WO2021054242A1 - Latex composition, film-formed article, and dip-molded article - Google Patents

Latex composition, film-formed article, and dip-molded article Download PDF

Info

Publication number
WO2021054242A1
WO2021054242A1 PCT/JP2020/034314 JP2020034314W WO2021054242A1 WO 2021054242 A1 WO2021054242 A1 WO 2021054242A1 JP 2020034314 W JP2020034314 W JP 2020034314W WO 2021054242 A1 WO2021054242 A1 WO 2021054242A1
Authority
WO
WIPO (PCT)
Prior art keywords
latex
weight
carboxy
molded product
latex composition
Prior art date
Application number
PCT/JP2020/034314
Other languages
French (fr)
Japanese (ja)
Inventor
友哉 谷山
実紗 林
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2021546640A priority Critical patent/JPWO2021054242A1/ja
Publication of WO2021054242A1 publication Critical patent/WO2021054242A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/28Reaction with compounds containing carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/38Thiocarbonic acids; Derivatives thereof, e.g. xanthates ; i.e. compounds containing -X-C(=X)- groups, X being oxygen or sulfur, at least one X being sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • C08L13/02Latex

Definitions

  • the present invention relates to a latex composition, a film molded product and a dip molded product, and more specifically, it is possible to suppress the occurrence of symptoms of delayed type allergy (Type IV) in addition to immediate type allergy (Type I), and tear strength. It is possible to provide a film molded product such as a dip molded product having a high quality and a flexible texture, and further, when obtaining a film molded product such as such a dip molded product, the aging (pre-vulcanization) time can be shortened.
  • the present invention relates to a latex composition capable of producing a film molded product such as a dip molded product with high productivity, and a film molded product and a dip molded product obtained by using such a latex composition.
  • a latex composition containing a latex of natural rubber is dip-molded to obtain a dip-molded body that is used in contact with the human body such as a nipple, a balloon, a glove, a balloon, and a sack.
  • the latex of natural rubber contains a protein that causes the symptoms of immediate allergy (Type I) in the human body, there may be a problem as a dip molded product that comes into direct contact with the biological mucous membrane or organs. Therefore, studies have been conducted on using synthetic rubber latex instead of natural rubber latex.
  • Patent Document 1 discloses a latex composition obtained by blending zinc oxide, sulfur, and a vulcanization accelerator with a latex of synthetic polyisoprene, which is a synthetic rubber, as a composition for dip molding.
  • a latex composition obtained by blending zinc oxide, sulfur, and a vulcanization accelerator with a latex of synthetic polyisoprene, which is a synthetic rubber, as a composition for dip molding.
  • the technique of Patent Document 1 can prevent the occurrence of immediate allergy (Type I) due to a protein derived from natural rubber, the dithiocarbamate system contained in the dip molded product when it is used as a dip molded product. Due to the vulcanization accelerator or thiazole-based vulcanization accelerator, when it comes into contact with the human body, it may cause allergic symptoms of delayed type allergy (Type IV).
  • the present invention has been made in view of such an actual situation, and can suppress the occurrence of symptoms of delayed type allergy (Type IV) in addition to immediate type allergy (Type I), has high tear strength, and is flexible. It is possible to give a film molded product such as a dip molded product having a good texture, and further, when obtaining a film molded product such as such a dip molded product, the aging (pre-vulcanization) time can be shortened. It is an object of the present invention to provide a latex composition capable of producing a film molded product such as a dip molded product with high productivity, and a film molded product and a dip molded product obtained by using such a latex composition.
  • the present inventors have added a xanthogen compound to the latex of the carboxy-modified polymer, and the swell index (SI) is 120 as the latex of the carboxy-modified polymer. It has been found that the above object can be achieved by using a polymer in the range of about 190%, and the present invention has been completed.
  • a latex composition containing a latex of a carboxy-modified polymer and a xanthate compound.
  • a latex composition having a latex swell index (SI) of 120 to 190% of the carboxy-modified polymer is provided.
  • the modification rate of the carboxy-modified polymer by a carboxyl group is a molar ratio calculated by (number of carboxyl groups / total number of monomer units of the carboxy-modified polymer) ⁇ 100. It is preferably 01 to 10 mol%.
  • the carboxy-modified polymer modifies synthetic polyisoprene, styrene-isoprene-styrene block copolymer, or natural rubber from which proteins have been removed with a monomer having a carboxyl group. It is preferably obtained.
  • the latex composition of the present invention preferably further contains a sulfur-based vulcanizing agent.
  • the toluene-insoluble content of the latex of the carboxy-modified polymer is preferably 55 to 85% by weight.
  • the xanthogen compound preferably has a volume average particle diameter in the range of 0.001 to 9 ⁇ m and a 95% volume cumulative diameter (D95) in the range of 0.1 to 43 ⁇ m.
  • a film molded product made of the latex composition of the present invention is provided.
  • a dip molded body obtained by dip molding the latex composition of the present invention is provided.
  • the present invention it is possible to suppress the occurrence of symptoms of delayed type allergy (Type IV) in addition to immediate type allergy (Type I), and film molding of a dip molded body or the like having high tear strength and a flexible texture.
  • a body can be given, and when a film molded product such as a dip molded product is obtained, the aging (pre-vulcanization) time can be shortened, and a film such as a dip molded product can be obtained with high productivity.
  • the latex composition of the present invention is a latex composition containing a latex of a carboxy-modified polymer and a xanthate compound.
  • a swell index (SI) in the range of 120 to 190% is used.
  • the latex of the carboxy-modified polymer used in the present invention may be a latex of a polymer in which a carboxy group has been introduced, and is not particularly limited, but a conjugated diene-based polymer or a natural rubber from which a protein has been removed is used as a carboxyl group. It is preferable that the latex is a carboxy-modified polymer obtained by modifying with a monomer having.
  • the conjugated diene-based polymer is not particularly limited, and examples thereof include synthetic polyisoprene, styrene-isoprene-styrene block copolymer (SIS), and a nitrile group-containing conjugated diene-based copolymer.
  • synthetic polyisoprene styrene-isoprene-styrene block copolymer (SIS)
  • SIS styrene-isoprene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • synthetic polyisoprene is particularly preferable.
  • the synthetic polyisoprene may be a homopolymer of isoprene, or may be a copolymer of isoprene and another ethylenically unsaturated monomer copolymerizable with isoprene. It may be a polymer.
  • the content of the isoprene unit in the synthetic polyisoprene is preferably 70% by weight or more with respect to all the monomer units because it is easy to obtain a film molded body such as a dip molded body which is flexible and has excellent tear strength. It is more preferably 90% by weight or more, further preferably 95% by weight or more, and particularly preferably 100% by weight (isoprene homopolymer).
  • ethylenically unsaturated monomers copolymerizable with isoprene include conjugated diene monomers other than isoprene, such as butadiene, chloroprene, 1,3-pentadiene; acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ -.
  • Ethylene unsaturated nitrile monomers such as chloroacrylonitrile; vinyl aromatic monomers such as styrene and alkylstyrene; methyl (meth) acrylate (meaning "methyl acrylate and / or methyl methacrylate” and below.
  • Ethylene unsaturated styrene ester monomer such as (meth) acrylate, butyl (meth) acrylate, -2-ethylhexyl (meth) acrylate; etc.
  • the other ethylenically unsaturated monomers copolymerizable with these isoprene may be used alone or in combination of two or more.
  • Synthetic polyisoprene is prepared in an inert polymerization solvent using a conventionally known method, for example, a Cheegler-based polymerization catalyst composed of trialkylaluminum-titanium tetrachloride or an alkyllithium polymerization catalyst such as n-butyllithium or sec-butyllithium.
  • a Cheegler-based polymerization catalyst composed of trialkylaluminum-titanium tetrachloride or an alkyllithium polymerization catalyst such as n-butyllithium or sec-butyllithium.
  • Isoprene and other copolymerizable ethylenically unsaturated monomers used as needed can be obtained by solution polymerization.
  • the polymer solution of synthetic polyisoprene obtained by solution polymerization may be used as it is for the production of synthetic polyisoprene latex, but after taking out solid synthetic polyisoprene from the polymer solution, it is dissolved in an organic solvent. It can also be used in the production of synthetic polyisoprene latex.
  • the synthetic polyisoprene latex can be used for producing the latex of the carboxy-modified polymer used in the present invention, as will be described later.
  • impurities such as the residue of the polymerization catalyst remaining in the polymer solution may be removed. Further, an anti-aging agent described later may be added to the solution during or after the polymerization.
  • a commercially available solid synthetic polyisoprene can be used.
  • the content ratio of the cis bond unit in the isoprene unit contained in the synthetic polyisoprene is preferably 70% by weight or more with respect to the total isoprene unit. It is more preferably 90% by weight or more, still more preferably 95% by weight or more.
  • the weight average molecular weight of the synthetic polyisoprene is preferably 10,000 to 5,000,000, more preferably 500,000 to 5,000,000, more preferably 500,000 to 5,000,000, in terms of standard polystyrene by gel permeation chromatography analysis. Is between 800,000 and 3,000,000.
  • the polymer Mooney viscosity (ML1 + 4, 100 ° C.) of the synthetic polyisoprene is preferably 50 to 80, more preferably 60 to 80, and even more preferably 70 to 80.
  • a solution or a fine suspension of synthetic polyisoprene dissolved or finely dispersed in an organic solvent is emulsified in water in the presence of an anionic surfactant.
  • a method for producing a synthetic polyisoprene latex by removing an organic solvent, (2) isoprene alone or a mixture of isoprene and an ethylenically unsaturated monomer copolymerizable therewith, anionic surfactant A method of directly producing a synthetic polyisoprene latex by emulsification polymerization or suspension polymerization in the presence of an agent can be mentioned, but synthetic polyisoprene having a high ratio of cis-bonding units in isoprene units can be used.
  • the production method (1) above is preferable from the viewpoint that a film-formed body such as a dip-formed body having excellent mechanical properties such as tear strength can be easily obtained.
  • Examples of the organic solvent used in the production method (1) above include aromatic hydrocarbon solvents such as benzene, toluene and xylene; alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene, cyclohexane and cyclohexene; pentane, hexane and the like.
  • An aliphatic hydrocarbon solvent such as heptane; a halogenated hydrocarbon solvent such as methylene chloride, chloroform and ethylene dichloride; and the like can be mentioned.
  • an alicyclic hydrocarbon solvent is preferable, and cyclohexane is particularly preferable.
  • the amount of the organic solvent used is preferably 2,000 parts by weight or less, more preferably 20 to 1,500 parts by weight, and further preferably 500 to 1,500 parts by weight with respect to 100 parts by weight of the synthetic polyisoprene. is there.
  • anionic surfactant used in the production method (1) above examples include fatty acid salts such as sodium laurate, potassium myristate, sodium palmitate, potassium oleate, sodium linolenate, and sodium loginate; dodecylbenzene sulfone.
  • Alkylbenzene sulfonates such as sodium acid, potassium dodecylbenzene sulfonate, sodium decylbenzene sulfonate, potassium decylbenzene sulfonate, sodium cetylbenzenesulfonate, potassium cetylbenzenesulfonate; sodium di (2-ethylhexyl) sulfosuccinate, di (2-Ethylhexyl) Alkyl sulfosuccinates such as potassium sulfosuccinate and sodium dioctyl sulfosuccinate; alkyl sulfates such as sodium lauryl sulfate and potassium lauryl sulfate; sodium polyoxyethylene lauryl ether sulfate, potassium polyoxyethylene lauryl ether sulfate, etc. Polyoxyethylene alkyl ether sulfate ester salt; monoalkyl phosphate such as sodium lau
  • fatty acid salts, alkylbenzene sulfonates, alkyl sulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates are preferable, and fatty acid salts and alkylbenzene sulfonates are particularly preferable.
  • alkylbenzene is used. It is preferable to use at least one selected from the group consisting of sulfonates, alkyl sulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates in combination with fatty acid salts, preferably with alkylbenzene sulfonates. , It is particularly preferable to use it in combination with a fatty acid salt.
  • fatty acid salt sodium loginate and potassium loginate are preferable, and as the alkylbenzene sulfonate, sodium dodecylbenzene sulfonate and potassium dodecylbenzene sulfonate are preferable.
  • these surfactants may be used alone or in combination of two or more.
  • At least one selected from the group consisting of alkylbenzene sulfonates, alkylsulfosuccinates, alkylsulfate salts and polyoxyethylene alkylether sulfates should be used in combination with fatty acid salts.
  • the resulting latex contains at least one selected from alkylbenzene sulfonates, alkyl sulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates, and fatty acid salts. ..
  • a surfactant other than the anionic surfactant may be used in combination, and the surfactant other than the anionic surfactant may be ⁇ , ⁇ -non.
  • examples thereof include copolymerizable surfactants such as sulfoesters of saturated carboxylic acids, sulfate esters of ⁇ , ⁇ -unsaturated carboxylic acids, and sulfoalkylaryl ethers.
  • polyoxyethylene alkyl ether polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester, etc., as long as they do not inhibit coagulation by the coagulant used for molding such as dip molding.
  • Nonionic surfactants may also be used in combination.
  • the amount of the anionic surfactant used in the production method (1) is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight, based on 100 parts by weight of the synthetic polyisoprene. is there.
  • the total amount of these surfactants used is in the above range. That is, for example, when at least one selected from alkylbenzene sulfonate, alkylsulfosuccinate, alkylsulfate ester salt and polyoxyethylene alkyl ether sulfate ester salt is used in combination with a fatty acid salt, these It is preferable that the total amount used is in the above range. If the amount of the anionic surfactant used is too small, a large amount of agglomerates may be generated during emulsification. May occur.
  • alkylbenzene sulfonate, alkylsulfosuccinate, alkylsulfate ester salt and polyoxyethylene alkylether sulfate ester salt is used in combination as the anionic surfactant, and the fatty acid salt is used in combination.
  • the ratio of these to be used is the surface activity of at least one selected from "fatty acid salt”: "alkylbenzene sulfonate, alkylsulfosuccinate, alkylsulfate ester salt and polyoxyethylene alkylether sulfate ester salt".
  • the weight ratio of "total of agents” is preferably in the range of 1: 1 to 10: 1, more preferably in the range of 1: 1 to 7: 1. Too much of the surfactant selected from alkylbenzene sulfonates, alkyl sulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates will result in the handling of synthetic polyisoprenes. Foaming may become intense, which requires operations such as standing for a long time and adding an antifoaming agent, which may lead to deterioration of workability and cost increase.
  • the amount of water used in the production method (1) is preferably 10 to 1,000 parts by weight, more preferably 30 to 500 parts by weight, most preferably 30 parts by weight, based on 100 parts by weight of the organic solvent solution of synthetic polyisoprene. Is 50 to 100 parts by weight.
  • Examples of the type of water used include hard water, soft water, ion-exchanged water, distilled water, zeolite water and the like, and soft water, ion-exchanged water and distilled water are preferable.
  • An apparatus for emulsifying a solution or microsuspension of synthetic polyisoprene dissolved or finely dispersed in an organic solvent in water in the presence of an anionic surfactant may be a commercially available emulsifier or disperser. It can be used without particular limitation.
  • the method of adding the anionic surfactant to the synthetic polyisoprene solution or microsuspension is not particularly limited, and it is previously added to water, the synthetic polyisoprene solution or the microsuspension, or both. It may be added, may be added to the emulsified solution during the emulsification operation, may be added all at once, or may be added in portions.
  • emulsifying device examples include batch emulsification such as the product name "Homogenizer” (manufactured by IKA), the product name “Polytron” (manufactured by Kinematica), and the product name “TK Auto Homo Mixer” (manufactured by Tokushu Kika Kogyo Co., Ltd.).
  • the organic solvent from the emulsion obtained through the emulsification operation.
  • a method for removing the organic solvent from the emulsion a method in which the content of the organic solvent (preferably alicyclic hydrocarbon solvent) in the obtained synthetic polyisoprene latex can be 500% by weight ppm or less is preferable.
  • methods such as vacuum distillation, atmospheric distillation, steam distillation, and centrifugation can be adopted.
  • the total content of the alicyclic hydrocarbon solvent and the aromatic hydrocarbon solvent as the organic solvent in the obtained synthetic polyisoprene latex can be 500% by weight ppm or less.
  • Such a method is not particularly limited, and methods such as vacuum distillation, atmospheric distillation, steam distillation, and centrifugation can be adopted.
  • a concentration operation may be performed by a method such as vacuum distillation, atmospheric distillation, centrifugation, membrane concentration, or the like.
  • centrifugation it is preferable to perform centrifugation from the viewpoint that the solid content concentration of the synthetic polyisoprene latex can be increased and the residual amount of the surfactant in the synthetic polyisoprene latex can be reduced.
  • Centrifugation uses, for example, a continuous centrifuge to centrifuge the centrifugal force, preferably 100 to 10,000 G, and the solid content concentration of the synthetic polyisoprene latex before centrifugation, preferably 2 to 15% by weight.
  • the flow velocity to be fed into the machine is preferably 500 to 1700 kg / hr, and the back pressure (gauge pressure) of the centrifuge is preferably 0.03 to 1.6 MPa.
  • a synthetic polyisoprene latex can be obtained.
  • the residual amount of the surfactant in the synthetic polyisoprene latex can be reduced.
  • the solid content concentration of the synthetic polyisoprene latex is preferably 30 to 70% by weight, more preferably 40 to 70% by weight. If the solid content concentration is too low, the solid content concentration of the latex composition described later becomes low, so that the film thickness of the dip molded product described later becomes thin and it becomes easy to tear. On the contrary, if the solid content concentration is too high, the viscosity of the synthetic polyisoprene latex becomes high, which may make it difficult to transfer the synthetic polyisoprene latex or stir it in the compounding tank.
  • the volume average particle size of the synthetic polyisoprene latex is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 3 ⁇ m, and even more preferably 0.5 to 2.0 ⁇ m.
  • synthetic polyisoprene latex contains additives such as pH adjusters, defoamers, preservatives, cross-linking agents, chelating agents, oxygen trapping agents, dispersants, and antiaging agents, which are usually blended in the field of latex. It may be blended.
  • pH adjusters include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal bicarbonates such as sodium hydrogen carbonate; ammonia. ; Organic amine compounds such as trimethylamine and triethanolamine; and the like; but alkali metal hydroxides or ammonia are preferable.
  • SIS styrene-isoprene-styrene block copolymer
  • SIS can be obtained by block copolymerization of isoprene and styrene in an inert polymerization solvent using a conventionally known method, for example, an active organometallic such as n-butyllithium as an initiator.
  • the obtained SIS polymer solution may be used as it is in the production of SIS latex, but after taking out the solid SIS from the polymer solution, the solid SIS is dissolved in an organic solvent to SIS. It can also be used in the production of latex.
  • the SIS latex can be used for producing the latex of the carboxy-modified polymer used in the present invention.
  • the method for producing SIS latex is not particularly limited, but a SIS solution or fine suspension dissolved or finely dispersed in an organic solvent is emulsified in water in the presence of a surfactant, and the organic solvent is removed if necessary.
  • the method for producing the SIS latex is preferable. At this time, impurities such as the residue of the polymerization catalyst remaining in the polymer solution after the synthesis may be removed. Further, an anti-aging agent described later may be added to the solution during or after the polymerization. Alternatively, a commercially available solid SIS can be used.
  • the organic solvent the same solvent as in the case of the synthetic polyisoprene can be used, and an aromatic hydrocarbon solvent and an alicyclic hydrocarbon solvent are preferable, and cyclohexane and toluene are particularly preferable.
  • the amount of the organic solvent used is usually 50 to 2,000 parts by weight, preferably 80 to 1,000 parts by weight, more preferably 100 to 500 parts by weight, still more preferably 150 to 300 parts by weight, based on 100 parts by weight of SIS. It is a part by weight.
  • an anionic surfactant is preferable, and sodium rosinate and sodium dodecylbenzenesulfonate are particularly preferable.
  • the amount of the surfactant used is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight, based on 100 parts by weight of SIS. By setting the amount of the surfactant used within the above range, it is possible to appropriately improve the stability of the latex while effectively suppressing the occurrence of problems during dip molding.
  • the amount of water used in the above-mentioned method for producing SIS latex is preferably 10 to 1,000 parts by weight, more preferably 30 to 500 parts by weight, and most preferably 50 parts by weight with respect to 100 parts by weight of the organic solvent solution of SIS. ⁇ 100 parts by weight.
  • Examples of the type of water used include hard water, soft water, ion-exchanged water, distilled water, and zeolite water. Further, a polar solvent typified by alcohol such as methanol may be used in combination with water.
  • An apparatus for emulsifying an organic solvent solution or fine suspension of SIS in water in the presence of a surfactant can be exemplified as the same as in the case of the above synthetic polyisoprene.
  • the method of adding the surfactant is not particularly limited, and the surfactant may be added to water, an organic solvent solution of SIS, a fine suspension, or both in advance, or during the emulsification operation. In addition, it may be added to the emulsion, may be added all at once, or may be added separately.
  • the organic solvent from the emulsion obtained through the emulsification operation it is preferable to remove the organic solvent from the emulsion obtained through the emulsification operation to obtain SIS latex.
  • the method for removing the organic solvent from the emulsion is not particularly limited, and methods such as vacuum distillation, atmospheric distillation, steam distillation, and centrifugation can be adopted.
  • a concentration operation may be performed by a method such as vacuum distillation, atmospheric distillation, centrifugation, or membrane concentration.
  • the solid content concentration of the SIS latex is preferably 30 to 70% by weight, more preferably 50 to 70% by weight. If the solid content concentration is too low, the solid content concentration of the latex composition described later becomes low, so that the film thickness of the dip molded product becomes thin and it becomes easy to tear. On the contrary, if the solid content concentration is too high, the viscosity of the SIS latex becomes high, and it becomes difficult to transfer the SIS latex by piping or to stir it in the compounding tank.
  • SIS latex contains additives such as pH adjusters, antifoaming agents, preservatives, cross-linking agents, chelating agents, oxygen scavengers, dispersants, and anti-aging agents, which are usually blended in the field of latex. You may.
  • pH adjuster the same as in the case of the above synthetic polyisoprene can be exemplified, and alkali metal hydroxide or ammonia is preferable.
  • the content of the styrene unit in the styrene block in the SIS contained in the SIS latex thus obtained is preferably 70 to 100% by weight, more preferably 70 to 100% by weight, based on all the monomer units constituting the styrene block. It is 90 to 100% by weight, more preferably 100% by weight.
  • the content of the isoprene unit in the isoprene block in the SIS is preferably 70 to 100% by weight, more preferably 90 to 100% by weight, still more preferably 100, based on all the monomer units constituting the isoprene unit. By weight%.
  • the content ratio of the styrene unit and the isoprene unit in the SIS is a weight ratio of "styrene unit: isoprene unit", which is usually 1:99 to 90:10, preferably 3:97 to 70:30, and more preferably 5. : 95 to 50:50, more preferably 10:90 to 30:70.
  • the weight average molecular weight of SIS is preferably 10,000 to 1,000,000, more preferably 50,000 to 500,000, still more preferably 100,000 in terms of standard polystyrene by gel permeation chromatography analysis. ⁇ 300,000.
  • the volume average particle size of the latex particles (SIS particles) in the SIS latex is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 3 ⁇ m, and even more preferably 0.5 to 2.0 ⁇ m.
  • conjugated diene-based polymer as described above, a nitrile group-containing conjugated diene-based copolymer can also be used.
  • the nitrile group-containing conjugated diene-based copolymer is a copolymer obtained by copolymerizing an ethylenically unsaturated nitrile monomer with a conjugated diene monomer, and in addition to these, these are used as needed. It may be a copolymer obtained by copolymerizing another ethylenically unsaturated monomer copolymerizable with.
  • conjugated diene monomer examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene and chloroprene. Be done. Among these, 1,3-butadiene and isoprene are preferable, and 1,3-butadiene is more preferable.
  • These conjugated diene monomers can be used alone or in combination of two or more.
  • the content ratio of the conjugated diene monomer unit formed by the conjugated diene monomer in the nitrile group-containing conjugated diene-based copolymer is preferably 56 to 78% by weight, more preferably 56 to 73% by weight. , More preferably 56 to 68% by weight. By setting the content of the conjugated diene monomer unit in the above range, the obtained film-molded product such as a dip-molded product can be made more excellent in texture while having sufficient tear strength.
  • the ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an ethylenically unsaturated monomer containing a nitrile group, and for example, acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ -chloroacrylonitrile, ⁇ -cyanoethylacrylonitrile. And so on. Of these, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is more preferable. These ethylenically unsaturated nitrile monomers can be used alone or in combination of two or more.
  • the content ratio of the ethylenically unsaturated nitrile monomer unit formed of the ethylenically unsaturated nitrile monomer in the nitrile group-containing conjugated diene-based copolymer is preferably 20 to 40% by weight, more preferably 20 to 40% by weight. Is 25 to 40% by weight, more preferably 30 to 40% by weight.
  • ethylenically unsaturated monomers copolymerizable with the conjugated diene monomer and the ethylenically unsaturated nitrile monomer include, for example, ethylenically unsaturated, which is an ethylenically unsaturated monomer containing a carboxyl group.
  • Saturated carboxylic acid monomer Vinyl aromatic monomer such as styrene, alkylstyrene, vinylnaphthalene; Fluoroalkylvinyl ether such as fluoroethyl vinyl ether; (meth) acrylamide, N-methylol (meth) acrylamide, N, N-dimethylol Ethylene unsaturated amide monomers such as (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide; methyl (meth) acrylate, ethyl (meth) acrylate, (meth) Butyl acrylate, -2-ethylhexyl (meth) acrylate, trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, dibutyl maleate, dibutyl fumarate, diethyl maleate, methoxy (me
  • the ethylenically unsaturated carboxylic acid monomer is not particularly limited as long as it is an ethylenically unsaturated monomer containing a carboxyl group, but for example, a single amount of an ethylenically unsaturated monocarboxylic acid such as acrylic acid or methacrylic acid.
  • Esterically unsaturated polycarboxylic acid monomer such as itaconic acid, maleic acid, fumaric acid
  • Ethyl unsaturated polycarboxylic acid anhydride such as maleic anhydride, citraconic anhydride
  • monobutyl fumarate maleic acid
  • ethylenically unsaturated polyvalent carboxylic acid partial ester monomers such as monobutyl and mono-2-hydroxypropyl maleate.
  • ethylenically unsaturated monocarboxylic acid is preferable, and methacrylic acid is particularly preferable.
  • These ethylenically unsaturated carboxylic acid monomers can also be used as alkali metal salts or ammonium salts.
  • the ethylenically unsaturated carboxylic acid monomer can be used alone or in combination of two or more.
  • the content ratio of the ethylenically unsaturated carboxylic acid monomer unit formed by the ethylenically unsaturated carboxylic acid monomer in the nitrile group-containing conjugated diene-based copolymer is preferably 2 to 5% by weight. It is more preferably 2 to 4.5% by weight, still more preferably 2.5 to 4.5% by weight.
  • the content ratio of the other monomer unit formed by the other ethylenically unsaturated monomer in the nitrile group-containing conjugated diene-based copolymer is preferably 10% by weight or less, more preferably 5% by weight. % Or less, more preferably 3% by weight or less.
  • the nitrile group-containing conjugated diene-based copolymer can be obtained by copolymerizing a monomer mixture containing the above-mentioned monomer, and a method of copolymerizing by emulsion polymerization is preferable.
  • a method of copolymerizing by emulsion polymerization is preferable.
  • the emulsion polymerization method a conventionally known method can be adopted.
  • polymerization auxiliary materials such as an emulsifier, a polymerization initiator, and a molecular weight modifier can be used.
  • the method of adding these polymerization auxiliary materials is not particularly limited, and any method such as an initial batch addition method, a split addition method, or a continuous addition method may be used.
  • the emulsifier is not particularly limited, but is, for example, a nonionic emulsifier such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester; potassium dodecylbenzenesulfonate, dodecylbenzene.
  • a nonionic emulsifier such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester; potassium dodecylbenzenesulfonate, dodecylbenzene.
  • Anionic emulsifiers such as alkylbenzene sulfonates such as sodium sulfonate, higher alcohol sulfates, alkyl sulfosuccinates; cationic emulsifiers such as alkyltrimethylammonium chloride, dialkylammonium chloride, benzylammonium chloride; ⁇ , ⁇ -unsaturated Examples thereof include sulfoesters of carboxylic acids, sulfate esters of ⁇ , ⁇ -unsaturated carboxylic acids, copolymerizable emulsifiers such as sulfoalkylaryl ethers, and the like.
  • an anionic emulsifier is preferable, alkylbenzene sulfonate is more preferable, and potassium dodecylbenzene sulfonate and sodium dodecylbenzene sulfonate are particularly preferable.
  • These emulsifiers can be used alone or in combination of two or more.
  • the amount of the emulsifier used is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the monomer mixture.
  • the polymerization initiator is not particularly limited, and is, for example, an inorganic peroxide such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide; diisopropylbenzene hydroperoxide, cumene hydroperoxide, etc.
  • an inorganic peroxide such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide; diisopropylbenzene hydroperoxide, cumene hydroperoxide, etc.
  • t-Butylhydroperoxide 1,1,3,3-tetramethylbutylhydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, di-t-butyl peroxide, di- ⁇ - Organic peroxides such as cumyl peroxide, acetyl peroxide, isobutyryl peroxide, benzoyl peroxide; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, methyl azobisisobutyrate; etc. Can be mentioned.
  • These polymerization initiators can be used alone or in combination of two or more.
  • the amount of the polymerization initiator used is preferably 0.01 to 10 parts by weight, more preferably 0.01 to 2 parts by weight, based on 100 parts by weight of the monomer mixture.
  • the peroxide initiator can be used as a redox-based polymerization initiator in combination with a reducing agent.
  • the reducing agent is not particularly limited, but is a compound containing a metal ion in a reduced state such as ferrous sulfate and ferrous naphthenate; a sulfonic acid compound such as sodium methanesulfonate; an amine compound such as dimethylaniline. ; And so on.
  • These reducing agents can be used alone or in combination of two or more.
  • the amount of the reducing agent used is preferably 3 to 1000 parts by weight with respect to 100 parts by weight of the peroxide.
  • the amount of water used for emulsion polymerization is preferably 80 to 600 parts by weight, particularly preferably 100 to 200 parts by weight, based on 100 parts by weight of all the monomers used.
  • Examples of the method for adding the monomer include a method of collectively adding the monomers used in the reaction vessel, a method of continuously or intermittently adding the monomers as the polymerization progresses, and a method of adding a part of the monomers. Then, the reaction is carried out to a specific conversion rate, and then the remaining monomer is continuously or intermittently added to polymerize, and any of these methods may be adopted.
  • the composition of the mixture may be constant or variable. Further, each monomer may be added to the reaction vessel after mixing various monomers to be used in advance, or may be added to the reaction vessel separately.
  • polymerization auxiliary materials such as a chelating agent, a dispersant, a pH adjusting agent, an oxygen scavenger, and a particle size adjusting agent can be used, and these are not particularly limited in terms of type and amount used.
  • the polymerization temperature at the time of performing emulsion polymerization is not particularly limited, but is usually 3 to 95 ° C, preferably 5 to 60 ° C.
  • the polymerization time is about 5 to 40 hours.
  • the monomer mixture is emulsion-polymerized, and when the predetermined polymerization conversion rate is reached, the polymerization system is cooled or a polymerization inhibitor is added to stop the polymerization reaction.
  • the polymerization conversion rate when the polymerization reaction is stopped is preferably 90% by weight or more, more preferably 93% by weight or more.
  • the polymerization terminator is not particularly limited, and is, for example, hydroxylamine, hydroxyamine sulfate, diethylhydroxylamine, hydroxyamine sulfonic acid and its alkali metal salt, sodium dimethyldithiocarbamate, hydroquinone derivative, catechol derivative, and hydroxydimethyl.
  • examples thereof include aromatic hydroxydithiocarboxylic acids such as benzenethiocarboxylic acid, hydroxydiethylbenzenedithiocarboxylic acid, and hydroxydibutylbenzenedithiocarboxylic acid, and alkali metal salts thereof.
  • the amount of the polymerization inhibitor used is preferably 0.05 to 2 parts by weight with respect to 100 parts by weight of the monomer mixture.
  • the unreacted monomer is removed and the solid content concentration and pH are adjusted to obtain a latex of a nitrile group-containing conjugated diene-based copolymer.
  • an antiaging agent a preservative, an antibacterial agent, a dispersant and the like may be appropriately added to the latex of the nitrile group-containing conjugated diene copolymer, if necessary.
  • the number average particle size of the latex of the nitrile group-containing conjugated diene copolymer is preferably 60 to 300 nm, more preferably 80 to 150 nm.
  • the particle size can be adjusted to a desired value by a method such as adjusting the amount of the emulsifier and the polymerization initiator used.
  • conjugated diene polymer used in the present invention synthetic polyisoprene, styrene-isoprene-styrene block copolymer (SIS), nitrile group-containing conjugated diene polymer and the like can be used.
  • SIS styrene-isoprene-styrene block copolymer
  • Butadiene polymer, styrene-butadiene copolymer and the like may be used.
  • the butadiene polymer may be a homopolymer of 1,3-butadiene as a conjugated diene monomer, or another ethylenically non-polymerizable copolymer with 1,3-butadiene as a conjugated diene monomer. It may be a copolymer obtained by copolymerizing with a saturated monomer.
  • the styrene-butadiene copolymer is a copolymer obtained by copolymerizing 1,3-butadiene as a conjugated diene monomer with styrene, and in addition to these, it is used as needed. It may be a copolymer obtained by copolymerizing another copolymerizable ethylenically unsaturated monomer.
  • a latex of natural rubber from which proteins have been removed is used. You can also do it.
  • known methods such as a method of decomposing a protein in a natural rubber latex with a proteolytic enzyme or a surfactant and removing the produced decomposition product by washing or centrifugation are known. What is known as so-called "deproteinized natural rubber latex" obtained by the protein removal method can be used.
  • the latex of the deproteinized natural rubber it is preferable to use one adjusted to the solid content concentration in the same range as the solid content concentration of the latex of the conjugated diene polymer described above, and it is prepared by adding the same additive. You may use the one that has been prepared.
  • the carboxy-modified polymer constituting the latex of the carboxy-modified polymer used in the present invention can be obtained by modifying the above-mentioned conjugated diene-based polymer or deproteinized natural rubber with a monomer having a carboxyl group.
  • the conjugated diene polymer is modified with a monomer having a carboxyl group.
  • the conjugated diene polymer can be used as it is as a carboxy-modified polymer.
  • the method for modifying the conjugated diene-based polymer or deproteinized natural rubber with a monomer having a carboxyl group is not particularly limited, but for example, the conjugated diene-based polymer or deproteinized natural rubber is simply a simple compound having a carboxyl group. Examples thereof include a method of graft-polymerizing a dimer in an aqueous phase.
  • the method for graft-polymerizing a monomer having a carboxyl group in an aqueous phase is not particularly limited, and a conventionally known method may be used.
  • a conjugated diene polymer or a latex of a deproteinized natural rubber may be used.
  • a method of reacting the monomer having a carboxyl group with the conjugated diene polymer or the deproteinized natural rubber in the aqueous phase is preferable.
  • the organic peroxide is not particularly limited, but for example, diisopropylbenzene hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, di-t. -Butyl peroxide, isobutylyl peroxide, benzoyl peroxide and the like can be mentioned, but 1,1,3,3-tetramethylbutylhydroperoxide is particularly preferable from the viewpoint of improving the mechanical strength of the obtained dip molded product. .. These organic peroxides may be used alone or in combination of two or more.
  • the amount of the organic peroxide added is not particularly limited, but is preferably 0.01 to 3 parts by weight, more preferably 0. parts by weight, based on 100 parts by weight of the conjugated diene polymer or deproteinized natural rubber contained in the latex. 1 to 1 part by weight.
  • the organic peroxide can be used as a redox-based polymerization initiator in combination with a reducing agent.
  • the reducing agent is not particularly limited, but for example, a compound containing a metal ion in a reduced state such as ferrous sulfate and ferrous naphthenate; a sulfonic acid compound such as sodium methanesulfonate; an amine such as dimethylaniline. Compounds; sodium formaldehyde sulfoxylate; and the like. These reducing agents may be used alone or in combination of two or more.
  • the amount of the reducing agent added is not particularly limited, but is preferably 0.01 to 1 part by weight, more preferably 0.2 to 0.85 parts by weight, based on 1 part by weight of the organic peroxide. ..
  • the method of adding the organic peroxide and the reducing agent is not particularly limited, and known addition methods such as batch addition, divided addition, and continuous addition can be used, respectively.
  • the dispersant is not particularly limited, but is not particularly limited, such as a derivative of aromatic sulfonic acid, a fatty acid salt, an alkylbenzene sulfonate, an alkylsulfosuccinate, an alkylsulfate ester salt, a polyoxyethylene alkyl ether sulfate ester salt, a monoalkyl phosphate salt, and the like.
  • Anionic surfactants are preferred, and aromatic sulfonic acid derivatives are more preferred.
  • the dispersants may be used alone or in combination of two or more.
  • the derivative of the aromatic sulfonic acid is not particularly limited, but a compound represented by the following general formula (1) is preferable.
  • R 1 and R 2 are independently hydrogen atoms or arbitrary organic groups, and R 1 and R 2 may be bonded to each other to form a ring structure. .
  • the organic group can be an R 1 and R 2, but not limited to, methyl group, ethyl group, n- propyl group, an isopropyl group, n- butyl group, an isobutyl group , Se-butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group and other alkyl groups having 1 to 30 carbon atoms.
  • Cycloalkyl group having 3 to 30 carbon atoms such as cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group and cyclooctyl group; aryl having 6 to 30 carbon atoms such as phenyl group, biphenyl group, naphthyl group and anthranyl group Group: methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, t-butoxy group, n-pentyloxy group, n-hexyloxy group, phenoxy group, etc.
  • these organic groups may have a substituent, and the position of the substituent can be any position.
  • the ring structure is not particularly limited, but an aromatic compound is preferable, and an aromatic compound having a benzene ring such as benzene or naphthalene is used. More preferably, naphthalene is particularly preferable.
  • these ring structures may have a substituent, and the position of the substituent can be any position.
  • R 1 and R 2 are bonded to each other to form a ring structure.
  • examples thereof include those having a benzene ring structure in the above general formula (1).
  • R 3 is a divalent hydrocarbon group which may have a substituent.
  • R 3 may be a divalent hydrocarbon group which may have a substituent, and is not particularly limited, but an alkylene group having 1 to 10 carbon atoms is preferable, and a methylene group is preferable. Is particularly preferable.
  • the derivative of the aromatic sulfonic acid preferably has the structure represented by the general formula (2) repeatedly, and the number of repeating units of the structure represented by the general formula (2) is not particularly limited. However, the number is preferably 10 to 100, more preferably 20 to 50.
  • the weight average molecular weight of the aromatic sulfonic acid derivative is preferably 500 to 100,000, more preferably 3,000 to 50,000, and even more preferably 5,000 to 30,000.
  • the amount of the dispersant added is not particularly limited, but from the viewpoint that the generation of agglomerates can be more effectively suppressed even when the solid content concentration of the latex of the conjugated diene polymer or the deproteinized natural rubber is increased. Therefore, it is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the conjugated diene polymer or deproteinized natural rubber contained in the latex.
  • the method of adding the dispersant to the latex of the conjugated diene polymer or the deproteinized natural rubber is not particularly limited, and known addition methods such as batch addition, divided addition, and continuous addition can be adopted. Further, the dispersant may be added directly to the latex, or an aqueous solution of the dispersant may be prepared in advance and the prepared aqueous solution of the dispersant may be added to the latex.
  • the reaction temperature (denaturation reaction temperature) at the time of reacting the conjugated diene polymer or the deproteinized natural rubber with the monomer having a carboxyl group is not particularly limited, but is preferably 15 to 80 ° C., more preferably 15 to 50 ° C. ° C., more preferably 18-35 ° C.
  • the reaction time (denaturation reaction temperature) when reacting the monomer having a carboxyl group may be appropriately set according to the above reaction temperature, but is preferably 30 to 300 minutes, more preferably 45 to 80 minutes. ..
  • the solid content concentration of the latex of the conjugated diene polymer or the deproteinized natural rubber when reacting the monomer having a carboxyl group is not particularly limited, but is preferably 5 to 60% by weight, more preferably 10 to 40% by weight. It is% by weight.
  • Examples of the monomer having a carboxyl group include ethylenically unsaturated monocarboxylic acid monomers such as acrylic acid and methacrylic acid; and ethylenically unsaturated polyvalents such as itaconic acid, maleic acid, fumaric acid, and butentricarboxylic acid.
  • Carboxylic acid monomer Partial ester monomer of ethylenically unsaturated polyvalent carboxylic acid such as monobutyl fumarate, monobutyl maleate, mono2-hydroxypropyl maleate; polyvalent carboxylic acid such as maleic anhydride and citraconic anhydride Acid anhydride; etc.
  • an ethylenically unsaturated monocarboxylic acid monomer is preferable, acrylic acid and methacrylic acid are more preferable, and methacrylic acid is preferable. Especially preferable. It should be noted that these monomers may be used alone or in combination of two or more. Further, the above-mentioned carboxyl group includes those which are salts with alkali metals, ammonia and the like.
  • the amount of the monomer having a carboxyl group to be used is preferably 0.01 parts by weight to 100 parts by weight, more preferably 0.01 parts by weight or more, based on 100 parts by weight of the conjugated diene polymer or the deproteinized natural rubber. It is 40 parts by weight, more preferably 0.5 parts by weight to 20 parts by weight, and particularly preferably 1.5 to 4.5 parts by weight.
  • the method of adding the monomer having a carboxyl group to the latex is not particularly limited, and known addition methods such as batch addition, divided addition, and continuous addition can be adopted.
  • the latex after the reaction may be post-heated, if necessary.
  • the temperature of the post-heating is not particularly limited, but is the same as or higher than the reaction temperature (modification reaction temperature) when reacting the above-mentioned conjugated diene polymer or deproteinized natural rubber with a monomer having a carboxyl group.
  • the specific post-heating temperature is preferably 20 to 85 ° C, more preferably 23 to 60 ° C, and even more preferably 20 to 45 ° C.
  • the post-heating time may be appropriately set according to the post-heating temperature, but is preferably 30 to 300 minutes, more preferably 45 to 80 minutes.
  • the modification rate of the carboxy-modified polymer by the monomer having a carboxyl group may be appropriately controlled according to the intended use of the obtained latex composition, but is preferably 0.01 to 10 mol%, more preferably 0. It is 1 to 5 mol%, more preferably 0.2 to 0.8 mol%, and particularly preferably 0.3 to 0.7 mol%.
  • X can be determined by measuring the carboxy-modified polymer by 1 H-NMR. Further, Y is (weight average molecular weight (Mw) of the carboxy-modified polymer) / (average molecular weight of the monomers (average molecular weight of the monomer mixture) according to the content ratio of each monomer unit constituting the carboxy-modified polymer). It can be obtained by calculation.
  • the conversion rate of the graft polymerization is preferably 95% by weight or more, more preferably 97% by weight or more.
  • Additives such as pH adjusters, antifoaming agents, preservatives, chelating agents, oxygen scavengers, dispersants, and antiaging agents, which are usually blended in the latex of the carboxy-modified polymer used in the present invention. May be blended.
  • Examples of the pH adjuster include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal bicarbonates such as sodium hydrogen carbonate; ammonia. ; Organic amine compounds such as trimethylamine and triethanolamine; etc., but alkali metal hydroxides or ammonia are preferable.
  • a concentration operation may be performed by a method such as vacuum distillation, atmospheric distillation, centrifugation, or membrane concentration. Centrifugation is preferable from the viewpoint that the residual amount of the anionic surfactant in the latex of the carboxy-modified polymer can be adjusted.
  • the latex of the carboxy-modified polymer after graft polymerization is centrifuged, it is preferable to add a pH adjuster in advance to set the pH of the latex to 7 or more in order to improve the mechanical stability of the latex. Is more preferably set to 9 or more.
  • the pH of the latex is adjusted, the carboxyl group introduced by denaturation may be in a salt state.
  • the solid content concentration of the latex of the carboxy-modified polymer is preferably 30 to 70% by weight, more preferably 40 to 70% by weight.
  • the content ratio of the monomer unit having a carboxyl group in the carboxy-modified polymer is preferably 0.01 to 50% by weight, more preferably 0.5 to 40% by weight, based on all the monomer units. , More preferably 1 to 30% by weight, and particularly preferably 1 to 15% by weight.
  • a latex having a swell index (SI) of 120 to 190% is used as the latex of the carboxy-modified polymer.
  • SI swell index
  • a film molded product such as a dip molded product is obtained by using a latex of a carboxy-modified polymer having a swell index (SI) in such a range in combination with a xanthogen compound,
  • the obtained film molded product such as a dip molded product can suppress the occurrence of delayed type allergy (Type IV) in addition to immediate type allergy (Type I), has high tear strength, and has a flexible texture.
  • the aging (pre-vulcanization) time can be shortened, and a film such as a dip molded product can be obtained with high productivity. It is possible to manufacture a molded product.
  • the following dip method can be adopted. That is, in the dip method, first, an acid or an alkali is added to the latex of the carboxy-modified polymer to adjust the pH to 8.2. Then, a ceramic mold with a ground surface was prepared, washed, preheated in an oven at 70 ° C. for 30 minutes, and then 18% by weight of calcium nitrate and 0.05% by weight of polyoxy. A preheated ceramic mold is immersed in an aqueous coagulant containing ethylene lauryl ether (trade name "Emargen 109P", manufactured by Kao Corporation) for 5 seconds.
  • an aqueous coagulant containing ethylene lauryl ether trade name "Emargen 109P", manufactured by Kao Corporation
  • the ceramic mold is taken out from the coagulant aqueous solution, and the ceramic mold coated with the coagulant is dried in an oven at 70 ° C. for 20 minutes.
  • a film for measurement is taken out after being immersed under the conditions, and a ceramic mold coated with a latex of a carboxy-modified polymer is immersed in warm water at 60 ° C. for 5 minutes and then dried at room temperature for 6 hours. Obtain a ceramic mold coated with. Then, after spraying talc on this, the film for measurement can be obtained by peeling the film for measurement from the ceramic molding die.
  • the thickness of the film for measurement is not particularly limited, but is preferably about 0.2 mm.
  • the swell index (SI) of the latex of the carboxy-modified polymer may be 120 to 190%, but tearing occurs when the aging (pre-vulcanization) time is as short as 24 hours, for example.
  • the swell index (SI) is preferably 127 to 165%, more preferably 130 to 160%, and further preferably 140 to 160%.
  • aging (pre-vulcanization) is performed in order to obtain sufficient mechanical strength such as tear strength. It takes a long time, which makes it less productive.
  • the method for adjusting the swell index (SI) of the latex of the carboxy-modified polymer is not particularly limited, but for example, a conjugated diene polymer or a monomer having a carboxyl group is reacted with a deproteinized natural rubber.
  • a method of adjusting the post-heating temperature and the post-heating time, a method of adjusting the type and amount of the monomer having a carboxyl group used in the modification reaction, and a method of combining with an organic peroxide in the modification reaction examples thereof include a method of adjusting the type and amount of the reducing agent used, and it is desirable to appropriately combine and adjust these.
  • the latex of the carboxy-modified polymer used in the present invention preferably has a swell index (SI) in the above range and a toluene insoluble content of 55 to 85% by weight, preferably 60 to 80% by weight. It is more preferably%, and further preferably 65 to 80% by weight.
  • SI swell index
  • the thickness of the film for measurement is not particularly limited, but is preferably about 0.2 mm. Then, the weight of the film for measurement thus obtained (this weight is referred to as "W1") is measured, and then the film is immersed in toluene at 25 ° C.
  • the method for adjusting the toluene insoluble amount of the latex of the carboxy-modified polymer to the above range is not particularly limited, but for example, a conjugated diene polymer or a deproteinized natural rubber is reacted with a monomer having a carboxyl group.
  • the latex of the carboxy-modified polymer used in the present invention preferably has a swell index (SI) in the above range and a swelling rate with respect to THF of 5 to 40 times, preferably 10 to 35 times. It is more preferable that there is, and it is further preferable that it is 10 to 30 times.
  • SI swell index
  • the latex of the carboxy-modified polymer used in the present invention preferably has a swell index (SI) in the above range and a THF insoluble content of 80 to 100% by weight, preferably 83 to 99% by weight. It is more preferably%, and further preferably 85 to 98% by weight.
  • SI swell index
  • THF insoluble content 80 to 100% by weight, preferably 83 to 99% by weight. It is more preferably%, and further preferably 85 to 98% by weight.
  • the THF-insoluble content of the latex of the carboxy-modified polymer can be measured by the following method. That is, first, in the same manner as in the case of the above-mentioned measurement of the amount of toluene insoluble, a film for measurement is obtained by the casting method, and the weight of the obtained film for measurement (this weight is referred to as "W3"). After measuring, the film is immersed in tetrahydrofuran (THF) at 25 ° C. for 24 hours. The soaked film is then dried at 100 ° C. for 24 hours to remove THF.
  • THF tetrahydrofuran
  • THF insoluble amount [% by weight] (W4 / W3) ⁇ 100
  • the latex composition of the present invention contains a xanthate compound in addition to the latex of the carboxy-modified polymer described above.
  • the xanthate compound used in the present invention can act as a vulcanization accelerator when used in combination with a sulfur-based vulcanization agent, for example. That is, when a sulfur-based vulcanizing agent is blended in the latex composition and the carboxy-modified polymer in the latex composition is vulcanized with the sulfur-based vulcanizing agent to obtain a film molded body such as a dip molded body.
  • the xanthogen compound acts as a vulcanization accelerator.
  • the xanthogen compound acts as a vulcanization accelerator on a latex composition containing a sulfur-based vulcanizing agent, and after vulcanization is performed, alcohol and disulfide are generated by heat applied during vulcanization.
  • a xanthate compound is decomposed into alcohol, carbon disulfide, etc. by the heat applied when producing a film-formed body (heat of about 100 to 130 ° C. when vulcanizing a carboxy-modified polymer), and further decomposed.
  • a vulcanization accelerator for example, a dithiocarbamate-based vulcanization accelerator, a thiazole-based vulcanization accelerator, etc.
  • the xanthate compound can be used as a vulcanization accelerator, whereby the residual amount of the xanthate compound in the obtained film-molded product such as a dip-molded product can be reduced, so that the obtained film-molded product is delayed. It is possible to suppress the occurrence of symptoms of type allergy (Type IV).
  • the latex composition of the present invention uses a synthetic rubber such as a conjugated diene polymer or a carboxy-modified polymer using a deproteinized natural rubber, the obtained film-formed product is included in the natural rubber. It is also possible to suppress the occurrence of symptoms of immediate type allergy (Type I) caused by the protein.
  • a synthetic rubber such as a conjugated diene polymer or a carboxy-modified polymer using a deproteinized natural rubber
  • the xanthogen compound used in the present invention is not particularly limited, and examples thereof include xanthate acid and xanthogenate.
  • R is a linear or branched hydrocarbon
  • Z is a metal atom.
  • X is a number corresponding to the valence of Z, and is usually 1 to 4, preferably 2 to 4, particularly preferably 2.
  • the compound represented by is preferable.
  • the zinc salt of xanthate is more preferable.
  • Dibutylxanthogenates are more preferable, zinc diisopropylxanthogenate and zinc dibutylxanthogenate are further preferable, and zinc diisopropylxanthogenate is particularly preferable.
  • These xanthogenates may be used alone or in combination of two or more.
  • xanthogen compounds may be used alone or in combination of two or more.
  • the volume average particle size of the xanthogen compound dispersed in the latex composition is 0.001.
  • the range is preferably in the range of ⁇ 9 ⁇ m.
  • the volume average particle size of the xanthate compound dispersed in the latex composition is preferably in the range of 0.001 to 9 ⁇ m, more preferably in the range of 0.05 to 9 ⁇ m, and further preferably in the range of 0.05 to 7 ⁇ m. The range, even more preferably the range of 0.07 to 5 ⁇ m, particularly preferably the range of 1 to 4 ⁇ m.
  • the volume average particle size of the xantogen compound dispersed in the latex composition is preferably in the above range, but the 95% volume cumulative diameter (D95) of the xantogen compound is in the range of 0.1 to 43 ⁇ m. It is preferably in the range of 0.1 to 40 ⁇ m, more preferably 0.1 to 35 ⁇ m, still more preferably 0.1 to 20 ⁇ m, and particularly preferably 5 to 18 ⁇ m.
  • the volume average particle diameter and the 95% volume cumulative diameter (D95) of the xantogen compound can be measured using, for example, a laser diffraction / scattering type particle size distribution meter.
  • these xanthogen compounds may be contained alone in the latex composition of the present invention, but it is preferable that two or more of them are contained.
  • xanthogenic acid when xanthogenic acid is blended in a latex composition, a part of the blended xanthate acid is present in the form of xanthate salt due to the action of a typical metal compound described later, and as a result, the latex composition. May contain two or more xanthogen compounds.
  • the latex composition contains sulfur as a sulfur-based vulcanizer or the like, the xanthogenic acid blended in the latex composition exists in the form of xanthogen disulfide or xanthogen polysulfide due to the action of sulfur. You may.
  • xanthate xanthogen disulfide or xanthogen polysulfide
  • these are any of xanthate acid, xanthogenate, xanthogen disulfide and xanthogen polysulfide, respectively. It may exist in the form of.
  • the content ratio of the xanthogen compound in the latex composition of the present invention is 100 parts by weight of the carboxy-modified polymer contained in the latex. On the other hand, it is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 7 parts by weight, and further preferably 0.5 to 5 parts by weight.
  • a xanthate compound when a xanthate compound is added to the latex of a carboxy-modified polymer to prepare a latex composition, the xanthate compound is dispersed in water or alcohol to obtain a xanthate compound dispersion.
  • a xanthate compound dispersion it is preferable to add in the form of a xanthate compound dispersion.
  • the volume average particle size of the xantogen compound in the xantogen compound dispersion is within the above range, and in addition to the volume average particle size, the 95% volume cumulative diameter (D95) is also within the above range. It is preferable to do so.
  • the content ratio of the xanthate compound in the xanthate compound dispersion is preferably 1 to 60% by weight, more preferably 10 to 50% by weight, still more preferably 30 to 50% by weight, based on the entire xanthate compound dispersion. Is. By setting the content ratio of the xanthate compound in the above range, the xanthate compound dispersion can be made more excellent in storage stability.
  • the xanthate compound dispersion preferably further contains a nonionic surfactant and / or a nonionic anionic surfactant in addition to the xanthate compound described above.
  • the xanthogen compound By dispersing the above-mentioned xanthogen compound in water or alcohol together with a nonionic surfactant and / or a nonionic anionic surfactant, the xanthogen compound can be better dispersed, whereby xanthogen can be better dispersed.
  • the effect of the compound as a vulcanization accelerator can be further enhanced, whereby the vulcanization time (particularly, aging (pre-vulcanization)) in obtaining a vulcanized product of a polymer such as a conjugated diene-based polymer can be obtained. The time required) can be shortened, and productivity can be improved.
  • it is preferable to use at least one of a nonionic surfactant and a nonionic anionic surfactant it is preferable to use a nonionic surfactant.
  • the nonionic surfactant may be a nonionic surfactant, and is not particularly limited.
  • polyoxyalkylene glycol polyoxyalkylene alkyl ether, polyoxyalkylene alkyl phenyl ether, or polyoxyethylene styrene.
  • examples thereof include phenyl ether, polyoxyethylene (hardened) castor oil, polyoxyethylene alkylamine, and fatty acid alkanolamide.
  • polyoxyalkylene glycol examples include polyoxypropylene glycol ethylene oxide adducts such as polyoxyethylene glycol, polyoxypropylene glycol, and polyoxyethylene polyoxypropylene glycol.
  • polyoxyalkylene alkyl ether examples include linear or branched chain ethers to which 1 to 50 (preferably 1 to 10) propylene oxide and / or ethylene oxide are added.
  • Chain-shaped or branched-chain ethers, linear or branched-chain ethers in which a total of 2 to 50 (preferably 2 to 10) blocks of ethylene oxide and propylene oxide are added or randomly added, and the like are polyoxyethylene. Dodecyl ether, polyoxyethylene lauryl ether and the like can be mentioned.
  • polyoxyalkylene alkyl phenyl ether examples include compounds in which 1 to 50 (preferably 1 to 10) propylene oxide and / or ethylene oxide are added to the alkyl phenol.
  • polyoxyethylene styrenated phenyl ether examples include ethylene oxide adducts of (mono, di, tri) styrenated phenol, and among these, polyoxyethylene di, which is an ethylene oxide adduct of distyrene phenol. Styrylated phenyl ether is preferred.
  • Examples of the polyoxyethylene (hardened) castor oil include castor oil or an ethylene oxide adduct of hardened castor oil.
  • Examples of the fatty acid alkanolamide include lauric acid diethanolamide, palmitic acid diethanolamide, myristic acid diethanolamide, stearic acid diethanolamide, oleic acid diethanolamide, palm oil fatty acid diethanolamide, and coconut oil fatty acid diethanolamide.
  • nonionic surfactants a nonionic surfactant having a polyoxyalkylene structure is preferable, a nonionic surfactant having a polyoxyethylene structure is more preferable, and a hydrocarbylated ether of polyoxyethylene is more preferable.
  • Polyoxyalkylene alkyl ethers and polyoxyethylene distyrene phenyl ethers are more preferred, and polyoxyethylene distyrene phenyl ethers are particularly preferred.
  • the nonionic surfactant may be used alone or in combination of two or more.
  • nonionic anionic surfactant is an anionic surfactant (that is, a substance that dissociates ions in an aqueous solution and exhibits surface activity in the anionic portion), and is nonionic in its molecular main chain. It is not particularly limited as long as it has a segment that acts as a surfactant of, for example, a polyalkylene oxide chain.
  • nonionic anionic surfactants include compounds represented by the following general formula (3).
  • R 4- O- (CR 5 R 6 CR 7 R 8 ) n-SO 3 M (3)
  • R 4 is an aryl group having 6 to 14 carbon atoms which may be substituted with an alkyl group having 6 to 16 carbon atoms or an alkyl group having 1 to 25 carbon atoms
  • R 5 to R 8 is a group independently selected from the group consisting of hydrogen and methyl groups
  • M is an alkali metal atom or ammonium ion
  • n is 3 to 40.
  • nonionic anionic surfactants include polyoxyethylene such as polyoxyethylene lauryl ether sulfate, polyoxyethylene cetyl ether sulfate, polyoxyethylene stearyl ether sulfate, and polyoxyethylene oleyl ether sulfate. Alkyl ether sulfate; polyoxyethylene aryl phenyl ether sulfate such as polyoxyethylene nonylphenyl ether sulfate, polyoxyethylene octylphenyl ether sulfate, polyoxyethylene distyryl ether sulfate; and the like.
  • nonionic anionic surfactants the nonionic anionic surfactant having a polyoxyalkylene structure is preferable, and the nonionic anionic surfactant having a polyoxyethylene structure is more preferable.
  • the nonionic anionic surfactant may be used alone or in combination of two or more.
  • the content of the nonionic surfactant and / or the nonionic anionic surfactant in the xanthogen compound dispersion is not particularly limited, but is preferably 0.1 to 30 parts by weight based on 100 parts by weight of the xanthogen compound. Parts, more preferably 1 to 20 parts by weight, still more preferably 4 to 15 parts by weight, and particularly preferably 5.5 to 9.5 parts by weight.
  • the method for preparing the xanthogen compound dispersion is not particularly limited, but is limited to a xanthogen compound, a nonionic surfactant and / or a nonionic anionic surfactant used as needed, and water or alcohol (for example, methanol). , Ethanol, propanol and at least one selected from butanol), and then the obtained mixed solution is crushed, and in particular, the xanthogen compound is prepared by adjusting the crushing conditions. It is preferable that the volume average particle diameter of the above range is in the above range.
  • the crushing treatment may be any treatment that can alleviate the crushing and aggregation of the xanthate compound contained in the dispersion, and is not particularly limited, but for example, shearing action or grinding.
  • a method using a known crusher such as a method using a crusher utilizing the action and a method using a stirring type crusher.
  • a crushing device such as a roll mill, a hammer mill, a vibration mill, a jet mill, a ball mill, a planetary ball mill, a bead mill, a sand mill, or a three-roll mill can be used.
  • a method of performing the crushing treatment using a ball mill, a planetary ball mill, or a bead mill is preferable from the viewpoint that the volume average particle size of the xanthogen compound in the dispersion can be preferably controlled.
  • a medium having a media size of preferably ⁇ 5 to ⁇ 50 mm, more preferably ⁇ 10 to ⁇ 35 mm is used, and the rotation speed is preferably 10 to 300 rpm. It is preferable to carry out the crushing treatment under the conditions of more preferably 10 to 100 rpm and a treatment time of preferably 24 to 120 hours, more preferably 24 to 72 hours.
  • a medium having a media size of preferably ⁇ 0.1 to ⁇ 5 mm, more preferably ⁇ 0.3 to ⁇ 3 mm is used, and the rotation speed is high.
  • a compound conventionally used as a vulcanization accelerator specifically, sulfur which causes symptoms of delayed type allergy (Type IV).
  • a vulcanization accelerator containing for example, dithiocarbamate-based vulcanization accelerator, thiazole-based vulcanization accelerator, etc.
  • a film-formed body such as a dip-formed body obtained after acting as a vulcanization accelerator. It is preferable that the compound that remains in the vulcanization is substantially not contained.
  • the method for blending the xanthogen compound may be any method as long as it is a method in which the latex of the carboxy-modified polymer and the xantogen compound are finally mixed, and is not particularly limited.
  • a method of blending the xanthogen compound with the latex of the carboxy-modified polymer, or adding the xanthogen compound to a solution or fine suspension of the carboxy-modified polymer dissolved or finely dispersed in an organic solvent in advance After obtaining the latex of the carboxy-modified polymer, a method of blending the xanthogen compound with the latex of the carboxy-modified polymer, or adding the xanthogen compound to a solution or fine suspension of the carboxy-modified polymer dissolved or finely dispersed in an organic solvent in advance.
  • a solution or microsuspension of the carboxy-modified polymer containing the xanthogen compound is emulsified in water, and if necessary, the organic solvent is removed to remove the latex of the carboxy-modified polymer containing the xanthogen compound. And so on.
  • a method of blending the xanthogen compound with the latex of the carboxy-modified polymer after obtaining the latex of the carboxy-modified polymer is used. preferable.
  • the latex composition of the present invention may contain the above-mentioned latex of the carboxy-modified polymer and the xanthate compound, but it is preferable that the latex composition further contains a sulfur-based vulcanizing agent.
  • the sulfur-based sulfurizing agent include sulfur powder, sulfur flower, precipitated sulfur, colloidal sulfur, surface-treated sulfur, and insoluble sulfur; sulfur chloride, sulfur dichloride, morpholin disulfide, alkylphenol disulfide, and caprolactam disulfide (N).
  • N'-dithio-bis hexahydro-2H-azepinone-2)
  • phosphorus-containing polysulfide high molecular weight polysulfide
  • 2- (4'-morpholinodithio) benzothiazole sulfur-containing compounds.
  • sulfur can be preferably used.
  • the cross-linking agent may be used alone or in combination of two or more.
  • the content of the sulfur-based vulcanizing agent is not particularly limited, but is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 3 parts by weight, based on 100 parts by weight of the carboxy-modified polymer.
  • the tear strength can be further increased while suppressing the occurrence of the symptoms of delayed type allergy (Type IV) in the obtained film molded body such as a dip molded body. Can be done.
  • the latex composition of the present invention further contains a cross-linking accelerator as long as the occurrence of delayed allergy (Type IV) symptoms can be suppressed in the obtained film molded product such as a dip molded product. May be good.
  • a cross-linking accelerator those usually used in dip molding can be used, for example, dithiocarbamines such as diethyldithiocarbamic acid, dibutyldithiocarbamic acid, di-2-ethylhexyldithiocarbamic acid, dicyclohexyldithiocarbamic acid, diphenyldithiocarbamic acid, and dibenzyldithiocarbamic acid.
  • the cross-linking accelerator may be used alone or in combination of two or more.
  • the latex composition of the present invention preferably contains a typical metal compound other than an oxide, and by containing a typical metal compound other than an oxide, a film molding such as a dip molded product obtained can be formed. The tear strength of the body can be further increased.
  • Typical metals constituting the main group metal compound used in the present invention include Group 1 elements, Group 2 elements, Group 12 elements, Group 13 elements, Group 14 elements, Group 15 elements, Group 16 elements, and the like. At least one element selected from the group consisting of Group 17 elements and Group 18 elements can be used, and among them, Group 2 elements, Group 12 elements, Group 13 elements, and Group 14 elements are used. Preferably, zinc, magnesium, calcium, aluminum and lead are more preferred, zinc, magnesium and calcium are even more preferred, and zinc is particularly preferred.
  • the typical metal compound used in the present invention may be a compound containing the above-mentioned typical metal other than an oxide, and is not particularly limited, but the tear strength of the obtained film-formed body such as a dip-shaped body is higher.
  • a compound containing at least one carbon is preferable, a carbonate, a hydrogen carbonate, a hydroxide, and an organic metal compound are more preferable, and a carbonate, a hydrogen carbonate, and an organic metal compound are further preferable.
  • inorganic salts such as carbonates and hydrogen carbonates are particularly preferable from the viewpoint of excellent stability of the compound itself and excellent availability.
  • These typical metal compounds may be used alone or in combination of two or more.
  • the typical metal compound used in the present invention may be a compound other than an oxide, and such an oxide may be, for example, zinc oxide, magnesium oxide, calcium oxide, or lead oxide. , Tin oxide, and aluminum oxide.
  • the content ratio of the typical metal compound in the latex composition of the present invention is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the carboxy-modified polymer contained in the latex. It is by weight, more preferably 1 to 3 parts by weight.
  • the latex composition of the present invention further contains an antiaging agent; a dispersant; a reinforcing agent such as carbon black, silica and talc; a filler such as calcium carbonate and clay; an ultraviolet absorber; a plasticizer; and the like.
  • the agent can be blended as needed.
  • Anti-aging agents include 2,6-di-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t-butyl- ⁇ -dimethylamino-p-cresol, Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, styrenated phenol, 2,2'-methylene-bis (6- ⁇ -methyl-benzyl-p-cresol), 4, Butylation of 4'-methylenebis (2,6-di-t-butylphenol), 2,2'-methylene-bis (4-methyl-6-t-butylphenol), alkylated bisphenol, p-cresol and dicyclopentadiene Phenolic antioxidants that do not contain sulfur atoms such as reaction products; 2,2'-thiobis- (4-methyl-6-t-butylphenol), 4,4'-thiobis- (6-t-butyl-) O-cresol), 2,6-d
  • the content of the anti-aging agent is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the carboxy-modified polymer.
  • the method for mixing various compounding agents with the latex composition of the present invention is not particularly limited, but for example, as described above, a latex composition containing a latex of a carboxy-modified polymer, a xanthogen compound, and a typical metal compound can be used.
  • a method of mixing various compounding agents to be blended with the latex composition using a disperser such as a ball mill, a kneader, or a disper, or using the above disperser, a carboxy-modified polymer. Examples thereof include a method of preparing an aqueous dispersion of a compounding component other than the latex of the above, and then mixing the aqueous dispersion with the latex of the carboxy-modified polymer.
  • the solid content concentration of the latex composition of the present invention is preferably 10 to 60% by weight, more preferably 10 to 55% by weight.
  • the latex composition of the present invention contains a sulfur-based vulcanizing agent, it is aged before being subjected to dip molding from the viewpoint of further enhancing the mechanical properties of the obtained film molded product such as the dip molded product.
  • Pre-vulcanization is preferable. It is preferable to carry out aging (pre-vulcanization).
  • the aging (pre-vulcanization) time is not particularly limited, but is preferably 6 to 42 hours, more preferably 12 to 38 hours, and even more preferably 18 to 36 hours. According to the latex composition of the present invention, even when the aging (pre-vulcanization) time is relatively short as described above, a film molded product such as a dip molded product having sufficiently excellent mechanical properties such as tear strength can be obtained. This makes it possible to shorten the time required for aging (pre-vulcanization) and further improve the production efficiency.
  • the temperature of the pre-vulcanization is not particularly limited, but is preferably 20 to 40 ° C, more preferably 20 to 30 ° C.
  • the film molded product of the present invention is a film-shaped molded product made of the latex composition of the present invention.
  • the film thickness of the film molded product of the present invention is preferably 0.03 to 0.50 mm, more preferably 0.05 to 0.40 mm, and particularly preferably 0.08 to 0.30 mm.
  • the film molded product of the present invention is not particularly limited, but a dip molded product obtained by dip molding the latex composition of the present invention is preferable.
  • Dip molding is a method in which a mold is dipped in a latex composition, the composition is deposited on the surface of the mold, then the mold is pulled up from the composition, and then the composition deposited on the surface of the mold is dried. is there.
  • the mold before being immersed in the latex composition may be preheated. Further, a coagulant can be used if necessary before immersing the mold in the latex composition or after pulling the mold out of the latex composition.
  • the method of using the coagulant include a method of immersing the mold before being immersed in the latex composition in a solution of the coagulant to attach the coagulant to the mold (anode adhesion immersion method), and depositing the latex composition.
  • anode adhesion immersion method There is a method of immersing the formed mold in a coagulant solution (Teeg adhesion immersion method), but the anode adhesion immersion method is preferable in that a dip molded product having less uneven thickness can be obtained.
  • the coagulant include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride and aluminum chloride; nitrates such as barium nitrate, calcium nitrate and zinc nitrate; acetic acid such as barium acetate, calcium acetate and zinc acetate. Salts; water-soluble polyvalent metal salts such as calcium sulfate, magnesium sulfate, sulfates such as aluminum sulfate; Of these, calcium salts are preferable, and calcium nitrate is more preferable. These water-soluble polyvalent metal salts can be used alone or in combination of two or more.
  • the coagulant can usually be used as a solution of water, alcohol, or a mixture thereof, and is preferably used in the state of an aqueous solution.
  • This aqueous solution may further contain a water-soluble organic solvent such as methanol or ethanol or a nonionic surfactant.
  • the concentration of the coagulant varies depending on the type of the water-soluble polyvalent metal salt, but is preferably 5 to 50% by weight, more preferably 10 to 30% by weight.
  • the mold out of the latex composition After pulling the mold out of the latex composition, it is usually heated to dry the deposits formed on the mold.
  • the drying conditions may be appropriately selected.
  • the obtained dip-molded layer is usually heat-treated and cross-linked.
  • water-soluble impurities for example, excess emulsifier, coagulant, etc.
  • the operation for removing water-soluble impurities may be performed after the dip molding layer has been heat-treated, but it is preferably performed before the heat treatment because the water-soluble impurities can be removed more efficiently.
  • Crosslinking of the dip molded layer is usually carried out by subjecting the dip molded layer to a heat treatment at a temperature of 80 to 150 ° C., preferably for 10 to 130 minutes.
  • a heating method a method of external heating by infrared rays or heated air or internal heating by high frequency can be adopted. Of these, external heating with heated air is preferable.
  • the film-molded article of the present invention is a method capable of molding the latex composition of the present invention into a film (for example, a coating method, etc.). ), It may be obtained by any method.
  • the film molded product of the present invention including the dip molded product of the present invention is obtained by using the latex composition of the present invention described above, it suppresses the occurrence of the symptoms of delayed type allergy (Type IV) while suppressing the occurrence of the symptoms. It is also excellent in tear strength, and can be particularly preferably used as a glove, for example.
  • the film-molded body is a glove
  • gloves are made of inorganic fine particles such as talc and calcium carbonate or organic fine particles such as starch particles. It may be sprayed on the surface, an elastomer layer containing fine particles may be formed on the surface of the glove, or the surface layer of the glove may be chlorinated.
  • the film-molded article of the present invention includes medical supplies such as baby bottle nipples, droppers, tubes, water pillows, balloon sack, catheters, and condoms; balloons, dolls, etc. , Balls and other toys; industrial products such as pressure molding bags and gas storage bags; can also be used for finger cots and the like.
  • medical supplies such as baby bottle nipples, droppers, tubes, water pillows, balloon sack, catheters, and condoms; balloons, dolls, etc. , Balls and other toys; industrial products such as pressure molding bags and gas storage bags; can also be used for finger cots and the like.
  • ⁇ Swell Index (SI)> Potassium hydroxide was added to the latex of the carboxy-modified polymer to adjust the pH to 8.2. Then, a ceramic mold with a ground surface was prepared, washed, preheated in an oven at 70 ° C. for 60 minutes, and then 18% by weight of calcium nitrate and 0.05% by weight of polyoxy. A preheated ceramic mold was immersed in an aqueous coagulant containing ethylene lauryl ether (trade name "Emargen 109P", manufactured by Kao Corporation) for 5 seconds. Then, the ceramic mold was taken out from the coagulant aqueous solution, and the ceramic mold coated with the coagulant was dried in an oven at 70 ° C. for 20 minutes.
  • aqueous coagulant containing ethylene lauryl ether trade name "Emargen 109P", manufactured by Kao Corporation
  • a film for measurement is taken out after being immersed under the conditions, and a ceramic mold coated with a latex of a carboxy-modified polymer is immersed in warm water at 60 ° C. for 2 minutes and then dried at room temperature for 6 hours.
  • a ceramic mold coated with was obtained.
  • the obtained film was peeled off from a ceramic molding die to obtain a dip film having a thickness of 0.2 mm.
  • Swell index (SI) [%] [ ⁇ (width of film after immersion in toluene)-(width of film before immersion in toluene) ⁇ / (width of film before immersion in toluene)] ⁇ 100
  • a cast film was obtained by the same method as the above-mentioned "insoluble amount of toluene”.
  • ⁇ Patch test> A test piece obtained by cutting a film-shaped dip molded product having a film thickness of about 0.2 mm into a size of 10 ⁇ 10 mm was attached to each of the arms of 10 subjects. Then, 48 hours later, by observing the pasted portion, the presence or absence of allergic symptoms of delayed type allergy (Type IV) was confirmed and evaluated according to the following criteria.
  • the patch test was performed on a dip molded product having an aging (pre-vulcanization) time of 24 hours. A: All subjects had no allergic symptoms. B: Allergic symptoms were observed in some subjects.
  • ⁇ Tear strength of dip molded product> Based on ASTM D624-00, the dip molded product was left in a constant temperature and humidity chamber at 23 ° C. and 50% relative humidity for 24 hours or more, and then punched and torn with a dumbbell (trade name "Die C", manufactured by Dumbbell). A test piece for strength measurement was prepared. The test piece was pulled by a Tencilon universal testing machine (trade name "RTG-1210", manufactured by A & D Co., Ltd.) at a tensile speed of 500 mm / min, and the tear strength (unit: N / mm) was measured.
  • the measurement was performed on 5 test pieces, and the median value among the measured values of the tear strength of the 5 test pieces (that is, the test piece showing the third largest value among the 5 test pieces). (Value of tear strength) was adopted as the value of tear strength.
  • the tear strength of the dip molded product was measured for a dip molded product having an aging (pre-vulcanization) time of 24 hours and a dip molded product having an aging (pre-vulcanization) time of 48 hours.
  • ⁇ 500% tensile stress of dip molded product> Based on ASTM D412, the dip molded product was punched with a dumbbell (trade name "Super Dumbbell (model: SDKM-100C)", manufactured by Dumbbell Co., Ltd.) to prepare a test piece. The test piece was measured for tensile stress (unit: MPa) when the tensile speed was 500 mm / min and the elongation rate was 500% with a Tencilon universal testing machine (trade name "RTG-1210", manufactured by A & D Co., Ltd.). The smaller the tensile stress at 500%, the more flexible the dip molded product becomes, which is preferable. The 500% tensile stress of the dip molded product was measured for the dip molded product having an aging (pre-vulcanization) time of 24 hours and the dip molded product having an aging (pre-vulcanization) time of 48 hours.
  • Example 1> Manufacture of Latex of Carboxy-modified Synthetic Polyisoprene (A-1)
  • Synthetic polyisoprene having a weight average molecular weight of 1,300,000 (trade name "NIPOL IR2200L", manufactured by Nippon Zeon Co., Ltd., homopolymer of isoprene, cis bond unit amount 98% by weight) is mixed with cyclohexane and stirred. The temperature was raised to 60 ° C.
  • a cyclohexane solution (a) of synthetic polyisoprene having a viscosity of 12,000 mPa ⁇ s measured by a B-type viscosity meter was prepared (solid content concentration: 8% by weight).
  • an aqueous anionic surfactant solution (b) having a concentration of 1.5% by weight 20 parts of sodium rosinate was added to water, the temperature was raised to 60 ° C. and dissolved to prepare an aqueous anionic surfactant solution (b) having a concentration of 1.5% by weight.
  • the cyclohexane solution (a) and the anionic surfactant aqueous solution (b) are mixed in a mixer (trade name "Multiline Mixer MS26-MMR-5" so as to have a weight ratio of 1: 1.5. .5L ”, manufactured by Satake Kagaku Kikai Kogyo Co., Ltd.), and then mixed and emulsified using an emulsifying device (trade name“ Milder MDN310 ”, manufactured by Pacific Kiko Co., Ltd.) at a rotation speed of 4100 rpm to emulsify. Liquid (c) was obtained.
  • a mixer trade name “Multiline Mixer MS26-MMR-5" so as to have a weight ratio of 1: 1.5. .5L ”, manufactured by Satake Kagaku Kikai Kogyo Co., Ltd.
  • an emulsifying device trade name“ Milder MDN310 ”, manufactured by Pacific Kiko Co., Ltd.
  • the total feed flow velocity of the cyclohexane solution (a) and the anionic surfactant aqueous solution (b) was 2,000 kg / hr, the temperature was 60 ° C., and the back pressure (gauge pressure) was 0.5 MPa.
  • the emulsion (c) was heated to 80 ° C. under a reduced pressure of ⁇ 0.01 to ⁇ 0.09 MPa (gauge pressure), cyclohexane was distilled off, and an aqueous dispersion (d) of synthetic polyisoprene was added. Obtained.
  • an antifoaming agent (trade name "SM5515", manufactured by Toray Dow Corning Co., Ltd.) was continuously added while spraying so as to have an amount of 300 ppm by weight with respect to the synthetic polyisoprene in the emulsion (c). ..
  • the emulsion (c) When distilling off cyclohexane, the emulsion (c) is adjusted to be 70% by volume or less of the volume of the tank, and a three-stage inclined paddle blade is used as the stirring blade, and the mixture is slowly stirred at 60 rpm. Was carried out.
  • the obtained aqueous dispersion (d) of synthetic polyisoprene is used in a continuous centrifuge (trade name "SRG510", manufactured by Alfa Laval) from 4,000 to Centrifugation at 5,000 G gave a latex (e) of synthetic polyisoprene as a light liquid.
  • the conditions for centrifugation are as follows: the solid content concentration of the aqueous dispersion (d) before centrifugation is 10% by weight, the flow velocity during continuous centrifugation is 1300 kg / hr, and the back pressure (gauge pressure) of the centrifuge is 1. It was set to 5 MPa.
  • the obtained synthetic polyisoprene latex (e) had a solid content concentration of 60% by weight.
  • the latex (e) of synthetic polyisoprene to which a dispersant was added was charged into a reaction vessel equipped with a stirrer substituted with nitrogen, and the temperature was heated to 30 ° C. while stirring. Further, using another container, 3 parts of methacrylic acid as a carboxyl group-containing compound and 16 parts of distilled water were mixed to prepare a diluted methacrylic acid solution. This diluted methacrylic acid solution was added to the reaction vessel kept at a temperature of 20 ° C. over 30 minutes.
  • styrene-maleic acid mono-sec-butyl ester-maleic acid monomethyl ester polymer (trade name "Scripest550", manufactured by Hercules) is 100% neutralized with sodium hydroxide to neutralize the carboxyl groups in the polymer.
  • An aqueous sodium salt solution (concentration: 10% by weight) was prepared. Then, this aqueous sodium salt solution was added to the latex of the carboxy-modified synthetic polyisoprene (A-1) obtained above with respect to 100 parts of the carboxy-modified synthetic polyisoprene (A-1) in terms of solid content of 0.8. Addition was made in portions to obtain a mixture.
  • each compounding agent has 1.5 parts of zinc oxide as an activator, 1.0 part of sulfur, and 2 parts of an antiaging agent (trade name "Wingstay L", manufactured by Goodyear Tire and Rubber Co., Ltd.).
  • the aqueous dispersion of the above was added to obtain a latex composition.
  • the obtained latex composition was divided into two, one of which was aged for 24 hours (pre-vulcanization) in a constant temperature water bath adjusted to 25 ° C., and the other was a constant temperature water tank adjusted to 25 ° C.
  • aging pre-vulcanization
  • the hand mold coated with the coagulant was taken out from the oven and immersed in the 24-hour aged latex composition obtained above for 10 seconds.
  • the hand mold was air-dried at room temperature for 10 minutes and then immersed in warm water at 60 ° C. for 5 minutes to elute water-soluble impurities to form a dip molding layer on the hand mold.
  • the dip molded layer formed in the hand mold is vulcanized by heating it in an oven at a temperature of 130 ° C. for 30 minutes, cooled to room temperature, sprayed with talc, and then peeled off from the hand mold.
  • a glove-shaped dip molded product (aged for 24 hours) was obtained.
  • a glove-shaped dip molded article (48-hour aged product) was obtained in the same manner as described above except that the 48-hour aged latex composition was used instead of the 24-hour aged latex composition. Then, using the obtained dip molded products (24-hour aged product and 48-hour aged product), the tear strength and 500% tensile stress were measured and a patch test was performed according to the above method. The results are shown in Table 1.
  • Example 1 the tear strength of the dip molded product (aged for 24 hours) was measured for five test pieces according to the above method, and as a result, the measured value of the tear strength was the median value.
  • the ratio of the test pieces in the range of ⁇ 10% is 70% or more (that is, the measured value of the tear strength among the five test pieces is in the range of ⁇ 10% with respect to the median value.
  • the number of test pieces was 4 or more), and the stability of tear strength was excellent.
  • Example 2 Manufacture of Latex of Carboxy-modified Synthetic Polyisoprene (A-2)
  • the amount of sodium formaldehyde sulfoxylate used was changed from 0.32 part to 0.30 part when the modification reaction with methacrylic acid was performed after obtaining the latex (e) of synthetic polyisoprene.
  • the reaction temperature (modification reaction temperature) when the modification reaction with methacrylic acid is changed is changed from 20 ° C. to 30 ° C., and the modification reaction is performed under the conditions of 30 ° C. for 1 hour, and then after the modification reaction.
  • a latex of carboxy-modified synthetic polyisoprene (A-2) was obtained in the same manner as in Example 1 except that the latex was further post-heated at 40 ° C. for 1 hour.
  • the modification rate of the obtained carboxy-modified synthetic polyisoprene (A-2) latex was measured according to the above method, the modification rate was 0.5 mol%.
  • the swell index (SI) the swell index (SI), the amount of toluene insoluble, the swelling rate with respect to THF, and the amount of THF insoluble were measured. The results are shown in Table 1.
  • Example 2 (Preparation of latex composition, production of dip molded product) A 24-hour aged latex composition, a 48-hour aged latex composition, and a dip in the same manner as in Example 1 except that the latex of the carboxy-modified synthetic polyisoprene (A-2) obtained above was used. Molds (24-hour aged product and 48-hour aged product) were obtained and evaluated in the same manner. The results are shown in Table 1.
  • the tear strength of the dip molded product (aged for 24 hours) was measured for five test pieces according to the above method, and as a result, the measured value of the tear strength was the median value.
  • the proportion of test pieces in the range of ⁇ 10% is less than 70% (that is, the measured tear strength of the five test pieces is in the range of ⁇ 10% of the median.
  • the number of test pieces was 3 or less).
  • Example 3 Manufacture of Latex of Carboxy-modified Synthetic Polyisoprene (A-3)
  • the amount of sodium formaldehyde sulfoxylate used was changed from 0.32 part to 0.25 part when the modification reaction with methacrylic acid was carried out after obtaining the latex (e) of synthetic polyisoprene.
  • the carboxy-modified synthetic polyisoprene (A-3) was prepared in the same manner as in Example 1 except that the reaction temperature (modification reaction temperature) when performing the modification reaction with methacrylic acid was changed from 20 ° C. to 30 ° C. Obtained latex.
  • Example 3 (Preparation of latex composition, production of dip molded product) A 24-hour aged latex composition, a 48-hour aged latex composition, and a dip in the same manner as in Example 1 except that the latex of the carboxy-modified synthetic polyisoprene (A-3) obtained above was used. Molds (24-hour aged product and 48-hour aged product) were obtained and evaluated in the same manner. The results are shown in Table 1. In Example 3, the tear strength of the dip molded product (aged for 24 hours) was measured for five test pieces according to the above method, and as a result, the measured value of the tear strength was the median value.
  • the ratio of the test pieces in the range of ⁇ 10% is 70% or more (that is, the measured value of the tear strength among the five test pieces is in the range of ⁇ 10% with respect to the median value.
  • the number of test pieces was 4 or more), and the stability of tear strength was excellent.
  • Example 4 Manufacture of Latex of Carboxy-modified Synthetic Polyisoprene (A-4)
  • the amount of sodium formaldehyde sulfoxylate used was changed from 0.32 part to 0.20 part when the modification reaction with methacrylic acid was performed after obtaining the latex (e) of synthetic polyisoprene.
  • the reaction temperature (modification reaction temperature) when the modification reaction with methacrylic acid is changed is changed from 20 ° C. to 30 ° C., and the modification reaction is performed under the conditions of 30 ° C. for 1 hour, and then after the modification reaction.
  • a latex of carboxy-modified synthetic polyisoprene (A-4) was obtained in the same manner as in Example 1 except that the latex was further post-heated at 30 ° C. for 1 hour.
  • the modification rate of the obtained carboxy-modified synthetic polyisoprene (A-4) latex was measured according to the above method, the modification rate was 0.5 mol%.
  • the swell index (SI) the swell index (SI), the amount of toluene insoluble, the swelling rate with respect to THF, and the amount of THF insoluble were measured. The results are shown in Table 1.
  • Example 4 (Preparation of latex composition, production of dip molded product) A 24-hour aged latex composition, a 48-hour aged latex composition, and a dip in the same manner as in Example 1 except that the latex of the carboxy-modified synthetic polyisoprene (A-4) obtained above was used. Molds (24-hour aged product and 48-hour aged product) were obtained and evaluated in the same manner. The results are shown in Table 1.
  • the tear strength of the dip molded product (aged for 24 hours) was measured for five test pieces according to the above method, and as a result, the measured value of the tear strength was the median value.
  • the proportion of test pieces in the range of ⁇ 10% is less than 70% (that is, the measured tear strength of the five test pieces is in the range of ⁇ 10% of the median.
  • the number of test pieces was 3 or less).
  • Example 5 Manufacture of Latex of Carboxy-modified Synthetic Polyisoprene (A-5)
  • the amount of sodium formaldehyde sulfoxylate used was changed from 0.32 part to 0.40 part when the modification reaction with methacrylic acid was carried out after obtaining the latex (e) of synthetic polyisoprene.
  • a latex of carboxy-modified synthetic polyisoprene (A-5) was obtained in the same manner as in Example 1 except for the modification.
  • the modification rate of the obtained carboxy-modified synthetic polyisoprene (A-5) latex was measured according to the above method, the modification rate was 0.5 mol%.
  • Example 5 (Preparation of latex composition, production of dip molded product) A 24-hour aged latex composition, a 48-hour aged latex composition, and a dip in the same manner as in Example 1 except that the latex of the carboxy-modified synthetic polyisoprene (A-5) obtained above was used. Molds (24-hour aged product and 48-hour aged product) were obtained and evaluated in the same manner. The results are shown in Table 1. In Example 5, the tear strength of the dip molded product (aged for 24 hours) was measured for five test pieces according to the above method, and as a result, the measured value of the tear strength was the median value.
  • the ratio of the test pieces in the range of ⁇ 10% is 70% or more (that is, the measured value of the tear strength among the five test pieces is in the range of ⁇ 10% with respect to the median value.
  • the number of test pieces was 4 or more), and the stability of tear strength was excellent.
  • ⁇ Comparative example 1> Manufacture of Latex of Carboxy-modified Synthetic Polyisoprene (A-6)
  • the amount of sodium formaldehyde sulfoxylate used was changed from 0.32 part to 0.15 part when the modification reaction with methacrylic acid was performed after obtaining the latex (e) of synthetic polyisoprene.
  • the reaction temperature (modification reaction temperature) when the modification reaction with methacrylic acid is changed is changed from 20 ° C. to 30 ° C., and the modification reaction is performed under the conditions of 30 ° C. for 1 hour, and then after the modification reaction.
  • a latex of carboxy-modified synthetic polyisoprene (A-6) was obtained in the same manner as in Example 1 except that the latex was further post-heated at 30 ° C. for 1 hour.
  • the modification rate of the obtained carboxy-modified synthetic polyisoprene (A-6) latex was measured according to the above method, the modification rate was 0.5 mol%.
  • SI swell index
  • the amount of toluene insoluble the swelling rate with respect to THF, and the amount of THF insoluble were measured. The results are shown in Table 1.
  • ⁇ Comparative example 2> Manufacture of Latex of Carboxy-modified Synthetic Polyisoprene (A-7)
  • the reaction temperature denaturation reaction temperature
  • the modification rate of the obtained carboxy-modified synthetic polyisoprene (A-7) latex was measured according to the above method, the modification rate was 0.5 mol%.
  • a latex having a swell index (SI) in the range of 120 to 190% is used as the latex of the carboxy-modified polymer, and a latex composition obtained by blending the xanthogen compound with the latex is used.
  • SI swell index
  • the obtained dip molded product has sufficient tear strength and further has a flexible texture.
  • the time required for aging (pre-vulcanization) can be shortened and the productivity is excellent. Can be confirmed (Examples 1 to 5).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a latex composition that contains a carboxy-modified polymer latex and a xanthate compound, wherein the swelling index (SI) of the carboxy-modified polymer latex is 120-190%.

Description

ラテックス組成物、膜成形体およびディップ成形体Latex composition, film moldings and dip moldings
 本発明は、ラテックス組成物、膜成形体およびディップ成形体に関し、さらに詳しくは、即時型アレルギー(Type I)に加えて遅延型アレルギー(Type IV)の症状の発生を抑制可能であり、引裂強度が高く、柔軟な風合いを備えるディップ成形体などの膜成形体を与えることができ、しかも、このようなディップ成形体などの膜成形体を得る際に、熟成(前加硫)時間の短縮が可能であり、高い生産性にてディップ成形体などの膜成形体を製造可能なラテックス組成物、ならびに、このようなラテックス組成物を用いて得られる膜成形体およびディップ成形体に関する。 The present invention relates to a latex composition, a film molded product and a dip molded product, and more specifically, it is possible to suppress the occurrence of symptoms of delayed type allergy (Type IV) in addition to immediate type allergy (Type I), and tear strength. It is possible to provide a film molded product such as a dip molded product having a high quality and a flexible texture, and further, when obtaining a film molded product such as such a dip molded product, the aging (pre-vulcanization) time can be shortened. The present invention relates to a latex composition capable of producing a film molded product such as a dip molded product with high productivity, and a film molded product and a dip molded product obtained by using such a latex composition.
 従来、天然ゴムのラテックスを含有するラテックス組成物をディップ成形して、乳首、風船、手袋、バルーン、サック等の人体と接触して使用されるディップ成形体が得られることが知られている。しかしながら、天然ゴムのラテックスは、人体に即時型アレルギー(Type I)の症状を引き起こすような蛋白質を含有するため、生体粘膜または臓器と直接接触するディップ成形体としては問題がある場合があった。そのため、天然ゴムのラテックスではなく、合成ゴムのラテックスを用いる検討がされてきている。 Conventionally, it is known that a latex composition containing a latex of natural rubber is dip-molded to obtain a dip-molded body that is used in contact with the human body such as a nipple, a balloon, a glove, a balloon, and a sack. However, since the latex of natural rubber contains a protein that causes the symptoms of immediate allergy (Type I) in the human body, there may be a problem as a dip molded product that comes into direct contact with the biological mucous membrane or organs. Therefore, studies have been conducted on using synthetic rubber latex instead of natural rubber latex.
 たとえば、特許文献1には、ディップ成形用組成物として、合成ゴムである合成ポリイソプレンのラテックスに、酸化亜鉛、硫黄および加硫促進剤を配合してなるラテックス組成物が開示されている。しかしながら、この特許文献1の技術では、天然ゴムに由来する蛋白質による即時型アレルギー(Type I)の発生を防止できる一方で、ディップ成形体とした場合に、ディップ成形体に含まれるジチオカルバミン酸塩系加硫促進剤またはチアゾール系加硫促進剤が原因で、人体に触れた際に、遅延型アレルギー(Type IV)のアレルギー症状を発生させることがあった。また、この特許文献1の技術では、十分な機械強度を有するディップ成形体を得るためには、熟成(前加硫)に比較的長い時間が掛かるという課題があり、生産性の向上という観点より、比較的短い熟成時間でも、十分な機械強度を有するディップ成形体を製造可能なラテックス組成物が求められていた。 For example, Patent Document 1 discloses a latex composition obtained by blending zinc oxide, sulfur, and a vulcanization accelerator with a latex of synthetic polyisoprene, which is a synthetic rubber, as a composition for dip molding. However, while the technique of Patent Document 1 can prevent the occurrence of immediate allergy (Type I) due to a protein derived from natural rubber, the dithiocarbamate system contained in the dip molded product when it is used as a dip molded product. Due to the vulcanization accelerator or thiazole-based vulcanization accelerator, when it comes into contact with the human body, it may cause allergic symptoms of delayed type allergy (Type IV). Further, in the technique of Patent Document 1, there is a problem that aging (pre-vulcanization) takes a relatively long time in order to obtain a dip molded article having sufficient mechanical strength, and from the viewpoint of improving productivity. There has been a demand for a latex composition capable of producing a dip molded product having sufficient mechanical strength even with a relatively short aging time.
国際公開第2014/129547号International Publication No. 2014/12954
 本発明は、このような実状に鑑みてなされたものであり、即時型アレルギー(Type I)に加えて遅延型アレルギー(Type IV)の症状の発生を抑制可能であり、引裂強度が高く、柔軟な風合いを備えるディップ成形体などの膜成形体を与えることができ、しかも、このようなディップ成形体などの膜成形体を得る際に、熟成(前加硫)時間の短縮が可能であり、高い生産性にてディップ成形体などの膜成形体を製造可能なラテックス組成物、ならびに、このようなラテックス組成物を用いて得られる膜成形体およびディップ成形体を提供することを目的とする。 The present invention has been made in view of such an actual situation, and can suppress the occurrence of symptoms of delayed type allergy (Type IV) in addition to immediate type allergy (Type I), has high tear strength, and is flexible. It is possible to give a film molded product such as a dip molded product having a good texture, and further, when obtaining a film molded product such as such a dip molded product, the aging (pre-vulcanization) time can be shortened. It is an object of the present invention to provide a latex composition capable of producing a film molded product such as a dip molded product with high productivity, and a film molded product and a dip molded product obtained by using such a latex composition.
 本発明者等は、上記目的を達成するために鋭意検討を行った結果、カルボキシ変性重合体のラテックスに、キサントゲン化合物を配合するとともに、カルボキシ変性重合体のラテックスとして、スウェルインデックス(SI)が120~190%の範囲にあるものを用いることにより、上記目的を達成できることを見出し、本発明を完成させるに至った。 As a result of diligent studies to achieve the above object, the present inventors have added a xanthogen compound to the latex of the carboxy-modified polymer, and the swell index (SI) is 120 as the latex of the carboxy-modified polymer. It has been found that the above object can be achieved by using a polymer in the range of about 190%, and the present invention has been completed.
 すなわち、本発明によれば、カルボキシ変性重合体のラテックスと、キサントゲン化合物とを含有するラテックス組成物であって、
 前記カルボキシ変性重合体のラテックスのスウェルインデックス(SI)が120~190%であるラテックス組成物が提供される。
That is, according to the present invention, it is a latex composition containing a latex of a carboxy-modified polymer and a xanthate compound.
A latex composition having a latex swell index (SI) of 120 to 190% of the carboxy-modified polymer is provided.
 本発明のラテックス組成物において、前記カルボキシ変性重合体におけるカルボキシル基による変性率が、(カルボキシル基の数/前記カルボキシ変性重合体の総モノマー単位数)×100で算出されるモル比率で、0.01~10モル%であることが好ましい。
 本発明のラテックス組成物において、前記カルボキシ変性重合体が、合成ポリイソプレン、スチレン-イソプレン-スチレンブロック共重合体、または蛋白質を除去した天然ゴムを、カルボキシル基を有する単量体により変性することにより得られるものであることが好ましい。
 本発明のラテックス組成物は、硫黄系加硫剤をさらに含有することが好ましい。
 本発明のラテックス組成物において、前記カルボキシ変性重合体のラテックスのトルエン不溶解分量が、55~85重量%であることが好ましい。
 本発明のラテックス組成物において、前記キサントゲン化合物は、体積平均粒子径が0.001~9μmの範囲であり、95%体積累積径(D95)が0.1~43μmの範囲であることが好ましい。
In the latex composition of the present invention, the modification rate of the carboxy-modified polymer by a carboxyl group is a molar ratio calculated by (number of carboxyl groups / total number of monomer units of the carboxy-modified polymer) × 100. It is preferably 01 to 10 mol%.
In the latex composition of the present invention, the carboxy-modified polymer modifies synthetic polyisoprene, styrene-isoprene-styrene block copolymer, or natural rubber from which proteins have been removed with a monomer having a carboxyl group. It is preferably obtained.
The latex composition of the present invention preferably further contains a sulfur-based vulcanizing agent.
In the latex composition of the present invention, the toluene-insoluble content of the latex of the carboxy-modified polymer is preferably 55 to 85% by weight.
In the latex composition of the present invention, the xanthogen compound preferably has a volume average particle diameter in the range of 0.001 to 9 μm and a 95% volume cumulative diameter (D95) in the range of 0.1 to 43 μm.
 また、本発明によれば、上記本発明のラテックス組成物からなる膜成形体が提供される。
 あるいは、本発明によれば、上記本発明のラテックス組成物をディップ成形してなるディップ成形体が提供される。
Further, according to the present invention, a film molded product made of the latex composition of the present invention is provided.
Alternatively, according to the present invention, there is provided a dip molded body obtained by dip molding the latex composition of the present invention.
 本発明によれば、即時型アレルギー(Type I)に加えて遅延型アレルギー(Type IV)の症状の発生を抑制可能であり、引裂強度が高く、柔軟な風合いを備えるディップ成形体などの膜成形体を与えることができ、しかも、このようなディップ成形体などの膜成形体を得る際に、熟成(前加硫)時間の短縮が可能であり、高い生産性にてディップ成形体などの膜成形体を製造可能なラテックス組成物、ならびに、このようなラテックス組成物を用いて得られる膜成形体およびディップ成形体を提供することができる。 According to the present invention, it is possible to suppress the occurrence of symptoms of delayed type allergy (Type IV) in addition to immediate type allergy (Type I), and film molding of a dip molded body or the like having high tear strength and a flexible texture. A body can be given, and when a film molded product such as a dip molded product is obtained, the aging (pre-vulcanization) time can be shortened, and a film such as a dip molded product can be obtained with high productivity. It is possible to provide a latex composition capable of producing a molded product, and a film molded product and a dip molded product obtained by using such a latex composition.
<ラテックス組成物>
 本発明のラテックス組成物は、カルボキシ変性重合体のラテックスと、キサントゲン化合物とを含有するラテックス組成物であって、
 前記カルボキシ変性重合体のラテックスとして、スウェルインデックス(SI)が120~190%の範囲にあるものを用いるものである。
<Latex composition>
The latex composition of the present invention is a latex composition containing a latex of a carboxy-modified polymer and a xanthate compound.
As the latex of the carboxy-modified polymer, one having a swell index (SI) in the range of 120 to 190% is used.
 本発明で用いるカルボキシ変性重合体のラテックスは、カルボキシ基が導入された重合体のラテックスであればよく、特に限定されないが、共役ジエン系重合体、または、蛋白質を除去した天然ゴムを、カルボキシル基を有する単量体により変性して得られるカルボキシ変性重合体のラテックスであることが好ましい。 The latex of the carboxy-modified polymer used in the present invention may be a latex of a polymer in which a carboxy group has been introduced, and is not particularly limited, but a conjugated diene-based polymer or a natural rubber from which a protein has been removed is used as a carboxyl group. It is preferable that the latex is a carboxy-modified polymer obtained by modifying with a monomer having.
<共役ジエン系重合体>
 共役ジエン系重合体としては、特に限定されないが、たとえば、合成ポリイソプレン、スチレン-イソプレン-スチレンブロック共重合体(SIS)、ニトリル基含有共役ジエン系共重合体などが挙げられる。これらのなかでも、合成ポリイソプレン、SISなどのイソプレン単位を含有するものが好ましく、合成ポリイソプレンが特に好ましい。
<Conjugated diene polymer>
The conjugated diene-based polymer is not particularly limited, and examples thereof include synthetic polyisoprene, styrene-isoprene-styrene block copolymer (SIS), and a nitrile group-containing conjugated diene-based copolymer. Among these, those containing isoprene units such as synthetic polyisoprene and SIS are preferable, and synthetic polyisoprene is particularly preferable.
 共役ジエン系重合体として合成ポリイソプレンを用いる場合には、合成ポリイソプレンは、イソプレンの単独重合体であってもよいし、イソプレンと共重合可能な他のエチレン性不飽和単量体とを共重合したものであってもよい。合成ポリイソプレン中のイソプレン単位の含有量は、柔軟で、引裂強度に優れるディップ成形体などの膜成形体が得られやすいことから、全単量体単位に対して、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上、特に好ましくは100重量%(イソプレンの単独重合体)である。 When synthetic polyisoprene is used as the conjugated diene-based polymer, the synthetic polyisoprene may be a homopolymer of isoprene, or may be a copolymer of isoprene and another ethylenically unsaturated monomer copolymerizable with isoprene. It may be a polymer. The content of the isoprene unit in the synthetic polyisoprene is preferably 70% by weight or more with respect to all the monomer units because it is easy to obtain a film molded body such as a dip molded body which is flexible and has excellent tear strength. It is more preferably 90% by weight or more, further preferably 95% by weight or more, and particularly preferably 100% by weight (isoprene homopolymer).
 イソプレンと共重合可能な他のエチレン性不飽和単量体としては、たとえば、ブタジエン、クロロプレン、1,3-ペンタジエン等のイソプレン以外の共役ジエン単量体;アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル等のエチレン性不飽和ニトリル単量体;スチレン、アルキルスチレン等のビニル芳香族単量体;(メタ)アクリル酸メチル(「アクリル酸メチルおよび/またはメタクリル酸メチル」の意味であり、以下、(メタ)アクリル酸エチルなども同様。)、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル等のエチレン性不飽和カルボン酸エステル単量体;などが挙げられる。これらのイソプレンと共重合可能な他のエチレン性不飽和単量体は、1種単独でも、複数種を併用してもよい。 Other ethylenically unsaturated monomers copolymerizable with isoprene include conjugated diene monomers other than isoprene, such as butadiene, chloroprene, 1,3-pentadiene; acrylonitrile, methacrylonitrile, fumaronitrile, α-. Ethylene unsaturated nitrile monomers such as chloroacrylonitrile; vinyl aromatic monomers such as styrene and alkylstyrene; methyl (meth) acrylate (meaning "methyl acrylate and / or methyl methacrylate" and below. , (Meta) ethyl acrylate, etc.), Ethylene unsaturated styrene ester monomer such as (meth) acrylate, butyl (meth) acrylate, -2-ethylhexyl (meth) acrylate; etc. Can be mentioned. The other ethylenically unsaturated monomers copolymerizable with these isoprene may be used alone or in combination of two or more.
 合成ポリイソプレンは、従来公知の方法、たとえばトリアルキルアルミニウム-四塩化チタンからなるチーグラー系重合触媒やn-ブチルリチウム、sec-ブチルリチウムなどのアルキルリチウム重合触媒を用いて、不活性重合溶媒中で、イソプレンと、必要に応じて用いられる共重合可能な他のエチレン性不飽和単量体とを溶液重合して得ることができる。溶液重合により得られた合成ポリイソプレンの重合体溶液は、そのまま、合成ポリイソプレンラテックスの製造に用いてもよいが、該重合体溶液から固形の合成ポリイソプレンを取り出した後、有機溶媒に溶解して、合成ポリイソプレンラテックスの製造に用いることもできる。なお、合成ポリイソプレンラテックスは、後述するように、本発明で用いるカルボキシ変性重合体のラテックスの製造に用いることができる。
 上述した方法により合成ポリイソプレンの重合体溶液を得た場合には、重合体溶液中に残った重合触媒の残渣などの不純物を取り除いてもよい。また、重合中または重合後の溶液に、後述する老化防止剤を添加してもよい。また、市販の固形の合成ポリイソプレンを用いることもできる。
Synthetic polyisoprene is prepared in an inert polymerization solvent using a conventionally known method, for example, a Cheegler-based polymerization catalyst composed of trialkylaluminum-titanium tetrachloride or an alkyllithium polymerization catalyst such as n-butyllithium or sec-butyllithium. , Isoprene and other copolymerizable ethylenically unsaturated monomers used as needed can be obtained by solution polymerization. The polymer solution of synthetic polyisoprene obtained by solution polymerization may be used as it is for the production of synthetic polyisoprene latex, but after taking out solid synthetic polyisoprene from the polymer solution, it is dissolved in an organic solvent. It can also be used in the production of synthetic polyisoprene latex. The synthetic polyisoprene latex can be used for producing the latex of the carboxy-modified polymer used in the present invention, as will be described later.
When a polymer solution of synthetic polyisoprene is obtained by the method described above, impurities such as the residue of the polymerization catalyst remaining in the polymer solution may be removed. Further, an anti-aging agent described later may be added to the solution during or after the polymerization. Alternatively, a commercially available solid synthetic polyisoprene can be used.
 合成ポリイソプレン中のイソプレン単位としては、イソプレンの結合状態により、シス結合単位、トランス結合単位、1,2-ビニル結合単位、3,4-ビニル結合単位の4種類が存在する。得られるディップ成形体などの膜成形体の引裂強度向上の観点から、合成ポリイソプレンに含まれるイソプレン単位中のシス結合単位の含有割合は、全イソプレン単位に対して、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上である。 There are four types of isoprene units in synthetic polyisoprene, cis-binding units, trans-binding units, 1,2-vinyl-binding units, and 3,4-vinyl-binding units, depending on the isoprene binding state. From the viewpoint of improving the tear strength of the obtained film molded product such as a dip molded product, the content ratio of the cis bond unit in the isoprene unit contained in the synthetic polyisoprene is preferably 70% by weight or more with respect to the total isoprene unit. It is more preferably 90% by weight or more, still more preferably 95% by weight or more.
 合成ポリイソプレンの重量平均分子量は、ゲル・パーミーエーション・クロマトグラフィー分析による標準ポリスチレン換算で、好ましくは10,000~5,000,000、より好ましくは500,000~5,000,000、さらに好ましくは800,000~3,000,000である。合成ポリイソプレンの重量平均分子量を上記範囲とすることにより、ディップ成形体などの膜成形体の引裂強度が向上するとともに、合成ポリイソプレンラテックスが製造しやすくなる傾向がある。 The weight average molecular weight of the synthetic polyisoprene is preferably 10,000 to 5,000,000, more preferably 500,000 to 5,000,000, more preferably 500,000 to 5,000,000, in terms of standard polystyrene by gel permeation chromatography analysis. Is between 800,000 and 3,000,000. By setting the weight average molecular weight of the synthetic polyisoprene in the above range, the tear strength of the film molded product such as a dip molded product is improved, and the synthetic polyisoprene latex tends to be easily produced.
 また、合成ポリイソプレンのポリマー・ムーニー粘度(ML1+4、100℃)は、好ましくは50~80、より好ましくは60~80、さらに好ましくは70~80である。 The polymer Mooney viscosity (ML1 + 4, 100 ° C.) of the synthetic polyisoprene is preferably 50 to 80, more preferably 60 to 80, and even more preferably 70 to 80.
 合成ポリイソプレンラテックスを得るための方法としては、たとえば、(1)有機溶媒に溶解または微分散した合成ポリイソプレンの溶液または微細懸濁液を、アニオン性界面活性剤の存在下に、水中で乳化し、必要により有機溶媒を除去して、合成ポリイソプレンラテックスを製造する方法、(2)イソプレン単独または、イソプレンとそれと共重合可能なエチレン性不飽和単量体との混合物を、アニオン性界面活性剤の存在下に、乳化重合もしくは懸濁重合して、直接、合成ポリイソプレンラテックスを製造する方法、が挙げられるが、イソプレン単位中のシス結合単位の割合が高い合成ポリイソプレンを用いることができ、引裂強度等の機械的特性に優れるディップ成形体などの膜成形体が得られやすい点から、上記(1)の製造方法が好ましい。 As a method for obtaining a synthetic polyisoprene latex, for example, (1) a solution or a fine suspension of synthetic polyisoprene dissolved or finely dispersed in an organic solvent is emulsified in water in the presence of an anionic surfactant. Then, if necessary, a method for producing a synthetic polyisoprene latex by removing an organic solvent, (2) isoprene alone or a mixture of isoprene and an ethylenically unsaturated monomer copolymerizable therewith, anionic surfactant A method of directly producing a synthetic polyisoprene latex by emulsification polymerization or suspension polymerization in the presence of an agent can be mentioned, but synthetic polyisoprene having a high ratio of cis-bonding units in isoprene units can be used. The production method (1) above is preferable from the viewpoint that a film-formed body such as a dip-formed body having excellent mechanical properties such as tear strength can be easily obtained.
 上記(1)の製造方法で用いる有機溶媒としては、たとえば、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒;シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン等の脂環族炭化水素溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;塩化メチレン、クロロホルム、二塩化エチレン等のハロゲン化炭化水素溶媒;等を挙げることができる。これらのうち、脂環族炭化水素溶媒が好ましく、シクロヘキサンが特に好ましい。 Examples of the organic solvent used in the production method (1) above include aromatic hydrocarbon solvents such as benzene, toluene and xylene; alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene, cyclohexane and cyclohexene; pentane, hexane and the like. An aliphatic hydrocarbon solvent such as heptane; a halogenated hydrocarbon solvent such as methylene chloride, chloroform and ethylene dichloride; and the like can be mentioned. Of these, an alicyclic hydrocarbon solvent is preferable, and cyclohexane is particularly preferable.
 なお、有機溶媒の使用量は、合成ポリイソプレン100重量部に対して、好ましくは2,000重量部以下、より好ましくは20~1,500重量部、更に好ましくは500~1,500重量部である。 The amount of the organic solvent used is preferably 2,000 parts by weight or less, more preferably 20 to 1,500 parts by weight, and further preferably 500 to 1,500 parts by weight with respect to 100 parts by weight of the synthetic polyisoprene. is there.
 上記(1)の製造方法で用いるアニオン性界面活性剤としては、たとえば、ラウリン酸ナトリウム、ミリスチン酸カリウム、パルミチン酸ナトリウム、オレイン酸カリウム、リノレン酸ナトリウム、ロジン酸ナトリウム等の脂肪酸塩;ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム、デシルベンゼンスルホン酸ナトリウム、デシルベンゼンスルホン酸カリウム、セチルベンゼンスルホン酸ナトリウム、セチルベンゼンスルホン酸カリウム等のアルキルベンゼンスルホン酸塩;ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、ジ(2-エチルヘキシル)スルホコハク酸カリウム、ジオクチルスルホコハク酸ナトリウム等のアルキルスルホコハク酸塩;ラウリル硫酸ナトリウム、ラウリル硫酸カリウム等のアルキル硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸カリウム等のポリオキシエチレンアルキルエーテル硫酸エステル塩;ラウリルリン酸ナトリウム、ラウリルリン酸カリウム等のモノアルキルリン酸塩;等が挙げられる。 Examples of the anionic surfactant used in the production method (1) above include fatty acid salts such as sodium laurate, potassium myristate, sodium palmitate, potassium oleate, sodium linolenate, and sodium loginate; dodecylbenzene sulfone. Alkylbenzene sulfonates such as sodium acid, potassium dodecylbenzene sulfonate, sodium decylbenzene sulfonate, potassium decylbenzene sulfonate, sodium cetylbenzenesulfonate, potassium cetylbenzenesulfonate; sodium di (2-ethylhexyl) sulfosuccinate, di (2-Ethylhexyl) Alkyl sulfosuccinates such as potassium sulfosuccinate and sodium dioctyl sulfosuccinate; alkyl sulfates such as sodium lauryl sulfate and potassium lauryl sulfate; sodium polyoxyethylene lauryl ether sulfate, potassium polyoxyethylene lauryl ether sulfate, etc. Polyoxyethylene alkyl ether sulfate ester salt; monoalkyl phosphate such as sodium lauryl phosphate and potassium lauryl phosphate; and the like.
 これらアニオン性界面活性剤の中でも、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩が好ましく、脂肪酸塩およびアルキルベンゼンスルホン酸塩が特に好ましい。 Among these anionic surfactants, fatty acid salts, alkylbenzene sulfonates, alkyl sulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates are preferable, and fatty acid salts and alkylbenzene sulfonates are particularly preferable.
 また、合成ポリイソプレン由来の、微量に残留する重合触媒(特に、アルミニウムとチタニウム)をより効率的に除去でき、ラテックス組成物を製造する際における、凝集物の発生が抑制されることから、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩からなる群から選ばれる少なくとも1種と、脂肪酸塩とを併用して用いることが好ましく、アルキルベンゼンスルホン酸塩と、脂肪酸塩とを併用して用いることが特に好ましい。ここで、脂肪酸塩としては、ロジン酸ナトリウムおよびロジン酸カリウムが好ましく、また、アルキルベンゼンスルホン酸塩としては、ドデシルベンゼンスルホン酸ナトリウムおよびドデシルベンゼンスルホン酸カリウムが好ましい。また、これらの界面活性剤は、1種単独でも2種以上を併用してもよい。 In addition, a trace amount of the polymerization catalyst (particularly aluminum and fatty acid) derived from synthetic polyisoprene can be removed more efficiently, and the generation of agglomerates during the production of the latex composition is suppressed. Therefore, alkylbenzene is used. It is preferable to use at least one selected from the group consisting of sulfonates, alkyl sulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates in combination with fatty acid salts, preferably with alkylbenzene sulfonates. , It is particularly preferable to use it in combination with a fatty acid salt. Here, as the fatty acid salt, sodium loginate and potassium loginate are preferable, and as the alkylbenzene sulfonate, sodium dodecylbenzene sulfonate and potassium dodecylbenzene sulfonate are preferable. In addition, these surfactants may be used alone or in combination of two or more.
 なお、上述したように、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩からなる群から選ばれる少なくとも1種と、脂肪酸塩とを併用して用いることにより、得られるラテックスが、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種と、脂肪酸塩とを含有するものとなる。 As described above, at least one selected from the group consisting of alkylbenzene sulfonates, alkylsulfosuccinates, alkylsulfate salts and polyoxyethylene alkylether sulfates should be used in combination with fatty acid salts. The resulting latex contains at least one selected from alkylbenzene sulfonates, alkyl sulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates, and fatty acid salts. ..
 また、上記(1)の製造方法においては、アニオン性界面活性剤以外の界面活性剤を併用してもよく、このようなアニオン性界面活性剤以外の界面活性剤としては、α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の共重合性の界面活性剤が挙げられる。 Further, in the production method of (1) above, a surfactant other than the anionic surfactant may be used in combination, and the surfactant other than the anionic surfactant may be α, β-non. Examples thereof include copolymerizable surfactants such as sulfoesters of saturated carboxylic acids, sulfate esters of α, β-unsaturated carboxylic acids, and sulfoalkylaryl ethers.
 さらに、ディップ成形などの成形を行う際に使用する凝固剤による凝固を阻害しない範囲であれば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性界面活性剤も併用してもよい。 Further, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester, etc., as long as they do not inhibit coagulation by the coagulant used for molding such as dip molding. Nonionic surfactants may also be used in combination.
 上記(1)の製造方法で用いるアニオン性界面活性剤の使用量は、合成ポリイソプレン100重量部に対して、好ましくは0.1~50重量部、より好ましくは0.5~30重量部である。なお、2種類以上の界面活性剤を用いる場合においては、これらの合計の使用量を上記範囲とすることが好ましい。すなわち、たとえば、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種と、脂肪酸塩とを併用する場合には、これらの使用量の合計を上記範囲とすることが好ましい。アニオン性界面活性剤の使用量が少なすぎると、乳化時に凝集物が多量に発生するおそれがあり、逆に多すぎると、発泡しやすくなり、得られるディップ成形体などの膜成形体にピンホールが発生する可能性がある。 The amount of the anionic surfactant used in the production method (1) is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight, based on 100 parts by weight of the synthetic polyisoprene. is there. When two or more kinds of surfactants are used, it is preferable that the total amount of these surfactants used is in the above range. That is, for example, when at least one selected from alkylbenzene sulfonate, alkylsulfosuccinate, alkylsulfate ester salt and polyoxyethylene alkyl ether sulfate ester salt is used in combination with a fatty acid salt, these It is preferable that the total amount used is in the above range. If the amount of the anionic surfactant used is too small, a large amount of agglomerates may be generated during emulsification. May occur.
 また、アニオン性界面活性剤として、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種と、脂肪酸塩とを併用する場合には、これらの使用割合を、「脂肪酸塩」:「アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種の界面活性剤の合計」の重量比で、1:1~10:1の範囲とすることが好ましく、1:1~7:1の範囲とすることがより好ましい。アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種の界面活性剤の使用割合が多すぎると、合成ポリイソプレンの取り扱い時に泡立ちが激しくなるおそれがあり、これにより、長時間の静置や、消泡剤の添加などの操作が必要になり、作業性の悪化およびコストアップに繋がるおそれがある。 In addition, when at least one selected from alkylbenzene sulfonate, alkylsulfosuccinate, alkylsulfate ester salt and polyoxyethylene alkylether sulfate ester salt is used in combination as the anionic surfactant, and the fatty acid salt is used in combination. In the above, the ratio of these to be used is the surface activity of at least one selected from "fatty acid salt": "alkylbenzene sulfonate, alkylsulfosuccinate, alkylsulfate ester salt and polyoxyethylene alkylether sulfate ester salt". The weight ratio of "total of agents" is preferably in the range of 1: 1 to 10: 1, more preferably in the range of 1: 1 to 7: 1. Too much of the surfactant selected from alkylbenzene sulfonates, alkyl sulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates will result in the handling of synthetic polyisoprenes. Foaming may become intense, which requires operations such as standing for a long time and adding an antifoaming agent, which may lead to deterioration of workability and cost increase.
 上記(1)の製造方法で使用する水の量は、合成ポリイソプレンの有機溶媒溶液100重量部に対して、好ましくは10~1,000重量部、より好ましくは30~500重量部、最も好ましくは50~100重量部である。使用する水の種類としては、硬水、軟水、イオン交換水、蒸留水、ゼオライトウォーターなどが挙げられ、軟水、イオン交換水および蒸留水が好ましい。 The amount of water used in the production method (1) is preferably 10 to 1,000 parts by weight, more preferably 30 to 500 parts by weight, most preferably 30 parts by weight, based on 100 parts by weight of the organic solvent solution of synthetic polyisoprene. Is 50 to 100 parts by weight. Examples of the type of water used include hard water, soft water, ion-exchanged water, distilled water, zeolite water and the like, and soft water, ion-exchanged water and distilled water are preferable.
 有機溶媒に溶解または微分散した合成ポリイソプレンの溶液または微細懸濁液を、アニオン性界面活性剤の存在下、水中で乳化する装置は、一般に乳化機または分散機として市販されているものであれば特に限定されず使用できる。合成ポリイソプレンの溶液または微細懸濁液に、アニオン性界面活性剤を添加する方法としては、特に限定されず、予め、水もしくは合成ポリイソプレンの溶液または微細懸濁液のいずれか、あるいは両方に添加してもよいし、乳化操作を行っている最中に、乳化液に添加してもよく、一括添加しても、分割添加してもよい。 An apparatus for emulsifying a solution or microsuspension of synthetic polyisoprene dissolved or finely dispersed in an organic solvent in water in the presence of an anionic surfactant may be a commercially available emulsifier or disperser. It can be used without particular limitation. The method of adding the anionic surfactant to the synthetic polyisoprene solution or microsuspension is not particularly limited, and it is previously added to water, the synthetic polyisoprene solution or the microsuspension, or both. It may be added, may be added to the emulsified solution during the emulsification operation, may be added all at once, or may be added in portions.
 乳化装置としては、たとえば、商品名「ホモジナイザー」(IKA社製)、商品名「ポリトロン」(キネマティカ社製)、商品名「TKオートホモミキサー」(特殊機化工業社製)等のバッチ式乳化機;商品名「TKパイプラインホモミキサー」(特殊機化工業社製)、商品名「コロイドミル」(神鋼パンテック社製)、商品名「スラッシャー」(日本コークス工業社製)、商品名「トリゴナル湿式微粉砕機」(三井三池化工機社製)、商品名「キャビトロン」(ユーロテック社製)、商品名「マイルダー」(太平洋機工社製)、商品名「ファインフローミル」(太平洋機工社製)等の連続式乳化機;商品名「マイクロフルイダイザー」(みずほ工業社製)、商品名「ナノマイザー」(ナノマイザー社製)、商品名「APVガウリン」(ガウリン社製)等の高圧乳化機;商品名「膜乳化機」(冷化工業社製)等の膜乳化機;商品名「バイブロミキサー」(冷化工業社製)等の振動式乳化機;商品名「超音波ホモジナイザー」(ブランソン社製)等の超音波乳化機;等が挙げられる。なお、乳化装置による乳化操作の条件は、特に限定されず、所望の分散状態になるように、処理温度、処理時間などを適宜選定すればよい。 Examples of the emulsifying device include batch emulsification such as the product name "Homogenizer" (manufactured by IKA), the product name "Polytron" (manufactured by Kinematica), and the product name "TK Auto Homo Mixer" (manufactured by Tokushu Kika Kogyo Co., Ltd.). Machine; Product name "TK Pipeline Homo Mixer" (manufactured by Tokushu Kagaku Kogyo Co., Ltd.), Product name "Coloid Mill" (manufactured by Shinko Pantech Co., Ltd.) Trigonal wet pulverizer (Mitsui Miike Kakoki Co., Ltd.), product name "Cavitron" (Eurotech Co., Ltd.), product name "Milder" (Pacific Kiko Co., Ltd.), product name "Fine Flow Mill" (Pacific Kiko Co., Ltd.) Continuous emulsifiers such as (manufactured by); high-pressure emulsifiers such as product name "Microfluidizer" (manufactured by Mizuho Kogyo Co., Ltd.), product name "Nammizer" (manufactured by Nanomizer Co., Ltd.) Membrane emulsifiers such as the product name "Membrane Emulsifier" (manufactured by Cooling Industry Co., Ltd.); Vibration type emulsifying machines such as the product name "Vibro Mixer" (manufactured by Cooling Industry Co., Ltd.); Product name "Ultrasonic Homogenizer" (Branson) An ultrasonic emulsifier such as (manufactured by the company); etc. The conditions for the emulsification operation by the emulsification device are not particularly limited, and the treatment temperature, treatment time, and the like may be appropriately selected so as to obtain a desired dispersed state.
 上記(1)の製造方法においては、乳化操作を経て得られた乳化物から、有機溶媒を除去することが望ましい。
 乳化物から有機溶媒を除去する方法としては、得られる合成ポリイソプレンラテックス中における、有機溶媒(好ましくは脂環族炭化水素溶媒)の含有量を500重量ppm以下とすることのできる方法が好ましく、たとえば、減圧蒸留、常圧蒸留、水蒸気蒸留、遠心分離等の方法を採用することができる。
In the production method (1) above, it is desirable to remove the organic solvent from the emulsion obtained through the emulsification operation.
As a method for removing the organic solvent from the emulsion, a method in which the content of the organic solvent (preferably alicyclic hydrocarbon solvent) in the obtained synthetic polyisoprene latex can be 500% by weight ppm or less is preferable. For example, methods such as vacuum distillation, atmospheric distillation, steam distillation, and centrifugation can be adopted.
 上記(1)の方法においては、乳化操作を経て得られた乳化物から、有機溶媒を除去して、合成ポリイソプレンラテックスを得ることが望ましい。乳化物から有機溶媒を除去する方法は、得られる合成ポリイソプレンラテックス中における、有機溶媒としての脂環族炭化水素溶媒および芳香族炭化水素溶媒の合計含有量を500重量ppm以下とすることができるような方法であれば、特に限定されず、減圧蒸留、常圧蒸留、水蒸気蒸留、遠心分離等の方法を採用することができる。 In the method (1) above, it is desirable to remove the organic solvent from the emulsion obtained through the emulsification operation to obtain a synthetic polyisoprene latex. In the method for removing the organic solvent from the emulsion, the total content of the alicyclic hydrocarbon solvent and the aromatic hydrocarbon solvent as the organic solvent in the obtained synthetic polyisoprene latex can be 500% by weight ppm or less. Such a method is not particularly limited, and methods such as vacuum distillation, atmospheric distillation, steam distillation, and centrifugation can be adopted.
 さらに、有機溶媒を除去した後、必要に応じ、合成ポリイソプレンラテックスの固形分濃度を上げるために、減圧蒸留、常圧蒸留、遠心分離、膜濃縮等の方法で濃縮操作を施してもよく、特に、合成ポリイソプレンラテックスの固形分濃度を上げるとともに、合成ポリイソプレンラテックス中の界面活性剤の残留量を低減することができるという観点より、遠心分離を行うことが好ましい。 Further, after removing the organic solvent, if necessary, in order to increase the solid content concentration of the synthetic polyisoprene latex, a concentration operation may be performed by a method such as vacuum distillation, atmospheric distillation, centrifugation, membrane concentration, or the like. In particular, it is preferable to perform centrifugation from the viewpoint that the solid content concentration of the synthetic polyisoprene latex can be increased and the residual amount of the surfactant in the synthetic polyisoprene latex can be reduced.
 遠心分離は、たとえば、連続遠心分離機を用いて、遠心力を、好ましくは100~10,000G、遠心分離前の合成ポリイソプレンラテックスの固形分濃度を、好ましくは2~15重量%、遠心分離機に送り込む流速を、好ましくは500~1700Kg/hr、遠心分離機の背圧(ゲージ圧)を、好ましくは0.03~1.6MPaの条件にて実施することが好ましく、遠心分離後の軽液として、合成ポリイソプレンラテックスを得ることができる。そして、これにより、合成ポリイソプレンラテックス中における、界面活性剤の残留量を低減することができる。 Centrifugation uses, for example, a continuous centrifuge to centrifuge the centrifugal force, preferably 100 to 10,000 G, and the solid content concentration of the synthetic polyisoprene latex before centrifugation, preferably 2 to 15% by weight. The flow velocity to be fed into the machine is preferably 500 to 1700 kg / hr, and the back pressure (gauge pressure) of the centrifuge is preferably 0.03 to 1.6 MPa. As a liquid, a synthetic polyisoprene latex can be obtained. As a result, the residual amount of the surfactant in the synthetic polyisoprene latex can be reduced.
 合成ポリイソプレンラテックスの固形分濃度は、好ましくは30~70重量%、より好ましくは40~70重量%である。固形分濃度が低すぎると、後述するラテックス組成物の固形分濃度が低くなるために、後述するディップ成形体の膜厚が薄くなり破れ易くなる。逆に固形分濃度が高すぎると、合成ポリイソプレンラテックスの粘度が高くなり、配管での移送や調合タンク内での撹拌が困難になる場合がある。 The solid content concentration of the synthetic polyisoprene latex is preferably 30 to 70% by weight, more preferably 40 to 70% by weight. If the solid content concentration is too low, the solid content concentration of the latex composition described later becomes low, so that the film thickness of the dip molded product described later becomes thin and it becomes easy to tear. On the contrary, if the solid content concentration is too high, the viscosity of the synthetic polyisoprene latex becomes high, which may make it difficult to transfer the synthetic polyisoprene latex or stir it in the compounding tank.
 合成ポリイソプレンラテックスの体積平均粒子径は、好ましくは0.1~10μm、より好ましくは0.5~3μm、さらに好ましくは0.5~2.0μmである。この体積平均粒子径を上記範囲とすることにより、ラテックス粘度が適度なものとなり取り扱いやすくなるとともに、合成ポリイソプレンラテックスを貯蔵した際に、ラテックス表面に皮膜が生成することを抑制できる。 The volume average particle size of the synthetic polyisoprene latex is preferably 0.1 to 10 μm, more preferably 0.5 to 3 μm, and even more preferably 0.5 to 2.0 μm. By setting the volume average particle size in the above range, the latex viscosity becomes appropriate and easy to handle, and it is possible to suppress the formation of a film on the latex surface when the synthetic polyisoprene latex is stored.
 また、合成ポリイソプレンラテックスには、ラテックスの分野で通常配合される、pH調整剤、消泡剤、防腐剤、架橋剤、キレート剤、酸素捕捉剤、分散剤、老化防止剤等の添加剤を配合してもよい。
 pH調整剤としては、たとえば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;炭酸水素ナトリウムなどのアルカリ金属の炭酸水素塩;アンモニア;トリメチルアミン、トリエタノールアミンなどの有機アミン化合物;等が挙げられるが、アルカリ金属の水酸化物またはアンモニアが好ましい。
In addition, synthetic polyisoprene latex contains additives such as pH adjusters, defoamers, preservatives, cross-linking agents, chelating agents, oxygen trapping agents, dispersants, and antiaging agents, which are usually blended in the field of latex. It may be blended.
Examples of the pH adjuster include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal bicarbonates such as sodium hydrogen carbonate; ammonia. ; Organic amine compounds such as trimethylamine and triethanolamine; and the like; but alkali metal hydroxides or ammonia are preferable.
 また、共役ジエン系重合体としては、上述したように、スチレン-イソプレン-スチレンブロック共重合体(SIS)を用いることもできる。なお、SISにおいては、「S」はスチレンブロック、「I」はイソプレンブロックをそれぞれ表す。 Further, as the conjugated diene-based polymer, as described above, a styrene-isoprene-styrene block copolymer (SIS) can also be used. In SIS, "S" represents a styrene block and "I" represents an isoprene block.
 SISは、従来公知の方法、たとえばn-ブチルリチウムなどの活性有機金属を開始剤として、不活性重合溶媒中で、イソプレンとスチレンとをブロック共重合して得ることができる。そして、得られたSISの重合体溶液は、SISラテックスの製造にそのまま用いてもよいが、該重合体溶液から固形のSISを取り出した後、その固形のSISを有機溶媒に溶解して、SISラテックスの製造に用いることもできる。なお、SISラテックスは、後述するように、本発明で用いるカルボキシ変性重合体のラテックスの製造に用いることができる。SISラテックスの製造方法としては、特に限定されないが、有機溶媒に溶解または微分散したSISの溶液または微細懸濁液を、界面活性剤の存在下に、水中で乳化し、必要により有機溶媒を除去して、SISラテックスを製造する方法が好ましい。
 この際、合成した後に重合体溶液中に残った重合触媒の残渣などの不純物を取り除いてもよい。また、重合中または重合後の溶液に、後述する老化防止剤を添加してもよい。また、市販の固形のSISを用いることもできる。
SIS can be obtained by block copolymerization of isoprene and styrene in an inert polymerization solvent using a conventionally known method, for example, an active organometallic such as n-butyllithium as an initiator. The obtained SIS polymer solution may be used as it is in the production of SIS latex, but after taking out the solid SIS from the polymer solution, the solid SIS is dissolved in an organic solvent to SIS. It can also be used in the production of latex. As will be described later, the SIS latex can be used for producing the latex of the carboxy-modified polymer used in the present invention. The method for producing SIS latex is not particularly limited, but a SIS solution or fine suspension dissolved or finely dispersed in an organic solvent is emulsified in water in the presence of a surfactant, and the organic solvent is removed if necessary. The method for producing the SIS latex is preferable.
At this time, impurities such as the residue of the polymerization catalyst remaining in the polymer solution after the synthesis may be removed. Further, an anti-aging agent described later may be added to the solution during or after the polymerization. Alternatively, a commercially available solid SIS can be used.
 有機溶媒としては、上記合成ポリイソプレンの場合と同様のものを使用することができ、芳香族炭化水素溶媒および脂環族炭化水素溶媒が好ましく、シクロヘキサンおよびトルエンが特に好ましい。
 なお、有機溶媒の使用量は、SIS100重量部に対して、通常50~2,000重量部、好ましくは80~1,000重量部、より好ましくは100~500重量部、さらに好ましくは150~300重量部である。
As the organic solvent, the same solvent as in the case of the synthetic polyisoprene can be used, and an aromatic hydrocarbon solvent and an alicyclic hydrocarbon solvent are preferable, and cyclohexane and toluene are particularly preferable.
The amount of the organic solvent used is usually 50 to 2,000 parts by weight, preferably 80 to 1,000 parts by weight, more preferably 100 to 500 parts by weight, still more preferably 150 to 300 parts by weight, based on 100 parts by weight of SIS. It is a part by weight.
 界面活性剤としては、上記合成ポリイソプレンの場合と同様のものを例示することができ、アニオン性界面活性剤が好適であり、ロジン酸ナトリウムおよびドデシルベンゼンスルホン酸ナトリウムが特に好ましい。 As the surfactant, the same one as in the case of the above synthetic polyisoprene can be exemplified, an anionic surfactant is preferable, and sodium rosinate and sodium dodecylbenzenesulfonate are particularly preferable.
 界面活性剤の使用量は、SIS100重量部に対して、好ましくは0.1~50重量部、より好ましくは0.5~30重量部である。界面活性剤の使用量を上記範囲とすることにより、ディップ成型時における問題の発生を有効に抑制しながら、ラテックスの安定性を適切に高めることができる。 The amount of the surfactant used is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight, based on 100 parts by weight of SIS. By setting the amount of the surfactant used within the above range, it is possible to appropriately improve the stability of the latex while effectively suppressing the occurrence of problems during dip molding.
 上述したSISラテックスの製造方法で使用する水の量は、SISの有機溶媒溶液100重量部に対して、好ましくは10~1,000重量部、より好ましくは30~500重量部、最も好ましくは50~100重量部である。使用する水の種類としては、硬水、軟水、イオン交換水、蒸留水、ゼオライトウォーターなどが挙げられる。また、メタノールなどのアルコールに代表される極性溶媒を水と併用してもよい。 The amount of water used in the above-mentioned method for producing SIS latex is preferably 10 to 1,000 parts by weight, more preferably 30 to 500 parts by weight, and most preferably 50 parts by weight with respect to 100 parts by weight of the organic solvent solution of SIS. ~ 100 parts by weight. Examples of the type of water used include hard water, soft water, ion-exchanged water, distilled water, and zeolite water. Further, a polar solvent typified by alcohol such as methanol may be used in combination with water.
 SISの有機溶媒溶液または微細懸濁液を、界面活性剤の存在下、水中で乳化する装置は、上記合成ポリイソプレンの場合と同様のものを例示することができる。そして、界面活性剤の添加方法は、特に限定されず、予め水もしくはSISの有機溶媒溶液または微細懸濁液のいずれか、あるいは両方に添加してもよいし、乳化操作を行っている最中に、乳化液に添加してもよく、一括添加しても、分割添加してもよい。 An apparatus for emulsifying an organic solvent solution or fine suspension of SIS in water in the presence of a surfactant can be exemplified as the same as in the case of the above synthetic polyisoprene. The method of adding the surfactant is not particularly limited, and the surfactant may be added to water, an organic solvent solution of SIS, a fine suspension, or both in advance, or during the emulsification operation. In addition, it may be added to the emulsion, may be added all at once, or may be added separately.
 上述したSISラテックスの製造方法においては、乳化操作を経て得られた乳化物から、有機溶媒を除去して、SISラテックスを得ることが好ましい。乳化物から有機溶媒を除去する方法は、特に限定されず、減圧蒸留、常圧蒸留、水蒸気蒸留、遠心分離等の方法を採用することができる。 In the above-mentioned method for producing SIS latex, it is preferable to remove the organic solvent from the emulsion obtained through the emulsification operation to obtain SIS latex. The method for removing the organic solvent from the emulsion is not particularly limited, and methods such as vacuum distillation, atmospheric distillation, steam distillation, and centrifugation can be adopted.
 また、有機溶媒を除去した後、必要に応じ、SISラテックスの固形分濃度を上げるために、減圧蒸留、常圧蒸留、遠心分離、膜濃縮等の方法で濃縮操作を施してもよい。 Further, after removing the organic solvent, if necessary, in order to increase the solid content concentration of the SIS latex, a concentration operation may be performed by a method such as vacuum distillation, atmospheric distillation, centrifugation, or membrane concentration.
 SISラテックスの固形分濃度は、好ましくは30~70重量%、より好ましくは50~70重量%である。固形分濃度が低すぎると、後述するラテックス組成物の固形分濃度が低くなるためディップ成形体の膜厚が薄くなり破れ易くなる。逆に固形分濃度が高すぎると、SISラテックスの粘度が高くなり、配管での移送や調合タンク内での撹拌が難しくなる。 The solid content concentration of the SIS latex is preferably 30 to 70% by weight, more preferably 50 to 70% by weight. If the solid content concentration is too low, the solid content concentration of the latex composition described later becomes low, so that the film thickness of the dip molded product becomes thin and it becomes easy to tear. On the contrary, if the solid content concentration is too high, the viscosity of the SIS latex becomes high, and it becomes difficult to transfer the SIS latex by piping or to stir it in the compounding tank.
 また、SISラテックスには、ラテックスの分野で通常配合される、pH調整剤、消泡剤、防腐剤、架橋剤、キレート剤、酸素捕捉剤、分散剤、老化防止剤等の添加剤を配合してもよい。pH調整剤としては、上記合成ポリイソプレンの場合と同様のものを例示することができ、アルカリ金属の水酸化物またはアンモニアが好ましい。 In addition, SIS latex contains additives such as pH adjusters, antifoaming agents, preservatives, cross-linking agents, chelating agents, oxygen scavengers, dispersants, and anti-aging agents, which are usually blended in the field of latex. You may. As the pH adjuster, the same as in the case of the above synthetic polyisoprene can be exemplified, and alkali metal hydroxide or ammonia is preferable.
 このようにして得られるSISラテックスに含まれる、SIS中のスチレンブロックにおけるスチレン単位の含有量は、スチレンブロックを構成する全単量体単位に対して、好ましくは70~100重量%、より好ましくは90~100重量%、さらに好ましくは100重量%である。
 また、SIS中のイソプレンブロックにおけるイソプレン単位の含有量は、イソプレン単位を構成する全単量体単位に対して、好ましくは70~100重量%、より好ましくは90~100重量%、さらに好ましくは100重量%である。
 なお、SIS中のスチレン単位とイソプレン単位の含有割合は、「スチレン単位:イソプレン単位」の重量比で、通常1:99~90:10、好ましくは3:97~70:30、より好ましくは5:95~50:50、さらに好ましくは10:90~30:70の範囲である。
The content of the styrene unit in the styrene block in the SIS contained in the SIS latex thus obtained is preferably 70 to 100% by weight, more preferably 70 to 100% by weight, based on all the monomer units constituting the styrene block. It is 90 to 100% by weight, more preferably 100% by weight.
The content of the isoprene unit in the isoprene block in the SIS is preferably 70 to 100% by weight, more preferably 90 to 100% by weight, still more preferably 100, based on all the monomer units constituting the isoprene unit. By weight%.
The content ratio of the styrene unit and the isoprene unit in the SIS is a weight ratio of "styrene unit: isoprene unit", which is usually 1:99 to 90:10, preferably 3:97 to 70:30, and more preferably 5. : 95 to 50:50, more preferably 10:90 to 30:70.
 SISの重量平均分子量は、ゲル・パーミーエーション・クロマトグラフィー分析による標準ポリスチレン換算で、好ましくは10,000~1,000,000、より好ましくは50,000~500,000、さらに好ましくは100,000~300,000である。SISの重量平均分子量を上記範囲とすることにより、ディップ成形体などの膜成形体の引裂強度と柔軟性のバランスが向上するとともに、SISのラテックスが製造しやすくなる傾向がある。 The weight average molecular weight of SIS is preferably 10,000 to 1,000,000, more preferably 50,000 to 500,000, still more preferably 100,000 in terms of standard polystyrene by gel permeation chromatography analysis. ~ 300,000. By setting the weight average molecular weight of SIS in the above range, the balance between tear strength and flexibility of a film molded product such as a dip molded product is improved, and SIS latex tends to be easily produced.
 SISラテックス中のラテックス粒子(SIS粒子)の体積平均粒子径は、好ましくは0.1~10μm、より好ましくは0.5~3μm、さらに好ましくは0.5~2.0μmである。ラテックス粒子の体積平均粒子径を上記範囲とすることにより、ラテックス粘度が適度なものとなり取り扱いやすくなるとともに、SISラテックスを貯蔵した際に、ラテックス表面に皮膜が生成することを抑制できる。 The volume average particle size of the latex particles (SIS particles) in the SIS latex is preferably 0.1 to 10 μm, more preferably 0.5 to 3 μm, and even more preferably 0.5 to 2.0 μm. By setting the volume average particle size of the latex particles in the above range, the latex viscosity becomes appropriate and easy to handle, and it is possible to suppress the formation of a film on the latex surface when the SIS latex is stored.
 また、共役ジエン系重合体としては、上述したように、ニトリル基含有共役ジエン系共重合体を用いることもできる。 Further, as the conjugated diene-based polymer, as described above, a nitrile group-containing conjugated diene-based copolymer can also be used.
 ニトリル基含有共役ジエン系共重合体は、共役ジエン単量体にエチレン性不飽和ニトリル単量体を共重合してなる共重合体であり、これらに加えて、必要に応じて用いられる、これらと共重合可能な他のエチレン性不飽和単量体を共重合してなる共重合体であってもよい。 The nitrile group-containing conjugated diene-based copolymer is a copolymer obtained by copolymerizing an ethylenically unsaturated nitrile monomer with a conjugated diene monomer, and in addition to these, these are used as needed. It may be a copolymer obtained by copolymerizing another ethylenically unsaturated monomer copolymerizable with.
 共役ジエン単量体としては、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ペンタジエンおよびクロロプレンなどが挙げられる。これらのなかでも、1,3-ブタジエンおよびイソプレンが好ましく、1,3-ブタジエンがより好ましい。これらの共役ジエン単量体は、単独で、または2種以上を組合せて用いることができる。ニトリル基含有共役ジエン系共重合体中における、共役ジエン単量体により形成される共役ジエン単量体単位の含有割合は、好ましくは56~78重量%であり、より好ましくは56~73重量%、さらに好ましくは56~68重量%である。共役ジエン単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体を、引裂強度を十分なものとしながら、風合いにより優れたものとすることができる。 Examples of the conjugated diene monomer include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene and chloroprene. Be done. Among these, 1,3-butadiene and isoprene are preferable, and 1,3-butadiene is more preferable. These conjugated diene monomers can be used alone or in combination of two or more. The content ratio of the conjugated diene monomer unit formed by the conjugated diene monomer in the nitrile group-containing conjugated diene-based copolymer is preferably 56 to 78% by weight, more preferably 56 to 73% by weight. , More preferably 56 to 68% by weight. By setting the content of the conjugated diene monomer unit in the above range, the obtained film-molded product such as a dip-molded product can be made more excellent in texture while having sufficient tear strength.
 エチレン性不飽和ニトリル単量体としては、ニトリル基を含有するエチレン性不飽和単量体であれば特に限定されないが、たとえば、アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル、α-シアノエチルアクリロニトリルなどが挙げられる。なかでも、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。これらのエチレン性不飽和ニトリル単量体は、単独で、または2種以上を組合せて用いることができる。ニトリル基含有共役ジエン系共重合体中における、エチレン性不飽和ニトリル単量体により形成されるエチレン性不飽和ニトリル単量体単位の含有割合は、好ましくは20~40重量%であり、より好ましくは25~40重量%、さらに好ましくは30~40重量%である。エチレン性不飽和ニトリル単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体を、引裂強度を十分なものとしながら、風合いにより優れたものとすることができる。 The ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an ethylenically unsaturated monomer containing a nitrile group, and for example, acrylonitrile, methacrylonitrile, fumaronitrile, α-chloroacrylonitrile, α-cyanoethylacrylonitrile. And so on. Of these, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is more preferable. These ethylenically unsaturated nitrile monomers can be used alone or in combination of two or more. The content ratio of the ethylenically unsaturated nitrile monomer unit formed of the ethylenically unsaturated nitrile monomer in the nitrile group-containing conjugated diene-based copolymer is preferably 20 to 40% by weight, more preferably 20 to 40% by weight. Is 25 to 40% by weight, more preferably 30 to 40% by weight. By setting the content of the ethylenically unsaturated nitrile monomer unit in the above range, it is possible to make the obtained film molded product such as a dip molded product more excellent in texture while having sufficient tear strength. it can.
 共役ジエン単量体およびエチレン性不飽和ニトリル単量体と共重合可能なその他のエチレン性不飽和単量体としては、たとえば、カルボキシル基を含有するエチレン性不飽和単量体であるエチレン性不飽和カルボン酸単量体;スチレン、アルキルスチレン、ビニルナフタレン等のビニル芳香族単量体;フルオロエチルビニルエーテル等のフルオロアルキルビニルエーテル;(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N,N-ジメチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-プロポキシメチル(メタ)アクリルアミド等のエチレン性不飽和アミド単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸トリフルオロエチル、(メタ)アクリル酸テトラフルオロプロピル、マレイン酸ジブチル、フマル酸ジブチル、マレイン酸ジエチル、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸メトキシエトキシエチル、(メタ)アクリル酸シアノメチル、(メタ)アクリル酸-2-シアノエチル、(メタ)アクリル酸-1-シアノプロピル、(メタ)アクリル酸-2-エチル-6-シアノヘキシル、(メタ)アクリル酸-3-シアノプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル単量体;ジビニルベンゼン、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート等の架橋性単量体;などを挙げることができる。これらのエチレン性不飽和単量体は単独で、または2種以上を組み合わせて使用することができる。 Other ethylenically unsaturated monomers copolymerizable with the conjugated diene monomer and the ethylenically unsaturated nitrile monomer include, for example, ethylenically unsaturated, which is an ethylenically unsaturated monomer containing a carboxyl group. Saturated carboxylic acid monomer; Vinyl aromatic monomer such as styrene, alkylstyrene, vinylnaphthalene; Fluoroalkylvinyl ether such as fluoroethyl vinyl ether; (meth) acrylamide, N-methylol (meth) acrylamide, N, N-dimethylol Ethylene unsaturated amide monomers such as (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide; methyl (meth) acrylate, ethyl (meth) acrylate, (meth) Butyl acrylate, -2-ethylhexyl (meth) acrylate, trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, dibutyl maleate, dibutyl fumarate, diethyl maleate, methoxy (meth) acrylate Methyl, ethoxyethyl (meth) acrylate, methoxyethoxyethyl (meth) acrylate, cyanomethyl (meth) acrylate, -2-cyanoethyl (meth) acrylate, -1-cyanopropyl (meth) acrylate, (meth) -2-Acrylic acid-6-cyanohexyl, (meth) acrylate-3-cyanopropyl, (meth) hydroxyethyl acrylate, (meth) hydroxypropyl acrylate, glycidyl (meth) acrylate, dimethylaminoethyl (meth) ) Ethylene unsaturated carboxylic acid ester monomer such as acrylate; divinylbenzene, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylpropanthry (meth) acrylate, pentaerythritol (meth) acrylate, etc. Crosslinkable monomer; and the like. These ethylenically unsaturated monomers can be used alone or in combination of two or more.
 エチレン性不飽和カルボン酸単量体としては、カルボキシル基を含有するエチレン性不飽和単量体であれば特に限定されないが、たとえば、アクリル酸、メタクリル酸などのエチレン性不飽和モノカルボン酸単量体;イタコン酸、マレイン酸、フマル酸等のエチレン性不飽和多価カルボン酸単量体;無水マレイン酸、無水シトラコン酸等のエチレン性不飽和多価カルボン酸無水物;フマル酸モノブチル、マレイン酸モノブチル、マレイン酸モノ-2-ヒドロキシプロピル等のエチレン性不飽和多価カルボン酸部分エステル単量体;などが挙げられる。これらのなかでも、エチレン性不飽和モノカルボン酸が好ましく、メタクリル酸が特に好ましい。これらのエチレン性不飽和カルボン酸単量体はアルカリ金属塩またはアンモニウム塩として用いることもできる。また、エチレン性不飽和カルボン酸単量体は単独で、または2種以上を組合せて用いることができる。ニトリル基含有共役ジエン系共重合体中における、エチレン性不飽和カルボン酸単量体により形成されるエチレン性不飽和カルボン酸単量体単位の含有割合は、好ましくは2~5重量%であり、より好ましくは2~4.5重量%、さらに好ましくは2.5~4.5重量%である。エチレン性不飽和カルボン酸単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体を、引裂強度を十分なものとしながら、風合いにより優れたものとすることができる。 The ethylenically unsaturated carboxylic acid monomer is not particularly limited as long as it is an ethylenically unsaturated monomer containing a carboxyl group, but for example, a single amount of an ethylenically unsaturated monocarboxylic acid such as acrylic acid or methacrylic acid. Body; Esterically unsaturated polycarboxylic acid monomer such as itaconic acid, maleic acid, fumaric acid; Ethyl unsaturated polycarboxylic acid anhydride such as maleic anhydride, citraconic anhydride; monobutyl fumarate, maleic acid Examples thereof include ethylenically unsaturated polyvalent carboxylic acid partial ester monomers such as monobutyl and mono-2-hydroxypropyl maleate. Among these, ethylenically unsaturated monocarboxylic acid is preferable, and methacrylic acid is particularly preferable. These ethylenically unsaturated carboxylic acid monomers can also be used as alkali metal salts or ammonium salts. Further, the ethylenically unsaturated carboxylic acid monomer can be used alone or in combination of two or more. The content ratio of the ethylenically unsaturated carboxylic acid monomer unit formed by the ethylenically unsaturated carboxylic acid monomer in the nitrile group-containing conjugated diene-based copolymer is preferably 2 to 5% by weight. It is more preferably 2 to 4.5% by weight, still more preferably 2.5 to 4.5% by weight. By setting the content of the ethylenically unsaturated carboxylic acid monomer unit in the above range, the obtained film molded product such as a dip molded product should have a sufficient tear strength and a better texture. Can be done.
 ニトリル基含有共役ジエン系共重合体中における、その他のエチレン性不飽和単量体により形成されるその他の単量体単位の含有割合は、好ましくは10重量%以下であり、より好ましくは5重量%以下、さらに好ましくは3重量%以下である。 The content ratio of the other monomer unit formed by the other ethylenically unsaturated monomer in the nitrile group-containing conjugated diene-based copolymer is preferably 10% by weight or less, more preferably 5% by weight. % Or less, more preferably 3% by weight or less.
 ニトリル基含有共役ジエン系共重合体は、上述した単量体を含有してなる単量体混合物を共重合することにより得られるが、乳化重合により共重合する方法が好ましい。乳化重合方法としては、従来公知の方法を採用することができる。 The nitrile group-containing conjugated diene-based copolymer can be obtained by copolymerizing a monomer mixture containing the above-mentioned monomer, and a method of copolymerizing by emulsion polymerization is preferable. As the emulsion polymerization method, a conventionally known method can be adopted.
 上述した単量体を含有してなる単量体混合物を乳化重合する際には、通常用いられる、乳化剤、重合開始剤、分子量調整剤等の重合副資材を使用することができる。これら重合副資材の添加方法は特に限定されず、初期一括添加法、分割添加法、連続添加法などいずれの方法でもよい。 When emulsion-polymerizing a monomer mixture containing the above-mentioned monomer, commonly used polymerization auxiliary materials such as an emulsifier, a polymerization initiator, and a molecular weight modifier can be used. The method of adding these polymerization auxiliary materials is not particularly limited, and any method such as an initial batch addition method, a split addition method, or a continuous addition method may be used.
 乳化剤としては、特に限定されないが、たとえば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性乳化剤;ドデシルベンゼンスルホン酸カリウム、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、高級アルコール硫酸エステル塩、アルキルスルホコハク酸塩等のアニオン性乳化剤;アルキルトリメチルアンモニウムクロライド、ジアルキルアンモニウムクロライド、ベンジルアンモニウムクロライド等のカチオン性乳化剤;α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の共重合性乳化剤などを挙げることができる。なかでも、アニオン性乳化剤が好ましく、アルキルベンゼンスルホン酸塩がより好ましく、ドデシルベンゼンスルホン酸カリウムおよびドデシルベンゼンスルホン酸ナトリウムが特に好ましい。これらの乳化剤は、単独で、または2種以上を組合せて用いることができる。乳化剤の使用量は、単量体混合物100重量部に対して、好ましくは0.1~10重量部である。 The emulsifier is not particularly limited, but is, for example, a nonionic emulsifier such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester; potassium dodecylbenzenesulfonate, dodecylbenzene. Anionic emulsifiers such as alkylbenzene sulfonates such as sodium sulfonate, higher alcohol sulfates, alkyl sulfosuccinates; cationic emulsifiers such as alkyltrimethylammonium chloride, dialkylammonium chloride, benzylammonium chloride; α, β-unsaturated Examples thereof include sulfoesters of carboxylic acids, sulfate esters of α, β-unsaturated carboxylic acids, copolymerizable emulsifiers such as sulfoalkylaryl ethers, and the like. Among them, an anionic emulsifier is preferable, alkylbenzene sulfonate is more preferable, and potassium dodecylbenzene sulfonate and sodium dodecylbenzene sulfonate are particularly preferable. These emulsifiers can be used alone or in combination of two or more. The amount of the emulsifier used is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the monomer mixture.
 重合開始剤としては、特に限定されないが、たとえば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、ジ-α-クミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスイソ酪酸メチル等のアゾ化合物;などを挙げることができる。これらの重合開始剤は、それぞれ単独で、または2種類以上を組み合わせて使用することができる。重合開始剤の使用量は、単量体混合物100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.01~2重量部である。 The polymerization initiator is not particularly limited, and is, for example, an inorganic peroxide such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide; diisopropylbenzene hydroperoxide, cumene hydroperoxide, etc. t-Butylhydroperoxide, 1,1,3,3-tetramethylbutylhydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, di-t-butyl peroxide, di-α- Organic peroxides such as cumyl peroxide, acetyl peroxide, isobutyryl peroxide, benzoyl peroxide; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, methyl azobisisobutyrate; etc. Can be mentioned. These polymerization initiators can be used alone or in combination of two or more. The amount of the polymerization initiator used is preferably 0.01 to 10 parts by weight, more preferably 0.01 to 2 parts by weight, based on 100 parts by weight of the monomer mixture.
 また、過酸化物開始剤は還元剤との組み合わせで、レドックス系重合開始剤として使用することができる。この還元剤としては、特に限定されないが、硫酸第一鉄、ナフテン酸第一銅等の還元状態にある金属イオンを含有する化合物;メタンスルホン酸ナトリウム等のスルホン酸化合物;ジメチルアニリン等のアミン化合物;などが挙げられる。これらの還元剤は単独で、または2種以上を組合せて用いることができる。還元剤の使用量は、過酸化物100重量部に対して3~1000重量部であることが好ましい。 In addition, the peroxide initiator can be used as a redox-based polymerization initiator in combination with a reducing agent. The reducing agent is not particularly limited, but is a compound containing a metal ion in a reduced state such as ferrous sulfate and ferrous naphthenate; a sulfonic acid compound such as sodium methanesulfonate; an amine compound such as dimethylaniline. ; And so on. These reducing agents can be used alone or in combination of two or more. The amount of the reducing agent used is preferably 3 to 1000 parts by weight with respect to 100 parts by weight of the peroxide.
 乳化重合する際に使用する水の量は、使用する全単量体100重量部に対して、80~600重量部が好ましく、100~200重量部が特に好ましい。 The amount of water used for emulsion polymerization is preferably 80 to 600 parts by weight, particularly preferably 100 to 200 parts by weight, based on 100 parts by weight of all the monomers used.
 単量体の添加方法としては、たとえば、反応容器に使用する単量体を一括して添加する方法、重合の進行に従って連続的または断続的に添加する方法、単量体の一部を添加して特定の転化率まで反応させ、その後、残りの単量体を連続的または断続的に添加して重合する方法等が挙げられ、いずれの方法を採用してもよい。単量体を混合して連続的または断続的に添加する場合、混合物の組成は、一定としても、あるいは変化させてもよい。また、各単量体は、使用する各種単量体を予め混合してから反応容器に添加しても、あるいは別々に反応容器に添加してもよい。 Examples of the method for adding the monomer include a method of collectively adding the monomers used in the reaction vessel, a method of continuously or intermittently adding the monomers as the polymerization progresses, and a method of adding a part of the monomers. Then, the reaction is carried out to a specific conversion rate, and then the remaining monomer is continuously or intermittently added to polymerize, and any of these methods may be adopted. When the monomers are mixed and added continuously or intermittently, the composition of the mixture may be constant or variable. Further, each monomer may be added to the reaction vessel after mixing various monomers to be used in advance, or may be added to the reaction vessel separately.
 さらに、必要に応じて、キレート剤、分散剤、pH調整剤、脱酸素剤、粒子径調整剤等の重合副資材を用いることもでき、これらは種類、使用量とも特に限定されない。 Further, if necessary, polymerization auxiliary materials such as a chelating agent, a dispersant, a pH adjusting agent, an oxygen scavenger, and a particle size adjusting agent can be used, and these are not particularly limited in terms of type and amount used.
 乳化重合を行う際の重合温度は、特に限定されないが、通常、3~95℃、好ましくは5~60℃である。重合時間は5~40時間程度である。 The polymerization temperature at the time of performing emulsion polymerization is not particularly limited, but is usually 3 to 95 ° C, preferably 5 to 60 ° C. The polymerization time is about 5 to 40 hours.
 以上のように単量体混合物を乳化重合し、所定の重合転化率に達した時点で、重合系を冷却したり、重合停止剤を添加したりして、重合反応を停止する。重合反応を停止する際の重合転化率は、好ましくは90重量%以上、より好ましくは93重量%以上である。 As described above, the monomer mixture is emulsion-polymerized, and when the predetermined polymerization conversion rate is reached, the polymerization system is cooled or a polymerization inhibitor is added to stop the polymerization reaction. The polymerization conversion rate when the polymerization reaction is stopped is preferably 90% by weight or more, more preferably 93% by weight or more.
 重合停止剤としては、特に限定されないが、たとえば、ヒドロキシルアミン、ヒドロキシアミン硫酸塩、ジエチルヒドロキシルアミン、ヒドロキシアミンスルホン酸およびそのアルカリ金属塩、ジメチルジチオカルバミン酸ナトリウム、ハイドロキノン誘導体、カテコール誘導体、ならびに、ヒドロキシジメチルベンゼンチオカルボン酸、ヒドロキシジエチルベンゼンジチオカルボン酸、ヒドロキシジブチルベンゼンジチオカルボン酸などの芳香族ヒドロキシジチオカルボン酸およびこれらのアルカリ金属塩などが挙げられる。重合停止剤の使用量は、単量体混合物100重量部に対して、好ましくは0.05~2重量部である。 The polymerization terminator is not particularly limited, and is, for example, hydroxylamine, hydroxyamine sulfate, diethylhydroxylamine, hydroxyamine sulfonic acid and its alkali metal salt, sodium dimethyldithiocarbamate, hydroquinone derivative, catechol derivative, and hydroxydimethyl. Examples thereof include aromatic hydroxydithiocarboxylic acids such as benzenethiocarboxylic acid, hydroxydiethylbenzenedithiocarboxylic acid, and hydroxydibutylbenzenedithiocarboxylic acid, and alkali metal salts thereof. The amount of the polymerization inhibitor used is preferably 0.05 to 2 parts by weight with respect to 100 parts by weight of the monomer mixture.
 重合反応を停止した後、所望により、未反応の単量体を除去し、固形分濃度やpHを調整することで、ニトリル基含有共役ジエン系共重合体のラテックスを得ることができる。 After stopping the polymerization reaction, if desired, the unreacted monomer is removed and the solid content concentration and pH are adjusted to obtain a latex of a nitrile group-containing conjugated diene-based copolymer.
 また、ニトリル基含有共役ジエン系共重合体のラテックスには、必要に応じて、老化防止剤、防腐剤、抗菌剤、分散剤などを適宜添加してもよい。 Further, an antiaging agent, a preservative, an antibacterial agent, a dispersant and the like may be appropriately added to the latex of the nitrile group-containing conjugated diene copolymer, if necessary.
 ニトリル基含有共役ジエン系共重合体のラテックスの数平均粒子径は、好ましくは60~300nm、より好ましくは80~150nmである。粒子径は、乳化剤および重合開始剤の使用量を調節するなどの方法により、所望の値に調整することができる。 The number average particle size of the latex of the nitrile group-containing conjugated diene copolymer is preferably 60 to 300 nm, more preferably 80 to 150 nm. The particle size can be adjusted to a desired value by a method such as adjusting the amount of the emulsifier and the polymerization initiator used.
 本発明で用いる共役ジエン系重合体としては、上述したように、合成ポリイソプレン、スチレン-イソプレン-スチレンブロック共重合体(SIS)、ニトリル基含有共役ジエン系共重合体などを用いることができるが、これらに限定されず、ブタジエン重合体、スチレン-ブタジエン共重合体などを用いてもよい。 As the conjugated diene polymer used in the present invention, as described above, synthetic polyisoprene, styrene-isoprene-styrene block copolymer (SIS), nitrile group-containing conjugated diene polymer and the like can be used. , Butadiene polymer, styrene-butadiene copolymer and the like may be used.
 ブタジエン重合体は、共役ジエン単量体としての1,3-ブタジエンの単独重合体であってもよいし、共役ジエン単量体としての1,3-ブタジエンと共重合可能な他のエチレン性不飽和単量体とを共重合してなる共重合体であってもよい。 The butadiene polymer may be a homopolymer of 1,3-butadiene as a conjugated diene monomer, or another ethylenically non-polymerizable copolymer with 1,3-butadiene as a conjugated diene monomer. It may be a copolymer obtained by copolymerizing with a saturated monomer.
 また、スチレン-ブタジエン共重合体は、共役ジエン単量体としての1,3-ブタジエンにスチレンを共重合してなる共重合体であり、これらに加えて、必要に応じて用いられる、これらと共重合可能な他のエチレン性不飽和単量体を共重合してなる共重合体であってもよい。 The styrene-butadiene copolymer is a copolymer obtained by copolymerizing 1,3-butadiene as a conjugated diene monomer with styrene, and in addition to these, it is used as needed. It may be a copolymer obtained by copolymerizing another copolymerizable ethylenically unsaturated monomer.
 さらに、本発明で用いるカルボキシ変性重合体のラテックスを得るための重合体ラテックスとしては、上述した共役ジエン系重合体のラテックス以外に、蛋白質を除去した天然ゴム(脱蛋白質天然ゴム)のラテックスを用いることもできる。脱蛋白質天然ゴムのラテックスとしては、天然ゴムラテックス中の蛋白質を、たとえば、蛋白質分解酵素や界面活性剤などにより分解し、生成した分解物を洗浄や遠心分離などにより除去する方法などの、公知の蛋白質除去法により得られる、いわゆる「脱蛋白質天然ゴムラテックス」として知られているものを用いることができる。
 また、脱蛋白質天然ゴムのラテックスとしては、上述した共役ジエン系重合体のラテックスの固形分濃度と同範囲の固形分濃度に調整したものを用いるのが好ましく、同様の添加剤を添加して調製したものを用いてもよい。
Further, as the polymer latex for obtaining the latex of the carboxy-modified polymer used in the present invention, in addition to the latex of the conjugated diene-based polymer described above, a latex of natural rubber (deproteinized natural rubber) from which proteins have been removed is used. You can also do it. As the latex of deproteinized natural rubber, known methods such as a method of decomposing a protein in a natural rubber latex with a proteolytic enzyme or a surfactant and removing the produced decomposition product by washing or centrifugation are known. What is known as so-called "deproteinized natural rubber latex" obtained by the protein removal method can be used.
Further, as the latex of the deproteinized natural rubber, it is preferable to use one adjusted to the solid content concentration in the same range as the solid content concentration of the latex of the conjugated diene polymer described above, and it is prepared by adding the same additive. You may use the one that has been prepared.
<カルボキシ変性重合体のラテックス>
 本発明で用いるカルボキシ変性重合体のラテックスを構成するカルボキシ変性重合体は、上述した共役ジエン系重合体または脱蛋白質天然ゴムを、カルボキシル基を有する単量体により変性することにより得ることができる。あるいは、共役ジエン系重合体として、エチレン性不飽和カルボン酸単量体単位を含有する重合体を用いる場合には、該共役ジエン系重合体に対してカルボキシル基を有する単量体による変性を行うことなく、該共役ジエン系重合体を、そのままカルボキシ変性重合体として用いることができる。
<Latex of carboxy-modified polymer>
The carboxy-modified polymer constituting the latex of the carboxy-modified polymer used in the present invention can be obtained by modifying the above-mentioned conjugated diene-based polymer or deproteinized natural rubber with a monomer having a carboxyl group. Alternatively, when a polymer containing an ethylenically unsaturated carboxylic acid monomer unit is used as the conjugated diene polymer, the conjugated diene polymer is modified with a monomer having a carboxyl group. The conjugated diene polymer can be used as it is as a carboxy-modified polymer.
 共役ジエン系重合体または脱蛋白質天然ゴムを、カルボキシル基を有する単量体により変性する方法としては、特に限定されないが、たとえば、共役ジエン系重合体または脱蛋白質天然ゴムに、カルボキシル基を有する単量体を水相中でグラフト重合する方法が挙げられる。カルボキシル基を有する単量体を水相中でグラフト重合する方法としては、特に限定されず、従来公知の方法を用いればよいが、たとえば、共役ジエン系重合体または脱蛋白質天然ゴムのラテックスに、カルボキシル基を有する単量体と、有機過酸化物とを添加した後、水相中で、共役ジエン系重合体または脱蛋白質天然ゴムに、カルボキシル基を有する単量体を反応させる方法が好ましい。 The method for modifying the conjugated diene-based polymer or deproteinized natural rubber with a monomer having a carboxyl group is not particularly limited, but for example, the conjugated diene-based polymer or deproteinized natural rubber is simply a simple compound having a carboxyl group. Examples thereof include a method of graft-polymerizing a dimer in an aqueous phase. The method for graft-polymerizing a monomer having a carboxyl group in an aqueous phase is not particularly limited, and a conventionally known method may be used. For example, a conjugated diene polymer or a latex of a deproteinized natural rubber may be used. After adding the monomer having a carboxyl group and the organic peroxide, a method of reacting the monomer having a carboxyl group with the conjugated diene polymer or the deproteinized natural rubber in the aqueous phase is preferable.
 有機過酸化物としては、特に限定されないが、たとえば、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイド等が挙げられるが、得られるディップ成形体の機械的強度向上の観点から、1,1,3,3-テトラメチルブチルハイドロパーオキサイドが特に好ましい。これらの有機過酸化物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The organic peroxide is not particularly limited, but for example, diisopropylbenzene hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, di-t. -Butyl peroxide, isobutylyl peroxide, benzoyl peroxide and the like can be mentioned, but 1,1,3,3-tetramethylbutylhydroperoxide is particularly preferable from the viewpoint of improving the mechanical strength of the obtained dip molded product. .. These organic peroxides may be used alone or in combination of two or more.
 有機過酸化物の添加量は、特に限定されないが、ラテックスに含まれる共役ジエン系重合体または脱蛋白質天然ゴム100重量部に対して、好ましくは0.01~3重量部、より好ましくは0.1~1重量部である。 The amount of the organic peroxide added is not particularly limited, but is preferably 0.01 to 3 parts by weight, more preferably 0. parts by weight, based on 100 parts by weight of the conjugated diene polymer or deproteinized natural rubber contained in the latex. 1 to 1 part by weight.
 また、有機過酸化物は、還元剤との組み合わせで、レドックス系重合開始剤として使用することができる。還元剤としては、特に限定されないが、たとえば、硫酸第一鉄、ナフテン酸第一銅等の還元状態にある金属イオンを含有する化合物;メタンスルホン酸ナトリウム等のスルホン酸化合物;ジメチルアニリン等のアミン化合物;ナトリウムホルムアルデヒドスルホキシレート;等が挙げられる。これらの還元剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 In addition, the organic peroxide can be used as a redox-based polymerization initiator in combination with a reducing agent. The reducing agent is not particularly limited, but for example, a compound containing a metal ion in a reduced state such as ferrous sulfate and ferrous naphthenate; a sulfonic acid compound such as sodium methanesulfonate; an amine such as dimethylaniline. Compounds; sodium formaldehyde sulfoxylate; and the like. These reducing agents may be used alone or in combination of two or more.
 還元剤の添加量は、特に限定されないが、有機過酸化物1重量部に対して0.01~1重量部であることが好ましく、0.2~0.85重量部であることがより好ましい。 The amount of the reducing agent added is not particularly limited, but is preferably 0.01 to 1 part by weight, more preferably 0.2 to 0.85 parts by weight, based on 1 part by weight of the organic peroxide. ..
 有機過酸化物および還元剤の添加方法は、特に限定されず、それぞれ、一括添加、分割添加、連続添加等の公知の添加方法を用いることができる。 The method of adding the organic peroxide and the reducing agent is not particularly limited, and known addition methods such as batch addition, divided addition, and continuous addition can be used, respectively.
 共役ジエン系重合体または脱蛋白質天然ゴムに、カルボキシル基を有する単量体を反応させる際には、分散剤の存在下で反応を行うことが好ましい。 When reacting a monomer having a carboxyl group with a conjugated diene polymer or a deproteinized natural rubber, it is preferable to carry out the reaction in the presence of a dispersant.
 分散剤としては、特に限定されないが、芳香族スルホン酸の誘導体、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、モノアルキルリン酸塩などのアニオン性界面活性剤が好ましく、芳香族スルホン酸の誘導体がより好ましい。なお、上記分散剤は、それぞれ単独で、あるいは2種類以上を組み合わせて使用することができる。 The dispersant is not particularly limited, but is not particularly limited, such as a derivative of aromatic sulfonic acid, a fatty acid salt, an alkylbenzene sulfonate, an alkylsulfosuccinate, an alkylsulfate ester salt, a polyoxyethylene alkyl ether sulfate ester salt, a monoalkyl phosphate salt, and the like. Anionic surfactants are preferred, and aromatic sulfonic acid derivatives are more preferred. The dispersants may be used alone or in combination of two or more.
 芳香族スルホン酸の誘導体としては、特に限定されないが、下記一般式(1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
 (上記一般式(1)中、RおよびRは、それぞれ独立して、水素原子または任意の有機基であり、RおよびRは互いに結合して環構造を形成していてもよい。)
The derivative of the aromatic sulfonic acid is not particularly limited, but a compound represented by the following general formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000001
(In the above general formula (1), R 1 and R 2 are independently hydrogen atoms or arbitrary organic groups, and R 1 and R 2 may be bonded to each other to form a ring structure. .)
 RおよびRが互いに結合しない場合に、RおよびRとなりうる有機基としては、特に限定されないが、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基などの炭素数1~30のアルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などの炭素数3~30のシクロアルキル基;フェニル基、ビフェニル基、ナフチル基、アントラニル基などの炭素数6~30のアリール基;メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、フェノキシ基などの炭素数1~30のアルコキシ基;などが挙げられる。なお、これらの有機基は、置換基を有していてもよく、該置換基の位置としては、任意の位置とすることができる。 When the R 1 and R 2 are not bonded to each other, as the organic group can be an R 1 and R 2, but not limited to, methyl group, ethyl group, n- propyl group, an isopropyl group, n- butyl group, an isobutyl group , Se-butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group and other alkyl groups having 1 to 30 carbon atoms. Cycloalkyl group having 3 to 30 carbon atoms such as cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group and cyclooctyl group; aryl having 6 to 30 carbon atoms such as phenyl group, biphenyl group, naphthyl group and anthranyl group Group: methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, t-butoxy group, n-pentyloxy group, n-hexyloxy group, phenoxy group, etc. An alkoxy group having 1 to 30 carbon atoms; and the like. In addition, these organic groups may have a substituent, and the position of the substituent can be any position.
 また、RおよびRが互いに結合して環構造を形成する場合には、環構造としては、特に限定されないが、芳香族化合物が好ましく、ベンゼン、ナフタレンなどのベンゼン環を有する芳香族化合物がより好ましく、ナフタレンが特に好ましい。なお、これらの環構造は、置換基を有していてもよく、該置換基の位置としては、任意の位置とすることができる。 When R 1 and R 2 are bonded to each other to form a ring structure, the ring structure is not particularly limited, but an aromatic compound is preferable, and an aromatic compound having a benzene ring such as benzene or naphthalene is used. More preferably, naphthalene is particularly preferable. In addition, these ring structures may have a substituent, and the position of the substituent can be any position.
 本発明においては、芳香族スルホン酸の誘導体としては、上記一般式(1)で表される化合物の中でも、特に好ましいものとして、RおよびRが互いに結合して環構造を形成して、上記一般式(1)においてベンゼン環構造を形成しているものが挙げられる。より具体的には、下記一般式(2)で表される構造を有する化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 (上記一般式(2)中、Rは、置換基を有していてもよい2価の炭化水素基である。)
In the present invention, as the derivative of the aromatic sulfonic acid, among the compounds represented by the above general formula (1), as particularly preferable ones, R 1 and R 2 are bonded to each other to form a ring structure. Examples thereof include those having a benzene ring structure in the above general formula (1). More specifically, it is preferable to use a compound having a structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000002
(In the above general formula (2), R 3 is a divalent hydrocarbon group which may have a substituent.)
 上記一般式(2)において、Rは、置換基を有していてもよい2価の炭化水素基であればよく、特に限定されないが、炭素数1~10のアルキレン基が好ましく、メチレン基が特に好ましい。 In the above general formula (2), R 3 may be a divalent hydrocarbon group which may have a substituent, and is not particularly limited, but an alkylene group having 1 to 10 carbon atoms is preferable, and a methylene group is preferable. Is particularly preferable.
 また、芳香族スルホン酸の誘導体としては、上記一般式(2)で表される構造を繰り返して有することが好ましく、上記一般式(2)で表される構造の繰り返し単位数は、特に限定されないが、好ましくは10~100個、より好ましくは20~50個である。 Further, the derivative of the aromatic sulfonic acid preferably has the structure represented by the general formula (2) repeatedly, and the number of repeating units of the structure represented by the general formula (2) is not particularly limited. However, the number is preferably 10 to 100, more preferably 20 to 50.
 芳香族スルホン酸の誘導体の重量平均分子量は、好ましくは500~100,000、より好ましくは3,000~50,000、さらに好ましくは5,000~30,000である。 The weight average molecular weight of the aromatic sulfonic acid derivative is preferably 500 to 100,000, more preferably 3,000 to 50,000, and even more preferably 5,000 to 30,000.
 分散剤の添加量は、特に限定されないが、共役ジエン系重合体または脱蛋白質天然ゴムのラテックスの固形分濃度を高くした場合においても、凝集物の発生をより有効に抑制することがでるという観点より、ラテックスに含まれる共役ジエン系重合体または脱蛋白質天然ゴム100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.1~5重量部である。 The amount of the dispersant added is not particularly limited, but from the viewpoint that the generation of agglomerates can be more effectively suppressed even when the solid content concentration of the latex of the conjugated diene polymer or the deproteinized natural rubber is increased. Therefore, it is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the conjugated diene polymer or deproteinized natural rubber contained in the latex.
 分散剤を、共役ジエン系重合体または脱蛋白質天然ゴムのラテックスに添加する方法としては、特に限定されず、一括添加、分割添加、連続添加等の公知の添加方法を採用することができる。また、分散剤は、直接、ラテックスに添加してもよいし、予め分散剤の水溶液を調製し、調製した分散剤の水溶液をラテックスに添加してもよい。 The method of adding the dispersant to the latex of the conjugated diene polymer or the deproteinized natural rubber is not particularly limited, and known addition methods such as batch addition, divided addition, and continuous addition can be adopted. Further, the dispersant may be added directly to the latex, or an aqueous solution of the dispersant may be prepared in advance and the prepared aqueous solution of the dispersant may be added to the latex.
 共役ジエン系重合体または脱蛋白質天然ゴムにカルボキシル基を有する単量体を反応させる際の反応温度(変性反応温度)は、特に限定されないが、好ましくは15~80℃、より好ましくは15~50℃、さらに好ましくは18~35℃である。カルボキシル基を有する単量体を反応させる際の反応時間(変性反応温度)は、上記反応温度に応じて適宜設定すればよいが、好ましくは30~300分間、より好ましくは45~80分間である。 The reaction temperature (denaturation reaction temperature) at the time of reacting the conjugated diene polymer or the deproteinized natural rubber with the monomer having a carboxyl group is not particularly limited, but is preferably 15 to 80 ° C., more preferably 15 to 50 ° C. ° C., more preferably 18-35 ° C. The reaction time (denaturation reaction temperature) when reacting the monomer having a carboxyl group may be appropriately set according to the above reaction temperature, but is preferably 30 to 300 minutes, more preferably 45 to 80 minutes. ..
 カルボキシル基を有する単量体を反応させる際における、共役ジエン系重合体または脱蛋白質天然ゴムのラテックスの固形分濃度は、特に限定されないが、好ましくは5~60重量%、より好ましくは10~40重量%である。 The solid content concentration of the latex of the conjugated diene polymer or the deproteinized natural rubber when reacting the monomer having a carboxyl group is not particularly limited, but is preferably 5 to 60% by weight, more preferably 10 to 40% by weight. It is% by weight.
 カルボキシル基を有する単量体としては、たとえば、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸単量体;イタコン酸、マレイン酸、フマル酸、ブテントリカルボン酸等のエチレン性不飽和多価カルボン酸単量体;フマル酸モノブチル、マレイン酸モノブチル、マレイン酸モノ2-ヒドロキシプロピル等のエチレン性不飽和多価カルボン酸の部分エステル単量体;無水マレイン酸、無水シトラコン酸等の多価カルボン酸無水物;などを挙げることができるが、本発明の効果がより一層顕著になることから、エチレン性不飽和モノカルボン酸単量体が好ましく、アクリル酸およびメタクリル酸がより好ましく、メタクリル酸が特に好ましい。なお、これらの単量体は1種単独でも、2種以上を併用して用いてもよい。
 また、上記カルボキシル基は、アルカリ金属やアンモニア等との塩になっているものも含まれる。
Examples of the monomer having a carboxyl group include ethylenically unsaturated monocarboxylic acid monomers such as acrylic acid and methacrylic acid; and ethylenically unsaturated polyvalents such as itaconic acid, maleic acid, fumaric acid, and butentricarboxylic acid. Carboxylic acid monomer; Partial ester monomer of ethylenically unsaturated polyvalent carboxylic acid such as monobutyl fumarate, monobutyl maleate, mono2-hydroxypropyl maleate; polyvalent carboxylic acid such as maleic anhydride and citraconic anhydride Acid anhydride; etc. can be mentioned, but since the effect of the present invention becomes more remarkable, an ethylenically unsaturated monocarboxylic acid monomer is preferable, acrylic acid and methacrylic acid are more preferable, and methacrylic acid is preferable. Especially preferable. It should be noted that these monomers may be used alone or in combination of two or more.
Further, the above-mentioned carboxyl group includes those which are salts with alkali metals, ammonia and the like.
 カルボキシル基を有する単量体の使用量は、共役ジエン系重合体または脱蛋白質天然ゴム100重量部に対して、好ましくは0.01重量部~100重量部、より好ましくは0.01重量部~40重量部、さらに好ましくは0.5重量部~20重量部、特に好ましくは1.5~4.5重量部である。カルボキシル基を有する単量体の使用量を上記範囲とすることにより、得られるラテックス組成物の粘度がより適度なものとなり、移送しやすくなるとともに、得られるラテックス組成物を用いて形成されるディップ成形体などの膜成形体の引裂強度がより向上する。 The amount of the monomer having a carboxyl group to be used is preferably 0.01 parts by weight to 100 parts by weight, more preferably 0.01 parts by weight or more, based on 100 parts by weight of the conjugated diene polymer or the deproteinized natural rubber. It is 40 parts by weight, more preferably 0.5 parts by weight to 20 parts by weight, and particularly preferably 1.5 to 4.5 parts by weight. By setting the amount of the monomer having a carboxyl group in the above range, the viscosity of the obtained latex composition becomes more appropriate, the transfer becomes easier, and the dip formed by using the obtained latex composition. The tear strength of a film molded product such as a molded product is further improved.
 カルボキシル基を有する単量体をラテックスに添加する方法としては、特に限定されず、一括添加、分割添加、連続添加等の公知の添加方法を採用することができる。 The method of adding the monomer having a carboxyl group to the latex is not particularly limited, and known addition methods such as batch addition, divided addition, and continuous addition can be adopted.
 また、共役ジエン系重合体または脱蛋白質天然ゴムにカルボキシル基を有する単量体を反応させた後、反応後のラテックスに対して、必要に応じて、後加熱を行ってもよい。後加熱を行うことで、カルボキシル基を有する単量体による変性反応をより進行させることができる。後加熱の温度は、特に限定されないが、上記した共役ジエン系重合体または脱蛋白質天然ゴムにカルボキシル基を有する単量体を反応させる際の反応温度(変性反応温度)と同じか、より高い温度とすることが好ましく、具体的な後加熱温度としては、好ましくは20~85℃、より好ましくは23~60℃、さらに好ましくは20~45℃である。また、後加熱の時間は、後加熱温度に応じて適宜設定すればよいが、好ましくは30~300分間、より好ましくは45~80分間である。 Further, after reacting a conjugated diene polymer or a deproteinized natural rubber with a monomer having a carboxyl group, the latex after the reaction may be post-heated, if necessary. By performing post-heating, the denaturation reaction by the monomer having a carboxyl group can be further advanced. The temperature of the post-heating is not particularly limited, but is the same as or higher than the reaction temperature (modification reaction temperature) when reacting the above-mentioned conjugated diene polymer or deproteinized natural rubber with a monomer having a carboxyl group. The specific post-heating temperature is preferably 20 to 85 ° C, more preferably 23 to 60 ° C, and even more preferably 20 to 45 ° C. The post-heating time may be appropriately set according to the post-heating temperature, but is preferably 30 to 300 minutes, more preferably 45 to 80 minutes.
 カルボキシ変性重合体におけるカルボキシル基を有する単量体による変性率は、得られるラテックス組成物の使用目的に応じて適宜制御すればよいが、好ましくは0.01~10モル%、より好ましくは0.1~5モル%、さらに好ましくは0.2~0.8モル%、特に好ましくは0.3~0.7モル%である。なお、変性率は、下記式(i)で表される。
 変性率(モル%)=(X/Y)×100   ・・・(i)
 なお、上記式(i)においては、Xは、カルボキシ変性重合体中におけるカルボキシル基の数を、Yは、カルボキシ変性重合体の総モノマー単位数をそれぞれ表す。Xは、カルボキシ変性重合体をH-NMRで測定することにより求めることができる。また、Yは、(カルボキシ変性重合体の重量平均分子量(Mw))/(カルボキシ変性重合体を構成する各モノマー単位の含有割合に応じた、モノマーの平均分子量(モノマー混合物の平均分子量))を計算することにより求めることができる。
The modification rate of the carboxy-modified polymer by the monomer having a carboxyl group may be appropriately controlled according to the intended use of the obtained latex composition, but is preferably 0.01 to 10 mol%, more preferably 0. It is 1 to 5 mol%, more preferably 0.2 to 0.8 mol%, and particularly preferably 0.3 to 0.7 mol%. The denaturation rate is represented by the following formula (i).
Degeneration rate (mol%) = (X / Y) x 100 ... (i)
In the above formula (i), X represents the number of carboxyl groups in the carboxy-modified polymer, and Y represents the total number of monomer units of the carboxy-modified polymer. X can be determined by measuring the carboxy-modified polymer by 1 H-NMR. Further, Y is (weight average molecular weight (Mw) of the carboxy-modified polymer) / (average molecular weight of the monomers (average molecular weight of the monomer mixture) according to the content ratio of each monomer unit constituting the carboxy-modified polymer). It can be obtained by calculation.
 なお、グラフト重合の転化率は、好ましくは95重量%以上、より好ましくは97重量%以上である。グラフト重合の転化率を上記範囲とすることにより、得られるディップ成形体などの膜成形体の引裂強度がより向上する。 The conversion rate of the graft polymerization is preferably 95% by weight or more, more preferably 97% by weight or more. By setting the conversion rate of the graft polymerization within the above range, the tear strength of the obtained film molded product such as a dip molded product is further improved.
 本発明で用いるカルボキシ変性重合体のラテックスには、ラテックスの分野で通常配合される、pH調整剤、消泡剤、防腐剤、キレート剤、酸素捕捉剤、分散剤、老化防止剤等の添加剤を配合してもよい。 Additives such as pH adjusters, antifoaming agents, preservatives, chelating agents, oxygen scavengers, dispersants, and antiaging agents, which are usually blended in the latex of the carboxy-modified polymer used in the present invention. May be blended.
 pH調整剤としては、たとえば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;炭酸水素ナトリウムなどのアルカリ金属の炭酸水素塩;アンモニア;トリメチルアミン、トリエタノールアミンなどの有機アミン化合物;等が挙げられるが、アルカリ金属の水酸化物またはアンモニアが好ましい。 Examples of the pH adjuster include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal bicarbonates such as sodium hydrogen carbonate; ammonia. ; Organic amine compounds such as trimethylamine and triethanolamine; etc., but alkali metal hydroxides or ammonia are preferable.
 また、グラフト重合した後、必要に応じ、カルボキシ変性重合体のラテックスの固形分濃度を上げるために、減圧蒸留、常圧蒸留、遠心分離、膜濃縮等の方法で濃縮操作を施してもよいが、カルボキシ変性重合体のラテックス中のアニオン性界面活性剤の残留量を調整することができるという観点より、遠心分離を行うことが好ましい。 Further, after graft polymerization, if necessary, in order to increase the solid content concentration of the latex of the carboxy-modified polymer, a concentration operation may be performed by a method such as vacuum distillation, atmospheric distillation, centrifugation, or membrane concentration. Centrifugation is preferable from the viewpoint that the residual amount of the anionic surfactant in the latex of the carboxy-modified polymer can be adjusted.
 グラフト重合後のカルボキシ変性重合体のラテックスを遠心分離機にかける場合、ラテックスの機械的安定性の向上のため、予めpH調整剤を添加してラテックスのpHを7以上としておくことが好ましく、pHを9以上としておくことがより好ましい。なお、ラテックスのpHを調整した際に、変性により導入したカルボキシル基は、塩の状態になっていてもよい。 When the latex of the carboxy-modified polymer after graft polymerization is centrifuged, it is preferable to add a pH adjuster in advance to set the pH of the latex to 7 or more in order to improve the mechanical stability of the latex. Is more preferably set to 9 or more. When the pH of the latex is adjusted, the carboxyl group introduced by denaturation may be in a salt state.
 カルボキシ変性重合体のラテックスの固形分濃度は、好ましくは30~70重量%、より好ましくは40~70重量%である。固形分濃度を上記範囲とすることにより、ラテックス中における凝集物の発生をより有効に抑制することができるとともに、ラテックスを貯蔵した際における重合体粒子の分離をより有効に抑制することができる。 The solid content concentration of the latex of the carboxy-modified polymer is preferably 30 to 70% by weight, more preferably 40 to 70% by weight. By setting the solid content concentration in the above range, the generation of agglomerates in the latex can be more effectively suppressed, and the separation of polymer particles when the latex is stored can be more effectively suppressed.
 また、カルボキシ変性重合体中のカルボキシル基を有する単量体単位の含有割合は、全単量体単位に対して、好ましくは0.01~50重量%、より好ましくは0.5~40重量%、さらに好ましくは1~30重量%、特に好ましくは1~15重量%である。カルボキシル基を有する単量体単位の含有割合を上記範囲とすることにより、得られるラテックス組成物の機械的安定性がより向上し、さらに、得られるラテックス組成物を用いて形成されるディップ成形体の柔軟性および引裂強度がより向上する。 The content ratio of the monomer unit having a carboxyl group in the carboxy-modified polymer is preferably 0.01 to 50% by weight, more preferably 0.5 to 40% by weight, based on all the monomer units. , More preferably 1 to 30% by weight, and particularly preferably 1 to 15% by weight. By setting the content ratio of the monomer unit having a carboxyl group in the above range, the mechanical stability of the obtained latex composition is further improved, and further, the dip molded product formed by using the obtained latex composition. Flexibility and tear strength are further improved.
 また、本発明においては、カルボキシ変性重合体のラテックスとして、スウェルインデックス(SI)が120~190%であるものを用いるものである。本発明によれば、スウェルインデックス(SI)がこのような範囲にあるカルボキシ変性重合体のラテックスと、キサントゲン化合物とを組み合わせて用いることにより、ディップ成形体などの膜成形体を得た際に、得られるディップ成形体などの膜成形体を、即時型アレルギー(Type I)に加えて遅延型アレルギー(Type IV)の症状の発生を抑制可能であり、引裂強度が高く、柔軟な風合いを備えるものとすることができ、さらには、このようなディップ成形体などの膜成形体を得る際に、熟成(前加硫)時間の短縮が可能であり、高い生産性にてディップ成形体などの膜成形体の製造を可能とすることができるものである。 Further, in the present invention, a latex having a swell index (SI) of 120 to 190% is used as the latex of the carboxy-modified polymer. According to the present invention, when a film molded product such as a dip molded product is obtained by using a latex of a carboxy-modified polymer having a swell index (SI) in such a range in combination with a xanthogen compound, The obtained film molded product such as a dip molded product can suppress the occurrence of delayed type allergy (Type IV) in addition to immediate type allergy (Type I), has high tear strength, and has a flexible texture. Furthermore, when obtaining a film molded product such as a dip molded product, the aging (pre-vulcanization) time can be shortened, and a film such as a dip molded product can be obtained with high productivity. It is possible to manufacture a molded product.
 カルボキシ変性重合体のラテックスのスウェルインデックス(SI)は、カルボキシ変性重合体のラテックスをフィルム化し、得られたカルボキシ変性重合体のフィルムを、25℃のトルエン中に、1時間浸漬させ、トルエン浸漬前後のフィルムの幅を測定し、線膨潤率を測定することにより求めることができる。具体的には、スウェルインデックス(SI)は、下記式にしたがって求めることができる。
  スウェルインデックス(SI)[%]=[{(トルエン浸漬後のフィルムの幅)-(トルエン浸漬前のフィルムの幅)}/(トルエン浸漬前のフィルムの幅)]×100
The swell index (SI) of the latex of the carboxy-modified polymer is obtained by forming the latex of the carboxy-modified polymer into a film, and immersing the obtained film of the carboxy-modified polymer in toluene at 25 ° C. for 1 hour before and after immersion in toluene. It can be obtained by measuring the width of the film and measuring the linear swelling rate. Specifically, the swell index (SI) can be obtained according to the following formula.
Swell index (SI) [%] = [{(width of film after immersion in toluene)-(width of film before immersion in toluene)} / (width of film before immersion in toluene)] × 100
 なお、カルボキシ変性重合体のラテックスのスウェルインデックス(SI)を測定するための測定用のフィルムの作製方法としては、たとえば、以下のディップ法を採用することができる。
 すなわち、ディップ法においては、まず、カルボキシ変性重合体のラテックスに対し、酸またはアルカリを添加し、pH=8.2に調整する。そして、表面がすり加工されたセラミック製の成形型を準備し、これを洗浄し、70℃のオーブン内で30分間予備加熱した後、18重量%の硝酸カルシウムおよび0.05重量%のポリオキシエチレンラウリルエーテル(商品名「エマルゲン109P」、花王社製)を含有する凝固剤水溶液に、予備加熱したセラミック製の成形型を5秒間浸漬する。そして、凝固剤水溶液から、セラミック製の成形型を取り出し、凝固剤で被覆されたセラミック製の成形型を70℃のオーブン内で20分間乾燥する。次いで、凝固剤で被覆されたセラミック製の成形型をオーブンから取り出し、取り出したセラミック製の成形型を、pH=8.2に調整したカルボキシ変性重合体のラテックス中に、25℃、10秒間の条件にて浸漬させた後取り出し、カルボキシ変性重合体のラテックスで被覆されたセラミック製の成形型を60℃の温水中に5分間浸漬した後、室温で6時間乾燥することで、測定用のフィルムで被覆されたセラミック製の成形型を得る。そして、これにタルクを散布した後、測定用のフィルムを、セラミック製の成形型から剥離することで、測定用のフィルムを得ることができる。なお、測定用のフィルムの厚みは、特に限定されないが、0.2mm程度とすることが好ましい。
As a method for producing a film for measurement for measuring the swell index (SI) of the latex of the carboxy-modified polymer, for example, the following dip method can be adopted.
That is, in the dip method, first, an acid or an alkali is added to the latex of the carboxy-modified polymer to adjust the pH to 8.2. Then, a ceramic mold with a ground surface was prepared, washed, preheated in an oven at 70 ° C. for 30 minutes, and then 18% by weight of calcium nitrate and 0.05% by weight of polyoxy. A preheated ceramic mold is immersed in an aqueous coagulant containing ethylene lauryl ether (trade name "Emargen 109P", manufactured by Kao Corporation) for 5 seconds. Then, the ceramic mold is taken out from the coagulant aqueous solution, and the ceramic mold coated with the coagulant is dried in an oven at 70 ° C. for 20 minutes. Next, the ceramic mold coated with the coagulant was taken out from the oven, and the removed ceramic mold was placed in the latex of the carboxy-modified polymer adjusted to pH = 8.2 at 25 ° C. for 10 seconds. A film for measurement is taken out after being immersed under the conditions, and a ceramic mold coated with a latex of a carboxy-modified polymer is immersed in warm water at 60 ° C. for 5 minutes and then dried at room temperature for 6 hours. Obtain a ceramic mold coated with. Then, after spraying talc on this, the film for measurement can be obtained by peeling the film for measurement from the ceramic molding die. The thickness of the film for measurement is not particularly limited, but is preferably about 0.2 mm.
 本発明においては、カルボキシ変性重合体のラテックスのスウェルインデックス(SI)は、120~190%であればよいが、熟成(前加硫)時間を、たとえば24時間と短い時間とした場合における、引裂強度の安定性により優れたものとするという観点より、スウェルインデックス(SI)は、好ましくは127~165%であり、より好ましくは130~160%、さらに好ましくは140~160%である。カルボキシ変性重合体のラテックスとして、スウェルインデックス(SI)が120%未満あるいは190%超であるものを用いると、引裂強度などの機械強度を十分なものとするためには、熟成(前加硫)時間を長くする必要があり、そのため、生産性に劣るものとなってしまう。 In the present invention, the swell index (SI) of the latex of the carboxy-modified polymer may be 120 to 190%, but tearing occurs when the aging (pre-vulcanization) time is as short as 24 hours, for example. From the viewpoint of making the strength stability more excellent, the swell index (SI) is preferably 127 to 165%, more preferably 130 to 160%, and further preferably 140 to 160%. When a latex having a swell index (SI) of less than 120% or more than 190% is used as the latex of the carboxy-modified polymer, aging (pre-vulcanization) is performed in order to obtain sufficient mechanical strength such as tear strength. It takes a long time, which makes it less productive.
 なお、カルボキシ変性重合体のラテックスのスウェルインデックス(SI)を上記範囲に調整する方法としては特に限定されないが、たとえば、共役ジエン系重合体または脱蛋白質天然ゴムにカルボキシル基を有する単量体を反応させる際の反応温度(変性反応温度)や反応時間(変性反応時間)を調整する方法、反応後のラテックスに対して後加熱の有無を選択する方法、反応後のラテックスに対して後加熱を行う際にける後加熱温度および後加熱時間を調整する方法、変性反応に用いる、カルボキシル基を有する単量体の種類および使用量を調整する方法、さらには、変性反応において、有機過酸化物と組み合わせて用いる還元剤の種類および使用量を調整する方法などが挙げられ、これらを適宜組み合わせて調整することが望ましい。 The method for adjusting the swell index (SI) of the latex of the carboxy-modified polymer is not particularly limited, but for example, a conjugated diene polymer or a monomer having a carboxyl group is reacted with a deproteinized natural rubber. A method of adjusting the reaction temperature (denaturation reaction temperature) and the reaction time (denaturation reaction time) at the time of aging, a method of selecting the presence or absence of post-heating of the polymer after the reaction, and post-heating of the polymer after the reaction. A method of adjusting the post-heating temperature and the post-heating time, a method of adjusting the type and amount of the monomer having a carboxyl group used in the modification reaction, and a method of combining with an organic peroxide in the modification reaction. Examples thereof include a method of adjusting the type and amount of the reducing agent used, and it is desirable to appropriately combine and adjust these.
 また、本発明で用いるカルボキシ変性重合体のラテックスは、スウェルインデックス(SI)が上記範囲にあることに加えて、トルエン不溶解分量が、55~85重量%であることが好ましく、60~80重量%であることがより好ましく、65~80重量%であることがさらに好ましい。トルエン不溶解分量が上記範囲にあることで、本発明の作用効果をより一層顕著なものとすることができる。 Further, the latex of the carboxy-modified polymer used in the present invention preferably has a swell index (SI) in the above range and a toluene insoluble content of 55 to 85% by weight, preferably 60 to 80% by weight. It is more preferably%, and further preferably 65 to 80% by weight. When the amount of toluene insoluble is in the above range, the action and effect of the present invention can be made even more remarkable.
 カルボキシ変性重合体のラテックスのトルエン不溶解分量は、次の方法により測定することができる。
 すなわち、まず、カルボキシ変性重合体のラテックスに対し、酸またはアルカリを添加し、pH=8.2に調整する。そして、pH=8.2に調整したカルボキシ変性重合体のラテックスを、表面が平滑なガラス板上に、キャストし、次いで、25℃で、120時間乾燥することで、キャスト法により、測定用のフィルムを得ることができる。なお、測定用のフィルムの厚みは、特に限定されないが、0.2mm程度とすることが好ましい。そして、このようにして得られた測定用のフィルムについて重量(この重量を「W1」とする。)を測定した後、25℃のトルエン中に、24時間浸漬させる。次いで、浸漬後のフィルムを、100℃、24時間乾燥して、トルエンを除去する。そして、トルエン除去後のフィルムについて、重量(この重量を「W2」とする。)を測定し、これらの重量の測定結果より、下記式に従って、トルエン不溶解分量を測定することができる。
  トルエン不溶解分量[重量%]=(W2/W1)×100
 なお、カルボキシ変性重合体のラテックスのトルエン不溶解分量を上記範囲に調整する方法としては特に限定されないが、たとえば、共役ジエン系重合体または脱蛋白質天然ゴムにカルボキシル基を有する単量体を反応させる際の反応温度(変性反応温度)や反応時間(変性反応時間)を調整する方法、反応後のラテックスに対して後加熱の有無を選択する方法、反応後のラテックスに対して後加熱を行う際にける後加熱温度および後加熱時間を調整する方法、変性反応に用いる、カルボキシル基を有する単量体の種類および使用量を調整する方法、さらには、変性反応において、有機過酸化物と組み合わせて用いる還元剤の種類および使用量を調整する方法などが挙げられ、これらを適宜組み合わせて調整することが望ましい。
The toluene-insoluble content of the latex of the carboxy-modified polymer can be measured by the following method.
That is, first, an acid or an alkali is added to the latex of the carboxy-modified polymer to adjust the pH to 8.2. Then, the latex of the carboxy-modified polymer adjusted to pH = 8.2 is cast on a glass plate having a smooth surface, and then dried at 25 ° C. for 120 hours for measurement by the casting method. You can get the film. The thickness of the film for measurement is not particularly limited, but is preferably about 0.2 mm. Then, the weight of the film for measurement thus obtained (this weight is referred to as "W1") is measured, and then the film is immersed in toluene at 25 ° C. for 24 hours. The soaked film is then dried at 100 ° C. for 24 hours to remove toluene. Then, the weight (this weight is referred to as "W2") of the film after removing toluene is measured, and the amount of toluene insoluble can be measured from the measurement results of these weights according to the following formula.
Toluene insoluble amount [% by weight] = (W2 / W1) × 100
The method for adjusting the toluene insoluble amount of the latex of the carboxy-modified polymer to the above range is not particularly limited, but for example, a conjugated diene polymer or a deproteinized natural rubber is reacted with a monomer having a carboxyl group. A method of adjusting the reaction temperature (denaturation reaction temperature) and reaction time (denaturation reaction time), a method of selecting the presence or absence of post-heating of the polymer after the reaction, and a method of post-heating the latex after the reaction. A method of adjusting the post-heating temperature and post-heating time of the squeezing, a method of adjusting the type and amount of the monomer having a carboxyl group used in the denaturation reaction, and further, in the denaturation reaction, in combination with an organic peroxide. Examples thereof include a method of adjusting the type of reducing agent to be used and the amount of the reducing agent used, and it is desirable to appropriately combine and adjust these.
 また、本発明で用いるカルボキシ変性重合体のラテックスは、スウェルインデックス(SI)が上記範囲にあることに加えて、THFに対する膨潤率が、5~40倍であることが好ましく、10~35倍であることがより好ましく、10~30倍であることがさらに好ましい。THFに対する膨潤率が上記範囲にあることで、本発明の作用効果をより一層顕著なものとすることができる。 Further, the latex of the carboxy-modified polymer used in the present invention preferably has a swell index (SI) in the above range and a swelling rate with respect to THF of 5 to 40 times, preferably 10 to 35 times. It is more preferable that there is, and it is further preferable that it is 10 to 30 times. When the swelling rate with respect to THF is in the above range, the action and effect of the present invention can be made even more remarkable.
 カルボキシ変性重合体のラテックスのTHFに対する膨潤率は、次の方法により測定することができる。
 すなわち、まず、上記したトルエン不溶解分量の測定の場合と同様にして、キャスト法により測定用のフィルムを得て、得られた測定用のフィルムを、25℃のテトラヒドロフラン(THF)中に、24時間浸漬させ、浸漬させたフィルムを引き上げて、すぐに重量(重量A)を測定した。その後、浸漬したフィルムを100℃にて24時間乾燥し、フィルムの乾燥重量(重量B)を測定する。そして、測定結果に基づいて、THFに対する膨潤率を、下記式にしたがって求めることができる。
  THFに対する膨潤率(倍)=B/A
The swelling rate of the latex of the carboxy-modified polymer with respect to THF can be measured by the following method.
That is, first, a film for measurement was obtained by a casting method in the same manner as in the case of the above-mentioned measurement of the amount of toluene insoluble, and the obtained film for measurement was placed in tetrahydrofuran (THF) at 25 ° C. at 24 ° C. The film was soaked for a long time, the soaked film was pulled up, and the weight (weight A) was immediately measured. Then, the dipped film is dried at 100 ° C. for 24 hours, and the dry weight (weight B) of the film is measured. Then, based on the measurement result, the swelling rate with respect to THF can be obtained according to the following formula.
Swelling rate (times) with respect to THF = B / A
 さらに、本発明で用いるカルボキシ変性重合体のラテックスは、スウェルインデックス(SI)が上記範囲にあることに加えて、THF不溶解分量が、80~100重量%であることが好ましく、83~99重量%であることがより好ましく、85~98重量%であることがさらに好ましい。THF不溶解分量が上記範囲にあることで、本発明の作用効果をより一層顕著なものとすることができる。 Further, the latex of the carboxy-modified polymer used in the present invention preferably has a swell index (SI) in the above range and a THF insoluble content of 80 to 100% by weight, preferably 83 to 99% by weight. It is more preferably%, and further preferably 85 to 98% by weight. When the amount of THF insoluble is in the above range, the action and effect of the present invention can be made even more remarkable.
 カルボキシ変性重合体のラテックスのTHF不溶解分量は、次の方法により測定することができる。
 すなわち、まず、上記したトルエン不溶解分量の測定の場合と同様にして、キャスト法により測定用のフィルムを得て、得られた測定用のフィルムについて重量(この重量を「W3」とする。)を測定した後、25℃のテトラヒドロフラン(THF)中に、24時間浸漬させる。次いで、浸漬後のフィルムを、100℃、24時間乾燥して、THFを除去する。そして、THF除去後のフィルムについて、重量(この重量を「W4」とする。)を測定し、これらの重量の測定結果より、下記式に従って、THF不溶解分量を測定することができる。
  THF不溶解分量[重量%]=(W4/W3)×100
The THF-insoluble content of the latex of the carboxy-modified polymer can be measured by the following method.
That is, first, in the same manner as in the case of the above-mentioned measurement of the amount of toluene insoluble, a film for measurement is obtained by the casting method, and the weight of the obtained film for measurement (this weight is referred to as "W3"). After measuring, the film is immersed in tetrahydrofuran (THF) at 25 ° C. for 24 hours. The soaked film is then dried at 100 ° C. for 24 hours to remove THF. Then, the weight (this weight is referred to as "W4") of the film after removing THF is measured, and the amount of THF insoluble can be measured from the measurement results of these weights according to the following formula.
THF insoluble amount [% by weight] = (W4 / W3) × 100
<キサントゲン化合物>
 本発明のラテックス組成物は、上述したカルボキシ変性重合体のラテックスに加えて、キサントゲン化合物を含有する。
<Xanthate compound>
The latex composition of the present invention contains a xanthate compound in addition to the latex of the carboxy-modified polymer described above.
 本発明で用いるキサントゲン化合物は、たとえば、硫黄系加硫剤と組み合わせて用いた場合に、加硫促進剤として作用することができる。すなわち、ラテックス組成物について、硫黄系加硫剤を配合し、ラテックス組成物中のカルボキシ変性重合体を硫黄系加硫剤により加硫して、ディップ成形体などの膜成形体とする場合に、キサントゲン化合物は、加硫促進剤として作用する。また、キサントゲン化合物は、硫黄系加硫剤が配合されたラテックス組成物に対して、加硫促進剤として作用し、加硫が行われた後に、加硫時に加わる熱等により、アルコールおよび二硫化炭素等に分解されるものである。たとえば、キサントゲン化合物は、膜成形体を製造する際に加わる熱(カルボキシ変性重合体を加硫させる際における100~130℃程度の熱)によって、アルコールおよび二硫化炭素等に分解され、さらに、分解により生成した成分(アルコールおよび二硫化炭素等)が揮発する。これにより、得られる膜成形体について、キサントゲン化合物の残留量を低減することができる。本発明によれば、従来、遅延型アレルギー(Type IV)の症状の発生原因となっていた加硫促進剤(たとえば、ジチオカルバミン酸塩系加硫促進剤、チアゾール系加硫促進剤など)を使用することなく、キサントゲン化合物を加硫促進剤として使用し、これにより、得られるディップ成形体などの膜成形体におけるキサントゲン化合物の残留量を低減させることができるため、得られる膜成形体について、遅延型アレルギー(Type IV)の症状の発生を抑制することが可能となる。しかも、本発明のラテックス組成物においては、共役ジエン系重合体等の合成ゴムまたは脱蛋白質天然ゴムを用いたカルボキシ変性重合体を使用しているため、得られる膜成形体について、天然ゴムに含まれる蛋白質に起因する即時型アレルギー(Type I)の症状の発生をも抑制することができる。 The xanthate compound used in the present invention can act as a vulcanization accelerator when used in combination with a sulfur-based vulcanization agent, for example. That is, when a sulfur-based vulcanizing agent is blended in the latex composition and the carboxy-modified polymer in the latex composition is vulcanized with the sulfur-based vulcanizing agent to obtain a film molded body such as a dip molded body. The xanthogen compound acts as a vulcanization accelerator. In addition, the xanthogen compound acts as a vulcanization accelerator on a latex composition containing a sulfur-based vulcanizing agent, and after vulcanization is performed, alcohol and disulfide are generated by heat applied during vulcanization. It is decomposed into carbon and the like. For example, a xanthate compound is decomposed into alcohol, carbon disulfide, etc. by the heat applied when producing a film-formed body (heat of about 100 to 130 ° C. when vulcanizing a carboxy-modified polymer), and further decomposed. The components (alcohol, carbon disulfide, etc.) produced by the above volatilize. Thereby, the residual amount of the xanthate compound can be reduced in the obtained film molded product. According to the present invention, a vulcanization accelerator (for example, a dithiocarbamate-based vulcanization accelerator, a thiazole-based vulcanization accelerator, etc.) that has conventionally caused the occurrence of delayed type allergy (Type IV) symptoms is used. However, the xanthate compound can be used as a vulcanization accelerator, whereby the residual amount of the xanthate compound in the obtained film-molded product such as a dip-molded product can be reduced, so that the obtained film-molded product is delayed. It is possible to suppress the occurrence of symptoms of type allergy (Type IV). Moreover, since the latex composition of the present invention uses a synthetic rubber such as a conjugated diene polymer or a carboxy-modified polymer using a deproteinized natural rubber, the obtained film-formed product is included in the natural rubber. It is also possible to suppress the occurrence of symptoms of immediate type allergy (Type I) caused by the protein.
 本発明で用いるキサントゲン化合物としては、特に限定されないが、たとえば、キサントゲン酸、キサントゲン酸塩などが挙げられる。 The xanthogen compound used in the present invention is not particularly limited, and examples thereof include xanthate acid and xanthogenate.
 キサントゲン酸塩としては、キサントゲン酸構造を有する塩化合物であればよく、特に限定されないが、キサントゲン酸の金属塩であることが好ましく、なかでも、一般式(ROC(=S)S)x-Z(ここで、Rは直鎖状または分岐状の炭化水素、Zは金属原子である。xはZの原子価と一致する数で、通常1~4、好ましくは2~4、特に好ましくは2である。)で表される化合物が好適である。また、キサントゲン酸の金属塩の中でも、キサントゲン酸の亜鉛塩がより好ましい。 The xanthogenate may be a salt compound having a xanthate structure, and is not particularly limited, but is preferably a metal salt of xanthate, and among them, the general formula (ROC (= S) S) xZ. (Here, R is a linear or branched hydrocarbon, Z is a metal atom. X is a number corresponding to the valence of Z, and is usually 1 to 4, preferably 2 to 4, particularly preferably 2. The compound represented by) is preferable. Further, among the metal salts of xanthate, the zinc salt of xanthate is more preferable.
 上記一般式(ROC(=S)S)x-Zで表されるキサントゲン酸塩としては、特に限定されないが、たとえば、ジメチルキサントゲン酸亜鉛、ジエチルキサントゲン酸亜鉛、ジプロピルキサントゲン酸亜鉛、ジイソプロピルキサントゲン酸亜鉛、ジブチルキサントゲン酸亜鉛、ジペンチルキサントゲン酸亜鉛、ジヘキシルキサントゲン酸亜鉛、ジヘプチルキサントゲン酸亜鉛、ジオクチルキサントゲン酸亜鉛、ジ(2-エチルヘキシル)キサントゲン酸亜鉛、ジデシルキサントゲン酸亜鉛、ジドデシルキサントゲン酸亜鉛、ジメチルキサントゲン酸カリウム、エチルキサントゲン酸カリウム、プロピルキサントゲン酸カリウム、イソプロピルキサントゲン酸カリウム、ブチルキサントゲン酸カリウム、ペンチルキサントゲン酸カリウム、ヘキシルキサントゲン酸カリウム、ヘプチルキサントゲン酸カリウム、オクチルキサントゲン酸カリウム、2-エチルヘキシルキサントゲン酸カリウム、デシルキサントゲン酸カリウム、ドデシルキサントゲン酸カリウム、メチルキサントゲン酸ナトリウム、エチルキサントゲン酸ナトリウム、プロピルキサントゲン酸ナトリウム、イソプロピルキサントゲン酸ナトリウム、ブチルキサントゲン酸ナトリウム、ペンチルキサントゲン酸ナトリウム、ヘキシルキサントゲン酸ナトリウム、ヘプチルキサントゲン酸ナトリウム、オクチルキサントゲン酸ナトリウム、2-エチルヘキシルキサントゲン酸ナトリウム、デシルキサントゲン酸ナトリウム、ドデシルキサントゲン酸ナトリウム等が挙げられる。これらのなかでも、イソプロピルキサントゲン酸塩類、ブチルキサントゲン酸塩類であってよく、上記一般式(ROC(=S)S)x-Zにおけるxが2以上であるキサントゲン酸塩が好ましく、ジイソプロピルキサントゲン酸塩類、ジブチルキサントゲン酸塩類がより好ましく、ジイソプロピルキサントゲン酸亜鉛、ジブチルキサントゲン酸亜鉛がさらに好ましく、ジイソプロピルキサントゲン酸亜鉛が特に好ましい。これらのキサントゲン酸塩は、1種単独でも、複数種を併用してもよい。 The xanthogenate represented by the above general formula (ROC (= S) S) xZ is not particularly limited, and is, for example, zinc dimethylxanthate, zinc diethylxanthogenate, zinc dipropylxanthate, diisopropylxanthate. Zinc, Zinc dibutylxanthate, Zinc dipentylxanthate, Zinc dihexylxanthate, Zinc diheptylxanthate, Zinc dioctylxanthate, Zinc di (2-ethylhexyl) xanthate, Zinc didecylxanthate, Zinc didodecylxanthate, Potassium dimethylxanthate, potassium ethylxanthate, potassium propylxanthate, potassium isopropylxanthate, potassium butylxanthate, potassium pentylxanthate, potassium hexylxanthate, potassium heptylxanthate, potassium octylxanthate, 2-ethylhexanthate Potassium, potassium decylxanthate, potassium dodecylxanthate, sodium methylxanthate, sodium ethylxanthate, sodium propylxanthate, sodium isopropylxanthate, sodium butylxanthate, sodium pentylxanthate, sodium hexylxanthate, heptylxanthate Examples thereof include sodium, sodium octylxanthate, sodium 2-ethylhexanthate, sodium decylxanthate, and sodium dodecylxanthate. Among these, isopropylxanthogenates and butylxanthogenates may be used, and xanthogenates having x of 2 or more in the above general formula (ROC (= S) S) xZ are preferable, and diisopropylxanthogenates. , Dibutylxanthogenates are more preferable, zinc diisopropylxanthogenate and zinc dibutylxanthogenate are further preferable, and zinc diisopropylxanthogenate is particularly preferable. These xanthogenates may be used alone or in combination of two or more.
 なお、これらのキサントゲン化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Note that these xanthogen compounds may be used alone or in combination of two or more.
 また、本発明においては、キサントゲン化合物を、ラテックス組成物中において、粒子状あるいは粉末状で分散させることが好ましく、かつ、ラテックス組成物中に分散させるキサントゲン化合物の体積平均粒子径を、0.001~9μmの範囲とすることが好ましい。ラテックス組成物中に分散させるキサントゲン化合物の体積平均粒子径を0.001~9μmの範囲とすることにより、得られるディップ成形体などの膜成形体を、引裂強度がより高く、引裂強度の安定性により優れ、しかもピンホールの発生を有効に抑制されたものとすることができる。 Further, in the present invention, it is preferable to disperse the xanthogen compound in the latex composition in the form of particles or powder, and the volume average particle size of the xanthogen compound dispersed in the latex composition is 0.001. The range is preferably in the range of ~ 9 μm. By setting the volume average particle size of the xanthogen compound dispersed in the latex composition in the range of 0.001 to 9 μm, the obtained film-molded product such as a dip-molded product has higher tear strength and stability of tear strength. It can be said that the pinholes are more excellent and the occurrence of pinholes is effectively suppressed.
 ラテックス組成物中に分散させるキサントゲン化合物の体積平均粒子径は、好ましくは0.001~9μmの範囲であり、より好ましくは0.05~9μmの範囲であり、さらに好ましくは0.05~7μmの範囲、さらにより好ましくは0.07~5μmの範囲、特に好ましくは1~4μmの範囲である。ラテックス組成物中に分散させるキサントゲン化合物の体積平均粒子径を上記範囲とすることにより、引裂強度、および引裂強度の安定性の向上効果をより高めることができる。 The volume average particle size of the xanthate compound dispersed in the latex composition is preferably in the range of 0.001 to 9 μm, more preferably in the range of 0.05 to 9 μm, and further preferably in the range of 0.05 to 7 μm. The range, even more preferably the range of 0.07 to 5 μm, particularly preferably the range of 1 to 4 μm. By setting the volume average particle size of the xanthate compound dispersed in the latex composition within the above range, the effect of improving the tear strength and the stability of the tear strength can be further enhanced.
 また、本発明においては、ラテックス組成物中に分散させるキサントゲン化合物の体積平均粒子径が上記範囲であることが好ましいが、キサントゲン化合物の95%体積累積径(D95)が0.1~43μmの範囲にあることが好ましく、より好ましくは0.1~40μmの範囲、さらに好ましくは0.1~35μm、さらにより好ましくは0.1~20μmの範囲、特に好ましくは5~18μmの範囲である。95%体積累積径(D95)を上記範囲とすることにより、引裂強度、および引裂強度の安定性の向上効果をより高めることができる。なお、キサントゲン化合物の体積平均粒子径および95%体積累積径(D95)は、たとえば、レーザー回折散乱式粒度分布計を用いて測定することができる。 Further, in the present invention, the volume average particle size of the xantogen compound dispersed in the latex composition is preferably in the above range, but the 95% volume cumulative diameter (D95) of the xantogen compound is in the range of 0.1 to 43 μm. It is preferably in the range of 0.1 to 40 μm, more preferably 0.1 to 35 μm, still more preferably 0.1 to 20 μm, and particularly preferably 5 to 18 μm. By setting the 95% volume cumulative diameter (D95) in the above range, the effect of improving the tear strength and the stability of the tear strength can be further enhanced. The volume average particle diameter and the 95% volume cumulative diameter (D95) of the xantogen compound can be measured using, for example, a laser diffraction / scattering type particle size distribution meter.
 なお、これらのキサントゲン化合物は、本発明のラテックス組成物に、1種単独で含まれていてもよいが、2種以上が含まれていることが好ましい。たとえば、ラテックス組成物にキサントゲン酸を配合した場合には、配合したキサントゲン酸の一部が、後述する典型金属化合物の作用により、キサントゲン酸塩の形態で存在することで、結果として、ラテックス組成物に2種以上のキサントゲン化合物が含まれることになってもよい。あるいは、ラテックス組成物に硫黄系加硫剤等として硫黄が含まれる場合には、ラテックス組成物に配合したキサントゲン酸が、硫黄の作用により、キサントゲン二硫化物やキサントゲン多硫化物の形態で存在してもよい。同様に、ラテックス組成物にキサントゲン酸塩、キサントゲン二硫化物またはキサントゲン多硫化物を配合した場合においても、これらは、それぞれ、キサントゲン酸、キサントゲン酸塩、キサントゲン二硫化物、キサントゲン多硫化物のいずれかの形態で存在してもよい。 It should be noted that these xanthogen compounds may be contained alone in the latex composition of the present invention, but it is preferable that two or more of them are contained. For example, when xanthogenic acid is blended in a latex composition, a part of the blended xanthate acid is present in the form of xanthate salt due to the action of a typical metal compound described later, and as a result, the latex composition. May contain two or more xanthogen compounds. Alternatively, when the latex composition contains sulfur as a sulfur-based vulcanizer or the like, the xanthogenic acid blended in the latex composition exists in the form of xanthogen disulfide or xanthogen polysulfide due to the action of sulfur. You may. Similarly, when the latex composition is blended with xanthate, xanthogen disulfide or xanthogen polysulfide, these are any of xanthate acid, xanthogenate, xanthogen disulfide and xanthogen polysulfide, respectively. It may exist in the form of.
 本発明のラテックス組成物中における、キサントゲン化合物の含有割合(ラテックス組成物中に複数のキサントゲン化合物が含まれる場合には、その合計の含有割合)は、ラテックスに含まれるカルボキシ変性重合体100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.1~7重量部、さらに好ましくは0.5~5重量部である。キサントゲン化合物の含有割合を上記範囲とすることにより、得られるディップ成形体などの膜成形体について、遅延型アレルギー(Type IV)の症状の発生を抑制しながら、引裂強度をより向上させることができる。 The content ratio of the xanthogen compound in the latex composition of the present invention (when a plurality of xanthogen compounds are contained in the latex composition, the total content ratio) is 100 parts by weight of the carboxy-modified polymer contained in the latex. On the other hand, it is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 7 parts by weight, and further preferably 0.5 to 5 parts by weight. By setting the content ratio of the xanthogen compound in the above range, it is possible to further improve the tear strength of the obtained membrane molded product such as a dip molded product while suppressing the occurrence of the symptoms of delayed type allergy (Type IV). ..
 また、本発明においては、カルボキシ変性重合体のラテックスに対し、キサントゲン化合物を添加して、ラテックス組成物を調製する際には、キサントゲン化合物を、水またはアルコール中に分散させ、キサントゲン化合物分散体とし、キサントゲン化合物分散体の状態にて添加することが好ましい。この際においては、キサントゲン化合物分散体中における、キサントゲン化合物の体積平均粒子径を上記範囲とすることが好ましく、体積平均粒子径に加えて、95%体積累積径(D95)についても、上記範囲とすることが好ましい。 Further, in the present invention, when a xanthate compound is added to the latex of a carboxy-modified polymer to prepare a latex composition, the xanthate compound is dispersed in water or alcohol to obtain a xanthate compound dispersion. , It is preferable to add in the form of a xanthate compound dispersion. In this case, it is preferable that the volume average particle size of the xantogen compound in the xantogen compound dispersion is within the above range, and in addition to the volume average particle size, the 95% volume cumulative diameter (D95) is also within the above range. It is preferable to do so.
 キサントゲン化合物分散体中における、キサントゲン化合物の含有割合は、キサントゲン化合物分散体全体に対して、好ましくは1~60重量%であり、より好ましくは10~50重量%、さらに好ましくは30~50重量%である。キサントゲン化合物の含有割合を上記範囲とすることにより、キサントゲン化合物分散体を、保存安定性により優れたものとすることができる。 The content ratio of the xanthate compound in the xanthate compound dispersion is preferably 1 to 60% by weight, more preferably 10 to 50% by weight, still more preferably 30 to 50% by weight, based on the entire xanthate compound dispersion. Is. By setting the content ratio of the xanthate compound in the above range, the xanthate compound dispersion can be made more excellent in storage stability.
 また、キサントゲン化合物分散体は、上述したキサントゲン化合物に加えて、ノニオン系界面活性剤および/またはノニオニックアニオン系界面活性剤をさらに含有するものであることが好ましい。 Further, the xanthate compound dispersion preferably further contains a nonionic surfactant and / or a nonionic anionic surfactant in addition to the xanthate compound described above.
 上述したキサントゲン化合物を、ノニオン系界面活性剤および/またはノニオニックアニオン系界面活性剤とともに、水またはアルコール中に分散させることにより、キサントゲン化合物をより良好に分散させることができ、これにより、キサントゲン化合物による加硫促進剤としての効果をより高めることができ、これにより、共役ジエン系重合体などの重合体の加硫物を得る際における、加硫時間(特に、熟成(前加硫)に要する時間)の短縮を可能とすることができ、生産性の向上を図ることができる。なお、本発明においては、ノニオン系界面活性剤およびノニオニックアニオン系界面活性剤の少なくとも一方を使用することが好ましく、ノニオン系界面活性剤を用いることがより好適である。 By dispersing the above-mentioned xanthogen compound in water or alcohol together with a nonionic surfactant and / or a nonionic anionic surfactant, the xanthogen compound can be better dispersed, whereby xanthogen can be better dispersed. The effect of the compound as a vulcanization accelerator can be further enhanced, whereby the vulcanization time (particularly, aging (pre-vulcanization)) in obtaining a vulcanized product of a polymer such as a conjugated diene-based polymer can be obtained. The time required) can be shortened, and productivity can be improved. In the present invention, it is preferable to use at least one of a nonionic surfactant and a nonionic anionic surfactant, and it is more preferable to use a nonionic surfactant.
 ノニオン系界面活性剤としては、非イオン性の界面活性剤であればよく、特に限定されないが、たとえば、ポリオキシアルキレングリコール、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレン(硬化)ヒマシ油、ポリオキシエチレンアルキルアミン、脂肪酸アルカノールアミドなどが挙げられる。 The nonionic surfactant may be a nonionic surfactant, and is not particularly limited. For example, polyoxyalkylene glycol, polyoxyalkylene alkyl ether, polyoxyalkylene alkyl phenyl ether, or polyoxyethylene styrene. Examples thereof include phenyl ether, polyoxyethylene (hardened) castor oil, polyoxyethylene alkylamine, and fatty acid alkanolamide.
 ポリオキシアルキレングリコールとしては、たとえば、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシエチレンポリオキシプロピレングリコールなどのポリオキシプロピレングリコールエチレンオキサイド付加物等が挙げられる。 Examples of the polyoxyalkylene glycol include polyoxypropylene glycol ethylene oxide adducts such as polyoxyethylene glycol, polyoxypropylene glycol, and polyoxyethylene polyoxypropylene glycol.
 ポリオキシアルキレンアルキルエーテルとしては、たとえば、プロピレンオキサイドおよび/またはエチレンオキサイドが1~50個(好ましくは、1~10個)付加した直鎖状もしくは分岐鎖状エーテルが挙げられる。これらの中でも、プロピレンオキサイドが1~50個(好ましくは、1~10個)付加した直鎖状もしくは分岐鎖状エーテル、エチレンオキサイドが1~50個(好ましくは、1~10個)付加した直鎖状もしくは分岐鎖状エーテル、エチレンオキサイドとプロピレンオキサイドが合計2~50個(好ましくは、2~10個)ブロックもしくはランダムに付加した直鎖状もしくは分岐鎖状エーテルなどが挙げられ、ポリオキシエチレンドデシルエーテル、ポリオキシエチレンラウリルエーテルなどが挙げられる。 Examples of the polyoxyalkylene alkyl ether include linear or branched chain ethers to which 1 to 50 (preferably 1 to 10) propylene oxide and / or ethylene oxide are added. Among these, linear or branched ethers to which 1 to 50 propylene oxides (preferably 1 to 10) have been added, and direct chains to which 1 to 50 ethylene oxides (preferably 1 to 10) have been added. Chain-shaped or branched-chain ethers, linear or branched-chain ethers in which a total of 2 to 50 (preferably 2 to 10) blocks of ethylene oxide and propylene oxide are added or randomly added, and the like are polyoxyethylene. Dodecyl ether, polyoxyethylene lauryl ether and the like can be mentioned.
 ポリオキシアルキレンアルキルフェニルエーテルとしては、アルキルフェノールに、プロピレンオキサイドおよび/またはエチレンオキサイドが1~50個(好ましくは、1~10個)付加した化合物などが挙げられる。
 ポリオキシエチレンスチレン化フェニルエーテルとしては、(モノ、ジ、トリ)スチレン化フェノールのエチレンオキサイド付加物などが挙げられ、これらのなかでも、ジスチレン化フェノールのエチレンオキサイド付加物である、ポリオキシエチレンジスチレン化フェニルエーテルが好ましい。
Examples of the polyoxyalkylene alkyl phenyl ether include compounds in which 1 to 50 (preferably 1 to 10) propylene oxide and / or ethylene oxide are added to the alkyl phenol.
Examples of the polyoxyethylene styrenated phenyl ether include ethylene oxide adducts of (mono, di, tri) styrenated phenol, and among these, polyoxyethylene di, which is an ethylene oxide adduct of distyrene phenol. Styrylated phenyl ether is preferred.
 ポリオキシエチレン(硬化)ヒマシ油としては、ヒマシ油もしくは硬化ヒマシ油のエチレンオキサイド付加物が挙げられる。
 脂肪酸アルカノールアミドとしては、たとえば、ラウリン酸ジエタノールアミド、パルミチン酸ジエタノールアミド、ミリスチン酸ジエタノールアミド、ステアリン酸ジエタノールアミド、オレイン酸ジエタノールアミド、パーム油脂肪酸ジエタノールアミド、ヤシ油脂肪酸ジエタノールアミド等が挙げられる。
Examples of the polyoxyethylene (hardened) castor oil include castor oil or an ethylene oxide adduct of hardened castor oil.
Examples of the fatty acid alkanolamide include lauric acid diethanolamide, palmitic acid diethanolamide, myristic acid diethanolamide, stearic acid diethanolamide, oleic acid diethanolamide, palm oil fatty acid diethanolamide, and coconut oil fatty acid diethanolamide.
 ノニオン系界面活性剤の中でも、ポリオキシアルキレン構造を有するノニオン系界面活性剤が好ましく、ポリオキシエチレン構造を有するノニオン系界面活性剤がより好ましく、ポリオキシエチレンのヒドロカルビル化エーテルであることがより好ましく、ポリオキシアルキレンアルキルエーテルおよびポリオキシエチレンジスチレン化フェニルエーテルがさらに好ましく、ポリオキシエチレンジスチレン化フェニルエーテルが特に好ましい。ノニオン系界面活性剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Among the nonionic surfactants, a nonionic surfactant having a polyoxyalkylene structure is preferable, a nonionic surfactant having a polyoxyethylene structure is more preferable, and a hydrocarbylated ether of polyoxyethylene is more preferable. , Polyoxyalkylene alkyl ethers and polyoxyethylene distyrene phenyl ethers are more preferred, and polyoxyethylene distyrene phenyl ethers are particularly preferred. The nonionic surfactant may be used alone or in combination of two or more.
 また、ノニオニックアニオン系界面活性剤としては、アニオン界面活性剤(すなわち、水溶液中でイオン解離してアニオン部分が界面活性を示す物質)であって、その分子主鎖中に、非イオン性の界面活性剤として作用するセグメント、たとえば、ポリアルキレンオキサイド鎖を有するものであればよく、特に限定されない。 Further, the nonionic anionic surfactant is an anionic surfactant (that is, a substance that dissociates ions in an aqueous solution and exhibits surface activity in the anionic portion), and is nonionic in its molecular main chain. It is not particularly limited as long as it has a segment that acts as a surfactant of, for example, a polyalkylene oxide chain.
 このようなノニオニックアニオン系界面活性剤としては、たとえば、下記一般式(3)で表される化合物などが挙げられる。
  R-O-(CRCR)n-SOM   (3)
 (上記一般式(3)中、Rは、炭素数6~16のアルキル基、または炭素数1~25のアルキル基で置換されていてもよい炭素数6~14のアリール基、R~Rは、水素およびメチル基よりなる群からそれぞれ独立して選ばれる基、Mは、アルカリ金属原子またはアンモニウムイオン、nは3~40である。)
Examples of such nonionic anionic surfactants include compounds represented by the following general formula (3).
R 4- O- (CR 5 R 6 CR 7 R 8 ) n-SO 3 M (3)
(In the above general formula (3), R 4 is an aryl group having 6 to 14 carbon atoms which may be substituted with an alkyl group having 6 to 16 carbon atoms or an alkyl group having 1 to 25 carbon atoms, R 5 to R 8 is a group independently selected from the group consisting of hydrogen and methyl groups, M is an alkali metal atom or ammonium ion, and n is 3 to 40.)
 ノニオニックアニオン系界面活性剤の具体例としては、ポリオキシエチレンラウリルエーテル硫酸塩、ポリオキシエチレンセチルエーテル硫酸塩、ポリオキシエチレンステアリルエーテル硫酸塩、ポリオキシエチレンオレイルエーテル硫酸塩などのポリオキシエチレンアルキルエーテル硫酸塩;ポリオキシエチレンノニルフェニルエーテル硫酸塩、ポリオキシエチレンオクチルフェニルエーテル硫酸塩、ポリオキシエチレンジスチリルエーテル硫酸塩などのポリオキシエチレンアリールエーテル硫酸塩;などが挙げられる。 Specific examples of nonionic anionic surfactants include polyoxyethylene such as polyoxyethylene lauryl ether sulfate, polyoxyethylene cetyl ether sulfate, polyoxyethylene stearyl ether sulfate, and polyoxyethylene oleyl ether sulfate. Alkyl ether sulfate; polyoxyethylene aryl phenyl ether sulfate such as polyoxyethylene nonylphenyl ether sulfate, polyoxyethylene octylphenyl ether sulfate, polyoxyethylene distyryl ether sulfate; and the like.
 ノニオニックアニオン系界面活性剤の中でも、ポリオキシアルキレン構造を有するノニオニックアニオン系界面活性剤が好ましく、ポリオキシエチレン構造を有するノニオニックアニオン系界面活性剤がより好ましい。ノニオニックアニオン系界面活性剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Among the nonionic anionic surfactants, the nonionic anionic surfactant having a polyoxyalkylene structure is preferable, and the nonionic anionic surfactant having a polyoxyethylene structure is more preferable. The nonionic anionic surfactant may be used alone or in combination of two or more.
 キサントゲン化合物分散体中における、ノニオン系界面活性剤および/またはノニオニックアニオン系界面活性剤の含有量は、特に限定されないが、キサントゲン化合物100重量部に対して、好ましくは0.1~30重量部、より好ましくは1~20重量部、さらに好ましくは4~15重量部、特に好ましくは5.5~9.5重量部である。ノニオン系界面活性剤および/またはノニオニックアニオン系界面活性剤の含有量を上記範囲とすることにより、キサントゲン化合物分散体中における、キサントゲン化合物の分散性をより高めることができる。 The content of the nonionic surfactant and / or the nonionic anionic surfactant in the xanthogen compound dispersion is not particularly limited, but is preferably 0.1 to 30 parts by weight based on 100 parts by weight of the xanthogen compound. Parts, more preferably 1 to 20 parts by weight, still more preferably 4 to 15 parts by weight, and particularly preferably 5.5 to 9.5 parts by weight. By setting the content of the nonionic surfactant and / or the nonionic anionic surfactant in the above range, the dispersibility of the xanthate compound in the xanthate compound dispersion can be further enhanced.
 キサントゲン化合物分散体の調製方法としては、特に限定されないが、キサントゲン化合物と、必要に応じて用いられるノニオン系界面活性剤および/またはノニオニックアニオン系界面活性剤と、水またはアルコール(たとえば、メタノール、エタノール、プロパノールおよびブタノールから選択される少なくとも一種)とを混合し、次いで、得られた混合液について解砕処理を行う方法が好ましく、特に、解砕処理の条件を調整することで、キサントゲン化合物の体積平均粒子径を上記範囲とすることが好ましい。ここで、解砕処理としては、分散体中に含有される、キサントゲン化合物の破砕や凝集の緩和を可能とすることができる処理であればよく、特に限定されないが、たとえば、せん断作用や摩砕作用を利用した解砕装置を用いる方法、攪拌式の解砕装置を用いる方法など、公知の解砕装置を用いる方法が挙げられる。具体的には、ロールミル、ハンマーミル、振動ミル、ジェットミル、ボールミル、遊星型ボールミル、ビーズミル、サンドミル、三本ロールミル等の解砕装置を使用することができる。これらのなかでも、分散体中におけるキサントゲン化合物の体積平均粒子径を好適に制御できるという観点より、ボールミル、遊星型ボールミル、またはビーズミルを使用して解砕処理を行う方法が好適である。 The method for preparing the xanthogen compound dispersion is not particularly limited, but is limited to a xanthogen compound, a nonionic surfactant and / or a nonionic anionic surfactant used as needed, and water or alcohol (for example, methanol). , Ethanol, propanol and at least one selected from butanol), and then the obtained mixed solution is crushed, and in particular, the xanthogen compound is prepared by adjusting the crushing conditions. It is preferable that the volume average particle diameter of the above range is in the above range. Here, the crushing treatment may be any treatment that can alleviate the crushing and aggregation of the xanthate compound contained in the dispersion, and is not particularly limited, but for example, shearing action or grinding. Examples thereof include a method using a known crusher, such as a method using a crusher utilizing the action and a method using a stirring type crusher. Specifically, a crushing device such as a roll mill, a hammer mill, a vibration mill, a jet mill, a ball mill, a planetary ball mill, a bead mill, a sand mill, or a three-roll mill can be used. Among these, a method of performing the crushing treatment using a ball mill, a planetary ball mill, or a bead mill is preferable from the viewpoint that the volume average particle size of the xanthogen compound in the dispersion can be preferably controlled.
 たとえば、ボールミルを用いて解砕処理を行う場合には、メディアとして、メディアサイズが、好ましくはφ5~φ50mm、より好ましくはφ10~φ35mmであるものを使用し、回転数が、好ましくは10~300rpm、より好ましくは10~100rpm、処理時間が、好ましくは24~120時間、より好ましくは24~72時間の条件にて、解砕処理を行うことが好適である。また、遊星型ボールミルを用いて解砕処理を行う場合には、メディアとして、メディアサイズが、好ましくはφ0.1~φ5mm、より好ましくはφ0.3~φ3mmであるものを使用し、回転数が、好ましくは100~1000rpm、より好ましくは100~500rpm、処理時間が、好ましくは0.25~5時間、より好ましくは0.25~3時間の条件にて、解砕処理を行うことが好適である。さらに、ビーズミルを用いて解砕処理を行う場合には、メディアとして、メディアサイズが、好ましくはφ0.1~φ3mm、より好ましくはφ0.1~φ1mmであるものを使用し、回転数が、好ましくは1000~10000rpm、より好ましくは1000~5000rpm、処理時間が、好ましくは0.25~5時間、より好ましくは0.25~3時間の条件にて、解砕処理を行うことが好適である。 For example, when the crushing process is performed using a ball mill, a medium having a media size of preferably φ5 to φ50 mm, more preferably φ10 to φ35 mm is used, and the rotation speed is preferably 10 to 300 rpm. It is preferable to carry out the crushing treatment under the conditions of more preferably 10 to 100 rpm and a treatment time of preferably 24 to 120 hours, more preferably 24 to 72 hours. When the crushing process is performed using a planetary ball mill, a medium having a media size of preferably φ0.1 to φ5 mm, more preferably φ0.3 to φ3 mm is used, and the rotation speed is high. It is preferable to carry out the crushing treatment under the conditions of preferably 100 to 1000 rpm, more preferably 100 to 500 rpm, and a treatment time of preferably 0.25 to 5 hours, more preferably 0.25 to 3 hours. is there. Further, when the crushing treatment is performed using a bead mill, a medium having a media size of preferably φ0.1 to φ3 mm, more preferably φ0.1 to φ1 mm is used, and the rotation speed is preferably high. Is preferably 1000 to 10000 rpm, more preferably 1000 to 5000 rpm, and the treatment time is preferably 0.25 to 5 hours, more preferably 0.25 to 3 hours.
 なお、本発明においては、ラテックス組成物には、キサントゲン化合物以外に、加硫促進剤として従来使用されている化合物、具体的には、遅延型アレルギー(Type IV)の症状の発生原因となる硫黄を含有する加硫促進剤(たとえば、ジチオカルバミン酸塩系加硫促進剤、チアゾール系加硫促進剤など)であって、加硫促進剤として作用した後に、得られるディップ成形体などの膜成形体に残留してしまう化合物が、実質的に含まれていないことが好ましい。 In the present invention, in the latex composition, in addition to the xanthogen compound, a compound conventionally used as a vulcanization accelerator, specifically, sulfur which causes symptoms of delayed type allergy (Type IV). A vulcanization accelerator containing (for example, dithiocarbamate-based vulcanization accelerator, thiazole-based vulcanization accelerator, etc.), and a film-formed body such as a dip-formed body obtained after acting as a vulcanization accelerator. It is preferable that the compound that remains in the vulcanization is substantially not contained.
 本発明のラテックス組成物においては、キサントゲン化合物の配合方法は、最終的にカルボキシ変性重合体のラテックスとキサントゲン化合物とが混合した状態となる方法であればよく、特に限定されないが、たとえば、上述したカルボキシ変性重合体のラテックスを得た後、カルボキシ変性重合体のラテックスにキサントゲン化合物を配合する方法、有機溶媒に溶解または微分散したカルボキシ変性重合体の溶液または微細懸濁液に、予めキサントゲン化合物を配合した後、キサントゲン化合物が配合されたカルボキシ変性重合体の溶液または微細懸濁液を、水中で乳化し、必要により有機溶媒を除去することで、キサントゲン化合物が配合されたカルボキシ変性重合体のラテックスを得る方法などが挙げられる。これらのなかでも、キサントゲン化合物が溶解しやすく、キサントゲン化合物の配合がより容易であるという観点より、カルボキシ変性重合体のラテックスを得た後、カルボキシ変性重合体のラテックスにキサントゲン化合物を配合する方法が好ましい。 In the latex composition of the present invention, the method for blending the xanthogen compound may be any method as long as it is a method in which the latex of the carboxy-modified polymer and the xantogen compound are finally mixed, and is not particularly limited. After obtaining the latex of the carboxy-modified polymer, a method of blending the xanthogen compound with the latex of the carboxy-modified polymer, or adding the xanthogen compound to a solution or fine suspension of the carboxy-modified polymer dissolved or finely dispersed in an organic solvent in advance. After blending, a solution or microsuspension of the carboxy-modified polymer containing the xanthogen compound is emulsified in water, and if necessary, the organic solvent is removed to remove the latex of the carboxy-modified polymer containing the xanthogen compound. And so on. Among these, from the viewpoint that the xanthogen compound is easily dissolved and the xanthogen compound is more easily blended, a method of blending the xanthogen compound with the latex of the carboxy-modified polymer after obtaining the latex of the carboxy-modified polymer is used. preferable.
<その他の成分>
 本発明のラテックス組成物は、上述したカルボキシ変性重合体のラテックス、およびキサントゲン化合物を含有するものであればよいが、さらに硫黄系加硫剤を含有することが好ましい。
 硫黄系加硫剤としては、たとえば、粉末硫黄、硫黄華、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄等の硫黄;塩化硫黄、二塩化硫黄、モルホリン・ジスルフィド、アルキルフェノールジスルフィド、カプロラクタムジスルフィド(N,N’-ジチオ-ビス(ヘキサヒドロ-2H-アゼピノン-2))、含りんポリスルフィド、高分子多硫化物、2-(4’-モルホリノジチオ)ベンゾチアゾール等の硫黄含有化合物が挙げられる。これらのなかでも、硫黄が好ましく使用できる。架橋剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
<Other ingredients>
The latex composition of the present invention may contain the above-mentioned latex of the carboxy-modified polymer and the xanthate compound, but it is preferable that the latex composition further contains a sulfur-based vulcanizing agent.
Examples of the sulfur-based sulfurizing agent include sulfur powder, sulfur flower, precipitated sulfur, colloidal sulfur, surface-treated sulfur, and insoluble sulfur; sulfur chloride, sulfur dichloride, morpholin disulfide, alkylphenol disulfide, and caprolactam disulfide (N). , N'-dithio-bis (hexahydro-2H-azepinone-2)), phosphorus-containing polysulfide, high molecular weight polysulfide, 2- (4'-morpholinodithio) benzothiazole and other sulfur-containing compounds. Of these, sulfur can be preferably used. The cross-linking agent may be used alone or in combination of two or more.
 硫黄系加硫剤の含有量は、特に限定されないが、カルボキシ変性重合体100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.2~3重量部である。硫黄系加硫剤の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体において、遅延型アレルギー(Type IV)の症状の発生を抑制しながら、引裂強度をより高めることができる。 The content of the sulfur-based vulcanizing agent is not particularly limited, but is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 3 parts by weight, based on 100 parts by weight of the carboxy-modified polymer. By setting the content of the sulfur-based vulcanizing agent in the above range, the tear strength can be further increased while suppressing the occurrence of the symptoms of delayed type allergy (Type IV) in the obtained film molded body such as a dip molded body. Can be done.
 また、本発明のラテックス組成物は、得られるディップ成形体などの膜成形体において、遅延型アレルギー(Type IV)の症状の発生を抑制可能な範囲であれば、さらに架橋促進剤を含有してもよい。
 架橋促進剤としては、ディップ成形において通常用いられるものが使用でき、たとえば、ジエチルジチオカルバミン酸、ジブチルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸、ジシクロヘキシルジチオカルバミン酸、ジフェニルジチオカルバミン酸、ジベンジルジチオカルバミン酸などのジチオカルバミン酸類およびそれらの亜鉛塩;2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(2,4-ジニトロフェニルチオ)ベンゾチアゾール、2-(N,N-ジエチルチオ・カルバモイルチオ)ベンゾチアゾール、2-(2,6-ジメチル-4-モルホリノチオ)ベンゾチアゾール、2-(4′-モルホリノ・ジチオ)ベンゾチアゾール、4-モルホリニル-2-ベンゾチアジル・ジスルフィド、1,3-ビス(2-ベンゾチアジル・メルカプトメチル)ユリアなどが挙げられるが、ジエチルジチオカルバミン酸亜鉛、2ジブチルジチオカルバミン酸亜鉛、2-メルカプトベンゾチアゾール亜鉛が好ましい。架橋促進剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
In addition, the latex composition of the present invention further contains a cross-linking accelerator as long as the occurrence of delayed allergy (Type IV) symptoms can be suppressed in the obtained film molded product such as a dip molded product. May be good.
As the cross-linking accelerator, those usually used in dip molding can be used, for example, dithiocarbamines such as diethyldithiocarbamic acid, dibutyldithiocarbamic acid, di-2-ethylhexyldithiocarbamic acid, dicyclohexyldithiocarbamic acid, diphenyldithiocarbamic acid, and dibenzyldithiocarbamic acid. Acids and their zinc salts; 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc, 2-mercaptothiazolin, dibenzothiazyl disulfide, 2- (2,4-dinitrophenylthio) benzothiazole, 2- (N, N-dithiocarbamoylthio) benzothiazole, 2- (2,6-dimethyl-4-morpholinothio) benzothiazole, 2- (4'-morpholino dithio) benzothiazole, 4-morpholinyl-2-benzothiadyl disulfide, Examples thereof include 1,3-bis (2-benzothiadyl mercaptomethyl) urea, but zinc diethyldithiocarbamate, zinc 2dibutyldithiocarbamate, and zinc 2-mercaptobenzothiazole are preferable. The cross-linking accelerator may be used alone or in combination of two or more.
 また、本発明のラテックス組成物は、酸化物以外の典型金属化合物を含有していることが好ましく、酸化物以外の典型金属化合物を含有していることで、得られるディップ成形体などの膜成形体の引裂強度をより高めることができる。 Further, the latex composition of the present invention preferably contains a typical metal compound other than an oxide, and by containing a typical metal compound other than an oxide, a film molding such as a dip molded product obtained can be formed. The tear strength of the body can be further increased.
 本発明で用いる典型金属化合物を構成する典型金属としては、第1族元素、第2族元素、第12族元素、第13族元素、第14族元素、第15族元素、第16族元素、第17族元素、および第18族元素からなる群から選ばれる少なくとも1種の元素を用いることができ、なかでも、第2族元素、第12族元素、第13族元素、第14族元素が好ましく、亜鉛、マグネシウム、カルシウム、アルミニウム、鉛がより好ましく、亜鉛、マグネシウム、カルシウムがさらに好ましく、亜鉛が特に好ましい。 Typical metals constituting the main group metal compound used in the present invention include Group 1 elements, Group 2 elements, Group 12 elements, Group 13 elements, Group 14 elements, Group 15 elements, Group 16 elements, and the like. At least one element selected from the group consisting of Group 17 elements and Group 18 elements can be used, and among them, Group 2 elements, Group 12 elements, Group 13 elements, and Group 14 elements are used. Preferably, zinc, magnesium, calcium, aluminum and lead are more preferred, zinc, magnesium and calcium are even more preferred, and zinc is particularly preferred.
 本発明で用いる典型金属化合物としては、上記典型金属を含む化合物であって、酸化物以外のものであればよく、特に限定されないが、得られるディップ成形体などの膜成形体の引裂強度がより向上するという観点より、炭素を少なくとも1つ含有する化合物が好ましく、炭酸塩、炭酸水素塩、水酸化物、有機金属化合物がより好ましく、炭酸塩、炭酸水素塩、有機金属化合物がさらに好ましい。これらのなかでも、化合物自体の安定性に優れ、入手容易性にも優れるという観点より、炭酸塩、炭酸水素塩などの無機塩が特に好ましい。これらの典型金属化合物は、1種単独でも、複数種を併用してもよい。 The typical metal compound used in the present invention may be a compound containing the above-mentioned typical metal other than an oxide, and is not particularly limited, but the tear strength of the obtained film-formed body such as a dip-shaped body is higher. From the viewpoint of improvement, a compound containing at least one carbon is preferable, a carbonate, a hydrogen carbonate, a hydroxide, and an organic metal compound are more preferable, and a carbonate, a hydrogen carbonate, and an organic metal compound are further preferable. Among these, inorganic salts such as carbonates and hydrogen carbonates are particularly preferable from the viewpoint of excellent stability of the compound itself and excellent availability. These typical metal compounds may be used alone or in combination of two or more.
 なお、本発明で用いる典型金属化合物としては、上述したように、酸化物以外の化合物であればよいが、このような酸化物としては、たとえば、酸化亜鉛、酸化マグネシウム、酸化カルシウム、鉛酸化物、酸化錫、および酸化アルミニウムなどが挙げられる。 As described above, the typical metal compound used in the present invention may be a compound other than an oxide, and such an oxide may be, for example, zinc oxide, magnesium oxide, calcium oxide, or lead oxide. , Tin oxide, and aluminum oxide.
 本発明のラテックス組成物中における、典型金属化合物の含有割合は、ラテックスに含まれるカルボキシ変性重合体100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.1~5重量部、さらに好ましくは1~3重量部である。典型金属化合物の含有割合を上記範囲とすることにより、得られるディップ成形体などの膜成形体の引裂強度をより向上させることができる。 The content ratio of the typical metal compound in the latex composition of the present invention is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the carboxy-modified polymer contained in the latex. It is by weight, more preferably 1 to 3 parts by weight. By setting the content ratio of the main group compound in the above range, the tear strength of the obtained film molded product such as a dip molded product can be further improved.
 また、本発明のラテックス組成物には、さらに、老化防止剤;分散剤;カーボンブラック、シリカ、タルク等の補強剤;炭酸カルシウム、クレー等の充填剤;紫外線吸収剤;可塑剤;等の配合剤を必要に応じて配合することができる。 Further, the latex composition of the present invention further contains an antiaging agent; a dispersant; a reinforcing agent such as carbon black, silica and talc; a filler such as calcium carbonate and clay; an ultraviolet absorber; a plasticizer; and the like. The agent can be blended as needed.
 老化防止剤としては、2,6-ジ-4-メチルフェノール、2,6-ジ-t-ブチルフェノール、ブチルヒドロキシアニソール、2,6-ジ-t-ブチル-α-ジメチルアミノ-p-クレゾール、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、スチレン化フェノール、2,2’-メチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、アルキル化ビスフェノール、p-クレゾールとジシクロペンタジエンのブチル化反応生成物、などの硫黄原子を含有しないフェノール系老化防止剤;2,2’-チオビス-(4-メチル-6-t-ブチルフェノール)、4,4’-チオビス-(6-t-ブチル-o-クレゾール)、2,6-ジ-t-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノールなどのチオビスフェノール系老化防止剤;トリス(ノニルフェニル)ホスファイト、ジフェニルイソデシルホスファイト、テトラフェニルジプロピレングリコール・ジホスファイトなどの亜燐酸エステル系老化防止剤;チオジプロピオン酸ジラウリルなどの硫黄エステル系老化防止剤;フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン、p-(p-トルエンスルホニルアミド)-ジフェニルアミン、4,4’―(α,α-ジメチルベンジル)ジフェニルアミン、N,N-ジフェニル-p-フェニレンジアミン、N-イソプロピル-N’-フェニル-p-フェニレンジアミン、ブチルアルデヒド-アニリン縮合物などのアミン系老化防止剤;6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリンなどのキノリン系老化防止剤;2,5-ジ-(t-アミル)ハイドロキノンなどのハイドロキノン系老化防止剤;などが挙げられる。これらの老化防止剤は、1種単独で、または2種以上を併用することができる。 Anti-aging agents include 2,6-di-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t-butyl-α-dimethylamino-p-cresol, Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, styrenated phenol, 2,2'-methylene-bis (6-α-methyl-benzyl-p-cresol), 4, Butylation of 4'-methylenebis (2,6-di-t-butylphenol), 2,2'-methylene-bis (4-methyl-6-t-butylphenol), alkylated bisphenol, p-cresol and dicyclopentadiene Phenolic antioxidants that do not contain sulfur atoms such as reaction products; 2,2'-thiobis- (4-methyl-6-t-butylphenol), 4,4'-thiobis- (6-t-butyl-) O-cresol), 2,6-di-t-butyl-4- (4,6-bis (octylthio) -1,3,5-triazine-2-ylamino) phenol and other thiobisphenolic antioxidants; Tris (Nonylphenyl) phosphite, diphenylisodecylphosphite, tetraphenyldipropylene glycol / diphosphite and other phosphite-based anti-aging agents; sulfur ester-based anti-aging agents such as dilauryl thiodipropionate; phenyl-α-naphthylamine, Phenyl-β-naphthylamine, p- (p-toluenesulfonylamide) -diphenylamine, 4,4'-(α, α-dimethylbenzyl) diphenylamine, N, N-diphenyl-p-phenylenediamine, N-isopropyl-N' -Amine-based anti-aging agents such as phenyl-p-phenylenediamine, butylaldehyde-aniline condensate; quinoline-based anti-aging agents such as 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinolin; 2, Hydroquinone-based anti-aging agents such as 5-di (t-amyl) hydroquinone; and the like. These antioxidants can be used alone or in combination of two or more.
 老化防止剤の含有量は、カルボキシ変性重合体100重量部に対して、好ましくは0.05~10重量部、より好ましくは0.1~5重量部である。 The content of the anti-aging agent is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the carboxy-modified polymer.
 本発明のラテックス組成物に各種配合剤を混合する方法としては、特に限定されないが、たとえば、上述したようにしてカルボキシ変性重合体のラテックス、キサントゲン化合物、および典型金属化合物を含有するラテックス組成物を得た後、ボールミル、ニーダー、ディスパー等の分散機を用いて、ラテックス組成物に、必要に応じて配合される各種配合剤を混合する方法や、上記の分散機を用いて、カルボキシ変性重合体のラテックス以外の配合成分の水性分散液を調製した後、該水性分散液を、カルボキシ変性重合体のラテックスに混合する方法などが挙げられる。 The method for mixing various compounding agents with the latex composition of the present invention is not particularly limited, but for example, as described above, a latex composition containing a latex of a carboxy-modified polymer, a xanthogen compound, and a typical metal compound can be used. After obtaining the latex composition, a method of mixing various compounding agents to be blended with the latex composition using a disperser such as a ball mill, a kneader, or a disper, or using the above disperser, a carboxy-modified polymer. Examples thereof include a method of preparing an aqueous dispersion of a compounding component other than the latex of the above, and then mixing the aqueous dispersion with the latex of the carboxy-modified polymer.
 なお、本発明のラテックス組成物の固形分濃度は、好ましくは10~60重量%、より好ましくは10~55重量%である。 The solid content concentration of the latex composition of the present invention is preferably 10 to 60% by weight, more preferably 10 to 55% by weight.
 本発明のラテックス組成物は、硫黄系加硫剤を含有する場合には、得られるディップ成形体などの膜成形体の機械的特性をより高めるという観点より、ディップ成形に供する前に、熟成(前加硫)させることが好ましい。熟成(前加硫)を行うことが好ましい。熟成(前加硫)時間は、特に限定されないが、好ましくは6~42時間、より好ましくは12~38時間、さらに好ましくは18~36時間である。本発明のラテックス組成物によれば、熟成(前加硫)時間を、上記のように比較的短くした場合でも、引裂強度などの機械的特性に十分優れるディップ成形体などの膜成形体を得ることができるものであり、これにより、熟成(前加硫)に要する時間の短縮をおよび生産効率のさらなる向上を図ることができる。なお、前加硫の温度は、特に限定されないが、好ましくは20~40℃、より好ましく20~30℃である。 When the latex composition of the present invention contains a sulfur-based vulcanizing agent, it is aged before being subjected to dip molding from the viewpoint of further enhancing the mechanical properties of the obtained film molded product such as the dip molded product. Pre-vulcanization) is preferable. It is preferable to carry out aging (pre-vulcanization). The aging (pre-vulcanization) time is not particularly limited, but is preferably 6 to 42 hours, more preferably 12 to 38 hours, and even more preferably 18 to 36 hours. According to the latex composition of the present invention, even when the aging (pre-vulcanization) time is relatively short as described above, a film molded product such as a dip molded product having sufficiently excellent mechanical properties such as tear strength can be obtained. This makes it possible to shorten the time required for aging (pre-vulcanization) and further improve the production efficiency. The temperature of the pre-vulcanization is not particularly limited, but is preferably 20 to 40 ° C, more preferably 20 to 30 ° C.
<膜成形体>
 本発明の膜成形体は、本発明のラテックス組成物からなる膜状の成形体である。本発明の膜成形体の膜厚は、好ましくは0.03~0.50mm、より好ましくは0.05~0.40mm、特に好ましくは0.08~0.30mmである。
<Membrane molded product>
The film molded product of the present invention is a film-shaped molded product made of the latex composition of the present invention. The film thickness of the film molded product of the present invention is preferably 0.03 to 0.50 mm, more preferably 0.05 to 0.40 mm, and particularly preferably 0.08 to 0.30 mm.
 本発明の膜成形体としては、特に限定されないが、本発明のラテックス組成物をディップ成形して得られるディップ成形体であることが好適である。ディップ成形は、ラテックス組成物に型を浸漬し、型の表面に当該組成物を沈着させ、次に型を当該組成物から引き上げ、その後、型の表面に沈着した当該組成物を乾燥させる方法である。なお、ラテックス組成物に浸漬される前の型は予熱しておいてもよい。また、型をラテックス組成物に浸漬する前、または、型をラテックス組成物から引き上げた後、必要に応じて凝固剤を使用できる。 The film molded product of the present invention is not particularly limited, but a dip molded product obtained by dip molding the latex composition of the present invention is preferable. Dip molding is a method in which a mold is dipped in a latex composition, the composition is deposited on the surface of the mold, then the mold is pulled up from the composition, and then the composition deposited on the surface of the mold is dried. is there. The mold before being immersed in the latex composition may be preheated. Further, a coagulant can be used if necessary before immersing the mold in the latex composition or after pulling the mold out of the latex composition.
 凝固剤の使用方法の具体例としては、ラテックス組成物に浸漬する前の型を凝固剤の溶液に浸漬して型に凝固剤を付着させる方法(アノード凝着浸漬法)、ラテックス組成物を沈着させた型を凝固剤溶液に浸漬する方法(ティーグ凝着浸漬法)などがあるが、厚みムラの少ないディップ成形体が得られる点で、アノード凝着浸漬法が好ましい。 Specific examples of the method of using the coagulant include a method of immersing the mold before being immersed in the latex composition in a solution of the coagulant to attach the coagulant to the mold (anode adhesion immersion method), and depositing the latex composition. There is a method of immersing the formed mold in a coagulant solution (Teeg adhesion immersion method), but the anode adhesion immersion method is preferable in that a dip molded product having less uneven thickness can be obtained.
 凝固剤の具体例としては、塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウムなどのハロゲン化金属;硝酸バリウム、硝酸カルシウム、硝酸亜鉛などの硝酸塩;酢酸バリウム、酢酸カルシウム、酢酸亜鉛など酢酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウムなどの硫酸塩;などの水溶性多価金属塩である。なかでも、カルシウム塩が好ましく、硝酸カルシウムがより好ましい。これらの水溶性多価金属塩は、1種単独で、または2種以上を併用することができる。 Specific examples of the coagulant include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride and aluminum chloride; nitrates such as barium nitrate, calcium nitrate and zinc nitrate; acetic acid such as barium acetate, calcium acetate and zinc acetate. Salts; water-soluble polyvalent metal salts such as calcium sulfate, magnesium sulfate, sulfates such as aluminum sulfate; Of these, calcium salts are preferable, and calcium nitrate is more preferable. These water-soluble polyvalent metal salts can be used alone or in combination of two or more.
 凝固剤は、通常、水、アルコール、またはそれらの混合物の溶液として使用することができ、好ましくは水溶液の状態で使用する。この水溶液は、さらにメタノール、エタノールなどの水溶性有機溶媒やノニオン性界面活性剤を含有していてもよい。凝固剤の濃度は、水溶性多価金属塩の種類によっても異なるが、好ましくは5~50重量%、より好ましくは10~30重量%である。 The coagulant can usually be used as a solution of water, alcohol, or a mixture thereof, and is preferably used in the state of an aqueous solution. This aqueous solution may further contain a water-soluble organic solvent such as methanol or ethanol or a nonionic surfactant. The concentration of the coagulant varies depending on the type of the water-soluble polyvalent metal salt, but is preferably 5 to 50% by weight, more preferably 10 to 30% by weight.
 型をラテックス組成物から引き上げた後、通常、加熱して型上に形成された沈着物を乾燥させる。乾燥条件は適宜選択すればよい。 After pulling the mold out of the latex composition, it is usually heated to dry the deposits formed on the mold. The drying conditions may be appropriately selected.
 ラテックス組成物が架橋剤を含有する場合には、得られたディップ成形層に対し、通常、加熱処理を施し架橋する。加熱処理を施す前に、水、好ましくは30~70℃の温水に、1~60分程度浸漬し、水溶性不純物(たとえば、余剰の乳化剤や凝固剤等)を除去してもよい。水溶性不純物の除去操作は、ディップ成形層を加熱処理した後に行なってもよいが、より効率的に水溶性不純物を除去できる点から、加熱処理前に行なうことが好ましい。 When the latex composition contains a cross-linking agent, the obtained dip-molded layer is usually heat-treated and cross-linked. Before the heat treatment, water-soluble impurities (for example, excess emulsifier, coagulant, etc.) may be removed by immersing in water, preferably warm water at 30 to 70 ° C. for about 1 to 60 minutes. The operation for removing water-soluble impurities may be performed after the dip molding layer has been heat-treated, but it is preferably performed before the heat treatment because the water-soluble impurities can be removed more efficiently.
 ディップ成形層の架橋は、通常、80~150℃の温度で、好ましくは10~130分の加熱処理を施すことにより行われる。加熱の方法としては、赤外線や加熱空気による外部加熱または高周波による内部加熱による方法が採用できる。なかでも、加熱空気による外部加熱が好ましい。 Crosslinking of the dip molded layer is usually carried out by subjecting the dip molded layer to a heat treatment at a temperature of 80 to 150 ° C., preferably for 10 to 130 minutes. As a heating method, a method of external heating by infrared rays or heated air or internal heating by high frequency can be adopted. Of these, external heating with heated air is preferable.
 そして、ディップ成形層をディップ成形用型から脱着することによって、ディップ成形体が、膜状の膜成形体として得られる。脱着方法としては、手で成形用型から剥したり、水圧や圧縮空気の圧力により剥したりする方法を採用することができる。なお、脱着後、更に60~120℃の温度で、10~120分の加熱処理を行なってもよい。
 なお、本発明の膜成形体は、上述した本発明のラテックス組成物を、ディップ成形する方法以外にも、上述した本発明のラテックス組成物を、膜状に成形できる方法(たとえば、塗布法等)であれば、いずれの方法で得られるものであってもよい。
Then, by desorbing the dip molding layer from the dip molding mold, a dip molded body can be obtained as a film-shaped film molded body. As a desorption method, a method of manually peeling from the molding mold or a method of peeling by water pressure or compressed air pressure can be adopted. After desorption, heat treatment may be further performed at a temperature of 60 to 120 ° C. for 10 to 120 minutes.
In addition to the method of dip molding the latex composition of the present invention described above, the film-molded article of the present invention is a method capable of molding the latex composition of the present invention into a film (for example, a coating method, etc.). ), It may be obtained by any method.
 本発明のディップ成形体を含む本発明の膜成形体は、上述した本発明のラテックス組成物を用いて得られるものであるため、遅延型アレルギー(Type IV)の症状の発生を抑制しながら、引裂強度にも優れるものであり、たとえば、手袋として特に好適に用いることができる。膜成形体が手袋である場合、膜成形体同士の接触面における密着を防止し、着脱の際の滑りをよくするために、タルク、炭酸カルシウムなどの無機微粒子または澱粉粒子などの有機微粒子を手袋表面に散布したり、微粒子を含有するエラストマー層を手袋表面に形成したり、手袋の表面層を塩素化したりしてもよい。 Since the film molded product of the present invention including the dip molded product of the present invention is obtained by using the latex composition of the present invention described above, it suppresses the occurrence of the symptoms of delayed type allergy (Type IV) while suppressing the occurrence of the symptoms. It is also excellent in tear strength, and can be particularly preferably used as a glove, for example. When the film-molded body is a glove, in order to prevent adhesion between the film-molded bodies on the contact surface and to improve slippage during attachment / detachment, gloves are made of inorganic fine particles such as talc and calcium carbonate or organic fine particles such as starch particles. It may be sprayed on the surface, an elastomer layer containing fine particles may be formed on the surface of the glove, or the surface layer of the glove may be chlorinated.
 また、本発明のディップ成形体を含む本発明の膜成形体は、上記手袋の他にも、哺乳瓶用乳首、スポイト、チューブ、水枕、バルーンサック、カテーテル、コンドームなどの医療用品;風船、人形、ボールなどの玩具;加圧成形用バック、ガス貯蔵用バックなどの工業用品;指サックなどにも用いることができる。 In addition to the gloves, the film-molded article of the present invention, including the dip-molded article of the present invention, includes medical supplies such as baby bottle nipples, droppers, tubes, water pillows, balloon sack, catheters, and condoms; balloons, dolls, etc. , Balls and other toys; industrial products such as pressure molding bags and gas storage bags; can also be used for finger cots and the like.
 以下、実施例により本発明が詳細に説明されるが、本発明はこれらの実施例に限定されない。なお、以下の「部」は、特に断りのない限り、重量基準である。なお、各種の物性は以下のように測定した。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to these examples. Unless otherwise specified, the following "parts" are based on weight. Various physical properties were measured as follows.
<固形分濃度>
 アルミ皿(重量:X1)に試料2gを精秤し(重量:X2)、これを105℃の熱風乾燥器内で2時間乾燥させた。次いで、デシケーター内で冷却した後、アルミ皿ごと重量を測定し(重量:X3)、下記の計算式にしたがって、固形分濃度を算出した。
 固形分濃度(重量%)=(X3-X1)×100/X2
<Solid content concentration>
2 g of the sample was precisely weighed on an aluminum plate (weight: X1) (weight: X2), and this was dried in a hot air dryer at 105 ° C. for 2 hours. Then, after cooling in the desiccator, the weight of each aluminum dish was measured (weight: X3), and the solid content concentration was calculated according to the following formula.
Solid content concentration (% by weight) = (X3-X1) x 100 / X2
<変性率>
 カルボキシ変性重合体のラテックスを構成するカルボキシ変性重合体をH-NMRで測定することにより、カルボキシ変性重合体中におけるカルボキシル基の数を求めた。次いで、求めたカルボキシル基の数に基づいて、下記式(i)にしたがって、カルボキシル基含有化合物による変性率を求めた。
 変性率(モル%)=(X/Y)×100   ・・・(i)
 なお、上記式(i)において、Xは、カルボキシ変性重合体中におけるカルボキシル基の数を、Yは、カルボキシ変性重合体の総モノマー単位数((カルボキシ変性重合体の重量平均分子量(Mw))/(カルボキシ変性重合体を構成する各モノマー単位の含有割合に応じた、モノマーの平均分子量(モノマー混合物の平均分子量))をそれぞれ表す。
<Denaturation rate>
The number of carboxyl groups in the carboxy-modified polymer was determined by measuring the carboxy-modified polymer constituting the latex of the carboxy-modified polymer by 1 H-NMR. Then, based on the determined number of carboxyl groups, the modification rate by the carboxyl group-containing compound was determined according to the following formula (i).
Degeneration rate (mol%) = (X / Y) x 100 ... (i)
In the above formula (i), X is the number of carboxyl groups in the carboxy-modified polymer, and Y is the total number of monomer units of the carboxy-modified polymer ((weight average molecular weight (Mw) of the carboxy-modified polymer)). / (The average molecular weight of the monomers (the average molecular weight of the monomer mixture) according to the content ratio of each monomer unit constituting the carboxy-modified polymer) is represented.
<スウェルインデックス(SI)>
 カルボキシ変性重合体のラテックスに対し、水酸化カリウムを添加し、pH=8.2に調整した。そして、表面がすり加工されたセラミック製の成形型を準備し、これを洗浄し、70℃のオーブン内で60分間予備加熱した後、18重量%の硝酸カルシウムおよび0.05重量%のポリオキシエチレンラウリルエーテル(商品名「エマルゲン109P」、花王社製)を含有する凝固剤水溶液に、予備加熱したセラミック製の成形型を5秒間浸漬させた。そして、凝固剤水溶液から、セラミック製の成形型を取り出し、凝固剤で被覆されたセラミック製の成形型を70℃のオーブン内で20分間乾燥した。次いで、凝固剤で被覆されたセラミック製の成形型をオーブンから取り出し、取り出したセラミック製の成形型を、pH=8.2に調整したカルボキシ変性重合体のラテックス中に、25℃、10秒間の条件にて浸漬させた後取り出し、カルボキシ変性重合体のラテックスで被覆されたセラミック製の成形型を60℃の温水中に2分間浸漬した後、室温で6時間乾燥することで、測定用のフィルムで被覆されたセラミック製の成形型を得た。そして、これにタルクを散布した後、得られたフィルムを、セラミック製の成形型から剥離することで、厚み0.2mmのディップフィルムを得た。そして、得られたディップフィルムから、直径25mmの試験用フィルムを切り出し、得られた試験用フィルムを、25℃のトルエン中に、1時間浸漬させ、トルエン浸漬前後の試験片の幅を測定し、下記式にしたがって、スウェルインデックス(SI)を算出した。
  スウェルインデックス(SI)[%]=[{(トルエン浸漬後のフィルムの幅)-(トルエン浸漬前のフィルムの幅)}/(トルエン浸漬前のフィルムの幅)]×100
<Swell Index (SI)>
Potassium hydroxide was added to the latex of the carboxy-modified polymer to adjust the pH to 8.2. Then, a ceramic mold with a ground surface was prepared, washed, preheated in an oven at 70 ° C. for 60 minutes, and then 18% by weight of calcium nitrate and 0.05% by weight of polyoxy. A preheated ceramic mold was immersed in an aqueous coagulant containing ethylene lauryl ether (trade name "Emargen 109P", manufactured by Kao Corporation) for 5 seconds. Then, the ceramic mold was taken out from the coagulant aqueous solution, and the ceramic mold coated with the coagulant was dried in an oven at 70 ° C. for 20 minutes. Next, the ceramic mold coated with the coagulant was taken out from the oven, and the removed ceramic mold was placed in the latex of the carboxy-modified polymer adjusted to pH = 8.2 at 25 ° C. for 10 seconds. A film for measurement is taken out after being immersed under the conditions, and a ceramic mold coated with a latex of a carboxy-modified polymer is immersed in warm water at 60 ° C. for 2 minutes and then dried at room temperature for 6 hours. A ceramic mold coated with was obtained. Then, after spraying talc on this, the obtained film was peeled off from a ceramic molding die to obtain a dip film having a thickness of 0.2 mm. Then, a test film having a diameter of 25 mm was cut out from the obtained dip film, and the obtained test film was immersed in toluene at 25 ° C. for 1 hour, and the width of the test piece before and after immersion in toluene was measured. The swell index (SI) was calculated according to the following formula.
Swell index (SI) [%] = [{(width of film after immersion in toluene)-(width of film before immersion in toluene)} / (width of film before immersion in toluene)] × 100
<トルエン不溶解分量>
 カルボキシ変性重合体のラテックスに対し、水酸化カリウムを添加し、pH=8.2に調整した。そして、pH=8.2に調整したカルボキシ変性重合体のラテックスを、表面が平滑なガラス板上に、キャストし、次いで、25℃で、120時間乾燥することで、キャストフィルムを得た。そして、得られたキャストフィルムから0.2~0.3gの試料を測りとり(この重量を「W1」とする。)80メッシュの金網かごに入れて、それを25℃のトルエン中に24時間浸漬させた。次いで、金網かごに残るフィルムを、100℃、24時間減圧乾燥して、トルエンを除去した。そして、トルエン除去後のフィルムについて、重量(この重量を「W2」とする。)を測定し、これらの重量の測定結果より、下記式に従って、トルエン不溶解分量を測定した。
  トルエン不溶解分量[重量%]=(W2/W1)×100
<Toluene insoluble amount>
Potassium hydroxide was added to the latex of the carboxy-modified polymer to adjust the pH to 8.2. Then, the latex of the carboxy-modified polymer adjusted to pH = 8.2 was cast on a glass plate having a smooth surface, and then dried at 25 ° C. for 120 hours to obtain a cast film. Then, 0.2 to 0.3 g of a sample is measured from the obtained cast film (this weight is referred to as "W1"), placed in an 80 mesh wire mesh basket, and placed in toluene at 25 ° C. for 24 hours. Soaked. Then, the film remaining in the wire mesh cage was dried under reduced pressure at 100 ° C. for 24 hours to remove toluene. Then, the weight (this weight is referred to as "W2") of the film after removing toluene was measured, and the amount of toluene insoluble was measured from the measurement results of these weights according to the following formula.
Toluene insoluble amount [% by weight] = (W2 / W1) × 100
<THFに対する膨潤率>
 上記した「トルエン不溶解分量」と同様の方法により、キャストフィルムを得た。得られた測定用のキャストフィルムを、25℃のテトラヒドロフラン(THF)中に、24時間浸漬させ、浸漬したフィルムを引き上げて、すぐに重量(重量A)を測定した。その後、浸漬したフィルムを100℃にて24時間乾燥し、フィルムの乾燥重量(重量B)を測定した。そして、測定結果に基づいて、THFに対する膨潤率を、下記式にしたがって求めた。
  THFに対する膨潤率(倍)=B/A
<Swelling rate with respect to THF>
A cast film was obtained by the same method as the above-mentioned "insoluble amount of toluene". The obtained cast film for measurement was immersed in tetrahydrofuran (THF) at 25 ° C. for 24 hours, the immersed film was pulled up, and the weight (weight A) was immediately measured. Then, the dipped film was dried at 100 ° C. for 24 hours, and the dry weight (weight B) of the film was measured. Then, based on the measurement result, the swelling rate with respect to THF was determined according to the following formula.
Swelling rate (times) with respect to THF = B / A
<THF不溶解分量>
 上記した「トルエン不溶解分量」と同様の方法により、キャストフィルムを得た。得られたキャストフィルムから0.2~0.3gの試料を測りとり(この重量を「W3」とする。)、80メッシュの金網かごに入れて、それを25℃のトルエン中に24時間浸漬させた。次いで、金網かごに残るフィルムを、100℃、24時間減圧乾燥して、THFを除去した。そして、トルエン除去後のフィルムについて、重量(この重量を「W4」とする。)を測定し、これらの重量の測定結果より、下記式に従って、THF不溶解分量を測定した。
  THF不溶解分量[重量%]=(W4/W3)×100
<Tetrahydrofuran insoluble amount>
A cast film was obtained by the same method as the above-mentioned "insoluble amount of toluene". A sample of 0.2 to 0.3 g is measured from the obtained cast film (this weight is referred to as “W3”), placed in an 80 mesh wire mesh basket, and immersed in toluene at 25 ° C. for 24 hours. I let you. Then, the film remaining in the wire mesh cage was dried under reduced pressure at 100 ° C. for 24 hours to remove THF. Then, the weight (this weight is referred to as "W4") of the film after removing toluene was measured, and the amount of THF insoluble was measured from the measurement results of these weights according to the following formula.
THF insoluble amount [% by weight] = (W4 / W3) × 100
<パッチテスト>
 膜厚が約0.2mmのフィルム状のディップ成形体を、10×10mmのサイズに切断して得た試験片を、被検者10人の腕にそれぞれ貼付した。その後、48時間後に貼付部分を観察することで、遅延型アレルギー(Type IV)のアレルギー症状の発生有無を確認し、以下の基準で評価した。
 なお、パッチテストは、熟成(前加硫)時間を24時間としたディップ成形体について行った。
  A:全ての被検者について、アレルギー症状がみられなかった。
  B:一部の被検者については、アレルギー症状がみられた。
<Patch test>
A test piece obtained by cutting a film-shaped dip molded product having a film thickness of about 0.2 mm into a size of 10 × 10 mm was attached to each of the arms of 10 subjects. Then, 48 hours later, by observing the pasted portion, the presence or absence of allergic symptoms of delayed type allergy (Type IV) was confirmed and evaluated according to the following criteria.
The patch test was performed on a dip molded product having an aging (pre-vulcanization) time of 24 hours.
A: All subjects had no allergic symptoms.
B: Allergic symptoms were observed in some subjects.
<ディップ成形体の引裂強度>
 ASTM D624-00に基づいて、ディップ成形体を、23℃、相対湿度50%の恒温恒湿室で24時間以上放置した後、ダンベル(商品名「Die C」、ダンベル社製)で打ち抜き、引裂強度測定用の試験片を作製した。当該試験片をテンシロン万能試験機(商品名「RTG-1210」、A&D社製)で引張速度500mm/minで引っ張り、引裂強度(単位:N/mm)を測定した。なお、測定は、5個の試験片について行い、5個の試験片の引裂強度の測定値のうち、中央値(すなわち、5個の試験片のうち、3番目に大きい値を示した試験片の引裂強度の値)を、引裂強度の値として採用した。
 また、ディップ成形体の引裂強度の測定は、熟成(前加硫)時間を24時間としたディップ成形体、および熟成(前加硫)時間を48時間としたディップ成形体について行った。
<Tear strength of dip molded product>
Based on ASTM D624-00, the dip molded product was left in a constant temperature and humidity chamber at 23 ° C. and 50% relative humidity for 24 hours or more, and then punched and torn with a dumbbell (trade name "Die C", manufactured by Dumbbell). A test piece for strength measurement was prepared. The test piece was pulled by a Tencilon universal testing machine (trade name "RTG-1210", manufactured by A & D Co., Ltd.) at a tensile speed of 500 mm / min, and the tear strength (unit: N / mm) was measured. The measurement was performed on 5 test pieces, and the median value among the measured values of the tear strength of the 5 test pieces (that is, the test piece showing the third largest value among the 5 test pieces). (Value of tear strength) was adopted as the value of tear strength.
The tear strength of the dip molded product was measured for a dip molded product having an aging (pre-vulcanization) time of 24 hours and a dip molded product having an aging (pre-vulcanization) time of 48 hours.
<ディップ成形体の500%引張応力>
 ASTM D412に基づいて、ディップ成形体を、ダンベル(商品名「スーパーダンベル(型式:SDMK-100C)」、ダンベル社製)で打ち抜き、試験片を作製した。当該試験片をテンシロン万能試験機(商品名「RTG-1210」、A&D社製)で引張速度500mm/minで伸び率が500%の時の引張応力(単位:MPa)を測定した。500%の時の引張応力が小さいほど、ディップ成形体は柔軟性に優れたものとなり、好ましい。
 なお、ディップ成形体の500%引張応力の測定は、熟成(前加硫)時間を24時間としたディップ成形体、および熟成(前加硫)時間を48時間としたディップ成形体について行った。
<500% tensile stress of dip molded product>
Based on ASTM D412, the dip molded product was punched with a dumbbell (trade name "Super Dumbbell (model: SDKM-100C)", manufactured by Dumbbell Co., Ltd.) to prepare a test piece. The test piece was measured for tensile stress (unit: MPa) when the tensile speed was 500 mm / min and the elongation rate was 500% with a Tencilon universal testing machine (trade name "RTG-1210", manufactured by A & D Co., Ltd.). The smaller the tensile stress at 500%, the more flexible the dip molded product becomes, which is preferable.
The 500% tensile stress of the dip molded product was measured for the dip molded product having an aging (pre-vulcanization) time of 24 hours and the dip molded product having an aging (pre-vulcanization) time of 48 hours.
<実施例1>
(カルボキシ変性合成ポリイソプレン(A-1)のラテックスの製造)
 重量平均分子量が1,300,000である合成ポリイソプレン(商品名「NIPOL IR2200L」、日本ゼオン社製、イソプレンの単独重合体、シス結合単位量98重量%)をシクロヘキサンと混合し、攪拌しながら温度を60℃に昇温して溶解し、B形粘度計で測定した粘度が12,000mPa・sの合成ポリイソプレンのシクロヘキサン溶液(a)を調製した(固形分濃度8重量%)。
<Example 1>
(Manufacture of Latex of Carboxy-modified Synthetic Polyisoprene (A-1))
Synthetic polyisoprene having a weight average molecular weight of 1,300,000 (trade name "NIPOL IR2200L", manufactured by Nippon Zeon Co., Ltd., homopolymer of isoprene, cis bond unit amount 98% by weight) is mixed with cyclohexane and stirred. The temperature was raised to 60 ° C. to dissolve the mixture, and a cyclohexane solution (a) of synthetic polyisoprene having a viscosity of 12,000 mPa · s measured by a B-type viscosity meter was prepared (solid content concentration: 8% by weight).
 一方、ロジン酸ナトリウム20部を水に添加し、温度を60℃に昇温して溶解し、濃度1.5重量%のアニオン性界面活性剤水溶液(b)を調製した。 On the other hand, 20 parts of sodium rosinate was added to water, the temperature was raised to 60 ° C. and dissolved to prepare an aqueous anionic surfactant solution (b) having a concentration of 1.5% by weight.
 次に、上記シクロヘキサン溶液(a)と、上記アニオン性界面活性剤水溶液(b)とを、重量比で1:1.5となるように、ミキサー(商品名「マルチラインミキサーMS26-MMR-5.5L」、佐竹化学機械工業社製)を用いて混合し、続いて、乳化装置(商品名「マイルダーMDN310」、太平洋機工社製)を用いて、回転数4100rpmで混合及び乳化して、乳化液(c)を得た。なお、その際、シクロヘキサン溶液(a)とアニオン性界面活性剤水溶液(b)の合計のフィード流速は2,000kg/hr、温度は60℃、背圧(ゲージ圧)は0.5MPaとした。 Next, the cyclohexane solution (a) and the anionic surfactant aqueous solution (b) are mixed in a mixer (trade name "Multiline Mixer MS26-MMR-5" so as to have a weight ratio of 1: 1.5. .5L ”, manufactured by Satake Kagaku Kikai Kogyo Co., Ltd.), and then mixed and emulsified using an emulsifying device (trade name“ Milder MDN310 ”, manufactured by Pacific Kiko Co., Ltd.) at a rotation speed of 4100 rpm to emulsify. Liquid (c) was obtained. At that time, the total feed flow velocity of the cyclohexane solution (a) and the anionic surfactant aqueous solution (b) was 2,000 kg / hr, the temperature was 60 ° C., and the back pressure (gauge pressure) was 0.5 MPa.
 次いで、乳化液(c)を、-0.01~-0.09MPa(ゲージ圧)の減圧下で80℃に加温し、シクロヘキサンを留去し、合成ポリイソプレンの水分散液(d)を得た。その際、消泡剤(商品名「SM5515」、東レ・ダウコーニング社製)を、乳化液(c)中の合成ポリイソプレンに対して300重量ppmの量になるよう、噴霧しながら連続添加した。なお、シクロヘキサンを留去する際には、乳化液(c)がタンクの容積の70体積%以下になるように調整し、かつ、攪拌翼として3段の傾斜パドル翼を用い、60rpmでゆっくり攪拌を実施した。 Next, the emulsion (c) was heated to 80 ° C. under a reduced pressure of −0.01 to −0.09 MPa (gauge pressure), cyclohexane was distilled off, and an aqueous dispersion (d) of synthetic polyisoprene was added. Obtained. At that time, an antifoaming agent (trade name "SM5515", manufactured by Toray Dow Corning Co., Ltd.) was continuously added while spraying so as to have an amount of 300 ppm by weight with respect to the synthetic polyisoprene in the emulsion (c). .. When distilling off cyclohexane, the emulsion (c) is adjusted to be 70% by volume or less of the volume of the tank, and a three-stage inclined paddle blade is used as the stirring blade, and the mixture is slowly stirred at 60 rpm. Was carried out.
 そして、シクロヘキサンの留去が完了した後、得られた合成ポリイソプレンの水分散液(d)を、連続遠心分離機(商品名「SRG510」、アルファラバル社製)を用いて、4,000~5,000Gで遠心分離し、軽液としての合成ポリイソプレンのラテックス(e)を得た。なお、遠心分離の条件は、遠心分離前の水分散液(d)の固形分濃度10重量%、連続遠心分離時の流速は1300kg/hr、遠心分離機の背圧(ゲージ圧)は1.5MPaとした。得られた合成ポリイソプレンのラテックス(e)は、固形分濃度が60重量%であった。 Then, after the distillation of cyclohexane is completed, the obtained aqueous dispersion (d) of synthetic polyisoprene is used in a continuous centrifuge (trade name "SRG510", manufactured by Alfa Laval) from 4,000 to Centrifugation at 5,000 G gave a latex (e) of synthetic polyisoprene as a light liquid. The conditions for centrifugation are as follows: the solid content concentration of the aqueous dispersion (d) before centrifugation is 10% by weight, the flow velocity during continuous centrifugation is 1300 kg / hr, and the back pressure (gauge pressure) of the centrifuge is 1. It was set to 5 MPa. The obtained synthetic polyisoprene latex (e) had a solid content concentration of 60% by weight.
 次いで、得られた合成ポリイソプレンのラテックス(e)中の合成ポリイソプレン100部に対して、蒸留水130部を添加して希釈した。そして、合成ポリイソプレンのラテックス(e)に、合成ポリイソプレン100部に対して、分散剤としてのβ-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(商品名「デモールT-45」、花王社製)0.8部を合成ポリイソプレン100部に対し4部の蒸留水で希釈したものを5分間かけて添加した。次いで、分散剤を添加した合成ポリイソプレンのラテックス(e)を、窒素置換された攪拌機付き反応容器に仕込み、撹拌しながら温度を30℃にまで加温した。また、別の容器を用い、カルボキシル基含有化合物としてのメタクリル酸3部と蒸留水16部とを混合してメタクリル酸希釈液を調製した。このメタクリル酸希釈液を、温度20℃に保った反応容器内に、30分間かけて添加した。 Next, 130 parts of distilled water was added to 100 parts of the synthetic polyisoprene in the latex (e) of the obtained synthetic polyisoprene to dilute it. Then, in the latex (e) of synthetic polyisoprene, a sodium salt of β-naphthalene sulfonic acid formalin condensate as a dispersant for 100 parts of synthetic polyisoprene (trade name "Demor T-45", manufactured by Kao Co., Ltd.). 0.8 part was diluted with 4 parts of distilled water to 100 parts of synthetic polyisoprene and added over 5 minutes. Next, the latex (e) of synthetic polyisoprene to which a dispersant was added was charged into a reaction vessel equipped with a stirrer substituted with nitrogen, and the temperature was heated to 30 ° C. while stirring. Further, using another container, 3 parts of methacrylic acid as a carboxyl group-containing compound and 16 parts of distilled water were mixed to prepare a diluted methacrylic acid solution. This diluted methacrylic acid solution was added to the reaction vessel kept at a temperature of 20 ° C. over 30 minutes.
 さらに、別の容器を用い、蒸留水7部、ナトリウムホルムアルデヒドスルホキシレート(商品名「SFS」、三菱ガス化学社製)0.32部、硫酸第一鉄(商品名「フロストFe」、中部キレスト社製)0.01部からなる溶液(f)を調製した。この溶液(f)を反応容器内に移した後、1,1,3,3-テトラメチルブチルハイドロパーオキサイド(商品名「パーオクタH」、日本油脂社製)0.5部を添加して20℃で1時間反応させた後、遠心分離機にて濃縮することで、カルボキシ変性合成ポリイソプレン(A-1)のラテックスを得た。得られたカルボキシ変性合成ポリイソプレン(A-1)のラテックスについて、上記方法にしたがって変性率を測定したところ、変性率は0.5モル%であった。 Furthermore, using another container, 7 parts of distilled water, 0.32 parts of sodium formaldehyde sulfoxylate (trade name "SFS", manufactured by Mitsubishi Gas Chemical Company), ferrous sulfate (trade name "Frost Fe", Chubu Killest) A solution (f) consisting of 0.01 parts was prepared. After transferring this solution (f) into a reaction vessel, 0.5 part of 1,1,3,3-tetramethylbutylhydroperoxide (trade name "Perocta H", manufactured by Nippon Oil & Fats Co., Ltd.) is added and 20 parts are added. After reacting at ° C. for 1 hour, the mixture was concentrated in a centrifuge to obtain a latex of carboxy-modified synthetic polyisoprene (A-1). When the modification rate of the obtained carboxy-modified synthetic polyisoprene (A-1) latex was measured according to the above method, the modification rate was 0.5 mol%.
 そして、得られたカルボキシ変性合成ポリイソプレン(A-1)のラテックスを用いて、スウェルインデックス(SI)、トルエン不溶解分量、THFに対する膨潤率およびTHF不溶解分量の測定を行った。結果を表1に示す。 Then, using the obtained latex of carboxy-modified synthetic polyisoprene (A-1), the swell index (SI), the amount of toluene insoluble, the swelling rate with respect to THF, and the amount of THF insoluble were measured. The results are shown in Table 1.
(キサントゲン化合物分散体の調製)
 キサントゲン化合物としてのジイソプロピルキサントゲン酸亜鉛(商品名「ノクセラーZIX」、大内新興化学工業株式会社製、体積平均粒子径:14μm、95%体積累積径(D95):55μm)2部、ノニオン系界面活性剤としてのポリオキシエチレンジスチレン化フェニルエーテル(商品名「エマルゲンA-60」、花王社製)0.15部、および水4.5部を、ボールミル(商品名「磁製ボールミル」、日陶科学社製)により混合することで解砕処理を行うことで、キサントゲン化合物分散体を得た。なお、ボールミルによる、混合条件としては、φ10mm~φ35mmのセラミック磁製ボール(φ10mm、φ15mm、φ20mm、φ25mm、φ30mmおよびφ35mmのセラミック磁製ボールを混合したもの)を使用し、50rpmで72時間とした。また、得られたキサントゲン化合物分散体中のジイソプロピルキサントゲン酸亜鉛の体積平均粒子径および95%体積累積径(D95)を、レーザー回折散乱式粒度分布計(商品名「SALD-2300」、株式会社 島津製作所製)を使用して測定したところ、ジイソプロピルキサントゲン酸亜鉛の体積平均粒子径は3μmであり、95%体積累積径(D95)は16μmであった。
(Preparation of xanthate compound dispersion)
Zinc diisopropylxanthogenate as a xanthogen compound (trade name "Noxeller ZIX", manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd., volume average particle diameter: 14 μm, 95% volume cumulative diameter (D95): 55 μm), 2 parts, nonionic surfactant 0.15 parts of polyoxyethylene distyrene phenyl ether (trade name "Emargen A-60", manufactured by Kao Co., Ltd.) and 4.5 parts of water as an agent, ball mill (trade name "porcelain ball mill", Nikko) A xanthogen compound dispersion was obtained by crushing the mixture by mixing with (manufactured by Kagaku Co., Ltd.). As the mixing conditions by the ball mill, ceramic porcelain balls of φ10 mm to φ35 mm (a mixture of φ10 mm, φ15 mm, φ20 mm, φ25 mm, φ30 mm and φ35 mm ceramic porcelain balls) were used, and the mixing conditions were set at 50 rpm for 72 hours. .. In addition, the volume average particle size and 95% volume cumulative diameter (D95) of zinc diisopropylxanthogenate in the obtained xanthogen compound dispersion were measured by a laser diffraction scattering type particle size distribution meter (trade name "SALD-2300", Shimadzu Co., Ltd.). As a result of measurement using (manufactured by Mfg. Co., Ltd.), the volume average particle size of zinc diisopropylxanthogenate was 3 μm, and the 95% volume cumulative diameter (D95) was 16 μm.
(ラテックス組成物の調製)
 まず、スチレン-マレイン酸モノ-sec-ブチルエステル-マレイン酸モノメチルエステル重合体(商品名「Scripset550」、Hercules社製)を、水酸化ナトリウムを用い、重合体中のカルボキシル基を100%中和して、ナトリウム塩水溶液(濃度10重量%)を調製した。そして、このナトリウム塩水溶液を、上記にて得られたカルボキシ変性合成ポリイソプレン(A-1)のラテックスに、カルボキシ変性合成ポリイソプレン(A-1)100部に対して固形分換算で0.8部になるようにして添加し、混合物を得た。
(Preparation of latex composition)
First, a styrene-maleic acid mono-sec-butyl ester-maleic acid monomethyl ester polymer (trade name "Scripest550", manufactured by Hercules) is 100% neutralized with sodium hydroxide to neutralize the carboxyl groups in the polymer. An aqueous sodium salt solution (concentration: 10% by weight) was prepared. Then, this aqueous sodium salt solution was added to the latex of the carboxy-modified synthetic polyisoprene (A-1) obtained above with respect to 100 parts of the carboxy-modified synthetic polyisoprene (A-1) in terms of solid content of 0.8. Addition was made in portions to obtain a mixture.
 そして、得られた混合物を攪拌しながら、混合物中のカルボキシ変性合成ポリイソプレン(A-1)100部に対して、上記にて調製したキサントゲン化合物分散体6.65部(ジイソプロピルキサントゲン酸亜鉛換算で2部)を添加した。 Then, while stirring the obtained mixture, 6.65 parts of the xanthogen compound dispersion prepared above (in terms of zinc diisopropylxanthogenate) was added to 100 parts of the carboxy-modified synthetic polyisoprene (A-1) in the mixture. 2 parts) was added.
 次いで、固形分換算で、活性化剤としての酸化亜鉛1.5部、硫黄1.0部、老化防止剤(商品名「Wingstay L」、グッドイヤー社製)2部となるように、各配合剤の水分散液を添加して、ラテックス組成物を得た。そして、得られたラテックス組成物を、2分割し、一方については、25℃に調整された恒温水槽で24時間熟成(前加硫)を行い、他方については、25℃に調整された恒温水槽で48時間熟成(前加硫)を行うことで、24時間熟成ラテックス組成物、および48時間熟成ラテックス組成物を得た。 Next, in terms of solid content, each compounding agent has 1.5 parts of zinc oxide as an activator, 1.0 part of sulfur, and 2 parts of an antiaging agent (trade name "Wingstay L", manufactured by Goodyear Tire and Rubber Co., Ltd.). The aqueous dispersion of the above was added to obtain a latex composition. Then, the obtained latex composition was divided into two, one of which was aged for 24 hours (pre-vulcanization) in a constant temperature water bath adjusted to 25 ° C., and the other was a constant temperature water tank adjusted to 25 ° C. By carrying out aging (pre-vulcanization) for 48 hours, a 24-hour aged latex composition and a 48-hour aged latex composition were obtained.
(ディップ成形体の製造)
 市販のセラミック製手型(シンコー社製)を洗浄し、70℃のオーブン内で予備加熱した後、18重量%の硝酸カルシウムおよび0.05重量%のポリオキシエチレンラウリルエーテル(商品名「エマルゲン109P」、花王社製)を含有する凝固剤水溶液に5秒間浸漬し、凝固剤水溶液から取り出した。次いで、手型を70℃のオーブン内で30分以上乾燥させることで、手型に凝固剤を付着させて、手型を凝固剤により被覆した。
(Manufacturing of dip molded body)
After washing a commercially available ceramic hand mold (manufactured by Shinko Co., Ltd.) and preheating it in an oven at 70 ° C., 18% by weight of calcium nitrate and 0.05% by weight of polyoxyethylene lauryl ether (trade name "Emargen 109P") , Manufactured by Kao Corporation) was immersed in the coagulant aqueous solution for 5 seconds and taken out from the coagulant aqueous solution. Next, the hand mold was dried in an oven at 70 ° C. for 30 minutes or more to attach a coagulant to the hand mold, and the hand mold was covered with the coagulant.
 その後、凝固剤で被覆された手型を、オーブンから取り出し、上記にて得られた24時間熟成ラテックス組成物に10秒間浸漬した。次いで、この手型を、室温で10分間風乾してから、60℃の温水中に5分間浸漬して水溶性不純物を溶出させて、手型にディップ成形層を形成した。その後、手型に形成したディップ成形層を、オーブンにより温度130℃、30分間の条件で加熱することにより加硫させた後、室温まで冷却し、タルクを散布してから手型から剥離して、手袋形状のディップ成形体(24時間熟成品)を得た。また、24時間熟成ラテックス組成物に代えて、48時間熟成ラテックス組成物を使用した以外は、上記と同様にして、手袋形状のディップ成形体(48時間熟成品)を得た。そして、得られたディップ成形体(24時間熟成品および48時間熟成品)を用いて、上記方法にしたがって、引裂強度および500%引張応力の測定、ならびにパッチテストを行った。結果を表1に示す。 Then, the hand mold coated with the coagulant was taken out from the oven and immersed in the 24-hour aged latex composition obtained above for 10 seconds. Next, the hand mold was air-dried at room temperature for 10 minutes and then immersed in warm water at 60 ° C. for 5 minutes to elute water-soluble impurities to form a dip molding layer on the hand mold. Then, the dip molded layer formed in the hand mold is vulcanized by heating it in an oven at a temperature of 130 ° C. for 30 minutes, cooled to room temperature, sprayed with talc, and then peeled off from the hand mold. , A glove-shaped dip molded product (aged for 24 hours) was obtained. Further, a glove-shaped dip molded article (48-hour aged product) was obtained in the same manner as described above except that the 48-hour aged latex composition was used instead of the 24-hour aged latex composition. Then, using the obtained dip molded products (24-hour aged product and 48-hour aged product), the tear strength and 500% tensile stress were measured and a patch test was performed according to the above method. The results are shown in Table 1.
 なお、実施例1においては、ディップ成形体(24時間熟成品)について、引裂強度の測定を、上記した方法にしたがって、5個の試験片について行った結果、引裂強度の測定値が、中央値に対し±10%の範囲に入っている試験片の割合が70%以上(すなわち、5個の試験片のうち、引裂強度の測定値が、中央値に対し±10%の範囲に入っている試験片の数が、4個以上)であり、引裂強度の安定性に優れるものであった。 In Example 1, the tear strength of the dip molded product (aged for 24 hours) was measured for five test pieces according to the above method, and as a result, the measured value of the tear strength was the median value. The ratio of the test pieces in the range of ± 10% is 70% or more (that is, the measured value of the tear strength among the five test pieces is in the range of ± 10% with respect to the median value. The number of test pieces was 4 or more), and the stability of tear strength was excellent.
<実施例2>
(カルボキシ変性合成ポリイソプレン(A-2)のラテックスの製造)
 実施例1と同様にして、合成ポリイソプレンのラテックス(e)を得た後、メタクリル酸による変性反応を行う際に、ナトリウムホルムアルデヒドスルホキシレートの使用量を0.32部から0.30部に変更し、メタクリル酸による変性反応を行う際における反応温度(変性反応温度)を20℃から30℃に変更するとともに、30℃、1時間の条件にて変性反応を行った後、変性反応後のラテックスに対し、さらに、40℃、1時間の条件にて、後加熱を行った以外は、実施例1と同様にして、カルボキシ変性合成ポリイソプレン(A-2)のラテックスを得た。得られたカルボキシ変性合成ポリイソプレン(A-2)のラテックスについて、上記方法にしたがって変性率を測定したところ、変性率は0.5モル%であった。
 そして、得られたカルボキシ変性合成ポリイソプレン(A-2)のラテックスを用いて、スウェルインデックス(SI)、トルエン不溶解分量、THFに対する膨潤率およびTHF不溶解分量の測定を行った。結果を表1に示す。
<Example 2>
(Manufacture of Latex of Carboxy-modified Synthetic Polyisoprene (A-2))
In the same manner as in Example 1, the amount of sodium formaldehyde sulfoxylate used was changed from 0.32 part to 0.30 part when the modification reaction with methacrylic acid was performed after obtaining the latex (e) of synthetic polyisoprene. The reaction temperature (modification reaction temperature) when the modification reaction with methacrylic acid is changed is changed from 20 ° C. to 30 ° C., and the modification reaction is performed under the conditions of 30 ° C. for 1 hour, and then after the modification reaction. A latex of carboxy-modified synthetic polyisoprene (A-2) was obtained in the same manner as in Example 1 except that the latex was further post-heated at 40 ° C. for 1 hour. When the modification rate of the obtained carboxy-modified synthetic polyisoprene (A-2) latex was measured according to the above method, the modification rate was 0.5 mol%.
Then, using the obtained latex of carboxy-modified synthetic polyisoprene (A-2), the swell index (SI), the amount of toluene insoluble, the swelling rate with respect to THF, and the amount of THF insoluble were measured. The results are shown in Table 1.
(ラテックス組成物の調製、ディップ成形体の製造)
 上記にて得られたカルボキシ変性合成ポリイソプレン(A-2)のラテックスを使用した以外は、実施例1と同様にして、24時間熟成ラテックス組成物、および48時間熟成ラテックス組成物、ならびに、ディップ成形体(24時間熟成品および48時間熟成品)を得て、同様に評価を行った。結果を表1に示す。
 なお、実施例2においては、ディップ成形体(24時間熟成品)について、引裂強度の測定を、上記した方法にしたがって、5個の試験片について行った結果、引裂強度の測定値が、中央値に対し±10%の範囲に入っている試験片の割合が70%未満(すなわち、5個の試験片のうち、引裂強度の測定値が、中央値に対し±10%の範囲に入っている試験片の数が、3個以下)となる結果であった。
(Preparation of latex composition, production of dip molded product)
A 24-hour aged latex composition, a 48-hour aged latex composition, and a dip in the same manner as in Example 1 except that the latex of the carboxy-modified synthetic polyisoprene (A-2) obtained above was used. Molds (24-hour aged product and 48-hour aged product) were obtained and evaluated in the same manner. The results are shown in Table 1.
In Example 2, the tear strength of the dip molded product (aged for 24 hours) was measured for five test pieces according to the above method, and as a result, the measured value of the tear strength was the median value. The proportion of test pieces in the range of ± 10% is less than 70% (that is, the measured tear strength of the five test pieces is in the range of ± 10% of the median. The number of test pieces was 3 or less).
<実施例3>
(カルボキシ変性合成ポリイソプレン(A-3)のラテックスの製造)
 実施例1と同様にして、合成ポリイソプレンのラテックス(e)を得た後、メタクリル酸による変性反応を行う際に、ナトリウムホルムアルデヒドスルホキシレートの使用量を0.32部から0.25部に変更し、メタクリル酸による変性反応を行う際における反応温度(変性反応温度)を20℃から30℃に変更した以外は、実施例1と同様にして、カルボキシ変性合成ポリイソプレン(A-3)のラテックスを得た。得られたカルボキシ変性合成ポリイソプレン(A-3)のラテックスについて、上記方法にしたがって変性率を測定したところ、変性率は0.5モル%であった。
 そして、得られたカルボキシ変性合成ポリイソプレン(A-3)のラテックスを用いて、スウェルインデックス(SI)、トルエン不溶解分量、THFに対する膨潤率およびTHF不溶解分量の測定を行った。結果を表1に示す。
<Example 3>
(Manufacture of Latex of Carboxy-modified Synthetic Polyisoprene (A-3))
In the same manner as in Example 1, the amount of sodium formaldehyde sulfoxylate used was changed from 0.32 part to 0.25 part when the modification reaction with methacrylic acid was carried out after obtaining the latex (e) of synthetic polyisoprene. The carboxy-modified synthetic polyisoprene (A-3) was prepared in the same manner as in Example 1 except that the reaction temperature (modification reaction temperature) when performing the modification reaction with methacrylic acid was changed from 20 ° C. to 30 ° C. Obtained latex. When the modification rate of the obtained carboxy-modified synthetic polyisoprene (A-3) latex was measured according to the above method, the modification rate was 0.5 mol%.
Then, using the obtained latex of carboxy-modified synthetic polyisoprene (A-3), the swell index (SI), the amount of toluene insoluble, the swelling rate with respect to THF, and the amount of THF insoluble were measured. The results are shown in Table 1.
(ラテックス組成物の調製、ディップ成形体の製造)
 上記にて得られたカルボキシ変性合成ポリイソプレン(A-3)のラテックスを使用した以外は、実施例1と同様にして、24時間熟成ラテックス組成物、および48時間熟成ラテックス組成物、ならびに、ディップ成形体(24時間熟成品および48時間熟成品)を得て、同様に評価を行った。結果を表1に示す。
 なお、実施例3においては、ディップ成形体(24時間熟成品)について、引裂強度の測定を、上記した方法にしたがって、5個の試験片について行った結果、引裂強度の測定値が、中央値に対し±10%の範囲に入っている試験片の割合が70%以上(すなわち、5個の試験片のうち、引裂強度の測定値が、中央値に対し±10%の範囲に入っている試験片の数が、4個以上)であり、引裂強度の安定性に優れるものであった。
(Preparation of latex composition, production of dip molded product)
A 24-hour aged latex composition, a 48-hour aged latex composition, and a dip in the same manner as in Example 1 except that the latex of the carboxy-modified synthetic polyisoprene (A-3) obtained above was used. Molds (24-hour aged product and 48-hour aged product) were obtained and evaluated in the same manner. The results are shown in Table 1.
In Example 3, the tear strength of the dip molded product (aged for 24 hours) was measured for five test pieces according to the above method, and as a result, the measured value of the tear strength was the median value. The ratio of the test pieces in the range of ± 10% is 70% or more (that is, the measured value of the tear strength among the five test pieces is in the range of ± 10% with respect to the median value. The number of test pieces was 4 or more), and the stability of tear strength was excellent.
<実施例4>
(カルボキシ変性合成ポリイソプレン(A-4)のラテックスの製造)
 実施例1と同様にして、合成ポリイソプレンのラテックス(e)を得た後、メタクリル酸による変性反応を行う際に、ナトリウムホルムアルデヒドスルホキシレートの使用量を0.32部から0.20部に変更し、メタクリル酸による変性反応を行う際における反応温度(変性反応温度)を20℃から30℃に変更するとともに、30℃、1時間の条件にて変性反応を行った後、変性反応後のラテックスに対し、さらに、30℃、1時間の条件にて、後加熱を行った以外は、実施例1と同様にして、カルボキシ変性合成ポリイソプレン(A-4)のラテックスを得た。得られたカルボキシ変性合成ポリイソプレン(A-4)のラテックスについて、上記方法にしたがって変性率を測定したところ、変性率は0.5モル%であった。
 そして、得られたカルボキシ変性合成ポリイソプレン(A-4)のラテックスを用いて、スウェルインデックス(SI)、トルエン不溶解分量、THFに対する膨潤率およびTHF不溶解分量の測定を行った。結果を表1に示す。
<Example 4>
(Manufacture of Latex of Carboxy-modified Synthetic Polyisoprene (A-4))
In the same manner as in Example 1, the amount of sodium formaldehyde sulfoxylate used was changed from 0.32 part to 0.20 part when the modification reaction with methacrylic acid was performed after obtaining the latex (e) of synthetic polyisoprene. The reaction temperature (modification reaction temperature) when the modification reaction with methacrylic acid is changed is changed from 20 ° C. to 30 ° C., and the modification reaction is performed under the conditions of 30 ° C. for 1 hour, and then after the modification reaction. A latex of carboxy-modified synthetic polyisoprene (A-4) was obtained in the same manner as in Example 1 except that the latex was further post-heated at 30 ° C. for 1 hour. When the modification rate of the obtained carboxy-modified synthetic polyisoprene (A-4) latex was measured according to the above method, the modification rate was 0.5 mol%.
Then, using the obtained latex of carboxy-modified synthetic polyisoprene (A-4), the swell index (SI), the amount of toluene insoluble, the swelling rate with respect to THF, and the amount of THF insoluble were measured. The results are shown in Table 1.
(ラテックス組成物の調製、ディップ成形体の製造)
 上記にて得られたカルボキシ変性合成ポリイソプレン(A-4)のラテックスを使用した以外は、実施例1と同様にして、24時間熟成ラテックス組成物、および48時間熟成ラテックス組成物、ならびに、ディップ成形体(24時間熟成品および48時間熟成品)を得て、同様に評価を行った。結果を表1に示す。
 なお、実施例4においては、ディップ成形体(24時間熟成品)について、引裂強度の測定を、上記した方法にしたがって、5個の試験片について行った結果、引裂強度の測定値が、中央値に対し±10%の範囲に入っている試験片の割合が70%未満(すなわち、5個の試験片のうち、引裂強度の測定値が、中央値に対し±10%の範囲に入っている試験片の数が、3個以下)となる結果であった。
(Preparation of latex composition, production of dip molded product)
A 24-hour aged latex composition, a 48-hour aged latex composition, and a dip in the same manner as in Example 1 except that the latex of the carboxy-modified synthetic polyisoprene (A-4) obtained above was used. Molds (24-hour aged product and 48-hour aged product) were obtained and evaluated in the same manner. The results are shown in Table 1.
In Example 4, the tear strength of the dip molded product (aged for 24 hours) was measured for five test pieces according to the above method, and as a result, the measured value of the tear strength was the median value. The proportion of test pieces in the range of ± 10% is less than 70% (that is, the measured tear strength of the five test pieces is in the range of ± 10% of the median. The number of test pieces was 3 or less).
<実施例5>
(カルボキシ変性合成ポリイソプレン(A-5)のラテックスの製造)
 実施例1と同様にして、合成ポリイソプレンのラテックス(e)を得た後、メタクリル酸による変性反応を行う際に、ナトリウムホルムアルデヒドスルホキシレートの使用量を0.32部から0.40部に変更した以外は、実施例1と同様にして、カルボキシ変性合成ポリイソプレン(A-5)のラテックスを得た。得られたカルボキシ変性合成ポリイソプレン(A-5)のラテックスについて、上記方法にしたがって変性率を測定したところ、変性率は0.5モル%であった。
 そして、得られたカルボキシ変性合成ポリイソプレン(A-5)のラテックスを用いて、スウェルインデックス(SI)、トルエン不溶解分量、THFに対する膨潤率およびTHF不溶解分量の測定を行った。結果を表1に示す。
<Example 5>
(Manufacture of Latex of Carboxy-modified Synthetic Polyisoprene (A-5))
In the same manner as in Example 1, the amount of sodium formaldehyde sulfoxylate used was changed from 0.32 part to 0.40 part when the modification reaction with methacrylic acid was carried out after obtaining the latex (e) of synthetic polyisoprene. A latex of carboxy-modified synthetic polyisoprene (A-5) was obtained in the same manner as in Example 1 except for the modification. When the modification rate of the obtained carboxy-modified synthetic polyisoprene (A-5) latex was measured according to the above method, the modification rate was 0.5 mol%.
Then, using the obtained latex of carboxy-modified synthetic polyisoprene (A-5), the swell index (SI), the amount of toluene insoluble, the swelling rate with respect to THF, and the amount of THF insoluble were measured. The results are shown in Table 1.
(ラテックス組成物の調製、ディップ成形体の製造)
 上記にて得られたカルボキシ変性合成ポリイソプレン(A-5)のラテックスを使用した以外は、実施例1と同様にして、24時間熟成ラテックス組成物、および48時間熟成ラテックス組成物、ならびに、ディップ成形体(24時間熟成品および48時間熟成品)を得て、同様に評価を行った。結果を表1に示す。
 なお、実施例5においては、ディップ成形体(24時間熟成品)について、引裂強度の測定を、上記した方法にしたがって、5個の試験片について行った結果、引裂強度の測定値が、中央値に対し±10%の範囲に入っている試験片の割合が70%以上(すなわち、5個の試験片のうち、引裂強度の測定値が、中央値に対し±10%の範囲に入っている試験片の数が、4個以上)であり、引裂強度の安定性に優れるものであった。
(Preparation of latex composition, production of dip molded product)
A 24-hour aged latex composition, a 48-hour aged latex composition, and a dip in the same manner as in Example 1 except that the latex of the carboxy-modified synthetic polyisoprene (A-5) obtained above was used. Molds (24-hour aged product and 48-hour aged product) were obtained and evaluated in the same manner. The results are shown in Table 1.
In Example 5, the tear strength of the dip molded product (aged for 24 hours) was measured for five test pieces according to the above method, and as a result, the measured value of the tear strength was the median value. The ratio of the test pieces in the range of ± 10% is 70% or more (that is, the measured value of the tear strength among the five test pieces is in the range of ± 10% with respect to the median value. The number of test pieces was 4 or more), and the stability of tear strength was excellent.
<比較例1>
(カルボキシ変性合成ポリイソプレン(A-6)のラテックスの製造)
 実施例1と同様にして、合成ポリイソプレンのラテックス(e)を得た後、メタクリル酸による変性反応を行う際に、ナトリウムホルムアルデヒドスルホキシレートの使用量を0.32部から0.15部に変更し、メタクリル酸による変性反応を行う際における反応温度(変性反応温度)を20℃から30℃に変更するとともに、30℃、1時間の条件にて変性反応を行った後、変性反応後のラテックスに対し、さらに、30℃、1時間の条件にて、後加熱を行った以外は、実施例1と同様にして、カルボキシ変性合成ポリイソプレン(A-6)のラテックスを得た。得られたカルボキシ変性合成ポリイソプレン(A-6)のラテックスについて、上記方法にしたがって変性率を測定したところ、変性率は0.5モル%であった。
 そして、得られたカルボキシ変性合成ポリイソプレン(A-6)のラテックスを用いて、スウェルインデックス(SI)、トルエン不溶解分量、THFに対する膨潤率およびTHF不溶解分量の測定を行った。結果を表1に示す。
<Comparative example 1>
(Manufacture of Latex of Carboxy-modified Synthetic Polyisoprene (A-6))
In the same manner as in Example 1, the amount of sodium formaldehyde sulfoxylate used was changed from 0.32 part to 0.15 part when the modification reaction with methacrylic acid was performed after obtaining the latex (e) of synthetic polyisoprene. The reaction temperature (modification reaction temperature) when the modification reaction with methacrylic acid is changed is changed from 20 ° C. to 30 ° C., and the modification reaction is performed under the conditions of 30 ° C. for 1 hour, and then after the modification reaction. A latex of carboxy-modified synthetic polyisoprene (A-6) was obtained in the same manner as in Example 1 except that the latex was further post-heated at 30 ° C. for 1 hour. When the modification rate of the obtained carboxy-modified synthetic polyisoprene (A-6) latex was measured according to the above method, the modification rate was 0.5 mol%.
Then, using the obtained latex of carboxy-modified synthetic polyisoprene (A-6), the swell index (SI), the amount of toluene insoluble, the swelling rate with respect to THF, and the amount of THF insoluble were measured. The results are shown in Table 1.
(ラテックス組成物の調製、ディップ成形体の製造)
 上記にて得られたカルボキシ変性合成ポリイソプレン(A-6)のラテックスを使用した以外は、実施例1と同様にして、24時間熟成ラテックス組成物、および48時間熟成ラテックス組成物、ならびに、ディップ成形体(24時間熟成品および48時間熟成品)を得て、同様に評価を行った。結果を表1に示す。
(Preparation of latex composition, production of dip molded product)
A 24-hour aged latex composition, a 48-hour aged latex composition, and a dip in the same manner as in Example 1 except that the latex of the carboxy-modified synthetic polyisoprene (A-6) obtained above was used. Molds (24-hour aged product and 48-hour aged product) were obtained and evaluated in the same manner. The results are shown in Table 1.
<比較例2>
(カルボキシ変性合成ポリイソプレン(A-7)のラテックスの製造)
 実施例1と同様にして、合成ポリイソプレンのラテックス(e)を得た後、メタクリル酸による変性反応を行う際における反応温度(変性反応温度)を20℃から40℃に変更した以外は、実施例1と同様にして、カルボキシ変性合成ポリイソプレン(A-7)のラテックスを得た。得られたカルボキシ変性合成ポリイソプレン(A-7)のラテックスについて、上記方法にしたがって変性率を測定したところ、変性率は0.5モル%であった。
 そして、得られたカルボキシ変性合成ポリイソプレン(A-7)のラテックスを用いて、スウェルインデックス(SI)、トルエン不溶解分量、THFに対する膨潤率およびTHF不溶解分量の測定を行った。結果を表1に示す。
<Comparative example 2>
(Manufacture of Latex of Carboxy-modified Synthetic Polyisoprene (A-7))
In the same manner as in Example 1, the reaction temperature (denaturation reaction temperature) when performing the modification reaction with methacrylic acid after obtaining the latex (e) of synthetic polyisoprene was changed from 20 ° C. to 40 ° C. A latex of carboxy-modified synthetic polyisoprene (A-7) was obtained in the same manner as in Example 1. When the modification rate of the obtained carboxy-modified synthetic polyisoprene (A-7) latex was measured according to the above method, the modification rate was 0.5 mol%.
Then, using the obtained latex of carboxy-modified synthetic polyisoprene (A-7), the swell index (SI), the amount of toluene insoluble, the swelling rate with respect to THF, and the amount of THF insoluble were measured. The results are shown in Table 1.
(ラテックス組成物の調製、ディップ成形体の製造)
 上記にて得られたカルボキシ変性合成ポリイソプレン(A-7)のラテックスを使用した以外は、実施例1と同様にして、24時間熟成ラテックス組成物、および48時間熟成ラテックス組成物、ならびに、ディップ成形体(24時間熟成品および48時間熟成品)を得て、同様に評価を行った。結果を表1に示す。
(Preparation of latex composition, production of dip molded product)
A 24-hour aged latex composition, a 48-hour aged latex composition, and a dip in the same manner as in Example 1 except that the latex of the carboxy-modified synthetic polyisoprene (A-7) obtained above was used. Molds (24-hour aged product and 48-hour aged product) were obtained and evaluated in the same manner. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、カルボキシ変性重合体のラテックスとして、スウェルインデックス(SI)が120~190%の範囲にあるものを使用し、かつ、これにキサントゲン化合物を配合してなるラテックス組成物によれば、遅延型アレルギー(Type IV)の症状の発生が有効に抑制されたディップ成形体を与えるものであり、得られるディップ成形体は十分な引裂強度を有し、さらには、柔軟な風合いを備えるものであり、特に、熟成を24時間と短くした場合でも、十分な引裂強度を実現できるものであることから、熟成(前加硫)に要する時間を短縮でき、生産性に優れるものであることが確認できる(実施例1~5)。 As shown in Table 1, a latex having a swell index (SI) in the range of 120 to 190% is used as the latex of the carboxy-modified polymer, and a latex composition obtained by blending the xanthogen compound with the latex is used. For example, it provides a dip molded product in which the occurrence of delayed type allergy (Type IV) symptoms is effectively suppressed, and the obtained dip molded product has sufficient tear strength and further has a flexible texture. In particular, even if the aging is shortened to 24 hours, sufficient tear strength can be achieved, so that the time required for aging (pre-vulcanization) can be shortened and the productivity is excellent. Can be confirmed (Examples 1 to 5).
 一方、カルボキシ変性重合体のラテックスとして、スウェルインデックス(SI)が120%未満であるものや、190%超であるものを使用した場合には、熟成時間24時間では、得られるディップ成形体は引裂強度が低いものとなり、引裂強度を十分なものとするためには、熟成時間を48時間と長くする必要があった(比較例1,2)。 On the other hand, when a latex having a swell index (SI) of less than 120% or a swell index (SI) of more than 190% is used as the latex of the carboxy-modified polymer, the obtained dip molded product is torn after a aging time of 24 hours. In order for the strength to be low and the tear strength to be sufficient, it was necessary to increase the aging time to 48 hours (Comparative Examples 1 and 2).

Claims (8)

  1.  カルボキシ変性重合体のラテックスと、キサントゲン化合物とを含有するラテックス組成物であって、
     前記カルボキシ変性重合体のラテックスのスウェルインデックス(SI)が120~190%であるラテックス組成物。
    A latex composition containing a latex of a carboxy-modified polymer and a xanthate compound.
    A latex composition in which the latex swell index (SI) of the carboxy-modified polymer is 120 to 190%.
  2.  前記カルボキシ変性重合体におけるカルボキシル基による変性率が、(カルボキシル基の数/前記カルボキシ変性重合体の総モノマー単位数)×100で算出されるモル比率で、0.01~10モル%である請求項1に記載のラテックス組成物。 A claim that the modification rate of the carboxy-modified polymer by a carboxyl group is 0.01 to 10 mol% in a molar ratio calculated by (number of carboxyl groups / total number of monomer units of the carboxy-modified polymer) × 100. Item 2. The latex composition according to Item 1.
  3.  前記カルボキシ変性重合体が、合成ポリイソプレン、スチレン-イソプレン-スチレンブロック共重合体、または蛋白質を除去した天然ゴムを、カルボキシル基を有する単量体により変性することにより得られるものである請求項1または2に記載のラテックス組成物。 Claim 1 is the carboxy-modified polymer obtained by modifying synthetic polyisoprene, styrene-isoprene-styrene block copolymer, or natural rubber from which proteins have been removed with a monomer having a carboxyl group. Or the latex composition according to 2.
  4.  硫黄系加硫剤をさらに含有する請求項1~3のいずれかに記載のラテックス組成物。 The latex composition according to any one of claims 1 to 3, further containing a sulfur-based vulcanizing agent.
  5.  前記カルボキシ変性重合体のラテックスのトルエン不溶解分量が、55~85重量%である請求項1~4のいずれかに記載のラテックス組成物。 The latex composition according to any one of claims 1 to 4, wherein the toluene-insoluble content of the latex of the carboxy-modified polymer is 55 to 85% by weight.
  6.  前記キサントゲン化合物は、体積平均粒子径が0.001~9μmの範囲であり、95%体積累積径(D95)が0.1~43μmの範囲である請求項1~5のいずれかに記載のラテックス組成物。 The latex according to any one of claims 1 to 5, wherein the xanthogen compound has a volume average particle diameter in the range of 0.001 to 9 μm and a 95% volume cumulative diameter (D95) in the range of 0.1 to 43 μm. Composition.
  7.  請求項1~6のいずれかに記載のラテックス組成物からなる膜成形体。 A film molded product made of the latex composition according to any one of claims 1 to 6.
  8.  請求項1~6のいずれかに記載のラテックス組成物をディップ成形してなるディップ成形体。 A dip molded product obtained by dip molding the latex composition according to any one of claims 1 to 6.
PCT/JP2020/034314 2019-09-20 2020-09-10 Latex composition, film-formed article, and dip-molded article WO2021054242A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021546640A JPWO2021054242A1 (en) 2019-09-20 2020-09-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019171202 2019-09-20
JP2019-171202 2019-09-20

Publications (1)

Publication Number Publication Date
WO2021054242A1 true WO2021054242A1 (en) 2021-03-25

Family

ID=74884625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034314 WO2021054242A1 (en) 2019-09-20 2020-09-10 Latex composition, film-formed article, and dip-molded article

Country Status (2)

Country Link
JP (1) JPWO2021054242A1 (en)
WO (1) WO2021054242A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204225A (en) * 1997-01-17 1998-08-04 Bayer Ag Rubber mixture containing modified rubber gel
JP2000328487A (en) * 1999-05-11 2000-11-28 Asahi Chem Ind Co Ltd Copolymer latex composition for coating paper
JP2012158694A (en) * 2011-02-01 2012-08-23 Denki Kagaku Kogyo Kk Aqueous adhesive composition and method of manufacturing wet suit material
WO2017130889A1 (en) * 2016-01-27 2017-08-03 日本ゼオン株式会社 Latex composition
WO2018155110A1 (en) * 2017-02-24 2018-08-30 日本ゼオン株式会社 Modified polymer latex production method
WO2018155243A1 (en) * 2017-02-22 2018-08-30 日本ゼオン株式会社 Latex composition
WO2019039523A1 (en) * 2017-08-25 2019-02-28 日本ゼオン株式会社 Latex composition
WO2019173863A1 (en) * 2018-03-10 2019-09-19 Ansell Limited Compositions for synthetic polyisoprene latex articles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204225A (en) * 1997-01-17 1998-08-04 Bayer Ag Rubber mixture containing modified rubber gel
JP2000328487A (en) * 1999-05-11 2000-11-28 Asahi Chem Ind Co Ltd Copolymer latex composition for coating paper
JP2012158694A (en) * 2011-02-01 2012-08-23 Denki Kagaku Kogyo Kk Aqueous adhesive composition and method of manufacturing wet suit material
WO2017130889A1 (en) * 2016-01-27 2017-08-03 日本ゼオン株式会社 Latex composition
WO2018155243A1 (en) * 2017-02-22 2018-08-30 日本ゼオン株式会社 Latex composition
WO2018155110A1 (en) * 2017-02-24 2018-08-30 日本ゼオン株式会社 Modified polymer latex production method
WO2019039523A1 (en) * 2017-08-25 2019-02-28 日本ゼオン株式会社 Latex composition
WO2019173863A1 (en) * 2018-03-10 2019-09-19 Ansell Limited Compositions for synthetic polyisoprene latex articles

Also Published As

Publication number Publication date
JPWO2021054242A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP6769445B2 (en) Latex composition
JP5999103B2 (en) Latex, dip molding composition and dip molding
JP7063318B2 (en) Latex composition
JP5472286B2 (en) DIP MOLDING COMPOSITION AND DIP MOLDED BODY
JP6984607B2 (en) Latex composition
JP5488137B2 (en) DIP MOLDING COMPOSITION AND DIP MOLDED BODY
JP7127649B2 (en) latex composition
JP5187501B2 (en) DIP MOLDING COMPOSITION AND MOLDED BODY
JP6879218B2 (en) Method for producing polymer latex
JP7222398B2 (en) Manufacturing method for medical balloon
JP7163924B2 (en) Method for producing latex composition
JP7415933B2 (en) Xanthogen compound dispersion, conjugated diene polymer latex composition, and film molded article
JP7435457B2 (en) Latex composition and membrane molded product
WO2022024672A1 (en) Film molded body
WO2021171994A1 (en) Method for producing dip-molded article
WO2021171993A1 (en) Latex composition
WO2021054242A1 (en) Latex composition, film-formed article, and dip-molded article
WO2021132075A1 (en) Xanthogen compound dispersion, conjugated diene-based polymer latex composition, film molded body, dip molded body and adhesive composition
WO2021166725A1 (en) Latex composition production method
WO2021166724A1 (en) Method for producing latex composition
WO2022172696A1 (en) Method for producing molded body
JP2019034982A (en) Latex composition
WO2023026782A1 (en) Latex composition and dip-molded body
WO2022091728A1 (en) Latex composition and dip molded body
JP2022131081A (en) Latex composition and dip molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546640

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20865805

Country of ref document: EP

Kind code of ref document: A1