light receiving light guide path 13a, very few components travel in the same direction as the optical axis of the light receiving light guide path 13a, and most of them are for receiving light. It enters the pigment-containing resin from the interface between the light guide path 13a and the surrounding member 13b made of the pigment-containing resin, and is absorbed by the pigment. At this time, reflection at the interface does not occur because the transparent resin constituting the light receiving light guide path 13a and the pigment-containing resin constituting the surrounding member 13b are made of the same material.
 なお、顔料に入射する外光やその散乱光は、当該顔料によりほぼ吸収されるが、わずかながら顔料表面で散乱される。しかしながら、その散乱光は、再度顔料含有樹脂からなる包囲部材13bへと入射する場合が多く、顔料含有樹脂の顔料により吸収されることになる。
 したがって、図3に示すように、受光用導光路13aから取り出される光の大部分は、受光用導光路13aの光軸に沿った直進光L1となる。
The external light incident on the pigment and the scattered light thereof are substantially absorbed by the pigment, but are slightly scattered on the surface of the pigment. However, the scattered light is often incident on the surrounding member 13b made of the pigment-containing resin again, and is absorbed by the pigment of the pigment-containing resin.
Therefore, as shown in FIG. 3, most of the light extracted from the light receiving light guide path 13a is straight light L1 along the optical axis of the light receiving light guide path 13a.
 ところで、受光用導光路13aの断面積や光路長の設定によっては、顔料表面によりわずかながら散乱される散乱光の一部が、受光用導光路13aの光出射端から放出される場合がある。そのため、受光用導光路13aの断面積や光路長を適宜設定し、その強度を測定に影響しない程度にまで減衰することが好ましい。
 受光用導光路13aの光入射端の面積が大きくなると、受光用導光路13aへ入射する光量は大きくなる。よって、当該光入射端の面積が大きくなると、受光用導光路13aを進む直進光の強度も、受光用導光路13aの光入射端で散乱して光出射端へと散乱光として到達する外光の強度も大きくなる。
By the way, depending on the cross-sectional area of the light receiving light guide path 13a and the setting of the optical path length, a part of the scattered light scattered slightly by the pigment surface may be emitted from the light emitting end of the light receiving light guide path 13a. Therefore, it is preferable to appropriately set the cross-sectional area and the optical path length of the light receiving light guide path 13a and attenuate the intensity to such an extent that it does not affect the measurement.
As the area of the light incident end of the light receiving light guide path 13a increases, the amount of light incident on the light receiving light guide path 13a increases. Therefore, when the area of the light incident end becomes large, the intensity of the straight light traveling through the light receiving light guide path 13a is also scattered at the light incident end of the light receiving light guide path 13a and reaches the light emitting end as scattered light. The strength of is also increased.
 本発明者は、受光用導光路13aの光入射端の面積に対する直進光の強度依存性、および外光の強度依存性を調査した。その結果、受光用導光路13aの直径の増加に対する外光の強度の増加量は、測定光の強度の増加量よりも大きいことがわかった。
 つまり、受光用導光路13aの光入射端の面積が狭いほど、S/N比が向上することがわかった。具体的には、光入射端から光出射端までの距離(L)に対する、受光用導光路13aの光入射端の面積(A)の平方根の比(√A/L)が、0.4以下であると、S/N比が十分に高い光測定が可能となることがわかった。
 したがって、受光用導光路13aの断面積や光路長は、上記の条件を満たすように設定することが好ましい。これにより、散乱光の光測定への悪影響を適切に抑制することができる。
The present inventor investigated the intensity dependence of straight light and the intensity dependence of external light with respect to the area of the light incident end of the light receiving light guide path 13a. As a result, it was found that the amount of increase in the intensity of the external light with respect to the increase in the diameter of the light receiving light guide path 13a is larger than the amount of increase in the intensity of the measured light.
That is, it was found that the smaller the area of the light incident end of the light receiving light guide path 13a, the better the S / N ratio. Specifically, the ratio (√A / L) of the square root of the area (A) of the light incident end of the light receiving light guide path 13a to the distance (L) from the light incident end to the light emitting end is 0.4 or less. Then, it was found that the optical measurement with a sufficiently high S / N ratio becomes possible.
Therefore, it is preferable to set the cross-sectional area and the optical path length of the light receiving light guide path 13a so as to satisfy the above conditions. Thereby, the adverse effect of the scattered light on the light measurement can be appropriately suppressed.
 本実施形態では、1つのウェル21に対して複数の受光用導光路13aからなる導光路群を配置している。上記の条件を満たす複数の受光用導光路13aを1つのウェルに対して複数設けることで、これら複数の受光用導光路13aを使用した場合と同じ測定光強度が得られる1本の受光用導光路13aを使用した場合と比較して、ノイズ光(迷光)の影響を低減させることができる。このように、S/N比が良好な光を導光することができる。
 また、本実施形態では、1つのウェル21に対して設けられた導光路群により導光される光の照射領域(投影面積)は、受光センサ12bの受光面の面積よりも大きく設定されている。これにより、1つのウェル21を透過した光の大部分を導光路群によって導光させることができる。さらに、複数の受光用導光路13aからなる導光路群により導光される光を適切に受光センサ12bの受光面に入射させるために、導光プレート部13は、導光路群と受光センサ12bとの間に拡散部13cを備える。拡散部13cは、1つのウェル21に対応する導光路群を通過した光を拡散させて均一化し、1つの受光センサ12bに受光させる。
In the present embodiment, a light guide path group composed of a plurality of light receiving light guide paths 13a is arranged for one well 21. By providing a plurality of light receiving light guide paths 13a satisfying the above conditions for one well, one light receiving guide can obtain the same measured light intensity as when the plurality of light receiving light guide paths 13a are used. Compared with the case where the optical path 13a is used, the influence of noise light (stray light) can be reduced. In this way, light with a good S / N ratio can be guided.
Further, in the present embodiment, the irradiation region (projected area) of the light guided by the light guide path group provided for one well 21 is set to be larger than the area of the light receiving surface of the light receiving sensor 12b. .. As a result, most of the light transmitted through one well 21 can be guided by the light guide path group. Further, in order to appropriately inject the light guided by the light guide path group including the plurality of light receiving light guide paths 13a onto the light receiving surface of the light receiving sensor 12b, the light guide plate unit 13 includes the light guide path group and the light receiving sensor 12b. A diffusion unit 13c is provided between the two. The diffusion unit 13c diffuses and homogenizes the light that has passed through the light guide path group corresponding to one well 21, and causes one light receiving sensor 12b to receive light.
 拡散部13cは、図1に示すように、平板状の部材からなる。拡散部13cは、例えば、誘電体微粒子が内部に分散された樹脂により構成することができる。ここで、当該樹脂は、受光用導光路13aを通過した光に対して透明な樹脂(シリコーン樹脂)とすることができる。また、誘電体微粒子は、酸化物系の高誘電体微粒子、例えば、酸化チタン(TiO2)、酸化ケイ素(SiO2)、酸化亜鉛(ZnO)および酸化マグネシウム(MgO)のいずれかを含むことができる。誘電体微粒子の粒子径は、光源12aから放出される可視光の波長の光が入射した際に、ミー散乱(Mie散乱)が起こるような径であることが好ましい。 As shown in FIG. 1, the diffusion portion 13c is made of a flat plate-shaped member. The diffusion unit 13c can be made of, for example, a resin in which dielectric fine particles are dispersed inside. Here, the resin can be a resin (silicone resin) that is transparent to the light that has passed through the light receiving light guide path 13a. Further, the dielectric fine particles may contain any of oxide-based high dielectric fine particles, for example, titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), zinc oxide (ZnO) and magnesium oxide (MgO). it can. The particle size of the dielectric fine particles is preferably such that Mie scattering occurs when light having a wavelength of visible light emitted from the light source 12a is incident.
 また、拡散部13cにおける光子の平均自由行程は、拡散部13cの光通過方向における厚みよりも短く設定されている。ここで、光通過方向は、図1における上下方向、すなわち導光路群の光出射端から受光センサ12bの受光面に向かう方向である。
 拡散部13cは、導光プレート部13が測定用基板11bの上方に設置された場合に、拡散部13cの中心部が受光センサ12bの受光面の上方に位置するように、導光プレート部13に埋設されている。
Further, the mean free path of photons in the diffusing portion 13c is set shorter than the thickness of the diffusing portion 13c in the light passing direction. Here, the light passing direction is the vertical direction in FIG. 1, that is, the direction from the light emitting end of the light guide path group toward the light receiving surface of the light receiving sensor 12b.
The light guide plate portion 13c is such that when the light guide plate portion 13 is installed above the measurement substrate 11b, the central portion of the diffuser portion 13c is located above the light receiving surface of the light receiving sensor 12b. It is buried in.
(投光用基板における光源の配置)
 上述したように、マイクロプレート20の1つのウェル21には、1つの光源12aおよび1つの受光センサ12bが対応して配置される。すなわち、1つの光源12aから放出される光が、マイクロプレート20のウェル21が収容する試料30に照射され、試料30とウェル21とを通過して複数の受光用導光路13aに入射し、当該複数の受光用導光路13aから放出される光が拡散部13cにより拡散されて1つの受光センサ12bによりセンシングされる。
 この1つの光源12aに隣接する他の光源12aから放出される光の一部が、試料30およびウェル21を通過して受光用導光路13aに外光として入射した場合であっても、その光の殆どは、図3に示すように、受光用導光路13aと顔料含有樹脂からなる包囲部材13bとの界面から顔料含有樹脂へと入射し、顔料により吸収される。
(Arrangement of light source on the light projection board)
As described above, one light source 12a and one light receiving sensor 12b are correspondingly arranged in one well 21 of the microplate 20. That is, the light emitted from one light source 12a irradiates the sample 30 housed in the well 21 of the microplate 20, passes through the sample 30 and the well 21, and enters the plurality of light receiving light paths 13a. The light emitted from the plurality of light receiving light paths 13a is diffused by the diffusing unit 13c and sensed by one light receiving sensor 12b.
Even when a part of the light emitted from the other light source 12a adjacent to the one light source 12a passes through the sample 30 and the well 21 and is incident on the light receiving light path 13a as external light, the light is emitted. As shown in FIG. 3, most of the light sources enter the pigment-containing resin from the interface between the light receiving light path 13a and the surrounding member 13b made of the pigment-containing resin, and are absorbed by the pigment.
 しかしながら、投光用基板11aにおける光源12aの配置位置によっては、上記の他の光源12aから放出される光の一部が受光用導光路13aに外光として入射し、受光用導光路13aと包囲部材13bとの界面に入射することなく、受光用導光路13aの光出射端から外部に放出される可能性がある。この場合、光測定精度が低くなってしまう。 However, depending on the arrangement position of the light source 12a on the light projecting substrate 11a, a part of the light emitted from the other light source 12a is incident on the light receiving light path 13a as external light and surrounds the light receiving light path 13a. There is a possibility that the light is emitted to the outside from the light emitting end of the light receiving light guide path 13a without being incident on the interface with the member 13b. In this case, the optical measurement accuracy becomes low.
 そこで、本実施形態では、1つのウェル21に対応する複数の受光用導光路13aからなる導光路群を通過して受光センサ12bに到達する光は、1つの光源12aから放出された光となるように、各光源12aの配置、受光用導光路13aの形状、導光路群を構成する受光用導光路13aの配置および数の少なくとも1つを規定する。これにより、隣接する他の光源12aからの光が、受光用導光路13aを包囲する顔料含有樹脂によって吸収されずに外光として直接受光センサ12bに到達することを防止することができる。そのため、例えば、384ウェルのマイクロプレートのようにウェル自体が小型であり、各ウェルに対応させて複数の光源12aを近接させて配置する必要がある場合であっても、隣接する他の光源12aからの光が測定結果に悪影響を及ぼすことを防止し、測定誤差を適切に低減することができる。 Therefore, in the present embodiment, the light that reaches the light receiving sensor 12b through the light guide path group including the plurality of light receiving light guide paths 13a corresponding to one well 21 is the light emitted from one light source 12a. As described above, at least one of the arrangement of the light sources 12a, the shape of the light receiving light guide path 13a, the arrangement and the number of the light receiving light guide paths 13a constituting the light guide path group is defined. As a result, it is possible to prevent the light from the other adjacent light source 12a from directly reaching the light receiving sensor 12b as external light without being absorbed by the pigment-containing resin surrounding the light receiving light guide path 13a. Therefore, for example, even if the well itself is small like a 384-well microplate and it is necessary to arrange a plurality of light sources 12a in close proximity to each well, other adjacent light sources 12a It is possible to prevent the light from the light source from adversely affecting the measurement result and appropriately reduce the measurement error.
 次に、本実施形態におけるマイクロプレートリーダー10Aのセッティング方法について説明する。
 図4に示すように、筐体15内部に測定用基板11b、複数の受光センサ12b、導光プレート部13、電源部16および給電ケーブル17bが固定された状態のマイクロプレートリーダー10Aに対して、作業者は、図5に示すように、各ウェル21に試料30が収容されたマイクロプレート20を設置する。このとき、マイクロプレート20は、導光プレート部13上に載置される。また、このときマイクロプレート20は、各ウェル21の底面が、複数の受光用導光路13aの光入射端に1つずつ対向する位置に配置するように、位置決めされる。
Next, the setting method of the microplate reader 10A in the present embodiment will be described.
As shown in FIG. 4, with respect to the microplate reader 10A in which the measurement substrate 11b, the plurality of light receiving sensors 12b, the light guide plate portion 13, the power supply portion 16 and the power supply cable 17b are fixed inside the housing 15. As shown in FIG. 5, the operator installs a microplate 20 containing the sample 30 in each well 21. At this time, the microplate 20 is placed on the light guide plate portion 13. Further, at this time, the microplate 20 is positioned so that the bottom surface of each well 21 is arranged at a position facing each of the light incident ends of the plurality of light receiving light guide paths 13a.
 次に、図6に示すように、作業者は、マイクロプレート20の上方に投光用基板11aを設置する。このとき、作業者は、投光用基板11a上の複数の光源12aが、それぞれ1個ずつマイクロプレート20の各ウェル21に対応した位置に配置されるように、投光用基板11aをマイクロプレート20の上方に設置する。ここで、投光用基板11a上の複数の光源12aは、当該投光用基板11aをマイクロプレート20の上方に位置合わせしたときに、マイクロプレート20の各ウェル21に対応した位置に配置されるように、予め隣接する光源12aとの間の距離が設定されている。なお、投光用基板11aは、不図示の位置決め部材により上下方向に位置決めがなされるようにしてもよい。 Next, as shown in FIG. 6, the operator installs the light projecting substrate 11a above the microplate 20. At this time, the operator sets the light projecting substrate 11a on the microplate so that the plurality of light sources 12a on the light projecting substrate 11a are arranged at positions corresponding to the wells 21 of the microplate 20 one by one. Install above 20. Here, the plurality of light sources 12a on the light projecting substrate 11a are arranged at positions corresponding to the wells 21 of the microplate 20 when the light projecting substrate 11a is aligned above the microplate 20. As described above, the distance between the adjacent light sources 12a is set in advance. The light projecting substrate 11a may be positioned in the vertical direction by a positioning member (not shown).
 作業者は、投光用基板11aをマイクロプレート20の上方に設置した後、投光用基板11aと電源部16とを給電ケーブル17aにより接続する。その後、作業者は、不図示の電源スイッチ等を操作して、電源部16から給電ケーブル17a、17bを介して各光源12aおよび各受光センサ12bへ電力を供給する。これにより、各光源12aから光が放出される。 After installing the light projecting board 11a above the microplate 20, the operator connects the light projecting board 11a and the power supply unit 16 with the power supply cable 17a. After that, the operator operates a power switch (not shown) or the like to supply power from the power supply unit 16 to each light source 12a and each light receiving sensor 12b via the power supply cables 17a and 17b. As a result, light is emitted from each light source 12a.
 各光源12aから放出された光は、マイクロプレート20の各ウェル21に収容された試料30を通過する。ウェル21を通過した光は、導光プレート部13の複数の受光用導光路13aを通過して拡散部13cによって拡散される。そして、拡散部13cによって拡散され均一化された光は、受光センサ12bによって受光される。このようにして、試料30の光学特性(例えば、吸光特性)が測定される。
 受光センサ12bによる測定結果は、光強度情報として、不図示のデータ通信部を介して外部装置に送信可能であってもよい。この場合、外部装置は、上記の光強度情報をもとに、試料30の光学特性を測定する。
The light emitted from each light source 12a passes through the sample 30 housed in each well 21 of the microplate 20. The light that has passed through the well 21 passes through the plurality of light receiving light guide paths 13a of the light guide plate unit 13 and is diffused by the diffusion unit 13c. Then, the light diffused and homogenized by the diffusing unit 13c is received by the light receiving sensor 12b. In this way, the optical characteristics (for example, absorption characteristics) of the sample 30 are measured.
The measurement result by the light receiving sensor 12b may be transmitted as light intensity information to an external device via a data communication unit (not shown). In this case, the external device measures the optical characteristics of the sample 30 based on the above light intensity information.
 以上説明したように、本実施形態におけるマイクロプレートリーダー10Aは、水平配置されるマイクロプレート20の上方に配置され、マイクロプレート20の1つのウェル21に対応した投光部としての光源12aと、水平配置されるマイクロプレート20の下方に配置され、マイクロプレート20の1つのウェル21に対応した受光部としての受光センサ12bとからなる組を、マイクロプレート20のウェル21の数だけ有する。また、マイクロプレートリーダー10Aは、受光センサ12bとマイクロプレート20との間に配置され、光源12aから放出されウェル21に収容された試料30を通過した光を受光センサ12bへ導光する受光用導光路13aと、受光用導光路13aを顔料含有樹脂により包囲する包囲部材13bと、を有する導光プレート部13を備える。 As described above, the microplate reader 10A in the present embodiment is arranged above the horizontally arranged microplate 20, and is horizontal to the light source 12a as a light projecting unit corresponding to one well 21 of the microplate 20. There are as many sets as the number of wells 21 of the microplate 20 which are arranged below the microplate 20 and which are composed of the light receiving sensor 12b as a light receiving portion corresponding to one well 21 of the microplate 20. Further, the microplate reader 10A is arranged between the light receiving sensor 12b and the microplate 20, and guides the light emitted from the light source 12a and passing through the sample 30 housed in the well 21 to the light receiving sensor 12b. A light guide plate portion 13 having an optical path 13a and a surrounding member 13b that surrounds the light receiving light guide path 13a with a pigment-containing resin is provided.
 このように、本実施形態におけるマイクロプレートリーダー10Aによれば、マイクロプレート20の各ウェル21全てに対応して、当該ウェル21に収容される試料30に光を照射するための光源12aと、当該試料30から放出される光を計測する受光センサ12bが設けられている。
 従来、マイクロプレート20の各ウェル21全てに対応して光源および受光センサを設けるという発想はなく、1回の光測定毎に都度、マイクロプレート20を走査させ、複数回の測定によって全てのウェル21の光測定を行っていた。そのため、全てのウェル21の光測定には時間を要していた。
 本実施形態では、従来のように1回の光測定毎にマイクロプレート20を走査させることなく、1回の測定でマイクロプレート20の各ウェル21に収容される試料30の全ての光測定をほぼ同時に行うことが可能である。したがって、測定時間を短縮することができる。また、マイクロプレート20を走査させるための複雑な駆動機構等が不要であるため、装置サイズを小さくすることが可能である。
As described above, according to the microplate reader 10A in the present embodiment, the light source 12a for irradiating the sample 30 housed in the well 21 with light corresponding to all the wells 21 of the microplate 20 and the said. A light receiving sensor 12b for measuring the light emitted from the sample 30 is provided.
Conventionally, there is no idea of providing a light source and a light receiving sensor corresponding to all the wells 21 of the microplate 20, and the microplate 20 is scanned each time each light measurement is performed, and all the wells 21 are measured by a plurality of measurements. I was measuring the light of. Therefore, it took time to measure the light of all the wells 21.
In the present embodiment, all the light measurements of the sample 30 housed in each well 21 of the microplate 20 can be substantially performed in one measurement without scanning the microplate 20 for each light measurement as in the conventional case. It can be done at the same time. Therefore, the measurement time can be shortened. Further, since a complicated drive mechanism or the like for scanning the microplate 20 is not required, the device size can be reduced.
 また、導光プレート部13は、透明な樹脂(シリコーン樹脂)により構成される受光用導光路13aを、外光や散乱光を吸収可能な顔料含有樹脂からなる包囲部材13bにより包囲した構成を有する。したがって、上記外光や散乱光からのノイズ光(迷光)の影響を抑制することが可能である。
 特に、上記透明な樹脂と、顔料含有樹脂との材質を同じにすることにより、両樹脂の界面での反射や散乱を適切に抑制することができる。つまり、顔料含有樹脂に入射した迷光は当該顔料含有樹脂により吸収され導光路に殆ど戻らず、迷光の複雑な多重反射がほとんど発生しない。また、受光用導光路13aの断面積や光路長を適宜設定することにより、外光の影響を著しく抑制することもできる。
Further, the light guide plate portion 13 has a structure in which a light receiving light guide path 13a made of a transparent resin (silicone resin) is surrounded by a surrounding member 13b made of a pigment-containing resin capable of absorbing external light and scattered light. .. Therefore, it is possible to suppress the influence of noise light (stray light) from the outside light or scattered light.
In particular, by using the same material for the transparent resin and the pigment-containing resin, reflection and scattering at the interface between the two resins can be appropriately suppressed. That is, the stray light incident on the pigment-containing resin is absorbed by the pigment-containing resin and hardly returns to the light guide path, and complicated multiple reflection of the stray light hardly occurs. Further, by appropriately setting the cross-sectional area and the optical path length of the light receiving light guide path 13a, the influence of external light can be remarkably suppressed.
 すなわち、装置内部に外光が進入したとしても、導光プレート部13における受光用導光路13aにおいて、外光の影響は著しく減衰される。よって、マイクロプレートリーダー内部の光学系に対して厳密にノイズ光対策を行う必要がなく、また、そのノイズ光対策のために装置自体が大がかりになることもない。
 以上のようなシリコーン樹脂を用いたモノリシックな光学系の技術を、SOT(Silicone Optical Technologies)と呼称する。本実施形態では、SOT構造をマイクロプレートリーダーの光学系に採用することにより、外光(ノイズ光)の影響をほぼ無視することが可能となり、装置の小型化と高精度な光測定とが実現されたマイクロプレートリーダーとすることができる。
That is, even if the outside light enters the inside of the device, the influence of the outside light is remarkably attenuated in the light receiving light path 13a in the light guide plate portion 13. Therefore, it is not necessary to strictly take noise light countermeasures for the optical system inside the microplate reader, and the device itself does not become large-scale for the noise light countermeasures.
The monolithic optical system technology using the above-mentioned silicone resin is called SOT (Silicone Optical Technologies). In the present embodiment, by adopting the SOT structure for the optical system of the microplate reader, the influence of external light (noise light) can be almost ignored, and the device can be miniaturized and highly accurate optical measurement can be realized. Can be a microplate reader.
 さらに、本実施形態におけるマイクロプレートリーダー10Aにおいて、受光用導光路13aは、マイクロプレート20の1つのウェル21に対して複数設けられている。そして、1つのウェル21に対応する複数の受光用導光路13aにより導光される光の投影面積は、1つのウェル21に対応する1つの受光センサ12bの受光面の面積よりも大きい。
 また、本実施形態では、マイクロプレートリーダー10Aは、1つのウェル21に対応する複数の受光用導光路13aと、1つのウェル21に対応する1つの受光センサ12bとの間に、上記複数の受光用導光路13aを通過した光を拡散する1つの拡散部13cを備える。また、マイクロプレートリーダー10Aは、1つのウェル21に対応する複数の受光用導光路13aを通過し、拡散部13cにより拡散されて受光センサ12bに到達する光は、1つの光源12aから放出された光であるように構成されている。
Further, in the microplate reader 10A of the present embodiment, a plurality of light receiving light guide paths 13a are provided for one well 21 of the microplate 20. The projected area of the light guided by the plurality of light receiving light guide paths 13a corresponding to one well 21 is larger than the area of the light receiving surface of one light receiving sensor 12b corresponding to one well 21.
Further, in the present embodiment, the microplate reader 10A receives the plurality of light receiving light between the plurality of light receiving light guide paths 13a corresponding to one well 21 and one light receiving sensor 12b corresponding to one well 21. It is provided with one diffusion unit 13c that diffuses the light that has passed through the light guide path 13a. Further, the microplate reader 10A passes through a plurality of light receiving light guide paths 13a corresponding to one well 21, and the light diffused by the diffuser 13c and reaches the light receiving sensor 12b is emitted from one light source 12a. It is configured to be light.
 例えば、96ウェルのマイクロプレート20の場合、1つのウェルの直径は7.1mmである。一方、受光部(受光センサ12b)の受光面積は、例えば0.5mm×1mmであり、更には0.25mm×0.5mmといった非常に小さいものもある。このように、ウェル20の底面の面積は、受光部の受光面積よりも大きい。そのため、受光部の受光面積と同等の断面積を有する受光用導光路を用いてウェル20が収容する試料30を透過した光を受光部へ導くように構成した場合、当該試料30を透過した光の全てを受光部へ入射させることができず、光学測定時に得られる光学情報が不足してしまう。 For example, in the case of a 96-well microplate 20, the diameter of one well is 7.1 mm. On the other hand, the light receiving area of the light receiving unit (light receiving sensor 12b) is, for example, 0.5 mm × 1 mm, and further, there is a very small one such as 0.25 mm × 0.5 mm. As described above, the area of the bottom surface of the well 20 is larger than the light receiving area of the light receiving portion. Therefore, when the light transmitted through the sample 30 housed in the well 20 is guided to the light receiving portion by using the light receiving light path having the same cross-sectional area as the light receiving area of the light receiving portion, the light transmitted through the sample 30 is guided. All of the above cannot be incident on the light receiving portion, and the optical information obtained at the time of optical measurement becomes insufficient.
 これに対して、本実施形態では、1つのウェル21に対して、光の投影面積が受光センサ12bの受光面の面積よりも大きくなる複数の受光用導光路13a(導光路群)を設けるので、1つのウェル21に収容された試料30を透過した光を効率良く受光センサ12bへ向けて導光させることができる。また、1つのウェル21に対応する導光路群を通過した光を拡散部13cによって拡散して均一化するので、受光センサ12bの受光面の面積が導光路群により導光される光の投影面積よりも小さい場合であっても、当該導光路群を通過した光を適切に受光センサ12bに受光させることができる。つまり、受光センサ12bの受光面の真上に位置しない受光用導光路13aによって導光された光も、拡散されて受光センサ12bに受光される。したがって、1つのウェルを通過した光の大部分を良好なS/N比で受光センサ12bに受光させることができ、光測定の精度を向上させることができる。 On the other hand, in the present embodiment, a plurality of light receiving light guide paths 13a (light guide path group) are provided for one well 21 so that the projected area of light is larger than the area of the light receiving surface of the light receiving sensor 12b. The light transmitted through the sample 30 housed in one well 21 can be efficiently guided toward the light receiving sensor 12b. Further, since the light passing through the light guide path group corresponding to one well 21 is diffused and made uniform by the diffusing unit 13c, the area of the light receiving surface of the light receiving sensor 12b is the projected area of the light guided by the light guide path group. Even if it is smaller than the above, the light receiving sensor 12b can appropriately receive the light that has passed through the light guide path group. That is, the light guided by the light receiving light guide path 13a that is not located directly above the light receiving surface of the light receiving sensor 12b is also diffused and received by the light receiving sensor 12b. Therefore, most of the light that has passed through one well can be received by the light receiving sensor 12b at a good S / N ratio, and the accuracy of light measurement can be improved.
 ここで、拡散部13cは、誘電体微粒子が内部に分散された樹脂により構成することができる。また、拡散部13cにおける光子の平均自由行程が、拡散部13cの光通過方向における厚みよりも短くなるように設定する。これにより、拡散部13cにおいて確実に散乱を起こすことができ、導光路群を通過した光を確実に受光センサ12bに受光させることができる。
 また、マイクロプレートリーダー10Aは、マイクロプレート20を配置する筐体15を備える。筐体15は、例えば遮光性や断熱性を有する材料により構成することもできる。この場合、マイクロプレート20の側面から入射する外光の影響や温度の影響を抑制することができる。したがって、マイクロプレート20の端部に位置するウェル21の測定データの信頼性を確保することができる。
Here, the diffusing portion 13c can be made of a resin in which dielectric fine particles are dispersed inside. Further, the mean free path of photons in the diffusing portion 13c is set to be shorter than the thickness of the diffusing portion 13c in the light passing direction. As a result, scattering can be reliably caused in the diffusion unit 13c, and the light that has passed through the light guide path group can be reliably received by the light receiving sensor 12b.
Further, the microplate reader 10A includes a housing 15 on which the microplate 20 is arranged. The housing 15 can also be made of, for example, a material having a light-shielding property or a heat-insulating property. In this case, the influence of the external light incident from the side surface of the microplate 20 and the influence of the temperature can be suppressed. Therefore, the reliability of the measurement data of the well 21 located at the end of the microplate 20 can be ensured.
 以上のように、本実施形態におけるマイクロプレートリーダー10Aは、POCT検査等の分野において携帯可能な程度に小型化され、マイクロプレート20の各ウェル21に収容された試料30全ての光測定を短時間で高精度に行うことができる。 As described above, the microplate reader 10A in the present embodiment is miniaturized to a portable degree in the field of POCT inspection and the like, and the optical measurement of all the samples 30 housed in each well 21 of the microplate 20 can be performed in a short time. Can be done with high accuracy.
 なお、本実施形態においては、マイクロプレートリーダー10Aは、受光センサ12bからなる受光部の上に導光プレート部13を配置し、導光プレート部13の上にマイクロプレート20を配置し、マイクロプレート20の上に光源12aを配置する構造である場合について説明した。つまり、上述したマイクロプレートリーダー10Aは、マイクロプレート20のウェル21の上方から光を照射し、ウェル21を通過した光をウェル21の底面側で受光する構造である。
 しかしながら、マイクロプレート20のウェル21の下方から光を照射し、ウェル21を通過した光をウェル21の上方で受光する構造であってもよい。
In the present embodiment, in the microplate reader 10A, the light source plate portion 13 is arranged on the light receiving portion composed of the light receiving sensor 12b, the microplate 20 is arranged on the light guide plate portion 13, and the microplate is arranged. The case where the light source 12a is arranged on the 20 has been described. That is, the above-mentioned microplate reader 10A has a structure that irradiates light from above the well 21 of the microplate 20 and receives the light that has passed through the well 21 on the bottom surface side of the well 21.
However, the structure may be such that light is irradiated from below the well 21 of the microplate 20 and the light that has passed through the well 21 is received above the well 21.
(第二の実施形態)
 次に、本発明の第二の実施形態について説明する。
 上述した第一の実施形態では、マイクロプレート20の一方の側に光源12aが配置され、マイクロプレート20を挟んで光源12aとは反対側に受光センサ12bが配置されている場合について説明した。この第二の実施形態では、マイクロプレート20の一方の側に光源12aおよび受光センサ12bが配置されている場合について説明する。
(Second embodiment)
Next, a second embodiment of the present invention will be described.
In the first embodiment described above, the case where the light source 12a is arranged on one side of the microplate 20 and the light receiving sensor 12b is arranged on the side opposite to the light source 12a across the microplate 20 has been described. In this second embodiment, the case where the light source 12a and the light receiving sensor 12b are arranged on one side of the microplate 20 will be described.
 図7は、本実施形態におけるマイクロプレートリーダー10Bの概略構成図である。この図7においては、図1に示すマイクロプレートリーダー10Aと同一構成を有する部分には、図1と同一符号を付している。
 マイクロプレートリーダー10Bは、投光用基板11a´と、測定用基板11bと、複数の光源(投光部)12aと、複数の受光センサ(受光部)12bと、導光プレート部(導光部)13と、ミラープレート(反射部材)14と、筐体15と、電源部16と、給電ケーブル17a、17bと、を備える。
FIG. 7 is a schematic configuration diagram of the microplate reader 10B according to the present embodiment. In FIG. 7, a portion having the same configuration as the microplate reader 10A shown in FIG. 1 is designated by the same reference numeral as in FIG.
The microplate reader 10B includes a light projecting substrate 11a', a measuring substrate 11b, a plurality of light sources (light emitting units) 12a, a plurality of light receiving sensors (light receiving units) 12b, and a light guide plate unit (light guide unit). ) 13, a mirror plate (reflection member) 14, a housing 15, a power supply unit 16, and power supply cables 17a and 17b.
 本実施形態におけるマイクロプレートリーダー10Bは、測定用基板11bに複数の受光センサ12bが設けられ、当該測定用基板11bの上に導光プレート部13が設けられ、導光プレート部13の上に投光用基板11a´が設けられている。投光用基板11a´には、複数の光源12aが設けられている。そして、筐体15内における投光用基板11a´の上部にマイクロプレート20が設置可能に構成されている。
 また、マイクロプレートリーダー10Bは、導光プレート部13上に設置されたマイクロプレート20の上に、ミラープレート14が配置されるよう構成されている。ミラープレート14のマイクロプレート20と対向する面14aは、反射面(ミラー面)となっている。ミラープレート14は、筐体15の開口部を塞ぎ、マイクロプレート20の上蓋として機能する。
 ここで、投光用基板11a´およびミラープレート14以外の構成は、上述した図1のマイクロプレートリーダー10Aが備える構成と同等である。そのため、以下、構成の異なる部分を中心に説明する。
In the microplate reader 10B of the present embodiment, a plurality of light receiving sensors 12b are provided on the measurement substrate 11b, the light guide plate portion 13 is provided on the measurement substrate 11b, and the light guide plate portion 13 is thrown onto the light guide plate portion 13. An optical substrate 11a'is provided. A plurality of light sources 12a are provided on the light projecting substrate 11a'. Then, the microplate 20 can be installed on the upper part of the light projecting substrate 11a'in the housing 15.
Further, the microplate reader 10B is configured such that the mirror plate 14 is arranged on the microplate 20 installed on the light guide plate portion 13. The surface 14a of the mirror plate 14 facing the microplate 20 is a reflective surface (mirror surface). The mirror plate 14 closes the opening of the housing 15 and functions as an upper lid of the microplate 20.
Here, the configurations other than the light projecting substrate 11a'and the mirror plate 14 are the same as the configurations included in the microplate reader 10A of FIG. 1 described above. Therefore, the parts having different configurations will be mainly described below.
(投光用基板)
 投光用基板11a´は、上述した投光用基板11aと同様に、光源12aが接続される光源用電源ラインを有する。複数の光源12aへ給電方法は、投光用基板11aと同様である。
 投光用基板11a´には、受光用導光路13aと同じ数のアパーチャ部11cが設けられている。アパーチャ部11cは、光源12aから放出され、ウェル21に収容された試料30等を通過して後述するミラープレートにより反射され、再度試料30等を通過して放出される光を通過させることができる。
(Light projection board)
The light projecting substrate 11a ′ has a light source power supply line to which the light source 12a is connected, similarly to the above-described light projecting board 11a. The method of supplying power to the plurality of light sources 12a is the same as that of the light projecting substrate 11a.
The light projecting substrate 11a'is provided with the same number of aperture portions 11c as the light receiving light guide path 13a. The aperture portion 11c can pass the light emitted from the light source 12a, passing through the sample 30 or the like housed in the well 21, reflected by the mirror plate described later, and passing through the sample 30 or the like again. ..
 アパーチャ部11cは、投光用基板11a´が導光プレート部13上に載置された場合に、アパーチャ部11cの光出射端が、導光プレート部13の受光用導光路13aの光入射端に対応する位置に配置されるように、投光用基板11a´に設けられている。また、このアパーチャ部11cは、投光用基板11a´上にマイクロプレート20が載置された場合に、アパーチャ部11cの光入射端が、マイクロプレート20のウェル21の底面に対応する位置に配置されるように、投光用基板11a´に設けられている。また、光源12aは、アパーチャ部11cに隣接して設けられており、この光源12aもマイクロプレート20のウェル21の底面に対応する位置に配置される。
 なお、アパーチャ部11cは、受光用導光路13aに入射する光の角度成分を制限するために、当該受光用導光路13aの光入射端の開口よりも小さい径を有していてもよい。
In the aperture portion 11c, when the light projecting substrate 11a'is placed on the light guide plate portion 13, the light emitting end of the aperture portion 11c is the light incident end of the light receiving light guide path 13a of the light guide plate portion 13. The light projecting substrate 11a'is provided so as to be arranged at a position corresponding to the above. Further, in the aperture portion 11c, when the microplate 20 is placed on the light projection substrate 11a', the light incident end of the aperture portion 11c is arranged at a position corresponding to the bottom surface of the well 21 of the microplate 20. The light projecting substrate 11a'is provided so as to be used. Further, the light source 12a is provided adjacent to the aperture portion 11c, and the light source 12a is also arranged at a position corresponding to the bottom surface of the well 21 of the microplate 20.
The aperture portion 11c may have a diameter smaller than the opening of the light incident end of the light receiving light path 13a in order to limit the angular component of the light incident on the light receiving light path 13a.
(導光プレート部)
 導光プレート部13の構成は、上述した第一の実施形態と同様である。本実施形態では、受光用導光路13aは、投光用基板11a´に設けられた光源12aから放出され、ウェル21に収容された試料30等を通過して後述するミラープレートにより反射され、再度試料30等を通過して放出される光を受光センサ12bに導光する。
(Light guide plate)
The configuration of the light guide plate portion 13 is the same as that of the first embodiment described above. In the present embodiment, the light receiving light path 13a is emitted from the light source 12a provided on the light projecting substrate 11a', passes through the sample 30 or the like housed in the well 21, is reflected by the mirror plate described later, and is again reflected. The light emitted through the sample 30 or the like is guided to the light receiving sensor 12b.
 受光用導光路13aは、導光プレート13上に投光用基板11a´が載置された場合に、受光用導光路13aの光入射端が、投光用基板11a´のアパーチャ部11cに対応する位置に配置されるように、導光プレート部13に設けられている。結果として、受光用導光路13aの光入射端は、導光プレート13上に設置されたマイクロプレート20のウェル21の底面に対応する位置に配置される。 In the light receiving light guide path 13a, when the light emitting substrate 11a'is placed on the light guide plate 13, the light incident end of the light receiving light guide path 13a corresponds to the aperture portion 11c of the light emitting substrate 11a'. The light guide plate portion 13 is provided so as to be arranged at such a position. As a result, the light incident end of the light receiving light guide path 13a is arranged at a position corresponding to the bottom surface of the well 21 of the microplate 20 installed on the light guide plate 13.
(ミラープレート)
 ミラープレート14のマイクロプレート20と対向する面14aは、反射面(ミラー面)となっている。そのため、各光源12aから放出され、マイクロプレート20の各ウェル21に収容された試料30を通過した光は、ミラープレート14に到達後、当該ミラープレート14の反射面14aにより反射される。
 ミラープレート14の反射面14aにより反射された光は、再度マイクロプレート20の各ウェル21に収容された試料30を通過する。試料30を通過した光は、投光用基板11a´に設けられた各アパーチャ部11cと導光プレート部13の各受光用導光路13aとを通過して、各受光センサ12bに入射する。
 なお、ミラープレート14の反射面は完全なミラー面ではなく、ある程度の拡散作用を有する反射面となるよう加工されていてもよい。これにより、ミラープレート14に入射する光がある程度の広がりを有していても、各受光用導光路13aを通過する光の光量を確保することができる。
(Mirror plate)
The surface 14a of the mirror plate 14 facing the microplate 20 is a reflective surface (mirror surface). Therefore, the light emitted from each light source 12a and passing through the sample 30 housed in each well 21 of the microplate 20 reaches the mirror plate 14 and is reflected by the reflecting surface 14a of the mirror plate 14.
The light reflected by the reflecting surface 14a of the mirror plate 14 passes through the sample 30 housed in each well 21 of the microplate 20 again. The light that has passed through the sample 30 passes through each aperture portion 11c provided on the light projecting substrate 11a'and each light receiving light guide path 13a of the light guide plate portion 13 and is incident on each light receiving sensor 12b.
The reflective surface of the mirror plate 14 may be processed so as not to be a perfect mirror surface but a reflective surface having a certain degree of diffusion action. As a result, even if the light incident on the mirror plate 14 has a certain spread, it is possible to secure the amount of light passing through each light receiving light guide path 13a.
 次に、本実施形態におけるマイクロプレートリーダー10Bのセッティング方法について説明する。
 図8に示すように、筐体15内部に測定用基板11b、複数の受光センサ12b、導光プレート部13、投光用基板11a´、複数の光源12a、電源部16および給電ケーブル17a、17bが固定された状態のマイクロプレートリーダー10Bに対して、作業者は、図9に示すように、各ウェル21に試料30が収容されたマイクロプレート20を設置する。このとき、マイクロプレート20は、投光用基板11a´上に載置される。また、このときマイクロプレート20は、各ウェル21の底面が、投光用基板11a´に設けられたアパーチャ部11cを介して受光用導光路13aの光入射端に1つずつ対向する位置に配置するように、位置決めされる。
Next, the setting method of the microplate reader 10B in the present embodiment will be described.
As shown in FIG. 8, a measurement substrate 11b, a plurality of light receiving sensors 12b, a light guide plate portion 13, a light projection substrate 11a', a plurality of light sources 12a, a power supply portion 16, and a power supply cable 17a, 17b are inside the housing 15. As shown in FIG. 9, the operator installs the microplate 20 containing the sample 30 in each well 21 with respect to the microplate reader 10B in which the sample 30 is fixed. At this time, the microplate 20 is placed on the light projecting substrate 11a'. Further, at this time, the microplate 20 is arranged at a position where the bottom surface of each well 21 faces the light incident end of the light receiving light guide path 13a via the aperture portion 11c provided on the light emitting substrate 11a'. It is positioned so that it does.
 次に、図10に示すように、作業者は、マイクロプレート20上にミラープレート14を設置する。このとき、作業者は、ミラープレート14における反射面14aとは反対の面に設けられた把持部14bを持って、ミラープレート14を、筐体15の開口部を塞ぐようにマイクロプレート20上に設置する。なお、ミラープレート14は、不図示の位置決め部材により上下方向に位置決めがなされるようにしてもよい。
 作業者は、ミラープレート14をマイクロプレート20上に設置した後、不図示の電源スイッチ等を操作して、電源部16から給電ケーブル17a、17bを介して各光源12aおよび各受光センサ12bへ電力を供給する。これにより、各光源12aから光が放出される。
Next, as shown in FIG. 10, the operator installs the mirror plate 14 on the microplate 20. At this time, the operator holds the grip portion 14b provided on the surface of the mirror plate 14 opposite to the reflective surface 14a, and places the mirror plate 14 on the microplate 20 so as to close the opening of the housing 15. Install. The mirror plate 14 may be positioned in the vertical direction by a positioning member (not shown).
After installing the mirror plate 14 on the microplate 20, the operator operates a power switch (not shown) or the like to power the light source 12a and the light receiving sensor 12b from the power supply unit 16 via the power supply cables 17a and 17b. To supply. As a result, light is emitted from each light source 12a.
 各光源12aから放出された光は、マイクロプレート20の各ウェル21に収容された試料30を通過してミラープレート14に到達する。そして、ミラープレート14に到達した光は、ミラープレート14の反射面14aによって反射され、再度各ウェル21を通過する。各ウェル21を通過した光は、投光用基板11a´のアパーチャ部11cと導光プレート部13の各受光用導光路13aとを通過し、拡散部13cによって拡散されて受光センサ12bによって受光される。このようにして、試料30の光学特性(例えば、吸光特性)が測定される。
 受光センサ12bによる測定結果は、光強度情報として、不図示のデータ通信部を介して外部装置に送信可能であってもよい。この場合、外部装置は、上記の光強度情報をもとに、試料30の光学特性を測定する。
The light emitted from each light source 12a passes through the sample 30 housed in each well 21 of the microplate 20 and reaches the mirror plate 14. Then, the light that has reached the mirror plate 14 is reflected by the reflecting surface 14a of the mirror plate 14 and passes through each well 21 again. The light that has passed through each well 21 passes through the aperture portion 11c of the light projecting substrate 11a'and the light receiving light path 13a of the light guide plate portion 13, is diffused by the diffusing portion 13c, and is received by the light receiving sensor 12b. To. In this way, the optical characteristics (for example, absorption characteristics) of the sample 30 are measured.
The measurement result by the light receiving sensor 12b may be transmitted as light intensity information to an external device via a data communication unit (not shown). In this case, the external device measures the optical characteristics of the sample 30 based on the above light intensity information.
 以上説明したように、本実施形態におけるマイクロプレートリーダー10Bは、水平配置されるマイクロプレート20の下方に配置され、マイクロプレート20の1つのウェル21に対応した投光部としての光源12aと受光部としての受光センサ12bとからなる組を、マイクロプレート20のウェル21の数だけ有する。また、マイクロプレートリーダー10Bは、マイクロプレート20の上方に配置され、投光部側からウェル21に収容された試料30を通過した光を、受光部側へ反射させるミラープレート14を備える。 As described above, the microplate reader 10B in the present embodiment is arranged below the horizontally arranged microplate 20, and is a light source 12a and a light receiving unit as a light emitting unit corresponding to one well 21 of the microplate 20. There are as many sets of light receiving sensors 12b as the number of wells 21 of the microplate 20. Further, the microplate reader 10B is provided above the microplate 20 and includes a mirror plate 14 that reflects light that has passed through the sample 30 housed in the well 21 from the light emitting portion side to the light receiving portion side.
 さらに、複数の光源12aは、投光用基板11a´に設けられており、投光用基板11a´には、光源12aから放出されてウェル21に収容された試料30を通過し、ミラープレート14の反射面14aによって反射されて、再度試料30を通過した光を通過させるアパーチャ部11cが設けられている。このアパーチャ部11cは、受光用導光路13aに対応した数だけ設けられており、受光用導光路13aの光入射端の開口よりも小さい径を有していてもよい。また、マイクロプレートリーダー10Bは、投光部と受光部との間に配置された導光プレート部13を備える。 Further, the plurality of light sources 12a are provided on the light projecting substrate 11a', and the light emitting substrate 11a' passes through the sample 30 emitted from the light source 12a and housed in the well 21, and the mirror plate 14 There is provided an aperture portion 11c that is reflected by the reflecting surface 14a of the above and allows the light that has passed through the sample 30 to pass through again. The aperture portions 11c are provided in a number corresponding to the light receiving light guide paths 13a, and may have a diameter smaller than the opening of the light incident end of the light receiving light guide paths 13a. Further, the microplate reader 10B includes a light guide plate portion 13 arranged between the light emitting portion and the light receiving portion.
 したがって、本実施形態では、上述した第一の実施形態と同様に、1回の測定でマイクロプレート20の各ウェル21に収容される試料30の全ての光測定をほぼ同時に行うことが可能である。したがって、測定時間を短縮することができる。また、マイクロプレート20を走査させるための複雑な駆動機構等が不要であるため、装置サイズを小さくすることが可能である。
 また、本実施形態では、上述した第一の実施形態と同様に、SOT構造をマイクロプレートリーダーの光学系に採用するので、外光(ノイズ光)の影響をほぼ無視することが可能となり、装置の小型化と高精度な光測定とが実現されたマイクロプレートリーダーとすることができる。
Therefore, in the present embodiment, similarly to the first embodiment described above, it is possible to perform all the optical measurements of the sample 30 housed in each well 21 of the microplate 20 at almost the same time in one measurement. .. Therefore, the measurement time can be shortened. Further, since a complicated drive mechanism or the like for scanning the microplate 20 is not required, the device size can be reduced.
Further, in the present embodiment, as in the first embodiment described above, since the SOT structure is adopted for the optical system of the microplate reader, the influence of external light (noise light) can be almost ignored, and the apparatus can be used. It can be a microplate reader that realizes miniaturization and high-precision optical measurement.
 さらに、本実施形態におけるマイクロプレートリーダー10Bは、上述した第一の実施形態と同様に、受光用導光路13aが、マイクロプレート20の1つのウェル21に対して複数設けられている。そして、1つのウェル21に対応する複数の受光用導光路13aにより導光される光の投影面積は、1つのウェル21に対応する1つの受光センサ12bの受光面の面積よりも大きい。
 また、本実施形態におけるマイクロプレートリーダー10Bは、上述した第一の実施形態と同様に、1つのウェル21に対応する複数の受光用導光路13aと、1つのウェル21に対応する1つの受光センサ12bとの間に、上記複数の受光用導光路13aを通過した光を拡散し均一化して受光センサ12bに受光させる1つの拡散部13cを備える。また、マイクロプレートリーダー10Bは、1つのウェル21に対応する複数の受光用導光路13aを通過し、拡散部13cにより拡散されて受光センサ12bに到達する光は、1つの光源12aから放出された光であるように構成されている。
 したがって、上述した第一の実施形態と同様に、1つのウェルを通過した光の大部分を良好なS/N比で受光センサ12bに受光させることができ、光測定の精度を向上させることができる。
Further, in the microplate reader 10B of the present embodiment, a plurality of light receiving light guide paths 13a are provided for one well 21 of the microplate 20 as in the first embodiment described above. The projected area of the light guided by the plurality of light receiving light guide paths 13a corresponding to one well 21 is larger than the area of the light receiving surface of one light receiving sensor 12b corresponding to one well 21.
Further, the microplate reader 10B in the present embodiment has a plurality of light receiving light paths 13a corresponding to one well 21 and one light receiving sensor corresponding to one well 21 as in the first embodiment described above. A diffuser 13c is provided between the 12b and the light receiving sensor 12b to diffuse and homogenize the light passing through the plurality of light receiving light guide paths 13a. Further, the microplate reader 10B passes through a plurality of light receiving light guide paths 13a corresponding to one well 21, and the light diffused by the diffuser 13c and reaches the light receiving sensor 12b is emitted from one light source 12a. It is configured to be light.
Therefore, as in the first embodiment described above, most of the light that has passed through one well can be received by the light receiving sensor 12b at a good S / N ratio, and the accuracy of light measurement can be improved. it can.
 以上のように、本実施形態におけるマイクロプレートリーダー10Bは、POCT検査等の分野において携帯可能な程度に小型化され、マイクロプレート20の各ウェル21に収容された試料30全ての光測定を短時間で高精度に行うことができる。 As described above, the microplate reader 10B in the present embodiment is miniaturized to a portable degree in the field of POCT inspection and the like, and the optical measurement of all the samples 30 housed in each well 21 of the microplate 20 can be performed in a short time. Can be done with high accuracy.
 なお、上述した導光プレート部13の構造により、外光(ノイズ光)の影響はほぼ無視することが可能であるが、更なるノイズ光対策を講じるようにしてもよい。一般に、チップLEDから放出される光は、所定の広がりを有している。そのため、光源12aから放出され、ウェル21および試料30を通過した光の一部は、ミラープレート14の反射面14aに到達して隣接するウェル21に入射することが考えられる。この場合、隣接するウェル21に入射した光成分の一部は、対応する受光用導光路13aを通過してノイズ光として受光センサ12bに到達するおそれがある。光源12aから放出される光(信号光)の強度が小さい場合には、微弱なノイズ光であっても測定結果に悪影響を及ぼす可能性が高いため、このようなノイズ光の影響を抑制する必要が出てくる。 Although the influence of external light (noise light) can be almost ignored due to the structure of the light guide plate portion 13 described above, further noise light countermeasures may be taken. Generally, the light emitted from the chip LED has a predetermined spread. Therefore, it is conceivable that a part of the light emitted from the light source 12a and passing through the well 21 and the sample 30 reaches the reflecting surface 14a of the mirror plate 14 and is incident on the adjacent well 21. In this case, a part of the light component incident on the adjacent well 21 may pass through the corresponding light receiving light path 13a and reach the light receiving sensor 12b as noise light. When the intensity of the light (signal light) emitted from the light source 12a is low, even a weak noise light is likely to adversely affect the measurement result, so it is necessary to suppress the influence of such noise light. Comes out.
 この場合、ウェル21を通過してきた光が再度当該ウェル21へのみへ入射するように、ミラープレート14の反射面14aの領域を制限すればよい。図11は、反射面14a領域を制限したミラープレート14の一例である。
 図11では、ミラープレート14の反射面14aは、マイクロプレート20の各ウェル21の上方にそれぞれ制限され、反射面14aの周囲は、非反射面14cとなっている。反射面14aの形状は、例えば図12に示すように円形とすることができる。反射面14aが円形である場合、反射面14aは、ミラープレート14において、円の中心が各ウェル21の中心軸と略同位置となるような位置に設けられる。
In this case, the region of the reflecting surface 14a of the mirror plate 14 may be limited so that the light that has passed through the well 21 is incident on only the well 21 again. FIG. 11 is an example of the mirror plate 14 in which the reflection surface 14a region is limited.
In FIG. 11, the reflective surface 14a of the mirror plate 14 is restricted above each well 21 of the microplate 20, and the periphery of the reflective surface 14a is a non-reflective surface 14c. The shape of the reflecting surface 14a can be circular, for example, as shown in FIG. When the reflecting surface 14a is circular, the reflecting surface 14a is provided at a position on the mirror plate 14 such that the center of the circle is substantially the same as the central axis of each well 21.
 このように、ミラープレート14のマイクロプレート20に対向する面において、反射面14aを受光用導光路13aの形成位置に応じて選択的に設けるようにしてもよい。上記のように反射面14aを制限することにより、光源12aからの広がった光の一部を反射させないようにして、受光センサ12bに入射する光の角度成分を制限することができる。つまり、ミラープレート14に反射面14aと非反射面14cとを設けることで、受光センサ12bに入射する光の角度成分を制限する制限部を実現することができる。これにより、1つのウェル21を通過してミラープレート14に到達した光の一部が上記ウェル21に隣接する他のウェル21に入射することを抑制することが可能となる。したがって、高精度な測定結果が得られる。
 なお、ミラープレート14の非反射面14cに光が照射された場合、非反射面14cにおいて僅かながら光反射が生じることもある。このような反射光の強度が測定結果に悪影響を及ぼす可能性がある場合は、非反射面領域に、ウェル21に収容されている試料30を通過して放出される光の波長に対応したAR(Anti-Reflection)コーティングを施してもよい。あるいは、図13に示すように、上記非反射面領域に上記した包囲部材と同様の顔料含有樹脂からなる光吸収部材14dを設けてもよい。
In this way, on the surface of the mirror plate 14 facing the microplate 20, the reflecting surface 14a may be selectively provided according to the formation position of the light receiving light guide path 13a. By limiting the reflecting surface 14a as described above, it is possible to limit the angular component of the light incident on the light receiving sensor 12b so as not to reflect a part of the light spread from the light source 12a. That is, by providing the mirror plate 14 with the reflective surface 14a and the non-reflective surface 14c, it is possible to realize a limiting portion that limits the angular component of the light incident on the light receiving sensor 12b. This makes it possible to prevent a part of the light that has passed through one well 21 and reached the mirror plate 14 from entering another well 21 adjacent to the well 21. Therefore, highly accurate measurement results can be obtained.
When the non-reflective surface 14c of the mirror plate 14 is irradiated with light, light reflection may occur slightly on the non-reflective surface 14c. When the intensity of such reflected light may adversely affect the measurement result, the AR corresponding to the wavelength of the light emitted through the sample 30 housed in the well 21 in the non-reflective surface region. (Anti-Reflection) coating may be applied. Alternatively, as shown in FIG. 13, a light absorbing member 14d made of the same pigment-containing resin as the surrounding member may be provided in the non-reflective surface region.
 なお、本実施形態においては、マイクロプレートリーダー10Bは、受光センサ12bからなる受光部の上に導光プレート部13を配置し、導光プレート部13の上に光源12aからなる投光部を配置し、投光部の上にマイクロプレート20を配置し、マイクロプレート20の上にミラープレートを配置する構造である場合について説明した。つまり、上述したマイクロプレートリーダー10Bは、マイクロプレート20のウェル21の下方から光を照射し、ウェル21を通過した光を当該ウェル21の上方で反射させ、再度ウェル21を通過させてウェル21の底面側で受光する構造である。
 しかしながら、マイクロプレート20のウェル21の上方から光を照射し、ウェル21を通過した光を底面側で反射させ、再度ウェル21を通過させてウェル21の上方で受光する構造であってもよい。ただし、上述したようにマイクロプレート20のウェル21の底面側から光を照射する構造である方が、マイクロプレート20のセッティングが容易であるため好ましい。
In the present embodiment, in the microplate reader 10B, the light guide plate portion 13 is arranged on the light receiving portion composed of the light receiving sensor 12b, and the light emitting portion composed of the light source 12a is arranged on the light guide plate portion 13. The case where the microplate 20 is arranged on the light projecting portion and the mirror plate is arranged on the microplate 20 has been described. That is, the above-mentioned microplate reader 10B irradiates light from below the well 21 of the microplate 20, reflects the light that has passed through the well 21 above the well 21, and passes the well 21 again to the well 21. It has a structure that receives light on the bottom side.
However, the structure may be such that light is irradiated from above the well 21 of the microplate 20, the light that has passed through the well 21 is reflected on the bottom surface side, and the light is passed through the well 21 again and received above the well 21. However, as described above, a structure that irradiates light from the bottom surface side of the well 21 of the microplate 20 is preferable because the setting of the microplate 20 is easy.
 また、上記第一の実施形態および第二の実施形態におけるマイクロプレートリーダーは、上述したように、マイクロプレート20の各ウェル21全てに対して、ほぼ同時に測定データを取得することが可能である。しかしながら、測定データの処理は、必ずしも同時に行うわけではなく、例えば、1回のデータ処理は8つのウェルに対して行い、これを12回行う場合もある。この場合、データ処理時間がある程度かかってしまう。 Further, as described above, the microplate reader in the first embodiment and the second embodiment can acquire measurement data for all the wells 21 of the microplate 20 at almost the same time. However, the processing of the measurement data is not always performed at the same time. For example, one data processing may be performed on eight wells, and this may be performed 12 times. In this case, it takes some data processing time.
 そこで、マイクロプレートリーダーは、各ウェル21に対応する測定データを、一括して同時に処理することが可能な構造であってもよい。
 例えば、第一の実施形態におけるマイクロプレートリーダー10Aの場合、図14に示すように、各ウェル21に収容される試料30から放出され、受光用導光路13aによって導光される光を、光ファイバ51で受光する構造であってもよい。つまり、受光部として、受光センサ12bの代わりに光ファイバ51の先端(入射端)51aを配置するようにしてもよい。
Therefore, the microplate reader may have a structure capable of collectively processing the measurement data corresponding to each well 21 at the same time.
For example, in the case of the microplate reader 10A in the first embodiment, as shown in FIG. 14, the light emitted from the sample 30 housed in each well 21 and guided by the light receiving light guide path 13a is transmitted by an optical fiber. It may have a structure that receives light at 51. That is, the tip (incident end) 51a of the optical fiber 51 may be arranged as the light receiving portion instead of the light receiving sensor 12b.
 各ウェル21に対応した受光用導光路13aを通過した光を受光する各光ファイバ51は、光出射端側で束ねることができる。この場合、各光ファイバ51を束ねた光ファイバ束から出射される光は、画像センサ52により取り込むことができる。画像センサ52により取り込まれた画像データは、マイクロプレート20の全ウェル21に対応した光測定データであり、当該画像データを演算処理することにより、全ウェル21に対応した光測定データを一括して同時にデータ処理することが可能となる。
 なお、図14では、第一の実施形態におけるマイクロプレートリーダー10Aについて示しているが、第二の実施形態におけるマイクロプレートリーダー10Bについても同様である。
Each optical fiber 51 that receives light that has passed through the light receiving light guide path 13a corresponding to each well 21 can be bundled on the light emitting end side. In this case, the light emitted from the optical fiber bundle in which the optical fibers 51 are bundled can be captured by the image sensor 52. The image data captured by the image sensor 52 is optical measurement data corresponding to all wells 21 of the microplate 20, and by arithmetically processing the image data, the optical measurement data corresponding to all wells 21 are collectively collected. Data can be processed at the same time.
Although FIG. 14 shows the microplate reader 10A in the first embodiment, the same applies to the microplate reader 10B in the second embodiment.
(第三の実施形態)
 次に、本発明における第三の実施形態について説明する。
 上述した第一の実施形態および第二の実施形態では、所定のウェル数(96ウェル)のマイクロプレートに対応したマイクロプレートリーダーについて説明した。第三の実施形態では、ウェル数が異なるマイクロプレートに対応したマイクロプレートリーダーについて説明する。
 例えば、マイクロプレートを用いて細胞培養を行い、培養した細胞に対する光測定を行う場合、ウェル数の少ない(例えば、6ウェル)マイクロプレートが使用される。このような異なる種類のマイクロプレートに対応するために、本実施形態では、1つのウェルのみに対応した単位ユニット(マイクロプレートリーダーユニット)を用いる。
(Third embodiment)
Next, a third embodiment of the present invention will be described.
In the first embodiment and the second embodiment described above, a microplate reader corresponding to a predetermined number of wells (96 wells) of microplates has been described. In the third embodiment, a microplate reader corresponding to microplates having different numbers of wells will be described.
For example, when cell culture is performed using a microplate and light measurement is performed on the cultured cells, a microplate having a small number of wells (for example, 6 wells) is used. In order to deal with such different types of microplates, the present embodiment uses a unit unit (microplate reader unit) corresponding to only one well.
 図15は、マイクロプレートリーダーユニット18Aの構成例を示す図である。
 この図15に示すように、マイクロプレートリーダーユニット18Aは、単位光源ユニット部181と、単位導光ユニット部182と、を備える。単位光源ユニット部181は、光源181aと、光源181aが設けられた保持用基板181bと、光源用コネクタ部181cと、を備える。単位導光ユニット部182は、受光センサ182aと、受光用導光路182bと、包囲部材182cと、拡散部182dと、を備える。
 ここで、光源181aおよび受光センサ182aは、上述した第一の実施形態における光源12aおよび受光センサ12bと同様である。また、受光用導光路182b、包囲部材182cおよび拡散部182dは、上述した第一の実施形態における導光プレート部13を構成する受光用導光路13a、包囲部材13bおよび拡散部13cと同様である。
FIG. 15 is a diagram showing a configuration example of the microplate reader unit 18A.
As shown in FIG. 15, the microplate reader unit 18A includes a unit light source unit unit 181 and a unit light guide unit unit 182. The unit light source unit unit 181 includes a light source 181a, a holding substrate 181b provided with the light source 181a, and a light source connector unit 181c. The unit light guide unit unit 182 includes a light receiving sensor 182a, a light receiving light path 182b, a surrounding member 182c, and a diffusion unit 182d.
Here, the light source 181a and the light receiving sensor 182a are the same as the light source 12a and the light receiving sensor 12b in the first embodiment described above. Further, the light receiving light guide path 182b, the surrounding member 182c, and the diffusion portion 182d are the same as the light receiving light guide path 13a, the surrounding member 13b, and the diffusion portion 13c constituting the light guide plate portion 13 in the first embodiment described above. ..
 単位光源ユニット部181において、光源181aと光源用コネクタ181cとは、例えば保持用基板181bを挟んで略同一軸上に設けられ、両者は電気的に接続されている。また、この単位光源ユニット部181は、投光用基板111aに対して着脱可能に構成されている。
 投光用基板111aは、上述した第一の実施形態における投光用基板12aと同様の基板の表面に、単位光源ユニット部181の光源用コネクタ部181cと電気的に接続可能な光源用コネクタ部112aを備えた構成を有する。投光用基板111aの基板の表面には給電回路が形成されており、光源用コネクタ部112aは、当該給電回路に電気的に接続されている。そのため、投光用基板111aの光源用コネクタ部112aに単位光源ユニット部181の光源用コネクタ部181cが装着されると、光源181aは、光源用コネクタ部181cを介して光源用コネクタ部112aと電気的に接続される。
In the unit light source unit unit 181, the light source 181a and the light source connector 181c are provided on substantially the same axis with the holding substrate 181b interposed therebetween, and are electrically connected to each other. Further, the unit light source unit unit 181 is configured to be detachably attached to the light projecting substrate 111a.
The light source substrate 111a is a light source connector portion that can be electrically connected to the light source connector portion 181c of the unit light source unit unit 181 on the surface of the substrate similar to the light projector substrate 12a in the first embodiment described above. It has a configuration including 112a. A power feeding circuit is formed on the surface of the light projecting board 111a, and the light source connector portion 112a is electrically connected to the power feeding circuit. Therefore, when the light source connector portion 181c of the unit light source unit unit 181 is attached to the light source connector portion 112a of the light projecting substrate 111a, the light source 181a is electrically connected to the light source connector portion 112a via the light source connector portion 181c. Is connected.
 また、単位導光ユニット部182は、測定用基板111bに対して着脱可能に構成されている。
 測定用基板111bは、上述した第一の実施形態における測定用基板12bと同様の基板の表面に、単位導光ユニット部182の受光センサ182aと電気的に接続可能なセンサ用コネクタ部112bを備えた構成を有する。投光用基板111aの基板の表面には給電回路が形成されており、センサ用コネクタ部112bは、当該給電回路に電気的に接続されている。
Further, the unit light guide unit unit 182 is configured to be detachably attached to and detachable from the measurement substrate 111b.
The measurement substrate 111b is provided with a sensor connector portion 112b that can be electrically connected to the light receiving sensor 182a of the unit light guide unit portion 182 on the surface of the substrate similar to the measurement substrate 12b in the first embodiment described above. Has a structure. A power feeding circuit is formed on the surface of the light projecting board 111a, and the sensor connector portion 112b is electrically connected to the power feeding circuit.
 投光用基板111aおよび測定用基板111bは、マイクロプレートとある一定の位置関係となるように、位置合わせされて設置される。
 この三者の位置合わせ状態において、光源用コネクタ部112aおよびセンサ用コネクタ部112bは、例えば96ウェルのマイクロプレートの各ウェルに対応するよう、投光用基板111a上および測定用基板111b上にそれぞれ96個ずつ設けられている。
 具体的には、光源用コネクタ部112aは、投光用基板111aにおいて、例えば図1に示す光源12aに対応する位置に設けられている。また、センサ用コネクタ部112bは、測定用基板111bにおいて、例えば図1に示す受光センサ12bに対応する位置に設けられている。
The light projecting substrate 111a and the measuring substrate 111b are aligned and installed so as to have a certain positional relationship with the microplate.
In the three-way alignment state, the light source connector portion 112a and the sensor connector portion 112b are placed on the projection substrate 111a and the measurement substrate 111b, respectively, so as to correspond to each well of the 96-well microplate, for example. 96 pieces are provided at a time.
Specifically, the light source connector portion 112a is provided on the light projecting substrate 111a at a position corresponding to, for example, the light source 12a shown in FIG. Further, the sensor connector portion 112b is provided on the measurement substrate 111b at a position corresponding to, for example, the light receiving sensor 12b shown in FIG.
 単位光源ユニット部181および単位導光ユニット部182からなるマイクロプレートリーダーユニット18Aは、96ウェルのマイクロプレートの1つのウェルに相当する大きさを有する。単位光源ユニット部181は、投光用基板111a上に、96ウェルのマイクロプレートの各ウェルにそれぞれ対応して最大96個装着可能である。同様に、単位導光ユニット部182は、測定用基板111b上に、96ウェルのマイクロプレートの各ウェルにそれぞれ対応して最大96個装着可能である。
 投光用基板111a上の96個の光源用コネクタ部112aに96個の単位光源ユニット部181をそれぞれ装着すると、光源181a、光源用コネクタ部181cおよび光源用コネクタ部112aは略同一軸上に配置され、光源181aは、マイクロプレートの96個の各ウェル21に対応する位置にそれぞれ配置される。同様に、測定用基板111b上の96個のセンサ用コネクタ部112bに96個の単位導光ユニット部182をそれぞれ装着すると、受光センサ182aは、マイクロプレートの96個の各ウェル21に対応する位置にそれぞれ配置される。
The microplate reader unit 18A including the unit light source unit unit 181 and the unit light guide unit unit 182 has a size corresponding to one well of a 96-well microplate. A maximum of 96 unit light source unit units 181 can be mounted on the light projecting substrate 111a corresponding to each well of the 96-well microplate. Similarly, a maximum of 96 unit light guide unit units 182 can be mounted on the measurement substrate 111b corresponding to each well of the 96-well microplate.
When 96 unit light source unit units 181 are attached to 96 light source connector portions 112a on the light projecting substrate 111a, the light source 181a, the light source connector portion 181c, and the light source connector portion 112a are arranged on substantially the same axis. The light source 181a is arranged at a position corresponding to each of the 96 wells 21 of the microplate. Similarly, when the 96 unit light guide unit units 182 are attached to the 96 sensor connector portions 112b on the measurement substrate 111b, the light receiving sensor 182a is located at a position corresponding to each of the 96 wells 21 of the microplate. Are placed in each.
 図16は、本実施形態における単位ユニットを用いたマイクロプレートリーダー10A´の一例を示す図であり、マイクロプレートリーダーユニット18Aのうち、単位光源ユニット部181を投光用基板111a上に複数隣接させて装着するとともに、単位導光ユニット部182を測定用基板111b上に複数隣接させて装着した場合の図である。この図16に示すように、複数のマイクロプレートリーダーユニット18Aを投光用基板111aおよび測定用基板111bに接続した構造は、図1に示す第一の実施形態におけるマイクロプレートリーダー10Aの一部(投光用基板11a、光源12a、測定用基板11b、受光センサ12bおよび導光プレート部13)と同様の構造となる。
 したがって、96組のマイクロプレートリーダーユニット18Aを投光用基板111aおよび測定用基板111bに接続したマイクロプレートリーダー10A´は、図1に示す第一の実施形態におけるマイクロプレートリーダー10Aと同様の構造となる。
FIG. 16 is a diagram showing an example of the microplate reader 10A'using the unit unit in the present embodiment, in which a plurality of unit light source unit units 181 of the microplate reader unit 18A are adjacent to each other on the light projecting substrate 111a. It is a figure when a plurality of unit light source unit portions 182 are mounted adjacent to each other on the measurement substrate 111b. As shown in FIG. 16, the structure in which the plurality of microplate reader units 18A are connected to the light projection substrate 111a and the measurement substrate 111b is a part of the microplate reader 10A in the first embodiment shown in FIG. It has the same structure as the light projecting substrate 11a, the light source 12a, the measuring substrate 11b, the light receiving sensor 12b, and the light guide plate portion 13).
Therefore, the microplate reader 10A'in which 96 sets of the microplate reader units 18A are connected to the light projecting substrate 111a and the measurement substrate 111b has the same structure as the microplate reader 10A in the first embodiment shown in FIG. Become.
 なお、図15および図16では、マイクロプレートリーダーユニット18Aが、1つのウェル21のみに対応した単位ユニットである例を示したが、これに限るものではなく、マイクロプレートリーダーユニット18Aは、複数のウェル21に対応した単位ユニットでもよい。また、マイクロプレートリーダーユニット18Aを構成する単位光源ユニット部181および単位導光ユニット部182の少なくとも一方が、複数のウェル21に対応していてもよい。例えば、単位導光ユニット部182を8つのウェル21に対応する単位ユニットとし、96ウェルのマイクロプレート20に対し、12個の単位導光ユニット部182を用いるようにしてもよい。
 図17は、単位光源ユニット部181が1つのウェル21のみに対応しており、単位導光ユニット部182が複数のウェル21に対応している例を示している。
Although FIGS. 15 and 16 show an example in which the microplate reader unit 18A is a unit unit corresponding to only one well 21, the microplate reader unit 18A is not limited to this, and the microplate reader unit 18A may have a plurality of units. It may be a unit unit corresponding to the well 21. Further, at least one of the unit light source unit unit 181 and the unit light guide unit unit 182 constituting the microplate reader unit 18A may correspond to a plurality of wells 21. For example, the unit light guide unit unit 182 may be a unit unit corresponding to the eight wells 21, and twelve unit light guide unit units 182 may be used for the 96-well microplate 20.
FIG. 17 shows an example in which the unit light source unit unit 181 corresponds to only one well 21, and the unit light source unit 182 corresponds to a plurality of wells 21.
 図18は、マイクロプレートリーダーユニットの別の構成例を示す図である。
 この図18に示すマイクロプレートリーダーユニット18Bは、光源18aと、受光センサ18bと、単位投光用基板18cと、アパーチャ部18dと、受光用導光路18eと、包囲部材18fと、拡散部18gと、を備える。ここで、光源18aおよび受光センサ18bは、上述した第二の実施形態における光源12aおよび受光センサ12bと同様である。アパーチャ部18cは、上述した第二の実施形態におけるアパーチャ部11cと同様である。さらに、受光用導光路18e、包囲部材18fおよび拡散部18gは、上述した第二の実施形態における導光プレート部13を構成する受光用導光路13a、包囲部材13bおよび拡散部13cと同様である。
FIG. 18 is a diagram showing another configuration example of the microplate reader unit.
The microplate reader unit 18B shown in FIG. 18 includes a light source 18a, a light receiving sensor 18b, a unit light emitting substrate 18c, an aperture portion 18d, a light receiving light guide path 18e, a surrounding member 18f, and a diffusion portion 18g. , Equipped with. Here, the light source 18a and the light receiving sensor 18b are the same as the light source 12a and the light receiving sensor 12b in the second embodiment described above. The aperture portion 18c is the same as the aperture portion 11c in the second embodiment described above. Further, the light receiving light guide path 18e, the surrounding member 18f, and the diffusing portion 18g are the same as the light receiving light guide path 13a, the surrounding member 13b, and the diffusing portion 13c constituting the light guide plate portion 13 in the second embodiment described above. ..
 マイクロプレートリーダーユニット18Bは、測定用基板111に対して着脱可能に構成されている。測定用基板111は、上述した第二の実施形態における測定用基板11bと同様の基板の表面に、当該基板に形成された給電回路とマイクロプレートリーダーユニット18Bの受光センサ18bと電気的に接続可能なコネクタ部112を備えた構成を有する。つまり、測定用基板111は、図15に示す測定用基板111bと同様の構成を有する。
 マイクロプレートリーダーユニット18Bは、96ウェルのマイクロプレートの1つのウェルに相当する大きさを有し、測定用基板111上に、96ウェルのマイクロプレートの各ウェルにそれぞれ対応して最大96個装着可能である。
The microplate reader unit 18B is configured to be removable from the measurement substrate 111. The measurement substrate 111 can be electrically connected to the surface of the substrate similar to the measurement substrate 11b in the second embodiment described above with the power supply circuit formed on the substrate and the light receiving sensor 18b of the microplate reader unit 18B. It has a configuration including a connector portion 112. That is, the measurement substrate 111 has the same configuration as the measurement substrate 111b shown in FIG.
The microplate reader unit 18B has a size corresponding to one well of a 96-well microplate, and a maximum of 96 can be mounted on the measurement substrate 111 corresponding to each well of the 96-well microplate. Is.
 ここで、マイクロプレートリーダーユニット18Bが測定用基板111上に装着された場合、マイクロプレートリーダーユニット18Bの単位投光用基板18cは、互いに隣り合う単位投光用基板同士、電気的に接続可能なように構成されている。これにより、例えば、96個の単位投光用基板18cが電気的に接続されると、図7に示す投光用基板11a´と同等の電気回路構成となる。 Here, when the microplate reader unit 18B is mounted on the measurement substrate 111, the unit projection substrates 18c of the microplate reader unit 18B can be electrically connected to each other adjacent unit projection substrates. It is configured as follows. As a result, for example, when 96 unit light projecting boards 18c are electrically connected, the electric circuit configuration is equivalent to that of the light projecting board 11a'shown in FIG. 7.
 このマイクロプレートリーダーユニット18Bは、上述した図16に示すマイクロプレートリーダーユニット18Aと同様に、測定用基板111上に複数隣接させて装着することができる。この場合、複数のマイクロプレートリーダーユニット18Bを測定用基板111に接続した構造は、図7に示す第二の実施形態におけるマイクロプレートリーダー10Bの一部(投光用基板11a´、光源12a、測定用基板11b、受光センサ12bおよび導光プレート部13)と同様の構造となる。
 したがって、96個のマイクロプレートリーダーユニット18Bを測定用基板111に接続したマイクロプレートリーダーは、図7に示す第二の実施形態におけるマイクロプレートリーダー10Bと同様の構造となる。
 なお、マイクロプレートリーダーユニット18Bは、上述した図17に示すマイクロプレートリーダーユニット18Aと同様に、複数のウェル21に対応した単位ユニットでもよい。
Similar to the microplate reader unit 18A shown in FIG. 16 described above, the microplate reader unit 18B can be mounted on the measurement substrate 111 in a plurality of adjacent positions. In this case, the structure in which the plurality of microplate reader units 18B are connected to the measurement substrate 111 is a part of the microplate reader 10B in the second embodiment shown in FIG. 7 (light projection substrate 11a', light source 12a, measurement. It has the same structure as the substrate 11b, the light receiving sensor 12b, and the light guide plate portion 13).
Therefore, the microplate reader in which the 96 microplate reader units 18B are connected to the measurement substrate 111 has the same structure as the microplate reader 10B in the second embodiment shown in FIG. 7.
The microplate reader unit 18B may be a unit unit corresponding to a plurality of wells 21, similar to the microplate reader unit 18A shown in FIG. 17 described above.
 このように、本実施形態におけるマイクロプレートリーダーは、光測定に使用するマイクロプレート20のウェル21の数、位置、および光測定方式に応じて、マイクロプレートリーダーユニット18Aまたは18Bが適宜配置されてなるものである。
 例えば96ウェルのマイクロプレート20を使用し、第一の実施形態における光測定方式を採用する場合、図19に示すように、96組のマイクロプレートリーダーユニット18Aが、96個の各ウェル21にそれぞれ対応させた位置に配置される。この場合、これら96組のマイクロプレートリーダーユニット18Aのうち、単位光源ユニット部181は、投光用基板111aに形成された配線60aに接続され、電力が供給可能に構成される。同様に、単位導光ユニット部182は、測定用基板111bに形成された配線60bに接続され、電力が供給可能に構成される。
 一方、96ウェルのマイクロプレート20を使用し、第二の実施形態における光測定方式を採用する場合、96組のマイクロプレートリーダーユニット18Bが、96個の各ウェル21にそれぞれ対応させた位置に配置される。この場合、これら96個のマイクロプレートリーダーユニット18Bは、測定用基板111に形成された配線に接続され、電力が供給可能に構成される。このとき、複数の単位投光用基板18cが接続されてなる投光用基板にも、同様に電力が供給される。
 ここで、上記配線の接続方式は、マルチドロップ接続やデイジーチェーン接続を用いることができる。
As described above, in the microplate reader of the present embodiment, the microplate reader units 18A or 18B are appropriately arranged according to the number and position of the wells 21 of the microplate 20 used for the light measurement and the light measurement method. It is a thing.
For example, when a 96-well microplate 20 is used and the optical measurement method of the first embodiment is adopted, as shown in FIG. 19, 96 sets of microplate reader units 18A are provided in each of the 96 wells 21. It is placed in the corresponding position. In this case, of these 96 sets of microplate reader units 18A, the unit light source unit unit 181 is connected to the wiring 60a formed on the light projecting substrate 111a so that electric power can be supplied. Similarly, the unit light guide unit unit 182 is connected to the wiring 60b formed on the measurement substrate 111b, and is configured to be able to supply electric power.
On the other hand, when the 96-well microplate 20 is used and the optical measurement method according to the second embodiment is adopted, 96 sets of microplate reader units 18B are arranged at positions corresponding to each of the 96 wells 21. Will be done. In this case, these 96 microplate reader units 18B are connected to the wiring formed on the measurement board 111, and are configured to be able to supply electric power. At this time, power is similarly supplied to the light projecting board to which the plurality of unit light projecting boards 18c are connected.
Here, as the wiring connection method, a multi-drop connection or a daisy chain connection can be used.
 また、6ウェルのマイクロプレート20を使用し、第一の実施形態における光測定方式を採用する場合、図20に示すように、6組のマイクロプレートリーダーユニット18Aが、6個の各ウェル21にそれぞれ対応させた位置に配置される。この場合にも、これら6組のマイクロプレートリーダーユニット18Aのうち、単位光源ユニット部181は、投光用基板111aに形成された配線60aに接続され、電力が供給可能に構成される。同様に、単位導光ユニット部182は、測定用基板111bに形成された配線60bに接続され、電力が供給可能に構成される。
 一方、6ウェルのマイクロプレート20を使用し、第二の実施形態における光測定方式を採用する場合、6組のマイクロプレートリーダーユニット18Bが、6個の各ウェル21にそれぞれ対応させた位置に配置される。この場合にも、これら6個のマイクロプレートリーダーユニット18Bは、測定用基板111に形成された配線に接続され、電力が供給可能に構成される。このとき、複数の単位投光用基板18cが接続されてなる投光用基板にも、同様に電力が供給される。
 なお、図20では、1つのウェル21に対して1組のマイクロプレートリーダーユニット18Aを配置する場合について説明したが、1つのウェル21に対して複数のマイクロプレートリーダーユニット18Aを配置してもよい。この場合、1つのウェル21に対応する複数のマイクロプレートリーダーユニット18Aの測定データの統計を、当該1つのウェル21に対する測定データとして採用してもよい。マイクロプレートリーダーユニット18Bを配置する場合についても同様である。
Further, when a 6-well microplate 20 is used and the optical measurement method according to the first embodiment is adopted, as shown in FIG. 20, 6 sets of microplate reader units 18A are provided in each of the 6 wells 21. They are placed at the corresponding positions. Also in this case, of the six sets of microplate reader units 18A, the unit light source unit unit 181 is connected to the wiring 60a formed on the light projecting substrate 111a so that electric power can be supplied. Similarly, the unit light guide unit unit 182 is connected to the wiring 60b formed on the measurement substrate 111b, and is configured to be able to supply electric power.
On the other hand, when the 6-well microplate 20 is used and the optical measurement method in the second embodiment is adopted, 6 sets of microplate reader units 18B are arranged at positions corresponding to each of the 6 wells 21. Will be done. Also in this case, these six microplate reader units 18B are connected to the wiring formed on the measurement substrate 111, and are configured to be able to supply electric power. At this time, power is similarly supplied to the light projecting board to which the plurality of unit light projecting boards 18c are connected.
Although the case where one set of microplate reader units 18A is arranged in one well 21 has been described in FIG. 20, a plurality of microplate reader units 18A may be arranged in one well 21. .. In this case, the statistics of the measurement data of the plurality of microplate reader units 18A corresponding to one well 21 may be adopted as the measurement data for the one well 21. The same applies to the case where the microplate reader unit 18B is arranged.
 以上説明したように、マイクロプレート20のウェル21の数、位置、および光測定方式に応じて、マイクロプレートリーダーユニット18Aまたは18Bを必要な位置に必要な数だけ配置することで、異なるウェル数のマイクロプレート20に対応したマイクロプレートリーダーとすることができる。
 なお、本実施形態においては、マイクロプレートリーダーユニット18A、18Bは、投光部と受光部と導光プレート部とを備える場合について説明したが、投光部を構成する光源181a、18a、および受光部を構成する受光センサ182a、18bにそれぞれ接続された配線を有する基板までを含むようにしてもよい。この場合、マイクロプレート20のウェル21の数および位置に対応させてマイクロプレートリーダーユニットを配置した際に、当該ユニットを構成する上記基板が、電源部に接続された給電ケーブルに接続可能な構成であればよい。
As described above, depending on the number, position, and optical measurement method of the wells 21 of the microplate 20, the number of wells can be changed by arranging the required number of microplate reader units 18A or 18B at the required positions. It can be a microplate reader compatible with the microplate 20.
In the present embodiment, the case where the microplate reader units 18A and 18B include a light emitting unit, a light receiving unit, and a light guide plate unit has been described, but the light sources 181a and 18a constituting the light emitting unit and the light receiving unit have been described. It may include up to a substrate having wiring connected to each of the light receiving sensors 182a and 18b constituting the unit. In this case, when the microplate reader unit is arranged according to the number and position of the wells 21 of the microplate 20, the substrate constituting the unit can be connected to the power supply cable connected to the power supply unit. All you need is.
(変形例)
 上記第一の実施形態および第二の実施形態においては、1つのウェル21に対して設けられた導光路群により導光される光の照射領域(投影面積)を、受光センサ12bの受光面の面積よりも大きく設定し、当該導光路群と受光センサ12bとの間に拡散部13cを備える場合について説明した。しかしながら、導光路群により導光される光の照射領域(投影面積)は、受光センサ12bの受光面の面積と同等かそれ以下であってもよい。この場合、拡散部13cは設けなくてもよい。
(Modification example)
In the first embodiment and the second embodiment, the irradiation region (projected area) of the light guided by the light guide path group provided for one well 21 is set on the light receiving surface of the light receiving sensor 12b. A case where the area is set larger than the area and the diffuser portion 13c is provided between the light guide path group and the light receiving sensor 12b has been described. However, the irradiation region (projected area) of the light guided by the light guide path group may be equal to or smaller than the area of the light receiving surface of the light receiving sensor 12b. In this case, the diffusion portion 13c may not be provided.
 また、導光プレート部13は、マイクロプレート20の底面側に形成された凹部に嵌め込まれて当該マイクロプレート20の底面と密着していてもよい。
 図21は、導光プレート部13をマイクロプレート20の底面と密着させたマイクロプレートリーダー10の概略構成図である。この図21においては、図1に示すマイクロプレートリーダー10Aと同一構成を有する部分には、図1と同一符号を付している。
Further, the light guide plate portion 13 may be fitted into a recess formed on the bottom surface side of the microplate 20 and in close contact with the bottom surface of the microplate 20.
FIG. 21 is a schematic configuration diagram of a microplate reader 10 in which the light guide plate portion 13 is in close contact with the bottom surface of the microplate 20. In FIG. 21, parts having the same configuration as the microplate reader 10A shown in FIG. 1 are designated by the same reference numerals as those in FIG.
 マイクロプレート20の底面の外縁部には、全周に亘って壁部20aが形成されている。壁部20aは、マイクロプレート20の底面から下方に突出しており、マイクロプレート20の底面と壁部20aとにより、マイクロプレート20の底面側に凹部が形成されている。つまり、壁部20aは、当該凹部の側壁部である。このマイクロプレート20の凹部には、図21に示すように導光プレート部13が嵌め込み可能である。
 なお、壁部20aの底面からの高さは、任意の高さとすることができる。壁部20aの高さは、例えば図21に示すように、導光プレート部13の厚みよりも低くてもよいし、図22に示すように、導光プレート部13の厚みと同等であってもよい。また、特に図示しないが、壁部20aの高さは、導光プレート部13の厚みよりも高くてもよい。
A wall portion 20a is formed on the outer edge portion of the bottom surface of the microplate 20 over the entire circumference. The wall portion 20a projects downward from the bottom surface of the microplate 20, and the bottom surface of the microplate 20 and the wall portion 20a form a recess on the bottom surface side of the microplate 20. That is, the wall portion 20a is a side wall portion of the recess. As shown in FIG. 21, the light guide plate portion 13 can be fitted into the recess of the microplate 20.
The height of the wall portion 20a from the bottom surface can be any height. The height of the wall portion 20a may be lower than the thickness of the light guide plate portion 13 as shown in FIG. 21, for example, or is equivalent to the thickness of the light guide plate portion 13 as shown in FIG. 22. May be good. Further, although not particularly shown, the height of the wall portion 20a may be higher than the thickness of the light guide plate portion 13.
 このマイクロプレートリーダー10において、導光プレート部13は、マイクロプレート20の底面側に形成された凹部に密着して嵌め込み可能な光学プレートである。導光プレート部13は、当該凹部に対して着脱可能に構成されている。 In this microplate reader 10, the light guide plate portion 13 is an optical plate that can be fitted in close contact with a recess formed on the bottom surface side of the microplate 20. The light guide plate portion 13 is configured to be removable from the recess.
 受光用導光路13aは、上記導光路群の光出射端が、測定用基板11bに設けられた受光センサ12bに対応する位置に配置されるように、導光プレート部13に設けられている。すなわち、導光プレート部13が嵌め込まれたマイクロプレート20は、受光用導光路13aの光出射端が受光センサ12bに対向する位置に位置決めされる。
 また、光源12aは、上記のように位置決めされたマイクロプレート20の上方に投光用基板11aが設置された場合に、マイクロプレート20の各ウェル21に対応する位置に配置されるように、投光用基板11aに設けられている。
The light receiving light guide path 13a is provided in the light guide plate portion 13 so that the light emitting end of the light guide path group is arranged at a position corresponding to the light receiving sensor 12b provided on the measurement substrate 11b. That is, the microplate 20 into which the light guide plate portion 13 is fitted is positioned at a position where the light emitting end of the light receiving light path 13a faces the light receiving sensor 12b.
Further, the light source 12a is projected so as to be arranged at a position corresponding to each well 21 of the microplate 20 when the light projecting substrate 11a is installed above the microplate 20 positioned as described above. It is provided on the optical substrate 11a.
 測定用基板11b上に、導光プレート部13が嵌め込まれたマイクロプレート20が配置され、マイクロプレート20上に投光用基板11aが配置された状態では、光源12aと受光センサ12bとは、鉛直方向に一列に配置される。
 なお、光源12aおよび受光センサ12bの配置は、厳密に鉛直方向に一列である必要はなく、光源12aから放出され、マイクロプレート20のウェル21に収容された試料30等を通過して放出される光が、受光センサ12bに到達可能な配置であればよい。
In a state where the microplate 20 in which the light guide plate portion 13 is fitted is arranged on the measurement substrate 11b and the light projection substrate 11a is arranged on the microplate 20, the light source 12a and the light receiving sensor 12b are vertically aligned. Arranged in a row in the direction.
The arrangement of the light source 12a and the light receiving sensor 12b does not have to be strictly in a row in the vertical direction, and the light source 12a and the light receiving sensor 12b are emitted from the light source 12a and passed through the sample 30 or the like housed in the well 21 of the microplate 20. The arrangement may be such that the light can reach the light receiving sensor 12b.
 本実施形態では、1つのウェル21に対して複数の受光用導光路13aからなる導光路群を配置している。例えば図23に示すように、1つのウェルに対応する導光路群を構成する受光用導光路13aの数は、7本とすることができる。ここで、図23に示す1つの受光用導光路13aの直径は、0.5mmであるものとする。
 図24は、比較例として、1つのウェルに対して1つの受光用導光路13a’を有する導光プレート部13Aを示す図である。ここで、図24に示す1つの受光用導光路13a’の直径は、10mmであるものとする。
In the present embodiment, a light guide path group composed of a plurality of light receiving light guide paths 13a is arranged for one well 21. For example, as shown in FIG. 23, the number of light receiving light guide paths 13a constituting the light guide path group corresponding to one well can be seven. Here, it is assumed that the diameter of one light receiving light guide path 13a shown in FIG. 23 is 0.5 mm.
FIG. 24 is a diagram showing a light guide plate portion 13A having one light receiving light path 13a'for one well as a comparative example. Here, it is assumed that the diameter of one light receiving light path 13a'shown in FIG. 24 is 10 mm.
 図23に示す導光プレート部13と図24に示す導光プレート部13Aとの厚みが同等である場合、図23に示すように1つのウェルに対して複数の細い受光用導光路13aを配置した方が、図24に示すように1つのウェルに対して1本の太い受光用導光路13a’を配置した場合と比較してノイズ成分を大幅に低減させることができる。
 換言すると、図23に示すように1つのウェルに対して複数の受光用導光路13aを配置した導光プレート部13は、図24に示すように1つのウェルに対して1つの受光用導光路13a’を配置した導光プレート部13Aよりも厚みが薄くても、当該導光プレート部13Aと同等の特性(S/N比)が得られる。例えば、厚みLa=1.6mmの導光プレート部13と、厚みLb=10mmの導光プレート部13Aとでは、ほぼ同等の特性が得られる。
 つまり、本実施形態では、導光プレート部13の薄型化を図ることができる。
When the light guide plate portion 13 shown in FIG. 23 and the light guide plate portion 13A shown in FIG. 24 have the same thickness, a plurality of thin light receiving light guide paths 13a are arranged for one well as shown in FIG. 23. As shown in FIG. 24, the noise component can be significantly reduced as compared with the case where one thick light receiving light path 13a'is arranged for one well.
In other words, as shown in FIG. 23, the light guide plate portion 13 in which a plurality of light receiving light guide paths 13a are arranged for one well has one light receiving light guide path for one well. Even if the thickness is thinner than the light guide plate portion 13A on which the 13a'is arranged, the same characteristics (S / N ratio) as the light guide plate portion 13A can be obtained. For example, the light guide plate portion 13 having a thickness of La = 1.6 mm and the light guide plate portion 13A having a thickness of Lb = 10 mm can obtain substantially the same characteristics.
That is, in the present embodiment, the light guide plate portion 13 can be made thinner.
 なお、マイクロプレート20が有する僅かな反りや歪みの影響を吸収し、マイクロプレート20と導光プレート部13との隙間を作らない構造を維持するため、受光用導光路13aの長さ、すなわち導光プレート部13厚さは1mm以上であることが望ましい。
 また、図24に示す導光プレート部13Aでは、となり合うウェルにそれぞれ配置された1本の受光用導光路13a’同士を隔てる包囲部材13bの幅は、最低でも3mm以上を確保することが好ましい。これにより、となり合うウェル間の信号の混入率を1000000分の1以下にすることができる。一方で、図23に示す導光プレート部13のように一つのウェルに対して複数の受光用導光路13aからなる導光路群を用いる場合、となり合う受光用導光路13a同士を隔てる包囲部材の厚さは0.15mmまで薄くしてもよい。これは互いの光の透過が100分の1程度あっても、反射、散乱による混入率と同程度で良いためである。
In addition, in order to absorb the influence of slight warpage and distortion of the microplate 20 and maintain a structure that does not create a gap between the microplate 20 and the light guide plate portion 13, the length of the light receiving light guide path 13a, that is, the guide. It is desirable that the thickness of the optical plate portion 13 is 1 mm or more.
Further, in the light guide plate portion 13A shown in FIG. 24, it is preferable to secure at least 3 mm or more in the width of the surrounding member 13b that separates one light receiving light guide path 13a'arranged from each other in the adjacent wells. .. As a result, the mixing rate of signals between adjacent wells can be reduced to 1/1000000 or less. On the other hand, when a light guide path group composed of a plurality of light receiving light guide paths 13a is used for one well as in the light guide plate portion 13 shown in FIG. 23, a surrounding member that separates the light receiving light guide paths 13a that are adjacent to each other is used. The thickness may be as thin as 0.15 mm. This is because even if the light is transmitted to each other by about 1/100, it may be about the same as the mixing rate due to reflection and scattering.
 また、本実施形態では、1つのウェル21に対して設けられた導光路群により導光される光の照射領域(投影面積)は、受光センサ12bの受光面の面積と同等の大きさに設定されている。したがって、複数の受光用導光路13aからなる導光路群により導光される光をすべて受光センサ12bの受光面に入射させることができる。 Further, in the present embodiment, the irradiation region (projected area) of the light guided by the light guide path group provided for one well 21 is set to the same size as the area of the light receiving surface of the light receiving sensor 12b. Has been done. Therefore, all the light guided by the light guide path group including the plurality of light receiving light guide paths 13a can be incident on the light receiving surface of the light receiving sensor 12b.
 次に、マイクロプレートリーダー10のセッティング方法について説明する。
 図25に示すように、筐体15内部に測定用基板11b、複数の受光センサ12b、電源部16および給電ケーブル17bが固定された状態のマイクロプレートリーダー10に対して、作業者は、図26に示すように、底面側に導光プレート部13が嵌め込まれ、各ウェル21に試料30が収容されたマイクロプレート20を設置する。このとき、導光プレート部13は、受光センサ12b上に載置される。また、このとき、導光プレート部13が嵌め込まれたマイクロプレート20は、受光用導光路13aの光出射端が受光センサ12bの受光面に対向する位置に配置するように、位置決めされる。
Next, a setting method of the microplate reader 10 will be described.
As shown in FIG. 25, with respect to the microplate reader 10 in which the measurement substrate 11b, the plurality of light receiving sensors 12b, the power supply unit 16 and the power supply cable 17b are fixed inside the housing 15, the operator is shown in FIG. 26. As shown in the above, the light guide plate portion 13 is fitted on the bottom surface side, and the microplate 20 containing the sample 30 is installed in each well 21. At this time, the light guide plate portion 13 is placed on the light receiving sensor 12b. At this time, the microplate 20 into which the light guide plate portion 13 is fitted is positioned so that the light emitting end of the light receiving light guide path 13a faces the light receiving surface of the light receiving sensor 12b.
 次に、図27に示すように、作業者は、マイクロプレート20の上方に投光用基板11aを設置する。このとき、作業者は、投光用基板11a上の複数の光源12aが、それぞれ1個ずつマイクロプレート20の各ウェル21に対応した位置に配置されるように、投光用基板11aをマイクロプレート20の上方に設置する。ここで、投光用基板11a上の複数の光源12aは、当該投光用基板11aをマイクロプレート20の上方に位置合わせしたときに、マイクロプレート20の各ウェル21に対応した位置に配置されるように、予め隣接する光源12aとの間の距離が設定されている。なお、投光用基板11aは、不図示の位置決め部材により上下方向に位置決めがなされるようにしてもよい。 Next, as shown in FIG. 27, the operator installs the light projecting substrate 11a above the microplate 20. At this time, the operator sets the light projecting substrate 11a on the microplate so that the plurality of light sources 12a on the light projecting substrate 11a are arranged at positions corresponding to the wells 21 of the microplate 20 one by one. Install above 20. Here, the plurality of light sources 12a on the light projecting substrate 11a are arranged at positions corresponding to the wells 21 of the microplate 20 when the light projecting substrate 11a is aligned above the microplate 20. As described above, the distance between the adjacent light sources 12a is set in advance. The light projecting substrate 11a may be positioned in the vertical direction by a positioning member (not shown).
 作業者は、投光用基板11aをマイクロプレート20の上方に設置した後、投光用基板11aと電源部16とを給電ケーブル17aにより接続する。その後、作業者は、不図示の電源スイッチ等を操作して、電源部16から給電ケーブル17a、17bを介して各光源12aおよび各受光センサ12bへ電力を供給する。これにより、各光源12aから光が放出される。 After installing the light projecting board 11a above the microplate 20, the operator connects the light projecting board 11a and the power supply unit 16 with the power supply cable 17a. After that, the operator operates a power switch (not shown) or the like to supply power from the power supply unit 16 to each light source 12a and each light receiving sensor 12b via the power supply cables 17a and 17b. As a result, light is emitted from each light source 12a.
 各光源12aから放出された光は、マイクロプレート20の各ウェル21に収容された試料30を通過する。ウェル21を通過した光は、導光プレート部13の複数の受光用導光路13aを通過して受光センサ12bによって受光される。このようにして、試料30の光学特性(例えば、吸光特性)が測定される。
 受光センサ12bによる測定結果は、光強度情報として、不図示のデータ通信部を介して外部装置に送信可能であってもよい。この場合、外部装置は、上記の光強度情報をもとに、試料30の光学特性を測定する。
The light emitted from each light source 12a passes through the sample 30 housed in each well 21 of the microplate 20. The light that has passed through the well 21 passes through a plurality of light receiving light guide paths 13a of the light guide plate portion 13 and is received by the light receiving sensor 12b. In this way, the optical characteristics (for example, absorption characteristics) of the sample 30 are measured.
The measurement result by the light receiving sensor 12b may be transmitted as light intensity information to an external device via a data communication unit (not shown). In this case, the external device measures the optical characteristics of the sample 30 based on the above light intensity information.
 このように、マイクロプレートリーダー10において、導光プレート部13は、マイクロプレート20の底面側に形成された凹部に嵌め込み可能である。したがって、導光プレート部13をマイクロプレート20の底面側に嵌め込むことで、マイクロプレート20の各ウェル21と各ウェル21にそれぞれ対応する導光路群との位置決めを容易に行うことができる。
 なお、導光プレート部13は、マイクロプレート20の底面側に接触する側の表面が前記マイクロプレート29の底面の微細な凸凹構造に対応して変形することができるので、マイクロプレート20の底面側に形成された凹部に隙間なく密着させることができる。
 また、導光プレート部13の上面には、顔料含有樹脂からなる包囲部材13bが露出している。包囲部材13bの表面は粗いため、導光プレート部13上にマイクロプレート20を載置しただけでは、光測定中にマイクロプレート20と導光プレート部13との間で位置ずれが生じる虞がある。これに対して、本実施形態では、導光プレート部13は、マイクロプレート20の底面側に形成された凹部に嵌め込み可能であるため、光測定中の上記位置ずれを適切に抑制することができる。
As described above, in the microplate reader 10, the light guide plate portion 13 can be fitted into the recess formed on the bottom surface side of the microplate 20. Therefore, by fitting the light guide plate portion 13 into the bottom surface side of the microplate 20, it is possible to easily position each well 21 of the microplate 20 and the light guide path group corresponding to each well 21.
Since the surface of the light guide plate portion 13 on the side that contacts the bottom surface side of the microplate 20 can be deformed corresponding to the fine uneven structure of the bottom surface of the microplate 29, the bottom surface side of the microplate 20 It can be closely attached to the recess formed in the above without any gap.
Further, a surrounding member 13b made of a pigment-containing resin is exposed on the upper surface of the light guide plate portion 13. Since the surface of the surrounding member 13b is rough, simply placing the microplate 20 on the light guide plate portion 13 may cause a positional shift between the microplate 20 and the light guide plate portion 13 during light measurement. .. On the other hand, in the present embodiment, since the light guide plate portion 13 can be fitted into the recess formed on the bottom surface side of the microplate 20, the above-mentioned misalignment during light measurement can be appropriately suppressed. ..
 また、導光プレート部13は、マイクロプレート20の底面側に形成された凹部に嵌め込まれることでマイクロプレート20の底面と密着可能である。このように、マイクロプレート20と導光プレート部13とを密着させることができるので、マイクロプレート20と導光プレート部13との間に隙間が生じることを抑制し、当該隙間から受光用導光路13aに外光が侵入することを適切に抑制することができる。
 また、導光プレート部13はシリコーン樹脂からなり、比較的柔らかいため、ウェル21に試料30が入ったままでもマイクロプレート20に対して容易に取り外しが可能である。
Further, the light guide plate portion 13 can be brought into close contact with the bottom surface of the microplate 20 by being fitted into the recess formed on the bottom surface side of the microplate 20. In this way, since the microplate 20 and the light guide plate portion 13 can be brought into close contact with each other, it is possible to suppress the formation of a gap between the microplate 20 and the light guide plate portion 13, and the light receiving light guide path from the gap. It is possible to appropriately suppress the invasion of external light into 13a.
Further, since the light guide plate portion 13 is made of silicone resin and is relatively soft, it can be easily removed from the microplate 20 even when the sample 30 is contained in the well 21.
 さらに、一般的に、マイクロプレートは、底面の外縁部に底面から下方に突出する壁部を有し、マイクロプレートの底面側には、底面と壁部とにより空間(窪み)が設けられている。したがって、この既存の空間(窪み)を、導光プレート部13を嵌め込む凹部として利用すれば、専用のマイクロプレートを用意する必要がない。
 なお、本実施形態では、導光プレート部13は、マイクロプレート20の底面側に形成された凹部に嵌め込まれた状態において、壁部20aによって全周が包囲される場合について説明した。しかしながら、壁部20aは、導光プレート部13の少なくとも一部を包囲していればよい。
Further, in general, the microplate has a wall portion protruding downward from the bottom surface at the outer edge portion of the bottom surface, and a space (recess) is provided by the bottom surface and the wall portion on the bottom surface side of the microplate. .. Therefore, if this existing space (recess) is used as a recess into which the light guide plate portion 13 is fitted, it is not necessary to prepare a dedicated microplate.
In the present embodiment, the case where the light guide plate portion 13 is fitted into the recess formed on the bottom surface side of the microplate 20 and the entire circumference is surrounded by the wall portion 20a has been described. However, the wall portion 20a may surround at least a part of the light guide plate portion 13.
 さらに、本実施形態におけるマイクロプレートリーダー10において、受光用導光路13aは、マイクロプレート20の1つのウェル21に対して複数設けられている。そして、1つのウェル21に対応する複数の受光用導光路13aにより導光される光の投影面積は、1つのウェル21に対応する1つの受光センサ12bの受光面の面積と同等である。したがって、1つのウェルを通過した光を良好なS/N比で受光センサ12bに受光させることができ、光測定の精度を向上させることができる。
 また、受光用導光路13aが、マイクロプレート20の1つのウェル21に対して複数設けられているため、導光プレート部13の薄型化が可能である。その結果、マイクロプレートリーダー10の低背化が可能となる。さらに、導光プレート部13を、例えば上述した厚み1.6mmのように薄型化した場合、成型ではなく、例えば3Dプリンタによる作製が可能となり、製造コストを低減させることができる。
Further, in the microplate reader 10 of the present embodiment, a plurality of light receiving light guide paths 13a are provided for one well 21 of the microplate 20. The projected area of the light guided by the plurality of light receiving light guide paths 13a corresponding to one well 21 is equivalent to the area of the light receiving surface of one light receiving sensor 12b corresponding to one well 21. Therefore, the light that has passed through one well can be received by the light receiving sensor 12b at a good S / N ratio, and the accuracy of light measurement can be improved.
Further, since a plurality of light receiving light guide paths 13a are provided for one well 21 of the microplate 20, the light guide plate portion 13 can be made thinner. As a result, the height of the microplate reader 10 can be reduced. Further, when the light guide plate portion 13 is thinned as described above with a thickness of 1.6 mm, it can be manufactured by, for example, a 3D printer instead of molding, and the manufacturing cost can be reduced.
 また、マイクロプレートリーダー10は、マイクロプレート20を配置する筐体15を備える。筐体15は、例えば遮光性や断熱性を有する材料により構成することもできる。この場合、マイクロプレート20の側面から入射する外光の影響や温度の影響を抑制することができる。したがって、マイクロプレート20の端部に位置するウェル21の測定データの信頼性を確保することができる。 Further, the microplate reader 10 includes a housing 15 on which the microplate 20 is arranged. The housing 15 can also be made of, for example, a material having a light-shielding property or a heat-insulating property. In this case, the influence of the external light incident from the side surface of the microplate 20 and the influence of the temperature can be suppressed. Therefore, the reliability of the measurement data of the well 21 located at the end of the microplate 20 can be ensured.
 以上のように、マイクロプレートリーダー10は、POCT検査等の分野において携帯可能な程度に小型化され、マイクロプレート20の各ウェル21に収容された試料30全ての光測定を短時間で高精度に行うことができる。
 とりわけ、本実施形態におけるマイクロプレートリーダー10は、マイクロプレート20の各ウェル21と各ウェル21にそれぞれ対応した受光用導光路13aとの位置決めを容易に行うことができるとともに、光測定中における両者の位置ずれを抑制することができる。さらに、本実施形態におけるマイクロプレートリーダー10は、マイクロプレート20と導光プレート部13との間の隙間から受光用導光路13aに外光が侵入することを適切に抑制することができ、当該外光が光測定に与える悪影響を適切に抑制することができる。
As described above, the microplate reader 10 has been miniaturized to the extent that it can be carried in fields such as POCT inspection, and the optical measurement of all the samples 30 housed in each well 21 of the microplate 20 can be performed with high accuracy in a short time. It can be carried out.
In particular, the microplate reader 10 in the present embodiment can easily position each well 21 of the microplate 20 and the light receiving light guide path 13a corresponding to each well 21, and both of them during light measurement. Positional deviation can be suppressed. Further, the microplate reader 10 in the present embodiment can appropriately suppress the intrusion of external light into the light receiving light guide path 13a through the gap between the microplate 20 and the light guide plate portion 13, and is not applicable. The adverse effect of light on light measurement can be appropriately suppressed.
 なお、上記実施形態のマイクロプレートリーダー10においては、導光プレート部13は、マイクロプレート20の1つのウェル21に対応して複数の受光用導光路13aを備える場合について説明した。しかしながら、図24で示したように、マイクロプレート20の1つのウェル21に対応する1つの受光用導光路13a’を備える導光プレート部13Aを用いることもできる。この場合にも、図28に示すように、導光プレート部13Aは、マイクロプレート20の底面側に密着して嵌め込み可能であればよい。 In the microplate reader 10 of the above embodiment, the case where the light guide plate unit 13 is provided with a plurality of light receiving light guide paths 13a corresponding to one well 21 of the microplate 20 has been described. However, as shown in FIG. 24, a light guide plate portion 13A provided with one light receiving light path 13a'corresponding to one well 21 of the microplate 20 can also be used. Also in this case, as shown in FIG. 28, the light guide plate portion 13A may be fitted in close contact with the bottom surface side of the microplate 20.
 また、上記のマイクロプレートリーダー10においては、マイクロプレート20のウェル底面が平板形状である場合について説明した。ウェル底面が平板形状の場合、導光プレート部13との密着性が良いため好ましいが、ウェル底面の形状は、必ずしも平板形状でなくてもよい。
 例えば図29に示すマイクロプレート20Aのように、ウェル22の底面の形状が球面であってもよい。この場合にも、導光プレート部13は、マイクロプレート20Aの底面に一部密着して嵌め込むことが可能である。この場合、ウェル22を通過した光が球面状の底面にて集光される位置(集光領域)に導光路群の光入射端が配置されるように、導光プレート部13に受光用導光路13aを形成する。これにより、ウェル22を通過した光を適切に受光センサ12bに導光することができる。
Further, in the above-mentioned microplate reader 10, a case where the bottom surface of the well of the microplate 20 has a flat plate shape has been described. When the bottom surface of the well has a flat plate shape, it is preferable because the adhesion with the light guide plate portion 13 is good, but the shape of the bottom surface of the well does not necessarily have to be a flat plate shape.
For example, as in the microplate 20A shown in FIG. 29, the shape of the bottom surface of the well 22 may be spherical. Also in this case, the light guide plate portion 13 can be partially fitted in close contact with the bottom surface of the microplate 20A. In this case, the light receiving guide is provided on the light guide plate portion 13 so that the light incident end of the light guide path group is arranged at a position (condensing region) where the light passing through the well 22 is collected on the spherical bottom surface. It forms an optical path 13a. As a result, the light that has passed through the well 22 can be appropriately guided to the light receiving sensor 12b.
 また、上記のマイクロプレートリーダー10は、導光プレート部13がマイクロプレート20の底面側に形成された凹部に嵌め込まれた状態において、マイクロプレート20と導光プレート部13とが密着する方向に押圧する押圧部材を備えていてもよい。さらに、マイクロプレートリーダー10は、導光プレート部13が嵌め込まれたマイクロプレート20を、受光用導光路13aの光出射端と受光センサ12bとが対向する位置に位置決めする位置決め部材を備えていてもよい。
 例えば、図30および図31に示すように、測定用基板11bに複数(例えば、4本)の棒状の位置決め部材11cを設け、これら位置決め部材11cによって導光プレート部13が嵌め込まれたマイクロプレート20の側面を支持することで、当該マイクロプレート20を測定用基板11bに対して位置決めするようにしてもよい。なお、位置決め部材11cの数は、図30および図31に示す数に限定されない。また、位置決め部材11cの形状も、図30および図31に示す形状に限定されない。
Further, the microplate reader 10 presses the light guide plate portion 13 in a direction in which the micro plate 20 and the light guide plate portion 13 are in close contact with each other in a state where the light guide plate portion 13 is fitted in a recess formed on the bottom surface side of the micro plate 20. A pressing member may be provided. Further, the microplate reader 10 may include a positioning member for positioning the microplate 20 into which the light guide plate portion 13 is fitted at a position where the light emitting end of the light receiving light path 13a and the light receiving sensor 12b face each other. Good.
For example, as shown in FIGS. 30 and 31, a plurality of (for example, four) rod-shaped positioning members 11c are provided on the measurement substrate 11b, and the light guide plate portion 13 is fitted by these positioning members 11c. The microplate 20 may be positioned with respect to the measurement substrate 11b by supporting the side surface of the microplate 20. The number of positioning members 11c is not limited to the numbers shown in FIGS. 30 and 31. Further, the shape of the positioning member 11c is not limited to the shapes shown in FIGS. 30 and 31.
 また、この図30および図31に示すように、測定用基板11b上に導光プレート部13を介して載置されたマイクロプレート20の上面の一部と当接する押圧部材11dを設け、押圧部材11dによってマイクロプレート20を下方に押圧するようにしてもよい。ここで、押圧部材11dは、例えば測定用基板11bに設けられた支柱11e(図31参照)に係合されており、当該支柱11eの軸方向に沿って移動可能、かつ、当該支柱11eの軸方向の任意の位置で固定可能な構成とすることができる。
 なお、押圧部材および位置決め部材は、図30および図31に示す構成に限定されない。例えば、押圧部材は、測定用基板11bと測定用基板11b上に導光プレート部13を介して載置されたマイクロプレート20とを結束する結束具(輪ゴムや面テープ等)であってもよい。
Further, as shown in FIGS. 30 and 31, a pressing member 11d that comes into contact with a part of the upper surface of the microplate 20 placed on the measuring substrate 11b via the light guide plate portion 13 is provided, and the pressing member 11d is provided. The microplate 20 may be pressed downward by 11d. Here, the pressing member 11d is engaged with, for example, a support column 11e (see FIG. 31) provided on the measurement substrate 11b, is movable along the axial direction of the support column 11e, and has a shaft of the support column 11e. The configuration can be fixed at any position in the direction.
The pressing member and the positioning member are not limited to the configurations shown in FIGS. 30 and 31. For example, the pressing member may be a binding tool (rubber band, surface tape, etc.) that binds the measuring substrate 11b and the microplate 20 placed on the measuring substrate 11b via the light guide plate portion 13. ..
 また、上記実施形態のマイクロプレートリーダー10においては、マイクロプレート20の上方に光源12aが配置され、マイクロプレート20を挟んで光源12aとは反対側に受光センサ12bが配置されている場合について説明した。しかしながら、マイクロプレート20の下方に光源12aおよび受光センサ12bを配置することもできる。
 図32は、マイクロプレート20の下方に光源12aおよび受光センサ12bを配置したマイクロプレートリーダー10AAの概略構成図である。この図32において、図21に示すマイクロプレートリーダー10と同様の構成を有する部分には、図21と同一符号を付し、以下、構成の異なる部分を中心に説明する。
Further, in the microplate reader 10 of the above embodiment, a case where the light source 12a is arranged above the microplate 20 and the light receiving sensor 12b is arranged on the opposite side of the microplate 20 from the light source 12a has been described. .. However, the light source 12a and the light receiving sensor 12b can also be arranged below the microplate 20.
FIG. 32 is a schematic configuration diagram of a microplate reader 10AA in which a light source 12a and a light receiving sensor 12b are arranged below the microplate 20. In FIG. 32, portions having the same configuration as the microplate reader 10 shown in FIG. 21 are designated by the same reference numerals as those in FIG. 21, and the portions having different configurations will be mainly described below.
 マイクロプレートリーダー10AAは、基板11と、複数の光源12aと、複数の受光センサ12bと、導光プレート部(導光部)13Bと、ミラープレート(反射部材)14と、筐体15と、電源部16と、給電ケーブル17と、を備える。
 このマイクロプレートリーダー10AAは、基板11の上に複数の光源12aおよび複数の受光センサ12bが設けられ、光源12aおよび受光センサ12bの上に、導光プレート部13Bが底面側に嵌め込まれたマイクロプレート20が設置可能に構成されている。さらに、マイクロプレートリーダー10AAは、マイクロプレート20の上に、ミラープレート14が配置されるよう構成されている。ミラープレート14のマイクロプレート20と対向する面14aは、反射面(ミラー面)となっている。ミラープレート14は、筐体15の開口部を塞ぎ、マイクロプレート20の上蓋として機能する。
The microplate reader 10AA includes a substrate 11, a plurality of light sources 12a, a plurality of light receiving sensors 12b, a light guide plate portion (light guide portion) 13B, a mirror plate (reflection member) 14, a housing 15, and a power supply. A unit 16 and a power supply cable 17 are provided.
In this microplate reader 10AA, a plurality of light sources 12a and a plurality of light receiving sensors 12b are provided on a substrate 11, and a light guide plate portion 13B is fitted on the light source 12a and the light receiving sensor 12b on the bottom surface side. 20 is configured to be installable. Further, the microplate reader 10AA is configured such that the mirror plate 14 is arranged on the microplate 20. The surface 14a of the mirror plate 14 facing the microplate 20 is a reflective surface (mirror surface). The mirror plate 14 closes the opening of the housing 15 and functions as an upper lid of the microplate 20.
 基板11は、光源12aが接続される光源用電源ラインと、受光センサ12bが接続されるセンサ用電源ラインとを有する。複数の光源12aは、基板11に設けられた光源用電源ラインに接続され、光源用電源ラインから電力を得ている。また、複数の受光センサ12bは、基板11に設けられたセンサ用電源ラインに接続され、センサ用電源ラインから電力を得ている。基板11の光源用電源ラインおよびンサ用電源ラインには、電源部16から給電ケーブル17を介して電力が供給される。 The substrate 11 has a light source power supply line to which the light source 12a is connected and a sensor power supply line to which the light receiving sensor 12b is connected. The plurality of light sources 12a are connected to a light source power supply line provided on the substrate 11 and obtain power from the light source power supply line. Further, the plurality of light receiving sensors 12b are connected to the sensor power supply line provided on the substrate 11 and obtain power from the sensor power supply line. Power is supplied from the power supply unit 16 to the light source power supply line and the sensor power supply line of the substrate 11 via the power supply cable 17.
 導光プレート部13Bは、上記実施形態と同様に、SOT構造を有する。
 具体的には、導光プレート部13Bは、基板11に設けられた光源12aから放出される光をマイクロプレート20のウェル21に導光するための投光用導光路13dと、ウェル21に収容された試料30等を通過して放出される光を受光センサ12bに導光する受光用導光路13a”とを備える。そして、投光用導光路13dおよび受光用導光路13a”は、それぞれ顔料含有樹脂からなる包囲部材13bにより包囲されている。
 導光プレート13Bが嵌め込まれたマイクロプレート20は、投光用導光路13dの光入射端および受光用導光路13a”の光出射端が、それぞれ基板11上に設置された光源12aおよび受光センサ12bに対向する位置に配置されるように、基板11上に載置される。また、導光プレート13Bがマイクロプレート20に嵌め込まれることで、投光用導光路13dの光出射端および受光用導光路13a”の光入射端は、それぞれマイクロプレート20のウェル21の底面に対向する位置に配置するように位置決めされる。
The light guide plate portion 13B has an SOT structure as in the above embodiment.
Specifically, the light guide plate portion 13B accommodates the light emitting light path 13d for guiding the light emitted from the light source 12a provided on the substrate 11 to the well 21 of the microplate 20 and the well 21. The light receiving light guide path 13a "that guides the light emitted through the sample 30 or the like to the light receiving sensor 12b is provided. The light emitting light guide path 13d and the light receiving light guide path 13a" are each pigment. It is surrounded by a surrounding member 13b made of a contained resin.
In the microplate 20 into which the light guide plate 13B is fitted, the light incident end of the light emitting light guide path 13d and the light emitting end of the light receiving light guide path 13a ”are installed on the substrate 11, respectively, as a light source 12a and a light receiving sensor 12b. It is placed on the substrate 11 so as to be arranged at a position facing the light source. Further, by fitting the light guide plate 13B into the microplate 20, the light emitting end and the light receiving guide of the light emitting light path 13d The light incident ends of the optical path 13a "are positioned so as to be arranged at positions facing the bottom surface of the well 21 of the microplate 20.
 ミラープレート14のマイクロプレート20と対向する面14aは、反射面(ミラー面)となっている。そのため、各光源12aから放出され、導光プレート部13Bの各投光用導光路13dを通過し、マイクロプレート20の各ウェル21に収容された試料30を通過した光は、ミラープレート14に到達後、当該ミラープレート14の反射面14aにより反射される。そして、反射面14aにより反射された光は、再度、マイクロプレート20の各ウェル21に収容された試料30を通過し、導光プレート部13Bの各受光用導光路13a”を通過し、各受光センサ12bにより受光される。このようにして、試料30の光学測定(例えば、吸光特性)が測定される。 The surface 14a of the mirror plate 14 facing the microplate 20 is a reflective surface (mirror surface). Therefore, the light emitted from each light source 12a, passing through each light projecting light guide path 13d of the light guide plate portion 13B, and passing through the sample 30 housed in each well 21 of the micro plate 20 reaches the mirror plate 14. After that, it is reflected by the reflecting surface 14a of the mirror plate 14. Then, the light reflected by the reflecting surface 14a passes through the sample 30 housed in each well 21 of the microplate 20 again, passes through each light receiving light path 13a of the light guide plate portion 13B, and receives each light. The light is received by the sensor 12b. In this way, the optical measurement (for example, the absorption characteristic) of the sample 30 is measured.
 このように、マイクロプレート20の下方に光源12aおよび受光センサ12bが配置されたマイクロプレートリーダー10AAにおいても、導光プレート部13Bは、マイクロプレート20の底面側に形成された凹部に嵌め込まれて当該マイクロプレート20の底面と密着した構成とすることができる。したがって、マイクロプレート20の各ウェル21と導光プレート部13Bが備える導光路とを容易に位置決めすることができると共に、マイクロプレート20と導光プレート部13Bとの間に隙間が生じることを抑制し、外光の回り込みを抑制することができる。 As described above, even in the microplate reader 10AA in which the light source 12a and the light receiving sensor 12b are arranged below the microplate 20, the light guide plate portion 13B is fitted into the recess formed on the bottom surface side of the microplate 20. It can be configured to be in close contact with the bottom surface of the microplate 20. Therefore, each well 21 of the microplate 20 and the light guide path provided in the light guide plate portion 13B can be easily positioned, and it is possible to suppress the formation of a gap between the microplate 20 and the light guide plate portion 13B. , It is possible to suppress the wraparound of outside light.
 なお、上記のマイクロプレートリーダー10において、導光プレート部13は、図1のマイクロプレートリーダー10Aが備える導光プレート部13のように、1つのウェル21に対して設けられた導光路群により導光される光の照射領域(投影面積)が、受光センサ12bの受光面の面積よりも大きく設定されており、導光路群と受光センサ12bとの間に拡散部13cを備える構成であってもよい。 In the above-mentioned micro plate reader 10, the light guide plate portion 13 is guided by a light guide path group provided for one well 21 like the light guide plate portion 13 provided in the micro plate reader 10A of FIG. Even if the irradiation region (projected area) of the emitted light is set to be larger than the area of the light receiving surface of the light receiving sensor 12b and the diffuser portion 13c is provided between the light guide path group and the light receiving sensor 12b. Good.
 上記各実施形態においては、受光用導光路を透明な樹脂により構成する場合について説明したが、これら受光用導光路は空洞であってもよい。その場合、受光用導光路とそれを包囲する顔料含有樹脂からなる包囲部材との界面における迷光反射の抑制効果は得られないものの、顔料含有樹脂に入射した迷光は当該顔料含有樹脂によって吸収されるので、迷光の複雑な多重反射はある程度抑制される。 In each of the above embodiments, the case where the light receiving light path is made of a transparent resin has been described, but these light receiving light paths may be hollow. In that case, although the effect of suppressing stray light reflection at the interface between the light receiving light guide path and the surrounding member made of the pigment-containing resin surrounding the light receiving path cannot be obtained, the stray light incident on the pigment-containing resin is absorbed by the pigment-containing resin. Therefore, the complicated multiple reflection of stray light is suppressed to some extent.
 また、上記各実施形態においては、マイクロプレート20のウェル底面が平板形状である場合について説明した。ウェル底面が平板形状の場合、導光プレート部13との接触性が良いため好ましいが、ウェル底面の形状は、必ずしも平板形状でなくてもよい。 Further, in each of the above embodiments, the case where the bottom surface of the well of the microplate 20 has a flat plate shape has been described. When the bottom surface of the well has a flat plate shape, it is preferable because the contact with the light guide plate portion 13 is good, but the shape of the bottom surface of the well does not necessarily have to be a flat plate shape.
 さらに、上記各実施形態においては、投光部(光源)と受光部(受光センサ)とを1組ずつ個別に駆動可能な構成であってもよい。この場合、マイクロプレートのウェル数および位置に応じて、必要な数および位置の投光部と受光部とを選択的に駆動することもできる。これにより、ウェル数の異なるマイクロプレートに対応したマイクロプレートリーダーとすることができる。
 また、上記各実施形態においては、投光部(光源)数、受光部(受光センサ)数とウェル数とは必ずしも一致する必要はなく、投光部数および受光部数よりも少ないウェル数のマイクロプレートを配置することもできる。
 また、上記各実施形態においては、必ずしもマイクロプレートを水平配置して、その鉛直方向に投光部と受光部とを配置することに限られるものではなく、例えばマイクロプレートを垂直配置したり、マイクロプレートの斜め方向に投光部と受光部とを配置したりするなど、ウェルに収容されている試料が光測定できる範囲内で適宜変形可能である。
Further, in each of the above embodiments, a light emitting unit (light source) and a light receiving unit (light receiving sensor) may be individually driven by one set. In this case, it is also possible to selectively drive the light emitting unit and the light receiving unit at the required number and position according to the number and position of the wells of the microplate. This makes it possible to obtain a microplate reader corresponding to microplates having different numbers of wells.
Further, in each of the above embodiments, the number of light emitting parts (light source), the number of light receiving parts (light receiving sensor) and the number of wells do not necessarily have to match, and the number of microplates has a smaller number of wells than the number of light emitting parts and the number of light receiving parts. Can also be placed.
Further, in each of the above embodiments, the microplate is not necessarily arranged horizontally, and the light emitting portion and the light receiving portion are arranged in the vertical direction thereof. For example, the microplate may be arranged vertically or the microplate may be arranged vertically. The sample contained in the well can be appropriately deformed within a range in which light can be measured, such as by arranging a light emitting part and a light receiving part in an oblique direction of the plate.
 さらに、上記第一の実施形態においては、光源としてチップLEDを用いる場合について説明したが、光源は、例えば汎用LED(レンズ付きLED)であってもよい。
 図33は、汎用LEDである光源12dを備えるマイクロプレートリーダー10Cの概略構成図である。なお、図33において、図1に示すマイクロプレートリーダー10Aと同一構成を有する部分には、図1と同一符号を付している。
Further, in the first embodiment, the case where the chip LED is used as the light source has been described, but the light source may be, for example, a general-purpose LED (LED with a lens).
FIG. 33 is a schematic configuration diagram of a microplate reader 10C including a light source 12d, which is a general-purpose LED. In FIG. 33, portions having the same configuration as the microplate reader 10A shown in FIG. 1 are designated by the same reference numerals as those in FIG.
 汎用LEDは、チップLEDと比較して大型のLEDである。そのため、1つの光源(例えば、一番左の光源)12dからの光が、隣接する光源(左から2番目の光源)12dに対応するウェル21に入射しやすい。また、1つの光源(例えば、一番左の光源)12dからの光が、隣接する光源(左から2番目の光源)12dの表面に到達して反射され、結果として隣接する光源(左から2番目の光源)12dに対応するウェル21に入射する場合もある。このように、隣接する光源12dからの光が迷光として受光用導光路13aに入射し、測定結果に悪影響を及ぼすおそれがある。 The general-purpose LED is a larger LED than the chip LED. Therefore, the light from one light source (for example, the leftmost light source) 12d is likely to enter the well 21 corresponding to the adjacent light source (second light source from the left) 12d. Further, the light from one light source (for example, the leftmost light source) 12d reaches the surface of the adjacent light source (second light source from the left) 12d and is reflected, resulting in the adjacent light source (2 from the left). It may be incident on the well 21 corresponding to the second light source) 12d. In this way, the light from the adjacent light source 12d may enter the light receiving light guide path 13a as stray light, which may adversely affect the measurement result.
 そこで、光源として汎用LEDを用いる場合、図33に示すように、互いに隣接する光源12dの間に遮蔽部材19aを配置してもよい。この遮蔽部材19aは、1つの光源12dに隣接する光源12dから放出された光が、当該1つの光源12dに対応する受光用導光路13aに入射することを制限するための制限部材である。
 遮蔽部材19aは、光源12dからの光を遮蔽する材料により構成する。例えば、遮蔽部材19aは、光を吸収する特性を有する顔料を含有する顔料含有樹脂により構成することもできる。ここで、遮蔽部材19aの配置位置や形状(長さ、厚さ)は、1つの光源12dから放出される光が、他の光源12dに対応するウェル21、ひいては受光用導光路13aに入射しないように適宜設定する。
Therefore, when a general-purpose LED is used as the light source, as shown in FIG. 33, the shielding member 19a may be arranged between the light sources 12d adjacent to each other. The shielding member 19a is a limiting member for limiting the light emitted from the light source 12d adjacent to one light source 12d from entering the light receiving light guide path 13a corresponding to the one light source 12d.
The shielding member 19a is made of a material that shields light from the light source 12d. For example, the shielding member 19a can also be made of a pigment-containing resin containing a pigment having a property of absorbing light. Here, the arrangement position and shape (length, thickness) of the shielding member 19a is such that the light emitted from one light source 12d does not enter the well 21 corresponding to the other light source 12d, and eventually the light receiving light path 13a. As appropriate.
 また、図34に示すマイクロプレートリーダー10Dのように、マイクロプレート20と受光センサ12bとの間に配置されている導光プレート部13と同様の構成を有する導光プレート部19bを、光源12aとマイクロプレート20との間に配置してもよい。
 導光プレート部19bは、複数の光源12dにそれぞれ対応する投光用導光路191を備える。投光用導光路191は、光源12aから放出される光に対して透明な樹脂(例えば、シリコーン樹脂)により構成される。また、投光用導光路191は、顔料含有樹脂からなる包囲部材192により包囲されている。この場合、顔料含有樹脂からなる包囲部材192が、互いに隣接する光源12dの間に配置され、1つの光源12dに隣接する光源12dから放出された光が、上記1つの光源12dに対応する受光用導光路13aに入射することを制限ための制限部材として機能する。
Further, like the microplate reader 10D shown in FIG. 34, the light guide plate portion 19b having the same configuration as the light guide plate portion 13 arranged between the microplate 20 and the light receiving sensor 12b is referred to the light source 12a. It may be arranged between the microplate 20 and the microplate 20.
The light guide plate portion 19b includes a light projection path 191 corresponding to each of the plurality of light sources 12d. The light emitting light path 191 is made of a resin (for example, silicone resin) that is transparent to the light emitted from the light source 12a. Further, the light emitting light path 191 is surrounded by a surrounding member 192 made of a pigment-containing resin. In this case, the surrounding member 192 made of the pigment-containing resin is arranged between the light sources 12d adjacent to each other, and the light emitted from the light source 12d adjacent to the one light source 12d is used for receiving light corresponding to the one light source 12d. It functions as a limiting member for limiting the incident on the light guide path 13a.
 このように、互いに隣接する光源12dの間に制限部材を配置することで、1つの光源12dから放出される光が、他の光源12dに対応するウェル21に直接入射したり、他の光源12dの表面に反射されて当該他の光源12dに対応するウェル21に入射したりすることを防止することができる。特に、制限部材として顔料含有樹脂を用いることで、1つの光源12dから他のウェル21や他の光源12dに向かう光を適切に吸収させることができる。その結果、各光源12dからの光は、ほぼ直進光として対応する各ウェル21に収容される試料30に入射することができる。 By arranging the limiting member between the light sources 12d adjacent to each other in this way, the light emitted from one light source 12d can be directly incident on the well 21 corresponding to the other light source 12d, or the other light source 12d. It is possible to prevent the light source 12d from being reflected by the surface of the light source and incident on the well 21 corresponding to the other light source 12d. In particular, by using a pigment-containing resin as the limiting member, it is possible to appropriately absorb the light directed from one light source 12d to another well 21 or another light source 12d. As a result, the light from each light source 12d can enter the sample 30 housed in each well 21 corresponding as substantially straight light.
 さらに、上記第二の実施形態においては、受光センサ12bに入射する光の角度成分を制限するための制限部として、アパーチャ部11cの径を受光用導光路13aの光入射端の径よりも小さくしたり、ミラープレート14に反射面14aと非反射面14cとを設けたりする場合について説明した。しかしながら、上記制限部は、上記に限定されるものではない。
 例えば、図35に示すマイクロプレートリーダー10Eのように、光源12aに集光レンズ11dを設けてもよい。なお、図35において、図7に示すマイクロプレートリーダー10Bと同一構成を有する部分には、図7と同一符号を付している。
Further, in the second embodiment, the diameter of the aperture portion 11c is smaller than the diameter of the light incident end of the light receiving light guide path 13a as a limiting portion for limiting the angular component of the light incident on the light receiving sensor 12b. The case where the mirror plate 14 is provided with the reflective surface 14a and the non-reflective surface 14c has been described. However, the restriction portion is not limited to the above.
For example, as in the microplate reader 10E shown in FIG. 35, the light source 12a may be provided with a condenser lens 11d. In FIG. 35, the portions having the same configuration as the microplate reader 10B shown in FIG. 7 are designated by the same reference numerals as those in FIG. 7.
 ここで、集光レンズ11dは、例えば、チップLEDに滴下後、固化させた樹脂(例えば、PDMS樹脂)により構成することができる。このように、集光レンズ11dを設けることで、光源12aから放出される光の広がりを制限することができ、結果的に受光センサ12bに入射する光の角度成分を制限することができる。 Here, the condenser lens 11d can be made of, for example, a resin (for example, PDMS resin) that is solidified after being dropped on the chip LED. By providing the condenser lens 11d in this way, the spread of the light emitted from the light source 12a can be limited, and as a result, the angular component of the light incident on the light receiving sensor 12b can be limited.
 なお、受光センサ12bに入射する光の角度成分を制限するための制限部は、上述した投光用基板11a´のアパーチャ部11cを用いた制限、ミラープレート14の非反射面14cを用いた制限、および光源12aの集光レンズ11dを用いた制限の少なくとも1つであればよく、これらを適宜組み合わせて用いることもできる。例えば、上記制限部が、ミラープレート14の非反射面14cを用いた制限や、光源12aの集光レンズ11dを用いた制限である場合、投光用基板11a´のアパーチャ部11cの径は、受光用導光路13aの光入射端の開口と同等もしくはそれ以上であってもよい。 The limiting portion for limiting the angular component of the light incident on the light receiving sensor 12b is the limitation using the aperture portion 11c of the above-mentioned light projecting substrate 11a'and the limitation using the non-reflective surface 14c of the mirror plate 14. , And at least one of the restrictions using the condenser lens 11d of the light source 12a, and these may be used in combination as appropriate. For example, when the restriction portion is a restriction using the non-reflective surface 14c of the mirror plate 14 or a restriction using the condensing lens 11d of the light source 12a, the diameter of the aperture portion 11c of the light projecting substrate 11a'is determined. It may be equal to or larger than the opening at the light incident end of the light receiving light guide path 13a.
(応用例)
 先に説明した通り、上記実施形態におけるマイクロプレートリーダーは、導光路群を、外光や散乱光を吸収可能な顔料含有樹脂によりなる包囲部材により包囲するので、外光や散乱光等が迷光(ノイズ光)となって受光部に入射されることを抑制することができる。また、複数の投光部から放出された光が1つの導光路群を通過して1つの受光部に到達しないようにすることができるため、適切に測定誤差を低減することができる。したがって、高精度な測定が可能となる。
 さらに、上記実施形態におけるマイクロプレートリーダーは、1つのウェルに対して複数の受光用導光路を設けるので、1つのウェルを通過した光を良好なS/N比で効率的に受光部へ導光させることができる。さらに、導光路群と受光部との間に拡散部を設けるので、導光路群を通過した光を拡散して均一化し、受光部に受光させることができる。そのため、受光部の受光面積が小さい場合であっても、導光路群を通過した光を適切に受光部に受光させることができる。
 このような構造は、例えば、投光部、受光部および受光用導光路の組に対してマイクロプレートを相対的に走査させる方式(以下、「スキャン式」という。)のマイクロプレートリーダーにも適用することができる。
(Application example)
As described above, in the microplate reader in the above embodiment, the light guide path group is surrounded by a surrounding member made of a pigment-containing resin capable of absorbing external light and scattered light, so that external light, scattered light and the like are stray light ( It is possible to prevent the light from being incident on the light receiving portion as noise light). Further, since the light emitted from the plurality of light projecting units can be prevented from passing through one light guide path group and reaching one light receiving unit, the measurement error can be appropriately reduced. Therefore, highly accurate measurement is possible.
Further, since the microplate reader in the above embodiment is provided with a plurality of light receiving light paths for one well, the light passing through one well is efficiently guided to the light receiving portion with a good S / N ratio. Can be made to. Further, since the diffusing portion is provided between the light guide path group and the light receiving portion, the light passing through the light guide path group can be diffused and made uniform, and the light receiving portion can receive the light. Therefore, even when the light receiving area of the light receiving unit is small, the light passing through the light guide path group can be appropriately received by the light receiving unit.
Such a structure is also applied to, for example, a microplate reader of a method (hereinafter referred to as "scan type") in which a microplate is scanned relative to a set of a light projecting unit, a light receiving unit, and a light receiving light guide path. can do.
 スキャン式のマイクロプレートリーダーでは、マイクロプレートを相対的に走査させるための駆動機構が必須となり、一般に、装置自体が大がかりとなる。また、従来のマイクロプレートリーダーでは、迷光の複雑な多重反射が発生する場合があり、それに対応する光学系設計が必要となる。
 しかしながら、上述した各実施形態の光学系構成(SOT構造)を採用することにより、従来のように多重散乱等が発生する迷光に対応する光学系設計が必要ない。SOT構造は比較的構成が簡易であるため、SOT構造を採用したスキャン式のマイクロプレートリーダーは、従来のスキャン式のマイクロプレートリーダーと比較して小型化することができる。また、SOT構造の採用により、従来と比較して測定の高精度化を図ることもできる。
In a scanning type microplate reader, a drive mechanism for relatively scanning the microplate is indispensable, and the device itself is generally large-scale. Further, in the conventional microplate reader, complicated multiple reflection of stray light may occur, and it is necessary to design an optical system corresponding to the complicated multiple reflection.
However, by adopting the optical system configuration (SOT structure) of each of the above-described embodiments, it is not necessary to design an optical system corresponding to stray light in which multiple scattering or the like occurs as in the conventional case. Since the SOT structure has a relatively simple structure, the scan-type microplate reader that employs the SOT structure can be miniaturized as compared with the conventional scan-type microplate reader. In addition, by adopting the SOT structure, it is possible to improve the accuracy of measurement as compared with the conventional case.
 以下、スキャン式のマイクロプレートリーダーの構成について説明する。
 図36および図37は、SOT構造を採用したスキャン式のマイクロプレートリーダー10Fにおける要部を示す。ここで、図37は、図36のX-X断面図である。なお、上述した実施形態と同様の構成要素については、詳細な説明を省略する。
 図37に示すように、マイクロプレートリーダー10Fは、投光用基板11a”と、測定用基板11b”と、光源12a”と、受光センサ12b”と、導光プレート部13”と、を備える。測定用基板11b”には複数の受光センサ12b”が設けられており、この測定用基板11b”の上に導光プレート部13”が設けられている。導光プレート部13”は、複数(ここでは3本)の受光用導光路13a”からなる導光路群の複数を顔料含有樹脂からなる包囲部材13b”により包囲した構造を有する。
 また、導光路群と受光センサ12b”との間には、拡散部13c”が設けられている。
Hereinafter, the configuration of the scan type microplate reader will be described.
36 and 37 show the main parts of the scan-type microplate reader 10F that employs the SOT structure. Here, FIG. 37 is a cross-sectional view taken along the line XX of FIG. 36. A detailed description of the same components as those in the above-described embodiment will be omitted.
As shown in FIG. 37, the microplate reader 10F includes a light projecting substrate 11a ", a measuring substrate 11b", a light source 12a ", a light receiving sensor 12b", and a light guide plate portion 13 ". A plurality of light receiving sensors 12b "are provided on the measurement substrate 11b", and a light guide plate portion 13 "is provided on the measurement substrate 11b". Here, it has a structure in which a plurality of light guide paths 13a "for receiving light are surrounded by a surrounding member 13b" made of a pigment-containing resin.
Further, a diffusion unit 13c "is provided between the light guide path group and the light receiving sensor 12b".
 導光プレート部13”の上部には、一定の間隔が設けられた隙間を挟んで投光用基板11a”が配置されており、この投光用基板11a”には複数の光源12a”が設けられている。
 測定用基板11b”、導光プレート部13”および投光用基板11a”は、例えば支持部材(例えば、支柱)11fにより一体的に保持されている。
A light projecting substrate 11a "is arranged on the upper portion of the light guide plate portion 13" with a gap provided at a certain interval, and a plurality of light sources 12a "are provided on the light emitting substrate 11a". Has been done.
The measurement substrate 11b ", the light guide plate portion 13", and the light projecting substrate 11a "are integrally held by, for example, a support member (for example, a support column) 11f.
 導光プレート部13”と投光用基板11a”との間の一定の間隔が設けられた隙間には、マイクロプレート20が挿入される。すなわち、上記隙間の間隔は、マイクロプレート20が挿入可能なように、マイクロプレート20の厚みよりも大きく設定される。
 上記隙間にマイクロプレート20が挿入され位置決めされた状態では、投光用基板11a”に設けられた複数の光源12a”は、当該隙間に挿入されたマイクロプレート20の所定の複数のウェル21にそれぞれ対向するように配置される。また、導光プレート部13”に設けられた複数の導光路群や測定用基板11b”に設けられた複数の受光センサ12b”も同様に、隙間に挿入されたマイクロプレート20の所定の複数のウェル21にそれぞれ対向するように配置される。
The microplate 20 is inserted into a gap provided with a certain distance between the light guide plate portion 13 "and the light projecting substrate 11a". That is, the gap between the gaps is set to be larger than the thickness of the microplate 20 so that the microplate 20 can be inserted.
In a state where the microplate 20 is inserted into the gap and positioned, the plurality of light sources 12a "provided on the light projecting substrate 11a" are respectively placed in a plurality of predetermined wells 21 of the microplate 20 inserted in the gap. Arranged so as to face each other. Similarly, the plurality of light guide path groups provided in the light guide plate portion 13 "and the plurality of light receiving sensors 12b" provided in the measurement substrate 11b "are also a plurality of predetermined light receiving sensors 12b" of the microplate 20 inserted in the gap. They are arranged so as to face each of the wells 21.
 ここで、マイクロプレートリーダー10Fは、マイクロプレート20の一列分のウェル21と同じ数だけ、光源12a”、受光センサ12b”および導光路群を備える。すなわち、マイクロプレート20の一列分の各ウェルにそれぞれ対応して、1つの光源12a”、1つの受光センサ12b”および1つの導光路群が設けられる。 Here, the microplate reader 10F includes the same number of light sources 12a ", light receiving sensors 12b", and light guide paths as the number of wells 21 for one row of the microplate 20. That is, one light source 12a ", one light receiving sensor 12b" and one light guide path group are provided corresponding to each well for one row of the microplate 20.
 この1つのウェル21に対応した光源12a”、導光路群および受光センサ12b”の組は、マイクロプレート20のウェル21の列方向(一つの辺の方向)に複数配置される。例えば、マイクロプレート20が8×12=96ウェルを有する場合、複数配置される光源12a”、受光センサ12b”および導光路群の組数は、8または12となる。
 また、1つの光源12a”および1つの受光センサ12b´は、鉛直方向に一列に配置される。さらに、複数配置される光源12a”、受光センサ12b”および導光路群の組の配置間隔は、マイクロプレート20の各ウェル21のピッチに等しい。
A plurality of sets of the light source 12a ", the light guide path group, and the light receiving sensor 12b" corresponding to the one well 21 are arranged in the row direction (the direction of one side) of the wells 21 of the microplate 20. For example, when the microplate 20 has 8 × 12 = 96 wells, the number of sets of the plurality of light sources 12a ”, the light receiving sensor 12b”, and the light guide path group is 8 or 12.
Further, one light source 12a "and one light receiving sensor 12b' are arranged in a row in the vertical direction. Further, the arrangement interval of the pair of the light source 12a", the light receiving sensor 12b "and the light guide path group to be arranged is set. Equal to the pitch of each well 21 of the microplate 20.
 よって、導光プレート部13”と投光用基板11a”との間の隙間においてマイクロプレート20を位置決めすることにより、一列分の各ウェル21にそれぞれ対応するように、光源12a”、受光センサ12b”および導光路群の組が配置される。
 すなわち、マイクロプレート20の一列分の各ウェル21において、1つの光源12a”から放出された光は、1つのウェル21に収容された試料30等を経由して1つの導光路群が有する複数の受光用導光路13a”を通過し、拡散部13c”を介して1つの受光センサ12b”に到達する。
 これにより、マイクロプレート20のウェル一列分の光測定を同時に行うことが可能となる。
Therefore, by positioning the microplate 20 in the gap between the light guide plate portion 13 "and the light projecting substrate 11a", the light source 12a "and the light receiving sensor 12b are arranged so as to correspond to each well 21 for one row. "And a set of light guide paths is arranged.
That is, in each well 21 for one row of the microplate 20, the light emitted from one light source 12a ”has a plurality of light paths included in one light guide path group via the sample 30 and the like housed in one well 21. It passes through the light receiving light path 13a "and reaches one light receiving sensor 12b" via the diffuser 13c ".
This makes it possible to simultaneously measure the light for one row of wells of the microplate 20.
 なお、光源12a”および受光センサ12b”の配置は、厳密に鉛直方向に一列である必要はなく、1つの光源12a”から放出され、マイクロプレート20の1つのウェル21に収容された試料30等を通過して放出される光が、1つの導光路群を通過し、拡散部13c”を経由して1つの受光センサ12b”に到達可能な配置であればよい。 The arrangement of the light source 12a "and the light receiving sensor 12b" does not have to be strictly in a row in the vertical direction, and the sample 30 or the like emitted from one light source 12a "and housed in one well 21 of the microplate 20". The light emitted through the light source may be arranged so as to pass through one light source group and reach one light receiving sensor 12b "via the diffuser 13c".
 そして、上記構成を有するマイクロプレートリーダー10Fにおいて、マイクロプレート20のウェル21の列方向に配置された複数の光源12a”、受光センサ12b”および導光路群の組に対して、マイクロプレート20を、ウェル21の列方向にほぼ直交する方向に相対的に逐次移動させることにより、マイクロプレート20の全てのウェル21に対して光測定を行うことが可能となる。
 例えば、8×12=96ウェルのマイクロプレート20に対して、一列8個のウェル21に対応して光源12a”、受光センサ12bおよび導光路群の組が8組設けられている場合、上記の相対的に逐次移動させる方向は、ウェル21が12個並ぶ方向となる。
Then, in the microplate reader 10F having the above configuration, the microplate 20 is attached to the set of the plurality of light sources 12a ", the light receiving sensor 12b" and the light guide path group arranged in the row direction of the wells 21 of the microplate 20. By sequentially moving the wells 21 in a direction substantially orthogonal to the row direction, it is possible to perform optical measurement on all the wells 21 of the microplate 20.
For example, when the microplate 20 having 8 × 12 = 96 wells is provided with eight sets of a light source 12a ”, a light receiving sensor 12b, and a light guide path group corresponding to eight wells 21 in a row, the above. The direction of relative sequential movement is the direction in which 12 wells 21 are lined up.
 上記の相対的な逐次移動は、図示を省略した移動機構により行うことができる。移動機構は、マイクロプレート20をウェル21の列方向に直交する方向に移動させるか、鉛直方向に一列に配置された光源12a”、導光路群および受光センサ12b”の組を互いの位置関係を保持したままウェル21の列方向に直交する方向に移動させる。
 図37は、マイクロプレート20が固定されており、支柱11fにより一体的に保持される投光用基板11a”、導光プレート部13”および測定用基板11b”の組が、移動機構により逐次移動される場合を示している。
The relative sequential movement described above can be performed by a movement mechanism (not shown). The moving mechanism moves the microplate 20 in a direction orthogonal to the row direction of the wells 21, or arranges a set of light sources 12a ", a light guide path group, and a light receiving sensor 12b" arranged in a vertical row in a positional relationship with each other. While holding it, it is moved in a direction orthogonal to the row direction of the wells 21.
In FIG. 37, the set of the light projecting substrate 11a ", the light guide plate portion 13", and the measuring substrate 11b ", in which the microplate 20 is fixed and integrally held by the support column 11f, is sequentially moved by the moving mechanism. It shows the case where it is done.
 移動機構は、例えばサーボモータやステッピングモータの制御機能を有することができる。なお、マイクロプレート20の各ウェル21のピッチが比較的大きい場合には、高精度な位置制御が不要であるため、移動機構はメカ的なストッパ等により実現することもできる。 The moving mechanism can have, for example, a control function for a servo motor or a stepping motor. When the pitch of each well 21 of the microplate 20 is relatively large, high-precision position control is not required, so that the moving mechanism can be realized by a mechanical stopper or the like.
 このように、スキャン式のマイクロプレートリーダー10Fは、マイクロプレート20のウェル21の数よりも少ない光測定部(光源12a”、導光路群および受光センサ12b”)の組を用いて、マイクロプレート20の全てのウェル21に対する光測定を行うことができる。したがって、上述した図1などに示すようにウェル21の数と同一の数の光測定部の組を設ける場合と比較して、装置を小型化することが可能である。
 また、光測定部の組をマイクロプレート20の一列分のウェル21の数だけ設け、これら光測定部の組をウェル21の列方向に直交する方向に移動させる構成の場合、1軸方向のみの移動とすることができるので、比較的簡易に移動機構を構成することができる。光測定部の組を直交する2軸方向に移動させる場合には、例えばガイドレールを2段にするなど移動機構が高さ方向に大型化するが、1軸方向のみの移動であれば移動機構が高さ方向に大きくならないようにすることができ、結果として装置の薄型化を図ることができる。
In this way, the scan-type microplate reader 10F uses a set of light measuring units (light source 12a ”, light guide path group and light receiving sensor 12b”) that is smaller than the number of wells 21 of the microplate 20. Optical measurements can be made on all wells 21 of. Therefore, as shown in FIG. 1 and the like described above, the device can be miniaturized as compared with the case where the same number of sets of optical measuring units as the number of wells 21 are provided.
Further, in the case of a configuration in which as many sets of light measurement units as the number of wells 21 for one row of the microplate 20 are provided and these sets of light measurement units are moved in a direction orthogonal to the row direction of the wells 21, only in one axial direction. Since it can be moved, the movement mechanism can be configured relatively easily. When moving the set of optical measuring units in the orthogonal two-axis directions, the moving mechanism becomes larger in the height direction, for example, by making the guide rails two steps, but if the movement is in only one axial direction, the moving mechanism becomes larger. Can be prevented from increasing in the height direction, and as a result, the thickness of the device can be reduced.
 さらに、スキャン式のマイクロプレートリーダーの場合、マイクロプレートと光測定部の組とを相対的に移動させる必要があるため、マイクロプレートと光測定部との間に所定の隙間が形成される。そのため、この隙間の部分においては外光が侵入したり散乱光が発生したりしやすい。
 しかしながら、上記のマイクロプレートリーダー10Fでは、SOT構造の導光プレート部13”を採用しており、直進光のみを取り出すことができるため、例えばマイクロプレート20の下面と導光プレート13”の上面との間に隙間が形成されていても、外光や散乱光などの迷光(ノイズ光)の影響を無視することができる。また、外光の影響を受けないため、室外でも高精度な光測定が可能となる。
 このように、スキャン式のマイクロプレートリーダー10Fは、小型で高精度な光測定が可能であるため、測定対象となる試料が得られた現場(オンサイト)での光測定が可能である。例えば、港における輸入穀物に対するカビ毒検査などに適用することができる。
Further, in the case of a scanning type microplate reader, since it is necessary to move the pair of the microplate and the light measuring unit relatively, a predetermined gap is formed between the microplate and the light measuring unit. Therefore, external light is likely to enter or scattered light is likely to be generated in this gap.
However, in the above-mentioned microplate reader 10F, the light guide plate portion 13 "of the SOT structure is adopted, and only straight light can be taken out. Therefore, for example, the lower surface of the micro plate 20 and the upper surface of the light guide plate 13 " Even if a gap is formed between the two, the influence of stray light (noise light) such as external light and scattered light can be ignored. In addition, since it is not affected by outside light, highly accurate light measurement is possible even outdoors.
As described above, since the scan-type microplate reader 10F is compact and capable of high-precision optical measurement, it is possible to perform optical measurement at the site (on-site) where the sample to be measured is obtained. For example, it can be applied to mold poison inspection on imported grains at ports.
 なお、図36および図37においては、上述した図1などに示す筐体15、電源部16、給電ケーブル17aおよび17bの図示を省略しているが、上記のように移動機構により、投光用基板11a”、導光プレート部13”および測定用基板11b”の組を移動させる場合、電源部16から投光用基板11a”や測定用基板11b”に給電するための給電ケーブル17a、17bは、投光用基板11a”、導光プレート部13”および測定用基板11b”の移動に追随可能な構成(例えば、長さ、配置)とする。 Although the housing 15, the power supply unit 16, and the power supply cables 17a and 17b shown in FIG. 1 and the like described above are omitted in FIGS. 36 and 37, the moving mechanism is used for light projection as described above. When moving the set of the substrate 11a ", the light guide plate portion 13" and the measurement substrate 11b ", the power supply cables 17a and 17b for supplying power from the power supply unit 16 to the light projection substrate 11a" and the measurement substrate 11b " The configuration (for example, length and arrangement) can follow the movement of the light projecting substrate 11a ", the light guide plate portion 13", and the measuring substrate 11b ".
 また、上記のマイクロプレートリーダー10Fでは、投光用基板11a”、導光プレート部13”および測定用基板11b”からなる光測定部の組を逐次移動させる場合について説明したが、光測定部の組を固定し、マイクロプレート20を逐次移動させるようにしてもよい。
 ただし、マイクロプレート20を移動させる場合、各ウェル21に収容された液体試料30の液面が動き、液面が安定するまでに時間を要する。そのため、マイクロプレート20を移動させるのではなく光測定部の組を移動させる方が、液面を安定させたまま保持することができ、全てのウェル21に対する光測定を短時間で完了させることができるので好ましい。
Further, in the above-mentioned microplate reader 10F, the case where the set of the light measuring unit including the light projecting substrate 11a ", the light guide plate unit 13" and the measuring substrate 11b "is sequentially moved has been described. The set may be fixed and the microplate 20 may be moved sequentially.
However, when the microplate 20 is moved, it takes time for the liquid level of the liquid sample 30 contained in each well 21 to move and stabilize. Therefore, it is possible to keep the liquid level stable by moving the set of light measuring units instead of moving the microplate 20, and it is possible to complete the light measurement for all the wells 21 in a short time. It is preferable because it can be done.
 さらに、図36および図37に示すマイクロプレートリーダー10Fは、マイクロプレート20の一列分のウェル21と同数の光源12a”、導光路群および受光センサ12b”からなる光測定部の組を備える場合について説明した。しかしながら、スキャン式のマイクロプレートリーダーにおいて、光測定部の組数は、マイクロプレート20のウェル数よりも少ない数であればよく、上記に限定されるものではない。 Further, the case where the microplate reader 10F shown in FIGS. 36 and 37 includes a set of an optical measuring unit including the same number of light sources 12a ", a light guide path group, and a light receiving sensor 12b" as the wells 21 for one row of the microplate 20. explained. However, in the scanning type microplate reader, the number of sets of the optical measuring unit may be smaller than the number of wells of the microplate 20, and is not limited to the above.
 例えば、光測定部の組数を、マイクロプレート20の一列分のウェル21よりも少ない数とし、光測定部の組をマイクロプレート20に対して2次元的に逐次移動させるようにしてもよい。この場合にも、マイクロプレート20の全ウェルに対する光測定を行うことができる。
 また、光測定部の組数を、マイクロプレート20の一列分のウェル21よりも多い数としてもよい。例えば、光測定部の組数を、マイクロプレート20の二列分や三列分といった複数列分のウェル21と同一の数とし、光測定部の組を複数列分ずつ逐次移動させるようにしてもよい。
For example, the number of sets of the light measuring units may be smaller than the number of wells 21 for one row of the microplate 20, and the sets of the light measuring units may be sequentially moved two-dimensionally with respect to the microplate 20. In this case as well, light measurement can be performed on all the wells of the microplate 20.
Further, the number of sets of the optical measuring units may be larger than the number of wells 21 for one row of the microplate 20. For example, the number of sets of the optical measuring units is set to be the same as the number of wells 21 for a plurality of rows such as two rows or three rows of the microplate 20, and the sets of the optical measuring units are sequentially moved by a plurality of rows. May be good.
 さらに、光測定部の組は、必ずしもマイクロプレート20の隣接するウェルにそれぞれ対応させて配置しなくてもよい。
 図1などに示すようにウェル21の数と同一の数の光源12a、導光路群および受光センサ12bからなる光測定部の組を設ける場合、マイクロプレート20のウェル数が多いほど、光測定部のコストが嵩む。また、マイクロプレート20のウェル数が多いほど各ウェル21のピッチは狭く、光測定部のアライメントが困難になる。
Further, the set of optical measuring units does not necessarily have to be arranged so as to correspond to the adjacent wells of the microplate 20.
As shown in FIG. 1, when a set of light measuring units including the same number of light sources 12a, light guide paths and light receiving sensors 12b as the number of wells 21 is provided, the larger the number of wells in the microplate 20, the more the light measuring unit The cost is high. Further, as the number of wells in the microplate 20 increases, the pitch of each well 21 becomes narrower, which makes it difficult to align the optical measuring unit.
 そこで、図38に示すマイクロプレートリーダー10Gのように、光源12a”、導光路群および受光センサ12b”の組を、1つおきに各ウェル21に対応させて配置するようにしてもよい。
 このようなマイクロプレートリーダー10Gの場合、図39に示すように、光源12a”、導光路群および受光センサ12b”の組を、マイクロプレート20の各ウェル21の位置に対して、市松模様状に配置してもよい。この場合、マイクロプレート20を、図39の矢印の方向に一列分移動させることにより、図40に示すようにマイクロプレート20の全てのウェル21に対して光測定を行うことが可能となる。
Therefore, as in the microplate reader 10G shown in FIG. 38, every other set of the light source 12a ", the light guide path group, and the light receiving sensor 12b" may be arranged corresponding to each well 21.
In the case of such a microplate reader 10G, as shown in FIG. 39, a set of a light source 12a ", a light guide path group, and a light receiving sensor 12b" is arranged in a checkered pattern with respect to the position of each well 21 of the microplate 20. It may be arranged. In this case, by moving the microplate 20 by one row in the direction of the arrow in FIG. 39, it is possible to perform optical measurement on all the wells 21 of the microplate 20 as shown in FIG. 40.
 つまり、1回目の光測定では、図39に示すように、光源12a”が対向配置されているウェル21について光測定が行われ、2回目の光測定では、図40に示すように、1回目の光測定において光測定が行われなったウェル21について光測定が行われる。なお、図40において、黒塗りのウェル21´は、1回目に光測定が行われたウェルである。
 このような構成により、ウェル数の多い、例えば各ウェル21のピッチが2.25mmである1536ウェルのマイクロプレート20の光測定にも適切に対応することができる。
That is, in the first light measurement, as shown in FIG. 39, the light measurement is performed on the wells 21 in which the light sources 12a ”are arranged to face each other, and in the second light measurement, as shown in FIG. 40, the first light measurement is performed. The light measurement is performed on the well 21 for which the light measurement has not been performed in the light measurement. In FIG. 40, the black-painted well 21'is the well for which the light measurement was performed for the first time.
With such a configuration, it is possible to appropriately cope with the optical measurement of the 1536-well microplate 20 having a large number of wells, for example, the pitch of each well 21 is 2.25 mm.
 また、マイクロプレートリーダー10Gにおいては、マイクロプレート20の位置を2位置間で切り替えるだけでよいため、モータの位置制御のような複雑な制御が必要なく、移動機構を簡易なアクチュエータで安価に構成することができる。 Further, in the microplate reader 10G, since it is only necessary to switch the position of the microplate 20 between two positions, complicated control such as motor position control is not required, and the moving mechanism can be inexpensively configured with a simple actuator. be able to.
 上記のマイクロプレートリーダー10Gは、例えばインキュベータ(培養器)内にて使用することができる。
 インキュベータは、培養容器を収容する収容空間(培養空間)を内部に備える。一般に、収容空間には、複数の棚板が上下方向に離間して水平に配置されており、これらの棚板に培養容器を載置するようになっている。そのため、棚段数をかせぐためには、インキュベータ内で使用されるマイクロプレートリーダーには薄型化が要求される。
 また、インキュベータの中では、できるだけウェル中の細胞(幹細胞など)に外部刺激(振動)を与えたくない。
The above-mentioned microplate reader 10G can be used, for example, in an incubator (incubator).
The incubator is provided with a storage space (culture space) for accommodating the culture container. Generally, in the accommodation space, a plurality of shelves are arranged horizontally separated in the vertical direction, and a culture container is placed on these shelves. Therefore, in order to increase the number of shelves, the microplate reader used in the incubator is required to be thin.
Also, in the incubator, we do not want to give external stimuli (vibrations) to cells (stem cells, etc.) in the wells as much as possible.
 上述したように、マイクロプレートリーダー10Gは、1軸方向のみの移動であるため、高さ方向に大きくならない装置構成とすることができる。また、マイクロプレートリーダー10Gは、2位置間のみの移動であるため、極力、振動等の刺激を与えない最低限での走査にとどめることができる。
 したがって、マイクロプレートリーダー10Gは、インキュベータ内での使用に適したマイクロプレートリーダーとすることができる。
As described above, since the microplate reader 10G moves only in the uniaxial direction, it is possible to configure the device so that it does not increase in the height direction. Further, since the microplate reader 10G moves only between two positions, scanning can be limited to the minimum that does not give a stimulus such as vibration as much as possible.
Therefore, the microplate reader 10G can be a microplate reader suitable for use in an incubator.
 なお、上記のスキャン式のマイクロプレートリーダー10F、10Gにおいては、マイクロプレート20の上方に光源12a”が配置され、マイクロプレート20を挟んで光源12a”とは反対側に受光センサ12b”が配置されている場合について説明した。しかしながら、図41に示すように、マイクロプレート20の一方の側(ここでは下方)に光源12a”および受光センサ12b”を配置したスキャン式のマイクロプレートリーダー10Hとすることもできる。なお、図41において、上述した実施形態と同様の構成要素には同一符号を付している。 In the above-mentioned scan- type microplate readers 10F and 10G, the light source 12a "is arranged above the microplate 20, and the light receiving sensor 12b" is arranged on the opposite side of the microplate 20 from the light source 12a ". However, as shown in FIG. 41, a scan-type microplate reader 10H in which the light source 12a "and the light receiving sensor 12b" are arranged on one side (lower in this case) of the microplate 20 is used. In FIG. 41, the same components as those in the above-described embodiment are designated by the same reference numerals.
 このマイクロプレートリーダー10Hでは、光源12a”から放出された光は、試料30等を透過して反射部材14によって反射され、複数の受光用導光路13a”からなる導光路群を通過し、拡散部13c”によって拡散されて1つの受光センサ12b”により受光される。そして、光源12a”と受光センサ12b”と導光路群との組を、マイクロプレート20に対して相対的に移動させることで、マイクロプレート20の全てのウェル21に対して光測定を行うことが可能である。
 この場合、マイクロプレート20の上側に配置されるミラープレート14を固定とし、マイクロプレート20の下側に配置される光源12a”と受光センサ12b”と導光路群との組を移動機構により移動させる構成とすることができる。このように、マイクロプレート20の上側に配置される部材を固定とすることができるので、スキャンに伴うゴミがマイクロプレート20に落下するのを防止することができる。
In this microplate reader 10H, the light emitted from the light source 12a "passes through the sample 30 and the like, is reflected by the reflecting member 14, passes through a light guide path group composed of a plurality of light receiving light guide paths 13a", and is a diffuser. It is diffused by 13c "and received by one light receiving sensor 12b". Then, by moving the pair of the light source 12a ", the light receiving sensor 12b", and the light guide path group relative to the microplate 20, light measurement can be performed on all the wells 21 of the microplate 20. It is possible.
In this case, the mirror plate 14 arranged on the upper side of the microplate 20 is fixed, and the pair of the light source 12a ", the light receiving sensor 12b" and the light guide path group arranged on the lower side of the microplate 20 is moved by the moving mechanism. It can be configured. In this way, since the member arranged on the upper side of the microplate 20 can be fixed, it is possible to prevent dust accompanying the scanning from falling on the microplate 20.
 また、図42に示すように、導光プレート部13がマイクロプレート20の底面側に形成された凹部に嵌め込まれて当該マイクロプレート20の底面と密着されたマイクロプレートリーダー10Iとすることもできる。なお、図42において、上述した実施形態と同様の構成要素には同一符号を付している。
 この図42に示すマイクロプレートリーダー10Iは、導光部を、マイクロプレートの底面側に形成された凹部に嵌め込んでマイクロプレートの底面と密着させるので、各ウェルと各ウェルにそれぞれ対応する導光路との位置決めを容易に行うことができるとともに、光測定中の両者の位置ずれを抑制することができる。また、マイクロプレートと導光部と間に隙間が生じることを適切に抑制することができるので、導光路への外光の回り込みを適切に抑制することができる。
Further, as shown in FIG. 42, the light guide plate portion 13 may be fitted into a recess formed on the bottom surface side of the microplate 20 to form a microplate reader 10I which is in close contact with the bottom surface of the microplate 20. In FIG. 42, the same components as those in the above-described embodiment are designated by the same reference numerals.
In the microplate reader 10I shown in FIG. 42, since the light guide portion is fitted into the recess formed on the bottom surface side of the micro plate and brought into close contact with the bottom surface of the micro plate, the light guide path corresponding to each well and each well, respectively. It is possible to easily perform positioning with and, and it is possible to suppress a misalignment between the two during optical measurement. Further, since it is possible to appropriately suppress the formation of a gap between the microplate and the light guide portion, it is possible to appropriately suppress the wraparound of external light into the light guide path.
 マイクロプレートリーダー10Iにおいては、マイクロプレート20のウェル21の列方向に配置された複数の光源12a”および受光センサ12b”の組に対して、導光プレート部13が嵌め込まれたマイクロプレート20を、ウェル21の列方向にほぼ直交する方向に相対的に逐次移動させることにより、マイクロプレート20の全てのウェル21に対して光測定を行うことが可能となる。
 また、図43に示すマイクロプレートリーダー10Jのように、光源12a”および受光センサ12b”の組を、1つおきに各ウェル21に対応させて配置するようにしてもよい。
In the microplate reader 10I, the microplate 20 in which the light guide plate portion 13 is fitted to the set of the plurality of light sources 12a "and the light receiving sensor 12b" arranged in the row direction of the wells 21 of the microplate 20 is provided. By sequentially moving the wells 21 in a direction substantially orthogonal to the row direction, it is possible to perform optical measurement on all the wells 21 of the microplate 20.
Further, as in the microplate reader 10J shown in FIG. 43, every other set of the light source 12a "and the light receiving sensor 12b" may be arranged corresponding to each well 21.
 なお、図42、図43に示すスキャン式のマイクロプレートリーダー10I、10Jにおいては、マイクロプレート20の上方に光源12a”が配置され、マイクロプレート20を挟んで光源12a”とは反対側に受光センサ12b”が配置されている場合について説明した。しかしながら、図44に示すように、マイクロプレート20の下方に光源12a”および受光センサ12b”を配置したスキャン式のマイクロプレートリーダー10Kとすることもできる。なお、図44において、上述した実施形態(図32)と同様の構成要素には同一符号を付している。 In the scan-type microplate readers 10I and 10J shown in FIGS. 42 and 43, the light source 12a "is arranged above the microplate 20, and the light receiving sensor is located on the opposite side of the microplate 20 from the light source 12a". The case where the 12b "is arranged has been described. However, as shown in FIG. 44, a scanning type microplate reader 10K in which the light source 12a" and the light receiving sensor 12b "are arranged below the microplate 20 can also be used. In FIG. 44, the same components as those in the above-described embodiment (FIG. 32) are designated by the same reference numerals.
 このマイクロプレートリーダー10Kでは、光源12a”から放出された光は、投光用導光路13dを通過し、試料30等を透過して反射部材14によって反射され、受光用導光路13a”を通過して受光センサ12b”により受光される。そして、光源12a”と受光センサ12b”との組を、導光プレート部13が嵌め込まれたマイクロプレート20に対して相対的に移動させることで、マイクロプレート20の全てのウェル21に対して光測定を行うことが可能である。
 この場合、マイクロプレート20の上側に配置されるミラープレート14を固定とし、導光プレート部13が嵌め込まれたマイクロプレート20の下側に配置される光源12a”と受光センサ12b”との組(基板11”)を移動機構により移動させる構成とすることができる。このように、マイクロプレート20の上側に配置される部材を固定とすることができるので、スキャンに伴うゴミがマイクロプレート20に落下するのを防止することができる。
In this microplate reader 10K, the light emitted from the light source 12a "passes through the light emitting light guide path 13d, passes through the sample 30 and the like, is reflected by the reflecting member 14, and passes through the light receiving light guide path 13a". The light is received by the light receiving sensor 12b ". Then, the pair of the light source 12a" and the light receiving sensor 12b "is moved relative to the microplate 20 in which the light guide plate portion 13 is fitted, thereby causing the microplate. It is possible to make optical measurements on all 20 wells 21.
In this case, the mirror plate 14 arranged on the upper side of the microplate 20 is fixed, and the set of the light source 12a "arranged on the lower side of the microplate 20 into which the light guide plate portion 13 is fitted and the light receiving sensor 12b" ( The substrate 11 ") can be moved by a moving mechanism. In this way, the member arranged on the upper side of the microplate 20 can be fixed, so that dust accompanying scanning falls on the microplate 20. Can be prevented.
 なお、上記実施形態においては、本発明をマイクロプレートリーダーに適用する場合について説明したが、吸光度計やLIF(Laser-Induce Fluorescence)装置などの試料からの光を測定する光測定装置にも適用可能である。
 すなわち、光測定装置は、試料からの光を検出する光検出部と、試料からの光を光検出部に導光する導光路と、導光路を顔料含有樹脂によりなる包囲部材により包囲した導光部と、を備えた構成とすることができる。ここで、導光路は、試料からの光を入射する1つの入射端と、光検出部に光学的に接続された1つの出射端とを有することができる。また、上記導光路は、複数の導光路を有する導光路群であってもよい。この場合、導光路群により導光される光の投影面積は、光検出部の受光面の面積よりも大きく、導光路群と光検出部との間に、導光路群を通過した光を拡散する拡散部を配置した構成とすることができる。この場合にも、小型で高精度な光測定が可能となる。
In the above embodiment, the case where the present invention is applied to a microplate reader has been described, but it can also be applied to an optical measuring device such as an absorbance meter or a LIF (Laser-Induce Fluorescence) device that measures light from a sample. Is.
That is, the light measuring device includes a light detection unit that detects light from the sample, a light guide path that guides the light from the sample to the light detection unit, and a light guide that surrounds the light guide path with a surrounding member made of a pigment-containing resin. It can be configured to include a unit and a unit. Here, the light guide path can have one incident end for incident light from the sample and one emission end optically connected to the photodetector. Further, the light guide path may be a light guide path group having a plurality of light guide paths. In this case, the projected area of the light guided by the light guide path group is larger than the area of the light receiving surface of the light detection unit, and the light passing through the light guide path group is diffused between the light guide path group and the light detection unit. It is possible to have a configuration in which a diffusion portion is arranged. In this case as well, compact and highly accurate optical measurement is possible.
 なお、上記において特定の実施形態が説明されているが、当該実施形態は単なる例示であり、本発明の範囲を限定する意図はない。本明細書に記載された装置及び方法は上記した以外の形態において具現化することができる。また、本発明の範囲から離れることなく、上記した実施形態に対して適宜、省略、置換及び変更をなすこともできる。かかる省略、置換及び変更をなした形態は、請求の範囲に記載されたもの及びこれらの均等物の範疇に含まれ、本発明の技術的範囲に属する。 Although a specific embodiment is described above, the embodiment is merely an example, and there is no intention of limiting the scope of the present invention. The devices and methods described herein can be embodied in forms other than those described above. Further, without departing from the scope of the present invention, omissions, substitutions and changes can be appropriately made to the above-described embodiments. Such abbreviations, substitutions and modifications are included in the claims and equivalents thereof and fall within the technical scope of the invention.
 10A~10K…マイクロプレートリーダー、11a,11a´…投光用基板、11b…測定用基板、11c…アパーチャ部、12a…光源、12b…受光センサ、13…導光プレート部、13a…受光用導光路、13b…包囲部材、13c…拡散部、14…ミラープレート、14a…反射面、15…筐体、18A,18B…マイクロプレートリーダーユニット、20…マイクロプレート、21…ウェル 10A-10K ... Microplate reader, 11a, 11a'... Floodlight substrate, 11b ... Measurement substrate, 11c ... Aperture section, 12a ... Light source, 12b ... Light receiving sensor, 13 ... Light guide plate section, 13a ... Light receiving guide Optical path, 13b ... Encircling member, 13c ... Diffusing part, 14 ... Mirror plate, 14a ... Reflective surface, 15 ... Housing, 18A, 18B ... Microplate reader unit, 20 ... Microplate, 21 ... Well

Claims (29)

  1.  試料からの光を測定する光測定装置であって、
     前記試料からの光を検出する光検出部と、
     前記試料からの光を前記光検出部に導光する導光路と、
     前記導光路を、光を吸収する特性を有する顔料を含有する顔料含有樹脂によりなる包囲部材により包囲した導光部と、を備え、
     前記導光路は、1つの入射端と1つの出射端とを有し、
     前記入射端は、前記試料からの光を入射させるものであって、
     前記出射端は、前記光検出部に光学的に接続していることを特徴とする光測定装置。
    An optical measuring device that measures the light from a sample.
    A photodetector that detects light from the sample,
    A light guide path that guides the light from the sample to the photodetector,
    The light guide path is provided with a light guide portion surrounded by a surrounding member made of a pigment-containing resin containing a pigment having a property of absorbing light.
    The light guide path has one incident end and one outgoing end.
    The incident end is for incident light from the sample.
    An optical measuring device characterized in that the emitting end is optically connected to the light detecting unit.
  2.  前記導光部は、複数の前記導光路を有する導光路群を包囲部材により包囲し、
     前記導光路群により導光される光の投影面積は、前記光検出部の受光面の面積よりも大きく、
     前記導光路群と前記光検出部との間に、前記導光路群を通過した光を拡散する拡散部が配置されていることを特徴とする請求項1に記載の光測定装置。
    The light guide unit surrounds a group of light guide paths having a plurality of the light guide paths with a surrounding member.
    The projected area of the light guided by the light guide path group is larger than the area of the light receiving surface of the photodetector.
    The light measuring device according to claim 1, wherein a diffusing unit that diffuses light that has passed through the light guide path group is arranged between the light guide path group and the light detection unit.
  3.  筐体と、
     前記筐体内において、配置される複数のウェルを有するマイクロプレートの1つのウェルに対応した投光部と、
     前記投光部から放出された光が前記マイクロプレートの1つのウェルを透過した透過光を受光する受光部と、
     前記受光部と前記マイクロプレートとの間に配置され、前記投光部から放出され、前記ウェルを透過した光を、前記受光部へ導光する導光路と、を備え、
     1つのウェルに対応した前記投光部と前記受光部と前記導光路との組が複数設けられていて、
     前記導光路の複数を、光を吸収する特性を有する顔料を含有する顔料含有樹脂によりなる包囲部材により包囲した導光部と、をさらに備え、
     1つの前記投光部から放出された光は、1つの前記導光路を通過して1つの前記受光部に到達することを特徴とするマイクロプレートリーダー。
    With the housing
    A light projecting unit corresponding to one well of a microplate having a plurality of wells arranged in the housing,
    A light receiving section in which the light emitted from the light projecting section receives the transmitted light transmitted through one well of the microplate, and a light receiving section.
    It is provided with a light guide path which is arranged between the light receiving portion and the microplate and guides the light emitted from the light projecting portion and transmitted through the well to the light receiving portion.
    A plurality of pairs of the light emitting unit, the light receiving unit, and the light guide path corresponding to one well are provided.
    A plurality of the light guide paths are further provided with a light guide portion in which a plurality of the light guide paths are surrounded by a surrounding member made of a pigment-containing resin containing a pigment having a property of absorbing light.
    A microplate reader characterized in that the light emitted from one of the light projecting sections passes through one of the light guide paths and reaches one of the light receiving sections.
  4.  前記導光路は、複数の受光用導光路からなる導光路群であり、
     1つの前記導光路群により導光される光の投影面積は、1つの前記受光部の受光面の面積よりも大きく、
     前記導光路群と前記受光部との間に、1つの前記導光路群を通過した光を拡散する拡散部が配置されており、
     1つの前記投光部から放出された光は、1つの前記導光路群を通過して前記拡散部により拡散されて1つの前記受光部に到達することを特徴とする請求項3に記載のマイクロプレートリーダー。
    The light guide path is a group of light guide paths composed of a plurality of light receiving light paths.
    The projected area of the light guided by the one light guide path group is larger than the area of the light receiving surface of the one light receiving portion.
    A diffusing portion that diffuses light that has passed through one of the light guide paths is arranged between the light guide path group and the light receiving portion.
    The micro according to claim 3, wherein the light emitted from the one light projecting unit passes through the light guide path group, is diffused by the diffusing unit, and reaches the light receiving unit. Plate reader.
  5.  前記1つのウェルに対応した前記投光部と前記受光部と前記導光路群との組は、少なくとも前記マイクロプレートのウェルの数だけ設けられていることを特徴とする請求項4に記載のマイクロプレートリーダー。 The micro according to claim 4, wherein the combination of the light emitting unit, the light receiving unit, and the light guide path group corresponding to the one well is provided at least as many as the number of wells of the microplate. Plate reader.
  6.  前記1つのウェルに対応した前記投光部と前記受光部と前記導光路群との組は、前記マイクロプレートのウェルの数より少なく、
     前記マイクロプレートの全てのウェルに対応するように、前記投光部と前記受光部と前記導光路群との組に対して、前記マイクロプレートを相対的に逐次移動させる移動機構を有することを特徴とする請求項4に記載のマイクロプレートリーダー。
    The number of pairs of the light emitting unit, the light receiving unit, and the light guide path group corresponding to the one well is less than the number of wells of the microplate.
    It is characterized by having a moving mechanism for moving the microplate relative to the pair of the light emitting unit, the light receiving unit, and the light guide path group so as to correspond to all the wells of the microplate. The microplate reader according to claim 4.
  7.  前記1つのウェルに対応した前記投光部と前記受光部と前記導光路群との組は、前記マイクロプレートの一つの辺のウェルの数だけ設けられており、
     前記移動機構は、前記投光部と前記受光部と前記導光路群との組に対して、前記マイクロプレートを、前記一つの辺に直交する方向にのみ相対的に逐次移動させることを特徴とする請求項6に記載のマイクロプレートリーダー。
    The pair of the light emitting unit, the light receiving unit, and the light guide path group corresponding to the one well is provided as many as the number of wells on one side of the microplate.
    The moving mechanism is characterized in that the microplate is sequentially and sequentially moved only in a direction orthogonal to the one side with respect to the pair of the light emitting unit, the light receiving unit, and the light guide path group. The microplate reader according to claim 6.
  8.  前記投光部は、前記マイクロプレートの一方の側に配置され、
     前記受光部は、前記マイクロプレートを挟んで前記投光部とは反対側に配置されていることを特徴とする請求項4から7のいずれか1項に記載のマイクロプレートリーダー。
    The light projecting unit is arranged on one side of the microplate.
    The microplate reader according to any one of claims 4 to 7, wherein the light receiving portion is arranged on the side opposite to the light projecting portion with the microplate sandwiched therein.
  9.  前記投光部および前記受光部は、前記マイクロプレートの一方の側に配置され、
     前記導光路群は、前記投光部と前記受光部との間に配置され、
     前記マイクロプレートを挟んで前記投光部および前記受光部とは反対側に配置され、前記投光部から放出され前記ウェルを透過した光を、前記受光部へ反射させる反射部材と、
     前記受光部に入射する光の角度成分を制限する制限部と、をさらに備えることを特徴とする請求項4から7のいずれか1項に記載のマイクロプレートリーダー。
    The light emitting part and the light receiving part are arranged on one side of the microplate, and the light emitting part and the light receiving part are arranged on one side of the microplate.
    The light guide path group is arranged between the light emitting unit and the light receiving unit.
    A reflective member which is arranged on the side opposite to the light emitting part and the light receiving part with the microplate sandwiched between them and reflects the light emitted from the light emitting part and transmitted through the well to the light receiving part.
    The microplate reader according to any one of claims 4 to 7, further comprising a limiting portion that limits an angular component of light incident on the light receiving portion.
  10.  前記拡散部における光子の平均自由行程が、前記拡散部の光通過方向における厚みよりも短いことを特徴とする請求項4から9のいずれか1項に記載のマイクロプレートリーダー。 The microplate reader according to any one of claims 4 to 9, wherein the mean free path of photons in the diffusing portion is shorter than the thickness of the diffusing portion in the light passing direction.
  11.  前記拡散部は、誘電体微粒子が内部に分散された樹脂により構成されていることを特徴とする請求項4から10のいずれか1項に記載のマイクロプレートリーダー。 The microplate reader according to any one of claims 4 to 10, wherein the diffusion portion is composed of a resin in which dielectric fine particles are dispersed inside.
  12.  前記誘電体微粒子は、酸化チタン(TiO2)、酸化ケイ素(SiO2)、酸化亜鉛(ZnO)および酸化マグネシウム(MgO)のいずれかを含むことを特徴とする請求項11に記載のマイクロプレートリーダー。 The microplate reader according to claim 11, wherein the dielectric fine particles contain any one of titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), zinc oxide (ZnO) and magnesium oxide (MgO). ..
  13.  前記導光路は、前記マイクロプレートのウェルに対応して同数設けられており、
     前記導光部は、前記マイクロプレートの底面側に形成された凹部に嵌め込まれて当該マイクロプレートの底面と密着していることを特徴とする請求項3に記載のマイクロプレートリーダー。
    The same number of light guide paths are provided corresponding to the wells of the microplate.
    The microplate reader according to claim 3, wherein the light guide portion is fitted into a recess formed on the bottom surface side of the microplate and is in close contact with the bottom surface of the microplate.
  14.  前記1つのウェルに対応した前記投光部と前記受光部との組は、少なくとも前記マイクロプレートのウェルの数だけ設けられていることを特徴とする請求項13に記載のマイクロプレートリーダー。 The microplate reader according to claim 13, wherein the combination of the light emitting unit and the light receiving unit corresponding to the one well is provided at least as many as the number of wells of the microplate.
  15.  前記1つのウェルに対応した前記投光部と前記受光部との組は、前記マイクロプレートのウェルの数より少なく、
     前記マイクロプレートの全てのウェルに対応するように、前記投光部と前記受光部との組に対して、前記導光部が嵌め込まれた前記マイクロプレートを相対的に逐次移動させる移動機構を有することを特徴とする請求項13に記載のマイクロプレートリーダー。
    The number of pairs of the light emitting part and the light receiving part corresponding to the one well is less than the number of wells of the microplate.
    It has a moving mechanism that sequentially moves the microplate into which the light guide portion is fitted with respect to the pair of the light emitting portion and the light receiving portion so as to correspond to all the wells of the microplate. The microplate reader according to claim 13.
  16.  前記1つのウェルに対応した前記投光部と前記受光部との組は、前記マイクロプレートの一つの辺のウェルの数だけ設けられており、
     前記移動機構は、前記投光部と前記受光部との組に対して、前記導光部が嵌め込まれた前記マイクロプレートを、前記一つの辺に直交する方向にのみ相対的に逐次移動させることを特徴とする請求項15に記載のマイクロプレートリーダー。
    The pair of the light emitting part and the light receiving part corresponding to the one well is provided as many as the number of wells on one side of the microplate.
    The moving mechanism sequentially moves the microplate in which the light guide portion is fitted with respect to the pair of the light emitting portion and the light receiving portion only in a direction orthogonal to the one side. The microplate reader according to claim 15.
  17.  前記投光部は、前記マイクロプレートの底面とは反対側に配置され、
     前記受光部は、前記マイクロプレートを挟んで前記投光部とは反対側に配置されていることを特徴とする請求項13から16のいずれか1項に記載のマイクロプレートリーダー。
    The light projecting unit is arranged on the side opposite to the bottom surface of the microplate.
    The microplate reader according to any one of claims 13 to 16, wherein the light receiving portion is arranged on the side opposite to the light projecting portion with the microplate sandwiched therein.
  18.  前記投光部および前記受光部は、前記マイクロプレートの底面側に配置され、
     前記マイクロプレートを挟んで前記投光部および前記受光部とは反対側に配置され、前記投光部から放出された光を前記受光部へ反射させる反射部材と、
     前記投光部と前記マイクロプレートとの間に配置され、前記投光部から放出される光を前記ウェルに導光する投光用導光路と、をさらに備え、
     前記導光部は、前記導光路および前記投光用導光路のそれぞれを、前記顔料含有樹脂によりなる前記包囲部材により包囲することを特徴とする請求項13から16のいずれか1項に記載のマイクロプレートリーダー。
    The light emitting part and the light receiving part are arranged on the bottom surface side of the microplate.
    A reflecting member arranged on the opposite side of the light emitting portion and the light receiving portion with the microplate sandwiched between them and reflecting the light emitted from the light emitting portion to the light receiving portion.
    Further provided is a light projecting light path which is arranged between the light projecting unit and the microplate and guides the light emitted from the light projecting unit to the well.
    The light guide unit according to any one of claims 13 to 16, wherein each of the light guide path and the light projection path is surrounded by the surrounding member made of the pigment-containing resin. Microplate reader.
  19.  前記導光部は、前記凹部に嵌め込まれた状態において、当該凹部の側壁部によって全周が包囲されていることを特徴とする請求項13から18のいずれか1項に記載のマイクロプレートリーダー。 The microplate reader according to any one of claims 13 to 18, wherein the light guide portion is surrounded by a side wall portion of the recess in a state of being fitted in the recess.
  20.  前記導光部は、前記凹部に対して着脱可能に構成されていることを特徴とする請求項13から19のいずれか1項に記載のマイクロプレートリーダー。 The microplate reader according to any one of claims 13 to 19, wherein the light guide portion is configured to be removable from the recess.
  21.  前記導光路は、前記1つのウェルに対して複数設けられていることを特徴とする請求項13から20のいずれか1項に記載のマイクロプレートリーダー。 The microplate reader according to any one of claims 13 to 20, wherein a plurality of the light guide paths are provided for the one well.
  22.  前記マイクロプレートの前記ウェルの底面は球面状であり、
     前記導光部が前記凹部に嵌め込まれた状態において、前記1つのウェルに対応する前記導光路は、前記ウェルを通過した光が前記球面状の底面にて集光される位置に配置されていることを特徴とする請求項13から21のいずれか1項に記載のマイクロプレートリーダー。
    The bottom surface of the well of the microplate is spherical and
    In a state where the light guide portion is fitted in the recess, the light guide path corresponding to the one well is arranged at a position where the light passing through the well is collected on the spherical bottom surface. The microplate reader according to any one of claims 13 to 21, characterized in that.
  23.  前記導光部が前記凹部に嵌め込まれた状態において、前記マイクロプレートと前記導光部とが密着する方向に押圧する押圧部材をさらに備えることを特徴とする請求項13から22のいずれか1項に記載のマイクロプレートリーダー。 Any one of claims 13 to 22, further comprising a pressing member that presses the microplate and the light guide portion in a direction in which the light guide portion is fitted in the recess. The microplate reader described in.
  24.  前記導光部が前記凹部に嵌め込まれた前記マイクロプレートを、前記導光路の光出射端と前記受光部とが対向する位置に位置決めする位置決め部材をさらに備えることを特徴とする請求項13から23のいずれか1項に記載のマイクロプレートリーダー。 Claims 13 to 23 further include a positioning member for positioning the microplate in which the light guide portion is fitted in the recess at a position where the light emitting end of the light guide path and the light receiving portion face each other. The microplate reader according to any one of the above.
  25.  前記導光路は、光透過性特性を有するシリコーン樹脂により構成されていることを特徴とする請求項3から24のいずれか1項に記載のマイクロプレートリーダー。 The microplate reader according to any one of claims 3 to 24, wherein the light guide path is made of a silicone resin having a light transmissive property.
  26.  前記顔料含有樹脂は、光透過特性を有する樹脂に前記顔料を含有させたものであり、
     前記導光路は、前記光透過特性を有する樹脂と同等の樹脂により構成されていることを特徴とする3から25のいずれか1項に記載のマイクロプレートリーダー。
    The pigment-containing resin is a resin having a light-transmitting property containing the pigment.
    The microplate reader according to any one of 3 to 25, wherein the light guide path is made of a resin equivalent to the resin having the light transmission characteristic.
  27.  マイクロプレートの1つのウェルに対応した投光部を有する単位光源ユニット部と、
     マイクロプレートの1つのウェルに対応した受光部と、前記投光部から放出され、対応する前記ウェルが収容する試料を通過した光を、前記受光部へ導光する複数の受光用導光路からなる導光路群と、前記受光用導光路の各々を、光を吸収する特性を有する顔料を含有する顔料含有樹脂により包囲する包囲部材と、を有する単位導光ユニット部と、を備え、
     1つの前記単位光源ユニットが有する前記投光部から放出された光は、1つの前記単位導光ユニット部が有する前記導光路群を通過して1つの前記受光部に到達することを特徴とするマイクロプレートリーダーユニット。
    A unit light source unit unit having a light projecting unit corresponding to one well of a microplate, and a unit light source unit unit.
    It consists of a light receiving unit corresponding to one well of the microplate and a plurality of light receiving light paths for guiding light emitted from the light projecting unit and passing through a sample contained in the corresponding well to the light receiving unit. A unit light guide unit unit including a light guide path group and a surrounding member that surrounds each of the light receiving light guide paths with a pigment-containing resin containing a pigment having a property of absorbing light.
    The light emitted from the light projecting unit of one unit light source unit passes through the light guide path group of one unit light guide unit unit and reaches one light receiving unit. Microplate reader unit.
  28.  マイクロプレートの1つのウェルにそれぞれ対応した投光部および受光部と、
     前記投光部から放出され、対応する前記ウェルが収容する試料を通過した光が折り返されて再び前記試料を通過した光を、前記受光部へ導光する複数の受光用導光路からなる導光路群と、前記受光用導光路の各々を、光を吸収する特性を有する顔料を含有する顔料含有樹脂により包囲する包囲部材と、を有する導光部と、
     前記受光部に入射する光の角度成分を制限する制限部と、を備え、
     1つの前記投光部から放出された光は、1つの前記導光部が有する前記導光路群を通過して1つの前記受光部に到達することを特徴とするマイクロプレートリーダーユニット。
    The light emitting part and the light receiving part corresponding to one well of the microplate, respectively,
    A light guide path composed of a plurality of light receiving light paths that are emitted from the light projecting unit and that have passed through a sample contained in the corresponding well, are folded back, and light that has passed through the sample again is guided to the light receiving unit. A light guide portion having a group and a surrounding member surrounding each of the light receiving light guide paths with a pigment-containing resin containing a pigment having a property of absorbing light.
    A limiting unit that limits the angular component of light incident on the light receiving unit is provided.
    A microplate reader unit characterized in that the light emitted from the one light projecting unit passes through the light guide path group included in the light guide unit and reaches one light receiving unit.
  29.  マイクロプレートの複数のウェルにそれぞれ対応し、前記ウェルに収容された試料を通過した光を導光する導光路と、
     前記導光路を、光を吸収する特性を有する顔料を含有する顔料含有樹脂により包囲する包囲部材と、を備え、
     前記マイクロプレートの底面側に形成された凹部に嵌め込まれることで前記マイクロプレートの底面と密着可能であることを特徴とする光学プレート。
     
    A light guide path that corresponds to each of the plurality of wells of the microplate and guides the light that has passed through the sample contained in the well,
    The light guide path is provided with a surrounding member that surrounds the light guide path with a pigment-containing resin containing a pigment having a property of absorbing light.
    An optical plate characterized in that it can be brought into close contact with the bottom surface of the microplate by being fitted into a recess formed on the bottom surface side of the microplate.
PCT/JP2020/034922 2019-09-17 2020-09-15 Light measurement device and microplate reader WO2021054325A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019168048A JP2022172412A (en) 2019-09-17 2019-09-17 Light measuring device and microplate reader
JP2019-168048 2019-09-17
JP2019185047A JP2022172414A (en) 2019-10-08 2019-10-08 Microplate reader and optical plate
JP2019-185047 2019-10-08

Publications (1)

Publication Number Publication Date
WO2021054325A1 true WO2021054325A1 (en) 2021-03-25

Family

ID=74884226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034922 WO2021054325A1 (en) 2019-09-17 2020-09-15 Light measurement device and microplate reader

Country Status (1)

Country Link
WO (1) WO2021054325A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157684A (en) * 1991-12-02 1993-06-25 Seikagaku Kogyo Co Ltd Absorptionmeter
JPH1131931A (en) * 1997-07-09 1999-02-02 Toshiba Corp High-frequency amplifier
JP2006145393A (en) * 2004-11-19 2006-06-08 Olympus Corp Measuring container, and holding mechanism
JP2011163953A (en) * 2010-02-10 2011-08-25 Konica Minolta Sensing Inc Light projecting/receiving system, and optical biological information measuring device using the same
JP2018146367A (en) * 2017-03-03 2018-09-20 国立大学法人九州大学 Optical measurement system, optical cell, and optical measurement method
JP2019015708A (en) * 2017-07-04 2019-01-31 国立大学法人九州大学 Light measuring device, light guide member, and method for measuring light
WO2019044969A1 (en) * 2017-09-01 2019-03-07 ウシオ電機株式会社 Microplate reader
JP2019518945A (en) * 2016-05-10 2019-07-04 コミサリヤ ア レネルジ アトミク エ ウ エネルジ アルタナティブ System for observing well plates
JP2019117367A (en) * 2017-12-27 2019-07-18 恵和株式会社 Light diffusion plate and three-dimensional molding
JP2019135480A (en) * 2018-02-05 2019-08-15 エイブル株式会社 Sample measurement method, lid of multiwell plate, sample measurement kit, and sample measuring device
WO2020054562A1 (en) * 2018-09-11 2020-03-19 ウシオ電機株式会社 Microplate reader
WO2020054561A1 (en) * 2018-09-11 2020-03-19 ウシオ電機株式会社 Microplate reader

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157684A (en) * 1991-12-02 1993-06-25 Seikagaku Kogyo Co Ltd Absorptionmeter
JPH1131931A (en) * 1997-07-09 1999-02-02 Toshiba Corp High-frequency amplifier
JP2006145393A (en) * 2004-11-19 2006-06-08 Olympus Corp Measuring container, and holding mechanism
JP2011163953A (en) * 2010-02-10 2011-08-25 Konica Minolta Sensing Inc Light projecting/receiving system, and optical biological information measuring device using the same
JP2019518945A (en) * 2016-05-10 2019-07-04 コミサリヤ ア レネルジ アトミク エ ウ エネルジ アルタナティブ System for observing well plates
JP2018146367A (en) * 2017-03-03 2018-09-20 国立大学法人九州大学 Optical measurement system, optical cell, and optical measurement method
JP2019015708A (en) * 2017-07-04 2019-01-31 国立大学法人九州大学 Light measuring device, light guide member, and method for measuring light
WO2019044969A1 (en) * 2017-09-01 2019-03-07 ウシオ電機株式会社 Microplate reader
JP2019117367A (en) * 2017-12-27 2019-07-18 恵和株式会社 Light diffusion plate and three-dimensional molding
JP2019135480A (en) * 2018-02-05 2019-08-15 エイブル株式会社 Sample measurement method, lid of multiwell plate, sample measurement kit, and sample measuring device
WO2020054562A1 (en) * 2018-09-11 2020-03-19 ウシオ電機株式会社 Microplate reader
WO2020054561A1 (en) * 2018-09-11 2020-03-19 ウシオ電機株式会社 Microplate reader

Similar Documents

Publication Publication Date Title
JP6807071B2 (en) Microplate reader
US11067443B2 (en) Spectrometry system with visible aiming beam
JP6683980B1 (en) Microplate reader
US4892409A (en) Photometric apparatus for multiwell plates having a positionable lens assembly
US5005934A (en) Fiber optics channel selection device
US20160266362A1 (en) Compact Microscope
US20100128269A1 (en) Miniaturized surface plasmon resonance imaging system
CN101228446A (en) Label-free high throughput biomolecular screening system and method
JP6630947B2 (en) Microplate reader
KR101416694B1 (en) Analysing apparatus using rotatable microfluidic disk
JP2899651B2 (en) Light transmission type spectrometer
US6949754B2 (en) Apparatus for measuring in particular luminescent and/or fluorescent radiation
EP2413127B1 (en) Light irradiation device and light measurement device
JPS638537A (en) Absorbance measuring apparatus for microplate
WO2021054325A1 (en) Light measurement device and microplate reader
US20060182660A1 (en) Analysis apparatus and condenser
JPH10221242A (en) Multi-titer plate analyzer
JP2022172412A (en) Light measuring device and microplate reader
JP2022172414A (en) Microplate reader and optical plate
JP2020190522A (en) Microplate reader
KR20140021620A (en) Compact label free imaging system
KR20060032778A (en) Apparatus and method for measuring bio chips
US20150022810A1 (en) Spectrophotometer and image partial extraction device
JPH09257695A (en) Surface plasmon resonance sensor apparatus
EP1926977B1 (en) Spectrometer mount and measuring apparatus including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP