WO2021053994A1 - Heat dissipation member and heat dissipation system - Google Patents

Heat dissipation member and heat dissipation system Download PDF

Info

Publication number
WO2021053994A1
WO2021053994A1 PCT/JP2020/030379 JP2020030379W WO2021053994A1 WO 2021053994 A1 WO2021053994 A1 WO 2021053994A1 JP 2020030379 W JP2020030379 W JP 2020030379W WO 2021053994 A1 WO2021053994 A1 WO 2021053994A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat radiating
radiating member
outside
heat insulating
Prior art date
Application number
PCT/JP2020/030379
Other languages
French (fr)
Japanese (ja)
Inventor
淳 安部井
アウン 太田
中村 真一郎
浩 茶木田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021053994A1 publication Critical patent/WO2021053994A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • This disclosure relates to a heat radiating member and a heat radiating system.
  • Patent Document 1 Conventionally, there is known a technique of suppressing a temperature rise of a structure by applying a sheet capable of not only reflecting sunlight but also radiating heat to the outside of the structure (for example, Patent Documents). 1).
  • the sheet described in Patent Document 1 has a structure having a reflecting layer that reflects sunlight and a radiating layer that radiates heat.
  • the present inventors have studied using the sheet described in Patent Document 1 as a heat radiating member for the roof of an automobile to suppress a temperature rise in the vehicle interior. According to this study, it was found that when the airflow passes over the surface of the seat due to the running wind when the vehicle is running, the roof of the automobile is warmed by the convective heat transfer. That is, it was found that even if the sheet described in Patent Document 1 is simply applied to the roof of an automobile, it is difficult to obtain the effect of suppressing the temperature rise in the vehicle interior. Since this problem is caused not only by the running wind but also by the natural wind, it is not limited to the automobile, but may occur in other structures other than the automobile.
  • An object of the present disclosure is to provide a heat radiating member and a heat radiating system capable of suppressing a temperature rise of a structure.
  • the heat dissipation member is A reflector that reflects sunlight and A radiation part that is placed on the opposite side of the structure with respect to the reflection part and radiates the heat of the structure to the outside, It is provided on the opposite side of the structure with the radiant part as a reference, and is provided with a heat insulating part that suppresses convective heat transfer due to the movement of the external fluid flowing outside.
  • the heat insulating portion is capable of transmitting electromagnetic waves.
  • the heat insulating part can suppress the temperature rise of the structure due to convective heat transfer due to the movement of the external fluid.
  • the heat insulating portion has a structure capable of transmitting electromagnetic waves, the heat of the structure can be radiated to the outside by the radiating portion while the sunlight is reflected by the reflecting portion.
  • the heat dissipation system Exterior members located on the outside of the structure With a heat radiating member applied to the outside of the exterior member,
  • the heat dissipation member is A reflector that reflects sunlight and A radiation unit that is located on the opposite side of the heat dissipation member with respect to the reflection unit and radiates the heat of the structure to the outside, It has a heat insulating part that is provided on the side opposite to the heat radiating member with the radiating part as a reference and suppresses heat radiating due to the movement of the external fluid flowing outside.
  • the heat insulating portion is capable of transmitting electromagnetic waves.
  • the heat insulating part can suppress the temperature rise of the structure due to convective heat transfer due to the movement of the external fluid.
  • the heat insulating portion has a structure capable of transmitting electromagnetic waves, the heat of the structure can be radiated to the outside by the radiating portion while the sunlight is reflected by the reflecting portion. Therefore, the temperature rise of the structure can be suppressed as compared with the conventional system.
  • the heat dissipation system Exterior members located on the outside of the structure With a heat radiating member applied to the outside of the exterior member,
  • the heat dissipation member is A reflector that reflects sunlight and It is arranged on the opposite side of the heat radiating member with respect to the reflecting part, and has a radiating part that radiates the heat of the structure to the outside.
  • the exterior member is provided with a guide that guides the condensed water generated in the exterior member to the water storage device.
  • the temperature rise of the exterior member is suppressed by arranging the heat dissipation member on the outside of the exterior member.
  • the temperature of the exterior member is lowered, so that dew condensation is likely to occur on the exterior member. Therefore, by providing the exterior member with a guide for guiding the dew condensation water to the water storage device, water can be generated by utilizing the dew condensation generated on the exterior member.
  • FIG. 5 is a schematic side view showing a part of a vehicle in which a heat radiating member is applied to a roof-mounted air conditioner according to a third modification of the first embodiment.
  • FIG. 5 is a schematic perspective view showing a vinyl house to which a heat radiating member is applied, which is a first modification of the tenth embodiment.
  • FIG. 5 is a schematic perspective view of a house in which a heat radiating member is applied to a photovoltaic power generation panel, which is a second modification of the tenth embodiment.
  • the automobile 10 has a body 11 that forms an outer shell that is exposed to sunlight.
  • the body 11 includes a bonnet 111 that covers an accommodating portion of a traveling drive device and a roof member 112 that constitutes a ceiling portion of the automobile 10.
  • the roof member 112 is a member that is directly exposed to sunlight like the bonnet 111 and the like, and becomes particularly hot in the hot sun such as in summer. When the temperature of the roof member 112 rises, the heat of the roof member 112 moves into the vehicle interior, so that the temperature inside the vehicle interior rises and the comfort inside the vehicle interior is impaired. Further, since the roof member 112 has fewer elements that cause ventilation resistance than other parts, convective heat transfer due to traveling wind is likely to occur.
  • the heat radiating member 20 is applied to the outside of the roof member 112 of the automobile 10 to suppress the temperature rise in the vehicle interior. Unlike the air conditioner, the heat radiating member 20 does not require power or the like, and even if the heat radiating member 20 is applied to the automobile 10, the consumption of fuel or electric power is hardly increased.
  • the automobile 10 corresponds to the structure of the present disclosure
  • the roof member 112 of the automobile 10 corresponds to the exterior member forming the outer shell of the structure of the present disclosure.
  • the heat radiating member 20 is configured to be able to radiate the heat of the roof member 112 of the automobile 10 to the outside while reflecting sunlight.
  • the heat radiating member 20 is configured to be capable of suppressing the roof member 112 of the automobile 10 from being warmed by the convective heat transfer caused by the natural wind or the traveling wind during the traveling of the automobile 10.
  • the heat radiating member 20 is configured as a planar sheet having a thickness of a predetermined value (for example, 10 mm) or less.
  • the form of the heat radiating member 20 is not limited to the sheet, and may be a film or coating thinner than the sheet.
  • the heat radiating member 20 suppresses convective heat transfer due to the movement of air outside the vehicle interior, the reflecting portion 21 that reflects sunlight, the radiating portion 22 that radiates the heat of the roof member 112 to the outside.
  • the heat insulating portion 23 is provided.
  • the air outside the vehicle interior corresponds to the external fluid flowing outside.
  • the reflecting unit 21 is configured as a film that reflects sunlight.
  • the reflective portion 21 is made of a metal film containing silver, aluminum, gold, or copper.
  • the reflective portion 21 has, for example, an average thickness in the range of 30 nm to 1000 nm.
  • the reflective portion 21 is not limited to the film, and may be made of, for example, a metal sheet having an average thickness in the range of 100 nm to 1 ⁇ m. Further, the reflective portion 21 may be made of any other material as long as it can reflect sunlight, and is not limited to metal.
  • the reflecting portion 21 is positioned on the outside of the heat radiating member 20 so that it can come into contact with the roof member 112. That is, the reflecting portion 21 is positioned near the roof member 112 in the heat radiating member 20.
  • the radiation unit 22 is configured as a film that radiates heat from the inside to the outside.
  • the radiation unit 22 is configured as a planar sheet containing a polymer 221 that transmits sunlight and radiates infrared rays to the outside as a component.
  • the radiating portion 22 may be made of a composite material using the polymer 221 as a base material.
  • polystyrene examples include polyolefin, polymethylmethacrylate, polymethylpentene, polyethylene, polystyrene and the like.
  • the polymer 221 is not limited to these, and may be, for example, polyethylene terephthalate, polycarbonate, polytetrafluoroethylene, or a combination thereof.
  • non-polymer particles 222 are added to the polymer 221 formed in a sheet shape. That is, the radiating portion 22 contains the non-polymer particles 222 dispersed in the polymer 221 in addition to the polymer 221.
  • the non-polymer particles 222 increase heat radiation to the outside by a Mie scattering effect, absorption resonance, or the like.
  • the non-polymer particles 222 are metal or semiconductor oxide materials such as silicon dioxide (SiO2), calcium carbonate (CaCO3), silicon carbide (SiC), zinc oxide (ZnO), titanium dioxide (TiO2), and alumina (TiO2). Consists of. If it is possible to increase the heat radiation to the outside, the radiating unit 22 may have a polymer having characteristics different from that of the polymer 221 added in place of the non-polymer particles 222, for example.
  • the radiating portion 22 has an average thickness larger than the average particle size of the non-polymer particles 222.
  • the radiating portion 22 has, for example, an average thickness in the range of 10 ⁇ m to 3 mm.
  • the radiation unit 22 is not limited to the film, but may be configured as a sheet.
  • the radiating portion 22 is arranged on the opposite side of the roof member 112 with respect to the reflecting portion 21.
  • the radiating portion 22 is laminated on the reflecting portion 21. That is, the reflecting portion 21 and the radiating portion 22 are configured as a laminated body St.
  • the reflecting portion 21 is arranged between the radiating portion 22 and the roof member 112.
  • the heat insulating portion 23 suppresses heat transfer due to convective heat transfer due to natural wind or running wind.
  • the heat insulating portion 23 is configured to include a heat insulating body 231 made of resin having heat insulating properties.
  • the heat insulating body 231 is configured as a planar sheet or film.
  • the heat insulating body 231 is made of a transparent sheet or film so as to be able to transmit electromagnetic waves of radiative cooling.
  • the heat insulating body 231 may be made of, for example, a translucent sheet or film as long as it can transmit electromagnetic waves.
  • the thickness Ti of the heat insulating portion 23 as a whole is larger than the thickness Tr of the reflecting portion 21 and the thickness Tp of the radiating portion 22. It is desirable that the thickness Ti of the heat insulating portion 23 is larger than the thickness Tst of the laminated body St of the reflecting portion 21 and the radiating portion 22 so that sufficient thermal resistance can be secured.
  • the heat insulating portion 23 is positioned on the outside of the heat radiating member 20 so as to be exposed to natural wind and running wind. That is, the heat insulating portion 23 is arranged on the side opposite to the roof member 112 with respect to the radiating portion 22.
  • the radiating portion 22 is arranged between the heat insulating portion 23 and the reflecting portion 21.
  • the heat radiating member 20 can be manufactured by, for example, a roll-to-roll method. That is, the heat radiating member 20 is obtained by laminating each of the reflecting portion 21, the radiating portion 22, and the heat insulating portion 23 wound in a roll shape in this order, and then winding the heat radiating member 20 on the roll again.
  • the heat radiating member 20 may be manufactured by a method other than the roll-to-roll method.
  • FIG. 4 is a schematic view of a heat radiating sheet CE as a comparative example of the heat radiating member 20 of the present embodiment.
  • the heat dissipation sheet CE of the comparative example is configured as a laminated body in which the radiation layer PL and the reflection layer RL are laminated.
  • the heat radiating sheet CE of the comparative example does not have a configuration corresponding to the heat insulating portion 23 of the heat radiating member 20 of the present embodiment.
  • the heat radiating sheet CE of the comparative example reflects sunlight by the reflective layer RL as shown by the arrow RF in FIG. 4, and the roof member 112 by the radiant layer PL by utilizing radiative cooling as shown by the arrow HD in FIG. Radiates the heat of the roof to the outside.
  • the temperature rise of the roof member 112 due to sunlight is suppressed, and the roof member 112 is cooled by radiative cooling.
  • the heat radiating member 20 of the present embodiment has a heat insulating portion 23 as shown in FIG. Therefore, the heat radiating member 20 can suppress the temperature rise of the roof member 112 due to the convective heat transfer accompanying the traveling wind by the heat insulating portion 23.
  • the heat insulating portion 23 has a structure capable of transmitting electromagnetic waves, the reflecting portion 21 reflects sunlight as shown by the arrow RF in FIG. 5, and is indicated by the arrow HD in FIG. As described above, the heat of the roof member 112 can be radiated to the outside by the radiating portion 22.
  • the heat insulating portion 23 is arranged between the radiating portion 22 and the structure.
  • the radiating portion 22 and the structure are thermally separated by the heat insulating portion 23, and the heat of the structure is externalized by the radiating portion 22. It will not be possible to radiate to.
  • the heat insulating portion 23 is provided on the side opposite to the roof member 112 which is a structure with the radiating portion 22 as a reference. Therefore, the heat insulating portion 23 can suppress the convective heat transfer due to the traveling wind, and the radiating portion 22 can radiate the heat of the roof member 112 to the outside.
  • the heat insulating portion 23 includes a heat insulating body 231 made of resin having heat insulating properties. According to this, it is possible to realize a structure capable of transmitting electromagnetic waves while suppressing convective heat transfer due to running wind.
  • the thickness Ti of the heat insulating portion 23 is larger than the thickness Tp of the radiating portion 22. According to this, the heat of the roof member 112 can be radiated to the outside by the radiating portion 22, and the convective heat transfer due to the traveling wind can be sufficiently suppressed.
  • the heat radiating member 20 of the present embodiment is suitable for a moving body including the automobile 10. That is, if the heat radiating member 20 is applied to the automobile 10, the heat insulating portion 23 can suppress the convective heat transfer and the radiating portion 22 can radiate the heat of the automobile 10 to the outside.
  • the heat radiating member 20 is applied to the roof member 112 of the automobile 10, but the application target of the heat radiating member 20 is not limited to this.
  • the heat radiating member 20 may be applied to the roof antenna 12, which is one of the mounted objects mounted on the automobile 10.
  • the roof antenna 12 is an antenna mounted on the roof member 112 of the automobile 10.
  • the heat radiating member 20 can be applied to the exterior cover 121 exposed to the outside in the roof antenna 12, for example, as shown by the dot pattern in FIG.
  • the heat radiating member 20 may be applied to the in-vehicle camera 13 which is one of the mounted objects in the automobile 10.
  • the in-vehicle camera 13 is a camera mounted near the windshield W of the automobile 10.
  • the heat radiating member 20 is applied to the periphery of the imaging unit 130 of the exterior cover 131 of the vehicle-mounted camera 13, as shown by the dot pattern in FIG. 9, for example.
  • the heat radiating member 20 may be applied to the roof-mounted air conditioner 14 mounted on the roof member 112 of the automobile 10.
  • the air conditioner 14 is a device that air-conditions the interior of the vehicle.
  • the heat radiating member 20 is applied to the exterior cover 141 of the air conditioner 14, for example, as shown by the dot pattern in FIG. According to this, the load of the air conditioner 14 can be reduced.
  • the heat radiating member 20 applied to the automobile 10 is illustrated, but the application target of the heat radiating member 20 is not limited to this.
  • the heat radiating member 20 can be widely applied to moving bodies such as bicycles, trains, airplanes, and ships other than automobiles 10.
  • the heat radiating member 20 includes a gas layer 234 in which the heat insulating portion 23 is set between the external fluid and the radiating portion 22.
  • the heat insulating portion 23 includes a gas layer 234 interposed between the pair of heat insulating bodies 232 and 233 and the pair of heat insulating bodies 232 and 233.
  • the pair of heat insulating bodies 232 and 233 are composed of a resin film or sheet.
  • the thicknesses Ti1 and Ti2 of the pair of heat insulating bodies 232 and 233 are sufficiently smaller than the thickness Ti3 of the gas layer 234.
  • the gas layer 234 is formed between the pair of heat insulating bodies 232 and 233 as, for example, an air-filled air layer or a evacuated vacuum layer. As described above, by including the gas layer 234 having a low thermal conductivity, it is possible to sufficiently secure the heat insulating property of the heat radiating member 20.
  • the heat radiation member 20 has a thickness Ti as a whole larger than the thickness Tr of the reflection portion 21 and the thickness Tp of the radiation portion 22.
  • the heat radiating member 20 of the present embodiment can obtain the same effect as that of the first embodiment from the configuration common to or equal to that of the first embodiment.
  • the heat radiating member 20 of the present embodiment includes a gas layer 234 in the heat insulating portion 23.
  • the gas layer 234 composed of a gas having a lower thermal conductivity than the solid sufficiently suppresses convective heat transfer due to the movement of the external fluid as compared with the one in which the heat insulating portion 23 is composed only of the solid, or as a whole. The thickness of the gas can be reduced.
  • the gas layer 234 formed between the pair of heat insulating bodies 232 and 233 is illustrated, but the heat insulating portion 23 is not limited to this.
  • a gas layer 234 may be formed between the heat insulating body 232 and the radiating portion 22.
  • the heat insulating body 233 can be omitted, the thickness of the heat insulating portion 23 as a whole can be suppressed.
  • the heat radiating member 20 includes a heat storage unit 24 for accumulating heat in addition to the reflecting unit 21, the radiating unit 22, and the heat insulating unit 23.
  • the heat storage unit 24 accumulates cold heat by being cooled and solidified by radiative cooling.
  • the heat storage unit 24 is composed of, for example, a film or a sheet containing paraffin or hydrate as a cold storage material so that cold heat can be stored.
  • the heat storage unit 24 is provided on the opposite side of the heat insulating unit 23 with the radiation unit 22 as a reference.
  • the heat storage unit 24 is provided on the side opposite to the radiation unit 22 with reference to the reflection unit 21.
  • the heat storage unit 24 is arranged between the reflection unit 21 and the roof member 112 so as to be in thermal contact with the roof member 112. Further, the thickness Ts of the heat storage unit 24 is larger than the thickness Tr of the reflection unit 21 and the thickness Tp of the radiation unit 22 so that the cold storage material can be easily filled.
  • the heat radiating member 20 of the present embodiment can obtain the same effect as that of the first embodiment from the configuration common to or equal to that of the first embodiment.
  • the heat radiating member 20 when sunlight does not act on the heat radiating member 20 such as at night, heat absorption by sunlight is suppressed as compared with daytime when sunlight acts, so that heat dissipation to the outside becomes remarkable. , The temperature of the heat radiating member 20 tends to decrease. Therefore, if the heat storage unit 24 is added to the heat radiating member 20, for example, cold heat can be stored in the heat storage unit 24 under environmental conditions in which the amount of heat absorbed from the outside is reduced. According to this, the cold heat accumulated in the heat storage unit 24 can suppress the temperature rise of the roof member 112 under the environmental condition in which the amount of heat absorbed from the outside increases.
  • the heat storage portion 24 is arranged on the opposite side of the heat insulating portion 23 with the reflection portion 21 as a reference. According to this, since the temperature rise of the heat storage unit 24 due to the heat of sunlight is suppressed, the temperature rise of the roof member 112 under the environmental condition in which the amount of heat absorbed from the outside increases can be sufficiently suppressed.
  • the heat radiating member 20 is not limited to this.
  • the heat radiating member 20 may have a configuration in which the heat storage unit 24 is added to the one described in the second embodiment.
  • the heat storage unit 24 is arranged between the reflection unit 21 and the roof member 112, but the arrangement form of the heat storage unit 24 is not limited to this. As shown in FIG. 14, the heat storage unit 24 may be arranged on the opposite side of the reflection unit 21 with respect to, for example, the roof member 112. In this case, in the heat radiating member 20, the heat storage portion 24 is formed separately from the reflection portion 21, the radiating portion 22, the heat insulating portion 23, and the like. Although not shown, the heat storage unit 24 may be arranged between the reflection unit 21 and the radiation unit 22, for example.
  • the heat radiating member 20 includes a reflection preventing portion 25 and a protective portion 26 in addition to the reflecting portion 21, the radiating portion 22, and the heat insulating portion 23.
  • the antireflection unit 25 is configured as an antireflection film that allows sunlight to pass through without reflecting sunlight.
  • the antireflection portion 25 is provided on the opposite side of the reflection portion 21 with the radiation portion 22 as a reference. Specifically, the antireflection portion 25 is arranged between the radiation portion 22 and the heat insulating portion 23.
  • the protective portion 26 is intended for waterproofing, protection of the radiating portion 22 from ultraviolet rays, and the like, and is made of a film having waterproof properties and capable of blocking ultraviolet rays.
  • the protection unit 26 is provided on the opposite side of the reflection unit 21 with the radiation unit 22 as a reference. Specifically, the protection unit 26 is arranged between the radiation unit 22 and the reflection prevention unit 25.
  • the heat radiating member 20 of the present embodiment can obtain the same effect as that of the first embodiment from the configuration common to or equal to that of the first embodiment.
  • the heat radiating member 20 described in the first embodiment is illustrated by adding the antireflection unit 25 and the protective unit 26, but the heat radiating member 20 is not limited to this.
  • the heat radiating member 20 may have a configuration in which an antireflection unit 25 and a protection unit 26 are added to those described in the second and third embodiments.
  • the heat radiating member 20 includes a protective portion 26 and a barrier portion 27 in addition to the reflecting portion 21, the radiating portion 22, and the heat insulating portion 23.
  • the protection unit 26 is configured in the same manner as that described in the fourth embodiment.
  • the barrier portion 27 is provided to protect the reflective portion 21 from corrosion due to permeation of gas or water molecules and to improve the metal adhesion of the reflective portion 21 to the radiating portion 22.
  • the barrier portion 27 is arranged between the radiation portion 22 and the reflection portion 21.
  • the radiation unit 22 of the present embodiment is arranged between the protection unit 26 and the barrier unit 27 so as to be sandwiched between the protection unit 26 and the barrier unit 27. That is, in the radiating portion 22, both sides of the heat radiating member 20 in the thickness direction are protected by the protective portion 26 and the barrier portion 27.
  • the heat radiating member 20 of the present embodiment can obtain the same effect as that of the first embodiment from the configuration common to or equal to that of the first embodiment.
  • the heat radiating member 20 described in the first embodiment to which the protective portion 26 and the barrier portion 27 are added is illustrated, but the heat radiating member 20 is not limited to this.
  • the heat radiating member 20 may have a configuration in which a protective portion 26 and a barrier portion 27 are added to those described in the second and third embodiments.
  • the heat radiating member 20 includes a reflection prevention unit 25, a protection unit 26, and a barrier unit 27 in addition to the reflection unit 21, the radiation unit 22, and the heat insulation unit 23.
  • the antireflection unit 25 and the protection unit 26 are configured in the same manner as those described in the fourth embodiment.
  • the antireflection portion 25 and the protection portion 26 are arranged between the radiation portion 22 and the heat insulating portion 23.
  • the barrier portion 27 is configured in the same manner as that described in the fifth embodiment.
  • the barrier portion 27 is arranged between the radiation portion 22 and the reflection portion 21.
  • the heat radiating member 20 of the present embodiment can obtain the same effect as that of the first embodiment from the configuration common to or equal to that of the first embodiment.
  • the heat radiating member 20 described in the first embodiment is illustrated by adding the protective portion 26 and the barrier portion 27, but the heat radiating member 20 is not limited to this.
  • the heat radiating member 20 may have a configuration in which an antireflection portion 25, a protection portion 26, and a barrier portion 27 are added to those described in the second and third embodiments.
  • the heat radiating member 20 includes a heat conductive portion 28 in addition to the reflecting portion 21, the radiating portion 22, the heat insulating portion 23, the antireflection portion 25, the protective portion 26, and the barrier portion 27.
  • the heat conductive portion 28 promotes the transfer of heat from the roof member 112 to the radiating portion 22.
  • the heat conductive portion 28 is composed of, for example, a heat conductive sheet having a lower thermal conductivity than the roof member 112.
  • the heat conductive portion 28 is arranged between the reflective portion 21 and the roof member 112.
  • the heat radiating member 20 of the present embodiment can obtain the same effect as that of the sixth embodiment from the same configuration or the same configuration as that of the sixth embodiment.
  • the heat radiating member 20 is not limited to this.
  • the heat radiating member 20 may have a configuration in which the heat conductive portion 28 is added to those described in the second to fifth embodiments.
  • the present embodiment applies the heat radiating member 20 of the present disclosure to the upper lid portion 31 of the cooler box 30, which is one of the portable devices, instead of the moving body.
  • the cooler box 30 is, for example, a portable device installed on a bicycle BY and transported to a destination by a user.
  • the cooler box 30 may be installed on a moving body other than the bicycle BY, or may be directly held by the user.
  • the cooler box 30 is a hollow box body, and an upper lid portion 31 for taking in and out the contents is provided on the upper portion thereof.
  • the cooler box 30 corresponds to the structure
  • the upper lid portion 31 corresponds to the exterior member forming the outer shell.
  • the upper lid portion 31 is more easily exposed to sunlight than other parts. Further, since the upper lid portion 31 has fewer elements that provide ventilation resistance than other portions, convective heat transfer due to natural wind outside the box is likely to occur. Therefore, the heat radiating member 20 of the present disclosure is installed on the upper lid portion 31 of the cooler box 30.
  • the heat radiating member 20 may be installed in a portion other than the upper lid portion 31 as long as it is a portion of the cooler box 30 exposed to sunlight.
  • the laminated body St of the reflecting portion 21 and the radiating portion 22 and the heat insulating portion 23 are separately formed, and the heat insulating portion 23 is configured to be detachable from the laminated body St.
  • the heat radiating member 20 can attach the heat insulating portion 23 to the laminated body St, or remove the heat insulating portion 23 from the laminated body St to which the heat insulating portion 23 is attached.
  • the heat radiating member 20 of the present embodiment can obtain the same effect as that of the first embodiment from the configuration common to or equal to that of the first embodiment.
  • the heat radiating member 20 is applied to the cooler box 30 which is a portable device.
  • the heat insulating portion 23 can suppress the convective heat transfer caused by the wind generated around the cooler box 30, and the radiating portion 22 can radiate the heat of the cooler box 30 to the outside. As a result, the temperature of the contents of the cooler box 30 can be maintained at a low temperature without energy.
  • the heat radiating member 20 of the present embodiment is configured such that the heat insulating portion 23 can be attached to and detached from the laminated body St of the reflecting portion 21 and the radiating portion 22. According to this, since the heat insulating portion 23 can be added or removed, it is possible to provide the heat radiating member 20 suitable for the surrounding environment of the cooler box 30.
  • the configuration in which the heat insulating portion 23 can be attached to and detached from the laminated body St can be applied to other than the present embodiment.
  • a portable device such as a cooler box 30 is susceptible to not only natural wind but also traveling wind generated during transportation, like a moving body. Therefore, the heat radiating member 20 is suitable for portable equipment.
  • the heat radiating member 20 including the heat storage unit 24 When the heat radiating member 20 including the heat storage unit 24 is applied to the cooler box 30, for example, cold heat can be accumulated in the heat storage unit 24 at night when the cooler box 30 is difficult to open and close, and the cold heat can be used during the daytime. it can. According to this, the temperature of the contents of the cooler box 30 can be maintained at a low temperature without energy.
  • the cooler box 30 is illustrated as the portable device, but the portable device is not limited to this.
  • the portable device may be, for example, a container CN carried by the trailer T, as shown in FIG.
  • the heat radiating member 20 can be applied to the upper surface portion R exposed to the outside in the container CN, for example, as shown by the dot pattern in FIG.
  • the container CN corresponds to the structure
  • the upper surface portion R corresponds to the exterior member forming the outer shell.
  • the heat radiating member 20 of the present disclosure is applied to the vending machine 40 that provides the beverage D, not the moving body.
  • the vending machine 40 is configured as an outdoor installation type device exposed to sunlight.
  • the vending machine 40 can adjust the temperature of the beverage D so that the beverage D having an appropriate temperature can be provided to the user.
  • the vending machine 40 is not limited to the beverage D, and may be configured to provide food, for example. Further, the vending machine 40 is not limited to providing food and drink to the user for a fee, and may be provided free of charge.
  • the vending machine 40 corresponds to the providing device that provides the cold and hot food to the user, and the beverage D corresponds to the cold and hot food.
  • the vending machine 40 has a housing 41 that forms an outer shell.
  • the housing 41 is a hollow box, and the beverage D to be provided to the user is housed inside the housing 41.
  • the vending machine 40 corresponds to the structure, and the housing 41 corresponds to the exterior member forming the outer shell.
  • the top plate portion 411 is more easily exposed to sunlight than other parts. Further, since the top plate portion 411 has fewer elements that cause ventilation resistance than other portions, convective heat transfer due to natural wind outside the machine is likely to occur. Therefore, the heat radiating member 20 of the present disclosure is installed on the top plate portion 411 of the housing 41.
  • the heat radiating member 20 may be installed in a portion other than the top plate portion 411 as long as it is a portion of the housing 41 that is exposed to sunlight.
  • the heat radiating member 20 of the present embodiment can obtain the same effect as that of the first embodiment from the configuration common to or equal to that of the first embodiment.
  • the heat radiating member 20 is applied to the vending machine 40 which is the providing device.
  • the heat insulating portion 23 suppresses the convective heat transfer caused by the wind generated around the vending machine 40, and the radiating portion 22 can radiate the heat of the vending machine 40 to the outside. As a result, it is possible to reduce the energy required for adjusting the temperature of the cold and hot material.
  • the heat radiating member 20 of the present disclosure is applied not to a moving body but to a house 50 which is one of the buildings.
  • the house 50 has an outer wall portion 51 that forms a side surface portion of the outer shell of the house 50, and a roof portion 52 that forms a ceiling portion of the outer shell of the house 50.
  • the house 50 corresponds to the structure
  • the roof portion 52 corresponds to the exterior member forming the outer shell.
  • the roof portion 52 is configured as a gable roof having a triangular side surface shape when viewed from a predetermined direction.
  • the roof portion 52 may be composed of a hipped roof having a slope in four directions, a one-sided roof having a slope in one direction, a flat roof having no slope, and the like.
  • the roof portion 52 is more easily exposed to sunlight than other parts. Further, since the roof portion 52 has fewer elements that cause ventilation resistance than other portions, convective heat transfer due to the natural outdoor wind is likely to occur. Therefore, the heat radiating member 20 of the present disclosure is installed on the roof portion 52 of the house 50.
  • the heat radiating member 20 may be installed in a portion other than the roof portion 52 as long as it is a portion of the house 50 exposed to sunlight.
  • the heat radiating member 20 is installed on the roof portion 52. Therefore, the heat insulating portion 23 of the heat radiating member 20 can suppress the convective heat transfer due to the natural wind, and the radiating portion 22 can radiate the heat of the roof portion 52 of the house 50 to the outside.
  • the amount of heat absorbed from the outside by the roof portion 52 decreases as compared with daytime when sunlight acts.
  • the amount of heat radiated to the outside in the roof portion 52 hardly changes between nighttime and daytime. Therefore, as shown in FIG. 26, at night when sunlight does not act, the temperature of the roof portion 52 drops as compared with the daytime when sunlight acts, so that dew condensation C is likely to occur inside the roof portion 52. .. In other words, if the heat radiating member 20 is installed on the roof portion 52, water can be generated inside the roof portion 52.
  • the roof portion 52 of the present embodiment is configured such that the combination of the heat radiating member 20 and the roof portion 52 functions as a water generating means.
  • the combination of the heat radiating member 20 and the roof portion 52 constitutes a heat radiating system.
  • the roof portion 52 is provided with a guide 521 for guiding water generated by dew condensation (that is, dew condensation water) to a water storage device 60 described later.
  • the guide 521 is for collecting the condensed water generated in the roof portion 52 in the water storage device 60.
  • the guide 521 is composed of a plurality of drainage grooves 521a extending from the ridge portion 52a located at the upper end of the roof portion 52 toward the eaves portion 52b located at the lower end of the roof portion 52. ..
  • the drainage groove 521a has a V-shaped cross section.
  • the drainage groove 521a may have a cross-sectional shape other than the V shape.
  • the roof portion 52 is provided with a fan 522 for blowing high-humidity air inside the roof portion 52.
  • the fan 522 corresponds to a dew condensation promoting member that promotes the generation of dew condensation water.
  • the fan 522 is composed of an electric blower driven by energization.
  • the fan 522 has an air blowing capacity adjusted according to a control signal from the control unit 100 described later.
  • a general electric fan commercially available as a fan 522 is shown for easy understanding, but the fan 522 may be composed of a fan other than the electric fan shown in the figure.
  • the water storage device 60 includes a water storage tank 61 for storing condensed water.
  • the water storage tank 61 is composed of, for example, a cylindrical drum. It is desirable that the water storage tank 61 is arranged under the roof portion 52 or inside the house 50 so as not to be exposed to sunlight.
  • the water storage device 60 may include an intermediate member for flowing condensed water from the guide 521 to the water storage tank 61.
  • control unit 100 which is the electronic control unit of the heat dissipation system, will be described with reference to FIG. 29.
  • control unit 100 includes a computer including a processor 100a and a memory 100b, and peripheral circuits thereof.
  • the memory 100b is composed of a non-transitional substantive storage medium.
  • a drive device such as a fan 522 is connected to the output side of the control unit 100. Further, a temperature sensor 101 for detecting the temperature of the roof portion 52, a humidity sensor 102 for detecting the humidity in the vicinity of the roof portion 52, and the like are connected to the input side of the control unit 100.
  • control unit 100 controls the device on the output side by performing calculations and processing based on a program stored in the memory 100b for various input signals and the like.
  • the control unit 100 of the present embodiment includes a promotion control unit 100c that controls the fan 522 according to the temperature of the roof portion 52 and the like.
  • control process of the fan 522 executed by the control unit 100 will be described with reference to FIG.
  • the control routine shown in FIG. 30 is executed by the control unit 100 periodically or irregularly.
  • control unit 100 reads various signals connected to the input side in step S10. Specifically, the control unit 100 reads the detection signal TR of the temperature sensor 101 and the detection signal RM of the humidity sensor 102.
  • step S20 the control unit 100 determines whether or not the detection signal RM of the humidity sensor 102 is equal to or less than the reference signal RMth corresponding to the predetermined reference humidity in the detection signal RM of the humidity sensor 102.
  • the control unit 100 energizes the fan 522 in step S30 and operates the fan 522 at a predetermined rotation speed. According to this, since the humidity in the vicinity of the roof portion 52 is easily maintained in a high state, it is possible to continuously generate dew condensation water and secure a sufficient amount of water generation.
  • the control unit 100 stops energizing the fan 522 and stops the operation of the fan 522 in step S30. In this way, by stopping the operation of the fan 522 when the humidity near the roof portion 52 is high, it is possible to suppress the energy consumption associated with the generation of water.
  • step S40 the control unit 100 determines whether or not the detection signal TR of the temperature sensor 101 is equal to or lower than the reference signal TRth corresponding to the vicinity of the temperature (for example, 0 °) at which water freeze starts. ..
  • control unit 100 proceeds to step S60 when the detection signal TR of the temperature sensor 101 is equal to or less than the reference signal TRth, and skips step S60 when the detection signal TR of the temperature sensor 101 becomes larger than the reference signal TRth. And exit this control process.
  • step S60 when the operation of the fan 522 is stopped, the fan 522 is energized to operate the fan 522, and when the fan 522 is operating, the rotation speed of the fan 522 is increased. Increase the amount of electricity applied to 522. According to this, since the freezing of the dew condensation water inside the roof portion 52 is suppressed, it is possible to suppress the stoppage of water recovery due to the freezing of the dew condensation water.
  • the heat radiating member 20 of the present embodiment can obtain the same effect as that of the first embodiment from the configuration common to or equal to that of the first embodiment.
  • buildings such as houses 50 are affected by convective heat transfer due to the natural wind. Therefore, if the heat radiating member 20 is applied to the house 50, the heat insulating portion 23 can suppress the convective heat transfer due to the natural wind, and the radiating portion 22 can radiate the heat of the house 50 to the outside.
  • the roof portion 52 of the house 50 of the present embodiment is provided with a guide 521 leading to the water storage device 60, water can be generated by utilizing the dew condensation generated on the roof portion 52 of the house 50.
  • a heat dissipation system is suitable for an area where the amount of evaporation is larger than the amount of rainfall, such as a desert. If the heat dissipation system is applied to such an area, it is possible to generate water at night or the like while suppressing the temperature rise during the day without inputting energy from the outside.
  • the fan 522 is provided for the roof portion 52, it is possible to maintain a high humidity in the vicinity of the roof portion 52 by blowing air from the fan 522. As a result, the efficiency of water generation in the heat dissipation system can be improved.
  • control unit 100 can control the fan 522 according to the temperature of the roof portion 52, the freezing of the condensed water can be suppressed, so that the water generation efficiency in the heat dissipation system can be improved. ..
  • the heat radiating member 20 is applied to the permanently installed house 50, but the application target of the heat radiating member 20 is not limited to this, and the heat radiating member 20 can be applied to various buildings other than the house 50. ..
  • the heat radiating member 20 may be applied to a temporary type greenhouse 70 in a building.
  • the roofing material 71 is mainly exposed to sunlight. Therefore, the heat radiating member 20 can be applied to the roofing material 71 of the vinyl house 70 as shown by the dot pattern in FIG.
  • the vinyl house 70 corresponds to the structure
  • the roofing material 71 corresponds to the exterior member forming the outer shell.
  • the heat radiating member 20 may be applied to the photovoltaic power generation panel SP, which is one of the installation objects installed in the house 50.
  • the photovoltaic power generation panel SP includes a plurality of light receiving units LR and a frame body F surrounding the plurality of light receiving units LR.
  • the heat radiating member 20 is applied to the frame body F of the photovoltaic power generation panel SP, for example, as shown by the dot pattern in FIG.
  • the heat radiating member 20 may be applied to the light receiving unit LR as long as it does not affect the power generation of the photovoltaic power generation panel SP.
  • the photovoltaic power generation panel SP corresponds to the structure
  • the frame F corresponds to the exterior member forming the outer shell.
  • the heat radiating system may be composed of a combination of the heat radiating member 20 and the roof portion of the water storage device 60 so as to function as a dedicated system for the water generating means, for example.
  • the heat radiating system may be composed of, for example, a combination of the heat radiating member 20 and any of a moving body, a portable device, and a providing device.
  • the heat radiating system may be composed of a combination of the heat radiating member 20 and the roof portion of the water storage device 60 so as to function as a dedicated system for the water generating means, for example.
  • the heat radiating system includes the heat radiating member 20 having the heat insulating portion 23.
  • a heat radiating sheet CE as a comparative example of the first embodiment is used. It may be configured to include.
  • the mobile body, the building, the portable device, and the provided device are exemplified as the application target of the heat radiating member 20, but the heat radiating member 20 is not limited to this, and the heat radiating member 20 is the moving body, the building, the portable device, and the provided device. It can be widely applied to various devices other than devices.
  • the heat radiating member 20 is not limited to the example and is not exemplified. It may be configured.
  • the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when they are clearly considered to be essential in principle.
  • the sensor when it is described that the external environmental information of the structure such as a house (for example, the humidity outside the vehicle) is acquired from the sensor, the sensor is abolished and the external environment is obtained from the server or cloud outside the structure. It is also possible to receive environmental information. Alternatively, it is possible to abolish the sensor, acquire related information related to the external environment information from a server or cloud outside the structure, and estimate the external environment information from the acquired related information.
  • the controls described in the present disclosure and methods thereof are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done.
  • the control device and method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
  • the control device and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
  • the heat radiating member has a reflecting portion that reflects sunlight and radiation that is arranged on the opposite side of the structure with respect to the reflecting portion. It is provided with a portion and a heat insulating portion provided on the opposite side of the structure with respect to the radiation portion.
  • the heat insulating portion is capable of transmitting electromagnetic waves.
  • the heat insulating portion includes a heat insulating body made of resin having heat insulating properties. According to this, it is possible to realize a structure capable of transmitting electromagnetic waves while suppressing convective heat transfer due to the movement of an external fluid.
  • the heat insulating part contains a gas layer set between the radiating part and the external fluid. According to this, it is possible to realize a structure capable of transmitting electromagnetic waves while suppressing convective heat transfer due to the movement of an external fluid.
  • a gas layer composed of a gas having a lower thermal conductivity than a solid sufficiently suppresses convective heat transfer due to the movement of an external fluid as compared with a gas layer having a heat insulating portion composed of only a solid, and has an overall thickness. Can be made smaller.
  • the total thickness of the heat insulating portion is larger than the thickness of the heat radiating portion. According to this, by making the thickness of the heat insulating portion larger than the thickness of the heat radiating portion, it is possible to sufficiently suppress the convective heat transfer due to the movement of the external fluid while radiating the heat of the structure to the outside by the radiating portion. ..
  • the heat radiating member includes a heat storage unit that stores heat.
  • the heat storage unit is provided on the side opposite to the heat insulating unit with the radiation unit as a reference.
  • the heat storage unit for example, cold heat can be stored in the heat storage unit under environmental conditions in which the amount of heat absorbed from the outside is reduced. According to this, the cold heat accumulated in the heat storage unit can suppress the temperature rise of the structure under the environmental condition in which the amount of heat absorbed from the outside increases.
  • the heat storage unit is provided on the opposite side of the radiation unit with respect to the reflection unit.
  • the heat storage unit is arranged on the opposite side of the heat insulation unit with respect to the reflection unit, so that the amount of heat absorbed from the outside increases.
  • the temperature rise of the structure underneath can be sufficiently suppressed.
  • the structure includes an outer shell of the moving body or an exterior member forming the outer shell of the load mounted on the moving body.
  • the moving body is affected not only by the natural wind but also by the convective heat transfer caused by the traveling wind accompanying the movement. Therefore, the heat radiating member of the present disclosure is suitable for a moving body. That is, if the heat radiating member is applied to the moving body, the convective heat transfer can be suppressed by the heat insulating portion and the heat of the moving body can be radiated to the outside by the radiating portion.
  • the structure includes an exterior member that forms the outer shell of the building or the outer shell of the installation that is installed in the building.
  • the building is affected by convective heat transfer due to the natural wind. Therefore, if the heat radiating member is applied to the building, the heat insulating portion can suppress the convective heat transfer due to the natural wind, and the radiating portion can radiate the heat of the building to the outside.
  • Buildings include not only permanent houses but also temporary ones.
  • the structure includes an exterior member that forms the outer shell of the portable device to be carried by the user.
  • the heat insulating portion can suppress the convective heat transfer caused by the wind generated around the portable device, and the radiating section can radiate the heat of the portable device to the outside. ..
  • the structure includes an exterior member that forms the outer shell of the providing device that provides the cold and hot material to the user.
  • the heat insulating portion can suppress the convective heat transfer caused by the wind generated around the providing equipment, and the radiating portion can radiate the heat of the providing equipment to the outside.
  • the heat insulating portion is configured to be removable from the laminated body of the reflecting portion and the radiating portion. According to this, since the heat insulating portion can be added or removed, it is possible to provide a heat radiating member suitable for the surrounding environment of the structure.
  • the heat radiating system includes an exterior member located on the outside of the structure and a heat radiating member applied to the outside of the exterior member.
  • the heat radiating member includes a reflecting portion that reflects sunlight, a radiating portion that is arranged on the opposite side of the heat radiating member with reference to the reflecting portion, and a heat insulating portion that is provided on the opposite side of the radiating portion with reference to the radiating portion.
  • the heat insulating portion is capable of transmitting electromagnetic waves.
  • the heat insulating part can suppress the temperature rise of the structure due to convective heat transfer due to the movement of the external fluid.
  • the heat insulating portion has a structure capable of transmitting electromagnetic waves, the heat of the structure can be radiated to the outside by the radiating portion while the sunlight is reflected by the reflecting portion. Therefore, the heat dissipation system of the present disclosure can suppress the temperature rise of the structure as compared with the conventional system.
  • the exterior member is provided with a guide for guiding the condensed water generated in the exterior member to the water storage device. According to this, water can be generated by utilizing the dew condensation generated on the exterior member.
  • the heat radiating system includes an exterior member positioned on the outside of the structure and a heat radiating member applied to the outside of the exterior member.
  • the heat radiating member has a reflecting portion that reflects sunlight and a radiating portion that is arranged on the opposite side of the heat radiating member with respect to the reflecting portion.
  • the exterior member is provided with a guide that guides the condensed water generated in the exterior member to the water storage device.
  • the fifteenth viewpoint it is provided with a dew condensation promoting member that promotes the generation of dew condensation water. As described above, if the dew condensation promoting member is provided, the efficiency of water generation in the heat dissipation system can be improved.
  • the heat dissipation system includes a promotion control unit that controls the dew condensation promoting member according to the temperature of the structure. According to this, for example, since the freezing of the condensed water can be suppressed, the efficiency of water generation in the heat dissipation system can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Building Environments (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A heat dissipation member (20) is applied to the outside of structures (10, 30, 40, 50, 70). The heat dissipation member is provided with a reflective part (21) for reflecting sunlight, and a radiating part (22) that is positioned on a side opposite to the structure with respect to the reflective part and radiates heat of the structure externally. The heat dissipation member is provided with a heat insulation part (23) provided on the side opposite to the structure with respect to the radiating part to suppress convective heat transfer associated with movement of an external fluid flowing externally. The heat insulation part is capable of allowing electromagnetic waves to pass through.

Description

放熱部材、放熱システムHeat dissipation member, heat dissipation system 関連出願への相互参照Cross-reference to related applications
 本出願は、2019年9月17日に出願された日本特許出願番号2019-168544号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2019-168544 filed on September 17, 2019, the contents of which are incorporated herein by reference.
 本開示は、放熱部材および放熱システムに関する。 This disclosure relates to a heat radiating member and a heat radiating system.
 従来、太陽光を反射するだけでなく同時に熱を放射することが可能なシートを構造体の外側に適用することで、構造体の温度上昇を抑制する技術が知られている(例えば、特許文献1参照)。特許文献1に記載のシートは、太陽光を反射する反射層および熱を放射する放射層を有する構造になっている。 Conventionally, there is known a technique of suppressing a temperature rise of a structure by applying a sheet capable of not only reflecting sunlight but also radiating heat to the outside of the structure (for example, Patent Documents). 1). The sheet described in Patent Document 1 has a structure having a reflecting layer that reflects sunlight and a radiating layer that radiates heat.
米国特許出願公開第2019/0086164号明細書U.S. Patent Application Publication No. 2019/0083164
 本発明者らは、特許文献1に記載のシートを放熱部材として自動車の屋根に用いて車室内の温度上昇を抑制することを検討した。この検討によると、車両走行時の走行風によりシートの表面上を気流が通過する際、対流伝熱によって自動車の屋根が温まってしまうことが判った。すなわち、特許文献1に記載のシートを単に自動車の屋根に適用しても、車室の温度上昇の抑制効果が得られ難いことが判った。なお、本課題は、走行風だけでなく自然風によっても生ずるので、自動車に限られるものでなく、自動車以外の他の構造体においても生じ得る。
 本開示は、構造体の温度上昇を抑制可能な放熱部材および放熱システムを提供することを目的とする。
The present inventors have studied using the sheet described in Patent Document 1 as a heat radiating member for the roof of an automobile to suppress a temperature rise in the vehicle interior. According to this study, it was found that when the airflow passes over the surface of the seat due to the running wind when the vehicle is running, the roof of the automobile is warmed by the convective heat transfer. That is, it was found that even if the sheet described in Patent Document 1 is simply applied to the roof of an automobile, it is difficult to obtain the effect of suppressing the temperature rise in the vehicle interior. Since this problem is caused not only by the running wind but also by the natural wind, it is not limited to the automobile, but may occur in other structures other than the automobile.
An object of the present disclosure is to provide a heat radiating member and a heat radiating system capable of suppressing a temperature rise of a structure.
 本開示の1つの観点によれば、
 放熱部材は、
 太陽光を反射する反射部と、
 反射部を基準として構造体とは反対側に配置され、構造体の熱を外部に放射する放射部と、
 放射部を基準として構造体とは反対側に設けられて、外部を流れる外部流体の移動に伴う対流伝熱を抑制する断熱部と、を備え、
 断熱部は、電磁波を透過させることが可能になっている。
According to one aspect of the disclosure,
The heat dissipation member is
A reflector that reflects sunlight and
A radiation part that is placed on the opposite side of the structure with respect to the reflection part and radiates the heat of the structure to the outside,
It is provided on the opposite side of the structure with the radiant part as a reference, and is provided with a heat insulating part that suppresses convective heat transfer due to the movement of the external fluid flowing outside.
The heat insulating portion is capable of transmitting electromagnetic waves.
 これによると、断熱部によって外部流体の移動に伴う対流伝熱による構造体の温度上昇を抑制することができる。加えて、断熱部は、電磁波を透過させることが可能な構造になっているので、反射部で太陽光の反射しつつ、放射部によって構造体の熱を外部に放射させることができる。 According to this, the heat insulating part can suppress the temperature rise of the structure due to convective heat transfer due to the movement of the external fluid. In addition, since the heat insulating portion has a structure capable of transmitting electromagnetic waves, the heat of the structure can be radiated to the outside by the radiating portion while the sunlight is reflected by the reflecting portion.
 本開示の別の観点によれば、
 放熱システムは、
 構造体において外側に位置付けられる外装部材と、
 外装部材の外側に適用される放熱部材と、を備え、
 放熱部材は、
 太陽光を反射する反射部と、
 反射部を基準として放熱部材とは反対側に配置され、構造体の熱を外部に放射する放射部と、
 放射部を基準として放熱部材とは反対側に設けられて、外部を流れる外部流体の移動による放熱を抑える断熱部と、を有し、
 断熱部は、電磁波を透過させることが可能になっている。
According to another aspect of the disclosure,
The heat dissipation system
Exterior members located on the outside of the structure
With a heat radiating member applied to the outside of the exterior member,
The heat dissipation member is
A reflector that reflects sunlight and
A radiation unit that is located on the opposite side of the heat dissipation member with respect to the reflection unit and radiates the heat of the structure to the outside,
It has a heat insulating part that is provided on the side opposite to the heat radiating member with the radiating part as a reference and suppresses heat radiating due to the movement of the external fluid flowing outside.
The heat insulating portion is capable of transmitting electromagnetic waves.
 これによると、断熱部によって外部流体の移動に伴う対流伝熱による構造体の温度上昇を抑制することができる。加えて、断熱部は、電磁波を透過させることが可能な構造になっているので、反射部で太陽光の反射しつつ、放射部によって構造体の熱を外部に放射させることができる。したがって、従来のシステムに比べて、構造体の温度上昇を抑制することができる。 According to this, the heat insulating part can suppress the temperature rise of the structure due to convective heat transfer due to the movement of the external fluid. In addition, since the heat insulating portion has a structure capable of transmitting electromagnetic waves, the heat of the structure can be radiated to the outside by the radiating portion while the sunlight is reflected by the reflecting portion. Therefore, the temperature rise of the structure can be suppressed as compared with the conventional system.
 さらに、本開示の別の観点によれば、
 放熱システムは、
 構造体において外側に位置付けられる外装部材と、
 外装部材の外側に適用される放熱部材と、を備え、
 放熱部材は、
 太陽光を反射する反射部と、
 反射部を基準として放熱部材とは反対側に配置され、構造体の熱を外部に放射する放射部と、を有し、
 外装部材には、外装部材に生ずる結露水を貯水装置に導くガイドが設けられている。
Moreover, according to another aspect of the present disclosure.
The heat dissipation system
Exterior members located on the outside of the structure
With a heat radiating member applied to the outside of the exterior member,
The heat dissipation member is
A reflector that reflects sunlight and
It is arranged on the opposite side of the heat radiating member with respect to the reflecting part, and has a radiating part that radiates the heat of the structure to the outside.
The exterior member is provided with a guide that guides the condensed water generated in the exterior member to the water storage device.
 これらの放熱システムは、外装部材の外側に放熱部材が配置されることで、外装部材の温度上昇が抑制される。加えて、放熱システムは、例えば、外部からの吸熱量が減る環境条件において、外装部材の温度低下することで外装部材に結露が生じ易くなる。このため、外装部材に対して結露水を貯水装置に導くガイドを設けることで、外装部材に生ずる結露を利用して水を生成することができる。 In these heat dissipation systems, the temperature rise of the exterior member is suppressed by arranging the heat dissipation member on the outside of the exterior member. In addition, in the heat dissipation system, for example, in an environmental condition where the amount of heat absorbed from the outside is reduced, the temperature of the exterior member is lowered, so that dew condensation is likely to occur on the exterior member. Therefore, by providing the exterior member with a guide for guiding the dew condensation water to the water storage device, water can be generated by utilizing the dew condensation generated on the exterior member.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that the reference symbols in parentheses attached to each component or the like indicate an example of the correspondence between the component or the like and the specific component or the like described in the embodiment described later.
第1実施形態に係る放熱部材が適用された自動車の模式的な平面図である。It is a schematic plan view of the automobile to which the heat dissipation member which concerns on 1st Embodiment is applied. 第1実施形態に係る放熱部材が適用された自動車の一部を示す模式的な側面図である。It is a schematic side view which shows a part of the automobile to which the heat dissipation member which concerns on 1st Embodiment is applied. 第1実施形態に係る放熱部材の模式的な断面図である。It is a schematic cross-sectional view of the heat dissipation member which concerns on 1st Embodiment. 第1実施形態の比較例となる放熱部材による車室内の温度上昇の抑制効果を説明するための説明図である。It is explanatory drawing for demonstrating the effect of suppressing the temperature rise in the vehicle interior by the heat radiating member which is the comparative example of 1st Embodiment. 第1実施形態に係る放熱部材による車室内の温度上昇の抑制効果を説明するための説明図である。It is explanatory drawing for demonstrating the effect of suppressing the temperature rise in the vehicle interior by the heat radiating member which concerns on 1st Embodiment. 第1実施形態の第1変形例であって、放熱部材がルーフアンテナに適用された車両の一部を示す模式的な側面図である。It is a 1st modification of 1st Embodiment, and is a schematic side view which shows a part of the vehicle which heat-dissipating member was applied to a roof antenna. 図6に示すルーフアンテナの模式図である。It is a schematic diagram of the roof antenna shown in FIG. 第1実施形態の第2変形例であって、放熱部材が車載カメラに適用された車両の一部を示す模式的な側面図である。It is a 2nd modification of 1st Embodiment, and is a schematic side view which shows a part of the vehicle which a heat dissipation member was applied to an in-vehicle camera. 図8に示す車載カメラの模式図である。It is a schematic diagram of the vehicle-mounted camera shown in FIG. 第1実施形態の第3変形例であって、放熱部材がルーフ設置型の空調機器に適用された車両の一部を示す模式的な側面図である。FIG. 5 is a schematic side view showing a part of a vehicle in which a heat radiating member is applied to a roof-mounted air conditioner according to a third modification of the first embodiment. 第2実施形態に係る放熱部材の模式的な断面図である。It is a schematic cross-sectional view of the heat dissipation member which concerns on 2nd Embodiment. 第2実施形態の変形例となる放熱部材の模式的な断面図である。It is a schematic cross-sectional view of the heat radiating member which becomes the modification of the 2nd Embodiment. 第3実施形態に係る放熱部材の模式的な断面図である。It is a schematic cross-sectional view of the heat radiating member which concerns on 3rd Embodiment. 第3実施形態の変形例となる放熱部材の模式的な断面図である。It is a schematic cross-sectional view of the heat radiating member which becomes the modification of 3rd Embodiment. 第4実施形態に係る放熱部材の模式的な断面図である。It is a schematic cross-sectional view of the heat dissipation member which concerns on 4th Embodiment. 第5実施形態に係る放熱部材の模式的な断面図である。It is a schematic cross-sectional view of the heat dissipation member which concerns on 5th Embodiment. 第6実施形態に係る放熱部材の模式的な断面図である。It is a schematic cross-sectional view of the heat radiating member which concerns on 6th Embodiment. 第7実施形態に係る放熱部材の模式的な断面図である。It is a schematic cross-sectional view of the heat dissipation member which concerns on 7th Embodiment. 第8実施形態に係る放熱部材が適用されたクーラボックスを搭載した自転車の模式図である。It is a schematic diagram of the bicycle equipped with the cooler box to which the heat dissipation member which concerns on 8th Embodiment is applied. 図19に示すクーラボックスの模式図である。It is a schematic diagram of the cooler box shown in FIG. クーラボックスへの放熱部材の装着およびクーラボックスからの放熱部材の取り外しを説明するための説明図である。It is explanatory drawing for demonstrating attachment of a heat radiating member to a cooler box, and removal of a heat radiating member from a cooler box. 第8実施形態の変形例であって、放熱部材が適用されたコンテナを運搬するトレーラの模式図である。It is a modification of the 8th Embodiment, and is the schematic diagram of the trailer which carries a container to which a heat dissipation member is applied. 第9実施形態に係る放熱部材が適用された自動販売機の模式図である。It is a schematic diagram of the vending machine to which the heat dissipation member which concerns on 9th Embodiment is applied. 第10実施形態に係る放熱部材が適用された家屋の模式的な斜視図である。It is a schematic perspective view of the house to which the heat dissipation member which concerns on 10th Embodiment is applied. 第10実施形態に係る放熱部材が適用された家屋の模式的な正面図である。It is a schematic front view of the house to which the heat dissipation member which concerns on 10th Embodiment is applied. 第10実施形態に係る放熱部材が適用された家屋の模式的な正面図である。It is a schematic front view of the house to which the heat dissipation member which concerns on 10th Embodiment is applied. 放熱部材が適用された家屋に生ずる結露について説明するための説明図である。It is explanatory drawing for demonstrating the dew condensation which occurs in the house to which a heat radiating member is applied. 家屋の屋根部材の内側を示す模式的な斜視図である。It is a schematic perspective view which shows the inside of the roof member of a house. 放熱システムの制御装置を説明するための説明図である。It is explanatory drawing for demonstrating the control device of a heat dissipation system. 放熱システムの制御装置が実行する制御処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the control process executed by the control device of a heat dissipation system. 第10実施形態の第1変形例であって、放熱部材が適用されたビニールハウスを示す模式的な斜視図である。FIG. 5 is a schematic perspective view showing a vinyl house to which a heat radiating member is applied, which is a first modification of the tenth embodiment. 第10実施形態の第2変形例であって、放熱部材が太陽光発電パネルに適用された家屋の模式的な斜視図である。FIG. 5 is a schematic perspective view of a house in which a heat radiating member is applied to a photovoltaic power generation panel, which is a second modification of the tenth embodiment.
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same reference numerals may be assigned to parts that are the same as or equivalent to those described in the preceding embodiments, and the description thereof may be omitted. Further, when only a part of the component is described in the embodiment, the component described in the preceding embodiment can be applied to the other part of the component. The following embodiments can be partially combined with each other as long as the combination does not cause any trouble, even if not explicitly stated.
 (第1実施形態)
 第1実施形態について、図1~図5を参照して説明する。本実施形態は、本開示の放熱部材20を移動体の1つである自動車10のボディ11に適用したものを例示している。
(First Embodiment)
The first embodiment will be described with reference to FIGS. 1 to 5. In this embodiment, the heat radiating member 20 of the present disclosure is applied to the body 11 of an automobile 10 which is one of the moving bodies.
 図1および図2に示すように、自動車10は、太陽光に晒される外殻を形成するボディ11を有する。ボディ11は、走行の駆動機器の収容部分を覆うボンネット111および自動車10の天井部分を構成する屋根部材112を含んでいる。 As shown in FIGS. 1 and 2, the automobile 10 has a body 11 that forms an outer shell that is exposed to sunlight. The body 11 includes a bonnet 111 that covers an accommodating portion of a traveling drive device and a roof member 112 that constitutes a ceiling portion of the automobile 10.
 屋根部材112は、ボンネット111等と同様に太陽光に直に晒される部材であって、夏場等の炎天下において特に高温になる。屋根部材112の温度が高くなると、屋根部材112の熱が車室内に移動することで車室内の温度が上昇し、車室内の快適性が損なわれる。また、屋根部材112は、他の部位に比べて通風抵抗となる要素が少ないため走行風に伴う対流伝熱が生じ易い。 The roof member 112 is a member that is directly exposed to sunlight like the bonnet 111 and the like, and becomes particularly hot in the hot sun such as in summer. When the temperature of the roof member 112 rises, the heat of the roof member 112 moves into the vehicle interior, so that the temperature inside the vehicle interior rises and the comfort inside the vehicle interior is impaired. Further, since the roof member 112 has fewer elements that cause ventilation resistance than other parts, convective heat transfer due to traveling wind is likely to occur.
 これに対して、自動車10に設置された空調装置を作動させることで車室内の快適性を確保することが考えられるが、この場合、高負荷状態での空調装置の作動が継続されることになり、自動車10の燃料または電力の消費量が著しく増加してしまう。 On the other hand, it is conceivable to secure the comfort in the vehicle interior by operating the air conditioner installed in the automobile 10, but in this case, the operation of the air conditioner under a high load state is continued. As a result, the consumption of fuel or electric power of the automobile 10 is significantly increased.
 そこで、本実施形態は、放熱部材20を自動車10の屋根部材112の外側に適用し、車室内の温度上昇を抑えている。放熱部材20は、空調装置の如く、動力等が不要であり、放熱部材20を自動車10に適用しても燃料または電力の消費量が殆ど増えることはない。 Therefore, in the present embodiment, the heat radiating member 20 is applied to the outside of the roof member 112 of the automobile 10 to suppress the temperature rise in the vehicle interior. Unlike the air conditioner, the heat radiating member 20 does not require power or the like, and even if the heat radiating member 20 is applied to the automobile 10, the consumption of fuel or electric power is hardly increased.
 ここで、本実施形態では、自動車10が本開示の構造体に対応し、自動車10の屋根部材112が本開示の構造体の外殻を形成する外装部材に対応している。 Here, in the present embodiment, the automobile 10 corresponds to the structure of the present disclosure, and the roof member 112 of the automobile 10 corresponds to the exterior member forming the outer shell of the structure of the present disclosure.
 放熱部材20は、太陽光を反射しつつ、自動車10の屋根部材112の熱を外部に放射させることが可能に構成されている。加えて、放熱部材20は、自然風や自動車10の走行時の走行風に伴う対流伝熱によって自動車10の屋根部材112が温まってしまうことを抑制可能に構成されている。 The heat radiating member 20 is configured to be able to radiate the heat of the roof member 112 of the automobile 10 to the outside while reflecting sunlight. In addition, the heat radiating member 20 is configured to be capable of suppressing the roof member 112 of the automobile 10 from being warmed by the convective heat transfer caused by the natural wind or the traveling wind during the traveling of the automobile 10.
 放熱部材20は、厚みが所定値(例えば、10mm)以下となる面状のシートとして構成されている。なお、放熱部材20の形態は、シートに限らず、シートよりも薄いフィルムやコーティングの形態になっていてもよい。 The heat radiating member 20 is configured as a planar sheet having a thickness of a predetermined value (for example, 10 mm) or less. The form of the heat radiating member 20 is not limited to the sheet, and may be a film or coating thinner than the sheet.
 放熱部材20は、図3に示すように、太陽光を反射する反射部21と、屋根部材112の熱を外部に放射する放射部22と、車室外の空気の移動に伴う対流伝熱を抑制する断熱部23と、を備える。本実施形態では車室外の空気が外部を流れる外部流体に対応している。 As shown in FIG. 3, the heat radiating member 20 suppresses convective heat transfer due to the movement of air outside the vehicle interior, the reflecting portion 21 that reflects sunlight, the radiating portion 22 that radiates the heat of the roof member 112 to the outside. The heat insulating portion 23 is provided. In this embodiment, the air outside the vehicle interior corresponds to the external fluid flowing outside.
 反射部21は、太陽光を反射するフィルムとして構成されている。具体的には、反射部21は、銀、アルミニウム、金、または銅を含む金属製のフィルムで構成されている。反射部21は、例えば、30nmから1000nmまでの範囲の平均厚みを有する。なお、反射部21は、フィルムに限らず、例えば、100nmから1μmまでの範囲の平均厚みを有する金属製のシートで構成されていてもよい。また、反射部21は、太陽光を反射可能なものであればよく、金属製に限らず、他の材料で構成されていてもよい。 The reflecting unit 21 is configured as a film that reflects sunlight. Specifically, the reflective portion 21 is made of a metal film containing silver, aluminum, gold, or copper. The reflective portion 21 has, for example, an average thickness in the range of 30 nm to 1000 nm. The reflective portion 21 is not limited to the film, and may be made of, for example, a metal sheet having an average thickness in the range of 100 nm to 1 μm. Further, the reflective portion 21 may be made of any other material as long as it can reflect sunlight, and is not limited to metal.
 反射部21は、屋根部材112に接することができるように、放熱部材20において外側に位置付けられている。すなわち、反射部21は、放熱部材20において屋根部材112の近くに位置付けられている。 The reflecting portion 21 is positioned on the outside of the heat radiating member 20 so that it can come into contact with the roof member 112. That is, the reflecting portion 21 is positioned near the roof member 112 in the heat radiating member 20.
 放射部22は、内側の熱を外部に放射するフィルムとして構成されている。放射部22は、太陽光を透過し、赤外線を外部に放射するポリマ221を成分として含む面状のシートとして構成されている。なお、放射部22は、ポリマ221を母材とする複合材料で構成されていてもよい。 The radiation unit 22 is configured as a film that radiates heat from the inside to the outside. The radiation unit 22 is configured as a planar sheet containing a polymer 221 that transmits sunlight and radiates infrared rays to the outside as a component. The radiating portion 22 may be made of a composite material using the polymer 221 as a base material.
 ポリマ221は、例えば、ポリオレフィン、ポリメチルメタクリレート、ポリメチルペンテン、ポリエチレン、ポリスチレン等が挙げられる。なお、ポリマ221は、これらに限定されず、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリテトラフルオロエチレン、またはそれらの組み合わせ等であってもよい。 Examples of the polymer 221 include polyolefin, polymethylmethacrylate, polymethylpentene, polyethylene, polystyrene and the like. The polymer 221 is not limited to these, and may be, for example, polyethylene terephthalate, polycarbonate, polytetrafluoroethylene, or a combination thereof.
 放射部22は、シート状に形成されたポリマ221に対して非ポリマ粒子222が追加されている。すなわち、放射部22は、ポリマ221に加えて、ポリマ221中に分散する非ポリマ粒子222を含んでいる。非ポリマ粒子222は、ミー散乱効果や吸収共鳴等によって外部への熱放射を増加させるものである。 In the radiation unit 22, non-polymer particles 222 are added to the polymer 221 formed in a sheet shape. That is, the radiating portion 22 contains the non-polymer particles 222 dispersed in the polymer 221 in addition to the polymer 221. The non-polymer particles 222 increase heat radiation to the outside by a Mie scattering effect, absorption resonance, or the like.
 非ポリマ粒子222は、例えば、二酸化ケイ素(SiO2)、炭酸カルシウム(CaCO3)、炭化ケイ素(SiC)、酸化亜鉛(ZnO)、二酸化チタン(TiO2)、アルミナ(TiO2)等の金属または半導体酸化物材料で構成される。なお、放射部22は、外部への熱放射を増加させることが可能であれば、例えば、非ポリマ粒子222に代えて、ポリマ221と異なる特性を有するポリマが追加されていてもよい。 The non-polymer particles 222 are metal or semiconductor oxide materials such as silicon dioxide (SiO2), calcium carbonate (CaCO3), silicon carbide (SiC), zinc oxide (ZnO), titanium dioxide (TiO2), and alumina (TiO2). Consists of. If it is possible to increase the heat radiation to the outside, the radiating unit 22 may have a polymer having characteristics different from that of the polymer 221 added in place of the non-polymer particles 222, for example.
 放射部22は、非ポリマ粒子222の平均粒子径よりも大きい平均厚みを有する。放射部22は、例えば、10μmから3mmまでの範囲の平均厚みを有する。なお、放射部22は、フィルムに限らず、シートとして構成されていてもよい。 The radiating portion 22 has an average thickness larger than the average particle size of the non-polymer particles 222. The radiating portion 22 has, for example, an average thickness in the range of 10 μm to 3 mm. The radiation unit 22 is not limited to the film, but may be configured as a sheet.
 放射部22は、反射部21を基準として屋根部材112とは反対側に配置されている。放射部22は、反射部21に積層されている。すなわち、反射部21および放射部22は積層体Stとして構成されている。反射部21は、放射部22と屋根部材112との間に配置されている。 The radiating portion 22 is arranged on the opposite side of the roof member 112 with respect to the reflecting portion 21. The radiating portion 22 is laminated on the reflecting portion 21. That is, the reflecting portion 21 and the radiating portion 22 are configured as a laminated body St. The reflecting portion 21 is arranged between the radiating portion 22 and the roof member 112.
 断熱部23は、自然風や走行風に伴う対流伝熱による熱移動を抑制するものである。断熱部23は、断熱性を有する樹脂製の断熱体231を含んで構成されている。断熱体231は、面状のシートまたはフィルムとして構成されている。断熱体231は、放射冷却の電磁波を透過させることが可能なように透明なシートまたはフィルムで構成されている。なお、断熱体231は、電磁波を透過させることが可能であれば例えば半透明なシートまたはフィルムで構成されていてもよい。 The heat insulating portion 23 suppresses heat transfer due to convective heat transfer due to natural wind or running wind. The heat insulating portion 23 is configured to include a heat insulating body 231 made of resin having heat insulating properties. The heat insulating body 231 is configured as a planar sheet or film. The heat insulating body 231 is made of a transparent sheet or film so as to be able to transmit electromagnetic waves of radiative cooling. The heat insulating body 231 may be made of, for example, a translucent sheet or film as long as it can transmit electromagnetic waves.
 断熱部23は、全体としての厚みTiが反射部21の厚みTrおよび放射部22の厚みTpよりも大きくなっている。断熱部23の厚みTiは、熱抵抗が充分に確保できるように、反射部21および放射部22の積層体Stの厚みTstよりも大きくなっていることが望ましい。 The thickness Ti of the heat insulating portion 23 as a whole is larger than the thickness Tr of the reflecting portion 21 and the thickness Tp of the radiating portion 22. It is desirable that the thickness Ti of the heat insulating portion 23 is larger than the thickness Tst of the laminated body St of the reflecting portion 21 and the radiating portion 22 so that sufficient thermal resistance can be secured.
 断熱部23は、自然風や走行風に晒されるように、放熱部材20において外側に位置付けられている。すなわち、断熱部23は、放射部22を基準として屋根部材112とは反対側に配置されている。放射部22は、断熱部23と反射部21との間に配置されている。 The heat insulating portion 23 is positioned on the outside of the heat radiating member 20 so as to be exposed to natural wind and running wind. That is, the heat insulating portion 23 is arranged on the side opposite to the roof member 112 with respect to the radiating portion 22. The radiating portion 22 is arranged between the heat insulating portion 23 and the reflecting portion 21.
 放熱部材20は、例えば、ロール・ツー・ロール方式によって製造することができる。すなわち、放熱部材20は、ロール状に巻かれた反射部21、放射部22、断熱部23それぞれをこの順序で張り合わせたあと、再びロールに巻き取ることで得られる。なお、放熱部材20は、ロール・ツー・ロール方式以外の方式で製造されていてもよい。 The heat radiating member 20 can be manufactured by, for example, a roll-to-roll method. That is, the heat radiating member 20 is obtained by laminating each of the reflecting portion 21, the radiating portion 22, and the heat insulating portion 23 wound in a roll shape in this order, and then winding the heat radiating member 20 on the roll again. The heat radiating member 20 may be manufactured by a method other than the roll-to-roll method.
 以上の如く構成される放熱部材20を自動車10の屋根部材112に適用すると、太陽光が反射部21で反射されるとともに、放射冷却を利用して放射部22で屋根部材112の熱を外部に放射する。 When the heat radiating member 20 configured as described above is applied to the roof member 112 of the automobile 10, sunlight is reflected by the reflecting portion 21 and the heat of the roof member 112 is transferred to the outside by the radiating portion 22 by using radiative cooling. Radiate.
 ここで、図4は、本実施形態の放熱部材20の比較例となる放熱シートCEの模式図である。比較例の放熱シートCEは、放射層PLと反射層RLとを積層した積層体として構成されている。なお、比較例の放熱シートCEは、本実施形態の放熱部材20の断熱部23に相当する構成を有していない。 Here, FIG. 4 is a schematic view of a heat radiating sheet CE as a comparative example of the heat radiating member 20 of the present embodiment. The heat dissipation sheet CE of the comparative example is configured as a laminated body in which the radiation layer PL and the reflection layer RL are laminated. The heat radiating sheet CE of the comparative example does not have a configuration corresponding to the heat insulating portion 23 of the heat radiating member 20 of the present embodiment.
 比較例の放熱シートCEは、図4の矢印RFで示すように太陽光を反射層RLで反射するとともに、図4の矢印HDで示すように放射冷却を利用して放射層PLで屋根部材112の熱を外部に放射する。比較例の放熱シートCEが適用される自動車10は、太陽光による屋根部材112の温度上昇が抑制されるとともに、放射冷却によって屋根部材112が冷却される。 The heat radiating sheet CE of the comparative example reflects sunlight by the reflective layer RL as shown by the arrow RF in FIG. 4, and the roof member 112 by the radiant layer PL by utilizing radiative cooling as shown by the arrow HD in FIG. Radiates the heat of the roof to the outside. In the automobile 10 to which the heat radiating sheet CE of the comparative example is applied, the temperature rise of the roof member 112 due to sunlight is suppressed, and the roof member 112 is cooled by radiative cooling.
 ところが、比較例の放熱シートCEを自動車10に適用すると、例えば、図4の矢印AFで示すように車両走行時の走行風によりシートの表面上を気流が通過する際、対流伝熱によって屋根部材112が温まってしまう。すなわち、比較例の放熱シートCEを自動車10に適用しても、車室内の温度上昇の抑制効果が得られ難い。 However, when the heat radiating sheet CE of the comparative example is applied to the automobile 10, for example, as shown by the arrow AF in FIG. 4, when the airflow passes over the surface of the sheet due to the traveling wind during the vehicle traveling, the roof member is subjected to convective heat transfer. 112 gets warm. That is, even if the heat radiating sheet CE of the comparative example is applied to the automobile 10, it is difficult to obtain the effect of suppressing the temperature rise in the vehicle interior.
 これに対して本実施形態の放熱部材20は、図5に示すように、断熱部23を有している。このため、放熱部材20は、断熱部23によって走行風に伴う対流伝熱による屋根部材112の温度上昇を抑制することができる。加えて、断熱部23は、電磁波を透過させることが可能な構造になっているので、図5の矢印RFで示すように反射部21で太陽光の反射しつつ、図5の矢印HDで示すように放射部22によって屋根部材112の熱を外部に放射させることができる。 On the other hand, the heat radiating member 20 of the present embodiment has a heat insulating portion 23 as shown in FIG. Therefore, the heat radiating member 20 can suppress the temperature rise of the roof member 112 due to the convective heat transfer accompanying the traveling wind by the heat insulating portion 23. In addition, since the heat insulating portion 23 has a structure capable of transmitting electromagnetic waves, the reflecting portion 21 reflects sunlight as shown by the arrow RF in FIG. 5, and is indicated by the arrow HD in FIG. As described above, the heat of the roof member 112 can be radiated to the outside by the radiating portion 22.
 ここで、外部流体の移動に伴う対流伝熱による構造体の温度上昇を抑制する上では、放射部22と構造体との間に断熱部23が配置される構成も有効と考えられる。しかし、放射部22と構造体との間に断熱部23を配置すると、断熱部23によって放射部22と構造体とが熱的に分断されることで、放射部22によって構造体の熱を外部に放射させることができなくなってしまう。 Here, in order to suppress the temperature rise of the structure due to convective heat transfer due to the movement of the external fluid, it is considered that a configuration in which the heat insulating portion 23 is arranged between the radiating portion 22 and the structure is also effective. However, when the heat insulating portion 23 is arranged between the radiating portion 22 and the structure, the radiating portion 22 and the structure are thermally separated by the heat insulating portion 23, and the heat of the structure is externalized by the radiating portion 22. It will not be possible to radiate to.
 これに対して、本実施形態の放熱部材20は、断熱部23が放射部22を基準として構造体である屋根部材112とは反対側に設けられている。このため、断熱部23によって走行風に伴う対流伝熱を抑えるとともに放射部22によって屋根部材112の熱を外部に放射させることができる。 On the other hand, in the heat radiating member 20 of the present embodiment, the heat insulating portion 23 is provided on the side opposite to the roof member 112 which is a structure with the radiating portion 22 as a reference. Therefore, the heat insulating portion 23 can suppress the convective heat transfer due to the traveling wind, and the radiating portion 22 can radiate the heat of the roof member 112 to the outside.
 具体的には、断熱部23は、断熱性を有する樹脂製の断熱体231を含んでいる。これによれば、走行風に伴う対流伝熱を抑えつつ、電磁波を透過させることが可能な構造を実現することができる。 Specifically, the heat insulating portion 23 includes a heat insulating body 231 made of resin having heat insulating properties. According to this, it is possible to realize a structure capable of transmitting electromagnetic waves while suppressing convective heat transfer due to running wind.
 また、断熱部23は、全体の厚みTiが放射部22の厚みTpよりも大きくなっている。これによると、放射部22によって屋根部材112の熱を外部に放射させつつ、走行風に伴う対流伝熱を充分に抑えることができる。 Further, the thickness Ti of the heat insulating portion 23 is larger than the thickness Tp of the radiating portion 22. According to this, the heat of the roof member 112 can be radiated to the outside by the radiating portion 22, and the convective heat transfer due to the traveling wind can be sufficiently suppressed.
 ここで、自動車10のような移動体は、自然風だけでなく、移動に伴う走行風による対流伝熱の影響を受ける。このため、本実施形態の放熱部材20は自動車10を含む移動体に好適である。すなわち、放熱部材20を自動車10に適用すれば、断熱部23によって対流伝熱を抑えるとともに放射部22によって自動車10の熱を外部に放射させることができる。 Here, a moving body such as the automobile 10 is affected not only by the natural wind but also by the convective heat transfer due to the traveling wind accompanying the movement. Therefore, the heat radiating member 20 of the present embodiment is suitable for a moving body including the automobile 10. That is, if the heat radiating member 20 is applied to the automobile 10, the heat insulating portion 23 can suppress the convective heat transfer and the radiating portion 22 can radiate the heat of the automobile 10 to the outside.
 (第1実施形態の第1変形例)
 第1実施形態では、放熱部材20を自動車10の屋根部材112に適用したものを例示したが、放熱部材20の適用対象は、これに限定されない。
(First Modified Example of First Embodiment)
In the first embodiment, the heat radiating member 20 is applied to the roof member 112 of the automobile 10, but the application target of the heat radiating member 20 is not limited to this.
 例えば、図6に示すように、放熱部材20は、自動車10に搭載される搭載物の1つであるルーフアンテナ12に適用されていてもよい。ルーフアンテナ12は、自動車10の屋根部材112に搭載されるアンテナである。放熱部材20は、例えば、図7のドット柄で示すように、ルーフアンテナ12において外側に露出する外装カバー121に適用することができる。 For example, as shown in FIG. 6, the heat radiating member 20 may be applied to the roof antenna 12, which is one of the mounted objects mounted on the automobile 10. The roof antenna 12 is an antenna mounted on the roof member 112 of the automobile 10. The heat radiating member 20 can be applied to the exterior cover 121 exposed to the outside in the roof antenna 12, for example, as shown by the dot pattern in FIG.
 (第1実施形態の第2変形例)
 また、例えば、図8に示すように、放熱部材20は、自動車10に搭載物の1つである車載カメラ13に適用されていてもよい。車載カメラ13は、自動車10のフロントガラスW付近に搭載されるカメラである。放熱部材20は、例えば、図9のドット柄で示すように、車載カメラ13の外装カバー131のうち撮像部130の周囲に適用される。
(Second modification of the first embodiment)
Further, for example, as shown in FIG. 8, the heat radiating member 20 may be applied to the in-vehicle camera 13 which is one of the mounted objects in the automobile 10. The in-vehicle camera 13 is a camera mounted near the windshield W of the automobile 10. The heat radiating member 20 is applied to the periphery of the imaging unit 130 of the exterior cover 131 of the vehicle-mounted camera 13, as shown by the dot pattern in FIG. 9, for example.
 (第1実施形態の第3変形例)
 また、例えば、図10に示すように、放熱部材20は、自動車10の屋根部材112に搭載されるルーフ設置型の空調機器14に適用されていてもよい。空調機器14は、車室内を空調する機器である。放熱部材20は、例えば、図10のドット柄で示すように、空調機器14の外装カバー141に適用される。これによると、空調機器14の負荷低減を図ることができる。
(Third variant of the first embodiment)
Further, for example, as shown in FIG. 10, the heat radiating member 20 may be applied to the roof-mounted air conditioner 14 mounted on the roof member 112 of the automobile 10. The air conditioner 14 is a device that air-conditions the interior of the vehicle. The heat radiating member 20 is applied to the exterior cover 141 of the air conditioner 14, for example, as shown by the dot pattern in FIG. According to this, the load of the air conditioner 14 can be reduced.
 (第1実施形態の他の変形例)
 第1実施形態では、放熱部材20を自動車10に適用したものを例示したが、放熱部材20の適用対象は、これに限定されない。放熱部材20は、自動車10以外の自転車、電車、飛行機、船舶等の移動体にも広く適用可能である。
(Other Modified Examples of First Embodiment)
In the first embodiment, the heat radiating member 20 applied to the automobile 10 is illustrated, but the application target of the heat radiating member 20 is not limited to this. The heat radiating member 20 can be widely applied to moving bodies such as bicycles, trains, airplanes, and ships other than automobiles 10.
 (第2実施形態)
 次に、第2実施形態について、図11を参照して説明する。本実施形態は、第1実施形態と共通の構成を含んでいることから、以下では、第1実施形態と異なる部分について主に説明する。
(Second Embodiment)
Next, the second embodiment will be described with reference to FIG. Since the present embodiment includes the same configuration as the first embodiment, the parts different from the first embodiment will be mainly described below.
 図11に示すように、放熱部材20は、断熱部23が外部流体と放射部22との間に設定される気体層234を含んで構成されている。断熱部23は、一対の断熱体232、233、一対の断熱体232、233との間に介在する気体層234を含んでいる。 As shown in FIG. 11, the heat radiating member 20 includes a gas layer 234 in which the heat insulating portion 23 is set between the external fluid and the radiating portion 22. The heat insulating portion 23 includes a gas layer 234 interposed between the pair of heat insulating bodies 232 and 233 and the pair of heat insulating bodies 232 and 233.
 一対の断熱体232、233は、樹脂製のフィルムまたはシートで構成される。一対の断熱体232、233の厚みTi1、Ti2は、気体層234の厚みTi3に比べて充分に小さくなっている。 The pair of heat insulating bodies 232 and 233 are composed of a resin film or sheet. The thicknesses Ti1 and Ti2 of the pair of heat insulating bodies 232 and 233 are sufficiently smaller than the thickness Ti3 of the gas layer 234.
 気体層234は、例えば、空気が充填された空気層または真空引きされた真空層として一対の断熱体232、233との間に形成されている。このように、熱伝導率の低い気体層234が含まれることで、放熱部材20の断熱性を充分に確保することができる。なお、放熱部材20は、全体としての厚みTiが反射部21の厚みTrおよび放射部22の厚みTpよりも大きくなっている。 The gas layer 234 is formed between the pair of heat insulating bodies 232 and 233 as, for example, an air-filled air layer or a evacuated vacuum layer. As described above, by including the gas layer 234 having a low thermal conductivity, it is possible to sufficiently secure the heat insulating property of the heat radiating member 20. The heat radiation member 20 has a thickness Ti as a whole larger than the thickness Tr of the reflection portion 21 and the thickness Tp of the radiation portion 22.
 その他の構成は第1実施形態と同様である。本実施形態の放熱部材20は、第1実施形態と共通の構成または均等な構成から奏される効果を第1実施形態と同様に得ることができる。 Other configurations are the same as in the first embodiment. The heat radiating member 20 of the present embodiment can obtain the same effect as that of the first embodiment from the configuration common to or equal to that of the first embodiment.
 特に、本実施形態の放熱部材20は、断熱部23に気体層234が含まれている。これによれば、外部流体の移動に伴う対流伝熱を抑えつつ、電磁波を透過させることが可能な構造を実現することができる。固体に比べて熱伝導率が低い気体で構成される気体層234は、断熱部23が固体だけで構成されるものに比べて外部流体の移動に伴う対流伝熱を充分に抑えたり、全体としての厚みを小さくしたりすることができる。 In particular, the heat radiating member 20 of the present embodiment includes a gas layer 234 in the heat insulating portion 23. According to this, it is possible to realize a structure capable of transmitting electromagnetic waves while suppressing convective heat transfer due to the movement of an external fluid. The gas layer 234 composed of a gas having a lower thermal conductivity than the solid sufficiently suppresses convective heat transfer due to the movement of the external fluid as compared with the one in which the heat insulating portion 23 is composed only of the solid, or as a whole. The thickness of the gas can be reduced.
 (第2実施形態の変形例)
 第2実施形態では、気体層234が一対の断熱体232、233との間に形成されているものを例示したが、断熱部23はこれに限定されない。断熱部23は、例えば、図12に示すように、気体層234が断熱体232と放射部22との間に形成されていてもよい。この場合、断熱体233が省略できるので、断熱部23の全体としての厚みを抑えることができる。
(Modified example of the second embodiment)
In the second embodiment, the gas layer 234 formed between the pair of heat insulating bodies 232 and 233 is illustrated, but the heat insulating portion 23 is not limited to this. In the heat insulating portion 23, for example, as shown in FIG. 12, a gas layer 234 may be formed between the heat insulating body 232 and the radiating portion 22. In this case, since the heat insulating body 233 can be omitted, the thickness of the heat insulating portion 23 as a whole can be suppressed.
 (第3実施形態)
 次に、第3実施形態について、図13を参照して説明する。本実施形態は、第1実施形態と共通の構成を含んでいることから、以下では、第1実施形態と異なる部分について主に説明する。
(Third Embodiment)
Next, the third embodiment will be described with reference to FIG. Since the present embodiment includes the same configuration as the first embodiment, the parts different from the first embodiment will be mainly described below.
 図13に示すように、放熱部材20は、反射部21、放射部22、断熱部23に加えて、熱を蓄積する蓄熱部24を備えている。蓄熱部24は、放射冷却によって冷えて凝固することで冷熱を蓄積する。蓄熱部24は、冷熱を蓄積可能なように、例えば、パラフィンまたは水和物を蓄冷材として含むフィルムまたはシートで構成されている。 As shown in FIG. 13, the heat radiating member 20 includes a heat storage unit 24 for accumulating heat in addition to the reflecting unit 21, the radiating unit 22, and the heat insulating unit 23. The heat storage unit 24 accumulates cold heat by being cooled and solidified by radiative cooling. The heat storage unit 24 is composed of, for example, a film or a sheet containing paraffin or hydrate as a cold storage material so that cold heat can be stored.
 蓄熱部24は、放射部22を基準として断熱部23とは反対側に設けられている。蓄熱部24は、反射部21を基準として放射部22とは反対側に設けられている。具体的には、蓄熱部24は、屋根部材112と熱的に接触するように、反射部21と屋根部材112との間に配置されている。また、蓄熱部24は、蓄冷材を充填し易くなるように、その厚みTsが反射部21の厚みTrおよび放射部22の厚みTpよりも大きくなっている。 The heat storage unit 24 is provided on the opposite side of the heat insulating unit 23 with the radiation unit 22 as a reference. The heat storage unit 24 is provided on the side opposite to the radiation unit 22 with reference to the reflection unit 21. Specifically, the heat storage unit 24 is arranged between the reflection unit 21 and the roof member 112 so as to be in thermal contact with the roof member 112. Further, the thickness Ts of the heat storage unit 24 is larger than the thickness Tr of the reflection unit 21 and the thickness Tp of the radiation unit 22 so that the cold storage material can be easily filled.
 その他の構成は第1実施形態と同様である。本実施形態の放熱部材20は、第1実施形態と共通の構成または均等な構成から奏される効果を第1実施形態と同様に得ることができる。 Other configurations are the same as in the first embodiment. The heat radiating member 20 of the present embodiment can obtain the same effect as that of the first embodiment from the configuration common to or equal to that of the first embodiment.
 ここで、例えば、夜間等のように太陽光が放熱部材20に作用しない場合、太陽光が作用する日中等に比べて、太陽光による吸熱が抑制されることで、外部への放熱が顕著となり、放熱部材20の温度が低下し易い。このため、放熱部材20に対して蓄熱部24を追加すれば、例えば、外部からの吸熱量が減る環境条件において蓄熱部24に冷熱を蓄積することができる。これによると、蓄熱部24に蓄積された冷熱によって、外部からの吸熱量が増える環境条件下での屋根部材112の温度上昇を抑制することができる。 Here, for example, when sunlight does not act on the heat radiating member 20 such as at night, heat absorption by sunlight is suppressed as compared with daytime when sunlight acts, so that heat dissipation to the outside becomes remarkable. , The temperature of the heat radiating member 20 tends to decrease. Therefore, if the heat storage unit 24 is added to the heat radiating member 20, for example, cold heat can be stored in the heat storage unit 24 under environmental conditions in which the amount of heat absorbed from the outside is reduced. According to this, the cold heat accumulated in the heat storage unit 24 can suppress the temperature rise of the roof member 112 under the environmental condition in which the amount of heat absorbed from the outside increases.
 また、放熱部材20は、蓄熱部24が反射部21を基準として断熱部23とは反対側に配置されている。これによれば、太陽光による熱による蓄熱部24の温度上昇が抑制されるので、外部からの吸熱量が増える環境条件下での屋根部材112の温度上昇を充分に抑制することができる。 Further, in the heat radiating member 20, the heat storage portion 24 is arranged on the opposite side of the heat insulating portion 23 with the reflection portion 21 as a reference. According to this, since the temperature rise of the heat storage unit 24 due to the heat of sunlight is suppressed, the temperature rise of the roof member 112 under the environmental condition in which the amount of heat absorbed from the outside increases can be sufficiently suppressed.
 ここで、第3実施形態では、第1実施形態で説明した放熱部材20に蓄熱部24を追加したものを例示したが、放熱部材20はこれに限定されない。放熱部材20は、第2実施形態で説明したものに蓄熱部24を追加した構成になっていてもよい。 Here, in the third embodiment, an example in which the heat storage unit 24 is added to the heat radiating member 20 described in the first embodiment is illustrated, but the heat radiating member 20 is not limited to this. The heat radiating member 20 may have a configuration in which the heat storage unit 24 is added to the one described in the second embodiment.
 (第3実施形態の変形例)
 第3実施形態では、蓄熱部24が反射部21と屋根部材112との間に配置されるものを例示したが、蓄熱部24の配置形態はこれに限定されない。蓄熱部24は、図14に示すように、例えば、屋根部材112を基準として反射部21の反対側に配置されていてもよい。この場合、放熱部材20は、蓄熱部24が反射部21、放射部22、断熱部23等と別体で構成されることになる。なお、図示しないが、蓄熱部24は、例えば、反射部21と放射部22との間に配置されていてもよい。
(Modified example of the third embodiment)
In the third embodiment, the heat storage unit 24 is arranged between the reflection unit 21 and the roof member 112, but the arrangement form of the heat storage unit 24 is not limited to this. As shown in FIG. 14, the heat storage unit 24 may be arranged on the opposite side of the reflection unit 21 with respect to, for example, the roof member 112. In this case, in the heat radiating member 20, the heat storage portion 24 is formed separately from the reflection portion 21, the radiating portion 22, the heat insulating portion 23, and the like. Although not shown, the heat storage unit 24 may be arranged between the reflection unit 21 and the radiation unit 22, for example.
 (第4実施形態)
 次に、第4実施形態について、図15を参照して説明する。本実施形態は、第1実施形態と共通の構成を含んでいることから、以下では、第1実施形態と異なる部分について主に説明する。
(Fourth Embodiment)
Next, the fourth embodiment will be described with reference to FIG. Since the present embodiment includes the same configuration as the first embodiment, the parts different from the first embodiment will be mainly described below.
 図15に示すように、放熱部材20は、反射部21、放射部22、断熱部23に加えて、反射防止部25および保護部26を備えている。 As shown in FIG. 15, the heat radiating member 20 includes a reflection preventing portion 25 and a protective portion 26 in addition to the reflecting portion 21, the radiating portion 22, and the heat insulating portion 23.
 反射防止部25は、太陽光を反射することなく太陽光を透過させる反射防止フィルムとして構成されている。反射防止部25は、放射部22を基準として反射部21の反対側に設けられている。具体的には、反射防止部25は、放射部22と断熱部23との間に配置されている。 The antireflection unit 25 is configured as an antireflection film that allows sunlight to pass through without reflecting sunlight. The antireflection portion 25 is provided on the opposite side of the reflection portion 21 with the radiation portion 22 as a reference. Specifically, the antireflection portion 25 is arranged between the radiation portion 22 and the heat insulating portion 23.
 保護部26は、防水や紫外線からの放射部22の保護等を目的するもので、防水性を有するとともに紫外線をカット可能なフィルムで構成されている。保護部26は、放射部22を基準として反射部21の反対側に設けられている。具体的には、保護部26は、放射部22と反射防止部25との間に配置されている。 The protective portion 26 is intended for waterproofing, protection of the radiating portion 22 from ultraviolet rays, and the like, and is made of a film having waterproof properties and capable of blocking ultraviolet rays. The protection unit 26 is provided on the opposite side of the reflection unit 21 with the radiation unit 22 as a reference. Specifically, the protection unit 26 is arranged between the radiation unit 22 and the reflection prevention unit 25.
 その他の構成は第1実施形態と同様である。本実施形態の放熱部材20は、第1実施形態と共通の構成または均等な構成から奏される効果を第1実施形態と同様に得ることができる。 Other configurations are the same as in the first embodiment. The heat radiating member 20 of the present embodiment can obtain the same effect as that of the first embodiment from the configuration common to or equal to that of the first embodiment.
 ここで、第4実施形態では、第1実施形態で説明した放熱部材20に反射防止部25および保護部26を追加したものを例示したが、放熱部材20はこれに限定されない。放熱部材20は、第2、第3実施形態で説明したものに反射防止部25および保護部26を追加した構成になっていてもよい。 Here, in the fourth embodiment, the heat radiating member 20 described in the first embodiment is illustrated by adding the antireflection unit 25 and the protective unit 26, but the heat radiating member 20 is not limited to this. The heat radiating member 20 may have a configuration in which an antireflection unit 25 and a protection unit 26 are added to those described in the second and third embodiments.
 (第5実施形態)
 次に、第5実施形態について、図16を参照して説明する。本実施形態は、第1実施形態と共通の構成を含んでいることから、以下では、第1実施形態と異なる部分について主に説明する。
(Fifth Embodiment)
Next, the fifth embodiment will be described with reference to FIG. Since the present embodiment includes the same configuration as the first embodiment, the parts different from the first embodiment will be mainly described below.
 図16に示すように、放熱部材20は、反射部21、放射部22、断熱部23に加えて、保護部26およびバリア部27を備えている。保護部26は、第4実施形態で説明したものと同様に構成されている。バリア部27は、ガスまたは水分子の浸透による腐食から反射部21を保護するとともに、放射部22に対する反射部21の金属接着を良好にするために設けられている。バリア部27は、放射部22と反射部21との間に配置されている。 As shown in FIG. 16, the heat radiating member 20 includes a protective portion 26 and a barrier portion 27 in addition to the reflecting portion 21, the radiating portion 22, and the heat insulating portion 23. The protection unit 26 is configured in the same manner as that described in the fourth embodiment. The barrier portion 27 is provided to protect the reflective portion 21 from corrosion due to permeation of gas or water molecules and to improve the metal adhesion of the reflective portion 21 to the radiating portion 22. The barrier portion 27 is arranged between the radiation portion 22 and the reflection portion 21.
 本実施形態の放射部22は、保護部26とバリア部27によって挟持されるように、保護部26とバリア部27との間に配置されている。すなわち、放射部22は、放熱部材20の厚み方向の両側が保護部26とバリア部27とで保護されている。 The radiation unit 22 of the present embodiment is arranged between the protection unit 26 and the barrier unit 27 so as to be sandwiched between the protection unit 26 and the barrier unit 27. That is, in the radiating portion 22, both sides of the heat radiating member 20 in the thickness direction are protected by the protective portion 26 and the barrier portion 27.
 その他の構成は第1実施形態と同様である。本実施形態の放熱部材20は、第1実施形態と共通の構成または均等な構成から奏される効果を第1実施形態と同様に得ることができる。 Other configurations are the same as in the first embodiment. The heat radiating member 20 of the present embodiment can obtain the same effect as that of the first embodiment from the configuration common to or equal to that of the first embodiment.
 ここで、第5実施形態では、第1実施形態で説明した放熱部材20に保護部26およびバリア部27を追加したものを例示したが、放熱部材20はこれに限定されない。放熱部材20は、第2、第3実施形態で説明したものに保護部26およびバリア部27を追加した構成になっていてもよい。 Here, in the fifth embodiment, the heat radiating member 20 described in the first embodiment to which the protective portion 26 and the barrier portion 27 are added is illustrated, but the heat radiating member 20 is not limited to this. The heat radiating member 20 may have a configuration in which a protective portion 26 and a barrier portion 27 are added to those described in the second and third embodiments.
 (第6実施形態)
 次に、第6実施形態について、図17を参照して説明する。本実施形態は、第1実施形態と共通の構成を含んでいることから、以下では、第1実施形態と異なる部分について主に説明する。
(Sixth Embodiment)
Next, the sixth embodiment will be described with reference to FIG. Since the present embodiment includes the same configuration as the first embodiment, the parts different from the first embodiment will be mainly described below.
 図17に示すように、放熱部材20は、反射部21、放射部22、断熱部23に加えて、反射防止部25、保護部26、およびバリア部27を備えている。 As shown in FIG. 17, the heat radiating member 20 includes a reflection prevention unit 25, a protection unit 26, and a barrier unit 27 in addition to the reflection unit 21, the radiation unit 22, and the heat insulation unit 23.
 反射防止部25および保護部26は、第4実施形態で説明したものと同様に構成されている。反射防止部25および保護部26は、放射部22と断熱部23との間に配置されている。また、バリア部27は、第5実施形態で説明したものと同様に構成されている。バリア部27は、放射部22と反射部21との間に配置されている。 The antireflection unit 25 and the protection unit 26 are configured in the same manner as those described in the fourth embodiment. The antireflection portion 25 and the protection portion 26 are arranged between the radiation portion 22 and the heat insulating portion 23. Further, the barrier portion 27 is configured in the same manner as that described in the fifth embodiment. The barrier portion 27 is arranged between the radiation portion 22 and the reflection portion 21.
 その他の構成は第1実施形態と同様である。本実施形態の放熱部材20は、第1実施形態と共通の構成または均等な構成から奏される効果を第1実施形態と同様に得ることができる。 Other configurations are the same as in the first embodiment. The heat radiating member 20 of the present embodiment can obtain the same effect as that of the first embodiment from the configuration common to or equal to that of the first embodiment.
 ここで、第6実施形態では、第1実施形態で説明した放熱部材20に保護部26およびバリア部27を追加したものを例示したが、放熱部材20はこれに限定されない。放熱部材20は、第2、第3実施形態で説明したものに反射防止部25、保護部26、およびバリア部27を追加した構成になっていてもよい。 Here, in the sixth embodiment, the heat radiating member 20 described in the first embodiment is illustrated by adding the protective portion 26 and the barrier portion 27, but the heat radiating member 20 is not limited to this. The heat radiating member 20 may have a configuration in which an antireflection portion 25, a protection portion 26, and a barrier portion 27 are added to those described in the second and third embodiments.
 (第7実施形態)
 次に、第7実施形態について、図18を参照して説明する。本実施形態は、第6実施形態と共通の構成を含んでいることから、以下では、第6実施形態と異なる部分について主に説明する。
(7th Embodiment)
Next, the seventh embodiment will be described with reference to FIG. Since the present embodiment includes the same configuration as the sixth embodiment, the parts different from the sixth embodiment will be mainly described below.
 図18に示すように、放熱部材20は、反射部21、放射部22、断熱部23、反射防止部25、保護部26、およびバリア部27に加えて、熱伝導部28を備えている。 As shown in FIG. 18, the heat radiating member 20 includes a heat conductive portion 28 in addition to the reflecting portion 21, the radiating portion 22, the heat insulating portion 23, the antireflection portion 25, the protective portion 26, and the barrier portion 27.
 熱伝導部28は、屋根部材112から放射部22への熱の移動を促進させるものである。熱伝導部28は、例えば、屋根部材112よりも熱伝導率の低い熱伝導シートで構成されている。熱伝導部28は、反射部21と屋根部材112との間に配置されている。 The heat conductive portion 28 promotes the transfer of heat from the roof member 112 to the radiating portion 22. The heat conductive portion 28 is composed of, for example, a heat conductive sheet having a lower thermal conductivity than the roof member 112. The heat conductive portion 28 is arranged between the reflective portion 21 and the roof member 112.
 その他の構成は第6実施形態と同様である。本実施形態の放熱部材20は、第6実施形態と共通の構成または均等な構成から奏される効果を第6実施形態と同様に得ることができる。 Other configurations are the same as those in the sixth embodiment. The heat radiating member 20 of the present embodiment can obtain the same effect as that of the sixth embodiment from the same configuration or the same configuration as that of the sixth embodiment.
 ここで、第7実施形態では、第6実施形態で説明した放熱部材20に熱伝導部28を追加したものを例示したが、放熱部材20はこれに限定されない。放熱部材20は、第2~第5実施形態で説明したものに熱伝導部28を追加した構成になっていてもよい。 Here, in the seventh embodiment, an example in which the heat conductive portion 28 is added to the heat radiating member 20 described in the sixth embodiment is illustrated, but the heat radiating member 20 is not limited to this. The heat radiating member 20 may have a configuration in which the heat conductive portion 28 is added to those described in the second to fifth embodiments.
 (第8実施形態)
 次に、第8実施形態について、図19~図21を参照して説明する。本実施形態は、第1実施形態と共通の構成を含んでいることから、以下では、第1実施形態と異なる部分について主に説明する。
(8th Embodiment)
Next, the eighth embodiment will be described with reference to FIGS. 19 to 21. Since the present embodiment includes the same configuration as the first embodiment, the parts different from the first embodiment will be mainly described below.
 図19および図20に示すように、本実施形態は、本開示の放熱部材20を移動体ではなく、可搬機器の1つであるクーラボックス30の上蓋部31に適用している。クーラボックス30は、例えば、自転車BYに設置されてユーザによって目的地まで搬送される可搬機器である。なお、クーラボックス30は、自転車BY以外の移動体に設置されたり、ユーザが直接持ったりするものであってもよい。 As shown in FIGS. 19 and 20, the present embodiment applies the heat radiating member 20 of the present disclosure to the upper lid portion 31 of the cooler box 30, which is one of the portable devices, instead of the moving body. The cooler box 30 is, for example, a portable device installed on a bicycle BY and transported to a destination by a user. The cooler box 30 may be installed on a moving body other than the bicycle BY, or may be directly held by the user.
 クーラボックス30は、中空状の箱体であり、その上部に内容物を出し入れするための上蓋部31が設けられている。本実施形態では、クーラボックス30が構造体に対応し、上蓋部31が外殻を形成する外装部材に対応している。 The cooler box 30 is a hollow box body, and an upper lid portion 31 for taking in and out the contents is provided on the upper portion thereof. In the present embodiment, the cooler box 30 corresponds to the structure, and the upper lid portion 31 corresponds to the exterior member forming the outer shell.
 クーラボックス30では、上蓋部31が他の部位に比べて太陽光に晒され易い。また、上蓋部31は、他の部位に比べて通風抵抗となる要素が少ないためボックス外の自然風に伴う対流伝熱が生じ易い。このため、クーラボックス30の上蓋部31に対して本開示の放熱部材20が設置されている。なお、放熱部材20は、クーラボックス30において太陽光に晒される部位であれば、上蓋部31以外の部位に設置されていてもよい。 In the cooler box 30, the upper lid portion 31 is more easily exposed to sunlight than other parts. Further, since the upper lid portion 31 has fewer elements that provide ventilation resistance than other portions, convective heat transfer due to natural wind outside the box is likely to occur. Therefore, the heat radiating member 20 of the present disclosure is installed on the upper lid portion 31 of the cooler box 30. The heat radiating member 20 may be installed in a portion other than the upper lid portion 31 as long as it is a portion of the cooler box 30 exposed to sunlight.
 本実施形態の放熱部材20は、反射部21および放射部22の積層体Stと断熱部23とが別体で構成され、断熱部23が積層体Stに対して脱着可能に構成されている。放熱部材20は、図21に示すように、断熱部23を積層体Stに装着したり、断熱部23が装着された積層体Stから断熱部23を取り外したりすることができる。 In the heat radiating member 20 of the present embodiment, the laminated body St of the reflecting portion 21 and the radiating portion 22 and the heat insulating portion 23 are separately formed, and the heat insulating portion 23 is configured to be detachable from the laminated body St. As shown in FIG. 21, the heat radiating member 20 can attach the heat insulating portion 23 to the laminated body St, or remove the heat insulating portion 23 from the laminated body St to which the heat insulating portion 23 is attached.
 その他の構成は第1実施形態と同様である。本実施形態の放熱部材20は、第1実施形態と共通の構成または均等な構成から奏される効果を第1実施形態と同様に得ることができる。 Other configurations are the same as in the first embodiment. The heat radiating member 20 of the present embodiment can obtain the same effect as that of the first embodiment from the configuration common to or equal to that of the first embodiment.
 本実施形態では、放熱部材20を可搬機器であるクーラボックス30に適用している。これによると、断熱部23によってクーラボックス30の周囲に生ずる風に伴う対流伝熱を抑えるとともに放射部22によってクーラボックス30の熱を外部に放射させることができる。この結果、エネルギレスでクーラボックス30の内容物の温度を低温に維持することができる。 In this embodiment, the heat radiating member 20 is applied to the cooler box 30 which is a portable device. According to this, the heat insulating portion 23 can suppress the convective heat transfer caused by the wind generated around the cooler box 30, and the radiating portion 22 can radiate the heat of the cooler box 30 to the outside. As a result, the temperature of the contents of the cooler box 30 can be maintained at a low temperature without energy.
 また、本実施形態の放熱部材20は、断熱部23が反射部21および放射部22の積層体Stに対して脱着可能に構成されている。これによると、断熱部23を付加したり、取り外したりすることができるので、クーラボックス30の周囲環境に適した放熱部材20を提供することが可能となる。なお、断熱部23が積層体Stに対して脱着可能に構成は、本実施形態以外にも適用可能である。 Further, the heat radiating member 20 of the present embodiment is configured such that the heat insulating portion 23 can be attached to and detached from the laminated body St of the reflecting portion 21 and the radiating portion 22. According to this, since the heat insulating portion 23 can be added or removed, it is possible to provide the heat radiating member 20 suitable for the surrounding environment of the cooler box 30. The configuration in which the heat insulating portion 23 can be attached to and detached from the laminated body St can be applied to other than the present embodiment.
 ここで、クーラボックス30等の可搬機器は、移動体と同様に、自然風だけでなく、搬送時に生ずる走行風を受け易い。このため、放熱部材20は可搬機器に好適である。 Here, a portable device such as a cooler box 30 is susceptible to not only natural wind but also traveling wind generated during transportation, like a moving body. Therefore, the heat radiating member 20 is suitable for portable equipment.
 なお、第8実施形態では、第1実施形態で説明した放熱部材20をクーラボックス30に適用した例について説明したが、クーラボックス30に第2~第7実施形態で説明した放熱部材20が適用されていてもよい。 In the eighth embodiment, an example in which the heat radiating member 20 described in the first embodiment is applied to the cooler box 30 has been described, but the heat radiating member 20 described in the second to seventh embodiments is applied to the cooler box 30. It may have been done.
 クーラボックス30に対して蓄熱部24を含む放熱部材20が適用される場合、例えば、クーラボックス30が開閉され難い夜間に蓄熱部24に冷熱を蓄積し、当該冷熱を日中に利用することができる。これによると、エネルギレスでクーラボックス30の内容物の温度を低温に維持することができる。 When the heat radiating member 20 including the heat storage unit 24 is applied to the cooler box 30, for example, cold heat can be accumulated in the heat storage unit 24 at night when the cooler box 30 is difficult to open and close, and the cold heat can be used during the daytime. it can. According to this, the temperature of the contents of the cooler box 30 can be maintained at a low temperature without energy.
 (第8実施形態の変形例)
 第8実施形態では、可搬機器としてクーラボックス30を例示したが、可搬機器はこれに限定されない。可搬機器は、例えば、図22に示すように、トレーラTによって運搬されるコンテナCNであってもよい。放熱部材20は、例えば、図22のドット柄で示すように、コンテナCNにおいて外側に露出する上面部Rに適用することができる。本変形例では、コンテナCNが構造体に対応し、上面部Rが外殻を形成する外装部材に対応している。
(Modified example of the eighth embodiment)
In the eighth embodiment, the cooler box 30 is illustrated as the portable device, but the portable device is not limited to this. The portable device may be, for example, a container CN carried by the trailer T, as shown in FIG. The heat radiating member 20 can be applied to the upper surface portion R exposed to the outside in the container CN, for example, as shown by the dot pattern in FIG. In this modification, the container CN corresponds to the structure, and the upper surface portion R corresponds to the exterior member forming the outer shell.
 (第9実施形態)
 次に、第9実施形態について、図23を参照して説明する。本実施形態は、第1実施形態と共通の構成を含んでいることから、以下では、第1実施形態と異なる部分について主に説明する。
(9th Embodiment)
Next, the ninth embodiment will be described with reference to FIG. 23. Since the present embodiment includes the same configuration as the first embodiment, the parts different from the first embodiment will be mainly described below.
 図23に示すように、本実施形態は、本開示の放熱部材20を移動体ではなく、飲料物Dを提供する自動販売機40に適用している。自動販売機40は、太陽光に晒される屋外設置型の機器として構成されている。自動販売機40は、ユーザに対して適温の飲料物Dを提供できるように、飲料物Dの温度を調整可能になっている。なお、自動販売機40は、飲料物Dに限らず、例えば、食物を提供するように構成されていてもよい。また、自動販売機40は、ユーザに対して飲食物等を有償で提供するものに限らず、無償で提供するものであってもよい。本実施形態では、自動販売機40がユーザに対して冷温物を提供する提供機器に対応し、飲料物Dが冷温物に対応している。 As shown in FIG. 23, in the present embodiment, the heat radiating member 20 of the present disclosure is applied to the vending machine 40 that provides the beverage D, not the moving body. The vending machine 40 is configured as an outdoor installation type device exposed to sunlight. The vending machine 40 can adjust the temperature of the beverage D so that the beverage D having an appropriate temperature can be provided to the user. The vending machine 40 is not limited to the beverage D, and may be configured to provide food, for example. Further, the vending machine 40 is not limited to providing food and drink to the user for a fee, and may be provided free of charge. In the present embodiment, the vending machine 40 corresponds to the providing device that provides the cold and hot food to the user, and the beverage D corresponds to the cold and hot food.
 自動販売機40は、外殻を形成する筐体41を有している。筐体41は、中空状の箱体であり、その内側にユーザに提供する飲料物Dが収容されている。本実施形態では、自動販売機40が構造体に対応し、筐体41が外殻を形成する外装部材に対応している。 The vending machine 40 has a housing 41 that forms an outer shell. The housing 41 is a hollow box, and the beverage D to be provided to the user is housed inside the housing 41. In this embodiment, the vending machine 40 corresponds to the structure, and the housing 41 corresponds to the exterior member forming the outer shell.
 筐体41は、天板部分411が他の部位に比べて太陽光に晒され易い。また、天板部分411は、他の部位に比べて通風抵抗となる要素が少ないため機外の自然風に伴う対流伝熱が生じ易い。このため、筐体41の天板部分411に対して本開示の放熱部材20が設置されている。なお、放熱部材20は、筐体41において太陽光に晒される部位であれば、天板部分411以外の部位に設置されていてもよい。 In the housing 41, the top plate portion 411 is more easily exposed to sunlight than other parts. Further, since the top plate portion 411 has fewer elements that cause ventilation resistance than other portions, convective heat transfer due to natural wind outside the machine is likely to occur. Therefore, the heat radiating member 20 of the present disclosure is installed on the top plate portion 411 of the housing 41. The heat radiating member 20 may be installed in a portion other than the top plate portion 411 as long as it is a portion of the housing 41 that is exposed to sunlight.
 その他の構成は第1実施形態と同様である。本実施形態の放熱部材20は、第1実施形態と共通の構成または均等な構成から奏される効果を第1実施形態と同様に得ることができる。 Other configurations are the same as in the first embodiment. The heat radiating member 20 of the present embodiment can obtain the same effect as that of the first embodiment from the configuration common to or equal to that of the first embodiment.
 本実施形態では、放熱部材20を提供機器である自動販売機40に適用している。これによると、断熱部23によって自動販売機40の周囲に生ずる風に伴う対流伝熱を抑えるとともに放射部22によって自動販売機40の熱を外部に放射させることができる。この結果、冷温物の温度を調整に要するエネルギの低減を図ることができる。 In this embodiment, the heat radiating member 20 is applied to the vending machine 40 which is the providing device. According to this, the heat insulating portion 23 suppresses the convective heat transfer caused by the wind generated around the vending machine 40, and the radiating portion 22 can radiate the heat of the vending machine 40 to the outside. As a result, it is possible to reduce the energy required for adjusting the temperature of the cold and hot material.
 なお、第9実施形態では、第1実施形態で説明した放熱部材20を自動販売機40に適用した例について説明したが、自動販売機40に第2~第7実施形態で説明した放熱部材20が適用されていてもよい。 In the ninth embodiment, an example in which the heat radiating member 20 described in the first embodiment is applied to the vending machine 40 has been described, but the heat radiating member 20 described in the second to seventh embodiments has been described for the vending machine 40. May be applied.
 (第10実施形態)
 次に、第10実施形態について、図24~図30を参照して説明する。本実施形態は、第1実施形態と共通の構成を含んでいることから、以下では、第1実施形態と異なる部分について主に説明する。
(10th Embodiment)
Next, the tenth embodiment will be described with reference to FIGS. 24 to 30. Since the present embodiment includes the same configuration as the first embodiment, the parts different from the first embodiment will be mainly described below.
 図24および図25に示すように、本実施形態は、本開示の放熱部材20を移動体ではなく、建物の1つである家屋50に適用している。家屋50は、家屋50の外殻のうち側面部分を形成する外壁部51、および家屋50の外殻のうち天井部分を形成する屋根部52を有する。本実施形態では、家屋50が構造体に対応し、屋根部52が外殻を形成する外装部材に対応している。 As shown in FIGS. 24 and 25, in the present embodiment, the heat radiating member 20 of the present disclosure is applied not to a moving body but to a house 50 which is one of the buildings. The house 50 has an outer wall portion 51 that forms a side surface portion of the outer shell of the house 50, and a roof portion 52 that forms a ceiling portion of the outer shell of the house 50. In the present embodiment, the house 50 corresponds to the structure, and the roof portion 52 corresponds to the exterior member forming the outer shell.
 屋根部52は、所定方向から見た際の側面形状が三角形状となる切妻屋根として構成されている。なお、屋根部52は、4方向に傾斜がある寄棟屋根、1方向に傾斜がある片流れ屋根、傾斜がなく水平な陸屋根等で構成されていてもよい。 The roof portion 52 is configured as a gable roof having a triangular side surface shape when viewed from a predetermined direction. The roof portion 52 may be composed of a hipped roof having a slope in four directions, a one-sided roof having a slope in one direction, a flat roof having no slope, and the like.
 家屋50では、屋根部52が他の部位に比べて太陽光に晒され易い。また、屋根部52は、他の部位に比べて通風抵抗となる要素が少ないため屋外の自然風に伴う対流伝熱が生じ易い。このため、家屋50の屋根部52に対して本開示の放熱部材20が設置されている。なお、放熱部材20は、家屋50において太陽光に晒される部位であれば、屋根部52以外の部位に設置されていてもよい。 In the house 50, the roof portion 52 is more easily exposed to sunlight than other parts. Further, since the roof portion 52 has fewer elements that cause ventilation resistance than other portions, convective heat transfer due to the natural outdoor wind is likely to occur. Therefore, the heat radiating member 20 of the present disclosure is installed on the roof portion 52 of the house 50. The heat radiating member 20 may be installed in a portion other than the roof portion 52 as long as it is a portion of the house 50 exposed to sunlight.
 このように構成される家屋50は、屋根部52に放熱部材20が設置されている。このため、放熱部材20の断熱部23によって自然風に伴う対流伝熱を抑えるとともに放射部22によって家屋50の屋根部52の熱を外部に放射させることができる。 In the house 50 configured in this way, the heat radiating member 20 is installed on the roof portion 52. Therefore, the heat insulating portion 23 of the heat radiating member 20 can suppress the convective heat transfer due to the natural wind, and the radiating portion 22 can radiate the heat of the roof portion 52 of the house 50 to the outside.
 ここで、太陽光が作用しない夜間は、太陽光が作用する日中に比べて、屋根部52における外部からの吸熱量が減る。その一方で、屋根部52における外部への放熱量は、夜間と日中とで殆ど変化しない。このため、図26に示すように、太陽光が作用しない夜間は、太陽光が作用する日中に比べて、屋根部52が温度低下することで屋根部52の内側に結露Cが生じ易くなる。換言すれば、放熱部材20を屋根部52に設置すれば、屋根部52の内側に水を生成することが可能となる。 Here, at night when sunlight does not act, the amount of heat absorbed from the outside by the roof portion 52 decreases as compared with daytime when sunlight acts. On the other hand, the amount of heat radiated to the outside in the roof portion 52 hardly changes between nighttime and daytime. Therefore, as shown in FIG. 26, at night when sunlight does not act, the temperature of the roof portion 52 drops as compared with the daytime when sunlight acts, so that dew condensation C is likely to occur inside the roof portion 52. .. In other words, if the heat radiating member 20 is installed on the roof portion 52, water can be generated inside the roof portion 52.
 そこで、本実施形態の屋根部52は、放熱部材20および屋根部52の組み合わせが水生成手段として機能するように構成されている。なお、放熱部材20および屋根部52の組み合わせは放熱システムを構成している。 Therefore, the roof portion 52 of the present embodiment is configured such that the combination of the heat radiating member 20 and the roof portion 52 functions as a water generating means. The combination of the heat radiating member 20 and the roof portion 52 constitutes a heat radiating system.
 図27に示すように、屋根部52には、結露によって生じた水(すなわち、結露水)を後述する貯水装置60に導くためのガイド521が設けられている。ガイド521は、屋根部52に生じた凝縮水を貯水装置60に集めるためのものである。ガイド521は、例えば、図28に示すように、屋根部52の上端に位置する棟部分52aから屋根部52の下端に位置する軒部分52bに向けて延びる複数の排水溝521aによって構成されている。排水溝521aは、V字状の断面形状を有している。なお、排水溝521aは、V字状以外の断面形状になっていてもよい。 As shown in FIG. 27, the roof portion 52 is provided with a guide 521 for guiding water generated by dew condensation (that is, dew condensation water) to a water storage device 60 described later. The guide 521 is for collecting the condensed water generated in the roof portion 52 in the water storage device 60. As shown in FIG. 28, the guide 521 is composed of a plurality of drainage grooves 521a extending from the ridge portion 52a located at the upper end of the roof portion 52 toward the eaves portion 52b located at the lower end of the roof portion 52. .. The drainage groove 521a has a V-shaped cross section. The drainage groove 521a may have a cross-sectional shape other than the V shape.
 ここで、結露によって屋根部52付近の湿度が低下すると、結露水の量が少なくなってしまう。このため、屋根部52には、屋根部52の内側に湿度の高い空気を送風するためのファン522が設けられている。本実施形態では、ファン522が結露水の発生を促進させる結露促進部材に対応している。 Here, if the humidity near the roof portion 52 decreases due to dew condensation, the amount of dew condensation water decreases. Therefore, the roof portion 52 is provided with a fan 522 for blowing high-humidity air inside the roof portion 52. In the present embodiment, the fan 522 corresponds to a dew condensation promoting member that promotes the generation of dew condensation water.
 ファン522は、通電により駆動される電動送風機で構成されている。ファン522は、後述の制御部100からの制御信号に応じて送風能力が調整される。なお、図面では、理解し易いように、ファン522として市販される一般的な扇風機を示しているが、ファン522は図に示す扇風機以外のもので構成されていてもよい。 The fan 522 is composed of an electric blower driven by energization. The fan 522 has an air blowing capacity adjusted according to a control signal from the control unit 100 described later. In the drawings, a general electric fan commercially available as a fan 522 is shown for easy understanding, but the fan 522 may be composed of a fan other than the electric fan shown in the figure.
 貯水装置60は、結露水を貯留する貯水槽61を含んで構成されている。貯水槽61は、例えば、円筒状のドラムで構成される。貯水槽61は、太陽光に晒され難いように屋根部52の下側または家屋50の内側に配置されていることが望ましい。なお、貯水装置60は、ガイド521から貯水槽61へと結露水を流すための中間部材が含まれていてもよい。 The water storage device 60 includes a water storage tank 61 for storing condensed water. The water storage tank 61 is composed of, for example, a cylindrical drum. It is desirable that the water storage tank 61 is arranged under the roof portion 52 or inside the house 50 so as not to be exposed to sunlight. The water storage device 60 may include an intermediate member for flowing condensed water from the guide 521 to the water storage tank 61.
 次に、放熱システムの電子制御部である制御部100について図29を参照して説明する。 Next, the control unit 100, which is the electronic control unit of the heat dissipation system, will be described with reference to FIG. 29.
 図29に示すように、制御部100は、プロセッサ100a、メモリ100bを含むコンピュータとその周辺回路とで構成されている。メモリ100bは非遷移的実体的記憶媒体で構成されている。 As shown in FIG. 29, the control unit 100 includes a computer including a processor 100a and a memory 100b, and peripheral circuits thereof. The memory 100b is composed of a non-transitional substantive storage medium.
 制御部100は、出力側にファン522等の駆動機器が接続されている。また、制御部100の入力側には、屋根部52の温度を検出する温度センサ101、屋根部52付近の湿度を検出する湿度センサ102等が接続されている。 A drive device such as a fan 522 is connected to the output side of the control unit 100. Further, a temperature sensor 101 for detecting the temperature of the roof portion 52, a humidity sensor 102 for detecting the humidity in the vicinity of the roof portion 52, and the like are connected to the input side of the control unit 100.
 このように、制御部100は、各種の検出信号が入力される。制御部100は、入力される各種信号等をメモリ100bに記憶されたプログラムに基づいて、演算および処理を行うことで出力側の機器を制御する。本実施形態の制御部100には、屋根部52の温度等に応じてファン522を制御する促進制御部100cが含まれている。 In this way, various detection signals are input to the control unit 100. The control unit 100 controls the device on the output side by performing calculations and processing based on a program stored in the memory 100b for various input signals and the like. The control unit 100 of the present embodiment includes a promotion control unit 100c that controls the fan 522 according to the temperature of the roof portion 52 and the like.
 次に、制御部100が実行するファン522の制御処理について図30を参照して説明する。図30に示す制御ルーチンは、周期的または不定期に制御部100によって実行される。 Next, the control process of the fan 522 executed by the control unit 100 will be described with reference to FIG. The control routine shown in FIG. 30 is executed by the control unit 100 periodically or irregularly.
 図30に示すように、制御部100は、ステップS10にて、入力側に接続された各種信号を読み込む。具体的には、制御部100は、温度センサ101の検出信号TRおよび湿度センサ102の検出信号RMを読み込む。 As shown in FIG. 30, the control unit 100 reads various signals connected to the input side in step S10. Specifically, the control unit 100 reads the detection signal TR of the temperature sensor 101 and the detection signal RM of the humidity sensor 102.
 続いて、制御部100は、ステップS20にて、湿度センサ102の検出信号RMが湿度センサ102の検出信号RMにおいて所定の基準湿度に対応する基準信号RMth以下であるか否かを判定する。 Subsequently, in step S20, the control unit 100 determines whether or not the detection signal RM of the humidity sensor 102 is equal to or less than the reference signal RMth corresponding to the predetermined reference humidity in the detection signal RM of the humidity sensor 102.
 この結果、湿度センサ102の検出信号RMが基準信号RMth以下となる場合、制御部100は、ステップS30にて、ファン522に通電し、所定の回転数でファン522を作動させる。これによると、屋根部52付近の湿度が高い状態に維持され易いので、結露水を連続的に発生させて水の生成量を充分に確保することができる。 As a result, when the detection signal RM of the humidity sensor 102 becomes equal to or less than the reference signal RMth, the control unit 100 energizes the fan 522 in step S30 and operates the fan 522 at a predetermined rotation speed. According to this, since the humidity in the vicinity of the roof portion 52 is easily maintained in a high state, it is possible to continuously generate dew condensation water and secure a sufficient amount of water generation.
 一方、湿度センサ102の検出信号RMが基準信号RMthよりも大きくなる場合、制御部100は、ステップS30にて、ファン522に通電を停止し、ファン522の作動を停止させる。このように、屋根部52付近の湿度が高い状態ではファン522の作動を停止させることで、水の生成に伴うエネルギ消費を抑えることができる。 On the other hand, when the detection signal RM of the humidity sensor 102 becomes larger than the reference signal RMth, the control unit 100 stops energizing the fan 522 and stops the operation of the fan 522 in step S30. In this way, by stopping the operation of the fan 522 when the humidity near the roof portion 52 is high, it is possible to suppress the energy consumption associated with the generation of water.
 続いて、制御部100は、ステップS40にて、温度センサ101の検出信号TRが水の凍結が生じ始める温度(例えば、0°)付近に対応する基準信号TRth以下であるか否かを判定する。 Subsequently, in step S40, the control unit 100 determines whether or not the detection signal TR of the temperature sensor 101 is equal to or lower than the reference signal TRth corresponding to the vicinity of the temperature (for example, 0 °) at which water freeze starts. ..
 そして、制御部100は、温度センサ101の検出信号TRが基準信号TRth以下となる場合にステップS60に移行し、温度センサ101の検出信号TRが基準信号TRthよりも大きくなる場合にステップS60をスキップして本制御処理を抜ける。 Then, the control unit 100 proceeds to step S60 when the detection signal TR of the temperature sensor 101 is equal to or less than the reference signal TRth, and skips step S60 when the detection signal TR of the temperature sensor 101 becomes larger than the reference signal TRth. And exit this control process.
 ステップS60の制御処理では、ファン522の作動が停止している場合、ファン522に通電してファン522を作動させ、ファン522が作動している場合はファン522の回転数が増加するようにファン522に対する通電量を増加させる。これによれば、屋根部52の内側での結露水の凍結が抑制されるので、結露水の凍結に伴う水回収の停止を抑制することができる。 In the control process of step S60, when the operation of the fan 522 is stopped, the fan 522 is energized to operate the fan 522, and when the fan 522 is operating, the rotation speed of the fan 522 is increased. Increase the amount of electricity applied to 522. According to this, since the freezing of the dew condensation water inside the roof portion 52 is suppressed, it is possible to suppress the stoppage of water recovery due to the freezing of the dew condensation water.
 その他の構成は第1実施形態と同様である。本実施形態の放熱部材20は、第1実施形態と共通の構成または均等な構成から奏される効果を第1実施形態と同様に得ることができる。 Other configurations are the same as in the first embodiment. The heat radiating member 20 of the present embodiment can obtain the same effect as that of the first embodiment from the configuration common to or equal to that of the first embodiment.
 ここで、家屋50等の建物は、自然風による対流伝熱の影響を受ける。このため、放熱部材20を家屋50に適用すれば、断熱部23によって自然風に伴う対流伝熱を抑えるとともに放射部22によって家屋50の熱を外部に放射させることができる。 Here, buildings such as houses 50 are affected by convective heat transfer due to the natural wind. Therefore, if the heat radiating member 20 is applied to the house 50, the heat insulating portion 23 can suppress the convective heat transfer due to the natural wind, and the radiating portion 22 can radiate the heat of the house 50 to the outside.
 本実施形態の家屋50の屋根部52には、貯水装置60に導くガイド521が設けられているので、家屋50の屋根部52に生ずる結露を利用して水を生成することができる。このような放熱システムは、例えば、砂漠等のように、降雨量よりも蒸発量が多い地域に好適である。このような地域に放熱システムを適用すれば、外部からエネルギを投入することなく、日中の温度上昇を抑制しつつ夜間等に水を生成することができる。 Since the roof portion 52 of the house 50 of the present embodiment is provided with a guide 521 leading to the water storage device 60, water can be generated by utilizing the dew condensation generated on the roof portion 52 of the house 50. Such a heat dissipation system is suitable for an area where the amount of evaporation is larger than the amount of rainfall, such as a desert. If the heat dissipation system is applied to such an area, it is possible to generate water at night or the like while suppressing the temperature rise during the day without inputting energy from the outside.
 また、屋根部52に対してファン522が設けられていれば、ファン522による空気の送風によって、屋根部52付近を高湿度に維持することが可能となる。この結果、放熱システムにおける水の生成効率の向上を図ることができる。 Further, if the fan 522 is provided for the roof portion 52, it is possible to maintain a high humidity in the vicinity of the roof portion 52 by blowing air from the fan 522. As a result, the efficiency of water generation in the heat dissipation system can be improved.
 さらに、屋根部52の温度に応じて制御部100がファン522を制御可能になっていれば、結露水の凍結を抑えることができるので、放熱システムにおける水の生成効率の向上を図ることができる。 Further, if the control unit 100 can control the fan 522 according to the temperature of the roof portion 52, the freezing of the condensed water can be suppressed, so that the water generation efficiency in the heat dissipation system can be improved. ..
 (第10実施形態の第1変形例)
 第10実施形態では、放熱部材20を常設される家屋50に適用したものを例示したが、放熱部材20の適用対象は、これに限定されず、家屋50以外の様々な建物に適用可能である。
(First modification of the tenth embodiment)
In the tenth embodiment, the heat radiating member 20 is applied to the permanently installed house 50, but the application target of the heat radiating member 20 is not limited to this, and the heat radiating member 20 can be applied to various buildings other than the house 50. ..
 例えば、図31に示すように、放熱部材20は、建物のうち仮設型のビニールハウス70に適用されていてもよい。ビニールハウス70は、主に屋根材71が太陽光に晒される。このため、放熱部材20は、図31のドット柄で示すように、ビニールハウス70の屋根材71に適用することができる。本変形例では、ビニールハウス70が構造体に対応し、屋根材71が外殻を形成する外装部材に対応している。 For example, as shown in FIG. 31, the heat radiating member 20 may be applied to a temporary type greenhouse 70 in a building. In the vinyl house 70, the roofing material 71 is mainly exposed to sunlight. Therefore, the heat radiating member 20 can be applied to the roofing material 71 of the vinyl house 70 as shown by the dot pattern in FIG. In this modification, the vinyl house 70 corresponds to the structure, and the roofing material 71 corresponds to the exterior member forming the outer shell.
 (第10実施形態の第2変形例)
 また、例えば、図32に示すように、放熱部材20は、家屋50に設置される設置物の1つである太陽光発電パネルSPに適用されていてもよい。太陽光発電パネルSPは、複数の受光部LRおよび複数の受光部LRを囲む枠体Fを含んでいる。放熱部材20は、例えば、図32のドット柄で示すように、太陽光発電パネルSPの枠体Fに適用される。なお、太陽光発電パネルSPの発電に影響しないのであれば、放熱部材20は、受光部LRに適用されていてもよい。本変形例では、太陽光発電パネルSPが構造体に対応し、枠体Fが外殻を形成する外装部材に対応している。
(Second modification of the tenth embodiment)
Further, for example, as shown in FIG. 32, the heat radiating member 20 may be applied to the photovoltaic power generation panel SP, which is one of the installation objects installed in the house 50. The photovoltaic power generation panel SP includes a plurality of light receiving units LR and a frame body F surrounding the plurality of light receiving units LR. The heat radiating member 20 is applied to the frame body F of the photovoltaic power generation panel SP, for example, as shown by the dot pattern in FIG. The heat radiating member 20 may be applied to the light receiving unit LR as long as it does not affect the power generation of the photovoltaic power generation panel SP. In this modification, the photovoltaic power generation panel SP corresponds to the structure, and the frame F corresponds to the exterior member forming the outer shell.
 (第10実施形態の他の変形例)
 第10実施形態では、第1実施形態で説明した放熱部材20を建物に適用した例について説明したが、建物に第2~第7実施形態で説明した放熱部材20が適用されていてもよい。
(Other Modifications of the Tenth Embodiment)
In the tenth embodiment, the example in which the heat radiating member 20 described in the first embodiment is applied to the building has been described, but the heat radiating member 20 described in the second to seventh embodiments may be applied to the building.
 第10実施形態では、放熱部材20と家屋50の屋根部52との組み合わせで放熱システムが構成される例について説明したが、放熱システムはこれに限定されない。放熱システムは、例えば、水生成手段の専用のシステムとして機能するように、放熱部材20と貯水装置60の屋根部分との組み合わせで構成されていてもよい。放熱システムは、例えば、放熱部材20と移動体、可搬機器、および提供機器のいずれかとの組み合わせで構成されていてもよい。 In the tenth embodiment, an example in which the heat radiating system is configured by the combination of the heat radiating member 20 and the roof portion 52 of the house 50 has been described, but the heat radiating system is not limited to this. The heat radiating system may be composed of a combination of the heat radiating member 20 and the roof portion of the water storage device 60 so as to function as a dedicated system for the water generating means, for example. The heat radiating system may be composed of, for example, a combination of the heat radiating member 20 and any of a moving body, a portable device, and a providing device.
 また、放熱システムは、例えば、水生成手段の専用のシステムとして機能するように、放熱部材20と貯水装置60の屋根部分との組み合わせで構成されていてもよい。 Further, the heat radiating system may be composed of a combination of the heat radiating member 20 and the roof portion of the water storage device 60 so as to function as a dedicated system for the water generating means, for example.
 第10実施形態では、放熱システムが、断熱部23を有する放熱部材20を含んでいるものを例示したが、放熱部材20に代えて、例えば、第1実施形態の比較例となる放熱シートCEを含んで構成されていてもよい。 In the tenth embodiment, the heat radiating system includes the heat radiating member 20 having the heat insulating portion 23. However, instead of the heat radiating member 20, for example, a heat radiating sheet CE as a comparative example of the first embodiment is used. It may be configured to include.
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
(Other embodiments)
Although the typical embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and can be variously modified as follows, for example.
 上述の実施形態では、放熱部材20の適用対象として、移動体、建物、可搬機器、提供機器を例示したが、これに限らず、放熱部材20は、移動体、建物、可搬機器、提供機器以外の様々な機器に対して広く適用可能である。 In the above-described embodiment, the mobile body, the building, the portable device, and the provided device are exemplified as the application target of the heat radiating member 20, but the heat radiating member 20 is not limited to this, and the heat radiating member 20 is the moving body, the building, the portable device, and the provided device. It can be widely applied to various devices other than devices.
 上述の実施形態では、放熱部材20として、反射部21、放射部22、断熱部23以外のものを含む例についても説明したが、放熱部材20は、例示したものに限らず、例示してない構成になっていてもよい。 In the above-described embodiment, an example including a heat radiating member 20 other than the reflecting portion 21, the radiating portion 22, and the heat insulating portion 23 has been described, but the heat radiating member 20 is not limited to the example and is not exemplified. It may be configured.
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Needless to say, in the above-described embodiment, the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when they are clearly considered to be essential in principle.
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。 In the above-described embodiment, when numerical values such as the number, numerical value, amount, range, etc. of the components of the embodiment are mentioned, when it is clearly stated that it is particularly essential, and in principle, it is clearly limited to a specific number. Except as the case, it is not limited to the specific number.
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。 In the above-described embodiment, when referring to the shape, positional relationship, etc. of a component or the like, the shape, positional relationship, etc., unless otherwise specified or limited in principle to a specific shape, positional relationship, etc. Etc. are not limited.
 上述の実施形態において、センサから家屋等の構造体の外部環境情報(例えば車外の湿度)を取得することが記載されている場合、そのセンサを廃し、構造体の外部のサーバまたはクラウドからその外部環境情報を受信することも可能である。あるいは、そのセンサを廃し、構造体の外部のサーバまたはクラウドからその外部環境情報に関連する関連情報を取得し、取得した関連情報からその外部環境情報を推定することも可能である。 In the above-described embodiment, when it is described that the external environmental information of the structure such as a house (for example, the humidity outside the vehicle) is acquired from the sensor, the sensor is abolished and the external environment is obtained from the server or cloud outside the structure. It is also possible to receive environmental information. Alternatively, it is possible to abolish the sensor, acquire related information related to the external environment information from a server or cloud outside the structure, and estimate the external environment information from the acquired related information.
 本開示に記載の制御装置及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御装置及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御装置及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The controls described in the present disclosure and methods thereof are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done. Alternatively, the control device and method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control device and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、放熱部材は、太陽光を反射する反射部と、反射部を基準として構造体とは反対側に配置される放射部と、放射部を基準として構造体とは反対側に設けられる断熱部と、を備える。そして、断熱部は、電磁波を透過させることが可能になっている。
(Summary)
According to the first aspect shown in part or all of the above-described embodiment, the heat radiating member has a reflecting portion that reflects sunlight and radiation that is arranged on the opposite side of the structure with respect to the reflecting portion. It is provided with a portion and a heat insulating portion provided on the opposite side of the structure with respect to the radiation portion. The heat insulating portion is capable of transmitting electromagnetic waves.
 第2の観点によれば、断熱部は、断熱性を有する樹脂製の断熱体を含んでいる。これによれば、外部流体の移動に伴う対流伝熱を抑えつつ、電磁波を透過させることが可能な構造を実現することができる。 According to the second viewpoint, the heat insulating portion includes a heat insulating body made of resin having heat insulating properties. According to this, it is possible to realize a structure capable of transmitting electromagnetic waves while suppressing convective heat transfer due to the movement of an external fluid.
 第3の観点によれば、断熱部は、放射部と外部流体との間に設定される気体層を含んでいる。これによれば、外部流体の移動に伴う対流伝熱を抑えつつ、電磁波を透過させることが可能な構造を実現することができる。固体に比べて熱伝導率が低い気体で構成される気体層は、断熱部が固体だけで構成されるものに比べて外部流体の移動に伴う対流伝熱を充分に抑えたり、全体としての厚みを小さくしたりすることができる。 According to the third viewpoint, the heat insulating part contains a gas layer set between the radiating part and the external fluid. According to this, it is possible to realize a structure capable of transmitting electromagnetic waves while suppressing convective heat transfer due to the movement of an external fluid. A gas layer composed of a gas having a lower thermal conductivity than a solid sufficiently suppresses convective heat transfer due to the movement of an external fluid as compared with a gas layer having a heat insulating portion composed of only a solid, and has an overall thickness. Can be made smaller.
 第4の観点によれば、断熱部は、全体の厚みが放熱部の厚みよりも大きくなっている。これによると、断熱部の厚みを放熱部の厚みよりも大きくすることで、放射部によって構造体の熱を外部に放射させつつ、外部流体の移動に伴う対流伝熱を充分に抑えることができる。 According to the fourth viewpoint, the total thickness of the heat insulating portion is larger than the thickness of the heat radiating portion. According to this, by making the thickness of the heat insulating portion larger than the thickness of the heat radiating portion, it is possible to sufficiently suppress the convective heat transfer due to the movement of the external fluid while radiating the heat of the structure to the outside by the radiating portion. ..
 第5の観点によれば、放熱部材は、熱を蓄積する蓄熱部を備える。そして、蓄熱部は、放射部を基準として断熱部とは反対側に設けられている。例えば、夜間等のように太陽光が作用しない場合、太陽光が作用する日中等に比べて、太陽光による吸熱が抑制されることで、外部への放熱が顕著となる。このため、蓄熱部を備える構成とすれば、例えば、外部からの吸熱量が減る環境条件において蓄熱部に冷熱を蓄積することができる。これによると、蓄熱部に蓄積された冷熱によって、外部からの吸熱量が増える環境条件下での構造体の温度上昇を抑制することができる。 According to the fifth viewpoint, the heat radiating member includes a heat storage unit that stores heat. The heat storage unit is provided on the side opposite to the heat insulating unit with the radiation unit as a reference. For example, when sunlight does not act such as at night, heat absorption by sunlight is suppressed as compared with daytime when sunlight acts, so that heat dissipation to the outside becomes remarkable. Therefore, if the heat storage unit is provided, for example, cold heat can be stored in the heat storage unit under environmental conditions in which the amount of heat absorbed from the outside is reduced. According to this, the cold heat accumulated in the heat storage unit can suppress the temperature rise of the structure under the environmental condition in which the amount of heat absorbed from the outside increases.
 第6の観点によれば、蓄熱部は、反射部を基準として放射部とは反対側に設けられている。このように、蓄熱部が反射部を基準として断熱部とは反対側に配置されていれば、太陽光による熱による蓄熱部の温度上昇が抑制されるので、外部からの吸熱量が増える環境条件下での構造体の温度上昇を充分に抑制することができる。 According to the sixth viewpoint, the heat storage unit is provided on the opposite side of the radiation unit with respect to the reflection unit. In this way, if the heat storage unit is arranged on the opposite side of the heat insulation unit with respect to the reflection unit, the temperature rise of the heat storage unit due to heat due to sunlight is suppressed, so that the amount of heat absorbed from the outside increases. The temperature rise of the structure underneath can be sufficiently suppressed.
 第7の観点によれば、構造体は、移動体の外殻または移動体に搭載される搭載物の外殻を形成する外装部材を含んでいる。移動体は、自然風だけでなく、移動に伴う走行風による対流伝熱の影響を受ける。このため、本開示の放熱部材は移動体に好適である。すなわち、放熱部材を移動体に適用すれば、断熱部によって対流伝熱を抑えるとともに放射部によって移動体の熱を外部に放射させることができる。 According to the seventh aspect, the structure includes an outer shell of the moving body or an exterior member forming the outer shell of the load mounted on the moving body. The moving body is affected not only by the natural wind but also by the convective heat transfer caused by the traveling wind accompanying the movement. Therefore, the heat radiating member of the present disclosure is suitable for a moving body. That is, if the heat radiating member is applied to the moving body, the convective heat transfer can be suppressed by the heat insulating portion and the heat of the moving body can be radiated to the outside by the radiating portion.
 第8の観点によれば、構造体は、建物の外殻または建物に設置される設置物の外殻を形成する外装部材を含んでいる。建物は、自然風による対流伝熱の影響を受ける。このため、放熱部材を建物に適用すれば、断熱部によって自然風に伴う対流伝熱を抑えるとともに放射部によって建物の熱を外部に放射させることができる。なお、建物は、常設される家屋だけでなく、仮設されるものが含まれる。 According to the eighth aspect, the structure includes an exterior member that forms the outer shell of the building or the outer shell of the installation that is installed in the building. The building is affected by convective heat transfer due to the natural wind. Therefore, if the heat radiating member is applied to the building, the heat insulating portion can suppress the convective heat transfer due to the natural wind, and the radiating portion can radiate the heat of the building to the outside. Buildings include not only permanent houses but also temporary ones.
 第9の観点によれば、構造体は、ユーザに可搬される可搬機器の外殻を形成する外装部材を含んでいる。このように、放熱部材を可搬機器に適用すれば、断熱部によって可搬機器の周囲に生ずる風に伴う対流伝熱を抑えるとともに放射部によって可搬機器の熱を外部に放射させることができる。 According to the ninth aspect, the structure includes an exterior member that forms the outer shell of the portable device to be carried by the user. In this way, if the heat radiating member is applied to the portable device, the heat insulating portion can suppress the convective heat transfer caused by the wind generated around the portable device, and the radiating section can radiate the heat of the portable device to the outside. ..
 第10の観点によれば、構造体は、ユーザに対して冷温物を提供する提供機器の外殻を形成する外装部材を含んでいる。このように、放熱部材を提供機器に適用すれば、断熱部によって提供機器の周囲に生ずる風に伴う対流伝熱を抑えるとともに放射部によって提供機器の熱を外部に放射させることができる。 According to the tenth viewpoint, the structure includes an exterior member that forms the outer shell of the providing device that provides the cold and hot material to the user. In this way, if the heat radiating member is applied to the providing equipment, the heat insulating portion can suppress the convective heat transfer caused by the wind generated around the providing equipment, and the radiating portion can radiate the heat of the providing equipment to the outside.
 第11の観点によれば、断熱部は、反射部および放射部の積層体に対して脱着可能に構成されている。これによると、断熱部を付加したり、取り外したりすることができるので、構造体の周囲環境に適した放熱部材を提供することが可能となる。 According to the eleventh viewpoint, the heat insulating portion is configured to be removable from the laminated body of the reflecting portion and the radiating portion. According to this, since the heat insulating portion can be added or removed, it is possible to provide a heat radiating member suitable for the surrounding environment of the structure.
 第12の観点によれば、放熱システムは、構造体において外側に位置付けられる外装部材と、外装部材の外側に適用される放熱部材と、を備える。放熱部材は、太陽光を反射する反射部と、反射部を基準として放熱部材とは反対側に配置される放射部と、放射部を基準として放熱部材とは反対側に設けられる断熱部と、を有する。そして、断熱部は、電磁波を透過させることが可能になっている。 According to the twelfth viewpoint, the heat radiating system includes an exterior member located on the outside of the structure and a heat radiating member applied to the outside of the exterior member. The heat radiating member includes a reflecting portion that reflects sunlight, a radiating portion that is arranged on the opposite side of the heat radiating member with reference to the reflecting portion, and a heat insulating portion that is provided on the opposite side of the radiating portion with reference to the radiating portion. Has. The heat insulating portion is capable of transmitting electromagnetic waves.
 これによると、断熱部によって外部流体の移動に伴う対流伝熱による構造体の温度上昇を抑制することができる。加えて、断熱部は、電磁波を透過させることが可能な構造になっているので、反射部で太陽光の反射しつつ、放射部によって構造体の熱を外部に放射させることができる。したがって、本開示の放熱システムは、従来のシステムに比べて、構造体の温度上昇を抑制することができる。 According to this, the heat insulating part can suppress the temperature rise of the structure due to convective heat transfer due to the movement of the external fluid. In addition, since the heat insulating portion has a structure capable of transmitting electromagnetic waves, the heat of the structure can be radiated to the outside by the radiating portion while the sunlight is reflected by the reflecting portion. Therefore, the heat dissipation system of the present disclosure can suppress the temperature rise of the structure as compared with the conventional system.
 第13の観点によれば、外装部材には、外装部材に生ずる結露水を貯水装置に導くガイドが設けられている。これによれば、外装部材に生ずる結露を利用して水を生成することができる。 According to the thirteenth viewpoint, the exterior member is provided with a guide for guiding the condensed water generated in the exterior member to the water storage device. According to this, water can be generated by utilizing the dew condensation generated on the exterior member.
 第14の観点によれば、放熱システムは、構造体において外側に位置付けられる外装部材と、外装部材の外側に適用される放熱部材と、を備える。放熱部材は、太陽光を反射する反射部と、反射部を基準として放熱部材とは反対側に配置される放射部と、を有する。外装部材には、外装部材に生ずる結露水を貯水装置に導くガイドが設けられている。 According to the fourteenth viewpoint, the heat radiating system includes an exterior member positioned on the outside of the structure and a heat radiating member applied to the outside of the exterior member. The heat radiating member has a reflecting portion that reflects sunlight and a radiating portion that is arranged on the opposite side of the heat radiating member with respect to the reflecting portion. The exterior member is provided with a guide that guides the condensed water generated in the exterior member to the water storage device.
 第15の観点によれば、結露水の発生を促進させる結露促進部材を備える。このように、結露促進部材が設けられていれば、放熱システムにおける水の生成効率の向上を図ることができる。 According to the fifteenth viewpoint, it is provided with a dew condensation promoting member that promotes the generation of dew condensation water. As described above, if the dew condensation promoting member is provided, the efficiency of water generation in the heat dissipation system can be improved.
 第16の観点によれば、放熱システムは、構造体の温度に応じて結露促進部材を制御する促進制御部を備える。これによると、例えば、結露水の凍結を抑えることができるので、放熱システムにおける水の生成効率の向上を図ることができる。 According to the 16th viewpoint, the heat dissipation system includes a promotion control unit that controls the dew condensation promoting member according to the temperature of the structure. According to this, for example, since the freezing of the condensed water can be suppressed, the efficiency of water generation in the heat dissipation system can be improved.

Claims (16)

  1.  構造体(10、30、40、50、70)の外側に適用される放熱部材であって、
     太陽光を反射する反射部(21)と、
     前記反射部を基準として前記構造体とは反対側に配置され、前記構造体の熱を外部に放射する放射部(22)と、
     前記放射部を基準として前記構造体とは反対側に設けられて、外部を流れる外部流体の移動に伴う対流伝熱を抑制する断熱部(23)と、を備え、
     前記断熱部は、電磁波を透過させることが可能になっている、放熱部材。
    A heat radiating member applied to the outside of the structure (10, 30, 40, 50, 70).
    Reflecting part (21) that reflects sunlight,
    A radiating portion (22), which is arranged on the opposite side of the structure with the reflecting portion as a reference and radiates heat of the structure to the outside,
    A heat insulating portion (23) provided on the side opposite to the structure with the radiant portion as a reference and suppressing convective heat transfer due to the movement of an external fluid flowing outside is provided.
    The heat insulating portion is a heat radiating member capable of transmitting electromagnetic waves.
  2.  前記断熱部は、断熱性を有する樹脂製の断熱体(231)を含んでいる請求項1に記載の放熱部材。 The heat radiating member according to claim 1, wherein the heat insulating portion includes a heat insulating body (231) made of resin having heat insulating properties.
  3.  前記断熱部は、前記放射部と前記外部流体との間に設定される気体層(234)を含んでいる、請求項1または2に記載の放熱部材。 The heat radiating member according to claim 1 or 2, wherein the heat insulating portion includes a gas layer (234) set between the radiating portion and the external fluid.
  4.  前記断熱部は、全体の厚みが前記放射部の厚みよりも大きくなっている、請求項1ないし3のいずれか1つに記載の放熱部材。 The heat radiating member according to any one of claims 1 to 3, wherein the heat insulating portion has a total thickness larger than the thickness of the radiating portion.
  5.  熱を蓄積する蓄熱部(24)を備え、
     前記蓄熱部は、前記放射部を基準として前記断熱部とは反対側に設けられている、請求項1ないし4のいずれか1つに記載の放熱部材。
    Equipped with a heat storage unit (24) that stores heat
    The heat radiating member according to any one of claims 1 to 4, wherein the heat storage unit is provided on the side opposite to the heat insulating unit with reference to the radiating unit.
  6.  前記蓄熱部は、前記反射部を基準として前記放射部とは反対側に設けられている、請求項5に記載の放熱部材。 The heat radiating member according to claim 5, wherein the heat storage unit is provided on the side opposite to the radiation unit with reference to the reflection unit.
  7.  前記構造体は、移動体(10)の外殻または前記移動体に搭載される搭載物(12、13、14)の外殻を形成する外装部材(112、121、131、141)を含んでいる、請求項1ないし6のいずれか1つに記載の放熱部材。 The structure includes exterior members (112, 121, 131, 141) that form the outer shell of the moving body (10) or the outer shell of the loading material (12, 13, 14) mounted on the moving body. The heat radiating member according to any one of claims 1 to 6.
  8.  前記構造体は、建物(50、70)の外殻または前記建物に設置される設置物(SP)の外殻を形成する外装部材(51、52、71、F)を含んでいる、請求項1ないし6のいずれか1つに記載の放熱部材。 The structure comprises exterior members (51, 52, 71, F) that form the outer shell of a building (50, 70) or the outer shell of an installation (SP) installed in the building. The heat radiating member according to any one of 1 to 6.
  9.  前記構造体は、ユーザに可搬される可搬機器(30、CN)の外殻を形成する外装部材(31、R)を含んでいる、請求項1ないし6のいずれか1つに記載の放熱部材。 The structure according to any one of claims 1 to 6, wherein the structure includes an exterior member (31, R) forming an outer shell of a portable device (30, CN) to be carried by a user. Heat dissipation member.
  10.  前記構造体は、ユーザに対して冷温物(D)を提供する提供機器(40)の外殻を形成する外装部材(41)を含んでいる、請求項1ないし6のいずれか1つに記載の放熱部材。 The structure according to any one of claims 1 to 6, wherein the structure includes an exterior member (41) forming an outer shell of a providing device (40) that provides a cold substance (D) to a user. Heat dissipation member.
  11.  前記断熱部は、前記反射部および前記放射部の積層体に対して脱着可能に構成されている、請求項1ないし9のいずれか1つに記載の放熱部材。 The heat radiating member according to any one of claims 1 to 9, wherein the heat insulating portion is configured to be removable from a laminated body of the reflecting portion and the radiating portion.
  12.  放熱システムであって、
     構造体(50)において外側に位置付けられる外装部材(52)と、
     前記外装部材の外側に適用される放熱部材(20)と、を備え、
     前記放熱部材は、
     太陽光を反射する反射部(21)と、
     前記反射部を基準として前記放熱部材とは反対側に配置され、前記構造体の熱を外部に放射する放射部(22)と、
     前記放射部を基準として前記放熱部材とは反対側に設けられて、外部を流れる外部流体の移動による放熱を抑える断熱部(23)と、を有し、
     前記断熱部は、電磁波を透過させることが可能になっている、放熱システム。
    It ’s a heat dissipation system,
    An exterior member (52) located on the outside of the structure (50),
    A heat radiating member (20) applied to the outside of the exterior member is provided.
    The heat radiating member is
    Reflecting part (21) that reflects sunlight,
    A radiation unit (22), which is arranged on the side opposite to the heat radiation member with reference to the reflection unit and radiates heat of the structure to the outside,
    It has a heat insulating portion (23) provided on the side opposite to the heat radiating member with the radiating portion as a reference and suppressing heat radiating due to the movement of an external fluid flowing outside.
    The heat insulating portion is a heat radiating system capable of transmitting electromagnetic waves.
  13.  前記外装部材には、前記外装部材に生ずる結露水を貯水装置(60)に導くガイド(521)が設けられている、請求項12に記載の放熱システム。 The heat dissipation system according to claim 12, wherein the exterior member is provided with a guide (521) that guides the condensed water generated in the exterior member to the water storage device (60).
  14.  放熱システムであって、
     構造体(50)において外側に位置付けられる外装部材(52)と、
     前記外装部材の外側に適用される放熱部材(20、CE)と、を備え、
     前記放熱部材は、
     太陽光を反射する反射部(21、RL)と、
     前記反射部を基準として前記放熱部材とは反対側に配置され、前記構造体の熱を外部に放射する放射部(22、PL)と、を有し、
     前記外装部材には、前記外装部材に生ずる結露水を貯水装置(60)に導くガイド(521)が設けられている、放熱システム。
    It ’s a heat dissipation system,
    An exterior member (52) located on the outside of the structure (50),
    A heat radiating member (20, CE) applied to the outside of the exterior member is provided.
    The heat radiating member is
    Reflecting part (21, RL) that reflects sunlight,
    It has a radiation unit (22, PL) that is arranged on the side opposite to the heat radiation member with reference to the reflection unit and radiates heat of the structure to the outside.
    A heat dissipation system in which the exterior member is provided with a guide (521) that guides the condensed water generated in the exterior member to the water storage device (60).
  15.  前記結露水の発生を促進させる結露促進部材(522)を備える、請求項13または14に記載の放熱システム。 The heat dissipation system according to claim 13 or 14, further comprising a dew condensation promoting member (522) that promotes the generation of dew condensation water.
  16.  前記構造体の温度に応じて前記結露促進部材を制御する促進制御部(100c)を備える、請求項15に記載の放熱システム。 The heat dissipation system according to claim 15, further comprising a promotion control unit (100c) that controls the dew condensation promoting member according to the temperature of the structure.
PCT/JP2020/030379 2019-09-17 2020-08-07 Heat dissipation member and heat dissipation system WO2021053994A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019168544A JP2021045859A (en) 2019-09-17 2019-09-17 Heat radiation member and heat radiation system
JP2019-168544 2019-09-17

Publications (1)

Publication Number Publication Date
WO2021053994A1 true WO2021053994A1 (en) 2021-03-25

Family

ID=74877329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030379 WO2021053994A1 (en) 2019-09-17 2020-08-07 Heat dissipation member and heat dissipation system

Country Status (2)

Country Link
JP (1) JP2021045859A (en)
WO (1) WO2021053994A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518071A (en) * 1991-07-12 1993-01-26 Yuichi Yanagi Multi-solar system and building therewith
JP2004217196A (en) * 2002-12-27 2004-08-05 Nissan Motor Co Ltd Heat function structure for automobile and vehicle body panel structure used for the same
JP2004330930A (en) * 2003-05-09 2004-11-25 Nissan Motor Co Ltd Heat shield and heat release structure for automobile
JP2008247257A (en) * 2007-03-30 2008-10-16 Mazda Motor Corp Vehicular heat radiator
JP2019515967A (en) * 2016-02-29 2019-06-13 ザ リージェンツ オブ ザ ユニヴァーシティ オブ コロラド,ア ボディ コーポレイト Radiant cooling structure and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518071A (en) * 1991-07-12 1993-01-26 Yuichi Yanagi Multi-solar system and building therewith
JP2004217196A (en) * 2002-12-27 2004-08-05 Nissan Motor Co Ltd Heat function structure for automobile and vehicle body panel structure used for the same
JP2004330930A (en) * 2003-05-09 2004-11-25 Nissan Motor Co Ltd Heat shield and heat release structure for automobile
JP2008247257A (en) * 2007-03-30 2008-10-16 Mazda Motor Corp Vehicular heat radiator
JP2019515967A (en) * 2016-02-29 2019-06-13 ザ リージェンツ オブ ザ ユニヴァーシティ オブ コロラド,ア ボディ コーポレイト Radiant cooling structure and system

Also Published As

Publication number Publication date
JP2021045859A (en) 2021-03-25

Similar Documents

Publication Publication Date Title
US20230090135A1 (en) Structures for radiative cooling
US11215407B2 (en) Radiative cooling with solar spectrum reflection
CN109070695B (en) Radiation cooling structure and system
KR20100062993A (en) An element for emission of thermal radiation
JP5497037B2 (en) Solar energy conversion
JP2021521768A (en) Manufacturing methods, structures, and uses for passive radiative cooling
EP2101119A1 (en) Roof element
US11359841B2 (en) Radiative cooling systems
WO2021053994A1 (en) Heat dissipation member and heat dissipation system
JP2019066101A (en) Sky radiation cooling device
JPH07139817A (en) Solar heat collector
US20220307730A1 (en) Devices and methods for concentrated radiative cooling
JP4325180B2 (en) Interior heat dissipation structure
KR102560227B1 (en) Cold/Hot Combined Production Unit
JP3726100B2 (en) Thermal insulation glass
JPH1130085A (en) Double glass window device
US20220196351A1 (en) Radiative cooling device based on incidence and emission angle control
JP3167215U (en) Car with reflector
US20210254869A1 (en) Beam-controlled spectral-selective architecture for a radiative cooler
WO2023281456A1 (en) Cooling device
KR20230103534A (en) Cooling stucture and cooling film
JPS62766A (en) Heat collecting and radiating device for room heating, room cooling and hot-water supplying system
JPS6347979B2 (en)
CN117781382A (en) High-efficient radiation refrigeration roof
KR20090044020A (en) Thermal insulation material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866598

Country of ref document: EP

Kind code of ref document: A1