WO2021054180A1 - Air-conditioning indoor unit and air conditioner - Google Patents

Air-conditioning indoor unit and air conditioner Download PDF

Info

Publication number
WO2021054180A1
WO2021054180A1 PCT/JP2020/033794 JP2020033794W WO2021054180A1 WO 2021054180 A1 WO2021054180 A1 WO 2021054180A1 JP 2020033794 W JP2020033794 W JP 2020033794W WO 2021054180 A1 WO2021054180 A1 WO 2021054180A1
Authority
WO
WIPO (PCT)
Prior art keywords
control mode
airflow control
air
horizontal
indoor unit
Prior art date
Application number
PCT/JP2020/033794
Other languages
French (fr)
Japanese (ja)
Inventor
智彦 堤
康史 鵜飼
浩輝 藤田
智哉 村上
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP20866280.9A priority Critical patent/EP4015930B1/en
Priority to AU2020350294A priority patent/AU2020350294B2/en
Priority to CN202080064049.7A priority patent/CN114364921B/en
Publication of WO2021054180A1 publication Critical patent/WO2021054180A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air

Definitions

  • This disclosure relates to an air conditioner indoor unit and an air conditioner equipped with this air conditioner indoor unit.
  • the air conditioner indoor unit includes a casing provided with an air outlet, a first horizontal blade attached to the front edge of the air outlet, and a second horizontal blade attached to the trailing edge of the air outlet.
  • a casing provided with an air outlet
  • a first horizontal blade attached to the front edge of the air outlet
  • a second horizontal blade attached to the trailing edge of the air outlet.
  • the conventional air-conditioning indoor unit even if an attempt is made to supply blown air over a wide range by controlling the first and second horizontal blades, it is not possible to make the air flow follow each blade surface of the first and second horizontal blades. Therefore, the conventional air-conditioning indoor unit has a problem that the blown air cannot be supplied in a wide range.
  • An object of the present disclosure is to provide an air-conditioning indoor unit capable of stably supplying blown air to a wide range.
  • the air-conditioning indoor unit of one aspect of the present disclosure is A casing with an outlet through which air from the blower fan is blown out, The first horizontal blade that controls the vertical wind direction of the blown air from the outlet, and The first drive unit that drives the first horizontal blade and The second horizontal blade, which is arranged behind the first horizontal blade and controls the vertical wind direction of the blown air, The second drive unit that drives the second horizontal blade and It is provided with the blower fan and a control device for controlling the first drive unit and the second drive unit.
  • the above control device A part of the blown air is placed on the lower wing surface of the first horizontal blade by widening the distance between the first horizontal blade and the second horizontal blade on the downstream side of the upstream side of the flow of the blown air.
  • the blown air is blown out by making the distance between the first horizontal blade and the second horizontal blade narrower than the predetermined distance between the first horizontal blade and the second horizontal blade in the first airflow control mode. After the operation of the second airflow control mode is performed, the operation of the second airflow control mode is followed by the operation of the first airflow control mode.
  • the first horizontal blade and the second horizontal blade are more than a predetermined separation angle between the first horizontal blade and the second horizontal blade in the first airflow control mode.
  • the operation of the second airflow control mode is followed by the operation of the first airflow control mode.
  • the mode shifts from the second airflow control mode to the first airflow control mode while maintaining the Coanda effect on the lower blade surface of the first horizontal blade and the upper blade surface of the second horizontal blade.
  • the rotation speed of the blower fan is made higher than the rotation speed of the first airflow control mode.
  • the rotation speed of the blower fan is made higher than the rotation speed in the first airflow control mode, so that the lower blade surface of the first horizontal blade and the second The Coanda effect on the upper wing surface of the horizontal blade can be enhanced.
  • the first horizontal blade and the second horizontal blade are driven by driving either the first horizontal blade or the second horizontal blade. Narrow the separation angle from the horizontal blade.
  • the separation angle between the first horizontal blade and the second horizontal blade is narrowed, so that the first horizontal blade and the second horizontal blade are separated from each other.
  • the drive control of the first and second horizontal blades for narrowing the separation angle becomes easier than when both the blades and the blades are driven.
  • the one of the first horizontal blade and the second horizontal blade having a larger angle with respect to the wind direction of the blown air is driven in the second airflow control mode to form the first horizontal blade.
  • the separation angle from the second horizontal blade is narrowed.
  • the one of the first horizontal blade and the second horizontal blade having a larger angle with respect to the wind direction of the blown air is driven in the second airflow control mode to drive the first horizontal blade. Since the separation angle between the blade and the second horizontal blade is narrowed, it becomes easy to obtain an air flow along the larger one.
  • the rotation of the first horizontal blade and / or the second horizontal blade in the operation of the second airflow control mode is the above-mentioned when shifting from the operation of the second airflow control mode to the operation of the first airflow control mode. Faster than the rotation of the first horizontal blade and / or the second horizontal blade.
  • the rotation of the first horizontal blade and / or the second horizontal blade becomes relatively slow when shifting from the operation of the second airflow control mode to the operation of the first airflow control mode. Since it is also fast, it is possible to suppress the separation of the airflow in the first horizontal blade and / or the second horizontal blade.
  • the air-conditioning indoor unit of one aspect of the present disclosure is The air-conditioning indoor unit of any one of the above-mentioned plurality of air-conditioning indoor units and It is provided with an air conditioner outdoor unit connected to the air conditioner indoor unit via a refrigerant pipe.
  • FIG. 10 is a cross-sectional view taken along the line XII-XII of FIG.
  • FIG. 10 is a cross-sectional view taken along the line XIII-XIII in FIG.
  • FIG. 3 is a cross-sectional view taken along the line XVII-XVII of FIG. FIG.
  • FIG. 3 is a cross-sectional view taken along the line XVIII-XVIII of FIG. It is a simulation result figure of the blown air of the indoor unit of the said 1st Embodiment. It is another simulation result figure of the blown air of the indoor unit of the said 1st Embodiment. It is a simulation result figure of the blown air of the indoor unit of a comparative example. It is a simulation result figure of the blown air of the indoor unit of the said comparative example. It is an image diagram of the blown air of the indoor unit of the first embodiment. It is a figure for demonstrating the wind speed of the blown air of the indoor unit of the said 1st Embodiment.
  • FIG. 1 shows a refrigerant circuit RC included in the air conditioner of the first embodiment of the present disclosure.
  • This air conditioner is a pair type air conditioner in which the indoor unit 1 and the outdoor unit 2 are one-to-one.
  • the indoor unit 1 is an example of an air-conditioning indoor unit.
  • the outdoor unit 2 is an example of an air conditioner outdoor unit.
  • the connecting pipes L1 and L2 are examples of refrigerant pipes.
  • the air conditioner includes a compressor 11, a four-way switching valve 12 in which the discharge side of the compressor 11 is connected to one end, and an outdoor heat exchanger 13 in which one end is connected to the other end of the four-way switching valve 12.
  • An electric expansion valve 14 having one end connected to the other end of the outdoor heat exchanger 13, and an indoor heat exchanger 15 having one end connected to the other end of the electric expansion valve 14 via a closing valve 21 and a connecting pipe L1.
  • An accumulator 16 having one end connected to the other end of the indoor heat exchanger 15 via a connecting pipe L2, a closing valve 22, and a four-way switching valve 12 and the other end connected to the suction side of the compressor 11 is provided. There is.
  • the compressor 11, the four-way switching valve 12, the outdoor heat exchanger 13, the electric expansion valve 14, the indoor heat exchanger 15, the accumulator 16 and the like constitute the refrigerant circuit RC of the air conditioner. Further, the indoor heat exchanger 15, the indoor fan 10, and the like constitute the indoor unit 1. On the other hand, the compressor 11, the four-way switching valve 12, the outdoor heat exchanger 13, the electric expansion valve 14, the accumulator 16, the outdoor fan 20, and the like constitute the outdoor unit 2.
  • the indoor fan 10 is an example of a blower fan.
  • the electric expansion valve 14 is an example of a pressure reducing mechanism.
  • the indoor unit 1 includes an indoor heat exchanger temperature sensor T4 that detects the temperature of the indoor heat exchanger 15, an indoor temperature sensor T5 that detects the indoor temperature, and an indoor space R (shown in FIGS. 2, 5 to 8). It is provided with a floor surface temperature sensor T6 that detects the temperature of the floor surface facing the surface. Further, in the indoor unit 1, an indoor fan 10 that circulates indoor air via an indoor heat exchanger 15 is installed. For example, a thermistor or the like is used as the indoor heat exchanger temperature sensor T4 and the indoor temperature sensor T5. Further, for example, an infrared temperature sensor or the like is used as the floor surface temperature sensor T6. Further, the indoor space R is an example of an air-conditioned space.
  • the outdoor unit 2 includes an outdoor heat exchanger temperature sensor T1 that detects the temperature of the outdoor heat exchanger 13, an outside air temperature sensor T2 that detects the outside air temperature, and an evaporation temperature sensor T3 that detects the evaporation temperature of the electric expansion valve 14. It has. Further, an outdoor fan 20 for supplying outside air to the outdoor heat exchanger 13 is installed in the outdoor unit 2. For example, a thermistor or the like is used as the outdoor heat exchanger temperature sensor T1, the outside air temperature sensor T2, and the evaporation temperature sensor T3.
  • the above air conditioner is equipped with a remote controller (hereinafter referred to as “remote controller”) (hereinafter referred to as “remote controller”) (not shown).
  • remote controller a remote controller
  • remote controller it is possible to change the set temperature of the indoor temperature and adjust the air volume of the air blown out by the indoor unit 1.
  • the refrigerant from the compressor 11 indicates the refrigerant circuit RC as shown by the solid line arrow.
  • the four-way switching valve 12, the outdoor heat exchanger 13, the electric expansion valve 14, the indoor heat exchanger 15, the four-way switching valve 12, and the accumulator 16 flow in this order.
  • the refrigerant from the compressor 11 is a four-way switching valve as shown by the broken line arrow in the refrigerant circuit RC. 12 the indoor heat exchanger 15, the electric expansion valve 14, the outdoor heat exchanger 13, the four-way switching valve 12, and the accumulator 16 flow in this order.
  • FIG. 2 schematically shows a vertical cross section of the indoor unit 1 in the stopped operation state.
  • the indoor unit 1 is a wall-mounted type.
  • the indoor unit 1 includes a casing 30 including a casing main body 31 and a front panel 32.
  • the casing 30 is attached to the wall surface W facing the indoor space R, and houses the indoor fan 10, the indoor heat exchanger 15, the drain pan 33, and the like.
  • the indoor space R is an example of an air-conditioned space.
  • the casing main body 31 is composed of a plurality of members, and has a front surface portion 31a, an upper surface portion 31b, a rear surface portion 31c, and a lower surface portion 31d.
  • a front panel 32 is attached to the front surface portion 31a so as to be openable and closable. Further, a suction port (not shown) is provided from the front surface portion 31a to the upper surface portion 31b.
  • the front panel 32 constitutes the front portion 31a of the indoor unit 1, and has, for example, a flat shape without a suction port. Further, the upper end portion of the front panel 32 is rotatably supported by the upper surface portion 31b of the casing main body 31 so that it can operate in a hinged manner.
  • the indoor fan 10 and the indoor heat exchanger 15 are attached to the casing main body 31.
  • the indoor heat exchanger 15 exchanges heat with the indoor air sucked into the casing 30 through the suction port.
  • the side view shape of the indoor heat exchanger 15 is an inverted V shape in which both ends face downward and the bent portion is located on the upper side.
  • the indoor fan 10 is located below the bent portion of the indoor heat exchanger 15.
  • the indoor fan 10 is, for example, a cross-flow fan, and sends the indoor air that has passed through the indoor heat exchanger 15 to the air outlet 34 of the lower surface portion 31d of the casing main body 31.
  • the casing main body 31 is provided with the first and second partition walls 35 and 36.
  • the space sandwiched between the first partition wall 35 and the second partition wall 36 serves as an outlet flow path 37 connecting the indoor fan 10 and the outlet 34.
  • the drain pan 33 is arranged under the front part of the indoor heat exchanger 15 and receives dew condensation water from the front part thereof. This condensed water is discharged to the outside of the room via a drain hose (not shown).
  • the indoor unit 1 includes a first horizontal flap 41 and a second horizontal flap 51 arranged on the rear side (wall surface W side) of the first horizontal flap 41.
  • the first horizontal flap 41 and the second horizontal flap 51 adjust the vertical wind direction of the blown air that flows through the blowout flow path 37 and is blown out from the outlet 34.
  • the first horizontal flap 41 is an example of the first horizontal blade.
  • the second horizontal flap 51 is an example of the second horizontal blade.
  • the first horizontal flap 41 has a first end portion 41a arranged on the upstream side with respect to the flow of the blown air and a second end portion 41b arranged on the downstream side with respect to the flow of the blown air during operation of the indoor unit 1. And have.
  • the first horizontal flap 41 is rotatably attached to the lower surface portion 31d of the casing main body 31.
  • the first horizontal flap 41 has a piece portion 41 g (shown in FIGS. 9 to 13) connected to the second end portion 41b. This piece 41g is attached to the mounting portion 38 of the casing main body 31, and the first horizontal flap 41 is rotatable around the mounting portion 38.
  • the first horizontal flap 41 takes a posture along the front side portion of the lower surface portion 31d of the casing main body 31.
  • the first horizontal flap 41 is rotated by the drive of the first horizontal flap motor 73 (shown in FIGS.
  • the first horizontal flap 41 can take a plurality of inclined postures with respect to the horizontal plane.
  • the first horizontal flap motor 73 for example, a 4-phase winding stepping motor is used.
  • the second horizontal flap 51 has a first end portion 51a arranged on the upstream side with respect to the flow of the blown air and a second end arranged on the downstream side with respect to the flow of the blown air. It has a part 51b.
  • the second horizontal flap 51 has a first end portion 51a rotatably attached to a lower surface portion 31d of the casing main body 31.
  • the second horizontal flap 51 takes a posture of closing the air outlet 34.
  • the second horizontal flap motor 74 (shown in FIGS. 3 and 4) drives the second horizontal flap 51.
  • the second horizontal flap 51 rotates about the first end portion 51a, so that the second end portion 51b is separated from the mounting portion 38 and the air outlet 34 is opened.
  • the second horizontal flap 51 can take a plurality of inclined postures with respect to the horizontal plane.
  • the second horizontal flap motor 74 for example, a 4-phase winding stepping motor is used.
  • the indoor unit 1 is provided with a plurality of vertical flaps 61 (shown in FIG. 3) for adjusting the wind direction of the blown air in the left-right direction.
  • the plurality of vertical flaps 61 are arranged in the outlet flow path 37 at predetermined intervals along the longitudinal direction of the outlet 34 (the direction perpendicular to the paper surface of FIG. 2).
  • the vertical flap 61 is an example of a vertical blade.
  • FIG. 3 schematically shows the internal configuration of the indoor unit 1.
  • the first and second horizontal flaps 41 and 51 are rotatably supported in the vertical direction by the first and second rotating shafts 71 and 72.
  • the first and second horizontal flap motors 73 and 74 rotate and drive the first and second rotating shafts 71 and 72, so that the first and second horizontal flaps 41 and 51 rotate in the vertical direction.
  • the first horizontal flap motor 73 is an example of the first drive unit.
  • the second horizontal flap motor 74 is an example of the second drive unit.
  • the plurality of vertical flaps 61 are divided into a first vertical flap group G1 and a second vertical flap group G2.
  • the vertical flap 61 constituting the first vertical flap group G1 is an example of a vertical blade on one side of a plurality of vertical blades.
  • the vertical flap 61 constituting the second vertical flap group G2 is an example of the vertical blades on the other side of the plurality of vertical blades.
  • the first vertical flap group G1 is composed of a plurality of vertical flaps 61 facing the opening region on the left side of the center in the left-right direction of the air outlet 34.
  • the vertical flaps 61 belonging to the first vertical flap group G1 are connected to each other by the first connecting rod 81. Further, when the first vertical flap group motor 83 drives the first connecting rod 81 in the left-right direction, the plurality of vertical flaps 61 rotate in the left-right direction about their respective rotation axes (not shown). ..
  • the second vertical flap group G2 is composed of a plurality of vertical flaps 61 facing the opening region on the right side of the center in the left-right direction of the air outlet 34. Like the vertical flap 61 belonging to the first vertical flap group G1, the vertical flap 61 belonging to the second vertical flap group G2 is also connected to the second connecting rod 82 and can be rotated by the second vertical flap group motor 84. It has become.
  • FIG. 4 is a control block diagram of the air conditioner.
  • the above air conditioner is equipped with a control device 100 including a microcomputer and an input / output circuit.
  • the control device 100 has an indoor control unit (not shown) provided on the indoor unit 1 side and an outdoor control unit (not shown) provided on the outdoor unit 2 side.
  • the control device 100 switches the compressor 11, four-way switching based on signals from the outdoor heat exchanger temperature sensor T1, the outside air temperature sensor T2, the evaporation temperature sensor T3, the indoor heat exchanger temperature sensor T4, the indoor temperature sensor T5, and the like.
  • the display unit 50 is provided in the indoor unit 1 and is at least an LED or the like that displays an operating state.
  • the indoor fan motor 85 drives the indoor fan 10. Further, the outdoor fan motor 86 drives the outdoor fan 20.
  • the indoor unit 1 can operate in the first diagonal airflow control mode, the ceiling airflow control mode, the vertical airflow control mode, and the second diagonal airflow control mode (for example, cooling operation, heating operation, etc.). Based on the above signal or the like, one airflow control mode is automatically selected from the first diagonal airflow control mode, the ceiling airflow control mode, the vertical airflow control mode, and the second diagonal airflow control mode, which will be described later. It can be switched to another airflow control mode. Further, by operating the remote controller, it is possible to select one of the first diagonal airflow control mode, the ceiling airflow control mode, the vertical airflow control mode, and the second diagonal airflow control mode. There is.
  • the first oblique airflow control mode is an example of the first airflow control mode.
  • FIG. 5 schematically shows a vertical cross section of the indoor unit 1 in which the transition to the first oblique airflow control mode has been completed.
  • the distance between the first horizontal flap 41 and the second horizontal flap 51 is wider on the downstream side of the blown air than on the upstream side of the blown air flow, and the outlet 34
  • the blown air flowing from the airflow to the indoor space R flows diagonally downward on the front side (the side opposite to the wall surface W side).
  • a virtual surface V1 that passes through the center of the first horizontal flap 41 in the thickness direction of the first end 41a and the center of the first horizontal flap 41 in the thickness direction of the second end 41b is defined.
  • the inclination angle ⁇ 1 of the virtual surface V1 with respect to the horizontal plane H is, for example, + 10 °.
  • the virtual surface V2 passing through the center of the first end portion 51a of the second horizontal flap 51 in the thickness direction and the center of the second end portion 41b in the thickness direction is defined, in the first oblique airflow control mode,
  • the inclination angle ⁇ 2 of the virtual surface V2 with respect to the horizontal plane H is, for example, + 70 °.
  • the separation angle between the first horizontal flap 41 and the second horizontal flap 51 is, for example, 60 °.
  • the inclination angles ⁇ 1 and ⁇ 2 are + angles, the front side of the virtual surfaces V1 and V2 is located below the rear side of the virtual surfaces V1 and V2. Further, the separation angle corresponds to an angle obtained by subtracting the inclination angle ⁇ 1 from the inclination angle ⁇ 2. Note that 60 ° is an example of a predetermined separation angle.
  • the first horizontal flap 41 when the first horizontal flap 41 is rotated by 25 ° from the state when the operation of the indoor unit 1 is stopped, it becomes the posture in the first oblique airflow control mode.
  • the second horizontal flap 51 when the second horizontal flap 51 is rotated by 70 ° from the state when the operation of the indoor unit 1 is stopped, it takes the posture in the first oblique airflow control mode.
  • the angle obtained by subtracting the rotation angle of the first horizontal flap 41 from the rotation angle of the second horizontal flap 51 is the angle between the first horizontal flap 41 and the second horizontal flap 51 in the first oblique airflow control mode. It becomes the separation angle.
  • each vertical flap 61 of the first vertical flap group G1 has the downstream end of the blown air flow located on the left side of the casing 30 with respect to the upstream end of the blown air flow. Take an inclined posture to do so. Further, in the first airflow control mode, in each vertical flap 61 of the second vertical flap group G1, the downstream end of the blown air flow is on the right side of the casing 30 with respect to the upstream end of the blown air flow. Take an inclined posture so that it is located at.
  • each vertical flap 61 of the first vertical flap group G1 has an end located on the downstream side of the blown air flow so as to approach the left side surface of the casing main body 31 and the blown air flow.
  • the end portion located on the upstream side rotates so as to be separated from the left side surface portion of the casing main body 31.
  • each of the vertical flaps 61 of the second vertical flap group G2 is located so that the end located on the downstream side of the blown air flow approaches the right side surface of the casing main body 31 and on the upstream side of the blown air flow. The end portion is rotated so as to be separated from the right side surface portion of the casing main body 31.
  • FIG. 6 schematically shows a vertical cross section of the indoor unit 1 in which the transition to the ceiling airflow control mode has been completed.
  • the blown air flowing from the blowout port 34 to the indoor space R flows in the horizontal direction.
  • the inclination angle ⁇ 1 of the virtual surface V1 with respect to the horizontal plane H is, for example, ⁇ 5 °.
  • the inclination angle ⁇ 2 of the virtual surface V2 with respect to the horizontal plane H is, for example, + 15 °.
  • the inclination angles ⁇ 1 and ⁇ 2 are smaller than those in the first oblique airflow control mode.
  • the inclination angles ⁇ 1 and ⁇ 2 in the first oblique airflow control mode are larger than the inclination angles ⁇ 1 and ⁇ 2 in the ceiling airflow control mode.
  • FIG. 7 schematically shows a vertical cross section of the indoor unit 1 in which the transition to the vertical airflow control mode has been completed.
  • the blown air flowing from the blowout port 34 to the indoor space R flows downward along the wall surface W.
  • the inclination angle ⁇ 1 of the virtual surface V1 with respect to the horizontal plane H is, for example, + 105 °.
  • the inclination angle ⁇ 2 of the virtual surface V2 with respect to the horizontal plane H is, for example, + 100 °.
  • FIG. 8 schematically shows a vertical cross section of the indoor unit 1 in which the transition to the second oblique airflow control mode has been completed.
  • the distance between the first horizontal flap 41 and the second horizontal flap 51 is wider on the downstream side of the blown air than on the upstream side of the blown air flow, and is from the outlet 34.
  • the blown air flowing in the indoor space R flows diagonally downward on the front side. At this time, the vertical spread of the blown air is smaller than that in the first oblique airflow control mode.
  • the inclination angle ⁇ 1 of the virtual surface V1 with respect to the horizontal plane H is, for example, ⁇ 5 °.
  • the inclination angle ⁇ 2 of the virtual surface V2 with respect to the horizontal plane H is, for example, + 45 °.
  • the separation angle between the first horizontal flap 41 and the second horizontal flap 51 is, for example, 50 °. The separation angle corresponds to the angle obtained by subtracting the inclination angle ⁇ 1 from the inclination angle ⁇ 2.
  • the first horizontal flap 41 when the first horizontal flap 41 is rotated by 15 ° from the state when the operation of the indoor unit 1 is stopped, it becomes the posture in the second oblique airflow control mode.
  • the second horizontal flap 51 when the second horizontal flap 51 is rotated by 52.5 ° from the state when the operation of the indoor unit 1 is stopped, it takes the posture in the first oblique airflow control mode.
  • the angle obtained by subtracting the rotation angle of the first horizontal flap 41 from the rotation angle of the second horizontal flap 51 is the angle between the first horizontal flap 41 and the second horizontal flap 51 in the second oblique airflow control mode. It becomes the separation angle.
  • FIG. 9 is an oblique view of the upper wing surface 41c of the first horizontal flap 41.
  • FIG. 10 is a front view of the upper wing surface 41c of the first horizontal flap 41.
  • FIG. 11 is a front view of the lower wing surface 41d of the first horizontal flap 41.
  • FIG. 12 is a cross-sectional view taken from the line XII-XII of FIG.
  • FIG. 13 is a cross-sectional view seen from line XIII-XIII of FIG. Since the cross-sectional view seen from the line XII'-XII' in FIG. 11 is the same cross-sectional view as in FIG. 12, the illustration is omitted.
  • the thickness of the first horizontal flap 41 increases as it approaches from the first end 41a side to the second end 41b side, except for a part on the first end 41a side. It has a shape that makes it thinner.
  • the first horizontal flap 41 has an upper wing surface 41c facing the casing main body 31 when the indoor unit 1 is stopped, and a lower wing surface 41d facing the indoor space when the indoor unit 1 is stopped.
  • the upper wing surface 41c includes a curved surface 41e that is curved and recessed in the lateral direction of the first horizontal flap 41.
  • the line showing the cross section of the upper wing surface 41c includes a curved line that is convex toward the lower wing surface 41d.
  • the lateral direction of the first horizontal flap 41 corresponds to a direction orthogonal to the longitudinal direction of the first horizontal flap 41 and the thickness direction of the first horizontal flap 41.
  • the lower wing surface 41d includes a curved surface 41f that curves and swells in the lateral direction of the first horizontal flap 41.
  • the line showing the cross section of the lower wing surface 41d includes a curved line that is convex on the side opposite to the upper wing surface 41c. ..
  • the radius of curvature of the curved surface 41e of the upper wing surface 41c is set to be smaller than the radius of curvature of the curved surface 41f of the lower wing surface 41d of the first horizontal flap 41.
  • curved surfaces 41e and 41f are provided from one end of the first horizontal flap 41 in the longitudinal direction to the other end of the first horizontal flap 41 in the longitudinal direction.
  • FIG. 14 is an oblique view of the upper wing surface 51c of the second horizontal flap 51.
  • FIG. 15 is a front view of the upper wing surface 51c of the second horizontal flap 51.
  • FIG. 16 is a front view of the lower wing surface 51d of the second horizontal flap 51.
  • FIG. 17 is a cross-sectional view taken from the line XVII-XVII of FIG.
  • FIG. 18 is a cross-sectional view taken from the line XVIII-XVIII of FIG. Since the cross-sectional view seen from the XV'-XV' line of FIG. 16 is the same cross-sectional view as that of FIG. 17, the illustration is omitted.
  • the second horizontal flap 51 has an upper wing surface 51c facing the blowout flow path 37 when the indoor unit 1 is stopped, and a lower surface facing the indoor space when the indoor unit 1 is stopped. It has a blade surface 51d. Further, in the second horizontal flap 51, the thickness of the central portion between the first end portion 51a and the second end portion 51b is thicker than the thickness of the first and second end portions 51a and 51b.
  • the upper wing surface 51c includes a curved surface 51e that curves and swells in the lateral direction of the second horizontal flap 51.
  • the line showing the cross section of the upper wing surface 51c includes a curved line that is convex on the side opposite to the lower wing surface 51d. ..
  • the lateral direction of the second horizontal flap 51 corresponds to a direction orthogonal to the longitudinal direction of the second horizontal flap 51 and the thickness direction of the second horizontal flap 51.
  • the upper wing surface 51c is provided with a recess 51h located on the second end portion 51b side.
  • the lower wing surface 51d includes a first curved surface 51f that is curved and recessed in the lateral direction of the second horizontal flap 51, and a second curved surface 51g that is curved and swells in the lateral direction of the second horizontal flap 51. I'm out.
  • the line showing the cross section of the lower wing surface 51d is a curved line that is convex toward the upper wing surface 51c, and the upper wing surface. Includes a curved line that is convex on the opposite side of 51c.
  • the first curved surface 51f is provided on the second end portion 51b side of the lower wing surface 51d, and overlaps the curved surface 51e in the thickness direction of the second horizontal flap 51.
  • the second curved surface 51g is provided on the first end portion 51a side of the lower wing surface 51d and is connected to the first curved surface 51f.
  • the radius of curvature of the curved surface 51e of the upper wing surface 51c (for example, 396 mm or more) is set to be smaller than the radius of curvature of the first curved surface 51f of the lower wing surface 51d (for example, 1800 mm or more).
  • the radius of curvature of the first curved surface 51f of the lower wing surface 51d of the second horizontal flap 51 is 4 to 5 times the radius of curvature of the curved surface 51e of the upper wing surface 51c of the second horizontal flap 51. It is set within the double range.
  • the shape of the cross section along the lateral direction is the same except for both ends in the longitudinal direction of the second horizontal flap 51.
  • both ends of the second horizontal flap 51 in the longitudinal direction exhibit a cross-sectional shape different from that of the other parts of the second horizontal flap 51.
  • the upper wing surfaces 51c at both ends of the second horizontal flap 51 in the longitudinal direction do not include the curved surface 51e.
  • the lower wing surfaces 51d at both ends of the second horizontal flap 51 in the longitudinal direction do not include the first and second curved surfaces 51f and 51g.
  • the region where the curved surface 51e is formed is shown by a dotted line.
  • the air conditioner having the above configuration, when the operation in the first air flow control mode (for example, heating operation) is performed, the distance between the first horizontal flap 41 and the second horizontal flap 51 is on the upstream side of the flow of blown air.
  • the downstream side of the flow of the blown air is wider than that, and the blown air flows diagonally downward on the side opposite to the wall surface W side.
  • a part of the blown air flows along the lower wing surface 41d of the first horizontal flap 41. Since the lower wing surface 41d of the first horizontal flap 41 includes the curved surface 41f which is a convex surface, the Coanda effect on the lower wing surface 41d of the first horizontal flap 41 is enhanced.
  • the upper wing surface 51c of the second horizontal flap 51 includes the curved surface 51e which is a convex surface, the Coanda effect on the upper wing surface 51c of the second horizontal flap 51 is enhanced. As a result, the other part of the blown air is strongly attracted to the upper wing surface 51c of the second horizontal flap 51.
  • the distance between the first horizontal flap 41 and the second horizontal flap 51 on the downstream side is larger than the distance between the first horizontal flap 41 and the second horizontal flap 51 on the upstream side. Since it spreads and the blown air flows diagonally downward on the front side, the blown air can be applied to a wide range of the floor surface facing the indoor space R, for example.
  • the distance between the first horizontal flap 41 and the second horizontal flap 51 on the downstream side of the flow of blown air is much wider than the distance between the first horizontal flap 41 and the second horizontal flap 51 on the upstream side of the flow of blown air. In this state, it is possible to prevent the airflow from separating from the first and second horizontal flaps 41 and 51, so that the blown air can be greatly expanded in the vertical direction.
  • a part of the air from the outlet flow path 37 passes between the front edge portion of the outlet 34 and the first end portion 41a of the first horizontal flap 41, and passes between the casing main body 31 and the first horizontal flap 41. It flows between the upper wing surface 41c.
  • the upper wing surface 41c of the first horizontal flap 41 includes the curved surface 41e which is a concave surface, the Coanda effect on the upper wing surface 41c of the first horizontal flap 41 is enhanced.
  • a part of the air is attracted to the upper wing surface 41c of the first horizontal flap 41 and flows along the upper wing surface 41c of the first horizontal flap 41. Therefore, for example, when the air from the blowout channel 37 is cold air, the upper wing surface 41c of the first horizontal flap 41 is covered with cold air to suppress dew exposure on the upper wing surface 41c of the first horizontal flap 41. Can be done.
  • another part of the air from the outlet flow path 37 passes between the trailing edge portion of the outlet 34 and the first end portion 51a of the second horizontal flap 51, and passes between the wall surface W and the second horizontal flap 51. It flows between the lower wing surface 51d of 51.
  • the lower wing surface 51d of the second horizontal flap 51 includes the curved surface 51e which is a concave surface, the Coanda effect on the lower wing surface 51d of the second horizontal flap 51 is enhanced.
  • the other part of the air is attracted to the lower wing surface 51d of the second horizontal flap 51 and flows along the lower wing surface 51d of the second horizontal flap 51. Therefore, for example, when the air from the blowout channel 37 is cold air, the lower wing surface 41d of the second horizontal flap 51 is covered with cold air to suppress dew exposure on the lower wing surface 51d of the second horizontal flap 51. Can be done.
  • the separation angle between the first horizontal flap 41 and the second horizontal flap 51 is set to, for example, 60 °, so that the blown air can be reliably expanded in the vertical direction.
  • each vertical flap 61 of the first vertical flap group G1 rotates so that the downstream end of the blown air flow approaches the left side
  • Each vertical flap 61 of group G2 rotates so that the downstream end of the blown air flow approaches the right side.
  • the substantially shape of the air flow path formed by the plurality of vertical flaps 61 of the first and second vertical flap groups G1 and G2 becomes a divergent shape from the upstream side to the downstream side of the blown air flow. ..
  • the blown air can be expanded in the left-right direction.
  • the air conditioner is provided with the indoor unit 1 to prevent the airflow from separating from the first and second horizontal flaps 41 and 51, the blown air is spread in the vertical direction to cause uneven air conditioning. Can be reduced.
  • FIG. 19 shows the result of simulating the vertical spread of the blown air of the indoor unit 1 in the first oblique airflow control mode.
  • the blown air of the indoor unit 1 spreads in the vertical direction and hits from the upper body to the lower body of the user. Therefore, when the indoor unit 1 performs the heating operation, as shown in FIG. 20, it is possible to increase the region having the highest temperature (the darkest colored region in FIG. 20) on the surface of the user on the indoor unit 1 side. it can.
  • FIG. 21 shows the result of simulating the vertical spread of the blown air of the indoor unit 1001 of the comparative example.
  • the indoor unit 1001 of the comparative example is different from the indoor unit 1 only in that it is provided with the conventional first and second horizontal flaps. Further, the inclination angles of the conventional first and second horizontal flaps with respect to the horizontal plane are set in the same manner as in the simulation of FIG. Further, the lower wing surface and the upper wing surface of the conventional first and second horizontal flaps do not include curved surfaces and are flat surfaces.
  • the blown air of such an indoor unit 1001 does not spread in the vertical direction and hits only the lower body of the user. Therefore, when the indoor unit 1001 performs the heating operation, as shown in FIG. 22, the region having the highest temperature (the darkest colored region in FIG. 22) on the surface of the user's indoor unit 1001 side does not become large.
  • FIG. 23 is an image diagram of the spread of the blown air of the indoor unit 1 in the vertical and horizontal directions.
  • the blown air passes through an area of, for example, 1.4 m in length ⁇ 1.2 m in width.
  • the wind speed of the blown air that hits each part of the person can be set to 1 m / s or less.
  • the unevenness of the wind speed of the blown air that hits each part of the person is large. Further, even if the wind speed of the blown air below the knee of a person can be around 1 m / s, the wind speed of the blown air hitting the chest of a person exceeds 2 m / s.
  • the indoor unit 1 can send a gentle wind to each part of the user substantially evenly as compared with the indoor unit 1001 of the comparative example.
  • FIG. 25 schematically shows a vertical cross section of the indoor unit 1 in which the transition to the pre-diagonal airflow control mode has been completed.
  • the pre-diagonal airflow control mode is an example of the second airflow control mode.
  • the operation of the first oblique airflow control mode is performed.
  • first horizontal flap 41 and the second horizontal flap 51 are located at a predetermined separation angle (for example, 60 °) between the first horizontal flap 41 and the second horizontal flap 51 in the first oblique airflow control mode.
  • the pre-diagonal airflow control mode operation (for example, heating operation, cooling operation, etc.) is performed in which the separation angle is narrowed and the blown air is blown from the blowout port 34 to the indoor space R.
  • the transition to the first oblique airflow control mode is performed following this operation.
  • the separation angle between the first horizontal flap 41 and the second horizontal flap 51 becomes, for example, 30 °.
  • the rotation speed of the indoor fan 10 is higher than that in the first oblique airflow control mode.
  • the rotation speed of the indoor fan 10 in the first oblique airflow control mode corresponds to the intermediate airflow (air volume larger than the weak airflow and smaller than the strong airflow)
  • the indoor fan 10 in the pre-diagonal airflow control mode The number of revolutions of is set to correspond to the amount of strong air.
  • the operation of narrowing the separation angle between the first horizontal flap 41 and the second horizontal flap 51 is performed.
  • both the first and second horizontal flaps 41 and 51 are rotated.
  • first and second horizontal flaps 41 and 51 in the operation of the pre-diagonal airflow control mode are the first and second horizontal flaps when shifting from the operation of the pre-diagonal airflow control mode to the operation of the first oblique airflow control mode. It rotates at a higher speed than the flaps 41 and 51.
  • the alternate long and short dash line in FIG. 25 shows the posture of the second horizontal flap 51 when the transition to the first oblique airflow control mode is completed.
  • the process for the above transition is started, and in step S1. , Start the heating operation in the pre-diagonal airflow control mode.
  • the compressor 11, the indoor fan 10, etc. are driven so that warm blown air is blown out from the outlet 34 to the indoor space R.
  • step S2 the rotation speed of the indoor fan 10 is set to a high rotation speed.
  • This high rotation speed is higher than the set rotation speed of the indoor fan 10 during the heating operation in the first oblique airflow control mode.
  • step S3 the first horizontal flap 41 is rotated by 25 ° counterclockwise from the stopped state of the indoor unit 1, while the second horizontal flap 51 is counterclockwise from the stopped state of the indoor unit 1. Rotate 55 ° around. As a result, the separation angle between the first horizontal flap 41 and the second horizontal flap 51 is made narrower than in the first oblique airflow control mode. In short, the first and second horizontal flaps 41 and 51 are changed from the posture of FIG. 5 to the posture of FIG. 25.
  • the rotation speeds of the first and second horizontal flaps 41 and 51 are changed from the heating operation in the pre-diagonal airflow control mode to the first oblique airflow control mode. It is faster than the rotation speed of the first and second horizontal flaps 41 and 51 when shifting to the operation of.
  • step S4 it is determined whether or not a predetermined time (for example, 1 second) has elapsed since the first and second horizontal flaps 41 and 51 were in the posture shown in FIG.
  • a predetermined time for example, 1 second
  • This step S4 is repeated until it is determined that a predetermined time has elapsed since the first and second horizontal flaps 41 and 51 were in the posture shown in FIG.
  • step S5 the rotation speed of the indoor fan 10 is reduced to the set rotation speed.
  • step S6 the heating operation in the first oblique airflow control mode is started.
  • step S7 the second horizontal flap 51 is rotated by 15 ° counterclockwise from the posture shown in FIG. 25 while maintaining the posture of the first horizontal flap 41.
  • the first and second horizontal flaps 41 and 51 are in the posture shown in FIG. 25.
  • the heating operation in the first oblique airflow control mode when the heating operation in the first oblique airflow control mode is performed, the first horizontal flap 41 is larger than the predetermined separation angle between the first horizontal flap 41 and the second horizontal flap 51 in the first oblique airflow control mode.
  • the heating operation in the pre-diagonal airflow control mode is followed by the first oblique airflow control mode. Shift to heating operation.
  • the pre-oblique airflow control mode shifts to the first oblique airflow control mode while maintaining the Coanda effect on the lower wing surface 41d of the first horizontal flap 41 and the upper wing surface 51c of the second horizontal flap 51.
  • a part of the blown air can flow along the lower blade surface 41d of the first horizontal flap 41, and the other part of the blown air can flow in the second horizontal. It can flow along the upper wing surface 51c of the flap 51. Therefore, the difference in wind speed becomes small in each part of the blown air flowing between the lower wing surface 41d of the first horizontal flap 41 and the upper wing surface 51c of the second horizontal flap 51. Therefore, when the blown air is blown out toward, for example, a wide range, a stable supply of the blown air to a wide range can be realized.
  • the heating operation in the pre-diagonal airflow control mode is followed by the heating operation in the first diagonal airflow control mode, the supply of blown air to a wide range can be reproduced in the same manner.
  • the rotation speed of the indoor fan 10 is higher than the rotation speed in the first oblique airflow control mode, so that the lower wing surfaces 41d and the second of the first horizontal flap 41
  • the Coanda effect with the upper wing surface 51c of the horizontal flap 51 can be enhanced.
  • the rotation speed of the second horizontal flap 51 for changing from the posture of FIG. 2 to the posture of FIG. 25 is higher than the rotation speed of the second horizontal flap 51 for changing from the posture of FIG. 25 to the posture of FIG. Since it is fast, it is possible to suppress the peeling of the airflow in the second horizontal flap 51 when changing from the posture of FIG. 25 to the posture of FIG. It is possible to realize the supply of blown air to.
  • the operation of the indoor unit 1 is stopped, the heating operation is performed in the pre-diagonal airflow control mode, and then the heating operation is performed in the first oblique airflow control mode.
  • the heating operation of the above may be shifted to the heating operation of the first oblique airflow control mode through the heating operation of the pre-diagonal airflow control mode.
  • the transition to the first oblique airflow control mode is performed immediately after the start of operation of the indoor unit 1, but after passing through the other airflow control modes, the first oblique airflow is performed.
  • the control mode may be entered.
  • the first oblique airflow control mode is selected by the user using, for example, a remote controller, but even if the user does not select, for example, the control device detects the floor surface temperature sensor T6.
  • the heating operation in the first oblique airflow control mode may be selected based on a signal or the like. In this case, the heating operation in the first oblique airflow control mode is automatically selected, so that the convenience of the indoor unit 1 is improved.
  • the operation in the pre-diagonal airflow control mode is a heating operation, but may be a cooling operation, a blowing operation, or the like.
  • the operation in the first oblique airflow control mode is a heating operation, but may be a cooling operation, a blowing operation, or the like.
  • the operation of the first oblique airflow control mode may be the same as the operation of the immediately preceding pre-diagonal airflow control mode.
  • the pre-diagonal airflow control mode is operated immediately before the heating operation in the first oblique airflow control mode, but the pre-diagonal airflow control mode is operated immediately before the heating operation in the first oblique airflow control mode.
  • the operation in the pre-diagonal airflow control mode similar to the oblique airflow control mode may be performed.
  • the first and second horizontal flaps 41 and 51 when the transition to the operation of the pre-diagonal airflow control mode is completed are in the posture shown in FIG. 25, but the first oblique airflow control mode If it is narrower than the separation angle at the time of, the posture other than FIG. 25 may be used.
  • the first and second horizontal flaps 41 and 51 when the transition to the operation of the pre-diagonal airflow control mode is completed may be in the posture shown in FIG. 27.
  • the rotation speeds of the first and second horizontal flaps 41, 51 for changing from the other posture to the posture shown in FIG. may be faster than the rotation speed of the second horizontal flaps 41 and 51.
  • the alternate long and short dash line in FIG. 27 shows the postures of the first and second horizontal flaps 41 and 51 when the transition to the first oblique airflow control mode is completed.
  • the first and second horizontal flaps 41 and 51 when the transition to the operation of the pre-diagonal airflow control mode is completed may be in the posture shown in FIG. 28.
  • the rotation speed of the first horizontal flap 41 for changing from the other posture to the posture shown in FIG. 28 is the rotation speed of the first horizontal flap 41 for changing from the posture shown in FIG. 28 to the posture shown in FIG. It may be faster than the speed.
  • the alternate long and short dash line in FIG. 28 shows the posture of the first horizontal flap 41 when the transition to the first oblique airflow control mode is completed.
  • the first horizontal flap 41 and the second horizontal flap 51 are separated from each other in the period from the start of the operation of the pre-diagonal airflow control mode to the completion of the transition to the operation of the first oblique airflow control mode.
  • the rotation speed of the indoor fan 10 has been lowered, but the rotation speed of the indoor fan 10 may be maintained as it is without being lowered.
  • both the first and second horizontal flaps 41 and 51 are rotated, but the first and first horizontal flaps 41 and 51 are rotated. 2 If the posture immediately before the horizontal flaps 41 and 51 satisfies a predetermined condition, only one of the first and second horizontal flaps 41 and 51 may be rotated. In this case, the rotation control of the first and second horizontal flaps 41 and 51 for the posture shown in FIG. 25 becomes simple.
  • one of the first and second horizontal flaps 41 and 51 may be in the posture shown in FIG. 25.
  • first and second horizontal flaps 41 and 51 when only one of the first and second horizontal flaps 41 and 51 is rotated to reduce the separation angle of the first and second horizontal flaps 41 and 51, one of them is in the first oblique airflow control mode.
  • the first horizontal flap 41 and the second horizontal flap 51 the one having a larger angle with respect to the wind direction of the blown air may be used. In this case, it becomes easy to obtain an air flow along the larger one.
  • the wind direction is a direction parallel to the tangent line of the lower end of the inner peripheral surface of the second partition wall 36 (a direction forming 45 ° with respect to the horizontal plane) and a direction diagonally downward from the indoor unit 1.
  • the air conditioner is a pair type including one indoor unit 1 and one outdoor unit 2, but a plurality of indoor units 1 and one outdoor unit 2 are used. It may be a multi-type provided.
  • the control device 100 has a first oblique airflow control mode and a ceiling airflow control mode based on a signal from the room temperature sensor T5 or the like.
  • One of the vertical airflow control mode and the second oblique airflow control mode may be appropriately selected, or switching between these modes may be performed.
  • the user can perform a first oblique airflow control mode, a ceiling airflow control mode, a vertical airflow control mode, and a second oblique airflow control mode.
  • a desired mode may be selected from among them, for example, with a remote controller.
  • the separation angle between the first horizontal flap 41 and the second horizontal flap 51 in the first oblique airflow control mode is 60 °, but it may be other than 60 °. In this case, the separation angle is set to be within the range of, for example, 53 ° to 60 °.
  • the vertical flap 61 arranged at the left end of the plurality of vertical flaps 61 and the vertical flap 61 arranged at the right end of the plurality of vertical flaps 61 in the first oblique airflow control mode The distance on the downstream side was wider than the distance on the upstream side, but the distance between them may be substantially the same. In short, in the first oblique airflow control mode, control for spreading the blown air in the left-right direction may be performed, or control for spreading the blown air in the left-right direction may not be performed.
  • FIG. 29 is a control block diagram of the air conditioner according to the second embodiment of the present disclosure.
  • the indoor unit of the air conditioner is provided with a motion sensor 91 that detects the distance to a person in the indoor space R.
  • the control device 200 controls the first and second horizontal flap motors 73 and 74 based on the detection result of the motion sensor 91.
  • the control device 200 switches the vertical airflow control mode to the first airflow control mode.
  • the above distance is, for example, the distance between the indoor unit and a person in the front-rear direction.
  • the air conditioner having the above configuration has the same effect as that of the first embodiment, and the vertical airflow control mode is switched to the first airflow control mode when the distance detected by the motion sensor 91 is equal to or less than a predetermined distance. Therefore, the blown air of the indoor unit can be directly applied to the person in the indoor space R at the right time.
  • the present disclosure is not limited to the first and second embodiments and modifications thereof, and various modifications are made within the scope of the present disclosure. Can be done. For example, a part of the contents described in the first and second embodiments may be deleted or replaced as one embodiment of the present disclosure. Alternatively, a combination of the modified example of the first embodiment and the second embodiment may be used as one embodiment of the present disclosure.

Abstract

An air-conditioning indoor unit (1) is provided with a control device (100). In the case of performing an operation in a first airflow control mode in which a downstream gap is set wider than an upstream gap for the flow of blowing air between a first horizontal vane (41) and a second horizontal vane (51) to cause a portion of the blowing air to flow along a lower airfoil surface of the first horizontal vane (41) and cause another portion of the blowing air to flow along an upper airfoil surface of the second horizontal vane (51), the control device (100) performs an operation in a second airflow control mode in which a clearance angle between the first horizontal vane (41) and the second horizontal vane (51) is set narrower than a predetermined clearance angle between the first horizontal vane (41) and the second horizontal vane (51) in the first airflow control mode to blow out the blowing air, and then transitions to the operation in the first airflow control mode following the operation in the second airflow control mode.

Description

空調室内機および空気調和機Air conditioning indoor unit and air conditioner
 本開示は、空調室内機と、この空調室内機を備えた空気調和機とに関する。 This disclosure relates to an air conditioner indoor unit and an air conditioner equipped with this air conditioner indoor unit.
 従来、空調室内機としては、吹出口が設けられたケーシングと、吹出口の前縁部に取り付けられ第1水平羽根と、吹出口の後縁部に取り付けられた第2水平羽根とを備えたものがある(例えば特許文献1(特開2017-125678号公報)参照)。この第1,第2水平羽根は、ケーシングの吹出口から室内空間に流れる吹出空気の上下方向の風向を調整する。 Conventionally, the air conditioner indoor unit includes a casing provided with an air outlet, a first horizontal blade attached to the front edge of the air outlet, and a second horizontal blade attached to the trailing edge of the air outlet. (See, for example, Patent Document 1 (Japanese Unexamined Patent Publication No. 2017-125678)). The first and second horizontal blades adjust the vertical wind direction of the blown air flowing from the outlet of the casing into the indoor space.
特開2017-125678号公報JP-A-2017-125678
 上記従来の空調室内機では、第1,第2水平羽根を制御して、吹出空気を広範囲に供給しようとしても、第1,第2水平羽根の各翼面に気流を沿わせることができない。したがって、上記従来の空調室内機には、広範囲に吹出空気を供給できないという問題がある。 In the above-mentioned conventional air-conditioning indoor unit, even if an attempt is made to supply blown air over a wide range by controlling the first and second horizontal blades, it is not possible to make the air flow follow each blade surface of the first and second horizontal blades. Therefore, the conventional air-conditioning indoor unit has a problem that the blown air cannot be supplied in a wide range.
 本開示の課題は、安定した広範囲への吹出空気の供給を実現できる空調室内機を提供することにある。 An object of the present disclosure is to provide an air-conditioning indoor unit capable of stably supplying blown air to a wide range.
 本開示の一態様の空調室内機は、
 送風ファンからの空気が吹き出す吹出口が形成されたケーシングと、
 上記吹出口からの吹出空気の上下方向の風向を制御する第1水平羽根と、
 上記第1水平羽根を駆動する第1駆動部と、
 上記第1水平羽根よりも後側に配置され、上記吹出空気の上下方向の風向を制御する第2水平羽根と、
 上記第2水平羽根を駆動する第2駆動部と、
 上記送風ファンと上記第1駆動部および上記第2駆動部を制御する制御装置とを備え、
 上記制御装置は、
 上記第1水平羽根と上記第2水平羽根との上記吹出空気の流れの上流側の間隔よりも下流側の間隔を広げて、上記吹出空気の一部を上記第1水平羽根の下翼面に沿って流すと共に、上記吹出空気の他の一部を上記第2水平羽根の上翼面に沿って流す第1気流制御モードの運転を行う場合、
 上記第1気流制御モードにおける上記第1水平羽根と上記第2水平羽根との所定の離間角度よりも上記第1水平羽根と上記第2水平羽根との離間角度を狭くして上記吹出空気を吹き出す第2気流制御モードの運転を行ってから、上記第2気流制御モードの運転に引き続いて上記第1気流制御モードの運転に移行する。
The air-conditioning indoor unit of one aspect of the present disclosure is
A casing with an outlet through which air from the blower fan is blown out,
The first horizontal blade that controls the vertical wind direction of the blown air from the outlet, and
The first drive unit that drives the first horizontal blade and
The second horizontal blade, which is arranged behind the first horizontal blade and controls the vertical wind direction of the blown air,
The second drive unit that drives the second horizontal blade and
It is provided with the blower fan and a control device for controlling the first drive unit and the second drive unit.
The above control device
A part of the blown air is placed on the lower wing surface of the first horizontal blade by widening the distance between the first horizontal blade and the second horizontal blade on the downstream side of the upstream side of the flow of the blown air. When operating in the first airflow control mode in which the other part of the blown air flows along the upper wing surface of the second horizontal blade while flowing along the same
The blown air is blown out by making the distance between the first horizontal blade and the second horizontal blade narrower than the predetermined distance between the first horizontal blade and the second horizontal blade in the first airflow control mode. After the operation of the second airflow control mode is performed, the operation of the second airflow control mode is followed by the operation of the first airflow control mode.
 上記構成によれば、上記第1気流制御モードの運転を行う場合、第1気流制御モードにおける第1水平羽根と第2水平羽根との所定の離間角度よりも第1水平羽根と第2水平羽根との離間角度を狭くして吹出空気を吹き出す第2気流制御モードの運転を行ってから、第2気流制御モードの運転に引き続いて第1気流制御モードの運転に移行する。これにより、第1水平羽根の下翼面と第2水平羽根の上翼面とにおけるコアンダ効果を維持しながら、第2気流制御モードから第1気流制御モードに移行する。その結果、上記第1気流制御モードへの移行後において、吹出空気の一部を第1水平羽根の下翼面に沿って流せると共に、吹出空気の他の一部を第2水平羽根の上翼面に沿って流せる。したがって、安定した広範囲への吹出空気の供給を実現することができる。 According to the above configuration, when the operation in the first airflow control mode is performed, the first horizontal blade and the second horizontal blade are more than a predetermined separation angle between the first horizontal blade and the second horizontal blade in the first airflow control mode. After the operation of the second airflow control mode in which the blown air is blown out by narrowing the separation angle with the above is performed, the operation of the second airflow control mode is followed by the operation of the first airflow control mode. As a result, the mode shifts from the second airflow control mode to the first airflow control mode while maintaining the Coanda effect on the lower blade surface of the first horizontal blade and the upper blade surface of the second horizontal blade. As a result, after the transition to the first airflow control mode, a part of the blown air can flow along the lower wing surface of the first horizontal blade, and the other part of the blown air can flow along the upper wing of the second horizontal blade. It can flow along the surface. Therefore, it is possible to realize a stable supply of blown air over a wide range.
 一態様の空調室内機では、
 上記第2気流制御モードの運転において、上記送風ファンの回転数を上記第1気流制御モードのときの回転数よりも高くする。
In one aspect of the air conditioning indoor unit,
In the operation of the second airflow control mode, the rotation speed of the blower fan is made higher than the rotation speed of the first airflow control mode.
 上記態様によれば、上記第2気流制御モードの運転において、上記送風ファンの回転数を第1気流制御モードのときの回転数よりも高くするので、第1水平羽根の下翼面と第2水平羽根の上翼面とにおけるコアンダ効果を高めることができる。 According to the above aspect, in the operation of the second airflow control mode, the rotation speed of the blower fan is made higher than the rotation speed in the first airflow control mode, so that the lower blade surface of the first horizontal blade and the second The Coanda effect on the upper wing surface of the horizontal blade can be enhanced.
 一態様の空調室内機では、
 上記第1気流制御モードの運転前に行われる上記第2気流制御モードの運転において、上記第1水平羽根または上記第2水平羽根の一方を駆動することにより、上記第1水平羽根と上記第2水平羽根との離間角度を狭くする。
In one aspect of the air conditioning indoor unit,
In the operation of the second airflow control mode performed before the operation of the first airflow control mode, the first horizontal blade and the second horizontal blade are driven by driving either the first horizontal blade or the second horizontal blade. Narrow the separation angle from the horizontal blade.
 上記態様によれば、上記第1水平羽根または第2水平羽根の一方を駆動することにより、第1水平羽根と第2水平羽根との離間角度を狭くするので、第1水平羽根と第2水平羽根との両方を駆動するときよりも、離間角度を狭くするための第1,第2水平羽根の駆動制御が簡単になる。 According to the above aspect, by driving either the first horizontal blade or the second horizontal blade, the separation angle between the first horizontal blade and the second horizontal blade is narrowed, so that the first horizontal blade and the second horizontal blade are separated from each other. The drive control of the first and second horizontal blades for narrowing the separation angle becomes easier than when both the blades and the blades are driven.
 一態様の空調室内機では、
 上記第1気流制御モードの運転において上記第1水平羽根と上記第2水平羽根のうち上記吹出空気の風向に対する角度が大きい方を上記第2気流制御モードにおいて駆動して、上記第1水平羽根と上記第2水平羽根との離間角度を狭くする。
In one aspect of the air conditioning indoor unit,
In the operation of the first airflow control mode, the one of the first horizontal blade and the second horizontal blade having a larger angle with respect to the wind direction of the blown air is driven in the second airflow control mode to form the first horizontal blade. The separation angle from the second horizontal blade is narrowed.
 上記態様によれば、上記第1気流制御モードの運転において第1水平羽根と第2水平羽根のうち吹出空気の風向に対する角度が大きい方を第2気流制御モードにおいて駆動して、第1水平羽根と第2水平羽根との離間角度を狭くするので、その大きい方に沿った気流が得やすくなる。 According to the above aspect, in the operation of the first airflow control mode, the one of the first horizontal blade and the second horizontal blade having a larger angle with respect to the wind direction of the blown air is driven in the second airflow control mode to drive the first horizontal blade. Since the separation angle between the blade and the second horizontal blade is narrowed, it becomes easy to obtain an air flow along the larger one.
 一態様の空調室内機では、
 上記第2気流制御モードの運転における上記第1水平羽根および/または上記第2水平羽根の回動は、上記第2気流制御モードの運転から上記第1気流制御モードの運転に移行するときの上記第1水平羽根および/または上記第2水平羽根の回動よりも速い。
In one aspect of the air conditioning indoor unit,
The rotation of the first horizontal blade and / or the second horizontal blade in the operation of the second airflow control mode is the above-mentioned when shifting from the operation of the second airflow control mode to the operation of the first airflow control mode. Faster than the rotation of the first horizontal blade and / or the second horizontal blade.
 上記態様によれば、上記第1水平羽根および/または第2水平羽根の回動は、第2気流制御モードの運転から第1気流制御モードの運転に移行するときに比較的遅くなるので、よりも速いので、第1水平羽根および/または第2水平羽根における気流の剥がれを抑制することができる。 According to the above aspect, the rotation of the first horizontal blade and / or the second horizontal blade becomes relatively slow when shifting from the operation of the second airflow control mode to the operation of the first airflow control mode. Since it is also fast, it is possible to suppress the separation of the airflow in the first horizontal blade and / or the second horizontal blade.
 本開示の一態様の空調室内機は、
 上記複数の空調室内機のうちのいずれか一つの空調室内機と、
 上記空調室内機に冷媒配管を介して接続された空調室外機と
を備える。
The air-conditioning indoor unit of one aspect of the present disclosure is
The air-conditioning indoor unit of any one of the above-mentioned plurality of air-conditioning indoor units and
It is provided with an air conditioner outdoor unit connected to the air conditioner indoor unit via a refrigerant pipe.
 上記構成によれば、上記空調室内機を備えることにより、安定した広範囲への吹出空気の供給を実現できる。 According to the above configuration, by providing the above air conditioning indoor unit, it is possible to realize a stable supply of blown air over a wide range.
本開示の第1実施形態の空気調和機の冷媒回路図である。It is a refrigerant circuit diagram of the air conditioner of 1st Embodiment of this disclosure. 本開示の第1実施形態の運転停止状態の室内機の模式断面図である。It is a schematic cross-sectional view of the indoor unit in the stopped state of 1st Embodiment of this disclosure. 上記室内機の内部の構成図である。It is a block diagram of the inside of the said indoor unit. 上記空気調和機の制御ブロック図である。It is a control block diagram of the said air conditioner. 第1の斜め気流制御モード時の室内機の模式断面図である。It is a schematic cross-sectional view of the indoor unit in the 1st oblique airflow control mode. 天井気流制御モード時の室内機の模式断面図である。It is a schematic cross-sectional view of the indoor unit in the ceiling airflow control mode. 垂直気流制御モード時の室内機の模式断面図である。It is a schematic cross-sectional view of the indoor unit in the vertical airflow control mode. 第2の斜め気流制御モード時の室内機の模式断面図である。It is a schematic sectional view of the indoor unit in the 2nd oblique airflow control mode. 本開示の第1実施形態の第1水平フラップの斜視図である。It is a perspective view of the 1st horizontal flap of 1st Embodiment of this disclosure. 上記第1水平フラップの平面図である。It is a top view of the 1st horizontal flap. 上記第1水平フラップの底面図である。It is a bottom view of the 1st horizontal flap. 図10のXII-XII線矢視の断面図である。FIG. 10 is a cross-sectional view taken along the line XII-XII of FIG. 図10のXIII-XIII線矢視の断面図である。FIG. 10 is a cross-sectional view taken along the line XIII-XIII in FIG. 本開示の第1実施形態の第2水平フラップの斜視図である。It is a perspective view of the 2nd horizontal flap of 1st Embodiment of this disclosure. 上記第2水平フラップの平面図である。It is a top view of the 2nd horizontal flap. 上記第2水平フラップの底面図である。It is a bottom view of the 2nd horizontal flap. 図13のXVII-XVII線矢視の断面図であるFIG. 3 is a cross-sectional view taken along the line XVII-XVII of FIG. 図13のXVIII-XVIII線矢視の断面図である。FIG. 3 is a cross-sectional view taken along the line XVIII-XVIII of FIG. 上記第1実施形態の室内機の吹出空気のシミュレーション結果図である。It is a simulation result figure of the blown air of the indoor unit of the said 1st Embodiment. 上記第1実施形態の室内機の吹出空気の他のシミュレーション結果図である。It is another simulation result figure of the blown air of the indoor unit of the said 1st Embodiment. 比較例の室内機の吹出空気のシミュレーション結果図である。It is a simulation result figure of the blown air of the indoor unit of a comparative example. 上記比較例の室内機の吹出空気のシミュレーション結果図である。It is a simulation result figure of the blown air of the indoor unit of the said comparative example. 上記第1実施形態の室内機の吹出空気のイメージ図であるIt is an image diagram of the blown air of the indoor unit of the first embodiment. 上記第1実施形態の室内機の吹出空気の風速を説明するための図である。It is a figure for demonstrating the wind speed of the blown air of the indoor unit of the said 1st Embodiment. プレ斜め気流制御モード時の室内機の模式断面図である。It is a schematic sectional view of the indoor unit in the pre-diagonal airflow control mode. プレ斜め気流制御モードの運転から第1の斜め気流制御モードの運転への移行を説明するためのフローチャートである。It is a flowchart for demonstrating the transition from the operation of the pre-diagonal airflow control mode to the operation of the first oblique airflow control mode. 他のプレ斜め気流制御モード時の室内機の模式断面図である。It is a schematic cross-sectional view of the indoor unit in another pre-diagonal airflow control mode. 他のプレ斜め気流制御モード時の室内機の模式断面図である。It is a schematic cross-sectional view of the indoor unit in another pre-diagonal airflow control mode. 本開示の第2実施形態の空気調和機の制御ブロック図である。It is a control block diagram of the air conditioner of the 2nd Embodiment of this disclosure.
 以下、本開示の空調室内機および空気調和機を図示の実施の形態により詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。 Hereinafter, the air conditioner indoor unit and the air conditioner of the present disclosure will be described in detail by the illustrated embodiment. In addition, the same reference numerals are given to common parts in each figure, and duplicate description is omitted.
 〔第1実施形態〕
 図1は、本開示の第1実施形態の空気調和機が備える冷媒回路RCを示す。この空気調和機は、室内機1と室外機2が一対一のペア型の空気調和機である。なお、室内機1は空調室内機の一例である。また、室外機2は空調室外機の一例である。また、連絡配管L1,L2は冷媒配管の一例である。
[First Embodiment]
FIG. 1 shows a refrigerant circuit RC included in the air conditioner of the first embodiment of the present disclosure. This air conditioner is a pair type air conditioner in which the indoor unit 1 and the outdoor unit 2 are one-to-one. The indoor unit 1 is an example of an air-conditioning indoor unit. The outdoor unit 2 is an example of an air conditioner outdoor unit. Further, the connecting pipes L1 and L2 are examples of refrigerant pipes.
 上記空気調和機は、圧縮機11と、圧縮機11の吐出側が一端に接続された四路切換弁12と、この四路切換弁12の他端に一端が接続された室外熱交換器13と、室外熱交換器13の他端に一端が接続された電動膨張弁14と、電動膨張弁14の他端に閉鎖弁21,連絡配管L1を介して一端が接続された室内熱交換器15と、室内熱交換器15の他端に連絡配管L2,閉鎖弁22,四路切換弁12を介して一端が接続され、他端が圧縮機11の吸入側に接続されたアキュムレータ16とを備えている。ここで、圧縮機11,四路切換弁12,室外熱交換器13,電動膨張弁14,室内熱交換器15およびアキュムレータ16などが空気調和機の冷媒回路RCを構成している。また、室内熱交換器15、室内ファン10などが、室内機1を構成している。一方、圧縮機11、四路切換弁12、室外熱交換器13、電動膨張弁14、アキュムレータ16、室外ファン20などが、室外機2を構成している。なお、室内ファン10は、送風ファンの一例である。また、電動膨張弁14は減圧機構の一例である。 The air conditioner includes a compressor 11, a four-way switching valve 12 in which the discharge side of the compressor 11 is connected to one end, and an outdoor heat exchanger 13 in which one end is connected to the other end of the four-way switching valve 12. An electric expansion valve 14 having one end connected to the other end of the outdoor heat exchanger 13, and an indoor heat exchanger 15 having one end connected to the other end of the electric expansion valve 14 via a closing valve 21 and a connecting pipe L1. An accumulator 16 having one end connected to the other end of the indoor heat exchanger 15 via a connecting pipe L2, a closing valve 22, and a four-way switching valve 12 and the other end connected to the suction side of the compressor 11 is provided. There is. Here, the compressor 11, the four-way switching valve 12, the outdoor heat exchanger 13, the electric expansion valve 14, the indoor heat exchanger 15, the accumulator 16 and the like constitute the refrigerant circuit RC of the air conditioner. Further, the indoor heat exchanger 15, the indoor fan 10, and the like constitute the indoor unit 1. On the other hand, the compressor 11, the four-way switching valve 12, the outdoor heat exchanger 13, the electric expansion valve 14, the accumulator 16, the outdoor fan 20, and the like constitute the outdoor unit 2. The indoor fan 10 is an example of a blower fan. The electric expansion valve 14 is an example of a pressure reducing mechanism.
 室内機1は、室内熱交換器15の温度を検出する室内熱交換器温度センサT4と、室内温度を検出する室内温度センサT5と、室内空間R(図2,図5~図8に示す)に面する床面の温度を検出する床面温度センサT6とを備えている。また、室内機1内には、室内熱交換器15を介して室内空気を循環させる室内ファン10が設置されている。なお、例えばサーミスタなどが、室内熱交換器温度センサT4および室内温度センサT5として使用される。また、例えば赤外線温度センサなどが、床面温度センサT6として使用される。また、室内空間Rは、空調対象空間の一例である。 The indoor unit 1 includes an indoor heat exchanger temperature sensor T4 that detects the temperature of the indoor heat exchanger 15, an indoor temperature sensor T5 that detects the indoor temperature, and an indoor space R (shown in FIGS. 2, 5 to 8). It is provided with a floor surface temperature sensor T6 that detects the temperature of the floor surface facing the surface. Further, in the indoor unit 1, an indoor fan 10 that circulates indoor air via an indoor heat exchanger 15 is installed. For example, a thermistor or the like is used as the indoor heat exchanger temperature sensor T4 and the indoor temperature sensor T5. Further, for example, an infrared temperature sensor or the like is used as the floor surface temperature sensor T6. Further, the indoor space R is an example of an air-conditioned space.
 室外機2は、室外熱交換器13の温度を検出する室外熱交換器温度センサT1と、外気温度を検出する外気温度センサT2と、電動膨張弁14の蒸発温度を検出する蒸発温度センサT3とを備えている。また、室外機2内には、室外熱交換器13に外気を供給する室外ファン20が設置されている。なお、例えばサーミスタなどが、室外熱交換器温度センサT1、外気温度センサT2および蒸発温度センサT3として使用される。 The outdoor unit 2 includes an outdoor heat exchanger temperature sensor T1 that detects the temperature of the outdoor heat exchanger 13, an outside air temperature sensor T2 that detects the outside air temperature, and an evaporation temperature sensor T3 that detects the evaporation temperature of the electric expansion valve 14. It has. Further, an outdoor fan 20 for supplying outside air to the outdoor heat exchanger 13 is installed in the outdoor unit 2. For example, a thermistor or the like is used as the outdoor heat exchanger temperature sensor T1, the outside air temperature sensor T2, and the evaporation temperature sensor T3.
 また、上記空気調和機は、図示しないリモートコントローラ(以下、「リモコン」という)を備えている。このリモコンを操作することにより、冷房運転、除湿運転、暖房運転などうちの1つの運転を開始または停止させたり、他の運転に切り替えたりすることが可能となっている。また、上記リモコンを操作することにより、室内温度の設定温度を変更したり、室内機1が吹き出す空気の風量を調節したりすることも可能となっている。 The above air conditioner is equipped with a remote controller (hereinafter referred to as "remote controller") (hereinafter referred to as "remote controller") (not shown). By operating this remote controller, it is possible to start or stop one of the operations such as cooling operation, dehumidifying operation, and heating operation, and to switch to the other operation. Further, by operating the remote controller, it is possible to change the set temperature of the indoor temperature and adjust the air volume of the air blown out by the indoor unit 1.
 上記リモコンによって、冷房運転または除湿運転が選択されて、四路切換弁12が図1の実線の状態に切り換えられると、圧縮機11からの冷媒は、冷媒回路RCを実線の矢印に示すように、四路切換弁12、室外熱交換器13、電動膨張弁14、室内熱交換器15、四路切換弁12およびアキュムレータ16の順に流れるようになっている。一方、暖房運転が選択されて、四路切換弁12が図1の破線の状態に切り換えられると、圧縮機11からの冷媒は、冷媒回路RCを破線の矢印に示すように、四路切換弁12、室内熱交換器15、電動膨張弁14、室外熱交換器13、四路切換弁12およびアキュムレータ16の順に流れるようになっている。 When the cooling operation or the dehumidifying operation is selected by the remote controller and the four-way switching valve 12 is switched to the state of the solid line in FIG. 1, the refrigerant from the compressor 11 indicates the refrigerant circuit RC as shown by the solid line arrow. , The four-way switching valve 12, the outdoor heat exchanger 13, the electric expansion valve 14, the indoor heat exchanger 15, the four-way switching valve 12, and the accumulator 16 flow in this order. On the other hand, when the heating operation is selected and the four-way switching valve 12 is switched to the state of the broken line in FIG. 1, the refrigerant from the compressor 11 is a four-way switching valve as shown by the broken line arrow in the refrigerant circuit RC. 12, the indoor heat exchanger 15, the electric expansion valve 14, the outdoor heat exchanger 13, the four-way switching valve 12, and the accumulator 16 flow in this order.
 図2は、運転停止状態の室内機1の縦断面を模式的に示す。なお、室内機1は壁掛けタイプである。 FIG. 2 schematically shows a vertical cross section of the indoor unit 1 in the stopped operation state. The indoor unit 1 is a wall-mounted type.
 室内機1は、ケーシング本体31および前面パネル32からなるケーシング30を備えている。このケーシング30は、室内空間Rに面する壁面Wに取り付けられると共に、室内ファン10、室内熱交換器15、ドレンパン33などを収容する。なお、室内空間Rは、空調対象空間の一例である。 The indoor unit 1 includes a casing 30 including a casing main body 31 and a front panel 32. The casing 30 is attached to the wall surface W facing the indoor space R, and houses the indoor fan 10, the indoor heat exchanger 15, the drain pan 33, and the like. The indoor space R is an example of an air-conditioned space.
 ケーシング本体31は、複数の部材で構成され、前面部31a、上面部31b、後面部31cおよび下面部31dを有する。この前面部31aには、前面パネル32が開閉可能に取り付けられている。また、前面部31aから上面部31bにかけて吸込口(図示せず)が設けられている。 The casing main body 31 is composed of a plurality of members, and has a front surface portion 31a, an upper surface portion 31b, a rear surface portion 31c, and a lower surface portion 31d. A front panel 32 is attached to the front surface portion 31a so as to be openable and closable. Further, a suction port (not shown) is provided from the front surface portion 31a to the upper surface portion 31b.
 前面パネル32は、室内機1の前面部31aを構成しており、例えば、吸込口がないフラットな形状を有している。また、前面パネル32の上端部は、ケーシング本体31の上面部31bに回動可能に支持され、ヒンジ式に動作することが可能となっている。 The front panel 32 constitutes the front portion 31a of the indoor unit 1, and has, for example, a flat shape without a suction port. Further, the upper end portion of the front panel 32 is rotatably supported by the upper surface portion 31b of the casing main body 31 so that it can operate in a hinged manner.
 室内ファン10および室内熱交換器15は、ケーシング本体31に取り付けられている。室内熱交換器15は、上記吸込口を介してケーシング30内に吸い込まれた室内空気との間で熱交換を行う。また、室内熱交換器15の側面視の形状は、両端が下方に向いて屈曲部が上側に位置する逆V時形状である。室内ファン10は、室内熱交換器15の屈曲部下に位置する。室内ファン10は、例えばクロスフローファンであり、室内熱交換器15を通過した室内空気をケーシング本体31の下面部31dの吹出口34に送る。 The indoor fan 10 and the indoor heat exchanger 15 are attached to the casing main body 31. The indoor heat exchanger 15 exchanges heat with the indoor air sucked into the casing 30 through the suction port. Further, the side view shape of the indoor heat exchanger 15 is an inverted V shape in which both ends face downward and the bent portion is located on the upper side. The indoor fan 10 is located below the bent portion of the indoor heat exchanger 15. The indoor fan 10 is, for example, a cross-flow fan, and sends the indoor air that has passed through the indoor heat exchanger 15 to the air outlet 34 of the lower surface portion 31d of the casing main body 31.
 また、ケーシング本体31には、第1,第2隔壁35,36が設けられている。この第1隔壁35と第2隔壁36とで挟まれた空間が、室内ファン10と吹出口34とを繋ぐ吹出流路37となる。 Further, the casing main body 31 is provided with the first and second partition walls 35 and 36. The space sandwiched between the first partition wall 35 and the second partition wall 36 serves as an outlet flow path 37 connecting the indoor fan 10 and the outlet 34.
 ドレンパン33は、室内熱交換器15の前部下に配置され、その前部からの結露水を受ける。この結露水はドレンホース(図示せず)を介して室外に排出される。 The drain pan 33 is arranged under the front part of the indoor heat exchanger 15 and receives dew condensation water from the front part thereof. This condensed water is discharged to the outside of the room via a drain hose (not shown).
 また、室内機1は、第1水平フラップ41と、この第1水平フラップ41よりも後側(壁面W側)に配置される第2水平フラップ51とを備えている。この第1水平フラップ41および第2水平フラップ51は、吹出流路37を流れて吹出口34から吹き出される吹出空気の上下方向の風向を調整する。なお、第1水平フラップ41は第1水平羽根の一例である。また、第2水平フラップ51は、第2水平羽根の一例である。 Further, the indoor unit 1 includes a first horizontal flap 41 and a second horizontal flap 51 arranged on the rear side (wall surface W side) of the first horizontal flap 41. The first horizontal flap 41 and the second horizontal flap 51 adjust the vertical wind direction of the blown air that flows through the blowout flow path 37 and is blown out from the outlet 34. The first horizontal flap 41 is an example of the first horizontal blade. The second horizontal flap 51 is an example of the second horizontal blade.
 第1水平フラップ41は、室内機1の運転時、上記吹出空気の流れに関して上流側に配置される第1端部41aと、上記吹出空気の流れに関して下流側に配置される第2端部41bとを有する。この第1水平フラップ41は、ケーシング本体31の下面部31dに回動可能に取り付けられている。 The first horizontal flap 41 has a first end portion 41a arranged on the upstream side with respect to the flow of the blown air and a second end portion 41b arranged on the downstream side with respect to the flow of the blown air during operation of the indoor unit 1. And have. The first horizontal flap 41 is rotatably attached to the lower surface portion 31d of the casing main body 31.
 より詳しく説明すると、第1水平フラップ41は、第2端部41bに連なる片部41g(図9~図13に示す)を有している。この片部41gがケーシング本体31の取付部38に取り付けられ、第1水平フラップ41が取付部38を中心に回動可能となっている。室内機1の運転が停止しているとき、第1水平フラップ41は、ケーシング本体31の下面部31dの前側部分に沿うような姿勢を取る。室内機1の運転が開始すると、第1水平フラップモータ73(図3,図4に示す)の駆動により、第1水平フラップ41が回動して、ケーシング本体31の下面部31dの前側部分と第1水平フラップ41の第2端部41bとの間隔が広がる。このとき、第1水平フラップ41は、水平面に対して複数の傾斜姿勢を取ることが可能である。なお、第1水平フラップモータ73としては、例えば4相巻線のステッピングモータが使用される。 More specifically, the first horizontal flap 41 has a piece portion 41 g (shown in FIGS. 9 to 13) connected to the second end portion 41b. This piece 41g is attached to the mounting portion 38 of the casing main body 31, and the first horizontal flap 41 is rotatable around the mounting portion 38. When the operation of the indoor unit 1 is stopped, the first horizontal flap 41 takes a posture along the front side portion of the lower surface portion 31d of the casing main body 31. When the operation of the indoor unit 1 starts, the first horizontal flap 41 is rotated by the drive of the first horizontal flap motor 73 (shown in FIGS. 3 and 4), and the first horizontal flap 41 and the front portion of the lower surface portion 31d of the casing main body 31 The distance between the first horizontal flap 41 and the second end 41b is widened. At this time, the first horizontal flap 41 can take a plurality of inclined postures with respect to the horizontal plane. As the first horizontal flap motor 73, for example, a 4-phase winding stepping motor is used.
 第2水平フラップ51は、第1水平フラップ41と同様に、上記吹出空気の流れに関して上流側に配置される第1端部51aと、上記吹出空気の流れに関して下流側に配置される第2端部51bとを有する。この第2水平フラップ51は、第1端部51aがケーシング本体31の下面部31dに回動可能に取り付けられている。 Like the first horizontal flap 41, the second horizontal flap 51 has a first end portion 51a arranged on the upstream side with respect to the flow of the blown air and a second end arranged on the downstream side with respect to the flow of the blown air. It has a part 51b. The second horizontal flap 51 has a first end portion 51a rotatably attached to a lower surface portion 31d of the casing main body 31.
 より詳しく説明すると、室内機1の運転が停止しているとき、第2水平フラップ51は、吹出口34を閉鎖するような姿勢を取る。室内機1の運転が開始すると、第2水平フラップモータ74(図3,図4に示す)が第2水平フラップ51を駆動する。これにより、第2水平フラップ51が第1端部51aを中心に回動することで、第2端部51bが取付部38から離れて、吹出口34が開放される。このとき、第2水平フラップ51は、水平面に対して複数の傾斜姿勢を取ることが可能である。なお、第2水平フラップモータ74としては、例えば4相巻線のステッピングモータが使用される。 More specifically, when the operation of the indoor unit 1 is stopped, the second horizontal flap 51 takes a posture of closing the air outlet 34. When the operation of the indoor unit 1 is started, the second horizontal flap motor 74 (shown in FIGS. 3 and 4) drives the second horizontal flap 51. As a result, the second horizontal flap 51 rotates about the first end portion 51a, so that the second end portion 51b is separated from the mounting portion 38 and the air outlet 34 is opened. At this time, the second horizontal flap 51 can take a plurality of inclined postures with respect to the horizontal plane. As the second horizontal flap motor 74, for example, a 4-phase winding stepping motor is used.
 また、室内機1は、上記吹出空気の左右方向の風向を調整する複数の垂直フラップ61(図3に示す)を備える。この複数の垂直フラップ61は、吹出口34の長手方向(図2の紙面に対して垂直な方向)に沿って所定間隔をあけて吹出流路37に配置されている。なお、垂直フラップ61は、垂直羽根の一例である。 Further, the indoor unit 1 is provided with a plurality of vertical flaps 61 (shown in FIG. 3) for adjusting the wind direction of the blown air in the left-right direction. The plurality of vertical flaps 61 are arranged in the outlet flow path 37 at predetermined intervals along the longitudinal direction of the outlet 34 (the direction perpendicular to the paper surface of FIG. 2). The vertical flap 61 is an example of a vertical blade.
 図3は、室内機1の内部の構成を模式的に示す。 FIG. 3 schematically shows the internal configuration of the indoor unit 1.
 第1,第2水平フラップ41,51は、第1,第2回転軸71,72により上下方向に回動可能に支持されている。第1,第2水平フラップモータ73,74が第1,第2回転軸71,72を回転駆動することによって、第1,第2水平フラップ41,51が上下方向に回動する。なお、第1水平フラップモータ73は、第1駆動部の一例である。また、第2水平フラップモータ74は、第2駆動部の一例である。 The first and second horizontal flaps 41 and 51 are rotatably supported in the vertical direction by the first and second rotating shafts 71 and 72. The first and second horizontal flap motors 73 and 74 rotate and drive the first and second rotating shafts 71 and 72, so that the first and second horizontal flaps 41 and 51 rotate in the vertical direction. The first horizontal flap motor 73 is an example of the first drive unit. The second horizontal flap motor 74 is an example of the second drive unit.
 複数の垂直フラップ61は、第1垂直フラップ群G1と第2垂直フラップ群G2とに分けられる。なお、第1垂直フラップ群G1を構成する垂直フラップ61は、複数の垂直羽根のうちの一側方側の垂直羽根の一例である。また、第2垂直フラップ群G2を構成する垂直フラップ61は、複数の垂直羽根のうちの他側方側の垂直羽根の一例である。 The plurality of vertical flaps 61 are divided into a first vertical flap group G1 and a second vertical flap group G2. The vertical flap 61 constituting the first vertical flap group G1 is an example of a vertical blade on one side of a plurality of vertical blades. Further, the vertical flap 61 constituting the second vertical flap group G2 is an example of the vertical blades on the other side of the plurality of vertical blades.
 第1垂直フラップ群G1は、吹出口34の左右方向の中央よりも左側の開口領域に対向する複数の垂直フラップ61で構成される。この第1垂直フラップ群G1に属する垂直フラップ61同士は、第1連結棒81で互いに連結されている。また、第1垂直フラップ群モータ83が第1連結棒81を左右方向に駆動することによって、複数の垂直フラップ61はそれぞれの回動軸(図示せず)を中心にして左右方向に回動する。 The first vertical flap group G1 is composed of a plurality of vertical flaps 61 facing the opening region on the left side of the center in the left-right direction of the air outlet 34. The vertical flaps 61 belonging to the first vertical flap group G1 are connected to each other by the first connecting rod 81. Further, when the first vertical flap group motor 83 drives the first connecting rod 81 in the left-right direction, the plurality of vertical flaps 61 rotate in the left-right direction about their respective rotation axes (not shown). ..
 第2垂直フラップ群G2は、吹出口34の左右方向の中央よりも右側の開口領域に対向する複数の垂直フラップ61で構成される。第2垂直フラップ群G2に属する垂直フラップ61も、第1垂直フラップ群G1に属する垂直フラップ61と同様に、第2連結棒82に連結されて、第2垂直フラップ群モータ84で回動可能となっている。 The second vertical flap group G2 is composed of a plurality of vertical flaps 61 facing the opening region on the right side of the center in the left-right direction of the air outlet 34. Like the vertical flap 61 belonging to the first vertical flap group G1, the vertical flap 61 belonging to the second vertical flap group G2 is also connected to the second connecting rod 82 and can be rotated by the second vertical flap group motor 84. It has become.
 図4は、上記空気調和機の制御ブロック図である。 FIG. 4 is a control block diagram of the air conditioner.
 上記空気調和機は、マイクロコンピュータと入出力回路などからなる制御装置100を備えている。この制御装置100は、室内機1側に設けられた室内制御部(図示せず)と、室外機2側に設けられた室外制御部(図示せず)とを有する。 The above air conditioner is equipped with a control device 100 including a microcomputer and an input / output circuit. The control device 100 has an indoor control unit (not shown) provided on the indoor unit 1 side and an outdoor control unit (not shown) provided on the outdoor unit 2 side.
 制御装置100は、室外熱交換器温度センサT1,外気温度センサT2,蒸発温度センサT3,室内熱交換器温度センサT4,室内温度センサT5などからの信号に基づいて、圧縮機11,四路切換弁12,室内ファンモータ85,室外ファンモータ86,表示部50,第1水平フラップモータ73,第2水平フラップモータ74,第1垂直フラップ群モータ83,第2垂直フラップ群モータ84などを制御する。この表示部50は、室内機1に設けられ、少なくとも運転状態を表示するLEDなどである。なお、室内ファンモータ85は室内ファン10を駆動する。また、室外ファンモータ86は室外ファン20を駆動する。 The control device 100 switches the compressor 11, four-way switching based on signals from the outdoor heat exchanger temperature sensor T1, the outside air temperature sensor T2, the evaporation temperature sensor T3, the indoor heat exchanger temperature sensor T4, the indoor temperature sensor T5, and the like. Controls a valve 12, an indoor fan motor 85, an outdoor fan motor 86, a display unit 50, a first horizontal flap motor 73, a second horizontal flap motor 74, a first vertical flap group motor 83, a second vertical flap group motor 84, and the like. .. The display unit 50 is provided in the indoor unit 1 and is at least an LED or the like that displays an operating state. The indoor fan motor 85 drives the indoor fan 10. Further, the outdoor fan motor 86 drives the outdoor fan 20.
 室内機1は、第1の斜め気流制御モード、天井気流制御モード、垂直気流制御モードおよび第2の斜め気流制御モードの運転(例えば、冷房運転、暖房運転など)が可能となっている。上記信号などに基づいて、後述する第1の斜め気流制御モード、天井気流制御モード、垂直気流制御モードおよび第2の斜め気流制御モードの中から1つの気流制御モードが自動的に選択されたり、他の気流制御モードに切り換えられたりする。また、上記リモコンを操作することにより、第1の斜め気流制御モード、天井気流制御モード、垂直気流制御モードおよび第2の斜め気流制御モードのうちの1つのモードを選択することも可能となっている。なお、第1の斜め気流制御モードは、第1気流制御モードの一例である。 The indoor unit 1 can operate in the first diagonal airflow control mode, the ceiling airflow control mode, the vertical airflow control mode, and the second diagonal airflow control mode (for example, cooling operation, heating operation, etc.). Based on the above signal or the like, one airflow control mode is automatically selected from the first diagonal airflow control mode, the ceiling airflow control mode, the vertical airflow control mode, and the second diagonal airflow control mode, which will be described later. It can be switched to another airflow control mode. Further, by operating the remote controller, it is possible to select one of the first diagonal airflow control mode, the ceiling airflow control mode, the vertical airflow control mode, and the second diagonal airflow control mode. There is. The first oblique airflow control mode is an example of the first airflow control mode.
 <第1の斜め気流制御モード>
 図5は、第1の斜め気流制御モードへの移行が完了した室内機1の縦断面を模式的に示す。
<First diagonal airflow control mode>
FIG. 5 schematically shows a vertical cross section of the indoor unit 1 in which the transition to the first oblique airflow control mode has been completed.
 上記第1の斜め気流制御モードでは、第1水平フラップ41と第2水平フラップ51との間隔は、吹出空気の流れの上流側よりも吹出空気の下流側の方が広くなって、吹出口34から室内空間Rに流れる吹出空気が前側(壁面W側とは反対側)の斜め下方に流れる。 In the first oblique airflow control mode, the distance between the first horizontal flap 41 and the second horizontal flap 51 is wider on the downstream side of the blown air than on the upstream side of the blown air flow, and the outlet 34 The blown air flowing from the airflow to the indoor space R flows diagonally downward on the front side (the side opposite to the wall surface W side).
 より詳しく説明すると、第1水平フラップ41の第1端部41aの厚さ方向の中心と第1水平フラップ41の第2端部41bの厚さ方向の中心とを通る仮想面V1を定義すると、第1の斜め気流制御モード時、水平面Hに対する仮想面V1の傾斜角θ1は、例えば+10°となる。一方、第2水平フラップ51の第1端部51aの厚さ方向の中心と第2端部41bの厚さ方向の中心とを通る仮想面V2を定義すると、第1の斜め気流制御モード時、水平面Hに対する仮想面V2の傾斜角θ2は、例えば+70°となる。このとき、第1水平フラップ41と第2水平フラップ51との離間角度は、例えば60°となる。なお、傾斜角θ1,θ2が+の角度であるとき、仮想面V1,V2の前側が仮想面V1,V2の後側よりも下側に位置する状態である。また、上記離間角度は、傾斜角θ2から傾斜角θ1を引いた角度に相当する。なお、60°は、所定の離間角度の一例である。 More specifically, defining a virtual surface V1 that passes through the center of the first horizontal flap 41 in the thickness direction of the first end 41a and the center of the first horizontal flap 41 in the thickness direction of the second end 41b is defined. In the first oblique airflow control mode, the inclination angle θ1 of the virtual surface V1 with respect to the horizontal plane H is, for example, + 10 °. On the other hand, if the virtual surface V2 passing through the center of the first end portion 51a of the second horizontal flap 51 in the thickness direction and the center of the second end portion 41b in the thickness direction is defined, in the first oblique airflow control mode, The inclination angle θ2 of the virtual surface V2 with respect to the horizontal plane H is, for example, + 70 °. At this time, the separation angle between the first horizontal flap 41 and the second horizontal flap 51 is, for example, 60 °. When the inclination angles θ1 and θ2 are + angles, the front side of the virtual surfaces V1 and V2 is located below the rear side of the virtual surfaces V1 and V2. Further, the separation angle corresponds to an angle obtained by subtracting the inclination angle θ1 from the inclination angle θ2. Note that 60 ° is an example of a predetermined separation angle.
 別の言い方をすると、第1水平フラップ41は、室内機1の運転が停止しているときの状態から25°回動させると、第1の斜め気流制御モード時の姿勢となる。一方、第2水平フラップ51は、室内機1の運転が停止しているときの状態から70°回動させると、第1の斜め気流制御モード時の姿勢となる。ここで、第2水平フラップ51の回動角から第1水平フラップ41の回動角を引いた角度が、第1の斜め気流制御モード時における第1水平フラップ41と第2水平フラップ51との離間角度となる。 In other words, when the first horizontal flap 41 is rotated by 25 ° from the state when the operation of the indoor unit 1 is stopped, it becomes the posture in the first oblique airflow control mode. On the other hand, when the second horizontal flap 51 is rotated by 70 ° from the state when the operation of the indoor unit 1 is stopped, it takes the posture in the first oblique airflow control mode. Here, the angle obtained by subtracting the rotation angle of the first horizontal flap 41 from the rotation angle of the second horizontal flap 51 is the angle between the first horizontal flap 41 and the second horizontal flap 51 in the first oblique airflow control mode. It becomes the separation angle.
 上記第1気流制御モード時、第1垂直フラップ群G1の各垂直フラップ61は、吹出空気の流れの下流側の端部が吹出空気の流れの上流側の端部よりもケーシング30の左側に位置するように傾斜した姿勢をとる。また、上記第1気流制御モード時、第2垂直フラップ群G1の各垂直フラップ61は、吹出空気の流れの下流側の端部が吹出空気の流れの上流側の端部よりもケーシング30の右側に位置するように傾斜した姿勢をとる。 In the first airflow control mode, each vertical flap 61 of the first vertical flap group G1 has the downstream end of the blown air flow located on the left side of the casing 30 with respect to the upstream end of the blown air flow. Take an inclined posture to do so. Further, in the first airflow control mode, in each vertical flap 61 of the second vertical flap group G1, the downstream end of the blown air flow is on the right side of the casing 30 with respect to the upstream end of the blown air flow. Take an inclined posture so that it is located at.
 より詳しく説明すると、第1垂直フラップ群G1の垂直フラップ61と第2垂直フラップ群G2の垂直フラップ61との間隔は、吹出空気の流れの上流側よりも吹出空気の流れの下流側の方が広くなる。別の言い方をすると、第1垂直フラップ群G1の各垂直フラップ61は、吹出空気の流れの下流側に位置する端部がケーシング本体31の左側面部に近づくように、かつ、吹出空気の流れの上流側に位置する端部がケーシング本体31の左側面部から離れるように、回動する。一方、第2垂直フラップ群G2の各垂直フラップ61は、吹出空気の流れの下流側に位置する端部がケーシング本体31の右側面部に近づくように、かつ、吹出空気の流れの上流側に位置する端部がケーシング本体31の右側面部から離れるように、回動する。 More specifically, the distance between the vertical flap 61 of the first vertical flap group G1 and the vertical flap 61 of the second vertical flap group G2 is closer to the downstream side of the blown air flow than to the upstream side of the blown air flow. Become wider. In other words, each vertical flap 61 of the first vertical flap group G1 has an end located on the downstream side of the blown air flow so as to approach the left side surface of the casing main body 31 and the blown air flow. The end portion located on the upstream side rotates so as to be separated from the left side surface portion of the casing main body 31. On the other hand, each of the vertical flaps 61 of the second vertical flap group G2 is located so that the end located on the downstream side of the blown air flow approaches the right side surface of the casing main body 31 and on the upstream side of the blown air flow. The end portion is rotated so as to be separated from the right side surface portion of the casing main body 31.
 <天井気流制御モード>
 図6は、天井気流制御モードへの移行が完了した室内機1の縦断面を模式的に示す。
<Ceiling airflow control mode>
FIG. 6 schematically shows a vertical cross section of the indoor unit 1 in which the transition to the ceiling airflow control mode has been completed.
 天井気流制御モードでは、吹出口34から室内空間Rに流れる吹出空気が水平方向に流れる。 In the ceiling airflow control mode, the blown air flowing from the blowout port 34 to the indoor space R flows in the horizontal direction.
 より詳しく説明すると、天井気流制御モード時、水平面Hに対する仮想面V1の傾斜角θ1は、例えば-5°となる。一方、天井気流制御モード時、水平面Hに対する仮想面V2の傾斜角θ2は、例えば+15°となる。このとき、傾斜角θ1,θ2は、第1の斜め気流制御モード時に比べて小さくなる。逆に言えば、第1の斜め気流制御モード時の傾斜角θ1,θ2は、天井気流制御モード時の傾斜角θ1,θ2よりも大きくなる。なお、傾斜角θ1が-の角度であるとき、仮想面V1の前側が仮想面V1の後側よりも上側に位置する状態である。 More specifically, in the ceiling airflow control mode, the inclination angle θ1 of the virtual surface V1 with respect to the horizontal plane H is, for example, −5 °. On the other hand, in the ceiling airflow control mode, the inclination angle θ2 of the virtual surface V2 with respect to the horizontal plane H is, for example, + 15 °. At this time, the inclination angles θ1 and θ2 are smaller than those in the first oblique airflow control mode. Conversely, the inclination angles θ1 and θ2 in the first oblique airflow control mode are larger than the inclination angles θ1 and θ2 in the ceiling airflow control mode. When the inclination angle θ1 is − −, the front side of the virtual surface V1 is located above the rear side of the virtual surface V1.
 別の言い方をすると、第1水平フラップ41は、室内機1の運転が停止しているときの状態から10°回動させると、天井気流制御モード時の姿勢となる。一方、第2水平フラップ51は、室内機1の運転が停止しているときの状態から15°回動させると、天井気流制御モード時の姿勢となる。 In other words, when the first horizontal flap 41 is rotated by 10 ° from the state when the operation of the indoor unit 1 is stopped, it becomes the posture in the ceiling airflow control mode. On the other hand, when the second horizontal flap 51 is rotated by 15 ° from the state when the operation of the indoor unit 1 is stopped, it takes the posture in the ceiling airflow control mode.
 <垂直気流制御モード>
 図7は、垂直気流制御モードへの移行が完了した室内機1の縦断面を模式的に示す。
<Vertical airflow control mode>
FIG. 7 schematically shows a vertical cross section of the indoor unit 1 in which the transition to the vertical airflow control mode has been completed.
 垂直気流制御モードでは、吹出口34から室内空間Rに流れる吹出空気が壁面Wに沿って下方に流れる。 In the vertical airflow control mode, the blown air flowing from the blowout port 34 to the indoor space R flows downward along the wall surface W.
 より詳しく説明すると、垂直気流制御モード時、水平面Hに対する仮想面V1の傾斜角θ1は、例えば+105°となる。一方、垂直気流制御モード時、水平面Hに対する仮想面V2の傾斜角θ2は、例えば+100°となる。 More specifically, in the vertical airflow control mode, the inclination angle θ1 of the virtual surface V1 with respect to the horizontal plane H is, for example, + 105 °. On the other hand, in the vertical airflow control mode, the inclination angle θ2 of the virtual surface V2 with respect to the horizontal plane H is, for example, + 100 °.
 別の言い方をすると、第1水平フラップ41は、室内機1の運転が停止しているときの状態から125°回動させると、垂直気流制御モード時の姿勢となる。一方、第2水平フラップ51は、室内機1の運転が停止しているときの状態から100°回動させると、垂直気流制御モード時の姿勢となる。 In other words, when the first horizontal flap 41 is rotated by 125 ° from the state when the operation of the indoor unit 1 is stopped, it becomes the posture in the vertical airflow control mode. On the other hand, when the second horizontal flap 51 is rotated by 100 ° from the state when the operation of the indoor unit 1 is stopped, it takes the posture in the vertical airflow control mode.
 <第2の斜め気流制御モード>
 図8は、第2の斜め気流制御モードへの移行が完了した室内機1の縦断面を模式的に示す。
<Second diagonal airflow control mode>
FIG. 8 schematically shows a vertical cross section of the indoor unit 1 in which the transition to the second oblique airflow control mode has been completed.
 第2の斜め気流制御モードにおいて、第1水平フラップ41と第2水平フラップ51との間隔は、吹出空気の流れの上流側よりも吹出空気の下流側の方が広くなって、吹出口34から室内空間Rに流れる吹出空気が前側の斜め下方に流れる。このとき、上記吹出空気の上下方向の広がりは、第1の斜め気流制御モード時に比べて小さくなる。 In the second oblique airflow control mode, the distance between the first horizontal flap 41 and the second horizontal flap 51 is wider on the downstream side of the blown air than on the upstream side of the blown air flow, and is from the outlet 34. The blown air flowing in the indoor space R flows diagonally downward on the front side. At this time, the vertical spread of the blown air is smaller than that in the first oblique airflow control mode.
 より詳しく説明すると、第2の斜め気流制御モード時、水平面Hに対する仮想面V1の傾斜角θ1は、例えば-5°となる。一方、垂直気流制御モード時、水平面Hに対する仮想面V2の傾斜角θ2は、例えば+45°となる。このとき、第1水平フラップ41と第2水平フラップ51との離間角度は、例えば50°となる。なお、上記離間角度は、傾斜角θ2から傾斜角θ1を引いた角度に相当する。 More specifically, in the second oblique airflow control mode, the inclination angle θ1 of the virtual surface V1 with respect to the horizontal plane H is, for example, −5 °. On the other hand, in the vertical airflow control mode, the inclination angle θ2 of the virtual surface V2 with respect to the horizontal plane H is, for example, + 45 °. At this time, the separation angle between the first horizontal flap 41 and the second horizontal flap 51 is, for example, 50 °. The separation angle corresponds to the angle obtained by subtracting the inclination angle θ1 from the inclination angle θ2.
 別の言い方をすると、第1水平フラップ41は、室内機1の運転が停止しているときの状態から15°回動させると、第2の斜め気流制御モード時の姿勢となる。一方、第2水平フラップ51は、室内機1の運転が停止しているときの状態から52.5°回動させると、第1の斜め気流制御モード時の姿勢となる。ここで、第2水平フラップ51の回動角から第1水平フラップ41の回動角を引いた角度が、第2の斜め気流制御モード時における第1水平フラップ41と第2水平フラップ51との離間角度となる。 In other words, when the first horizontal flap 41 is rotated by 15 ° from the state when the operation of the indoor unit 1 is stopped, it becomes the posture in the second oblique airflow control mode. On the other hand, when the second horizontal flap 51 is rotated by 52.5 ° from the state when the operation of the indoor unit 1 is stopped, it takes the posture in the first oblique airflow control mode. Here, the angle obtained by subtracting the rotation angle of the first horizontal flap 41 from the rotation angle of the second horizontal flap 51 is the angle between the first horizontal flap 41 and the second horizontal flap 51 in the second oblique airflow control mode. It becomes the separation angle.
 <第1水平フラップ41の構成>
 図9は、第1水平フラップ41の上翼面41cを斜めから見た図である。図10は、第1水平フラップ41の上翼面41cを正面から見た図である。図11は、第1水平フラップ41の下翼面41dを正面から見た図である。図12は、図11のXII-XII線から見た断面図である。図13は、図10のXIII-XIII線から見た断面図である。なお、図11のXII’-XII’線から見た断面図は、図12と同様の断面図になるので、図示を省略する。
<Structure of the first horizontal flap 41>
FIG. 9 is an oblique view of the upper wing surface 41c of the first horizontal flap 41. FIG. 10 is a front view of the upper wing surface 41c of the first horizontal flap 41. FIG. 11 is a front view of the lower wing surface 41d of the first horizontal flap 41. FIG. 12 is a cross-sectional view taken from the line XII-XII of FIG. FIG. 13 is a cross-sectional view seen from line XIII-XIII of FIG. Since the cross-sectional view seen from the line XII'-XII' in FIG. 11 is the same cross-sectional view as in FIG. 12, the illustration is omitted.
 図9~図13に示すように、第1水平フラップ41は、第1端部41a側の一部を除いて、第1端部41a側から第2端部41b側に近づくにしたがって厚さが薄くなるような形状を呈する。この第1水平フラップ41は、室内機1の運転停止時にケーシング本体31に対向する上翼面41cと、室内機1の運転停止時に室内空間に面する下翼面41dとを有する。 As shown in FIGS. 9 to 13, the thickness of the first horizontal flap 41 increases as it approaches from the first end 41a side to the second end 41b side, except for a part on the first end 41a side. It has a shape that makes it thinner. The first horizontal flap 41 has an upper wing surface 41c facing the casing main body 31 when the indoor unit 1 is stopped, and a lower wing surface 41d facing the indoor space when the indoor unit 1 is stopped.
 上翼面41cは、第1水平フラップ41の短手方向に湾曲して窪む湾曲面41eを含んでいる。別の言い方をすると、上記短手方向に沿って第1水平フラップ41を切ったとき、上翼面41cの断面を示す線が、下翼面41d側に凸となる湾曲線を含む。ここで、第1水平フラップ41の短手方向は、第1水平フラップ41の長手方向と第1水平フラップ41の厚さ方向とに直交する方向に相当する。 The upper wing surface 41c includes a curved surface 41e that is curved and recessed in the lateral direction of the first horizontal flap 41. In other words, when the first horizontal flap 41 is cut along the lateral direction, the line showing the cross section of the upper wing surface 41c includes a curved line that is convex toward the lower wing surface 41d. Here, the lateral direction of the first horizontal flap 41 corresponds to a direction orthogonal to the longitudinal direction of the first horizontal flap 41 and the thickness direction of the first horizontal flap 41.
 下翼面41dは、第1水平フラップ41の短手方向に湾曲して膨らむ湾曲面41fを含んでいる。別の言い方をすると、上記短手方向に沿って第1水平フラップ41を切ったとき、下翼面41dの断面を示す線が、上翼面41cとは反対側に凸となる湾曲線を含む。 The lower wing surface 41d includes a curved surface 41f that curves and swells in the lateral direction of the first horizontal flap 41. In other words, when the first horizontal flap 41 is cut along the lateral direction, the line showing the cross section of the lower wing surface 41d includes a curved line that is convex on the side opposite to the upper wing surface 41c. ..
 また、上翼面41cの湾曲面41eの曲率半径は、第1水平フラップ41の下翼面41dの湾曲面41fの曲率半径よりも小さくなるように設定されている。 Further, the radius of curvature of the curved surface 41e of the upper wing surface 41c is set to be smaller than the radius of curvature of the curved surface 41f of the lower wing surface 41d of the first horizontal flap 41.
 また、湾曲面41e,41fは、第1水平フラップ41の長手方向の一端から第1水平フラップ41の長手方向の他端に渡って設けられている。 Further, the curved surfaces 41e and 41f are provided from one end of the first horizontal flap 41 in the longitudinal direction to the other end of the first horizontal flap 41 in the longitudinal direction.
 <第2水平フラップ51の構成>
 図14は、第2水平フラップ51の上翼面51cを斜めから見た図である。図15は、第2水平フラップ51の上翼面51cを正面から見た図である。図16は、第2水平フラップ51の下翼面51dを正面から見た図である。図17は、図16のXVII-XVII線から見た断面図である。図18は、図16のXVIII-XVIII線から見た断面図である。なお、図16のXV’-XV’線から見た断面図は、図17と同様の断面図になるので、図示を省略する。
<Structure of the second horizontal flap 51>
FIG. 14 is an oblique view of the upper wing surface 51c of the second horizontal flap 51. FIG. 15 is a front view of the upper wing surface 51c of the second horizontal flap 51. FIG. 16 is a front view of the lower wing surface 51d of the second horizontal flap 51. FIG. 17 is a cross-sectional view taken from the line XVII-XVII of FIG. FIG. 18 is a cross-sectional view taken from the line XVIII-XVIII of FIG. Since the cross-sectional view seen from the XV'-XV' line of FIG. 16 is the same cross-sectional view as that of FIG. 17, the illustration is omitted.
 図14~図18に示すように、第2水平フラップ51は、室内機1の運転停止時に吹出流路37に面する上翼面51cと、室内機1の運転停止時に室内空間に面する下翼面51dとを有する。また、第2水平フラップ51において、第1,第2端部51a,51bの厚さよりも、第1端部51aと第2端部51bとの間の中央部の厚さが厚くなっている。 As shown in FIGS. 14 to 18, the second horizontal flap 51 has an upper wing surface 51c facing the blowout flow path 37 when the indoor unit 1 is stopped, and a lower surface facing the indoor space when the indoor unit 1 is stopped. It has a blade surface 51d. Further, in the second horizontal flap 51, the thickness of the central portion between the first end portion 51a and the second end portion 51b is thicker than the thickness of the first and second end portions 51a and 51b.
 上翼面51cは、第2水平フラップ51の短手方向に湾曲して膨らむ湾曲面51eを含んでいる。別の言い方をすると、上記短手方向に沿って第2水平フラップ51を切ったとき、上翼面51cの断面を示す線が、下翼面51dとは反対側に凸となる湾曲線を含む。ここで、第2水平フラップ51の短手方向は、第2水平フラップ51の長手方向と第2水平フラップ51の厚さ方向とに直交する方向に相当する。 The upper wing surface 51c includes a curved surface 51e that curves and swells in the lateral direction of the second horizontal flap 51. In other words, when the second horizontal flap 51 is cut along the lateral direction, the line showing the cross section of the upper wing surface 51c includes a curved line that is convex on the side opposite to the lower wing surface 51d. .. Here, the lateral direction of the second horizontal flap 51 corresponds to a direction orthogonal to the longitudinal direction of the second horizontal flap 51 and the thickness direction of the second horizontal flap 51.
 また、上翼面51cには、第2端部51b側に位置する凹部51hが設けられている。室内機1の運転が停止しているときに、取付部38の一部が凹部51h内に入って、第2水平フラップ51が取付部38に干渉しないようになっている。 Further, the upper wing surface 51c is provided with a recess 51h located on the second end portion 51b side. When the operation of the indoor unit 1 is stopped, a part of the mounting portion 38 enters the recess 51h so that the second horizontal flap 51 does not interfere with the mounting portion 38.
 下翼面51dは、第2水平フラップ51の短手方向に湾曲して窪む第1湾曲面51fと、第2水平フラップ51の短手方向に湾曲して膨らむ第2湾曲面51gとを含んでいる。別の言い方をすると、上記短手方向に沿って第2水平フラップ51を切ったとき、下翼面51dの断面を示す線が、上翼面51c側に凸となる湾曲線と、上翼面51cとは反対側に凸となる湾曲線とを含む。 The lower wing surface 51d includes a first curved surface 51f that is curved and recessed in the lateral direction of the second horizontal flap 51, and a second curved surface 51g that is curved and swells in the lateral direction of the second horizontal flap 51. I'm out. In other words, when the second horizontal flap 51 is cut along the lateral direction, the line showing the cross section of the lower wing surface 51d is a curved line that is convex toward the upper wing surface 51c, and the upper wing surface. Includes a curved line that is convex on the opposite side of 51c.
 第1湾曲面51fは、下翼面51dの第2端部51b側に設けられ、第2水平フラップ51の厚さ方向において湾曲面51eと重なる。 The first curved surface 51f is provided on the second end portion 51b side of the lower wing surface 51d, and overlaps the curved surface 51e in the thickness direction of the second horizontal flap 51.
 第2湾曲面51gは、下翼面51dの第1端部51a側に設けられ、第1湾曲面51fに連なっている。 The second curved surface 51g is provided on the first end portion 51a side of the lower wing surface 51d and is connected to the first curved surface 51f.
 また、上翼面51cの湾曲面51eの曲率半径(例えば396mm以上)は、下翼面51dの第1湾曲面51fの曲率半径(例えば1800mm以上)よりも小さくなるように設定されている。別の言い方をすれば、第2水平フラップ51の下翼面51dの第1湾曲面51fの曲率半径は、第2水平フラップ51の上翼面51cの湾曲面51eの曲率半径の4倍~5倍の範囲内に設定されている。 Further, the radius of curvature of the curved surface 51e of the upper wing surface 51c (for example, 396 mm or more) is set to be smaller than the radius of curvature of the first curved surface 51f of the lower wing surface 51d (for example, 1800 mm or more). In other words, the radius of curvature of the first curved surface 51f of the lower wing surface 51d of the second horizontal flap 51 is 4 to 5 times the radius of curvature of the curved surface 51e of the upper wing surface 51c of the second horizontal flap 51. It is set within the double range.
 また、第2水平フラップ51の長手方向の両端部以外は、短手方向に沿った断面の形状が同様となるように形成されている。逆にいえば、第2水平フラップ51の長手方向の両端部は、第2水平フラップ51の他の部分とは異なる断面形状を呈する。 Further, the shape of the cross section along the lateral direction is the same except for both ends in the longitudinal direction of the second horizontal flap 51. Conversely, both ends of the second horizontal flap 51 in the longitudinal direction exhibit a cross-sectional shape different from that of the other parts of the second horizontal flap 51.
 より詳しく説明すると、第2水平フラップ51の長手方向の両端部における上翼面51cは、湾曲面51eを含んでいない。また、第2水平フラップ51の長手方向の両端部における下翼面51dは、第1,第2湾曲面51f,51gを含んでいない。なお、図14では、湾曲面51eが形成されている領域を点線で示している。 More specifically, the upper wing surfaces 51c at both ends of the second horizontal flap 51 in the longitudinal direction do not include the curved surface 51e. Further, the lower wing surfaces 51d at both ends of the second horizontal flap 51 in the longitudinal direction do not include the first and second curved surfaces 51f and 51g. In FIG. 14, the region where the curved surface 51e is formed is shown by a dotted line.
 上記構成の空気調和機によれば、第1気流制御モードの運転(例えば暖房運転)が行われると、第1水平フラップ41と第2水平フラップ51との間隔は、吹出空気の流れの上流側よりも吹出空気の流れの下流側の方が広くなり、吹出空気は壁面W側とは反対側の斜め下方に流れる。このとき、上記吹出空気の一部が第1水平フラップ41の下翼面41dに沿って流れる。この第1水平フラップ41の下翼面41dが、凸面となる湾曲面41fを含むことにより、第1水平フラップ41の下翼面41dにおけるコアンダ効果が高まる。その結果、上記吹出空気の一部が、第1水平フラップ41の下翼面41dに強く引き寄せられて、第1水平フラップ41の下翼面41dに沿って流れる。一方、第2水平フラップ51の上翼面51cが、凸面となる湾曲面51eを含むことにより、第2水平フラップ51の上翼面51cにおけるコアンダ効果が高まる。その結果、上記吹出空気の他の一部が、第2水平フラップ51の上翼面51cに強く引き寄せられる。 According to the air conditioner having the above configuration, when the operation in the first air flow control mode (for example, heating operation) is performed, the distance between the first horizontal flap 41 and the second horizontal flap 51 is on the upstream side of the flow of blown air. The downstream side of the flow of the blown air is wider than that, and the blown air flows diagonally downward on the side opposite to the wall surface W side. At this time, a part of the blown air flows along the lower wing surface 41d of the first horizontal flap 41. Since the lower wing surface 41d of the first horizontal flap 41 includes the curved surface 41f which is a convex surface, the Coanda effect on the lower wing surface 41d of the first horizontal flap 41 is enhanced. As a result, a part of the blown air is strongly attracted to the lower wing surface 41d of the first horizontal flap 41 and flows along the lower wing surface 41d of the first horizontal flap 41. On the other hand, when the upper wing surface 51c of the second horizontal flap 51 includes the curved surface 51e which is a convex surface, the Coanda effect on the upper wing surface 51c of the second horizontal flap 51 is enhanced. As a result, the other part of the blown air is strongly attracted to the upper wing surface 51c of the second horizontal flap 51.
 このように、上記吹出空気の一部が第1水平フラップ41の下翼面41dに強く引き寄せられる一方、吹出空気の他の一部が第2水平フラップ51の下翼面51dに強く引き寄せられるので、第1,第2水平フラップ41,51から気流が剥離するのを抑制することができる。 In this way, a part of the blown air is strongly attracted to the lower wing surface 41d of the first horizontal flap 41, while another part of the blown air is strongly attracted to the lower wing surface 51d of the second horizontal flap 51. , It is possible to suppress the air flow from separating from the first and second horizontal flaps 41 and 51.
 上記第1気流制御モードの運転が行われると、第1水平フラップ41と第2水平フラップ51との上流側の間隔よりも第1水平フラップ41と第2水平フラップ51との下流側の間隔が広がり、吹出空気が前側の斜め下方に流れるので、室内空間Rに面する例えば床面の広範囲に吹出空気を当てることができる。 When the operation in the first airflow control mode is performed, the distance between the first horizontal flap 41 and the second horizontal flap 51 on the downstream side is larger than the distance between the first horizontal flap 41 and the second horizontal flap 51 on the upstream side. Since it spreads and the blown air flows diagonally downward on the front side, the blown air can be applied to a wide range of the floor surface facing the indoor space R, for example.
 第1水平フラップ41と第2水平フラップ51との吹出空気の流れの上流側の間隔よりも、第1水平フラップ41と第2水平フラップ51との吹出空気の流れの下流側の間隔を大きく広げた状態で、第1,第2水平フラップ41,51から気流が剥離するのを抑制できるので、吹出空気を上下方向に大きく広げることができる。 The distance between the first horizontal flap 41 and the second horizontal flap 51 on the downstream side of the flow of blown air is much wider than the distance between the first horizontal flap 41 and the second horizontal flap 51 on the upstream side of the flow of blown air. In this state, it is possible to prevent the airflow from separating from the first and second horizontal flaps 41 and 51, so that the blown air can be greatly expanded in the vertical direction.
 また、吹出流路37からの空気の一部は、吹出口34の前縁部と第1水平フラップ41の第1端部41aとの間を通過して、ケーシング本体31と第1水平フラップ41の上翼面41cとの間を流れる。このとき、第1水平フラップ41の上翼面41cが、凹面となる湾曲面41eを含むことにより、第1水平フラップ41の上翼面41cにおけるコアンダ効果が高まる。その結果、上記空気の一部が、第1水平フラップ41の上翼面41cに引き寄せられて、第1水平フラップ41の上翼面41cに沿って流れる。したがって、例えば、吹出流路37からの空気が冷気であると、第1水平フラップ41の上翼面41cを冷気で覆えて、第1水平フラップ41の上翼面41cにおける露付きを抑制することができる。 Further, a part of the air from the outlet flow path 37 passes between the front edge portion of the outlet 34 and the first end portion 41a of the first horizontal flap 41, and passes between the casing main body 31 and the first horizontal flap 41. It flows between the upper wing surface 41c. At this time, since the upper wing surface 41c of the first horizontal flap 41 includes the curved surface 41e which is a concave surface, the Coanda effect on the upper wing surface 41c of the first horizontal flap 41 is enhanced. As a result, a part of the air is attracted to the upper wing surface 41c of the first horizontal flap 41 and flows along the upper wing surface 41c of the first horizontal flap 41. Therefore, for example, when the air from the blowout channel 37 is cold air, the upper wing surface 41c of the first horizontal flap 41 is covered with cold air to suppress dew exposure on the upper wing surface 41c of the first horizontal flap 41. Can be done.
 また、吹出流路37からの空気の他の一部は、吹出口34の後縁部と第2水平フラップ51の第1端部51aとの間を通過して、壁面Wと第2水平フラップ51の下翼面51dとの間を流れる。このとき、第2水平フラップ51の下翼面51dが、凹面となる湾曲面51eを含むことにより、第2水平フラップ51の下翼面51dにおけるコアンダ効果が高まる。その結果、上記空気の他の一部が、第2水平フラップ51の下翼面51dに引き寄せられて、第2水平フラップ51の下翼面51dに沿って流れる。したがって、例えば、吹出流路37からの空気が冷気である場合、第2水平フラップ51の下翼面41dを冷気で覆えて、第2水平フラップ51の下翼面51dにおける露付きを抑制することができる。 Further, another part of the air from the outlet flow path 37 passes between the trailing edge portion of the outlet 34 and the first end portion 51a of the second horizontal flap 51, and passes between the wall surface W and the second horizontal flap 51. It flows between the lower wing surface 51d of 51. At this time, since the lower wing surface 51d of the second horizontal flap 51 includes the curved surface 51e which is a concave surface, the Coanda effect on the lower wing surface 51d of the second horizontal flap 51 is enhanced. As a result, the other part of the air is attracted to the lower wing surface 51d of the second horizontal flap 51 and flows along the lower wing surface 51d of the second horizontal flap 51. Therefore, for example, when the air from the blowout channel 37 is cold air, the lower wing surface 41d of the second horizontal flap 51 is covered with cold air to suppress dew exposure on the lower wing surface 51d of the second horizontal flap 51. Can be done.
 また、第1の斜め気流制御モード時、第1水平フラップ41と第2水平フラップ51との離間角度を例えば60°とするので、吹出空気を上下方向に確実に広げることができる。 Further, in the first oblique airflow control mode, the separation angle between the first horizontal flap 41 and the second horizontal flap 51 is set to, for example, 60 °, so that the blown air can be reliably expanded in the vertical direction.
 また、上記第1の斜め気流制御モード時、天井気流制御モード時に比べて、水平面Hに対する仮想面V1,V2の傾斜角θ1,θ2が大きくなるので、吹出空気を前側の斜め下方に確実に流すことができる。 Further, since the inclination angles θ1 and θ2 of the virtual surfaces V1 and V2 with respect to the horizontal plane H are larger in the first oblique airflow control mode and the ceiling airflow control mode, the blown air is surely flowed diagonally downward on the front side. be able to.
 また、上記第1の斜め気流制御モード時、第1垂直フラップ群G1の各垂直フラップ61は、吹出空気の流れの下流側の端部が左側に近づくように回動する一方、第2垂直フラップ群G2の各垂直フラップ61は、吹出空気の流れの下流側の端部が右側に近づくように回動する。これにより、第1,第2垂直フラップ群G1,G2の複数の垂直フラップ61で形成する空気流路の実質的な形状が、吹出空気の流れの上流側から下流側に向かって末広がり形状となる。その結果、上記吹出空気を左右方向に広げることができる。 Further, in the first oblique airflow control mode, each vertical flap 61 of the first vertical flap group G1 rotates so that the downstream end of the blown air flow approaches the left side, while the second vertical flap Each vertical flap 61 of group G2 rotates so that the downstream end of the blown air flow approaches the right side. As a result, the substantially shape of the air flow path formed by the plurality of vertical flaps 61 of the first and second vertical flap groups G1 and G2 becomes a divergent shape from the upstream side to the downstream side of the blown air flow. .. As a result, the blown air can be expanded in the left-right direction.
 また、上記空気調和機は室内機1を備えることにより、第1,第2水平フラップ41,51から気流が剥離するのを抑制することができるので、吹出空気を上下方向に広げて、空調ムラを低減することができる。 Further, since the air conditioner is provided with the indoor unit 1 to prevent the airflow from separating from the first and second horizontal flaps 41 and 51, the blown air is spread in the vertical direction to cause uneven air conditioning. Can be reduced.
 図19は、上記第1の斜め気流制御モード時の室内機1の吹出空気の上下方向の広がりをシミュレーションした結果を示す。 FIG. 19 shows the result of simulating the vertical spread of the blown air of the indoor unit 1 in the first oblique airflow control mode.
 室内機1の吹出空気は、上下方向に広がり、ユーザの上半身から下半身に渡って当たる。したがって、室内機1が暖房運転を行った場合、図20に示すように、ユーザの室内機1側の表面において温度が最も高い領域(図20の一番濃い色の領域)を大きくすることができる。 The blown air of the indoor unit 1 spreads in the vertical direction and hits from the upper body to the lower body of the user. Therefore, when the indoor unit 1 performs the heating operation, as shown in FIG. 20, it is possible to increase the region having the highest temperature (the darkest colored region in FIG. 20) on the surface of the user on the indoor unit 1 side. it can.
 図21は、比較例の室内機1001の吹出空気の上下方向の広がりをシミュレーションした結果を示す。 FIG. 21 shows the result of simulating the vertical spread of the blown air of the indoor unit 1001 of the comparative example.
 比較例の室内機1001は、従来の第1,第2水平フラップを備えている点だけが、室内機1と異なる。また、水平面に対する従来の第1,第2水平フラップの傾斜角は、図19のシミュレーションのときと同様に設定されている。また、従来の第1,第2水平フラップの下翼面,上翼面は、それぞれ、湾曲面を含まず、平坦面となっている。 The indoor unit 1001 of the comparative example is different from the indoor unit 1 only in that it is provided with the conventional first and second horizontal flaps. Further, the inclination angles of the conventional first and second horizontal flaps with respect to the horizontal plane are set in the same manner as in the simulation of FIG. Further, the lower wing surface and the upper wing surface of the conventional first and second horizontal flaps do not include curved surfaces and are flat surfaces.
 このような室内機1001の吹出空気は、上下方向に広がらず、ユーザの下半身にしか当たらない。したがって、室内機1001が暖房運転を行った場合、図22に示すように、ユーザの室内機1001側の表面において温度が最も高い領域(図22の一番濃い色の領域)は大きくならない。 The blown air of such an indoor unit 1001 does not spread in the vertical direction and hits only the lower body of the user. Therefore, when the indoor unit 1001 performs the heating operation, as shown in FIG. 22, the region having the highest temperature (the darkest colored region in FIG. 22) on the surface of the user's indoor unit 1001 side does not become large.
 図23は、室内機1の吹出空気の上下左右の広がりのイメージ図である。 FIG. 23 is an image diagram of the spread of the blown air of the indoor unit 1 in the vertical and horizontal directions.
 室内機1の前方1mの場所では、吹出空気が、例えば、縦1.4m×横1.2mの領域を通過する。このとき、上記場所に置いた椅子に人が座った場合、図24の実線で示すように、人の各部に当たる吹出空気の風速のムラを低減することができる。しかも、人の各部に当たる吹出空気の風速を1m/s以下にすることができる。一方、比較例の室内機1001の運転だと、図24の点線で示すように、人の各部に当たる吹出空気の風速のムラが大きくなっている。また、人の膝下にあたる吹出空気の風速は1m/s前後にできても、人の胸元にあたる吹出空気の風速は2m/sを超えてしまっている。 At a location 1 m in front of the indoor unit 1, the blown air passes through an area of, for example, 1.4 m in length × 1.2 m in width. At this time, when a person sits on a chair placed at the above-mentioned place, it is possible to reduce the unevenness of the wind speed of the blown air that hits each part of the person, as shown by the solid line in FIG. Moreover, the wind speed of the blown air that hits each part of the person can be set to 1 m / s or less. On the other hand, in the operation of the indoor unit 1001 of the comparative example, as shown by the dotted line in FIG. 24, the unevenness of the wind speed of the blown air that hits each part of the person is large. Further, even if the wind speed of the blown air below the knee of a person can be around 1 m / s, the wind speed of the blown air hitting the chest of a person exceeds 2 m / s.
 このように、室内機1は、比較例の室内機1001に比べ、ユーザの各部に優しい風を略均等に送ることができる。 In this way, the indoor unit 1 can send a gentle wind to each part of the user substantially evenly as compared with the indoor unit 1001 of the comparative example.
 図25は、プレ斜め気流制御モードへの移行が完了した室内機1の縦断面を模式的に示す。なお、プレ斜め気流制御モードは、第2気流制御モードの一例である。 FIG. 25 schematically shows a vertical cross section of the indoor unit 1 in which the transition to the pre-diagonal airflow control mode has been completed. The pre-diagonal airflow control mode is an example of the second airflow control mode.
 プレ斜め気流制御モードの運転が行われた後、第1の斜め気流制御モードの運転が行われる。 After the operation of the pre-diagonal airflow control mode is performed, the operation of the first oblique airflow control mode is performed.
 より詳しく説明すると、第1の斜め気流制御モードにおける第1水平フラップ41と第2水平フラップ51との所定の離間角度(例えば60°)よりも第1水平フラップ41と第2水平フラップ51との離間角度を狭くして、吹出口34から室内空間Rへ吹出空気を吹き出すプレ斜め気流制御モードの運転(例えば、暖房運転、冷房運転など)を行う。このプレ斜め気流制御モードの運転後、この運転に引き続いて、第1の斜め気流制御モードへの移行が行われる。 More specifically, the first horizontal flap 41 and the second horizontal flap 51 are located at a predetermined separation angle (for example, 60 °) between the first horizontal flap 41 and the second horizontal flap 51 in the first oblique airflow control mode. The pre-diagonal airflow control mode operation (for example, heating operation, cooling operation, etc.) is performed in which the separation angle is narrowed and the blown air is blown from the blowout port 34 to the indoor space R. After the operation of the pre-diagonal airflow control mode, the transition to the first oblique airflow control mode is performed following this operation.
 プレ斜め気流制御モードの運転への移行が完了したとき、第1水平フラップ41と第2水平フラップ51との離間角度は、例えば30°になる。 When the transition to the operation of the pre-diagonal airflow control mode is completed, the separation angle between the first horizontal flap 41 and the second horizontal flap 51 becomes, for example, 30 °.
 また、プレ斜め気流制御モードの運転において、室内ファン10は、第1の斜め気流制御モードのときよりも回転数が高くなる。例えば、第1の斜め気流制御モード時における室内ファン10の回転数が中間風量(弱風量より大きく、かつ、強風量よりも小さい風量)に対応する場合、プレ斜め気流制御モード時における室内ファン10の回転数は、強風量に対応するように設定される。 Further, in the operation of the pre-diagonal airflow control mode, the rotation speed of the indoor fan 10 is higher than that in the first oblique airflow control mode. For example, when the rotation speed of the indoor fan 10 in the first oblique airflow control mode corresponds to the intermediate airflow (air volume larger than the weak airflow and smaller than the strong airflow), the indoor fan 10 in the pre-diagonal airflow control mode The number of revolutions of is set to correspond to the amount of strong air.
 また、プレ斜め気流制御モードの運転開始から第1の斜め気流制御モードの運転への移行が完了するまでの期間において、第1水平フラップ41と第2水平フラップ51との離間角度を狭くする動作が完了した後は、送風ファンの回転数を下げて、第1の斜め気流制御モードの運転を行うときの回転数にする。 Further, in the period from the start of the operation of the pre-diagonal airflow control mode to the completion of the transition to the operation of the first oblique airflow control mode, the operation of narrowing the separation angle between the first horizontal flap 41 and the second horizontal flap 51. After the completion of the above, the rotation speed of the blower fan is lowered to the rotation speed at which the operation of the first oblique airflow control mode is performed.
 また、第1,第2水平フラップ41,51を図25の姿勢にするとき、第1,第2水平フラップ41,51の両方を回動させる。 Further, when the first and second horizontal flaps 41 and 51 are in the posture shown in FIG. 25, both the first and second horizontal flaps 41 and 51 are rotated.
 また、プレ斜め気流制御モードの運転における第1,第2水平フラップ41,51は、プレ斜め気流制御モードの運転から第1の斜め気流制御モードの運転に移行するときの第1,第2水平フラップ41,51に比べて、速い速度で回動する。 Further, the first and second horizontal flaps 41 and 51 in the operation of the pre-diagonal airflow control mode are the first and second horizontal flaps when shifting from the operation of the pre-diagonal airflow control mode to the operation of the first oblique airflow control mode. It rotates at a higher speed than the flaps 41 and 51.
 なお、図25の二点鎖線は、第1の斜め気流制御モードへの移行が完了したときの第2水平フラップ51の姿勢を示す。 The alternate long and short dash line in FIG. 25 shows the posture of the second horizontal flap 51 when the transition to the first oblique airflow control mode is completed.
 <第1の斜め気流制御モードへの移行>
 以下、図26のフローチャートを用いて、プレ斜め気流制御モードの運転から第1の斜め気流制御モードの運転への移行について説明する。なお、上記移行は、制御装置100によって制御される。
<Transition to the first oblique airflow control mode>
Hereinafter, the transition from the operation of the pre-diagonal airflow control mode to the operation of the first oblique airflow control mode will be described with reference to the flowchart of FIG. 26. The transition is controlled by the control device 100.
 例えば、室内機1が図2の運転停止状態で、ユーザがリモコンを操作することで、第1の斜め気流制御モードの暖房運転を選択すると、上記移行のための処理が開始し、ステップS1で、プレ斜め気流制御モードの暖房運転を開始する。 For example, when the indoor unit 1 is in the stopped state of FIG. 2 and the user operates the remote controller to select the heating operation of the first oblique airflow control mode, the process for the above transition is started, and in step S1. , Start the heating operation in the pre-diagonal airflow control mode.
 より詳しく言うと、プレ斜め気流制御モードの暖房運転が開始すると、暖かい吹出空気が吹出口34から室内空間Rへ吹き出されるようにするため、圧縮機11、室内ファン10などが駆動する。 More specifically, when the heating operation in the pre-diagonal airflow control mode is started, the compressor 11, the indoor fan 10, etc. are driven so that warm blown air is blown out from the outlet 34 to the indoor space R.
 次に、ステップS2で、室内ファン10の回転数を高回転数に設定する。この高回転数は、第1の斜め気流制御モードの暖房運転時における室内ファン10の設定回転よりも高い。 Next, in step S2, the rotation speed of the indoor fan 10 is set to a high rotation speed. This high rotation speed is higher than the set rotation speed of the indoor fan 10 during the heating operation in the first oblique airflow control mode.
 次に、ステップS3で、第1水平フラップ41を、室内機1の運転停止状態から反時計回りに25°回動させる一方、第2水平フラップ51を、室内機1の運転停止状態から反時計回りに55°回動させる。これにより、第1水平フラップ41と第2水平フラップ51との離間角度を、第1の斜め気流制御モードのときよりも狭くする。要するに、第1,第2水平フラップ41,51を図5の姿勢から図25の姿勢にする。 Next, in step S3, the first horizontal flap 41 is rotated by 25 ° counterclockwise from the stopped state of the indoor unit 1, while the second horizontal flap 51 is counterclockwise from the stopped state of the indoor unit 1. Rotate 55 ° around. As a result, the separation angle between the first horizontal flap 41 and the second horizontal flap 51 is made narrower than in the first oblique airflow control mode. In short, the first and second horizontal flaps 41 and 51 are changed from the posture of FIG. 5 to the posture of FIG. 25.
 また、第1,第2水平フラップ41,51を回動させるとき、第1,第2水平フラップ41,51の回動速度は、プレ斜め気流制御モードの暖房運転から第1の斜め気流制御モードの運転に移行するときの第1,第2水平フラップ41,51の回動速度よりも速い。 Further, when the first and second horizontal flaps 41 and 51 are rotated, the rotation speeds of the first and second horizontal flaps 41 and 51 are changed from the heating operation in the pre-diagonal airflow control mode to the first oblique airflow control mode. It is faster than the rotation speed of the first and second horizontal flaps 41 and 51 when shifting to the operation of.
 次に、ステップS4で、第1,第2水平フラップ41,51が図5の姿勢になってから所定時間(例えば1秒間)経過したか否かを判定する。このステップS4は、第1,第2水平フラップ41,51が図5の姿勢になってから所定時間経過したと判定されるまで繰り返される。 Next, in step S4, it is determined whether or not a predetermined time (for example, 1 second) has elapsed since the first and second horizontal flaps 41 and 51 were in the posture shown in FIG. This step S4 is repeated until it is determined that a predetermined time has elapsed since the first and second horizontal flaps 41 and 51 were in the posture shown in FIG.
 次に、ステップS5で、室内ファン10の回転数を設定回転に下げる。 Next, in step S5, the rotation speed of the indoor fan 10 is reduced to the set rotation speed.
 次に、ステップS6で、第1の斜め気流制御モードの暖房運転を開始する。 Next, in step S6, the heating operation in the first oblique airflow control mode is started.
 最後に、ステップS7で、第1水平フラップ41の姿勢は維持したまま、第2水平フラップ51を図25の姿勢から、反時計回りに15°回動させる。これにより、第1,第2水平フラップ41,51は、図25の姿勢になる。 Finally, in step S7, the second horizontal flap 51 is rotated by 15 ° counterclockwise from the posture shown in FIG. 25 while maintaining the posture of the first horizontal flap 41. As a result, the first and second horizontal flaps 41 and 51 are in the posture shown in FIG. 25.
 このように、第1の斜め気流制御モードの暖房運転を行う場合、第1の斜め気流制御モードにおける第1水平フラップ41と第2水平フラップ51との所定の離間角度よりも第1水平フラップ41と第2水平フラップ51との離間角度を狭くして吹出空気を吹き出すプレ斜め気流制御モードの暖房運転を行ってから、プレ斜め気流制御モードの暖房運転に引き続いて第1の斜め気流制御モードの暖房運転に移行する。これにより、第1水平フラップ41の下翼面41dと第2水平フラップ51の上翼面51cとにおけるコアンダ効果を維持しながら、プレ斜め気流制御モードから第1の斜め気流制御モードに移行する。その結果、上記第1の斜め気流制御モードへの移行後において、吹出空気の一部を第1水平フラップ41の下翼面41dに沿って流せると共に、吹出空気の他の一部を第2水平フラップ51の上翼面51cに沿って流せる。したがって、第1水平フラップ41の下翼面41dと第2水平フラップ51の上翼面51cの間を流れる吹出空気の各部において、風速の差が小さくなる。したがって、上記吹出空気が例えば広範囲の領域に向けて吹き出したとき、安定した広範囲への吹出空気の供給を実現することができる。 In this way, when the heating operation in the first oblique airflow control mode is performed, the first horizontal flap 41 is larger than the predetermined separation angle between the first horizontal flap 41 and the second horizontal flap 51 in the first oblique airflow control mode. After performing the heating operation in the pre-diagonal airflow control mode in which the separation angle between the and the second horizontal flap 51 is narrowed to blow out the blown air, the heating operation in the pre-diagonal airflow control mode is followed by the first oblique airflow control mode. Shift to heating operation. As a result, the pre-oblique airflow control mode shifts to the first oblique airflow control mode while maintaining the Coanda effect on the lower wing surface 41d of the first horizontal flap 41 and the upper wing surface 51c of the second horizontal flap 51. As a result, after the transition to the first oblique airflow control mode, a part of the blown air can flow along the lower blade surface 41d of the first horizontal flap 41, and the other part of the blown air can flow in the second horizontal. It can flow along the upper wing surface 51c of the flap 51. Therefore, the difference in wind speed becomes small in each part of the blown air flowing between the lower wing surface 41d of the first horizontal flap 41 and the upper wing surface 51c of the second horizontal flap 51. Therefore, when the blown air is blown out toward, for example, a wide range, a stable supply of the blown air to a wide range can be realized.
 要するに、プレ斜め気流制御モードの暖房運転に引き続いて第1の斜め気流制御モードの暖房運転に移行することにより、第1の斜め気流制御モード時に安定したコアンダ風を形成することができる。 In short, by shifting to the heating operation of the first diagonal airflow control mode following the heating operation of the pre-diagonal airflow control mode, a stable Coanda wind can be formed in the first diagonal airflow control mode.
 プレ斜め気流制御モードの暖房運転に引き続いて第1の斜め気流制御モードの暖房運転に移行すれば、広範囲への吹出空気の供給を同様に再現することもできる。 If the heating operation in the pre-diagonal airflow control mode is followed by the heating operation in the first diagonal airflow control mode, the supply of blown air to a wide range can be reproduced in the same manner.
 また、プレ斜め気流制御モードの暖房運転において、室内ファン10の回転数を第1の斜め気流制御モードのときの回転数よりも高くするので、第1水平フラップ41の下翼面41dと第2水平フラップ51の上翼面51cとのコアンダ効果を高めることができる。 Further, in the heating operation in the pre-diagonal airflow control mode, the rotation speed of the indoor fan 10 is higher than the rotation speed in the first oblique airflow control mode, so that the lower wing surfaces 41d and the second of the first horizontal flap 41 The Coanda effect with the upper wing surface 51c of the horizontal flap 51 can be enhanced.
 また、図2の姿勢から図25の姿勢にするための第2水平フラップ51の回動速度は、図25の姿勢から図5の姿勢にするための第2水平フラップ51の回動速度よりも速いので、図25の姿勢から図5の姿勢にするとき、第2水平フラップ51における気流の剥がれを抑制することができる
 また、上記空調室内機は、室内機1を備えることにより、安定した広範囲への吹出空気の供給を実現できる。
Further, the rotation speed of the second horizontal flap 51 for changing from the posture of FIG. 2 to the posture of FIG. 25 is higher than the rotation speed of the second horizontal flap 51 for changing from the posture of FIG. 25 to the posture of FIG. Since it is fast, it is possible to suppress the peeling of the airflow in the second horizontal flap 51 when changing from the posture of FIG. 25 to the posture of FIG. It is possible to realize the supply of blown air to.
 上記第1実施形態では、室内機1の運転停止状態から、プレ斜め気流制御モードの暖房運転を経て、第1の斜め気流制御モードの暖房運転に移行していたが、例えば、天井気流制御モードの暖房運転から、プレ斜め気流制御モードの暖房運転を経て、第1の斜め気流制御モードの暖房運転に移行してもよい。 In the first embodiment, the operation of the indoor unit 1 is stopped, the heating operation is performed in the pre-diagonal airflow control mode, and then the heating operation is performed in the first oblique airflow control mode. The heating operation of the above may be shifted to the heating operation of the first oblique airflow control mode through the heating operation of the pre-diagonal airflow control mode.
 要するに、本開示の一実施形態では、室内機1の運転開始の直後に、第1の斜め気流制御モードへの移行を行っていたが、他の気流制御モードを経てから、第1の斜め気流制御モードに移行してもよい。 In short, in one embodiment of the present disclosure, the transition to the first oblique airflow control mode is performed immediately after the start of operation of the indoor unit 1, but after passing through the other airflow control modes, the first oblique airflow is performed. The control mode may be entered.
 上記第1実施形態では、第1の斜め気流制御モードは、ユーザが例えばリモコンを使って選択していたが、ユーザの選択がなくても、例えば、制御装置が、床面温度センサT6の検出信号などに基づいて、第1の斜め気流制御モードの暖房運転を選択するようにしてもよい。このようにする場合、第1の斜め気流制御モードの暖房運転が自動的に選択されるので、室内機1の利便性が向上する。 In the first embodiment, the first oblique airflow control mode is selected by the user using, for example, a remote controller, but even if the user does not select, for example, the control device detects the floor surface temperature sensor T6. The heating operation in the first oblique airflow control mode may be selected based on a signal or the like. In this case, the heating operation in the first oblique airflow control mode is automatically selected, so that the convenience of the indoor unit 1 is improved.
 上記第1実施形態では、プレ斜め気流制御モードの運転は、暖房運転であったが、冷房運転、送風運転などであってもよい。 In the first embodiment, the operation in the pre-diagonal airflow control mode is a heating operation, but may be a cooling operation, a blowing operation, or the like.
 上記第1実施形態では、第1の斜め気流制御モードの運転は、暖房運転であったが、冷房運転、送風運転などであってもよい。このようにする場合、第1の斜め気流制御モードの運転は、直前のプレ斜め気流制御モードの運転と同じにしてもよい。 In the first embodiment described above, the operation in the first oblique airflow control mode is a heating operation, but may be a cooling operation, a blowing operation, or the like. In this case, the operation of the first oblique airflow control mode may be the same as the operation of the immediately preceding pre-diagonal airflow control mode.
 上記第1実施形態では、第1の斜め気流制御モードの暖房運転の直前に、プレ斜め気流制御モードの運転を行っていたが、第1の斜め気流制御モードの暖房運転の直前に、そのプレ斜め気流制御モードと同様のプレ斜め気流制御モードの運転を行ってもよい。 In the first embodiment, the pre-diagonal airflow control mode is operated immediately before the heating operation in the first oblique airflow control mode, but the pre-diagonal airflow control mode is operated immediately before the heating operation in the first oblique airflow control mode. The operation in the pre-diagonal airflow control mode similar to the oblique airflow control mode may be performed.
 上記第1実施形態では、プレ斜め気流制御モードの運転への移行が完了したときの第1,第2水平フラップ41,51は、図25の姿勢にしていたが、第1の斜め気流制御モードのときの離間角度よりも狭くなるのであれば、図25以外の姿勢にしてもよい。 In the first embodiment, the first and second horizontal flaps 41 and 51 when the transition to the operation of the pre-diagonal airflow control mode is completed are in the posture shown in FIG. 25, but the first oblique airflow control mode If it is narrower than the separation angle at the time of, the posture other than FIG. 25 may be used.
 例えば、プレ斜め気流制御モードの運転への移行が完了したときの第1,第2水平フラップ41,51は、図27の姿勢にしてもよい。このようにする場合、他の姿勢から図27の姿勢にするための第1,第2水平フラップ41,51の回動速度は、図27の姿勢から図5の姿勢にするための第1,第2水平フラップ41,51の回動速度より速くしてもよい。 For example, the first and second horizontal flaps 41 and 51 when the transition to the operation of the pre-diagonal airflow control mode is completed may be in the posture shown in FIG. 27. In this case, the rotation speeds of the first and second horizontal flaps 41, 51 for changing from the other posture to the posture shown in FIG. It may be faster than the rotation speed of the second horizontal flaps 41 and 51.
 なお、図27の二点鎖線は、第1の斜め気流制御モードへの移行が完了したときの第1,第2水平フラップ41,51の姿勢を示す。 The alternate long and short dash line in FIG. 27 shows the postures of the first and second horizontal flaps 41 and 51 when the transition to the first oblique airflow control mode is completed.
 例えば、プレ斜め気流制御モードの運転への移行が完了したときの第1,第2水平フラップ41,51は、図28の姿勢にしてもよい。このようにする場合、他の姿勢から図28の姿勢にするための第1水平フラップ41の回動速度は、図28の姿勢から図5の姿勢にするための第1水平フラップ41の回動速度より速くしてもよい。 For example, the first and second horizontal flaps 41 and 51 when the transition to the operation of the pre-diagonal airflow control mode is completed may be in the posture shown in FIG. 28. In this case, the rotation speed of the first horizontal flap 41 for changing from the other posture to the posture shown in FIG. 28 is the rotation speed of the first horizontal flap 41 for changing from the posture shown in FIG. 28 to the posture shown in FIG. It may be faster than the speed.
 なお、図28の二点鎖線は、第1の斜め気流制御モードへの移行が完了したときの第1水平フラップ41の姿勢を示す。 The alternate long and short dash line in FIG. 28 shows the posture of the first horizontal flap 41 when the transition to the first oblique airflow control mode is completed.
 上記第1実施形態では、プレ斜め気流制御モードの運転開始から第1の斜め気流制御モードの運転への移行が完了するまでの期間において、第1水平フラップ41と第2水平フラップ51との離間角度を狭くする動作が完了すると、室内ファン10の回転数を下げていたが、室内ファン10の回転数を下げずにそのまま維持するようにしてもよい。 In the first embodiment, the first horizontal flap 41 and the second horizontal flap 51 are separated from each other in the period from the start of the operation of the pre-diagonal airflow control mode to the completion of the transition to the operation of the first oblique airflow control mode. When the operation of narrowing the angle is completed, the rotation speed of the indoor fan 10 has been lowered, but the rotation speed of the indoor fan 10 may be maintained as it is without being lowered.
 上記第1実施形態では、第1,第2水平フラップ41,51を図25の姿勢にするとき、第1,第2水平フラップ41,51の両方を回動させていたが、第1,第2水平フラップ41,51の直前の姿勢が所定条件を満たせば、第1,第2水平フラップ41,51の一方だけを回動させてもよい。このようにする場合、図25の姿勢にするための第1,第2水平フラップ41,51の回動制御が簡単になる。 In the first embodiment, when the first and second horizontal flaps 41 and 51 are in the posture shown in FIG. 25, both the first and second horizontal flaps 41 and 51 are rotated, but the first and first horizontal flaps 41 and 51 are rotated. 2 If the posture immediately before the horizontal flaps 41 and 51 satisfies a predetermined condition, only one of the first and second horizontal flaps 41 and 51 may be rotated. In this case, the rotation control of the first and second horizontal flaps 41 and 51 for the posture shown in FIG. 25 becomes simple.
 ここで、上記所定条件を満たすときとしては、例えば、第1,第2水平フラップ41,51の一方が図25の姿勢になっているときがある。 Here, when the above predetermined conditions are satisfied, for example, one of the first and second horizontal flaps 41 and 51 may be in the posture shown in FIG. 25.
 また、第1,第2水平フラップ41,51の一方だけを回動させて、第1,第2水平フラップ41,51の離間角度を小さくするとき、その一方は、第1の斜め気流制御モードの運転において第1水平フラップ41と第2水平フラップ51のうち吹出空気の風向に対する角度が大きい方としてもよい。このようにする場合、上記大きい方に沿った気流が得易くなる。 Further, when only one of the first and second horizontal flaps 41 and 51 is rotated to reduce the separation angle of the first and second horizontal flaps 41 and 51, one of them is in the first oblique airflow control mode. Of the first horizontal flap 41 and the second horizontal flap 51, the one having a larger angle with respect to the wind direction of the blown air may be used. In this case, it becomes easy to obtain an air flow along the larger one.
 ここで、上記風向は、第2隔壁36の内周面の下端の接線に平行な方向(水平面に対して45°を成す方向)、かつ、室内機1から斜め下方に向かう方向である。 Here, the wind direction is a direction parallel to the tangent line of the lower end of the inner peripheral surface of the second partition wall 36 (a direction forming 45 ° with respect to the horizontal plane) and a direction diagonally downward from the indoor unit 1.
 上記第1実施形態では、空気調和機は、1台の室内機1と1台の室外機2とを備えるペア型であったが、複数台の室内機1と1台の室外機2とを備えるマルチ型にしてもよい。 In the first embodiment, the air conditioner is a pair type including one indoor unit 1 and one outdoor unit 2, but a plurality of indoor units 1 and one outdoor unit 2 are used. It may be a multi-type provided.
 上記第1実施形態において、例えば、冷房運転時、除湿運転時または暖房運転時、制御装置100が、室内温度センサT5などからの信号に基づいて、第1の斜め気流制御モード、天井気流制御モード、垂直気流制御モードおよび第2の斜め気流制御モードのうちの一つを適宜選択したり、それらのモード間の切り替えをしたりするようにしてもよい。 In the first embodiment, for example, during a cooling operation, a dehumidifying operation, or a heating operation, the control device 100 has a first oblique airflow control mode and a ceiling airflow control mode based on a signal from the room temperature sensor T5 or the like. , One of the vertical airflow control mode and the second oblique airflow control mode may be appropriately selected, or switching between these modes may be performed.
 上記第1実施形態において、例えば、冷房運転時、除湿運転時または暖房運転時、ユーザが、第1の斜め気流制御モード、天井気流制御モード、垂直気流制御モードおよび第2の斜め気流制御モードの中から所望のモードを例えばリモコンで選択できるようにしてもよい。 In the first embodiment, for example, during a cooling operation, a dehumidifying operation, or a heating operation, the user can perform a first oblique airflow control mode, a ceiling airflow control mode, a vertical airflow control mode, and a second oblique airflow control mode. A desired mode may be selected from among them, for example, with a remote controller.
 上記第1実施形態では、第1の斜め気流制御モードにおける第1水平フラップ41と第2水平フラップ51との離間角度は、60°にしていたが、60°以外にしてもよい。このようにする場合、上記離間角度は、例えば、53°~60°の範囲内に入るようにする。 In the first embodiment, the separation angle between the first horizontal flap 41 and the second horizontal flap 51 in the first oblique airflow control mode is 60 °, but it may be other than 60 °. In this case, the separation angle is set to be within the range of, for example, 53 ° to 60 °.
 上記第1実施形態では、第1の斜め気流制御モード時、複数の垂直フラップ61のうち左端に配置される垂直フラップ61と、複数の垂直フラップ61のうち右端に配置される垂直フラップ61とに関して、上流側の間隔よりも下流側の間隔が広くなっていたが、それらの間隔が略同じになるようにしてもよい。要するに、第1の斜め気流制御モード時、吹出空気の左右方向に広げるための制御が行われてもよいし、吹出空気の左右方向に広げるための制御が行われなくてもよい。 In the first embodiment, with respect to the vertical flap 61 arranged at the left end of the plurality of vertical flaps 61 and the vertical flap 61 arranged at the right end of the plurality of vertical flaps 61 in the first oblique airflow control mode. , The distance on the downstream side was wider than the distance on the upstream side, but the distance between them may be substantially the same. In short, in the first oblique airflow control mode, control for spreading the blown air in the left-right direction may be performed, or control for spreading the blown air in the left-right direction may not be performed.
 〔第2実施形態〕
 図29は、本開示の第2実施形態の空気調和機の制御ブロック図である。
[Second Embodiment]
FIG. 29 is a control block diagram of the air conditioner according to the second embodiment of the present disclosure.
 上記空気調和機の室内機は、室内空間R内の人との距離を検出する人感センサ91を備えている。制御装置200は、人感センサ91の検出結果に基づいて、第1,第2水平フラップモータ73,74を制御する。 The indoor unit of the air conditioner is provided with a motion sensor 91 that detects the distance to a person in the indoor space R. The control device 200 controls the first and second horizontal flap motors 73 and 74 based on the detection result of the motion sensor 91.
 より詳しく説明すると、垂直気流制御モード時、人感センサ91が検出した距離が所定距離(例えば1m)以下になると、制御装置200によって、垂直気流制御モードを第1気流制御モードに切り替えられる。なお、上記距離は、例えば、室内機と人との間の前後方向の距離である。 More specifically, in the vertical airflow control mode, when the distance detected by the motion sensor 91 becomes a predetermined distance (for example, 1 m) or less, the control device 200 switches the vertical airflow control mode to the first airflow control mode. The above distance is, for example, the distance between the indoor unit and a person in the front-rear direction.
 上記構成の空気調和機では、上記第1実施形態と同様の作用効果を奏する上、垂直気流制御モードは、人感センサ91が検出した距離が所定距離以下になると、第1気流制御モードに切り替わるので、室内空間R内の人に室内機の吹出空気をタイミング良く直接当てることができる。 The air conditioner having the above configuration has the same effect as that of the first embodiment, and the vertical airflow control mode is switched to the first airflow control mode when the distance detected by the motion sensor 91 is equal to or less than a predetermined distance. Therefore, the blown air of the indoor unit can be directly applied to the person in the indoor space R at the right time.
 本開示の具体的な実施の形態について説明したが、本開示は上記第1,第2実施形態およびその変形例に限定されるものではなく、本開示の範囲内で種々変更して実施することができる。例えば、上記第1,第2実施形態で記載した内容の一部を削除または置換したものを、本開示の一実施形態としてもよい。あるいは、上記第1実施形態の変形例と第2実施形態とを組み合わせたものを、本開示の一実施形態としてもよい。 Although the specific embodiments of the present disclosure have been described, the present disclosure is not limited to the first and second embodiments and modifications thereof, and various modifications are made within the scope of the present disclosure. Can be done. For example, a part of the contents described in the first and second embodiments may be deleted or replaced as one embodiment of the present disclosure. Alternatively, a combination of the modified example of the first embodiment and the second embodiment may be used as one embodiment of the present disclosure.
 1 室内機
 2 室外機
 10 室内ファン
 11 圧縮機
 12 四路切換弁
 13 室外熱交換器
 14 電動膨張弁
 15 室内熱交換器
 16 アキュムレータ
 20 室外ファン
 30 ケーシング
 34 吹出口
 41 第1水平フラップ
 41c,51c 上翼面
 41d,51d 下翼面
 41e,41f,51e 湾曲面
 51 第2水平フラップ
 51f 第1湾曲面
 51g 第2湾曲面
 61 垂直フラップ
 73 第1水平フラップモータ
 74 第2水平フラップモータ
 83 第1垂直フラップ群モータ
 84 第2垂直フラップ群モータ
 91 人感センサ
 100,200 制御装置
 G1 第1垂直フラップ群
 G2 第2垂直フラップ群
 L1,L2 連絡配管
 RC 冷媒回路
 T1 室外熱交換器温度センサ
 T2 外気温度センサ
 T3 蒸発温度センサ
 T4 室内熱交換器温度センサ
 T5 室内温度センサ
 T6 床面温度センサ
 θ1,θ2 傾斜角
1 Indoor unit 2 Outdoor unit 10 Indoor fan 11 Compressor 12 Four-way switching valve 13 Outdoor heat exchanger 14 Electric expansion valve 15 Indoor heat exchanger 16 Accumulator 20 Outdoor fan 30 Casing 34 Outlet 41 1st horizontal flap 41c, 51c Blade surface 41d, 51d Lower blade surface 41e, 41f, 51e Curved surface 51 Second horizontal flap 51f First curved surface 51g Second curved surface 61 Vertical flap 73 First horizontal flap motor 74 Second horizontal flap motor 83 First vertical flap Group Motor 84 2nd Vertical Flap Group Motor 91 Human Sensor 100,200 Control Device G1 1st Vertical Flap Group G2 2nd Vertical Flap Group L1, L2 Connecting Piping RC Refrigerator Circuit T1 Outdoor Heat Exchanger Temperature Sensor T2 Outside Air Temperature Sensor T3 Evaporation temperature sensor T4 Indoor heat exchanger temperature sensor T5 Indoor temperature sensor T6 Floor surface temperature sensor θ1, θ2 Tilt angle

Claims (6)

  1.  送風ファン(10)からの空気が吹き出す吹出口(34)が形成されたケーシング(30)と、
     上記吹出口(34)からの吹出空気の上下方向の風向を制御する第1水平羽根(41)と、
     上記第1水平羽根(41)を駆動する第1駆動部(73)と、
     上記第1水平羽根(41)よりも後側に配置され、上記吹出空気の上下方向の風向を制御する第2水平羽根(51)と、
     上記第2水平羽根(51)を駆動する第2駆動部(74)と、
     上記送風ファン(10)と上記第1駆動部(73)および上記第2駆動部(74)を制御する制御装置(100,200)とを備え、
     上記制御装置(100,200)は、
     上記第1水平羽根(41)と上記第2水平羽根(51)との上記吹出空気の流れの上流側の間隔よりも下流側の間隔を広げて、上記吹出空気の一部を上記第1水平羽根(41)の下翼面に沿って流すと共に、上記吹出空気の他の一部を上記第2水平羽根(51)の上翼面に沿って流す第1気流制御モードの運転を行う場合、
     上記第1気流制御モードにおける上記第1水平羽根(41)と上記第2水平羽根(51)との所定の離間角度よりも上記第1水平羽根(41)と上記第2水平羽根(51)との離間角度を狭くして上記吹出空気を吹き出す第2気流制御モードの運転を行ってから、上記第2気流制御モードの運転に引き続いて上記第1気流制御モードの運転に移行することを特徴とする空調室内機(1)。
    A casing (30) in which an air outlet (34) for blowing air from the blower fan (10) is formed, and a casing (30).
    The first horizontal blade (41) that controls the vertical wind direction of the blown air from the outlet (34), and
    The first drive unit (73) that drives the first horizontal blade (41) and
    The second horizontal blade (51), which is arranged behind the first horizontal blade (41) and controls the vertical wind direction of the blown air,
    The second drive unit (74) that drives the second horizontal blade (51) and
    A control device (100, 200) for controlling the blower fan (10), the first drive unit (73), and the second drive unit (74) is provided.
    The control device (100, 200) is
    A part of the blown air is divided into the first horizontal by widening the distance between the first horizontal blade (41) and the second horizontal blade (51) on the downstream side of the upstream side of the flow of the blown air. When operating in the first airflow control mode in which the other part of the blown air is flowed along the upper blade surface of the second horizontal blade (51) while flowing along the lower blade surface of the blade (41).
    The first horizontal blade (41) and the second horizontal blade (51) are located at a predetermined separation angle between the first horizontal blade (41) and the second horizontal blade (51) in the first airflow control mode. The feature is that after the operation of the second airflow control mode in which the blown air is blown out is performed by narrowing the separation angle, the operation of the second airflow control mode is followed by the operation of the first airflow control mode. Airflow indoor unit (1).
  2.  請求項1に記載の空調室内機(1)において、
     上記第2気流制御モードの運転において、上記送風ファン(10)の回転数を上記第1気流制御モードのときの回転数よりも高くすることを特徴とする空調室内機(1)。
    In the air-conditioning indoor unit (1) according to claim 1,
    An air-conditioning indoor unit (1) characterized in that, in the operation of the second airflow control mode, the rotation speed of the blower fan (10) is higher than the rotation speed of the first airflow control mode.
  3.  請求項1または2に記載の空調室内機(1)において、
     上記第1気流制御モードの運転前に行われる上記第2気流制御モードの運転において、上記第1水平羽根(41)または上記第2水平羽根(51)の一方を駆動することにより、上記第1水平羽根(41)と上記第2水平羽根(51)との離間角度を狭くすることを特徴とする空調室内機(1)。
    In the air-conditioning indoor unit (1) according to claim 1 or 2.
    In the operation of the second airflow control mode performed before the operation of the first airflow control mode, the first horizontal blade (41) or the second horizontal blade (51) is driven by driving the first horizontal blade. An air-conditioning indoor unit (1) characterized in that the separation angle between the horizontal blade (41) and the second horizontal blade (51) is narrowed.
  4.  請求項1から3までのいずれか一項に記載の空調室内機(1)において、
     上記第1気流制御モードの運転において上記第1水平羽根(41)と上記第2水平羽根(51)のうち上記吹出空気の風向に対する角度が大きい方を上記第2気流制御モードにおいて駆動して、上記第1水平羽根(41)と上記第2水平羽根(51)との離間角度を狭くすることを特徴とする空調室内機(1)。
    In the air-conditioning indoor unit (1) according to any one of claims 1 to 3,
    In the operation of the first air flow control mode, the one of the first horizontal blade (41) and the second horizontal blade (51) having a larger angle with respect to the wind direction of the blown air is driven in the second air flow control mode. An air-conditioning indoor unit (1) characterized in that the separation angle between the first horizontal blade (41) and the second horizontal blade (51) is narrowed.
  5.  請求項1から3までのいずれか一項に記載の空調室内機(1)において、
     上記第2気流制御モードの運転における上記第1水平羽根(41)および/または上記第2水平羽根(51)の回動は、上記第2気流制御モードの運転から上記第1気流制御モードの運転に移行するときの上記第1水平羽根(41)および/または上記第2水平羽根(51)の回動よりも速いことを特徴とする空調室内機(1)。
    In the air-conditioning indoor unit (1) according to any one of claims 1 to 3,
    The rotation of the first horizontal blade (41) and / or the second horizontal blade (51) in the operation of the second airflow control mode is from the operation of the second airflow control mode to the operation of the first airflow control mode. The air-conditioning indoor unit (1), which is faster than the rotation of the first horizontal blade (41) and / or the second horizontal blade (51) at the time of transition to.
  6.  請求項1から5までのいずれか一項に記載の空調室内機(1)と、
     上記空調室内機(1)に冷媒配管(L1,L2)を介して接続された空調室外機(2)と
    を備えることを特徴とする空気調和機。
    The air-conditioning indoor unit (1) according to any one of claims 1 to 5 and the air-conditioning indoor unit (1).
    An air conditioner including an air conditioner outdoor unit (2) connected to the air conditioner indoor unit (1) via refrigerant pipes (L1, L2).
PCT/JP2020/033794 2019-09-17 2020-09-07 Air-conditioning indoor unit and air conditioner WO2021054180A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20866280.9A EP4015930B1 (en) 2019-09-17 2020-09-07 Air-conditioning indoor unit and air conditioner
AU2020350294A AU2020350294B2 (en) 2019-09-17 2020-09-07 Air-conditioning indoor unit and air conditioner
CN202080064049.7A CN114364921B (en) 2019-09-17 2020-09-07 Air conditioner indoor unit and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019168494A JP6897735B2 (en) 2019-09-17 2019-09-17 Air conditioning indoor unit and air conditioner
JP2019-168494 2019-09-17

Publications (1)

Publication Number Publication Date
WO2021054180A1 true WO2021054180A1 (en) 2021-03-25

Family

ID=74878178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033794 WO2021054180A1 (en) 2019-09-17 2020-09-07 Air-conditioning indoor unit and air conditioner

Country Status (5)

Country Link
EP (1) EP4015930B1 (en)
JP (1) JP6897735B2 (en)
CN (1) CN114364921B (en)
AU (1) AU2020350294B2 (en)
WO (1) WO2021054180A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041529A (en) * 1999-08-03 2001-02-16 Hitachi Ltd Air conditioner
JP2013096637A (en) * 2011-10-31 2013-05-20 Daikin Industries Ltd Air-conditioning indoor unit
JP2014055746A (en) * 2012-09-13 2014-03-27 Daikin Ind Ltd Air conditioner indoor unit
JP2017067401A (en) * 2015-09-30 2017-04-06 ダイキン工業株式会社 Air conditioner
JP2017125678A (en) 2017-04-27 2017-07-20 ダイキン工業株式会社 Air-conditioning indoor machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5408228B2 (en) * 2011-10-31 2014-02-05 ダイキン工業株式会社 Air conditioning indoor unit
JP5536158B2 (en) * 2011-12-28 2014-07-02 ダイキン工業株式会社 Air conditioning indoor unit
JP5403046B2 (en) * 2011-12-28 2014-01-29 ダイキン工業株式会社 Air conditioning indoor unit
JP6296034B2 (en) * 2015-09-30 2018-03-20 ダイキン工業株式会社 air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041529A (en) * 1999-08-03 2001-02-16 Hitachi Ltd Air conditioner
JP2013096637A (en) * 2011-10-31 2013-05-20 Daikin Industries Ltd Air-conditioning indoor unit
JP2014055746A (en) * 2012-09-13 2014-03-27 Daikin Ind Ltd Air conditioner indoor unit
JP2017067401A (en) * 2015-09-30 2017-04-06 ダイキン工業株式会社 Air conditioner
JP2017125678A (en) 2017-04-27 2017-07-20 ダイキン工業株式会社 Air-conditioning indoor machine

Also Published As

Publication number Publication date
EP4015930B1 (en) 2023-12-27
CN114364921B (en) 2023-10-24
CN114364921A (en) 2022-04-15
JP6897735B2 (en) 2021-07-07
JP2021046958A (en) 2021-03-25
EP4015930A4 (en) 2022-10-05
EP4015930A1 (en) 2022-06-22
AU2020350294B2 (en) 2023-08-10
AU2020350294A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
JP2008101894A (en) Air conditioner and control method therefor
JP2003074962A (en) Air conditioner
JP5507231B2 (en) Air conditioner
JPH1047731A (en) Apparatus and method of controlling discharged air stream for air conditioner
JP2004012060A (en) Indoor unit for air conditioner and air conditioner
JP2807449B2 (en) Discharge device for air conditioner and control method thereof
JP2009210257A (en) Air conditioner
JP4170676B2 (en) Vane control device for ceiling type air conditioner and control method therefor
JP4548979B2 (en) Air conditioner
WO2021054180A1 (en) Air-conditioning indoor unit and air conditioner
JP6849032B2 (en) Air conditioning indoor unit and air conditioner
JP5874909B2 (en) Air conditioner
JP7082293B2 (en) Air conditioning indoor unit and air conditioner
JP5963048B2 (en) Air conditioner
JP2985755B2 (en) Wall-mounted air conditioner
JP2021081186A (en) Air-conditioning indoor unit and air conditioner
JP2020060329A (en) Air conditioner
JP5874908B2 (en) Air conditioner
JPH11248230A (en) Fan-controller of air-conditioner
JP3976437B2 (en) Air conditioner
JP4302962B2 (en) Air conditioner
JPH10185280A (en) Air conditioner
JPH04124552A (en) Air conditioner
JPH1163645A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020866280

Country of ref document: EP

Effective date: 20220315

ENP Entry into the national phase

Ref document number: 2020350294

Country of ref document: AU

Date of ref document: 20200907

Kind code of ref document: A