WO2021053976A1 - Battery monitoring system, battery module, battery management device, management method, and vehicle - Google Patents

Battery monitoring system, battery module, battery management device, management method, and vehicle Download PDF

Info

Publication number
WO2021053976A1
WO2021053976A1 PCT/JP2020/029475 JP2020029475W WO2021053976A1 WO 2021053976 A1 WO2021053976 A1 WO 2021053976A1 JP 2020029475 W JP2020029475 W JP 2020029475W WO 2021053976 A1 WO2021053976 A1 WO 2021053976A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
management device
current
voltage
unit
Prior art date
Application number
PCT/JP2020/029475
Other languages
French (fr)
Japanese (ja)
Inventor
裕章 武智
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2021546537A priority Critical patent/JPWO2021053976A1/ja
Publication of WO2021053976A1 publication Critical patent/WO2021053976A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This disclosure relates to a battery monitoring system, a battery module, a battery management device, a management method, and a vehicle.
  • This disclosure claims priority based on Japanese Application No. 2019-170709 filed on September 19, 2019, and incorporates all the contents of the Japanese application.
  • EV Electric Vehicle
  • HEV Hybrid Electric Vehicle
  • Patent Documents 1 and 2 described later disclose a battery system having such a battery management function.
  • the system disclosed in Patent Document 1 includes a battery module to which an assembled battery having a plurality of cells is connected, a plurality of battery monitoring circuits provided corresponding to each assembled battery, and a microcomputer that controls the operation of each battery monitoring circuit. And include. Each battery monitoring circuit monitors the state of the assembled battery based on an instruction from the microcomputer. A plurality of battery monitoring circuits are connected in series via a capacitor and a relay signal transmission line.
  • the system disclosed in Patent Document 2 includes a plurality of power storage modules each having an assembled battery and a monitoring IC (Integrated Circuit), and a BMU (Battery Management Unit) that centrally manages each power storage module.
  • Each power storage module (monitoring IC) is communicably connected to the BMU by a daisy chain connection via an isolator and a communication line.
  • JP-A-2017-168453 Japanese Unexamined Patent Publication No. 2019-30134 Japanese Unexamined Patent Publication No. 2015-224927 Japanese Unexamined Patent Publication No. 2009-210478 Japanese Unexamined Patent Publication No. 2018-013456 Japanese Unexamined Patent Publication No. 2017-203659 JP-A-2017-194284 Japanese Unexamined Patent Publication No. 2017-194283
  • the battery monitoring system is a battery monitoring system that monitors a battery unit including a plurality of assembled batteries including the first assembled battery.
  • the first set battery includes a plurality of cells.
  • This battery monitoring system includes a first battery management device that manages the first assembled battery, and a current sensor that detects charge / discharge currents of a plurality of cells and outputs the detection signal to the first battery management device.
  • the first battery management device includes a voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the first assembled battery, and a current acquisition unit that acquires charge / discharge currents of a plurality of cells via a current sensor. Includes a state estimation unit that estimates the state of the first assembled battery using the voltage acquired by the voltage acquisition unit and the charge / discharge current acquired by the current acquisition unit.
  • the battery module according to another aspect of the present disclosure is provided in an assembled battery including a plurality of cells, a battery management device for managing the assembled battery, and a current path of the assembled battery, and detects charge / discharge currents of the plurality of cells. It includes a current sensor that outputs the detection signal to the battery management device.
  • the battery management device is acquired by a voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the assembled battery, a current acquisition unit that acquires charge / discharge currents of a plurality of cells via a current sensor, and a voltage acquisition unit. It includes a state estimation unit that estimates the state of the assembled battery using the voltage and the charge / discharge current acquired by the current acquisition unit.
  • the battery management device is a battery management device that manages an assembled battery including a plurality of cells.
  • the current path of the assembled battery is provided with a current sensor that detects the charge / discharge currents of a plurality of cells and outputs the detection signal to the battery management device.
  • This battery management device includes a voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the assembled battery, a current acquisition unit that acquires charge / discharge currents of a plurality of cells via a current sensor, and a voltage acquisition unit. It includes a state estimation unit that estimates the state of the assembled battery using the acquired voltage and the charge / discharge current acquired by the current acquisition unit.
  • a method is a method of managing an assembled battery including a plurality of cells.
  • a current sensor that detects the charge / discharge currents of a plurality of cells is provided in the current path of the assembled battery.
  • This management method includes a step of measuring the voltage between predetermined positions in the current path of the assembled battery, a step of acquiring a detection signal output from the current sensor, and a step of measuring the charge / discharge currents of a plurality of cells, and a step of measuring. Including the step of estimating the state of the assembled battery using the voltage and charge / discharge current measured in.
  • the vehicle includes the above-mentioned battery monitoring system and an in-vehicle control device that communicates with the battery monitoring system and acquires predetermined information from the battery monitoring system.
  • the technology of the present disclosure can not only be realized as a battery monitoring system including such a characteristic configuration.
  • the technique of the present disclosure can also be realized as a program for causing a computer to perform a characteristic step performed by a battery monitoring system, and as a recording medium on which the program is recorded.
  • the system may include a battery unit instead of the battery management system alone.
  • it can be a semiconductor integrated circuit that realizes a part or all of the components of the battery monitoring system and the battery management device, a battery reuse system using information processed by the battery management device, and further. It can also be other systems, including.
  • FIG. 1 is a block diagram showing an example of a main part configuration of a vehicle equipped with the battery monitoring system according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration example of the battery monitoring system and the battery unit shown in FIG.
  • FIG. 3 is a block diagram showing a functional configuration example of the battery management device constituting the battery monitoring system.
  • FIG. 4 is a diagram showing an equivalent circuit model of a secondary battery represented by a combination of a resistor and a capacitor.
  • FIG. 5 is a diagram showing an equivalent circuit model of a secondary battery represented by a combination of a resistor and a capacitor.
  • FIG. 6 is a diagram showing an equivalent circuit model of a secondary battery represented by a combination of a resistor and a capacitor.
  • FIG. 7 is a block diagram showing a functional configuration example of the state estimation unit in the battery management device.
  • FIG. 8 is a diagram schematically showing the relationship between the parameters and the functional blocks related to the estimation of the charge rate.
  • FIG. 9 is a block diagram showing a functional configuration example of the battery monitoring device constituting the battery monitoring system.
  • FIG. 10 is a flowchart showing an example of a control structure of a program executed by the battery management device.
  • FIG. 11 is a flowchart showing an example of a control structure of a program executed by the battery management device.
  • FIG. 12 is a flowchart showing an example of a control structure of a program executed by the battery management device.
  • FIG. 13 is a flowchart showing an example of a control structure of a program executed by the battery monitoring device.
  • FIG. 10 is a flowchart showing an example of a control structure of a program executed by the battery management device.
  • FIG. 11 is a flowchart showing an example of a control structure of
  • FIG. 14 is a block diagram showing a configuration example of the battery monitoring system and the battery unit according to the second embodiment.
  • FIG. 15 is a block diagram showing a configuration example of the battery monitoring system and the battery unit according to the third embodiment.
  • FIG. 16 is a block diagram showing a functional configuration example of the battery monitoring device constituting the battery monitoring system shown in FIG.
  • the battery monitoring system is a battery monitoring system that monitors a battery unit including a plurality of assembled batteries including the first assembled battery.
  • the first set battery includes a plurality of cells.
  • This battery monitoring system includes a first battery management device that manages the first assembled battery, and a current sensor that detects charge / discharge currents of a plurality of cells and outputs the detection signal to the first battery management device.
  • the first battery management device includes a voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the first assembled battery, and a current acquisition unit that acquires charge / discharge currents of a plurality of cells via a current sensor. Includes a state estimation unit that estimates the state of the first assembled battery using the voltage acquired by the voltage acquisition unit and the charge / discharge current acquired by the current acquisition unit.
  • the current sensor detects the charge / discharge currents of a plurality of cells and outputs the detection signal to the battery management device.
  • the voltage acquisition unit acquires the voltage between predetermined positions in the current path of the first assembled battery, and the current acquisition unit acquires the charge / discharge currents of a plurality of cells via the current sensor. To do. Since the cell voltage value and charge / discharge current value can be acquired without a time lag, data simultaneity is ensured. As a result, the influence of the phase shift between the cell voltage and the charge / discharge current can be suppressed, so that the state can be estimated accurately when the state estimation unit estimates the state of the assembled battery.
  • the voltage acquisition unit is configured to acquire at least one of the voltage of each of the plurality of cells and the voltage of the assembled battery including the plurality of cells as the voltage between predetermined positions in the current path of the assembled battery. Is preferable. It is more preferable that the state estimation unit for estimating the state of the assembled battery includes at least one of a configuration for estimating the state of the entire assembled battery and a configuration for estimating the state of each of the plurality of cells included in the assembled battery.
  • the plurality of assembled batteries further include a second assembled battery different from the first assembled battery, the second assembled battery further includes a plurality of cells, and the battery management system further includes a second set.
  • the current of the second battery management device that manages the batteries and the current of the second battery pack that detects the charge / discharge currents of a plurality of cells of the second battery pack and outputs the detection signal to the second battery management device.
  • the second battery management device including the sensor, includes a voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the second assembled battery, and a second battery management device via the current sensor of the second assembled battery.
  • the current acquisition unit that acquires the charge / discharge currents of a plurality of cells of the assembled battery, the voltage acquired by the voltage acquisition unit of the second battery management device, and the charge / discharge current acquired by the current acquisition unit of the second battery management device. It includes a state estimation unit that estimates the state of the second assembled battery by using it. As a result, the voltage value and charge / discharge current value of the cell can be easily acquired without a time lag, so that the simultaneity of data can be easily ensured.
  • a battery monitoring device for monitoring the battery unit is further included, and each of the first battery management device and the second battery management device further includes a communication unit that communicates with the battery monitoring device, and the first The communication unit of the battery management device and the communication unit of the second battery management device are the first set estimated by the state estimation unit of the first battery management device and the state estimation unit of the second battery management device, respectively. The status of the battery and the second assembled battery are transmitted to the battery monitoring device, respectively.
  • the battery monitoring circuits are daisy-chained via a communication line. Therefore, if the communication line is disconnected even at one location, the data communication between all the battery monitoring circuits and the microcomputer or BMU is interrupted.
  • the communication unit of the first battery management device and the communication unit of the second battery management device individually set the state of the first assembled battery and the second assembled battery, respectively. Send to the monitoring device. Therefore, even if a communication problem occurs between some battery management devices and the battery monitoring device, the other battery management devices are not affected by the problem. Since other battery management devices can maintain communication with the battery monitoring device, the estimated battery status can be transmitted to the battery monitoring device. Therefore, the battery monitoring device can monitor the battery unit even when a communication problem occurs with some battery management devices.
  • the communication unit of the first battery management device and the communication unit of the second battery management device are further the current acquisition unit of the first battery management device and the current acquisition unit of the second battery management device. Sends the charge / discharge currents acquired by each to the battery monitoring device, and the battery monitoring device of the first and second battery management devices is based on the charge / discharge currents transmitted from the first and second battery management devices.
  • the abnormality notification unit that notifies the battery management device of the current sensor in which the abnormality is detected of the sensor abnormality is included.
  • the first and second battery management devices can communicate with each other, and the first battery management device responds to the reception of the sensor abnormality from the abnormality notification unit. , Acquires the charge / discharge current of the second assembled battery by communicating with the second battery management device. As a result, even if a sensor abnormality occurs in some current sensors, the state of the battery can be estimated accurately.
  • the first battery management device is further based on at least one information of the voltage and the charge / discharge current acquired by the voltage acquisition unit and the current acquisition unit in the first battery management device, respectively. It includes an abnormality determination unit that determines whether or not the assembled battery of 1 is abnormal and executes an abnormality process according to the determination result. As a result, the occurrence of an abnormality can be detected at an early stage and the abnormality processing can be executed, so that the assembled battery (and thus the battery unit) can be effectively managed.
  • the first battery management device further preferably uses the cell of the first assembled battery based on the voltage acquired by the voltage acquisition unit in the first battery management device and the state estimated by the state estimation unit. Includes a cell balance circuit that performs balancing. Since the state estimation unit can accurately estimate the state of the assembled battery, the energy capacity between the cells can be accurately equalized by using the estimated state. As a result, the capacity of the battery can be fully utilized.
  • the state estimation unit of the first battery management device is set in the first set based on the voltage and charge / discharge current acquired by the voltage acquisition unit and the current acquisition unit in the first battery management device, respectively. It includes a parameter estimation unit that estimates the parameters of the battery equivalent circuit model. As a result, the parameters of the equivalent circuit model can be estimated accurately.
  • the voltage acquisition unit of the first battery management device acquires the voltage of each of the plurality of cells in the first assembled battery, and the state estimation unit of the first battery management device is the first.
  • the state of each of the plurality of cells of the assembled battery is estimated, and the first battery management device identifies the state of each of the plurality of cells estimated by the state estimation unit of the first battery management device to identify the plurality of cells.
  • the battery management device may further include a temperature acquisition unit that acquires the temperature of the cell, and the state estimation unit may be configured to estimate the state of the assembled battery by further using the temperature acquired by the temperature acquisition unit. As a result, the state of the battery can be estimated more accurately.
  • the abnormality determination unit may determine whether or not the assembled battery is abnormal based on the temperature information acquired by the temperature acquisition unit. Thereby, the abnormality of the assembled battery can be detected from various viewpoints.
  • the cell balance circuit may also perform cell balance of the assembled battery based on the temperature acquired by the temperature acquisition unit. As a result, the cell balance of the assembled battery can be executed more accurately.
  • the battery module according to another aspect of the present disclosure is provided in an assembled battery including a plurality of cells, a battery management device for managing the assembled battery, and a current path of the assembled battery, and is provided with charge / discharge currents of the plurality of cells.
  • a current sensor that detects and outputs the detection signal to the battery management device.
  • the battery management device is acquired by a voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the assembled battery, a current acquisition unit that acquires charge / discharge currents of a plurality of cells via a current sensor, and a voltage acquisition unit. It includes a state estimation unit that estimates the state of the assembled battery using the voltage and the charge / discharge current acquired by the current acquisition unit.
  • the current sensor provided in the current path of the assembled battery detects the charge / discharge currents of a plurality of cells and outputs the detection signal to the battery management device.
  • the battery management device acquires the voltage between predetermined positions in the current path of the assembled battery at the voltage acquisition unit, and acquires the charge / discharge currents of a plurality of cells at the current acquisition unit via the current sensor. Since the cell voltage value and charge / discharge current value can be acquired without a time lag, data simultaneity is ensured. As a result, the influence of the phase shift between the cell voltage and the charge / discharge current can be suppressed, so that the state can be estimated accurately when the state estimation unit estimates the state of the assembled battery.
  • the voltage acquisition unit is configured to acquire at least one of the voltage of each of the plurality of cells and the voltage of the assembled battery including the plurality of cells as the voltage between predetermined positions in the current path of the assembled battery. Is preferable. It is more preferable that the state estimation unit for estimating the state of the assembled battery includes at least one of a configuration for estimating the state of the entire assembled battery and a configuration for estimating the state of each of the plurality of cells included in the assembled battery.
  • the voltage acquisition unit acquires the voltage of each of the plurality of cells
  • the state estimation unit acquires the voltage and current of each of the plurality of cells acquired by the voltage acquisition unit.
  • the battery management device includes a cell state estimation unit that estimates the state of each of a plurality of cells using an electric current, and the battery management device corresponds the states of the plurality of cells estimated by the cell state estimation unit with identification information that identifies the plurality of cells. It further includes a recording unit for attaching and recording. As a result, the state of the battery unit can be accurately grasped by reading the history information recorded in the recording unit.
  • the battery management device is a battery management device that manages an assembled battery including a plurality of cells.
  • the current path of the assembled battery is provided with a current sensor that detects the charge / discharge currents of a plurality of cells and outputs the detection signal to the battery management device.
  • This battery management device includes a voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the assembled battery, a current acquisition unit that acquires charge / discharge currents of a plurality of cells via a current sensor, and a voltage acquisition unit. It includes a state estimation unit that estimates the state of the assembled battery using the acquired voltage and the charge / discharge current acquired by the current acquisition unit.
  • the voltage acquisition unit is configured to acquire at least one of the voltage of each of the plurality of cells and the voltage of the assembled battery including the plurality of cells as the voltage between predetermined positions in the current path of the assembled battery. Is preferable. It is more preferable that the state estimation unit for estimating the state of the assembled battery includes at least one of a configuration for estimating the state of the entire assembled battery and a configuration for estimating the state of each of the plurality of cells included in the assembled battery.
  • a method is a method of managing an assembled battery including a plurality of cells.
  • a current sensor that detects the charge / discharge currents of a plurality of cells is provided in the current path of the assembled battery.
  • This management method includes a step of measuring the voltage between predetermined positions in the current path of the assembled battery, a step of acquiring a detection signal output from the current sensor, and a step of measuring the charge / discharge currents of a plurality of cells, and a step of measuring. Including the step of estimating the state of the assembled battery using the voltage and charge / discharge current measured in. As a result, the state of the battery can be estimated accurately.
  • the step of measuring is a configuration in which at least one of the voltage of each of the plurality of cells and the voltage of the assembled battery including the plurality of cells is acquired as the voltage between the predetermined positions in the current path of the assembled battery. And more preferable. It is more preferable that the step of estimating the state of the assembled battery includes a step of estimating the state of each of the plurality of cells included in the assembled battery.
  • the vehicle according to still another aspect of the present disclosure includes the above-mentioned battery monitoring system and an in-vehicle control device that communicates with the battery monitoring system and acquires predetermined information from the battery monitoring system.
  • the in-vehicle control device can efficiently control the battery unit based on the information from the battery monitoring system. As a result, the battery unit can be kept in an optimum state for a long period of time.
  • the vehicle 20 is, for example, an electric vehicle such as an EV or HEV.
  • the vehicle 20 is a battery monitoring system that monitors a battery unit 50 to which a plurality of assembled batteries 40_1 to 40_n (hereinafter, collectively referred to as “combined battery 40”) including a plurality of cells 30 are connected, and the battery unit 50. Includes 100 and.
  • the vehicle 20 further includes a relay 60, an inverter 62, a motor 64, a DC / DC converter 66, an auxiliary battery 68, an electric load 70, a start switch 72, and an upper ECU (Electronic Control Unit) 74.
  • the battery unit 50 includes a rechargeable secondary battery.
  • the secondary battery includes, for example, a lithium ion battery.
  • the battery unit 50 has a configuration in which a plurality of assembled batteries 40 in which a plurality of cells 30 are connected in series are further connected in series.
  • the battery monitoring system 100 is a plurality of battery management devices (BMU: Battery Management Unit) 110_1 to 110_n (hereinafter, collectively referred to as "battery management device 110") that manage a plurality of assembled batteries 40 included in the battery unit 50.
  • a battery monitoring device 300 that is communicably connected to each of the plurality of battery management devices 110_1 to 110_n.
  • the plurality of battery management devices 110_1 to 110_n are provided corresponding to the respective assembled batteries 40_1 to 40_n of the battery unit 50, and manage the corresponding assembled batteries 40, respectively.
  • the battery monitoring device 300 monitors the battery unit 50 based on the information transmitted from the battery management devices 110_1 to 110_n.
  • the relay 60 is a switch that is turned on / off by a relay control unit (not shown).
  • the relay 60 is connected between the positive electrode side of the battery unit 50, the input side of the inverter 62, and the input side of the DC / DC converter 66.
  • the relay 60 is turned on, the electric circuit connecting the battery unit 50, the inverter 62 and the DC / DC converter 66 is closed, and when the relay 60 is turned off, the electric circuit is opened.
  • the output side of the inverter 62 is connected to one end of the motor 64, and the DC power supplied from the battery unit 50 via the relay 60 is converted into AC power and output to the motor 64.
  • the inverter 62 controls the energization of the motor 64 while the relay 60 is on by a command from a vehicle controller (not shown).
  • the motor 64 produces a driving force for turning wheels (not shown) by the AC power converted by the inverter 62.
  • the DC / DC converter 66 is a step-down converter that converts high-voltage DC power supplied from the battery unit 50 via a relay 60 into low-voltage DC power.
  • the DC / DC converter 66 is also an isolated converter, and insulates the high-voltage side where the battery unit 50 is arranged and the low-voltage side where the auxiliary battery 68, the electric load 70, and the like are arranged.
  • the output side of the DC / DC converter 66 is connected to the positive electrode side of the auxiliary battery 68, one end of the electric load 70, and one end of the start switch 72.
  • the DC / DC converter 66 supplies the converted low-voltage DC power to the auxiliary battery 68 and the electric load 70.
  • the auxiliary battery 68 is, for example, a 12V lead storage battery.
  • the auxiliary battery 68 supplies electric power to the electric load 70 and is charged by the electric power supplied from the DC / DC converter 66 while the relay 60 is on.
  • the auxiliary battery 68 is not limited to a voltage of 12 V or a lead storage battery.
  • the electric load 70 includes an auxiliary machine load operated by the DC power of the auxiliary battery 68. More specifically, the electric load 70 includes, for example, a low voltage load such as an ECU, a headlight, and an interior light.
  • the start switch 72 is a switch for starting the vehicle 20.
  • the upper ECU 74 includes, for example, an ECU that controls the amount of power supply (discharge) and the amount of regeneration (charge) with the motor 64 based on the information transmitted from the battery monitoring system 100.
  • the negative electrode side of the battery unit 50 and the other end of the motor 64 are connected to the common potential on the high voltage side, and the negative electrode side of the auxiliary battery 68 and the other end of the electric load 70 are connected to the common potential on the low voltage side. ing.
  • the battery monitoring system 100 detects a plurality of charge currents and discharge currents (hereinafter, referred to as “charge / discharge currents”) of each assembled battery 40 for each assembled battery 40.
  • the current sensors 180_1 to 180_n (hereinafter, collectively referred to as “current sensor 180”) are included.
  • the plurality of current sensors 180_1 to 180_n are arranged corresponding to each assembled battery 40, and are provided in the current paths of the corresponding assembled batteries 40, respectively.
  • Each current sensor 180 detects the charge / discharge current of the corresponding assembled battery 40 (cell 30) and outputs the detection signal to the battery management device 110 that manages the corresponding assembled battery 40.
  • the current sensor 180 is composed of, for example, a shunt resistor or a Hall sensor, and converts the charge / discharge current of the assembled battery 40 (cell 30) into a voltage signal.
  • the sampling period of the current sensor 180 is, for example, 10 milliseconds, but is not limited to this.
  • the current sensor 180 may be provided inside the assembled battery 40 or may be provided outside the assembled battery 40.
  • the current sensor 180 and the battery management device 110 are provided for each set battery 40 so as to correspond to each set battery 40.
  • the assembled battery 40, the current sensor 180, and the battery management device 110, which correspond to each other, are modularized as a set, and a plurality of battery modules 200_1 to 200_n (hereinafter, collectively referred to as "battery module 200"). It is described.).
  • the battery monitoring device 300 centrally manages the plurality of battery modules 200_1 to 200_n by communicating with each of the plurality of battery management devices 110.
  • the battery management device 110 estimates the state of the assembled battery 40 on a cell-by-cell basis, and manages the assembled battery 40 and each cell 30.
  • the battery management device 110 identifies each of the assembled battery 40 and each cell 30 by using the identification information (ID) when managing the assembled battery 40 and each cell 30.
  • ID the identification information
  • each assembled battery 40 is identified as an assembled battery_1, an assembled battery_2, ..., An assembled battery_n by using, for example, an assembled battery ID from 1 to n.
  • the cell 30 included in each set battery 40 is identified by using, for example, the cell IDs 001 to x.
  • the plurality of battery management devices 110_1 to 110_n all have the same configuration. Therefore, in the following, the configuration of the battery management device 110_1 will be described on behalf of the plurality of battery management devices 110_1 to 110_n.
  • the battery management device 110_1 includes a cell voltage detection / balance circuit 112, a temperature detection circuit 114, a current detection circuit 116, a power supply circuit 118, a communication unit 120, a memory 122, and a control device 124 for controlling them.
  • the control device 124 includes, for example, a processing device such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the cell voltage detection / balance circuit 112 is a circuit that detects the voltage of the cell 30 included in the assembled battery 40 separately (for each cell) and executes cell balance.
  • the cell voltage detection / balance circuit 112 detects the voltage across the cell 30 at a predetermined sampling cycle, and outputs information indicating the detected voltage to the control device 124.
  • the sampling period is, for example, 10 milliseconds, but is not limited to this.
  • the temperature detection circuit 114 detects the surface temperature of one or a plurality of locations of the assembled battery 40 based on a voltage signal converted from temperature to voltage by a temperature sensor (not shown) such as a thermistor included in the assembled battery 40. It is a circuit.
  • a temperature sensor such as a thermistor included in the assembled battery 40.
  • a known temperature sensor other than the thermistor may be used.
  • a resistance temperature detector, a semiconductor temperature sensor, a thermoelectric pair, or the like may be used.
  • the current detection circuit 116 is a circuit in which the current sensor 180 detects the charge / discharge current of the assembled battery 40 (cell 30) based on the voltage signal converted from current to voltage.
  • the power supply circuit 118 is a circuit that converts the electric power supplied from the assembled battery 40 (battery unit 50) into a voltage suitable for driving each component of the battery management device 110_1 and supplies power to each component of the battery management device 110_1.
  • the communication unit 120 wirelessly communicates with the battery monitoring device 300.
  • the memory 122 is a non-volatile storage device such as a flash memory.
  • the management device identification information (BMU-ID) for identifying the own device is stored in the non-rewritable area of the memory 122.
  • BMU-ID management device identification information
  • the management device identification information of the battery management device 110_1 is BMU_1.
  • the memory 122 further stores information generated by the processing of the control device 124.
  • the software (computer program) executed by the control device 124 is stored in advance in the control device 124.
  • the software (computer program) executed by the control device 124 may be configured to be stored in the memory 122 in advance.
  • the battery monitoring device 300 includes a communication unit 310, a power supply unit 312, a memory 314, a communication unit 316, and a control device 318 for controlling these.
  • the communication unit 310 wirelessly communicates with each battery management device 110.
  • the power supply unit 312 converts the electric power from the battery unit 50 into a predetermined voltage value and supplies it to each component unit.
  • the memory 314 is a non-volatile storage device such as a flash memory.
  • the memory 314 stores the management device identification information (BMU-ID) of each of the plurality of battery management devices 110 connected to the own device.
  • the management device identification information may be stored in advance by setting, or the control device 318 may send and receive information to and from each battery management device 110 to collect the management device identification information.
  • Identification information (assembled battery ID, cell ID) for identifying the assembled battery 40 or the cell 30 may be stored in the memory 314 for each assembled battery 40 or each cell 30.
  • the communication unit 316 can transmit and receive information to and from other in-vehicle devices by, for example, CAN (Control Area Network).
  • the communication unit 316 communicates with the upper ECU 74 (see FIG. 1) via the in-vehicle LAN (Local Area Network).
  • the communication unit 316 may be a wired communication module that communicates with other in-vehicle devices by wire, or may be a wireless communication module having a wireless communication antenna.
  • the control device 318 includes, for example, a processing device such as a CPU or an MPU.
  • the software (computer program) executed by the control device 318 is stored in advance in the control device 318.
  • the software (computer program) executed by the control device 318 may be configured to be stored in the memory 314 in advance.
  • the control device 124 of the battery management device 110 includes a control unit 130, a voltage acquisition unit 132, a current acquisition unit 134, a temperature acquisition unit 136, a communication control unit 138, an ID management unit 140, and a memory management unit 142.
  • Timer 144, state estimation unit 146, cell balance control unit 152, and abnormality determination unit 154 are included as functional units.
  • the functions of these functional units are realized by software processing executed by the control device 124 using hardware. Some or all of these functions may be realized by integrated circuits including a microcomputer.
  • the frequency of acquiring the voltage and current controlled by the control device 124 is, for example, 10 milliseconds, but the frequency is not limited to this.
  • the temperature is acquired in a timely manner.
  • the control device 124 controls each unit as the control unit 130, and calculates the battery characteristics of the assembled battery 40 in cell units based on the detected voltage, temperature, and current.
  • the control device 124 has, for example, full charge capacity (FCC: Full Charge Capacity), charge rate (SOC: State of Charge), deterioration degree (SOH: State of Health), charge / discharge possible power (SOP: State of Power) as battery characteristics. ), And the internal parameters of the equivalent circuit model are calculated.
  • Information for calculating these battery characteristics is stored in advance in the memory 122. For example, information referred to for calculating the charge rate (SOC) for each cell is stored in the memory 122.
  • the correlation between the open circuit voltage (OCV: Open Circuit Voltage) of the unit battery (cell 30 or 40 units of the assembled battery) and the charge rate is stored in advance.
  • the memory 122 further stores the initial (when new) full charge capacity or internal parameters of each unit battery as information for calculating the degree of deterioration of each unit battery.
  • the correlation between the internal resistance increase rate and the discharge capacity ratio may be stored in the memory 122. It is preferable that the full charge capacity or the internal parameters can be read separately, such as being stored in the order of connection of the unit batteries. It is preferable that the memory 122 stores the relationship between the rate of increase in internal resistance and the discharge capacity ratio corresponding to the degree of deterioration as information for calculating the degree of deterioration for each unit battery.
  • the voltage acquisition unit 132 acquires information indicating the voltage across the assembled battery 40 or the terminal voltage of each cell 30 output from the cell voltage detection / balance circuit 112.
  • the voltage acquisition unit 132 may acquire the voltage across the assembled battery 40 and the voltage in each of the cells 30 separately from each other.
  • the current acquisition unit 134 acquires information indicating the charge / discharge current flowing through the assembled battery 40 (cell 30) output from the current detection circuit 116.
  • the temperature acquisition unit 136 acquires information indicating the temperature output from the temperature detection circuit 114.
  • the communication control unit 138 interfaces with the communication unit 120.
  • the ID management unit 140 manages the management device identification information (BMU-ID) of the own device, the assembled battery ID of the assembled battery 40 managed by the own device, and the cell ID of each cell 30 included in the assembled battery 40. ..
  • the memory management unit 142 manages the memory 122.
  • the memory management unit 142 also executes a process of recording various information indicating the battery characteristics (battery status) calculated for each cell in the memory 122, a process of reading the recorded battery characteristics (battery status), and the like. ..
  • the timer 144 clocks the time and outputs the timed result to the control unit 130.
  • the control unit 130 associates the time information with the battery characteristics based on the output from the timer 144 in order to store the calculated battery characteristics in time series.
  • the state estimation unit 146 includes a parameter estimation unit 148 and a battery state estimation unit 150.
  • the parameter estimation unit 148 estimates internal parameters that are the values of resistors and capacitors that represent the equivalent circuit model of cell 30. Since these internal parameters change depending on the charge rate, temperature, deterioration degree, etc. of the cell 30, they can be sequentially estimated by observing the voltage and charge / discharge current of each cell 30.
  • the equivalent circuit model is represented by a circuit in which a resistor Ra and a parallel circuit of a resistor Rb and a capacitor Cb are connected in series to a voltage source using an OCV as an electromotive force.
  • the resistor Ra corresponds to the electrolyte resistance.
  • the resistor Rb corresponds to the charge transfer resistance and the capacitor Cb corresponds to the electric double layer capacitance.
  • the charge transfer resistance may be included in the resistance Ra, and the resistance Rb may correspond to the diffusion resistance. It is known that the following approximate equations (1) to (4) hold for the internal parameters of the equivalent circuit model shown in FIG. 4 (see Non-Patent Document 1 for details).
  • uL (k) b0 ⁇ i (k) + b1 ⁇ i (k-1) -a1 ⁇ uL (k-1) ) + (1 + a1) ⁇ OCV ...
  • b0 Ra ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ (2)
  • b1 TsRa / (RbCb) + Ts / Cb-Ra ...
  • a1 Ts / (RbCb) -1 ...
  • uL Acquired voltage
  • i Acquired charge / discharge current
  • Ts Measurement cycle
  • k Integer indicating the measurement time point.
  • Ra b0 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ (5)
  • Rb (b1-a1b0) / (1 + a1) ...
  • Cb Ts / (b1-a1b0) ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ (7)
  • the successive least squares method is applied to the equation (1) to determine the coefficients b0, b1 and a1, and the determined coefficients are substituted into the equations (5) to (7) to substitute the parameters Ra, Rb and Estimate Cb.
  • the estimated parameters may be corrected according to the temperature acquired by the temperature acquisition unit 136.
  • the parameters Ra, Rb and Cb can also be calculated using a Kalman filter. Specifically, the observation vector when the input signal represented by the voltage and the charge / discharge current is given to the cell 30 and the state vector when the same input signal as above is given to the equivalent circuit model of the cell 30 are obtained. By comparing and multiplying these errors by Kalman gain and feeding them back to the equivalent circuit model, the modification of the equivalent circuit model is repeated so that the errors of both vectors are minimized. As a result, the parameters are estimated.
  • the equivalent circuit model of the secondary battery is not limited to the one shown in FIG.
  • the battery state estimation unit 150 estimates the state of the assembled battery 40 on a cell-by-cell basis. Specifically, the battery state estimation unit 150 estimates the charge rate (SOC), the degree of deterioration (SOH), the chargeable / dischargeable power (SOP), and the like for each cell 30 of the assembled battery 40. The battery state estimation unit 150 may estimate the state of the assembled battery 40 in units of assembled batteries.
  • the battery state estimation unit 150 includes a current integration unit 160, a charge rate estimation unit 162, a full charge capacity calculation unit 164, a deterioration degree calculation unit 166, and a chargeable / dischargeable power calculation unit 168. including.
  • the current integrating unit 160 integrates the value of the charge / discharge current acquired by the current acquisition unit 134.
  • the integrated value of the current is the integral value of the current over time, and corresponds to the change in the amount of charge.
  • the integrated value of the current is positive in the case of charging and negative in the case of discharging.
  • the integrated value in an arbitrary period can be positive or negative depending on the magnitude of the charge current and discharge current values in the period.
  • the timing for starting the calculation of the integration can be the start timing of the battery unit 50, the battery module 200, or the battery management device 110 (battery monitoring system 100) itself.
  • the integrated value is calculated continuously.
  • the integrated value may be reset at a predetermined timing, for example, in the case of reuse, at the timing of rearranging the battery module 200.
  • the charge rate estimation unit 162 estimates the charge rate using a Kalman filter.
  • the charge rate estimation unit 162 estimates the SOC to be output based on the voltage acquired by the voltage acquisition unit 132, the charge / discharge current acquired by the current acquisition unit 134, and the internal parameters estimated by the parameter estimation unit 148.
  • the charge rate estimation unit 162 generates a state vector representing the state of the cell 30 after processing the internal parameters estimated by the parameter estimation unit 148 with parameter data, and also generates a voltage acquisition unit 132 and a current acquisition unit 132. An observation vector representing the observation value based on the acquisition result in 134 is generated.
  • the charge rate estimation unit 162 further updates the state of the cell 30 using a Kalman filter based on these vectors to estimate the charge rate of the cell 30. Since the estimation of the charge rate using the Kalman filter is described in detail in Patent Document 3, detailed description thereof will be omitted.
  • the full charge capacity calculation unit 164 calculates the full charge capacity for each cell in cell units.
  • the full charge capacity calculation unit 164 can also calculate the full charge capacity of 40 units of the assembled battery based on the full charge capacity of each cell 30.
  • the deterioration degree calculation unit 166 calculates the deterioration degree for each unit battery which is the assembled battery 40 or the cell 30. For example, the deterioration degree calculation unit 166 calculates the deterioration degree by comparing the full charge capacity of the unit battery calculated by the full charge capacity calculation unit 164 with the initial full charge capacity stored in the memory 122. The deterioration degree calculation unit 166 obtains the ratio (increase degree) of the internal resistance value R calculated by the parameter estimation unit 148 to the initial value for each cell 30, and the internal resistance increase rate and discharge stored in the memory 122. It may be configured to calculate the degree of deterioration based on the correlation with the capacity ratio. Further, even if the deterioration degree calculation unit 166 is configured to calculate the deterioration degree by comparing the initial value of the internal parameter stored in the memory 122 with the value calculated by the parameter estimation unit 148. Good.
  • the charge / discharge possible power calculation unit 168 includes an OCV calculated based on the integrated value of the charge / discharge current calculated by the current integration unit 160, an OCV estimated by the parameter estimation unit 148, and an internal parameter estimated by the parameter estimation unit 148. (For example, internal resistance, etc.) and the charge / discharge current acquired by the current acquisition unit 134 are used to calculate the chargeable / dischargeable power of the assembled battery 40 in cell units.
  • the charge / discharge possible power calculation unit 168 may calculate the charge / discharge possible power based on the OCV, the internal parameters, the charge / discharge current, and the temperature.
  • the above-mentioned state estimation unit 146 serves as a parameter estimation unit 148, a charge rate estimation unit 162, a full charge capacity calculation unit 164, a deterioration degree calculation unit 166, and a chargeable / dischargeable power calculation unit 168, and is a state of each cell 30 in the assembled battery 40.
  • Battery characteristics can be calculated by various methods. As a method for calculating (estimating) the state (battery characteristics) of each cell 30, for example, the methods disclosed in Patent Document 4, Patent Document 5, Patent Document 6, Patent Document 7, Patent Document 8 and the like can be used. ..
  • the cell balance control unit 152 controls the cell voltage detection / balance circuit 112 to perform cell balance on the assembled battery 40 managed by the own device.
  • the cell balance control unit 152 includes the voltage acquired by the voltage acquisition unit 132, the state estimated by the state estimation unit 146 (for example, the charge rate of each cell 30 estimated by the charge rate estimation unit 162, etc.), and The cell voltage detection / balance circuit 112 is controlled so as to equalize the energy capacities of the plurality of cells 30 based on the temperature acquired by the temperature acquisition unit 136 or an instruction from the battery monitoring device 300.
  • the abnormality determination unit 154 has an abnormality in the assembled battery 40 managed by its own device based on the voltage acquired by the voltage acquisition unit 132, the charge / discharge current acquired by the current acquisition unit 134, the temperature acquired by the temperature acquisition unit 136, and the like. Judge whether or not. Specifically, for example, each threshold value for determining whether or not it is abnormal is stored in the memory 122. The abnormality determination unit 154 determines whether or not the assembled battery 40 is abnormal by comparing each detection value from the voltage acquisition unit 132, the current acquisition unit 134, or the temperature acquisition unit 136 with each threshold value. The abnormality determination unit 154 may be configured to determine the abnormality of each cell 30 by comparing with other cells 30.
  • the abnormality determination unit 154 further executes a predetermined abnormality processing in response to the determination that the assembled battery 40 is abnormal. As an abnormality measure, the abnormality determination unit 154 notifies, for example, the battery monitoring device 300 that the assembled battery 40 is abnormal, and records the history information in the memory 122.
  • the control device 124 calculates all or part of the battery characteristics such as the charge rate, the internal parameters, the full charge capacity, and the degree of deterioration in a predetermined cycle such as 10 milliseconds as the control unit 130, and temporarily stores the battery characteristics. Charge / discharge control is performed according to the battery characteristics.
  • the control unit 130 transmits the battery characteristics to the battery monitoring device 300.
  • the battery monitoring device 300 calculates the battery characteristics of the entire battery unit 50 based on the battery characteristics transmitted from each battery management device 110, and executes charge / discharge control as a whole.
  • the battery monitoring device 300 further provides information for traveling control and the like to the upper ECU 74.
  • each battery management device 110 is acquired by the voltage acquired by the voltage acquisition unit 132, the charge / discharge current acquired by the current acquisition unit 134, and the temperature acquisition unit 136. It may be configured to transmit information such as temperature to the battery monitoring device 300.
  • the battery monitoring system 100 operates in the normal mode. In the normal mode, the battery monitoring device 300 acquires and aggregates information such as battery characteristics (battery status) from each battery management device 110 at a predetermined cycle such as 1 second.
  • the battery monitoring system 100 operates in the low power consumption mode. In the low power consumption mode, the battery monitoring system 100 is activated at regular intervals, and operates in the same manner as in the normal mode for a predetermined time.
  • the control device 318 of the battery monitoring device 300 includes a control unit 320, an inter-module cell balance control unit 322, a communication control unit 324, a timer 326, a memory management unit 328, and an abnormality determination unit 330 as functional units. Include as.
  • the functions of these functional units are realized by software processing executed by the control device 318 using hardware. Some or all of these functions may be realized by integrated circuits including a microcomputer.
  • the inter-module cell balance control unit 322 controls each battery management device 110 based on the aggregated information of each battery module 200 (each assembled battery 40) so as to suppress the variation in energy capacity between the battery modules 200. Specifically, the cell balance control unit 322 between modules generates a command value for suppressing the variation in energy capacity between the battery modules 200, and the generated command value is transmitted to each battery management device 110 via the communication unit 310. Send to. Each battery management device 110 performs cell balance based on a command value transmitted from the battery monitoring device 300 to equalize the energy capacity of each cell 30 as a plurality of battery modules 200, that is, the battery unit 50 as a whole. To do.
  • the communication control unit 324 takes an interface with the communication unit 310 and the communication unit 316.
  • the timer 326 clocks the time and outputs the timed result to the control unit 320.
  • the control unit 320 associates the time information with the battery characteristics based on the output from the timer 326 in order to store the battery characteristics (battery state) acquired from each battery management device 110 in time series.
  • the memory management unit 328 manages the memory 314.
  • the memory management unit 328 also executes a process of recording various information including battery characteristics acquired from each battery management device 110 in the memory 314, a process of reading the recorded battery characteristics (battery state) from the memory 314, and the like. To do.
  • the abnormality determination unit 330 determines whether or not an abnormality has occurred in each battery module 200 based on the information acquired from each battery management device 110, and executes a predetermined abnormality process according to the determination result. For example, the abnormality determination unit 330 determines an abnormality in each battery module 200 (assembled battery 40) by comparing with another battery module 200 (assembled battery 40). When the deviation from the value of the battery characteristics (battery state) is larger than that of many other battery modules 200, it can be determined that the battery module 200 is abnormal. In addition to this, for example, the abnormality determination of the battery module 200 may be performed by comparing with a predetermined threshold value.
  • this program includes step S1000, which repeats steps S1010 to S1070 described below for the transmission cycle to the battery monitoring device 300.
  • step S1000 the state of the battery is estimated.
  • step S1000 the process of estimating the battery state, which is repeated during the transmission cycle to the battery monitoring device 300, controls the cell voltage detection / balance circuit 112 to measure the voltage of each cell 30. It is executed after step S1010 to control the current detection circuit 116 to measure the charge / discharge current of the assembled battery 40 (each cell 30), and is executed after step S1020 to control the temperature detection circuit 114. , It is executed after step S1030 to measure the surface temperature of the assembled battery 40, and it is determined whether or not there is an abnormality in the assembled battery 40 or each cell 30 based on the information measured in steps S1010 to S1030.
  • step S1040 for branching the control flow according to the determination result, step S1050 which is executed when it is determined that there is an abnormality in step S1040 and a predetermined abnormality processing is executed, and step S1040 where there is no abnormality. It includes step S1060, which is executed when the determination is made and executes a process of estimating the internal parameters of the equivalent circuit model, and step S1070, which is executed after step S1060 and estimates the state of the assembled battery 40 in cell units.
  • step S1050 for example, a process of storing the abnormality of the cell 30 in the memory 122 as history information is executed.
  • step S1050 the abnormality of the cell 30 is temporarily stored for transmission to the battery monitoring device 300.
  • This program is further executed after step S1000 to transmit the abnormality of cell 30 or the estimated battery characteristics (battery state) to the battery monitoring device 300, and is executed after step S1080, and the operation mode is usually Execution when it is determined in step S1090 and step S1090 that the mode or not is determined and the control flow is branched according to the determination result, that the operation mode is not the normal mode, that is, the low power consumption mode is determined.
  • step S1100 which determines whether or not a predetermined time for operating as the normal mode has elapsed, and branches the control flow according to the determination result.
  • step S1090 If it is determined in step S1090 that the operation mode is the normal mode, or if it is determined in step S1100 that the predetermined time has not elapsed, the control returns to step S1000. If it is determined in step S1100 that the predetermined time has elapsed, the execution of this program ends.
  • FIG. 11 is a routine showing the communication interrupt process in the battery management device 110.
  • This routine is activated in response to, for example, detecting an abnormality in the assembled battery 40 (for example, a sudden temperature rise, etc.) for which immediate action is desired, or receiving an instruction from the battery monitoring device 300.
  • this routine includes step S1200, which executes an interrupt process for a request from the battery management device 110 or a request from the battery monitoring device 300.
  • step S1200 when the battery management device 110 detects any abnormality, the battery monitoring device 300 is notified of the abnormality.
  • step S1200 when the instruction from the battery monitoring device 300 is received, the process according to the received instruction is executed. When the process of step S1200 is completed, the execution of this routine ends.
  • FIG. 12 is a routine showing the cell balance interrupt processing in the battery management device 110. This routine is activated in response to a cell balance instruction from the battery management device 110 itself or a cell balance instruction from the battery monitoring device 300. With reference to FIG. 12, this routine includes step S1300, which executes the cell balance in response to the cell balance instruction as an interrupt process. When the process of step S1300 is completed, the execution of this routine ends.
  • This program like the battery management device 110, starts in response to the transition to the normal mode or at regular intervals in the low power consumption mode.
  • step S2000 This program is executed after step S2000 for receiving the information transmitted from each battery management device 110 and after step S2000, and is the state of each cell 30 and each battery module 200 (assembled battery 40) based on the received information.
  • step S2010 and step S2020 which are executed after step S2010, determine whether or not there is an abnormality in the cell 30 or the assembled battery 40, and branch the control flow according to the determination result. It is executed when it is determined that there is an abnormality, and is executed when it is determined that there is no abnormality in step S2030 and step S2020, which executes a predetermined abnormality processing, and whether or not there is an instruction to the battery management device 110.
  • Step S2040 that determines and branches the control flow according to the determination result, and step S2050 that is executed when it is determined that there is an instruction in step S2040 and transmits the instruction to the battery management device 110 to be instructed.
  • step S2060 which is executed after step S2030 or step S2050, or when it is determined in step S2040 that there is no instruction, and transmits information necessary for battery management to the upper ECU 74.
  • step S2040 for example, whether or not there is an instruction to the battery management device 110 for each battery module 200 depending on whether or not it is necessary to perform cell balance for each battery module 200 (assembled battery 40). judge.
  • step S2050 a cell balance instruction is transmitted to the battery management device 110.
  • the cell balance instruction includes an instruction as to which cell 30 of which battery module 200 the cell balance operation is to be executed.
  • step S2030 for example, a process of temporarily storing an abnormality in the battery unit 50 (assembled battery 40 or cell 30) in order to transmit it to the higher-level ECU 74 is executed.
  • step S2060 information regarding the abnormality of the battery unit 50 or information such as the battery status is transmitted to the upper ECU 74.
  • the information to be transmitted to the upper ECU 74 is not all the information about the cell 30, but is preselected such as the average value, the lowest value, the highest value, etc. regarding the charge rate (SOC), the degree of deterioration (SOH), the internal resistance, the temperature, and the like. It may be an item. Further, the item requested from the upper ECU 74 may be transmitted to the upper ECU 74.
  • step S2060 determines whether or not the operation mode is the normal mode, and branches the control flow according to the determination result.
  • step S2070 and step S2070 the operation mode is not the normal mode. That is, in step S2080, which is executed when the low power consumption mode is determined, it is determined whether or not a predetermined time for operating as the normal mode has elapsed, and the control flow is branched according to the determination result. including. If it is determined in step S2070 that the operation mode is the normal mode, or if it is determined in step S2080 that the predetermined time has not elapsed, the control returns to step S2000. If it is determined in step S2080 that the predetermined time has elapsed, the execution of this program ends.
  • the battery monitoring system 100 operates as follows.
  • the battery monitoring system 100 operates in the normal mode when the start switch 72 is turned on or when the battery is charged by a charger (not shown) while the vehicle is stopped. On the other hand, when the start switch 72 is not turned on and the battery is not charged while the vehicle is stopped, the battery monitoring system 100 operates in the low power consumption mode. In the low power consumption mode, the battery monitoring system 100 is started at regular intervals and operates for a predetermined period in the same manner as in the normal mode.
  • each battery management device 110 acquires the voltage, charge / discharge current, and surface temperature of each cell 30 of the corresponding assembled battery 40 (steps S1010 to S1030 in FIG. 10). Each battery management device 110 determines whether or not there is an abnormality in the assembled battery 40 (cell 30) based on the acquired information. If it is determined that there is an abnormality (YES in step S1040), the battery management device 110 executes a predetermined abnormality process (step S1050). When there is no abnormality (NO in step S1040), each battery management device 110 uses the acquired voltage, charge / discharge current, and temperature to perform battery characteristics such as charge rate, internal parameters, full charge capacity, and degree of deterioration (NO). Battery status) is estimated (step S1060 and step S1070). Each battery management device 110 repeats these series of processes (steps S1010 to S1070) at a predetermined cycle such as 10 milliseconds.
  • Each battery management device 110 transmits information such as a battery status to the battery monitoring device 300 at a predetermined cycle such as 1 second.
  • a predetermined cycle such as 1 second.
  • the transmission cycle to the battery monitoring device 300 is 1 second and the cycle of the series of processes is 10 milliseconds, each battery management device 110 repeats the processes of steps S1010 to S1070 100 times each time.
  • the information obtained by the above process is transmitted to the battery monitoring device 300.
  • each battery management device 110 When each battery management device 110 detects some abnormality for which immediate response is desired, or receives an instruction from the battery monitoring device 300, each battery management device 110 executes an interrupt process corresponding to the instruction (step S1200 in FIG. 11). .. When each battery management device 110 further determines that it is necessary to perform cell balance based on the charge rate of the cell 30, or when it receives a cell balance instruction from the battery monitoring device 300, the cell balance is adjusted. The interrupt process to be performed is executed (step S1300 in FIG. 12).
  • the battery monitoring device 300 receives the information transmitted from each battery management device 110 and grasps the state of the assembled battery 40 and each cell 30 for each battery module 200 (steps S2000 and S2010 in FIG. 13). The battery monitoring device 300 determines whether or not there is an abnormality in each assembled battery 40 (each cell 30) in the battery unit 50 based on the state of each cell 30 or the information regarding the abnormality transmitted from the battery management device 110. When it is determined that there is an abnormality (YES in step S2020), the battery monitoring device 300 notifies the upper ECU 74 of this (step S2030 and step S2060).
  • the battery monitoring device 300 detects an abnormality such that the state of a certain battery module 200 is significantly different from the state of another battery module 200 based on the state of each battery module 200, the battery module 200 is further detected. Notifies (battery management device 110) of a battery abnormality.
  • the battery monitoring device 300 determines whether or not there is a variation in the energy capacity between the battery modules 200. That is, it is determined whether or not it is necessary to give a cell balance instruction to the battery management device 110. When it is necessary to give a cell balance instruction (YES in step S2040), the battery monitoring device 300 transmits the cell balance instruction to the battery module 200 (battery management device 110) (step S2050) and also gives the cell balance instruction. This is notified to the upper ECU 74 (step S2060). On the other hand, when it is not necessary to give the cell balance instruction (NO in step S2040), the battery monitoring device 300 transmits the information necessary for battery management in the higher ECU 74 to the higher ECU 74 (step S2060).
  • the battery monitoring system 100 repeats the above operation.
  • the operation mode is the normal mode (YES in step S1090 in FIG. 10 and step S2070 in FIG. 13)
  • the battery monitoring system 100 repeats the above operation.
  • the operation mode is the low power consumption mode
  • the above operation is repeated during a predetermined time during which the same operation as the normal mode is performed (NO in step S1100 in FIG. 10 and step S2080 in FIG. 13).
  • the current sensor 180 provided in the current path of the assembled battery 40 detects the charge / discharge current of the cell 30 and outputs the detection signal to the battery management device 110.
  • Each battery management device 110 acquires the voltage of the cell 30 by the voltage acquisition unit 132, and acquires the charge / discharge current of the cell 30 by the current acquisition unit 134 via the current sensor 180. Since the voltage value and charge / discharge current value of each cell 30 can be acquired without a time difference, the simultaneity of data is ensured. As a result, the influence of the phase shift between the voltage of the cell 30 and the charge / discharge current can be suppressed, so that the state can be estimated accurately when the state estimation unit 146 estimates the state of the assembled battery 40.
  • Each of the plurality of battery management devices 110 individually transmits the state of the assembled battery 40 (each cell 30) estimated by the state estimation unit 146 to the battery monitoring device 300 via the communication unit 120. Therefore, unlike the configuration in which the battery is connected in a daisy chain, even if a communication problem occurs between some battery management devices 110 and the battery monitoring device 300, the other battery management devices 110 are affected by the problem. I will not receive it. Since the other battery management device 110 can maintain communication with the battery monitoring device 300, the estimated state of the assembled battery 40 can be transmitted to the battery monitoring device 300. Therefore, the battery monitoring device 300 can monitor the battery unit 50 even when a communication problem occurs with some of the battery management devices 110.
  • each battery management device 110 the assembled battery 40 (cell 30) is based on the voltage acquired by the voltage acquisition unit 132, the charge / discharge current acquired by the current acquisition unit 134, and the temperature information acquired by the temperature acquisition unit 136. Determine if it is abnormal.
  • Each battery management device 110 executes an abnormality process according to the determination result. As a result, the occurrence of an abnormality can be detected at an early stage and the abnormality processing can be executed, so that the assembled battery 40 (and thus the battery unit 50) can be effectively managed. Further, the battery monitoring device 300 can centrally manage the information of each battery management device 110, so that the battery unit 50 can be monitored more effectively.
  • Each battery management device 110 further adjusts the cell balance of the assembled battery 40 based on the voltage acquired by the voltage acquisition unit 132, the state estimated by the state estimation unit 146 (battery characteristics), and the temperature acquired by the temperature acquisition unit 136. Run. Since the state estimation unit 146 can accurately estimate the state of the assembled battery 40 on a cell-by-cell basis, the energy capacity between the cells 30 can be accurately uniformized by using the estimated state. As a result, the capacity of the battery can be fully utilized.
  • the assembled battery 40, the battery management device 110, and the current sensor 180 are modularized as a battery module 200.
  • the battery monitoring system 100 can even estimate the state of the batteries in each of the plurality of battery modules 200.
  • the battery monitoring system 100 according to the present embodiment can be easily configured. In battery reuse, it is possible to facilitate reuse in module units.
  • Each battery management device 110 further records the state of each cell estimated by the state estimation unit 146 in the memory 122 in association with the identification information that identifies the cell 30. As a result, the state of the battery unit 50 can be accurately grasped by reading the history information recorded in the memory 122 at the time of reuse or the like.
  • the battery monitoring system 100 and the upper ECU 74 communicate with each other, and the upper ECU 74 sets the battery unit 50 based on the information from the battery monitoring system 100 (battery monitoring device 300). Can be controlled efficiently. As a result, the battery unit 50 can be kept in an optimum state for a long period of time.
  • the battery monitoring system according to the first embodiment is the same as the battery monitoring system 100 according to the first embodiment (see FIG. 2) in that one current sensor outputs detection signals to a plurality of battery management devices. Is different. Other configurations are the same as in the first embodiment.
  • the battery monitoring system 100A includes a plurality of battery management devices 110 (110_1, 110_2, ..., 110_n) for managing each set of batteries 40 of the battery unit 50. .. Similar to the first embodiment, the plurality of battery management devices 110 are provided corresponding to the plurality of assembled batteries 40.
  • the battery monitoring system 100A includes a battery monitoring device similar to the battery monitoring device 300 (see FIG. 2). However, in FIG. 14, the description of the battery monitoring device is omitted.
  • a plurality of current sensors 180 are provided in the current path of each assembled battery 40. However, the number of current sensors 180 is smaller than the number of assembled batteries 40. Therefore, some of the current sensors 180 out of the plurality of current sensors 180 output detection signals to the plurality of battery management devices 110. That is, some of the current sensors 180 are shared by the plurality of battery management devices 110.
  • the assembled battery 40_2 is provided with the current sensor 180, and the assembled battery 40_n is also provided with the current sensor 180.
  • the assembled battery 40_1 is not provided with the current sensor 180. Therefore, the detection signal from the current sensor 180 of the assembled battery 40_1 is input to the battery management device 110_1 that manages the assembled battery 40_1. Since the plurality of cells 30 are connected in series, the charge / discharge currents of the cells 30 have the same value. Therefore, even if one current sensor 180 is configured to output detection signals to a plurality of battery management devices 110_1 and 110_2, each battery management device 110_1 and 110_2 is a battery assembly as in the first embodiment.
  • the 40 states can be estimated accurately on a cell-by-cell basis. Further, by sharing a part of the current sensors 180 with a plurality of battery management devices 110_1 and 110_2, the number of installed current sensors 180 can be reduced. As a result, a cost reduction effect can be expected.
  • one current sensor 180 may be provided as a battery monitoring system, and the one current sensor 180 may output detection signals to all of the plurality of battery management devices 110_1 to 110_n.
  • a plurality of battery management devices 110 are connected in series via a communication line 400, and the battery monitoring device 300 (see FIG. 2). Instead, it differs from the battery monitoring system 100 according to the first embodiment in that it includes the battery monitoring device 300A.
  • the battery monitoring device 300A includes a control device 318A instead of the control device 318 (see FIG. 2).
  • the communication line 400 is preferably connected to the battery management device 110 via an isolator such as a photocoupler or a capacitor. As a result, the plurality of battery management devices 110 are maintained in a state of being insulated from each other.
  • Each battery management device 110 transmits the charge / discharge current of each cell 30 to the battery monitoring device 300A at a predetermined cycle via the communication unit 120.
  • the control device 318A of the battery monitoring device 300A further includes a sensor abnormality detection unit 332 and an abnormality notification unit 334 as functional units.
  • the sensor abnormality detection unit 332 detects an abnormality in the current sensor 180 based on the charge / discharge current transmitted from each battery management device 110. Specifically, the sensor abnormality detection unit 332 detects an abnormality of the current sensor 180 by, for example, comparing the aggregated charge / discharge current values with each other. Since the plurality of cells 30 are connected in series, the values of the charge / discharge currents detected by the current sensor 180 are basically the same.
  • the sensor abnormality detection unit 332 can detect the abnormality of the current sensor 180.
  • the abnormality notification unit 334 sends a detection signal from the current sensor 180 in which the abnormality is detected to the battery management device 110 via the communication control unit 324. Notify the sensor abnormality.
  • the battery management device 110 notified of the sensor abnormality acquires a charge / discharge current (information indicating the charge / discharge current) from another battery management device 110 via the communication line 400.
  • the battery management device 110 notified of the sensor abnormality communicates with the adjacent battery management device 110 to acquire the charge / discharge current from the battery management device 110.
  • the battery monitoring device 300A provides not only the battery management device 110 to which the detection signal from the current sensor 180 in which the abnormality is detected is input, but also the battery management device 110 to provide the value of the charge / discharge current.
  • the device 110 may also be configured to notify the sensor abnormality. In this case, it is preferable that the battery management device 110 that has received the notification is configured to transmit the charge / discharge current value to the battery management device 110 instructed by the battery monitoring device 300A.
  • the battery management device constituting the battery monitoring system may be configured to estimate the state of the assembled battery using the voltage of the assembled battery, or may be configured to estimate the state of the cell using the voltage of the cell. Good.
  • the battery management device may further be configured to estimate the state of both the assembled battery and the cell using the respective voltages of the assembled battery and the cell.
  • each battery management device shows such an embodiment. It is not limited to the form.
  • the detection of anomalies in each battery management device can also be based on at least one piece of information: voltage, charge / discharge current, and temperature.
  • an assembled battery in which cells are connected in series and a battery unit are shown, but the present disclosure is not limited to such an embodiment.
  • the assembled battery and the cells constituting the battery unit may be connected in series-parallel, for example.
  • the battery management device and the battery monitoring device communicate wirelessly
  • the communication between the battery management device and the battery monitoring device may be, for example, wired communication such as isolated CAN communication.
  • the battery monitoring system may be configured to include a battery unit to be monitored.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

This battery monitoring system monitors a battery unit including a plurality of battery packs that include a first battery pack. The first battery back includes a plurality of cells. The battery monitoring system comprises: a first battery management device that manages the first battery pack; and a current sensor that detects the charge/discharge currents of the plurality of cells and outputs, to the first battery management device, a detection signal from the detection. The first battery management device comprises: a voltage acquisition unit that acquires the voltage between prescribed positions on a current path of the first battery pack; a current acquisition unit that acquires the charge/discharge currents of the plurality of cells through the current sensor; and a state estimation unit that estimates the state of the first battery pack using the voltage acquired by the voltage acquisition unit and the charge/discharge currents acquired by the current acquisition unit.

Description

電池監視システム、電池モジュール、電池管理装置、管理方法、及び車両Battery monitoring system, battery module, battery management device, management method, and vehicle
 本開示は、電池監視システム、電池モジュール、電池管理装置、管理方法、及び車両に関する。本開示は、2019年9月19日出願の日本出願第2019-170709号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 This disclosure relates to a battery monitoring system, a battery module, a battery management device, a management method, and a vehicle. This disclosure claims priority based on Japanese Application No. 2019-170709 filed on September 19, 2019, and incorporates all the contents of the Japanese application.
 原油等のエネルギ制約の高まり、及び地球温暖化対策の必要性等を受け、EV(Electric Vehicle)、HEV(Hybrid Electric Vehicle)等に代表される電動車両が世界的に増加の傾向にある。こうした電動車両には、車両を駆動するための電気モータに電力を供給する二次電池が搭載される。 In response to increasing energy constraints such as crude oil and the need for measures against global warming, the number of electric vehicles represented by EV (Electric Vehicle), HEV (Hybrid Electric Vehicle), etc. is increasing worldwide. Such electric vehicles are equipped with a secondary battery that supplies electric power to an electric motor for driving the vehicle.
 二次電池を長期にわたって最適な状態に保つためには、電池の状態を監視して電池管理を行う必要がある。後掲の特許文献1及び2には、このような電池管理機能を持つ電池システムが開示されている。 In order to keep the secondary battery in the optimum condition for a long period of time, it is necessary to monitor the battery condition and manage the battery. Patent Documents 1 and 2 described later disclose a battery system having such a battery management function.
 特許文献1に開示のシステムは、複数のセルを有する組電池が接続された電池モジュールと、各組電池に対応して設けられる複数の電池監視回路と、各電池監視回路の動作を制御するマイコンとを含む。各電池監視回路はマイコンからの指示に基づいて組電池の状態を監視する。複数の電池監視回路はコンデンサ及び中継信号伝送路を介して直列に接続されている。 The system disclosed in Patent Document 1 includes a battery module to which an assembled battery having a plurality of cells is connected, a plurality of battery monitoring circuits provided corresponding to each assembled battery, and a microcomputer that controls the operation of each battery monitoring circuit. And include. Each battery monitoring circuit monitors the state of the assembled battery based on an instruction from the microcomputer. A plurality of battery monitoring circuits are connected in series via a capacitor and a relay signal transmission line.
 特許文献2に開示のシステムは、各々が組電池及び監視IC(Integrated Circuit)を有する複数の蓄電モジュールと、各蓄電モジュールを一元的に管理するBMU(Battery Management Unit)とを含む。各蓄電モジュール(監視IC)はアイソレータ及び通信線を介したデイジーチェーン接続によってBMUと通信可能に接続されている。 The system disclosed in Patent Document 2 includes a plurality of power storage modules each having an assembled battery and a monitoring IC (Integrated Circuit), and a BMU (Battery Management Unit) that centrally manages each power storage module. Each power storage module (monitoring IC) is communicably connected to the BMU by a daisy chain connection via an isolator and a communication line.
特開2017-168453号公報JP-A-2017-168453 特開2019-30134号公報Japanese Unexamined Patent Publication No. 2019-30134 特開2015-224927号公報Japanese Unexamined Patent Publication No. 2015-224927 特開2009-210478号公報Japanese Unexamined Patent Publication No. 2009-210478 特開2018-013456号公報Japanese Unexamined Patent Publication No. 2018-013456 特開2017-203659号公報Japanese Unexamined Patent Publication No. 2017-203659 特開2017-194284号公報JP-A-2017-194284 特開2017-194283号公報Japanese Unexamined Patent Publication No. 2017-194283
 本開示のある局面に係る電池監視システムは、第1の組電池を含む複数の組電池を含む電池ユニットを監視する電池監視システムである。第1の組電池は複数のセルを含む。この電池監視システムは、第1の組電池を管理する第1の電池管理装置と、複数のセルの充放電電流を検出してその検出信号を第1の電池管理装置に出力する電流センサとを含む。第1の電池管理装置は、第1の組電池の電流経路における所定位置の間の電圧を取得する電圧取得部と、電流センサを介して複数のセルの充放電電流を取得する電流取得部と、電圧取得部が取得した電圧及び電流取得部が取得した充放電電流を用いて、第1の組電池の状態を推定する状態推定部とを含む。 The battery monitoring system according to a certain aspect of the present disclosure is a battery monitoring system that monitors a battery unit including a plurality of assembled batteries including the first assembled battery. The first set battery includes a plurality of cells. This battery monitoring system includes a first battery management device that manages the first assembled battery, and a current sensor that detects charge / discharge currents of a plurality of cells and outputs the detection signal to the first battery management device. Including. The first battery management device includes a voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the first assembled battery, and a current acquisition unit that acquires charge / discharge currents of a plurality of cells via a current sensor. Includes a state estimation unit that estimates the state of the first assembled battery using the voltage acquired by the voltage acquisition unit and the charge / discharge current acquired by the current acquisition unit.
 本開示の他の局面に係る電池モジュールは、複数のセルを含む組電池と、組電池を管理する電池管理装置と、組電池の電流経路に設けられ、複数のセルの充放電電流を検出してその検出信号を電池管理装置に出力する電流センサとを含む。電池管理装置は、組電池の電流経路における所定位置の間の電圧を取得する電圧取得部と、電流センサを介して複数のセルの充放電電流を取得する電流取得部と、電圧取得部が取得した電圧及び電流取得部が取得した充放電電流を用いて組電池の状態を推定する状態推定部とを含む。 The battery module according to another aspect of the present disclosure is provided in an assembled battery including a plurality of cells, a battery management device for managing the assembled battery, and a current path of the assembled battery, and detects charge / discharge currents of the plurality of cells. It includes a current sensor that outputs the detection signal to the battery management device. The battery management device is acquired by a voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the assembled battery, a current acquisition unit that acquires charge / discharge currents of a plurality of cells via a current sensor, and a voltage acquisition unit. It includes a state estimation unit that estimates the state of the assembled battery using the voltage and the charge / discharge current acquired by the current acquisition unit.
 本開示のさらに他の局面に係る電池管理装置は、複数のセルを含む組電池を管理する電池管理装置である。組電池の電流経路には、複数のセルの充放電電流を検出してその検出信号を電池管理装置に出力する電流センサが設けられる。この電池管理装置は、組電池の電流経路における所定位置の間の電圧を取得する電圧取得部と、電流センサを介して複数のセルの充放電電流を取得する電流取得部と、電圧取得部が取得した電圧及び電流取得部が取得した充放電電流を用いて組電池の状態を推定する状態推定部とを含む。 The battery management device according to still another aspect of the present disclosure is a battery management device that manages an assembled battery including a plurality of cells. The current path of the assembled battery is provided with a current sensor that detects the charge / discharge currents of a plurality of cells and outputs the detection signal to the battery management device. This battery management device includes a voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the assembled battery, a current acquisition unit that acquires charge / discharge currents of a plurality of cells via a current sensor, and a voltage acquisition unit. It includes a state estimation unit that estimates the state of the assembled battery using the acquired voltage and the charge / discharge current acquired by the current acquisition unit.
 本開示のさらに他の局面に係る方法は、複数のセルを含む組電池の管理方法である。組電池の電流経路には、複数のセルの充放電電流を検出する電流センサが設けられる。この管理方法は、組電池の電流経路における所定位置の間の電圧を測定するとともに、電流センサから出力される検出信号を取得して複数のセルの充放電電流を測定するステップと、測定するステップにおいて測定された電圧及び充放電電流を用いて、組電池の状態を推定するステップとを含む。 A method according to yet another aspect of the present disclosure is a method of managing an assembled battery including a plurality of cells. A current sensor that detects the charge / discharge currents of a plurality of cells is provided in the current path of the assembled battery. This management method includes a step of measuring the voltage between predetermined positions in the current path of the assembled battery, a step of acquiring a detection signal output from the current sensor, and a step of measuring the charge / discharge currents of a plurality of cells, and a step of measuring. Including the step of estimating the state of the assembled battery using the voltage and charge / discharge current measured in.
 本開示のさらに他の局面に係る車両は、上記した電池監視システムと、電池監視システムと通信し、当該電池監視システムから所定の情報を取得する車載制御装置とを含む。 The vehicle according to still another aspect of the present disclosure includes the above-mentioned battery monitoring system and an in-vehicle control device that communicates with the battery monitoring system and acquires predetermined information from the battery monitoring system.
 なお、本開示の技術は、このような特徴的な構成を含む電池監視システムとして実現できるだけではない。本開示の技術は、電池監視システムが実行する特徴的なステップをコンピュータに実行させるためのプログラム、及びそのプログラムを記録した記録媒体として実現することもできる。また、電池管理システム単体ではなく、電池ユニットを含めたシステムとすることもできる。さらに、電池監視システム及び電池管理装置の構成要素の一部又は全部を実現する半導体集積回路とすることもできるし、電池管理装置にて処理される情報を用いた電池リユースシステム、及びこれらをさらに含むその他のシステムとすることもできる。 The technology of the present disclosure can not only be realized as a battery monitoring system including such a characteristic configuration. The technique of the present disclosure can also be realized as a program for causing a computer to perform a characteristic step performed by a battery monitoring system, and as a recording medium on which the program is recorded. Further, the system may include a battery unit instead of the battery management system alone. Further, it can be a semiconductor integrated circuit that realizes a part or all of the components of the battery monitoring system and the battery management device, a battery reuse system using information processed by the battery management device, and further. It can also be other systems, including.
図1は、第1の実施の形態に係る電池監視システムが搭載された車両の要部構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a main part configuration of a vehicle equipped with the battery monitoring system according to the first embodiment. 図2は、図1に示す電池監視システム及び電池ユニットの構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of the battery monitoring system and the battery unit shown in FIG. 図3は、電池監視システムを構成する電池管理装置の機能的構成例を示すブロック図である。FIG. 3 is a block diagram showing a functional configuration example of the battery management device constituting the battery monitoring system. 図4は、抵抗及びコンデンサの組合せによって表される二次電池の等価回路モデルを示す図である。FIG. 4 is a diagram showing an equivalent circuit model of a secondary battery represented by a combination of a resistor and a capacitor. 図5は、抵抗及びコンデンサの組合せによって表される二次電池の等価回路モデルを示す図である。FIG. 5 is a diagram showing an equivalent circuit model of a secondary battery represented by a combination of a resistor and a capacitor. 図6は、抵抗及びコンデンサの組合せによって表される二次電池の等価回路モデルを示す図である。FIG. 6 is a diagram showing an equivalent circuit model of a secondary battery represented by a combination of a resistor and a capacitor. 図7は、電池管理装置における状態推定部の機能的構成例を示すブロック図である。FIG. 7 is a block diagram showing a functional configuration example of the state estimation unit in the battery management device. 図8は、パラメータ及び充電率の推定に係る機能ブロックの関係を模式的に示す図である。FIG. 8 is a diagram schematically showing the relationship between the parameters and the functional blocks related to the estimation of the charge rate. 図9は、電池監視システムを構成する電池監視装置の機能的構成例を示すブロック図である。FIG. 9 is a block diagram showing a functional configuration example of the battery monitoring device constituting the battery monitoring system. 図10は、電池管理装置で実行されるプログラムの制御構造の一例を示すフローチャートである。FIG. 10 is a flowchart showing an example of a control structure of a program executed by the battery management device. 図11は、電池管理装置で実行されるプログラムの制御構造の一例を示すフローチャートである。FIG. 11 is a flowchart showing an example of a control structure of a program executed by the battery management device. 図12は、電池管理装置で実行されるプログラムの制御構造の一例を示すフローチャートである。FIG. 12 is a flowchart showing an example of a control structure of a program executed by the battery management device. 図13は、電池監視装置で実行されるプログラムの制御構造の一例を示すフローチャートである。FIG. 13 is a flowchart showing an example of a control structure of a program executed by the battery monitoring device. 図14は、第2の実施の形態に係る電池監視システム及び電池ユニットの構成例を示すブロック図である。FIG. 14 is a block diagram showing a configuration example of the battery monitoring system and the battery unit according to the second embodiment. 図15は、第3の実施の形態に係る電池監視システム及び電池ユニットの構成例を示すブロック図である。FIG. 15 is a block diagram showing a configuration example of the battery monitoring system and the battery unit according to the third embodiment. 図16は、図15に示す電池監視システムを構成する電池監視装置の機能的構成例を示すブロック図である。FIG. 16 is a block diagram showing a functional configuration example of the battery monitoring device constituting the battery monitoring system shown in FIG.
 [本開示が解決しようとする課題]
 特許文献1及び2のシステムでは、複数の電池監視回路(監視IC)が直列に接続されている。そのため、電池監視回路を管理するマイコン又はBMUと電池監視回路との間で通信の遅延が生じる。特に、電池電圧を高めるために組電池の接続数を増やした場合、直列に接続される電池監視回路の数も増えるため通信遅延が大きくなる。これにより、通信データの同時性が損なわれるので、電池の状態を推定する際に推定精度が低下するという問題がある。
[Issues to be solved by this disclosure]
In the systems of Patent Documents 1 and 2, a plurality of battery monitoring circuits (monitoring ICs) are connected in series. Therefore, a communication delay occurs between the microcomputer or BMU that manages the battery monitoring circuit and the battery monitoring circuit. In particular, when the number of assembled batteries connected is increased in order to increase the battery voltage, the number of battery monitoring circuits connected in series also increases, so that the communication delay becomes large. As a result, the simultaneity of communication data is impaired, and there is a problem that the estimation accuracy is lowered when estimating the state of the battery.
 それゆえに、本開示は、電池の状態を精度よく推定可能な電池監視システム、電池モジュール、電池管理装置、管理方法、及び車両を提供することを目的とする。 Therefore, it is an object of the present disclosure to provide a battery monitoring system, a battery module, a battery management device, a management method, and a vehicle capable of accurately estimating the state of a battery.
 [本開示の効果]
 本開示によれば、電池の状態を精度よく推定可能な電池監視システム、電池モジュール、電池管理装置、管理方法、及び車両を提供できる。
[Effect of the present disclosure]
According to the present disclosure, it is possible to provide a battery monitoring system, a battery module, a battery management device, a management method, and a vehicle capable of accurately estimating the state of a battery.
 [本開示の実施形態の説明]
 最初に、本開示の好適な実施形態を列記して説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組合せてもよい。
[Explanation of Embodiments of the present disclosure]
First, preferred embodiments of the present disclosure will be listed and described. In addition, at least a part of the embodiments described below may be arbitrarily combined.
 (1)本開示のある局面に係る電池監視システムは、第1の組電池を含む複数の組電池を含む電池ユニットを監視する電池監視システムである。第1の組電池は複数のセルを含む。この電池監視システムは、第1の組電池を管理する第1の電池管理装置と、複数のセルの充放電電流を検出してその検出信号を第1の電池管理装置に出力する電流センサとを含む。第1の電池管理装置は、第1の組電池の電流経路における所定位置の間の電圧を取得する電圧取得部と、電流センサを介して複数のセルの充放電電流を取得する電流取得部と、電圧取得部が取得した電圧及び電流取得部が取得した充放電電流を用いて、第1の組電池の状態を推定する状態推定部とを含む。 (1) The battery monitoring system according to a certain aspect of the present disclosure is a battery monitoring system that monitors a battery unit including a plurality of assembled batteries including the first assembled battery. The first set battery includes a plurality of cells. This battery monitoring system includes a first battery management device that manages the first assembled battery, and a current sensor that detects charge / discharge currents of a plurality of cells and outputs the detection signal to the first battery management device. Including. The first battery management device includes a voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the first assembled battery, and a current acquisition unit that acquires charge / discharge currents of a plurality of cells via a current sensor. Includes a state estimation unit that estimates the state of the first assembled battery using the voltage acquired by the voltage acquisition unit and the charge / discharge current acquired by the current acquisition unit.
 電流センサは、複数のセルの充放電電流を検出してその検出信号を電池管理装置に出力する。第1の電池管理装置は、第1の組電池の電流経路における所定位置の間の電圧を電圧取得部で取得するとともに、電流センサを介して複数のセルの充放電電流を電流取得部で取得する。セルの電圧値及び充放電電流値を時間差なく取得できるので、データの同時性が確保される。これにより、セルの電圧と充放電電流との位相ずれの影響を抑制できるので、状態推定部で組電池の状態を推定する際に、精度よく状態を推定できる。 The current sensor detects the charge / discharge currents of a plurality of cells and outputs the detection signal to the battery management device. In the first battery management device, the voltage acquisition unit acquires the voltage between predetermined positions in the current path of the first assembled battery, and the current acquisition unit acquires the charge / discharge currents of a plurality of cells via the current sensor. To do. Since the cell voltage value and charge / discharge current value can be acquired without a time lag, data simultaneity is ensured. As a result, the influence of the phase shift between the cell voltage and the charge / discharge current can be suppressed, so that the state can be estimated accurately when the state estimation unit estimates the state of the assembled battery.
 なお、電圧取得部は、組電池の電流経路における所定位置の間の電圧として、複数のセルの各々の電圧、及び複数のセルを含む組電池の電圧の少なくとも一方の電圧を取得する構成であると好ましい。組電池の状態を推定する状態推定部は、組電池全体の状態を推定する構成、及び組電池に含まれる複数のセルの各々の状態を推定する構成の少なくとも一方を含むとより好ましい。 The voltage acquisition unit is configured to acquire at least one of the voltage of each of the plurality of cells and the voltage of the assembled battery including the plurality of cells as the voltage between predetermined positions in the current path of the assembled battery. Is preferable. It is more preferable that the state estimation unit for estimating the state of the assembled battery includes at least one of a configuration for estimating the state of the entire assembled battery and a configuration for estimating the state of each of the plurality of cells included in the assembled battery.
 (2)好ましくは、複数の組電池は、第1の組電池と異なる第2の組電池をさらに含み、第2の組電池は複数のセルを含み、電池管理システムはさらに、第2の組電池を管理する第2の電池管理装置と、第2の組電池の複数のセルの充放電電流を検出してその検出信号を第2の電池管理装置に出力する、第2の組電池の電流センサとを含み、第2の電池管理装置は、第2の組電池の電流経路における所定位置の間の電圧を取得する電圧取得部と、第2の組電池の電流センサを介して第2の組電池の複数のセルの充放電電流を取得する電流取得部と、第2の電池管理装置の電圧取得部が取得した電圧及び第2の電池管理装置の電流取得部が取得した充放電電流を用いて、第2の組電池の状態を推定する状態推定部とを含む。これにより、容易に、セルの電圧値及び充放電電流値を時間差なく取得できるので、データの同時性を容易に確保できる。 (2) Preferably, the plurality of assembled batteries further include a second assembled battery different from the first assembled battery, the second assembled battery further includes a plurality of cells, and the battery management system further includes a second set. The current of the second battery management device that manages the batteries and the current of the second battery pack that detects the charge / discharge currents of a plurality of cells of the second battery pack and outputs the detection signal to the second battery management device. The second battery management device, including the sensor, includes a voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the second assembled battery, and a second battery management device via the current sensor of the second assembled battery. The current acquisition unit that acquires the charge / discharge currents of a plurality of cells of the assembled battery, the voltage acquired by the voltage acquisition unit of the second battery management device, and the charge / discharge current acquired by the current acquisition unit of the second battery management device. It includes a state estimation unit that estimates the state of the second assembled battery by using it. As a result, the voltage value and charge / discharge current value of the cell can be easily acquired without a time lag, so that the simultaneity of data can be easily ensured.
 (3)より好ましくは、電池ユニットを監視する電池監視装置をさらに含み、第1の電池管理装置及び第2の電池管理装置の各々は、電池監視装置と通信する通信部をさらに含み、第1の電池管理装置の通信部及び第2の電池管理装置の通信部は、第1の電池管理装置の状態推定部、及び第2の電池管理装置の状態推定部がそれぞれ推定した、第1の組電池及び第2の組電池の状態をそれぞれ電池監視装置に送信する。上記した特許文献1及び2では、各電池監視回路が通信線を介してデイジーチェーン接続されている。そのため、1箇所でも通信線が切断されると、全ての電池監視回路とマイコン又はBMUとの間のデータ通信が途切れる。これに対し、本開示では、例えば、第1の電池管理装置の通信部及び第2の電池管理装置の通信部が、それぞれ、第1の組電池及び第2の組電池の状態を個々に電池監視装置に送信する。そのため、一部の電池管理装置と電池監視装置との間で通信に不具合が生じたとしても、他の電池管理装置はその不具合の影響を受けることはない。他の電池管理装置は電池監視装置との間で通信を維持できるので、推定した組電池の状態を電池監視装置に送信できる。したがって、電池監視装置は、一部の電池管理装置との間で通信に不具合が生じた場合でも、電池ユニットを監視できる。 (3) More preferably, a battery monitoring device for monitoring the battery unit is further included, and each of the first battery management device and the second battery management device further includes a communication unit that communicates with the battery monitoring device, and the first The communication unit of the battery management device and the communication unit of the second battery management device are the first set estimated by the state estimation unit of the first battery management device and the state estimation unit of the second battery management device, respectively. The status of the battery and the second assembled battery are transmitted to the battery monitoring device, respectively. In Patent Documents 1 and 2 described above, the battery monitoring circuits are daisy-chained via a communication line. Therefore, if the communication line is disconnected even at one location, the data communication between all the battery monitoring circuits and the microcomputer or BMU is interrupted. On the other hand, in the present disclosure, for example, the communication unit of the first battery management device and the communication unit of the second battery management device individually set the state of the first assembled battery and the second assembled battery, respectively. Send to the monitoring device. Therefore, even if a communication problem occurs between some battery management devices and the battery monitoring device, the other battery management devices are not affected by the problem. Since other battery management devices can maintain communication with the battery monitoring device, the estimated battery status can be transmitted to the battery monitoring device. Therefore, the battery monitoring device can monitor the battery unit even when a communication problem occurs with some battery management devices.
 (4)さらに好ましくは、第1の電池管理装置の通信部及び第2の電池管理装置の通信部はさらに、第1の電池管理装置の電流取得部及び第2の電池管理装置の電流取得部がそれぞれ取得した充放電電流を電池監視装置に送信し、電池監視装置は、第1及び第2の電池管理装置から送信された充放電電流に基づいて、第1及び第2の電池管理装置の少なくとも一方の電流センサの異常を検出するセンサ異常検出部と、センサ異常検出部が第1又は第2の電池管理装置の電流センサの異常を検出したことに応答して、第1又は第2の電池管理装置の電流センサのうち、異常が検出された電流センサの電池管理装置にセンサ異常を通知する異常通知部とを含む。これにより、電流センサの異常を各電池管理装置が認識できるので、電流センサの異常に起因する推定精度の低下を抑制できる。 (4) More preferably, the communication unit of the first battery management device and the communication unit of the second battery management device are further the current acquisition unit of the first battery management device and the current acquisition unit of the second battery management device. Sends the charge / discharge currents acquired by each to the battery monitoring device, and the battery monitoring device of the first and second battery management devices is based on the charge / discharge currents transmitted from the first and second battery management devices. In response to the sensor abnormality detection unit that detects the abnormality of at least one current sensor and the sensor abnormality detection unit detecting the abnormality of the current sensor of the first or second battery management device, the first or second Among the current sensors of the battery management device, the abnormality notification unit that notifies the battery management device of the current sensor in which the abnormality is detected of the sensor abnormality is included. As a result, each battery management device can recognize the abnormality of the current sensor, so that the deterioration of the estimation accuracy due to the abnormality of the current sensor can be suppressed.
 (5)さらに好ましくは、第1及び第2の電池管理装置は、互いに通信することが可能であり、第1の電池管理装置は、異常通知部からのセンサ異常を受信したことに応答して、第2の電池管理装置との通信により第2の組電池の充放電電流を取得する。これにより、一部の電流センサにセンサ異常が生じた場合でも、電池の状態を精度よく推定できる。 (5) More preferably, the first and second battery management devices can communicate with each other, and the first battery management device responds to the reception of the sensor abnormality from the abnormality notification unit. , Acquires the charge / discharge current of the second assembled battery by communicating with the second battery management device. As a result, even if a sensor abnormality occurs in some current sensors, the state of the battery can be estimated accurately.
 (6)さらに好ましくは、第1の電池管理装置はさらに、第1の電池管理装置において電圧取得部及び電流取得部がそれぞれ取得した電圧、及び充放電電流の少なくとも一方の情報に基づいて、第1の組電池が異常か否かを判定し、判定結果に応じて異常処理を実行する異常判定部を含む。これにより、異常の発生を早期に検出して異常処理を実行できるので、組電池(ひいては電池ユニット)を効果的に管理できる。 (6) More preferably, the first battery management device is further based on at least one information of the voltage and the charge / discharge current acquired by the voltage acquisition unit and the current acquisition unit in the first battery management device, respectively. It includes an abnormality determination unit that determines whether or not the assembled battery of 1 is abnormal and executes an abnormality process according to the determination result. As a result, the occurrence of an abnormality can be detected at an early stage and the abnormality processing can be executed, so that the assembled battery (and thus the battery unit) can be effectively managed.
 (7)さらに好ましくは、第1の電池管理装置はさらに、第1の電池管理装置において電圧取得部が取得した電圧、及び状態推定部が推定した状態に基づいて、第1の組電池のセルバランスを実行するセルバランス回路を含む。状態推定部にて精度よく組電池の状態を推定できるので、その推定した状態を用いることにより、セル間のエネルギ容量を精度よく均一化できる。これにより、電池の能力を十分に活かすことができる。 (7) More preferably, the first battery management device further preferably uses the cell of the first assembled battery based on the voltage acquired by the voltage acquisition unit in the first battery management device and the state estimated by the state estimation unit. Includes a cell balance circuit that performs balancing. Since the state estimation unit can accurately estimate the state of the assembled battery, the energy capacity between the cells can be accurately equalized by using the estimated state. As a result, the capacity of the battery can be fully utilized.
 (8)さらに好ましくは、第1の電池管理装置の状態推定部は、第1の電池管理装置において電圧取得部及び電流取得部がそれぞれ取得した電圧及び充放電電流に基づいて、第1の組電池の等価回路モデルのパラメータを推定するパラメータ推定部を含む。これにより、等価回路モデルのパラメータを精度よく推定できる。 (8) More preferably, the state estimation unit of the first battery management device is set in the first set based on the voltage and charge / discharge current acquired by the voltage acquisition unit and the current acquisition unit in the first battery management device, respectively. It includes a parameter estimation unit that estimates the parameters of the battery equivalent circuit model. As a result, the parameters of the equivalent circuit model can be estimated accurately.
 (9)さらに好ましくは、第1の電池管理装置の電圧取得部は、第1の組電池における複数のセルの各々の電圧を取得し、第1の電池管理装置の状態推定部は、第1の組電池の複数のセルの各々の状態を推定し、第1の電池管理装置は、第1の電池管理装置の状態推定部で推定した複数のセルの各々の状態を、複数のセルを識別する識別情報と対応付けて記録する記録部をさらに含む。例えば、再利用(リユース)時等に、記録部に記録されている履歴情報を読出すことで、電池ユニットの状態を精度よく把握できる。 (9) More preferably, the voltage acquisition unit of the first battery management device acquires the voltage of each of the plurality of cells in the first assembled battery, and the state estimation unit of the first battery management device is the first. The state of each of the plurality of cells of the assembled battery is estimated, and the first battery management device identifies the state of each of the plurality of cells estimated by the state estimation unit of the first battery management device to identify the plurality of cells. It further includes a recording unit that records in association with the identification information to be recorded. For example, the state of the battery unit can be accurately grasped by reading the history information recorded in the recording unit at the time of reuse.
 電池管理装置はさらに、セルの温度を取得する温度取得部を含み、状態推定部は、温度取得部で取得した温度をさらに用いて組電池の状態を推定するよう構成されていてもよい。これにより、電池の状態をより精度よく推定できる。さらに、上記異常判定部は、温度取得部で取得した温度の情報に基づいて、組電池が異常か否かを判定してもよい。これにより、組電池の異常を種々の観点で検出できる。加えて、上記セルバランス回路もまた、温度取得部で取得した温度にさらに基づいて、組電池のセルバランスを実行してもよい。これにより、組電池のセルバランスをより精度よく実行できる。 The battery management device may further include a temperature acquisition unit that acquires the temperature of the cell, and the state estimation unit may be configured to estimate the state of the assembled battery by further using the temperature acquired by the temperature acquisition unit. As a result, the state of the battery can be estimated more accurately. Further, the abnormality determination unit may determine whether or not the assembled battery is abnormal based on the temperature information acquired by the temperature acquisition unit. Thereby, the abnormality of the assembled battery can be detected from various viewpoints. In addition, the cell balance circuit may also perform cell balance of the assembled battery based on the temperature acquired by the temperature acquisition unit. As a result, the cell balance of the assembled battery can be executed more accurately.
 (10)本開示の他の局面に係る電池モジュールは、複数のセルを含む組電池と、組電池を管理する電池管理装置と、組電池の電流経路に設けられ、複数のセルの充放電電流を検出してその検出信号を電池管理装置に出力する電流センサとを含む。電池管理装置は、組電池の電流経路における所定位置の間の電圧を取得する電圧取得部と、電流センサを介して複数のセルの充放電電流を取得する電流取得部と、電圧取得部が取得した電圧及び電流取得部が取得した充放電電流を用いて組電池の状態を推定する状態推定部とを含む。 (10) The battery module according to another aspect of the present disclosure is provided in an assembled battery including a plurality of cells, a battery management device for managing the assembled battery, and a current path of the assembled battery, and is provided with charge / discharge currents of the plurality of cells. Includes a current sensor that detects and outputs the detection signal to the battery management device. The battery management device is acquired by a voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the assembled battery, a current acquisition unit that acquires charge / discharge currents of a plurality of cells via a current sensor, and a voltage acquisition unit. It includes a state estimation unit that estimates the state of the assembled battery using the voltage and the charge / discharge current acquired by the current acquisition unit.
 組電池の電流経路に設けられる電流センサは、複数のセルの充放電電流を検出してその検出信号を電池管理装置に出力する。電池管理装置は、組電池の電流経路における所定位置の間の電圧を電圧取得部で取得するとともに、電流センサを介して複数のセルの充放電電流を電流取得部で取得する。セルの電圧値及び充放電電流値を時間差なく取得できるので、データの同時性が確保される。これにより、セルの電圧と充放電電流との位相ずれの影響を抑制できるので、状態推定部で組電池の状態を推定する際に、精度よく状態を推定できる。加えて、組電池、電池管理装置、及び電流センサがモジュール化されているので、モジュール単位で再利用等を行うことができる。なお、電圧取得部は、組電池の電流経路における所定位置の間の電圧として、複数のセルの各々の電圧、及び複数のセルを含む組電池の電圧の少なくとも一方の電圧を取得する構成であると好ましい。組電池の状態を推定する状態推定部は、組電池全体の状態を推定する構成、及び組電池に含まれる複数のセルの各々の状態を推定する構成の少なくとも一方を含むとより好ましい。 The current sensor provided in the current path of the assembled battery detects the charge / discharge currents of a plurality of cells and outputs the detection signal to the battery management device. The battery management device acquires the voltage between predetermined positions in the current path of the assembled battery at the voltage acquisition unit, and acquires the charge / discharge currents of a plurality of cells at the current acquisition unit via the current sensor. Since the cell voltage value and charge / discharge current value can be acquired without a time lag, data simultaneity is ensured. As a result, the influence of the phase shift between the cell voltage and the charge / discharge current can be suppressed, so that the state can be estimated accurately when the state estimation unit estimates the state of the assembled battery. In addition, since the assembled battery, the battery management device, and the current sensor are modularized, they can be reused in module units. The voltage acquisition unit is configured to acquire at least one of the voltage of each of the plurality of cells and the voltage of the assembled battery including the plurality of cells as the voltage between predetermined positions in the current path of the assembled battery. Is preferable. It is more preferable that the state estimation unit for estimating the state of the assembled battery includes at least one of a configuration for estimating the state of the entire assembled battery and a configuration for estimating the state of each of the plurality of cells included in the assembled battery.
 (11)好ましくは、電圧取得部は、複数のセルの各々の電圧を取得し、状態推定部は、電圧取得部が取得した、複数のセルの各々の電圧及び電流取得部が取得した充放電電流を用いて複数のセルの各々の状態を推定するセル状態推定部を含み、電池管理装置は、セル状態推定部で推定した複数のセルの状態を、複数のセルを識別する識別情報と対応付けて記録する記録部をさらに含む。これにより、記録部に記録されている履歴情報を読出すことで、電池ユニットの状態を精度よく把握できる。 (11) Preferably, the voltage acquisition unit acquires the voltage of each of the plurality of cells, and the state estimation unit acquires the voltage and current of each of the plurality of cells acquired by the voltage acquisition unit. The battery management device includes a cell state estimation unit that estimates the state of each of a plurality of cells using an electric current, and the battery management device corresponds the states of the plurality of cells estimated by the cell state estimation unit with identification information that identifies the plurality of cells. It further includes a recording unit for attaching and recording. As a result, the state of the battery unit can be accurately grasped by reading the history information recorded in the recording unit.
 (12)本開示のさらに他の局面に係る電池管理装置は、複数のセルを含む組電池を管理する電池管理装置である。組電池の電流経路には、複数のセルの充放電電流を検出してその検出信号を電池管理装置に出力する電流センサが設けられる。この電池管理装置は、組電池の電流経路における所定位置の間の電圧を取得する電圧取得部と、電流センサを介して複数のセルの充放電電流を取得する電流取得部と、電圧取得部が取得した電圧及び電流取得部が取得した充放電電流を用いて組電池の状態を推定する状態推定部とを含む。このような電池管理装置を用いることで、電池の状態を精度よく推定できる。なお、電圧取得部は、組電池の電流経路における所定位置の間の電圧として、複数のセルの各々の電圧、及び複数のセルを含む組電池の電圧の少なくとも一方の電圧を取得する構成であると好ましい。組電池の状態を推定する状態推定部は、組電池全体の状態を推定する構成、及び組電池に含まれる複数のセルの各々の状態を推定する構成の少なくとも一方を含むとより好ましい。 (12) The battery management device according to still another aspect of the present disclosure is a battery management device that manages an assembled battery including a plurality of cells. The current path of the assembled battery is provided with a current sensor that detects the charge / discharge currents of a plurality of cells and outputs the detection signal to the battery management device. This battery management device includes a voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the assembled battery, a current acquisition unit that acquires charge / discharge currents of a plurality of cells via a current sensor, and a voltage acquisition unit. It includes a state estimation unit that estimates the state of the assembled battery using the acquired voltage and the charge / discharge current acquired by the current acquisition unit. By using such a battery management device, the state of the battery can be estimated accurately. The voltage acquisition unit is configured to acquire at least one of the voltage of each of the plurality of cells and the voltage of the assembled battery including the plurality of cells as the voltage between predetermined positions in the current path of the assembled battery. Is preferable. It is more preferable that the state estimation unit for estimating the state of the assembled battery includes at least one of a configuration for estimating the state of the entire assembled battery and a configuration for estimating the state of each of the plurality of cells included in the assembled battery.
 (13)本開示のさらに他の局面に係る方法は、複数のセルを含む組電池の管理方法である。組電池の電流経路には、複数のセルの充放電電流を検出する電流センサが設けられる。この管理方法は、組電池の電流経路における所定位置の間の電圧を測定するとともに、電流センサから出力される検出信号を取得して複数のセルの充放電電流を測定するステップと、測定するステップにおいて測定された電圧及び充放電電流を用いて、組電池の状態を推定するステップとを含む。これにより、電池の状態を精度よく推定できる。なお、測定するステップは、組電池の電流経路における所定位置の間の電圧として、複数のセルの各々の電圧、及び複数のセルを含む組電池の電圧の少なくとも一方の電圧を取得する構成であるとより好ましい。組電池の状態を推定するステップは、組電池に含まれる複数のセルの各々の状態を推定するステップを含む構成であるとさらに好ましい。 (13) A method according to still another aspect of the present disclosure is a method of managing an assembled battery including a plurality of cells. A current sensor that detects the charge / discharge currents of a plurality of cells is provided in the current path of the assembled battery. This management method includes a step of measuring the voltage between predetermined positions in the current path of the assembled battery, a step of acquiring a detection signal output from the current sensor, and a step of measuring the charge / discharge currents of a plurality of cells, and a step of measuring. Including the step of estimating the state of the assembled battery using the voltage and charge / discharge current measured in. As a result, the state of the battery can be estimated accurately. The step of measuring is a configuration in which at least one of the voltage of each of the plurality of cells and the voltage of the assembled battery including the plurality of cells is acquired as the voltage between the predetermined positions in the current path of the assembled battery. And more preferable. It is more preferable that the step of estimating the state of the assembled battery includes a step of estimating the state of each of the plurality of cells included in the assembled battery.
 (14)本開示のさらに他の局面に係る車両は、上記した電池監視システムと、電池監視システムと通信し、当該電池監視システムから所定の情報を取得する車載制御装置とを含む。車載制御装置は、電池監視システムからの情報に基づいて、電池ユニットを効率的に制御できる。これにより、電池ユニットを長期にわたって最適な状態に保つことができる。 (14) The vehicle according to still another aspect of the present disclosure includes the above-mentioned battery monitoring system and an in-vehicle control device that communicates with the battery monitoring system and acquires predetermined information from the battery monitoring system. The in-vehicle control device can efficiently control the battery unit based on the information from the battery monitoring system. As a result, the battery unit can be kept in an optimum state for a long period of time.
 [本開示の実施形態の詳細]
 本開示の実施形態に係る電池監視システム、電池モジュール、電池管理装置、管理方法、及び車両の具体例を、以下に図面を参照しつつ説明する。以下の実施の形態では、同一の部品には同一の参照番号を付してある。それらの機能及び名称も同一である。したがって、それらについての詳細な説明は繰返さない。
[Details of Embodiments of the present disclosure]
Specific examples of the battery monitoring system, the battery module, the battery management device, the management method, and the vehicle according to the embodiment of the present disclosure will be described below with reference to the drawings. In the following embodiments, the same parts are given the same reference number. Their functions and names are also the same. Therefore, detailed explanations about them will not be repeated.
 (第1の実施の形態)
 [全体構成]
 図1を参照して、本実施の形態に係る車両20は、例えばEV又はHEV等の電動車両である。車両20は、複数のセル30を含む組電池40_1~40_n(以下、総称する場合は「組電池40」と記す。)が複数接続された電池ユニット50と、電池ユニット50を監視する電池監視システム100とを含む。車両20はさらに、リレー60、インバータ62、モータ64、DC/DCコンバータ66、補機バッテリ68、電気負荷70、始動スイッチ72、及び上位ECU(Electronic Control Unit)74を含む。
(First Embodiment)
[overall structure]
With reference to FIG. 1, the vehicle 20 according to the present embodiment is, for example, an electric vehicle such as an EV or HEV. The vehicle 20 is a battery monitoring system that monitors a battery unit 50 to which a plurality of assembled batteries 40_1 to 40_n (hereinafter, collectively referred to as “combined battery 40”) including a plurality of cells 30 are connected, and the battery unit 50. Includes 100 and. The vehicle 20 further includes a relay 60, an inverter 62, a motor 64, a DC / DC converter 66, an auxiliary battery 68, an electric load 70, a start switch 72, and an upper ECU (Electronic Control Unit) 74.
 電池ユニット50は、充放電可能な二次電池を含む。二次電池は例えばリチウムイオン電池を含む。この電池ユニット50は、複数のセル30が直列に接続された組電池40をさらに複数直列に接続した構成を持つ。 The battery unit 50 includes a rechargeable secondary battery. The secondary battery includes, for example, a lithium ion battery. The battery unit 50 has a configuration in which a plurality of assembled batteries 40 in which a plurality of cells 30 are connected in series are further connected in series.
 電池監視システム100は、電池ユニット50に含まれる複数の組電池40をそれぞれ管理する複数の電池管理装置(BMU:Battery Management Unit)110_1~110_n(以下、総称する場合は「電池管理装置110」と記す。)と、複数の電池管理装置110_1~110_nの各々と通信可能に接続された電池監視装置300とを含む。複数の電池管理装置110_1~110_nは、電池ユニット50の各組電池40_1~40_nに対応して設けられており、対応する組電池40をそれぞれ管理する。電池監視装置300は、電池管理装置110_1~110_nから送信される情報に基づいて電池ユニット50を監視する。 The battery monitoring system 100 is a plurality of battery management devices (BMU: Battery Management Unit) 110_1 to 110_n (hereinafter, collectively referred to as "battery management device 110") that manage a plurality of assembled batteries 40 included in the battery unit 50. A battery monitoring device 300 that is communicably connected to each of the plurality of battery management devices 110_1 to 110_n. The plurality of battery management devices 110_1 to 110_n are provided corresponding to the respective assembled batteries 40_1 to 40_n of the battery unit 50, and manage the corresponding assembled batteries 40, respectively. The battery monitoring device 300 monitors the battery unit 50 based on the information transmitted from the battery management devices 110_1 to 110_n.
 リレー60は、図示しないリレー制御部によってオン/オフ制御される開閉器である。リレー60は、電池ユニット50の正極側とインバータ62の入力側及びDC/DCコンバータ66の入力側との間に接続されている。リレー60がオンされると、電池ユニット50とインバータ62及びDC/DCコンバータ66とを接続する電路が閉じられ、オフされると上記電路が開かれる。 The relay 60 is a switch that is turned on / off by a relay control unit (not shown). The relay 60 is connected between the positive electrode side of the battery unit 50, the input side of the inverter 62, and the input side of the DC / DC converter 66. When the relay 60 is turned on, the electric circuit connecting the battery unit 50, the inverter 62 and the DC / DC converter 66 is closed, and when the relay 60 is turned off, the electric circuit is opened.
 インバータ62は、その出力側がモータ64の一端に接続されており、リレー60を介して電池ユニット50から供給される直流電力を交流電力に変換してモータ64に出力する。詳細には、このインバータ62は、車両コントローラ(図示せず)からの指令により、リレー60がオンである間にモータ64への通電制御を行う。モータ64は、インバータ62によって変換された交流電力により車輪(図示せず)を回す駆動力を生み出す。DC/DCコンバータ66は、リレー60を介して電池ユニット50から供給される高圧の直流電力を低圧の直流電力に変換する降圧型のコンバータである。このDC/DCコンバータ66は、絶縁型のコンバータでもあり、電池ユニット50が配置された高圧側と、補機バッテリ68及び電気負荷70等が配置された低圧側とを絶縁する。DC/DCコンバータ66の出力側は、補機バッテリ68の正極側、電気負荷70の一端及び始動スイッチ72の一端に接続されている。DC/DCコンバータ66は、変換した低圧の直流電力を補機バッテリ68及び電気負荷70に供給する。 The output side of the inverter 62 is connected to one end of the motor 64, and the DC power supplied from the battery unit 50 via the relay 60 is converted into AC power and output to the motor 64. Specifically, the inverter 62 controls the energization of the motor 64 while the relay 60 is on by a command from a vehicle controller (not shown). The motor 64 produces a driving force for turning wheels (not shown) by the AC power converted by the inverter 62. The DC / DC converter 66 is a step-down converter that converts high-voltage DC power supplied from the battery unit 50 via a relay 60 into low-voltage DC power. The DC / DC converter 66 is also an isolated converter, and insulates the high-voltage side where the battery unit 50 is arranged and the low-voltage side where the auxiliary battery 68, the electric load 70, and the like are arranged. The output side of the DC / DC converter 66 is connected to the positive electrode side of the auxiliary battery 68, one end of the electric load 70, and one end of the start switch 72. The DC / DC converter 66 supplies the converted low-voltage DC power to the auxiliary battery 68 and the electric load 70.
 補機バッテリ68は、例えば12Vの鉛蓄電池である。この補機バッテリ68は、電気負荷70への電力供給を行うとともに、リレー60がオンである間にDC/DCコンバータ66から供給される電力によって充電される。なお、補機バッテリ68は、電圧が12Vに限定されたり、電池の種類が鉛蓄電池に限定されたりするものではない。 The auxiliary battery 68 is, for example, a 12V lead storage battery. The auxiliary battery 68 supplies electric power to the electric load 70 and is charged by the electric power supplied from the DC / DC converter 66 while the relay 60 is on. The auxiliary battery 68 is not limited to a voltage of 12 V or a lead storage battery.
 電気負荷70は、補機バッテリ68の直流電力により動作する補機系負荷を含む。より具体的には、電気負荷70は、例えば、ECU、ヘッドライト、室内灯等の低圧負荷を含む。始動スイッチ72は、車両20を始動させるためのスイッチである。上位ECU74は、例えば、電池監視システム100から送信される情報に基づいて、モータ64との間の電力供給(放電)量、及び回生(充電)量等の制御を行うECUを含む。 The electric load 70 includes an auxiliary machine load operated by the DC power of the auxiliary battery 68. More specifically, the electric load 70 includes, for example, a low voltage load such as an ECU, a headlight, and an interior light. The start switch 72 is a switch for starting the vehicle 20. The upper ECU 74 includes, for example, an ECU that controls the amount of power supply (discharge) and the amount of regeneration (charge) with the motor 64 based on the information transmitted from the battery monitoring system 100.
 電池ユニット50の負極側、モータ64の他端は、高圧側の共通電位に接続されており、補機バッテリ68の負極側、及び電気負荷70の他端は、低圧側の共通電位に接続されている。 The negative electrode side of the battery unit 50 and the other end of the motor 64 are connected to the common potential on the high voltage side, and the negative electrode side of the auxiliary battery 68 and the other end of the electric load 70 are connected to the common potential on the low voltage side. ing.
 [ハードウェア構成]
 図2を参照して、本実施の形態に係る電池監視システム100は、各組電池40の充電電流及び放電電流(以下、「充放電電流」と呼ぶ。)を組電池40毎に検出する複数の電流センサ180_1~180_n(以下、総称する場合は「電流センサ180」と記す。)をさらに含む。複数の電流センサ180_1~180_nは、各組電池40に対応して配置され、対応する各組電池40の電流経路にそれぞれ設けられている。各電流センサ180は、対応する組電池40(セル30)の充放電電流を検出して、その検出信号を対応する組電池40を管理する電池管理装置110に出力する。電流センサ180は、例えばシャント抵抗又はホールセンサで構成されており、組電池40(セル30)の充放電電流を電圧信号に変換する。電流センサ180のサンプリング周期は例えば10ミリ秒であるがこれに限定されない。電流センサ180は、組電池40の内部に設けられてもよいし、組電池40の外部に設けられてもよい。
[Hardware configuration]
With reference to FIG. 2, the battery monitoring system 100 according to the present embodiment detects a plurality of charge currents and discharge currents (hereinafter, referred to as “charge / discharge currents”) of each assembled battery 40 for each assembled battery 40. The current sensors 180_1 to 180_n (hereinafter, collectively referred to as “current sensor 180”) are included. The plurality of current sensors 180_1 to 180_n are arranged corresponding to each assembled battery 40, and are provided in the current paths of the corresponding assembled batteries 40, respectively. Each current sensor 180 detects the charge / discharge current of the corresponding assembled battery 40 (cell 30) and outputs the detection signal to the battery management device 110 that manages the corresponding assembled battery 40. The current sensor 180 is composed of, for example, a shunt resistor or a Hall sensor, and converts the charge / discharge current of the assembled battery 40 (cell 30) into a voltage signal. The sampling period of the current sensor 180 is, for example, 10 milliseconds, but is not limited to this. The current sensor 180 may be provided inside the assembled battery 40 or may be provided outside the assembled battery 40.
 電流センサ180、及び電池管理装置110は、各組電池40に対応するよう組電池40毎に設けられている。互いに対応する、組電池40、電流センサ180、及び電池管理装置110は、これらを一組としてモジュール化されており、複数の電池モジュール200_1~200_n(以下、総称する場合は「電池モジュール200」と記す。)を構成している。電池監視装置300は、複数の電池管理装置110の各々と通信することで、これら複数の電池モジュール200_1~200_nを一元的に管理する。 The current sensor 180 and the battery management device 110 are provided for each set battery 40 so as to correspond to each set battery 40. The assembled battery 40, the current sensor 180, and the battery management device 110, which correspond to each other, are modularized as a set, and a plurality of battery modules 200_1 to 200_n (hereinafter, collectively referred to as "battery module 200"). It is described.). The battery monitoring device 300 centrally manages the plurality of battery modules 200_1 to 200_n by communicating with each of the plurality of battery management devices 110.
 電池管理装置110は、組電池40の状態をセル単位で推定し、組電池40及び各セル30を管理する。電池管理装置110は、組電池40及び各セル30を管理する際に識別情報(ID)を用いて各々を識別する。ここでは、各組電池40は、例えば1からnまでの組電池IDを用いて組電池_1,組電池_2,・・・,組電池_nと識別するものとする。各組電池40に含まれるセル30は、例えば001からxまでのセルIDを用いて識別するものとする。 The battery management device 110 estimates the state of the assembled battery 40 on a cell-by-cell basis, and manages the assembled battery 40 and each cell 30. The battery management device 110 identifies each of the assembled battery 40 and each cell 30 by using the identification information (ID) when managing the assembled battery 40 and each cell 30. Here, each assembled battery 40 is identified as an assembled battery_1, an assembled battery_2, ..., An assembled battery_n by using, for example, an assembled battery ID from 1 to n. The cell 30 included in each set battery 40 is identified by using, for example, the cell IDs 001 to x.
 複数の電池管理装置110_1~110_nは、いずれも、同一の構成を備える。そのため、以下では、複数の電池管理装置110_1~110_nを代表して電池管理装置110_1の構成について説明する。 The plurality of battery management devices 110_1 to 110_n all have the same configuration. Therefore, in the following, the configuration of the battery management device 110_1 will be described on behalf of the plurality of battery management devices 110_1 to 110_n.
 電池管理装置110_1は、セル電圧検出/バランス回路112と、温度検出回路114と、電流検出回路116と、電源回路118と、通信部120と、メモリ122と、これらを制御する制御装置124とを含む。制御装置124は、例えば、CPU(Central Processing Unit)又はMPU(Micro Processing Unit)等の処理装置を含む。 The battery management device 110_1 includes a cell voltage detection / balance circuit 112, a temperature detection circuit 114, a current detection circuit 116, a power supply circuit 118, a communication unit 120, a memory 122, and a control device 124 for controlling them. Including. The control device 124 includes, for example, a processing device such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
 セル電圧検出/バランス回路112は、組電池40に含まれるセル30の電圧を各別(セル毎)に検出するとともに、セルバランスを実行する回路である。セル電圧検出/バランス回路112は、セル30の両端電圧を所定のサンプリング周期で検出し、検出電圧を示す情報を制御装置124へ出力する。サンプリング周期は例えば10ミリ秒であるが、これに限定されない。 The cell voltage detection / balance circuit 112 is a circuit that detects the voltage of the cell 30 included in the assembled battery 40 separately (for each cell) and executes cell balance. The cell voltage detection / balance circuit 112 detects the voltage across the cell 30 at a predetermined sampling cycle, and outputs information indicating the detected voltage to the control device 124. The sampling period is, for example, 10 milliseconds, but is not limited to this.
 温度検出回路114は、組電池40に含まれるサーミスタ等の温度センサ(図示せず。)が温度-電圧変換した電圧信号に基づいて、組電池40の1箇所又は複数箇所の表面温度を検出する回路である。温度センサは、サーミスタ以外の公知の温度センサを用いてもよい。例えば、温度センサとして、測温抵抗体、半導体温度センサ、熱電対等を用いてもよい。電流検出回路116は、電流センサ180が電流-電圧変換した電圧信号に基づいて組電池40(セル30)の充放電電流を検出する回路である。 The temperature detection circuit 114 detects the surface temperature of one or a plurality of locations of the assembled battery 40 based on a voltage signal converted from temperature to voltage by a temperature sensor (not shown) such as a thermistor included in the assembled battery 40. It is a circuit. As the temperature sensor, a known temperature sensor other than the thermistor may be used. For example, as the temperature sensor, a resistance temperature detector, a semiconductor temperature sensor, a thermoelectric pair, or the like may be used. The current detection circuit 116 is a circuit in which the current sensor 180 detects the charge / discharge current of the assembled battery 40 (cell 30) based on the voltage signal converted from current to voltage.
 電源回路118は、組電池40(電池ユニット50)から供給される電力を、電池管理装置110_1の各構成部の駆動に適した電圧に変換し、電池管理装置110_1の各構成部に給電する回路である。通信部120は、電池監視装置300と無線通信を行う。メモリ122はフラッシュメモリ等の不揮発性記憶装置である。メモリ122の書換え不可領域には、自装置を識別するための管理装置識別情報(BMU-ID)が記憶されている。ここでは、複数の電池管理装置110は、例えば1からnまでのBMU-IDを用いてBMU_1,BMU_2,・・・,BMU_nと識別するものとする。電池管理装置110_1の管理装置識別情報は、BMU_1となる。メモリ122はさらに、制御装置124の処理により生成される情報を記憶する。制御装置124が実行するソフトウェア(コンピュータプログラム)は、当該制御装置124内に予め記憶されている。制御装置124が実行するソフトウェア(コンピュータプログラム)は、メモリ122に予め記憶される構成であってもよい。 The power supply circuit 118 is a circuit that converts the electric power supplied from the assembled battery 40 (battery unit 50) into a voltage suitable for driving each component of the battery management device 110_1 and supplies power to each component of the battery management device 110_1. Is. The communication unit 120 wirelessly communicates with the battery monitoring device 300. The memory 122 is a non-volatile storage device such as a flash memory. The management device identification information (BMU-ID) for identifying the own device is stored in the non-rewritable area of the memory 122. Here, it is assumed that the plurality of battery management devices 110 are identified as BMU_1, BMU_2, ..., BMU_n by using, for example, BMU-IDs 1 to n. The management device identification information of the battery management device 110_1 is BMU_1. The memory 122 further stores information generated by the processing of the control device 124. The software (computer program) executed by the control device 124 is stored in advance in the control device 124. The software (computer program) executed by the control device 124 may be configured to be stored in the memory 122 in advance.
 電池監視装置300は、通信部310と、電源部312と、メモリ314と、通信部316と、これらを制御する制御装置318とを含む。通信部310は、各電池管理装置110と無線通信を行う。電源部312は、電池ユニット50からの電力を所定の電圧値に変換して各構成部に供給する。メモリ314は、フラッシュメモリ等の不揮発性記憶装置である。メモリ314は、自装置に接続されている複数の電池管理装置110それぞれの管理装置識別情報(BMU-ID)を記憶している。管理装置識別情報は予め設定により記憶されていてもよいし、制御装置318が各電池管理装置110と情報を送受信して管理装置識別情報を収集してもよい。メモリ314には、組電池40又はセル30を識別する識別情報(組電池ID、セルID)が組電池40毎又はセル30毎に記憶されてもよい。 The battery monitoring device 300 includes a communication unit 310, a power supply unit 312, a memory 314, a communication unit 316, and a control device 318 for controlling these. The communication unit 310 wirelessly communicates with each battery management device 110. The power supply unit 312 converts the electric power from the battery unit 50 into a predetermined voltage value and supplies it to each component unit. The memory 314 is a non-volatile storage device such as a flash memory. The memory 314 stores the management device identification information (BMU-ID) of each of the plurality of battery management devices 110 connected to the own device. The management device identification information may be stored in advance by setting, or the control device 318 may send and receive information to and from each battery management device 110 to collect the management device identification information. Identification information (assembled battery ID, cell ID) for identifying the assembled battery 40 or the cell 30 may be stored in the memory 314 for each assembled battery 40 or each cell 30.
 通信部316は、例えばCAN(Controller Area Network)により、他の車載機器との間で情報を送受信することが可能である。この通信部316は、車内LAN(Local Area Network)を介して上位ECU74(図1参照)と通信する。通信部316は、他の車載機器と有線で通信する有線通信モジュールであってもよいし、無線通信アンテナを有する無線通信モジュールであってもよい。制御装置318は、例えば、CPU、又はMPU等の処理装置を含む。制御装置318が実行するソフトウェア(コンピュータプログラム)は当該制御装置318内に予め記憶されている。制御装置318が実行するソフトウェア(コンピュータプログラム)は、メモリ314に予め記憶される構成であってもよい。 The communication unit 316 can transmit and receive information to and from other in-vehicle devices by, for example, CAN (Control Area Network). The communication unit 316 communicates with the upper ECU 74 (see FIG. 1) via the in-vehicle LAN (Local Area Network). The communication unit 316 may be a wired communication module that communicates with other in-vehicle devices by wire, or may be a wireless communication module having a wireless communication antenna. The control device 318 includes, for example, a processing device such as a CPU or an MPU. The software (computer program) executed by the control device 318 is stored in advance in the control device 318. The software (computer program) executed by the control device 318 may be configured to be stored in the memory 314 in advance.
 図3を参照して、電池管理装置110の制御装置124は、制御部130、電圧取得部132、電流取得部134、温度取得部136、通信制御部138、ID管理部140、メモリ管理部142、タイマ144、状態推定部146、セルバランス制御部152、及び異常判定部154を機能部として含む。これら機能部の機能は、制御装置124がハードウェアを用いて実行するソフトウェア処理によって実現される。これらの機能の一部又は全部が、マイクロコンピュータを含む集積回路によって実現されてもよい。なお、制御装置124が制御する電圧及び電流の取得頻度は、例えば10ミリ秒であるが、これに限定されるものではない。温度は適時取得される。 With reference to FIG. 3, the control device 124 of the battery management device 110 includes a control unit 130, a voltage acquisition unit 132, a current acquisition unit 134, a temperature acquisition unit 136, a communication control unit 138, an ID management unit 140, and a memory management unit 142. , Timer 144, state estimation unit 146, cell balance control unit 152, and abnormality determination unit 154 are included as functional units. The functions of these functional units are realized by software processing executed by the control device 124 using hardware. Some or all of these functions may be realized by integrated circuits including a microcomputer. The frequency of acquiring the voltage and current controlled by the control device 124 is, for example, 10 milliseconds, but the frequency is not limited to this. The temperature is acquired in a timely manner.
 制御装置124は、制御部130として各部を制御し、検出される電圧、温度及び電流に基づいて、組電池40の電池特性をセル単位で算出する。制御装置124は、電池特性として例えば満充電容量(FCC:Full Charge Capacity)、充電率(SOC:State of Charge)、劣化度(SOH:State of Health)、充放電可能電力(SOP:State of Power)、及び等価回路モデルの内部パラメータを算出する。これらの電池特性を算出するための情報はメモリ122に予め記憶されている。例えばセル毎に充電率(SOC)を算出するために参照される情報がメモリ122に記憶されている。例えばメモリ122には、単位電池(セル30又は組電池40単位)の開放電圧(OCV:Open Circuit Voltage)と、充電率との相関関係が予め記憶されている。メモリ122にはさらに、単位電池毎の劣化度を算出するための情報として、単位電池それぞれの初期(新品時)の満充電容量又は内部パラメータが記憶されている。さらに、劣化度を算出するための情報として、内部抵抗増加率と放電容量比との相関関係がメモリ122に記憶されていてもよい。この満充電容量又は内部パラメータは、単位電池の接続順に記憶されている等、区別して読出すことが可能であるとよい。メモリ122には、単位電池毎の劣化度を算出するための情報として、内部抵抗の増加率、劣化度に対応する放電容量比との関係が記憶されていると好ましい。 The control device 124 controls each unit as the control unit 130, and calculates the battery characteristics of the assembled battery 40 in cell units based on the detected voltage, temperature, and current. The control device 124 has, for example, full charge capacity (FCC: Full Charge Capacity), charge rate (SOC: State of Charge), deterioration degree (SOH: State of Health), charge / discharge possible power (SOP: State of Power) as battery characteristics. ), And the internal parameters of the equivalent circuit model are calculated. Information for calculating these battery characteristics is stored in advance in the memory 122. For example, information referred to for calculating the charge rate (SOC) for each cell is stored in the memory 122. For example, in the memory 122, the correlation between the open circuit voltage (OCV: Open Circuit Voltage) of the unit battery ( cell 30 or 40 units of the assembled battery) and the charge rate is stored in advance. The memory 122 further stores the initial (when new) full charge capacity or internal parameters of each unit battery as information for calculating the degree of deterioration of each unit battery. Further, as information for calculating the degree of deterioration, the correlation between the internal resistance increase rate and the discharge capacity ratio may be stored in the memory 122. It is preferable that the full charge capacity or the internal parameters can be read separately, such as being stored in the order of connection of the unit batteries. It is preferable that the memory 122 stores the relationship between the rate of increase in internal resistance and the discharge capacity ratio corresponding to the degree of deterioration as information for calculating the degree of deterioration for each unit battery.
 電圧取得部132は、セル電圧検出/バランス回路112から出力される組電池40の両端電圧又は各セル30の端子電圧を示す情報を取得する。電圧取得部132は、組電池40の両端電圧とセル30それぞれにおける電圧とをいずれも相互に区別して取得してもよい。電流取得部134は、電流検出回路116から出力される組電池40(セル30)に流れる充放電電流を示す情報を取得する。温度取得部136は、温度検出回路114から出力される温度を示す情報を取得する。 The voltage acquisition unit 132 acquires information indicating the voltage across the assembled battery 40 or the terminal voltage of each cell 30 output from the cell voltage detection / balance circuit 112. The voltage acquisition unit 132 may acquire the voltage across the assembled battery 40 and the voltage in each of the cells 30 separately from each other. The current acquisition unit 134 acquires information indicating the charge / discharge current flowing through the assembled battery 40 (cell 30) output from the current detection circuit 116. The temperature acquisition unit 136 acquires information indicating the temperature output from the temperature detection circuit 114.
 通信制御部138は、通信部120とのインターフェイスをとる。ID管理部140は、自装置の管理装置識別情報(BMU-ID)とともに、自装置が管理する組電池40の組電池ID、及び当該組電池40に含まれる各セル30のセルIDを管理する。メモリ管理部142は、メモリ122を管理する。メモリ管理部142はまた、セル単位で算出される電池特性(電池状態)を示す各種情報をメモリ122に記録する処理、及び、記録された電池特性(電池状態)を読出す処理等を実行する。タイマ144は時間を計時し、その計時結果を制御部130へ出力する。制御部130は、算出した電池特性を時系列に記憶するために、タイマ144からの出力に基づいて時間情報を電池特性に対応付ける。 The communication control unit 138 interfaces with the communication unit 120. The ID management unit 140 manages the management device identification information (BMU-ID) of the own device, the assembled battery ID of the assembled battery 40 managed by the own device, and the cell ID of each cell 30 included in the assembled battery 40. .. The memory management unit 142 manages the memory 122. The memory management unit 142 also executes a process of recording various information indicating the battery characteristics (battery status) calculated for each cell in the memory 122, a process of reading the recorded battery characteristics (battery status), and the like. .. The timer 144 clocks the time and outputs the timed result to the control unit 130. The control unit 130 associates the time information with the battery characteristics based on the output from the timer 144 in order to store the calculated battery characteristics in time series.
 状態推定部146は、パラメータ推定部148と、電池状態推定部150とを含む。パラメータ推定部148は、セル30の等価回路モデルを表す抵抗及びコンデンサの値である内部パラメータを推定する。これらの内部パラメータは、セル30の充電率、温度、劣化度等によって変化するものであるため、各セル30の電圧及び充放電電流を観測することによって逐次推定できる。 The state estimation unit 146 includes a parameter estimation unit 148 and a battery state estimation unit 150. The parameter estimation unit 148 estimates internal parameters that are the values of resistors and capacitors that represent the equivalent circuit model of cell 30. Since these internal parameters change depending on the charge rate, temperature, deterioration degree, etc. of the cell 30, they can be sequentially estimated by observing the voltage and charge / discharge current of each cell 30.
 図4を参照して、パラメータ推定部148にて等価回路モデルの内部パラメータを推定する方法について説明する。等価回路モデルは、OCVを起電力とする電圧源に、抵抗Raと、抵抗Rb及びコンデンサCbの並列回路とを直列に接続した回路によって表される。抵抗Raは、電解液抵抗に対応する。抵抗Rbは電荷移動抵抗に対応し、コンデンサCbは電気二重層容量に対応する。抵抗Raに電荷移動抵抗を含めることとし、抵抗Rbが拡散抵抗に対応することにしてもよい。図4に示される等価回路モデルの内部パラメータについては、以下の近似式(1)~(4)が成立することが知られている(詳細については、非特許文献1参照)。 With reference to FIG. 4, a method of estimating the internal parameters of the equivalent circuit model by the parameter estimation unit 148 will be described. The equivalent circuit model is represented by a circuit in which a resistor Ra and a parallel circuit of a resistor Rb and a capacitor Cb are connected in series to a voltage source using an OCV as an electromotive force. The resistor Ra corresponds to the electrolyte resistance. The resistor Rb corresponds to the charge transfer resistance and the capacitor Cb corresponds to the electric double layer capacitance. The charge transfer resistance may be included in the resistance Ra, and the resistance Rb may correspond to the diffusion resistance. It is known that the following approximate equations (1) to (4) hold for the internal parameters of the equivalent circuit model shown in FIG. 4 (see Non-Patent Document 1 for details).
 uL(k)=b0・i(k)+b1・i(k-1)-a1・uL(k-1
    )+(1+a1)・OCV・・・・・・・・・・・・・・・・・(1)
 b0=Ra・・・・・・・・・・・・・・・・・・・・・・・・・(2)
 b1=TsRa/(RbCb)+Ts/Cb-Ra・・・・・・・(3)
 a1=Ts/(RbCb)-1・・・・・・・・・・・・・・・・(4)
 但し、
 uL:取得した電圧
  i:取得した充放電電流
 Ts:計測周期
  k:計測時点を示す整数。
uL (k) = b0 ・ i (k) + b1 ・ i (k-1) -a1 ・ uL (k-1)
) + (1 + a1) · OCV ... (1)
b0 = Ra ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (2)
b1 = TsRa / (RbCb) + Ts / Cb-Ra ... (3)
a1 = Ts / (RbCb) -1 ... (4)
However,
uL: Acquired voltage i: Acquired charge / discharge current Ts: Measurement cycle k: Integer indicating the measurement time point.
 上記の式(2)~(4)から、内部パラメータであるRa、Rb及びCbを逆算すると、以下の式(5)~(7)が成立する。 When the internal parameters Ra, Rb and Cb are calculated back from the above equations (2) to (4), the following equations (5) to (7) are established.
 Ra=b0・・・・・・・・・・・・・・・・・・・・・・・・・(5)
 Rb=(b1-a1b0)/(1+a1)・・・・・・・・・・・(6)
 Cb=Ts/(b1-a1b0)・・・・・・・・・・・・・・・(7)
Ra = b0 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (5)
Rb = (b1-a1b0) / (1 + a1) ... (6)
Cb = Ts / (b1-a1b0) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (7)
 本実施の形態では、逐次最小二乗法を式(1)に適用して係数b0、b1及びa1を決定し、決定した係数を式(5)~(7)に代入してパラメータRa、Rb及びCbを推定する。温度取得部136で取得した温度に応じて、推定したパラメータを補正してもよい。 In the present embodiment, the successive least squares method is applied to the equation (1) to determine the coefficients b0, b1 and a1, and the determined coefficients are substituted into the equations (5) to (7) to substitute the parameters Ra, Rb and Estimate Cb. The estimated parameters may be corrected according to the temperature acquired by the temperature acquisition unit 136.
 パラメータRa、Rb及びCbは、カルマンフィルタを用いて算出することも可能である。具体的には、セル30に、電圧及び充放電電流で表される入力信号を与えた場合の観測ベクトルと、セル30の等価回路モデルに上記と同じ入力信号を与えた場合の状態ベクトルとを比較し、これらの誤差にカルマンゲインを掛けて等価回路モデルにフィードバックすることにより、両ベクトルの誤差が最小となるように等価回路モデルの修正を繰返す。これにより、パラメータが推定される。 The parameters Ra, Rb and Cb can also be calculated using a Kalman filter. Specifically, the observation vector when the input signal represented by the voltage and the charge / discharge current is given to the cell 30 and the state vector when the same input signal as above is given to the equivalent circuit model of the cell 30 are obtained. By comparing and multiplying these errors by Kalman gain and feeding them back to the equivalent circuit model, the modification of the equivalent circuit model is repeated so that the errors of both vectors are minimized. As a result, the parameters are estimated.
 二次電池の等価回路モデルは、図4に示すものに限定されない。例えば、図5に示すように、抵抗R0に抵抗Rj及びコンデンサCj(j=1,2,…,n)の並列回路をn個直列接続した、無限級数の和による近似で表されるn次(nは自然数)のフォスタ型RC梯子回路であってもよい。さらに、図6に示すように、一端同士が接続されたn個の抵抗Rj(j=1,2,…,n)それぞれの他端が、直列接続されたn個のコンデンサCjの間に接続されたn次のカウエル型RC梯子回路であってもよい。 The equivalent circuit model of the secondary battery is not limited to the one shown in FIG. For example, as shown in FIG. 5, the nth order represented by the sum of infinite series, in which n parallel circuits of the resistor Rj and the capacitor Cj (j = 1, 2, ..., N) are connected in series to the resistor R0. It may be a Foster type RC ladder circuit (n is a natural number). Further, as shown in FIG. 6, the other ends of the n resistors Rj (j = 1, 2, ..., N) whose ends are connected to each other are connected between the n capacitors Cj connected in series. It may be the nth-order Cowell type RC ladder circuit.
 再び図3を参照して、電池状態推定部150は、組電池40の状態をセル単位で推定する。具体的には、電池状態推定部150は、組電池40のセル30毎に、充電率(SOC)、劣化度(SOH)、及び充放電可能電力(SOP)等を推定する。電池状態推定部150は、組電池40の状態を組電池単位で推定してもよい。 With reference to FIG. 3 again, the battery state estimation unit 150 estimates the state of the assembled battery 40 on a cell-by-cell basis. Specifically, the battery state estimation unit 150 estimates the charge rate (SOC), the degree of deterioration (SOH), the chargeable / dischargeable power (SOP), and the like for each cell 30 of the assembled battery 40. The battery state estimation unit 150 may estimate the state of the assembled battery 40 in units of assembled batteries.
 図7を参照して、電池状態推定部150は、電流積算部160と、充電率推定部162と、満充電容量算出部164と、劣化度算出部166と、充放電可能電力算出部168とを含む。 With reference to FIG. 7, the battery state estimation unit 150 includes a current integration unit 160, a charge rate estimation unit 162, a full charge capacity calculation unit 164, a deterioration degree calculation unit 166, and a chargeable / dischargeable power calculation unit 168. including.
 電流積算部160は、電流取得部134で取得した充放電電流の値を積算する。電流の積算値は、電流を時間で積分したものであり、充電量の変化分に相当する。電流の積算値は、充電の場合には正となり、放電の場合には負となる。ある任意の期間における積算値は、当該期間における充電電流及び放電電流の値の大小に応じて正又は負となり得る。積算の算出を開始するタイミングは電池ユニット50、又は電池モジュール200、若しくは電池管理装置110(電池監視システム100)自体の起動タイミングとすることができる。積分値は継続的に算出される。なお所定のタイミング、例えばリユースの場合は電池モジュール200を組み替えるタイミングで積分値がリセットされるようにしてもよい。 The current integrating unit 160 integrates the value of the charge / discharge current acquired by the current acquisition unit 134. The integrated value of the current is the integral value of the current over time, and corresponds to the change in the amount of charge. The integrated value of the current is positive in the case of charging and negative in the case of discharging. The integrated value in an arbitrary period can be positive or negative depending on the magnitude of the charge current and discharge current values in the period. The timing for starting the calculation of the integration can be the start timing of the battery unit 50, the battery module 200, or the battery management device 110 (battery monitoring system 100) itself. The integrated value is calculated continuously. The integrated value may be reset at a predetermined timing, for example, in the case of reuse, at the timing of rearranging the battery module 200.
 図8を参照して、充電率推定部162による充電率の推定方法について説明する。充電率推定部162はカルマンフィルタを用いて充電率を推定する。充電率推定部162は、電圧取得部132で取得した電圧と、電流取得部134で取得した充放電電流と、パラメータ推定部148で推定した内部パラメータとに基づいて、出力するSOCを推定する。 A method of estimating the charge rate by the charge rate estimation unit 162 will be described with reference to FIG. The charge rate estimation unit 162 estimates the charge rate using a Kalman filter. The charge rate estimation unit 162 estimates the SOC to be output based on the voltage acquired by the voltage acquisition unit 132, the charge / discharge current acquired by the current acquisition unit 134, and the internal parameters estimated by the parameter estimation unit 148.
 具体的には、充電率推定部162は、パラメータ推定部148が推定した内部パラメータをパラメータデータ処理した後に、セル30の状態を表した状態ベクトルを生成するとともに、電圧取得部132及び電流取得部134での取得結果に基づく観測値を表した観測ベクトルを生成する。充電率推定部162はさらに、これらのベクトルに基づきカルマンフィルタを用いてセル30の状態を更新してセル30の充電率を推定する。カルマンフィルタを用いた充電率の推定については、特許文献3に詳しく記載されているので、詳細な説明を省略する。 Specifically, the charge rate estimation unit 162 generates a state vector representing the state of the cell 30 after processing the internal parameters estimated by the parameter estimation unit 148 with parameter data, and also generates a voltage acquisition unit 132 and a current acquisition unit 132. An observation vector representing the observation value based on the acquisition result in 134 is generated. The charge rate estimation unit 162 further updates the state of the cell 30 using a Kalman filter based on these vectors to estimate the charge rate of the cell 30. Since the estimation of the charge rate using the Kalman filter is described in detail in Patent Document 3, detailed description thereof will be omitted.
 再び図7を参照して、満充電容量算出部164は、セル単位でセル毎の満充電容量を算出する。満充電容量算出部164は、セル30毎の満充電容量に基づいて組電池40単位での満充電容量を算出することもできる。 With reference to FIG. 7 again, the full charge capacity calculation unit 164 calculates the full charge capacity for each cell in cell units. The full charge capacity calculation unit 164 can also calculate the full charge capacity of 40 units of the assembled battery based on the full charge capacity of each cell 30.
 劣化度算出部166は、組電池40又はセル30である単位電池毎の劣化度を算出する。例えば劣化度算出部166は、満充電容量算出部164により算出された単位電池の満充電容量と、メモリ122に記憶されている初期の満充電容量とを比較することによって劣化度を算出する。劣化度算出部166は、各セル30に対しパラメータ推定部148にて算出される内部抵抗値Rの初期値に対する割合(増加度)を求め、メモリ122に記憶されている内部抵抗増加率と放電容量比との相関関係に基づいて劣化度を算出するよう構成されていてもよい。さらに劣化度算出部166は、メモリ122にて記憶されている内部パラメータの初期値と、パラメータ推定部148により算出された値とを比較することにより劣化度を算出するように構成されていてもよい。 The deterioration degree calculation unit 166 calculates the deterioration degree for each unit battery which is the assembled battery 40 or the cell 30. For example, the deterioration degree calculation unit 166 calculates the deterioration degree by comparing the full charge capacity of the unit battery calculated by the full charge capacity calculation unit 164 with the initial full charge capacity stored in the memory 122. The deterioration degree calculation unit 166 obtains the ratio (increase degree) of the internal resistance value R calculated by the parameter estimation unit 148 to the initial value for each cell 30, and the internal resistance increase rate and discharge stored in the memory 122. It may be configured to calculate the degree of deterioration based on the correlation with the capacity ratio. Further, even if the deterioration degree calculation unit 166 is configured to calculate the deterioration degree by comparing the initial value of the internal parameter stored in the memory 122 with the value calculated by the parameter estimation unit 148. Good.
 充放電可能電力算出部168は、電流積算部160で算出された充放電電流の積算値に基づいて算出したOCV又はパラメータ推定部148が推定したOCVと、パラメータ推定部148が推定した内部パラメータ(例えば内部抵抗等)と、電流取得部134で取得した充放電電流とに基づいて、組電池40の充放電可能電力をセル単位で算出する。なお、充放電可能電力算出部168は、OCV、内部パラメータ、充放電電流、及び温度に基づいて、充放電可能電力を算出してもよい。 The charge / discharge possible power calculation unit 168 includes an OCV calculated based on the integrated value of the charge / discharge current calculated by the current integration unit 160, an OCV estimated by the parameter estimation unit 148, and an internal parameter estimated by the parameter estimation unit 148. (For example, internal resistance, etc.) and the charge / discharge current acquired by the current acquisition unit 134 are used to calculate the chargeable / dischargeable power of the assembled battery 40 in cell units. The charge / discharge possible power calculation unit 168 may calculate the charge / discharge possible power based on the OCV, the internal parameters, the charge / discharge current, and the temperature.
 上述の状態推定部146は、パラメータ推定部148、充電率推定部162、満充電容量算出部164、劣化度算出部166、及び充放電可能電力算出部168として組電池40における各セル30の状態(電池特性)を種々の方法で算出できる。各セル30の状態(電池特性)を算出(推定)する方法として、例えば、特許文献4、特許文献5、特許文献6、特許文献7、及び特許文献8等に開示の方法を用いることができる。 The above-mentioned state estimation unit 146 serves as a parameter estimation unit 148, a charge rate estimation unit 162, a full charge capacity calculation unit 164, a deterioration degree calculation unit 166, and a chargeable / dischargeable power calculation unit 168, and is a state of each cell 30 in the assembled battery 40. (Battery characteristics) can be calculated by various methods. As a method for calculating (estimating) the state (battery characteristics) of each cell 30, for example, the methods disclosed in Patent Document 4, Patent Document 5, Patent Document 6, Patent Document 7, Patent Document 8 and the like can be used. ..
 再び図3を参照して、セルバランス制御部152は、セル電圧検出/バランス回路112を制御して、自装置が管理する組電池40に対してセルバランスを実行する。具体的には、セルバランス制御部152は、電圧取得部132で取得した電圧、状態推定部146で推定した状態(例えば充電率推定部162で推定された各セル30の充電率等)、及び温度取得部136で取得した温度等に基づいて、又は電池監視装置300からの指示に基づいて、複数のセル30のエネルギ容量を均一化するようセル電圧検出/バランス回路112を制御する。 With reference to FIG. 3 again, the cell balance control unit 152 controls the cell voltage detection / balance circuit 112 to perform cell balance on the assembled battery 40 managed by the own device. Specifically, the cell balance control unit 152 includes the voltage acquired by the voltage acquisition unit 132, the state estimated by the state estimation unit 146 (for example, the charge rate of each cell 30 estimated by the charge rate estimation unit 162, etc.), and The cell voltage detection / balance circuit 112 is controlled so as to equalize the energy capacities of the plurality of cells 30 based on the temperature acquired by the temperature acquisition unit 136 or an instruction from the battery monitoring device 300.
 異常判定部154は、電圧取得部132で取得した電圧、電流取得部134で取得した充放電電流、又は温度取得部136で取得した温度等に基づいて、自装置が管理する組電池40が異常か否かを判定する。具体的には、例えば、異常か否かを判定するための各しきい値がメモリ122に記憶されている。異常判定部154は、電圧取得部132、電流取得部134又は温度取得部136からの各検出値と各しきい値とをそれぞれ比較することによって組電池40が異常か否かを判定する。異常判定部154は、他のセル30との比較により、各セル30の異常判定を行う構成であってもよい。異常判定部154はさらに、組電池40が異常であると判定されたことに応答して、所定の異常処理を実行する。異常判定部154は、異常処置として、例えば、電池監視装置300に組電池40が異常であることを通知するとともに、履歴情報としてメモリ122に記録する。 The abnormality determination unit 154 has an abnormality in the assembled battery 40 managed by its own device based on the voltage acquired by the voltage acquisition unit 132, the charge / discharge current acquired by the current acquisition unit 134, the temperature acquired by the temperature acquisition unit 136, and the like. Judge whether or not. Specifically, for example, each threshold value for determining whether or not it is abnormal is stored in the memory 122. The abnormality determination unit 154 determines whether or not the assembled battery 40 is abnormal by comparing each detection value from the voltage acquisition unit 132, the current acquisition unit 134, or the temperature acquisition unit 136 with each threshold value. The abnormality determination unit 154 may be configured to determine the abnormality of each cell 30 by comparing with other cells 30. The abnormality determination unit 154 further executes a predetermined abnormality processing in response to the determination that the assembled battery 40 is abnormal. As an abnormality measure, the abnormality determination unit 154 notifies, for example, the battery monitoring device 300 that the assembled battery 40 is abnormal, and records the history information in the memory 122.
 制御装置124は、制御部130として例えば10ミリ秒等の所定周期で充電率、内部パラメータ、満充電容量、及び劣化度等の電池特性の内の全部又は一部を算出し、一時記憶して電池特性に応じた充放電制御を行う。制御部130は電池特性を電池監視装置300へ送信する。電池監視装置300は、各電池管理装置110から送信される電池特性に基づいて、電池ユニット50全体の電池特性を算出して全体としての充放電制御を実行する。電池監視装置300はさらに、上位ECU74へ走行制御等のための情報を提供する。各電池管理装置110は、自装置で推定した電池特性(電池状態)に加えて、電圧取得部132で取得した電圧、電流取得部134で取得した充放電電流、及び温度取得部136で取得した温度等の情報を電池監視装置300に送信するよう構成されていてもよい。 The control device 124 calculates all or part of the battery characteristics such as the charge rate, the internal parameters, the full charge capacity, and the degree of deterioration in a predetermined cycle such as 10 milliseconds as the control unit 130, and temporarily stores the battery characteristics. Charge / discharge control is performed according to the battery characteristics. The control unit 130 transmits the battery characteristics to the battery monitoring device 300. The battery monitoring device 300 calculates the battery characteristics of the entire battery unit 50 based on the battery characteristics transmitted from each battery management device 110, and executes charge / discharge control as a whole. The battery monitoring device 300 further provides information for traveling control and the like to the upper ECU 74. In addition to the battery characteristics (battery state) estimated by the own device, each battery management device 110 is acquired by the voltage acquired by the voltage acquisition unit 132, the charge / discharge current acquired by the current acquisition unit 134, and the temperature acquisition unit 136. It may be configured to transmit information such as temperature to the battery monitoring device 300.
 再び図2を参照して、始動スイッチ72(図1)がオンされている場合、又は車両20の停車中に充電器(図示せず。)によって電池ユニット50の充電が行われている場合、電池監視システム100は通常モードで動作する。通常モードにおいて、電池監視装置300は、例えば1秒等の所定の周期で各電池管理装置110から電池特性(電池状態)等の情報を取得して集約する。一方、始動スイッチ72(図1)がオンされておらず、充電も行われていない場合、電池監視システム100は低消費電力モードで動作する。低消費電力モードでは、一定時間毎に電池監視システム100が起動し、所定の時間、通常モードと同様の動作を行う。 With reference to FIG. 2 again, when the start switch 72 (FIG. 1) is turned on, or when the battery unit 50 is being charged by the charger (not shown) while the vehicle 20 is stopped. The battery monitoring system 100 operates in the normal mode. In the normal mode, the battery monitoring device 300 acquires and aggregates information such as battery characteristics (battery status) from each battery management device 110 at a predetermined cycle such as 1 second. On the other hand, when the start switch 72 (FIG. 1) is not turned on and the battery is not charged, the battery monitoring system 100 operates in the low power consumption mode. In the low power consumption mode, the battery monitoring system 100 is activated at regular intervals, and operates in the same manner as in the normal mode for a predetermined time.
 図9を参照して、電池監視装置300の制御装置318は、制御部320、モジュール間セルバランス制御部322、通信制御部324、タイマ326、メモリ管理部328、及び異常判定部330を機能部として含む。これら機能部の機能は、制御装置318がハードウェアを用いて実行するソフトウェア処理によって実現される。これらの機能の一部又は全部が、マイクロコンピュータを含む集積回路によって実現されてもよい。 With reference to FIG. 9, the control device 318 of the battery monitoring device 300 includes a control unit 320, an inter-module cell balance control unit 322, a communication control unit 324, a timer 326, a memory management unit 328, and an abnormality determination unit 330 as functional units. Include as. The functions of these functional units are realized by software processing executed by the control device 318 using hardware. Some or all of these functions may be realized by integrated circuits including a microcomputer.
 モジュール間セルバランス制御部322は、集約した各電池モジュール200(各組電池40)の情報に基づいて、電池モジュール200間のエネルギ容量のバラツキを抑えるよう、各電池管理装置110を制御する。具体的には、モジュール間セルバランス制御部322は、電池モジュール200間のエネルギ容量のバラツキを抑えるための指令値を生成し、生成した指令値を、通信部310を介して各電池管理装置110に送信する。各電池管理装置110は、電池監視装置300から送信される指令値に基づいてセルバランスを行うことで、複数の電池モジュール200、すなわち、電池ユニット50全体として、各セル30のエネルギ容量を均一化する。 The inter-module cell balance control unit 322 controls each battery management device 110 based on the aggregated information of each battery module 200 (each assembled battery 40) so as to suppress the variation in energy capacity between the battery modules 200. Specifically, the cell balance control unit 322 between modules generates a command value for suppressing the variation in energy capacity between the battery modules 200, and the generated command value is transmitted to each battery management device 110 via the communication unit 310. Send to. Each battery management device 110 performs cell balance based on a command value transmitted from the battery monitoring device 300 to equalize the energy capacity of each cell 30 as a plurality of battery modules 200, that is, the battery unit 50 as a whole. To do.
 通信制御部324は、通信部310及び通信部316とのインターフェイスをとる。タイマ326は時間を計時し、その計時結果を制御部320へ出力する。制御部320は、各電池管理装置110から取得した電池特性(電池状態)を時系列に記憶するために、タイマ326からの出力に基づいて時間情報を電池特性に対応付ける。メモリ管理部328は、メモリ314を管理する。メモリ管理部328はまた、各電池管理装置110から取得した電池特性を含む各種情報をメモリ314に記録する処理、及び、記録された電池特性(電池状態)をメモリ314から読出す処理等を実行する。異常判定部330は、各電池管理装置110から取得した情報に基づいて、各電池モジュール200に異常が生じているか否かを判定し、判定結果に応じて所定の異常処理を実行する。例えば、異常判定部330は、他の電池モジュール200(組電池40)との比較により、各電池モジュール200(組電池40)の異常を判定する。他の多くの電池モジュール200に比べて電池特性(電池状態)の値に対して乖離が大きい場合、電池モジュール200の異常と判定できる。これ以外に、例えば、所定のしきい値との比較により電池モジュール200の異常判定を行うようにしてもよい。 The communication control unit 324 takes an interface with the communication unit 310 and the communication unit 316. The timer 326 clocks the time and outputs the timed result to the control unit 320. The control unit 320 associates the time information with the battery characteristics based on the output from the timer 326 in order to store the battery characteristics (battery state) acquired from each battery management device 110 in time series. The memory management unit 328 manages the memory 314. The memory management unit 328 also executes a process of recording various information including battery characteristics acquired from each battery management device 110 in the memory 314, a process of reading the recorded battery characteristics (battery state) from the memory 314, and the like. To do. The abnormality determination unit 330 determines whether or not an abnormality has occurred in each battery module 200 based on the information acquired from each battery management device 110, and executes a predetermined abnormality process according to the determination result. For example, the abnormality determination unit 330 determines an abnormality in each battery module 200 (assembled battery 40) by comparing with another battery module 200 (assembled battery 40). When the deviation from the value of the battery characteristics (battery state) is larger than that of many other battery modules 200, it can be determined that the battery module 200 is abnormal. In addition to this, for example, the abnormality determination of the battery module 200 may be performed by comparing with a predetermined threshold value.
 [ソフトウェア構成]
 図10~図13を参照して、電池モジュール200に含まれる組電池40を管理するために、各電池管理装置110で実行されるコンピュータプログラムの制御構造について説明する。このプログラムは、通常モードへの移行に応じて、又は低消費電力モードにおいて一定時間毎に開始する。
[Software configuration]
A control structure of a computer program executed by each battery management device 110 in order to manage the assembled battery 40 included in the battery module 200 will be described with reference to FIGS. 10 to 13. This program starts in response to the transition to the normal mode or at regular intervals in the low power consumption mode.
 図10を参照して、このプログラムは、以下に説明するステップS1010~ステップS1070を、電池監視装置300への送信周期の間繰返すステップS1000を含む。ステップS1000では、電池の状態推定を行う。 With reference to FIG. 10, this program includes step S1000, which repeats steps S1010 to S1070 described below for the transmission cycle to the battery monitoring device 300. In step S1000, the state of the battery is estimated.
 ステップS1000において、電池監視装置300への送信周期の間繰返される、電池の状態を推定する処理は、セル電圧検出/バランス回路112を制御して、各セル30の電圧を測定するステップS1010と、ステップS1010の後に実行され、電流検出回路116を制御して、組電池40(各セル30)の充放電電流を計測するステップS1020と、ステップS1020の後に実行され、温度検出回路114を制御して、組電池40の表面温度を計測するステップS1030と、ステップS1030の後に実行され、ステップS1010~ステップS1030において計測した情報に基づいて、組電池40又は各セル30に異常があるか否かを判定し、判定結果に応じて制御の流れを分岐させるステップS1040と、ステップS1040において、異常ありと判定された場合に実行され、所定の異常処理を実行するステップS1050と、ステップS1040において、異常なしと判定された場合に実行され、等価回路モデルの内部パラメータを推定する処理を実行するステップS1060と、ステップS1060の後に実行され、組電池40の状態をセル単位で推定するステップS1070とを含む。ステップS1050では、例えば、セル30の異常を履歴情報としてメモリ122に記憶する処理を実行する。ステップS1050ではまた、セル30の異常を電池監視装置300に送信するために一時的に記憶する。 In step S1000, the process of estimating the battery state, which is repeated during the transmission cycle to the battery monitoring device 300, controls the cell voltage detection / balance circuit 112 to measure the voltage of each cell 30. It is executed after step S1010 to control the current detection circuit 116 to measure the charge / discharge current of the assembled battery 40 (each cell 30), and is executed after step S1020 to control the temperature detection circuit 114. , It is executed after step S1030 to measure the surface temperature of the assembled battery 40, and it is determined whether or not there is an abnormality in the assembled battery 40 or each cell 30 based on the information measured in steps S1010 to S1030. Then, in step S1040 for branching the control flow according to the determination result, step S1050 which is executed when it is determined that there is an abnormality in step S1040 and a predetermined abnormality processing is executed, and step S1040 where there is no abnormality. It includes step S1060, which is executed when the determination is made and executes a process of estimating the internal parameters of the equivalent circuit model, and step S1070, which is executed after step S1060 and estimates the state of the assembled battery 40 in cell units. In step S1050, for example, a process of storing the abnormality of the cell 30 in the memory 122 as history information is executed. In step S1050, the abnormality of the cell 30 is temporarily stored for transmission to the battery monitoring device 300.
 このプログラムはさらに、ステップS1000の後に実行され、セル30の異常、又は、推定した電池特性(電池状態)を電池監視装置300に送信するステップS1080と、ステップS1080の後に実行され、動作モードが通常モードか否かを判定し、判定結果に応じて制御の流れを分岐させるステップS1090と、ステップS1090において、動作モードが通常モードではない、すなわち、低消費電力モードであると判定された場合に実行され、通常モードとして動作する所定の時間が経過したか否かを判定し、判定結果に応じて制御の流れを分岐させるステップS1100とを含む。ステップS1090において、動作モードが通常モードであると判定された場合、又は、ステップS1100において、所定の時間が経過していないと判定された場合は、制御は、ステップS1000に戻る。ステップS1100において、所定の時間が経過していると判定された場合は、このプログラムの実行は終了する。 This program is further executed after step S1000 to transmit the abnormality of cell 30 or the estimated battery characteristics (battery state) to the battery monitoring device 300, and is executed after step S1080, and the operation mode is usually Execution when it is determined in step S1090 and step S1090 that the mode or not is determined and the control flow is branched according to the determination result, that the operation mode is not the normal mode, that is, the low power consumption mode is determined. This includes step S1100, which determines whether or not a predetermined time for operating as the normal mode has elapsed, and branches the control flow according to the determination result. If it is determined in step S1090 that the operation mode is the normal mode, or if it is determined in step S1100 that the predetermined time has not elapsed, the control returns to step S1000. If it is determined in step S1100 that the predetermined time has elapsed, the execution of this program ends.
 図11は、電池管理装置110における通信割込処理を示すルーチンである。このルーチンは、例えば、早急な対応が望まれる組電池40の異常(例えば、急激な温度上昇等)等を検出したこと、又は、電池監視装置300からの指示を受信したことに応じて起動される。図11を参照して、このルーチンは、電池管理装置110からの要求、又は電池監視装置300からの要求に対する割込処理を実行するステップS1200を含む。ステップS1200では、電池管理装置110が何らかの異常を検出した場合に、その異常を電池監視装置300に通知する。ステップS1200ではまた、電池監視装置300からの指示を受信した場合に、受信した指示に応じた処理を実行する。ステップS1200の処理が終了すると、このルーチンの実行は終了する。 FIG. 11 is a routine showing the communication interrupt process in the battery management device 110. This routine is activated in response to, for example, detecting an abnormality in the assembled battery 40 (for example, a sudden temperature rise, etc.) for which immediate action is desired, or receiving an instruction from the battery monitoring device 300. To. With reference to FIG. 11, this routine includes step S1200, which executes an interrupt process for a request from the battery management device 110 or a request from the battery monitoring device 300. In step S1200, when the battery management device 110 detects any abnormality, the battery monitoring device 300 is notified of the abnormality. In step S1200, when the instruction from the battery monitoring device 300 is received, the process according to the received instruction is executed. When the process of step S1200 is completed, the execution of this routine ends.
 図12は、電池管理装置110におけるセルバランスの割込処理を示すルーチンである。このルーチンは、電池管理装置110自身によるセルバランス指示、又は、電池監視装置300からのセルバランス指示に応じて起動される。図12を参照して、このルーチンは、セルバランス指示に応じたセルバランスを割込処理として実行するステップS1300を含む。ステップS1300の処理が終了すると、このルーチンの実行は終了する。 FIG. 12 is a routine showing the cell balance interrupt processing in the battery management device 110. This routine is activated in response to a cell balance instruction from the battery management device 110 itself or a cell balance instruction from the battery monitoring device 300. With reference to FIG. 12, this routine includes step S1300, which executes the cell balance in response to the cell balance instruction as an interrupt process. When the process of step S1300 is completed, the execution of this routine ends.
 図13を参照して、電池ユニット50全体を監視するために、電池監視装置300で実行されるコンピュータプログラムの制御構造について説明する。このプログラムは、電池管理装置110と同様、通常モードへの移行に応じて、又は低消費電力モードにおいて一定時間毎に開始する。 With reference to FIG. 13, the control structure of the computer program executed by the battery monitoring device 300 in order to monitor the entire battery unit 50 will be described. This program, like the battery management device 110, starts in response to the transition to the normal mode or at regular intervals in the low power consumption mode.
 このプログラムは、各電池管理装置110から送信される情報を受信するステップS2000と、ステップS2000の後に実行され、受信した情報に基づいて、各セル30及び各電池モジュール200(組電池40)の状態を把握するステップS2010と、ステップS2010の後に実行され、セル30又は組電池40に異常があるか否かを判定し、判定結果に応じて制御の流れを分岐させるステップS2020と、ステップS2020において、異常ありと判定された場合に実行され、所定の異常処理を実行するステップS2030と、ステップS2020において、異常なしと判定された場合に実行され、電池管理装置110への指示があるか否かを判定し、判定結果に応じて制御の流れを分岐させるステップS2040と、ステップS2040において、指示ありと判定された場合に実行され、指示対象の電池管理装置110に対して当該指示を送信するステップS2050と、ステップS2030又はステップS2050の後、若しくは、ステップS2040において指示なしと判定された場合に実行され、電池管理に必要な情報を上位ECU74に送信するステップS2060とを含む。 This program is executed after step S2000 for receiving the information transmitted from each battery management device 110 and after step S2000, and is the state of each cell 30 and each battery module 200 (assembled battery 40) based on the received information. In step S2010 and step S2020, which are executed after step S2010, determine whether or not there is an abnormality in the cell 30 or the assembled battery 40, and branch the control flow according to the determination result. It is executed when it is determined that there is an abnormality, and is executed when it is determined that there is no abnormality in step S2030 and step S2020, which executes a predetermined abnormality processing, and whether or not there is an instruction to the battery management device 110. Step S2040 that determines and branches the control flow according to the determination result, and step S2050 that is executed when it is determined that there is an instruction in step S2040 and transmits the instruction to the battery management device 110 to be instructed. And step S2060, which is executed after step S2030 or step S2050, or when it is determined in step S2040 that there is no instruction, and transmits information necessary for battery management to the upper ECU 74.
 ステップS2040では、例えば、各電池モジュール200(組電池40)に対してセルバランスを行う必要があるか否かに応じて、電池モジュール200毎に電池管理装置110への指示があるか否かを判定する。ステップS2050では、電池管理装置110に対してセルバランス指示を送信する。セルバランス指示は、どの電池モジュール200のどのセル30に対してセルバランス動作を実行するかの指示を含む。ステップS2030では、例えば、電池ユニット50(組電池40又はセル30)の異常を上位ECU74に送信するために一時的に記憶する等の処理を実行する。ステップS2060では、電池ユニット50の異常に関する情報、又は、電池状態等の情報を上位ECU74に送信する。上位ECU74に送信する情報は、セル30に関する全ての情報ではなく、充電率(SOC)、劣化度(SOH)、内部抵抗、温度等に関する平均値、最下位値、最上位値等の予め選択された項目であってもよい。また、上位ECU74から要求されている項目を当該上位ECU74に送信する構成であってもよい。 In step S2040, for example, whether or not there is an instruction to the battery management device 110 for each battery module 200 depending on whether or not it is necessary to perform cell balance for each battery module 200 (assembled battery 40). judge. In step S2050, a cell balance instruction is transmitted to the battery management device 110. The cell balance instruction includes an instruction as to which cell 30 of which battery module 200 the cell balance operation is to be executed. In step S2030, for example, a process of temporarily storing an abnormality in the battery unit 50 (assembled battery 40 or cell 30) in order to transmit it to the higher-level ECU 74 is executed. In step S2060, information regarding the abnormality of the battery unit 50 or information such as the battery status is transmitted to the upper ECU 74. The information to be transmitted to the upper ECU 74 is not all the information about the cell 30, but is preselected such as the average value, the lowest value, the highest value, etc. regarding the charge rate (SOC), the degree of deterioration (SOH), the internal resistance, the temperature, and the like. It may be an item. Further, the item requested from the upper ECU 74 may be transmitted to the upper ECU 74.
 このプログラムはさらに、ステップS2060の後に実行され、動作モードが通常モードか否かを判定し、判定結果に応じて制御の流れを分岐させるステップS2070と、ステップS2070において、動作モードが通常モードではない、すなわち、低消費電力モードであると判定された場合に実行され、通常モードとして動作する所定の時間が経過したか否かを判定し、判定結果に応じて制御の流れを分岐させるステップS2080とを含む。ステップS2070において、動作モードが通常モードであると判定された場合、又は、ステップS2080において、所定の時間が経過していないと判定された場合は、制御は、ステップS2000に戻る。ステップS2080において、所定の時間が経過していると判定された場合は、このプログラムの実行は終了する。 This program is further executed after step S2060, determines whether or not the operation mode is the normal mode, and branches the control flow according to the determination result. In step S2070 and step S2070, the operation mode is not the normal mode. That is, in step S2080, which is executed when the low power consumption mode is determined, it is determined whether or not a predetermined time for operating as the normal mode has elapsed, and the control flow is branched according to the determination result. including. If it is determined in step S2070 that the operation mode is the normal mode, or if it is determined in step S2080 that the predetermined time has not elapsed, the control returns to step S2000. If it is determined in step S2080 that the predetermined time has elapsed, the execution of this program ends.
 [動作]
 本実施の形態に係る電池監視システム100は以下のように動作する。
[motion]
The battery monitoring system 100 according to the present embodiment operates as follows.
 電池監視システム100は、始動スイッチ72がオンされている場合、又は停車中に充電器(図示せず。)によって充電が行われている場合、通常モードで動作する。一方、始動スイッチ72がオンされていない場合、かつ、停車中に充電が行われていない場合、電池監視システム100は低消費電力モードで動作する。低消費電力モードでは、電池監視システム100は、一定時間毎に起動して、所定の期間、通常モードの場合と同様の動作を行う。 The battery monitoring system 100 operates in the normal mode when the start switch 72 is turned on or when the battery is charged by a charger (not shown) while the vehicle is stopped. On the other hand, when the start switch 72 is not turned on and the battery is not charged while the vehicle is stopped, the battery monitoring system 100 operates in the low power consumption mode. In the low power consumption mode, the battery monitoring system 100 is started at regular intervals and operates for a predetermined period in the same manner as in the normal mode.
 通常モードでは、各電池管理装置110は、対応する組電池40の各セル30の電圧、充放電電流、及び、組電池40の表面温度を取得する(図10のステップS1010~ステップS1030)。各電池管理装置110は、取得した情報に基づいて、組電池40(セル30)の異常の有無を判定する。異常ありと判定すると(ステップS1040においてYES)、電池管理装置110は所定の異常処理を実行する(ステップS1050)。異常なしの場合(ステップS1040においてNO)、各電池管理装置110は、取得した電圧、充放電電流、及び温度を用いて、充電率、内部パラメータ、満充電容量、及び劣化度等の電池特性(電池状態)を推定する(ステップS1060及びステップS1070)。各電池管理装置110は、これら一連の処理(ステップS1010~ステップS1070)を例えば10ミリ秒等の所定周期で繰返し行う。 In the normal mode, each battery management device 110 acquires the voltage, charge / discharge current, and surface temperature of each cell 30 of the corresponding assembled battery 40 (steps S1010 to S1030 in FIG. 10). Each battery management device 110 determines whether or not there is an abnormality in the assembled battery 40 (cell 30) based on the acquired information. If it is determined that there is an abnormality (YES in step S1040), the battery management device 110 executes a predetermined abnormality process (step S1050). When there is no abnormality (NO in step S1040), each battery management device 110 uses the acquired voltage, charge / discharge current, and temperature to perform battery characteristics such as charge rate, internal parameters, full charge capacity, and degree of deterioration (NO). Battery status) is estimated (step S1060 and step S1070). Each battery management device 110 repeats these series of processes (steps S1010 to S1070) at a predetermined cycle such as 10 milliseconds.
 各電池管理装置110は、例えば1秒等の所定の周期で電池の状態等の情報を電池監視装置300に送信する。電池監視装置300への送信周期が1秒であって、上記一連の処理の周期が10ミリ秒の場合、各電池管理装置110は、ステップS1010~ステップS1070の処理を100回繰返す毎に、それらの処理によって得られた情報を、電池監視装置300に送信する。 Each battery management device 110 transmits information such as a battery status to the battery monitoring device 300 at a predetermined cycle such as 1 second. When the transmission cycle to the battery monitoring device 300 is 1 second and the cycle of the series of processes is 10 milliseconds, each battery management device 110 repeats the processes of steps S1010 to S1070 100 times each time. The information obtained by the above process is transmitted to the battery monitoring device 300.
 各電池管理装置110は、早急な対応が望まれる何らかの異常を検出した場合、又は、電池監視装置300からの指示を受信した場合、それに応じた割込処理を実行する(図11のステップS1200)。各電池管理装置110はさらに、セル30の充電率等に基づいて、セルバランスを実行する必要があると判定した場合、又は、電池監視装置300からのセルバランス指示を受信した場合、セルバランスを行う割込処理を実行する(図12のステップS1300)。 When each battery management device 110 detects some abnormality for which immediate response is desired, or receives an instruction from the battery monitoring device 300, each battery management device 110 executes an interrupt process corresponding to the instruction (step S1200 in FIG. 11). .. When each battery management device 110 further determines that it is necessary to perform cell balance based on the charge rate of the cell 30, or when it receives a cell balance instruction from the battery monitoring device 300, the cell balance is adjusted. The interrupt process to be performed is executed (step S1300 in FIG. 12).
 電池監視装置300は、各電池管理装置110から送信される情報を受信して、電池モジュール200毎に、組電池40及び各セル30の状態を把握する(図13のステップS2000及びステップS2010)。電池監視装置300は、各セル30の状態、又は、電池管理装置110から送信される異常に関する情報に基づいて、電池ユニット50における各組電池40(各セル30)の異常の有無を判定する。異常があると判定した場合(ステップS2020においてYES)、電池監視装置300はそのことを上位ECU74に通知する(ステップS2030及びステップS2060)。電池監視装置300はさらに、例えば、各電池モジュール200の状態に基づいて、ある電池モジュール200の状態が他の電池モジュール200の状態と比べて著しく異なる等の異常を検出した場合、当該電池モジュール200(電池管理装置110)に対して、電池の異常を通知する。 The battery monitoring device 300 receives the information transmitted from each battery management device 110 and grasps the state of the assembled battery 40 and each cell 30 for each battery module 200 (steps S2000 and S2010 in FIG. 13). The battery monitoring device 300 determines whether or not there is an abnormality in each assembled battery 40 (each cell 30) in the battery unit 50 based on the state of each cell 30 or the information regarding the abnormality transmitted from the battery management device 110. When it is determined that there is an abnormality (YES in step S2020), the battery monitoring device 300 notifies the upper ECU 74 of this (step S2030 and step S2060). Further, when the battery monitoring device 300 detects an abnormality such that the state of a certain battery module 200 is significantly different from the state of another battery module 200 based on the state of each battery module 200, the battery module 200 is further detected. Notifies (battery management device 110) of a battery abnormality.
 各組電池40(各セル30)に異常がない場合(ステップS2020においてNO)、電池監視装置300は、電池モジュール200間のエネルギ容量にバラツキがあるか否かを判定する。すなわち、電池管理装置110にセルバランス指示を行う必要があるか否かを判定する。セルバランス指示を行う必要がある場合(ステップS2040においてYES)、電池監視装置300は、当該電池モジュール200(電池管理装置110)にセルバランス指示を送信する(ステップS2050)とともに、セルバランス指示を行ったことを上位ECU74に通知する(ステップS2060)。一方、セルバランス指示を行う必要がない場合(ステップS2040においてNO)、電池監視装置300は、上位ECU74において電池管理に必要な情報を当該上位ECU74に送信する(ステップS2060)。 When there is no abnormality in each assembled battery 40 (each cell 30) (NO in step S2020), the battery monitoring device 300 determines whether or not there is a variation in the energy capacity between the battery modules 200. That is, it is determined whether or not it is necessary to give a cell balance instruction to the battery management device 110. When it is necessary to give a cell balance instruction (YES in step S2040), the battery monitoring device 300 transmits the cell balance instruction to the battery module 200 (battery management device 110) (step S2050) and also gives the cell balance instruction. This is notified to the upper ECU 74 (step S2060). On the other hand, when it is not necessary to give the cell balance instruction (NO in step S2040), the battery monitoring device 300 transmits the information necessary for battery management in the higher ECU 74 to the higher ECU 74 (step S2060).
 電池監視システム100は、動作モードが通常モードである場合(図10のステップS1090及び図13のステップS2070においてYES)、上記した動作を繰返す。動作モードが低消費電力モードである場合であって、通常モードと同様の動作を行う所定時間の間も、上記した動作を繰返す(図10のステップS1100及び図13のステップS2080においてNO)。 When the operation mode is the normal mode (YES in step S1090 in FIG. 10 and step S2070 in FIG. 13), the battery monitoring system 100 repeats the above operation. When the operation mode is the low power consumption mode, the above operation is repeated during a predetermined time during which the same operation as the normal mode is performed (NO in step S1100 in FIG. 10 and step S2080 in FIG. 13).
 [本実施の形態の効果]
 以上の説明から明らかなように、本実施の形態に係る電池監視システム100等は以下に述べる効果を奏する。
[Effect of this embodiment]
As is clear from the above description, the battery monitoring system 100 and the like according to the present embodiment have the effects described below.
 各電池モジュール200において、組電池40の電流経路に設けられる電流センサ180は、セル30の充放電電流を検出してその検出信号を電池管理装置110に出力する。各電池管理装置110は、セル30の電圧を電圧取得部132で取得するとともに、電流センサ180を介してセル30の充放電電流を電流取得部134で取得する。各セル30の電圧値及び充放電電流値を時間差なく取得できるので、データの同時性が確保される。これにより、セル30の電圧と充放電電流との位相ずれの影響を抑制できるので、状態推定部146で組電池40の状態を推定する際に、精度よく状態を推定できる。 In each battery module 200, the current sensor 180 provided in the current path of the assembled battery 40 detects the charge / discharge current of the cell 30 and outputs the detection signal to the battery management device 110. Each battery management device 110 acquires the voltage of the cell 30 by the voltage acquisition unit 132, and acquires the charge / discharge current of the cell 30 by the current acquisition unit 134 via the current sensor 180. Since the voltage value and charge / discharge current value of each cell 30 can be acquired without a time difference, the simultaneity of data is ensured. As a result, the influence of the phase shift between the voltage of the cell 30 and the charge / discharge current can be suppressed, so that the state can be estimated accurately when the state estimation unit 146 estimates the state of the assembled battery 40.
 複数の電池管理装置110の各々は、通信部120を介して、状態推定部146が推定した組電池40(各セル30)の状態を個々に電池監視装置300に送信する。そのため、デイジーチェーン接続されている構成とは異なり、一部の電池管理装置110と電池監視装置300との間で通信に不具合が生じたとしても、他の電池管理装置110はその不具合の影響を受けることはない。他の電池管理装置110は電池監視装置300との間で通信を維持できるので、推定した組電池40の状態を電池監視装置300に送信できる。したがって、電池監視装置300は、一部の電池管理装置110との間で通信に不具合が生じた場合でも、電池ユニット50を監視できる。 Each of the plurality of battery management devices 110 individually transmits the state of the assembled battery 40 (each cell 30) estimated by the state estimation unit 146 to the battery monitoring device 300 via the communication unit 120. Therefore, unlike the configuration in which the battery is connected in a daisy chain, even if a communication problem occurs between some battery management devices 110 and the battery monitoring device 300, the other battery management devices 110 are affected by the problem. I will not receive it. Since the other battery management device 110 can maintain communication with the battery monitoring device 300, the estimated state of the assembled battery 40 can be transmitted to the battery monitoring device 300. Therefore, the battery monitoring device 300 can monitor the battery unit 50 even when a communication problem occurs with some of the battery management devices 110.
 各電池管理装置110は、電圧取得部132で取得した電圧、電流取得部134で取得した充放電電流、及び温度取得部136で取得した温度の情報に基づいて、組電池40(セル30)が異常か否かを判定する。各電池管理装置110は、その判定結果に応じて異常処理を実行する。これにより、異常の発生を早期に検出して異常処理を実行できるので、組電池40(ひいては電池ユニット50)を効果的に管理できる。さらに、電池監視装置300が各電池管理装置110の情報を一元的に管理することによって、電池ユニット50をより効果的に監視できる。 In each battery management device 110, the assembled battery 40 (cell 30) is based on the voltage acquired by the voltage acquisition unit 132, the charge / discharge current acquired by the current acquisition unit 134, and the temperature information acquired by the temperature acquisition unit 136. Determine if it is abnormal. Each battery management device 110 executes an abnormality process according to the determination result. As a result, the occurrence of an abnormality can be detected at an early stage and the abnormality processing can be executed, so that the assembled battery 40 (and thus the battery unit 50) can be effectively managed. Further, the battery monitoring device 300 can centrally manage the information of each battery management device 110, so that the battery unit 50 can be monitored more effectively.
 各電池管理装置110はさらに、電圧取得部132で取得した電圧、状態推定部146で推定した状態(電池特性)、及び温度取得部136で取得した温度に基づいて、組電池40のセルバランスを実行する。状態推定部146にて精度よく組電池40の状態をセル単位で推定できているので、その推定した状態を用いることにより、セル30間のエネルギ容量を精度よく均一化できる。これにより、電池の能力を十分に活かすことができる。 Each battery management device 110 further adjusts the cell balance of the assembled battery 40 based on the voltage acquired by the voltage acquisition unit 132, the state estimated by the state estimation unit 146 (battery characteristics), and the temperature acquired by the temperature acquisition unit 136. Run. Since the state estimation unit 146 can accurately estimate the state of the assembled battery 40 on a cell-by-cell basis, the energy capacity between the cells 30 can be accurately uniformized by using the estimated state. As a result, the capacity of the battery can be fully utilized.
 組電池40、電池管理装置110、及び電流センサ180は、電池モジュール200としてモジュール化されている。電池監視システム100は、複数の電池モジュール200のそれぞれにおいて、電池の状態推定まで行うことができる。このような電池モジュール200を複数組合せることで、容易に、本実施の形態に係る電池監視システム100を構成できる。電池のリユースにおいて、モジュール単位での再利用等を容易化できる。 The assembled battery 40, the battery management device 110, and the current sensor 180 are modularized as a battery module 200. The battery monitoring system 100 can even estimate the state of the batteries in each of the plurality of battery modules 200. By combining a plurality of such battery modules 200, the battery monitoring system 100 according to the present embodiment can be easily configured. In battery reuse, it is possible to facilitate reuse in module units.
 各電池管理装置110はさらに、状態推定部146で推定したセル単位の状態を、セル30を識別する識別情報と対応付けてメモリ122に記録する。これにより、リユース時等に、メモリ122に記録されている履歴情報を読出すことで、電池ユニット50の状態を精度よく把握できる。 Each battery management device 110 further records the state of each cell estimated by the state estimation unit 146 in the memory 122 in association with the identification information that identifies the cell 30. As a result, the state of the battery unit 50 can be accurately grasped by reading the history information recorded in the memory 122 at the time of reuse or the like.
 こうした電池監視システム100を搭載した車両20では、電池監視システム100と上位ECU74とが通信することで、上位ECU74が電池監視システム100(電池監視装置300)からの情報に基づいて、電池ユニット50を効率的に制御できる。これにより、電池ユニット50を長期にわたって最適な状態に保つことができる。 In the vehicle 20 equipped with such a battery monitoring system 100, the battery monitoring system 100 and the upper ECU 74 communicate with each other, and the upper ECU 74 sets the battery unit 50 based on the information from the battery monitoring system 100 (battery monitoring device 300). Can be controlled efficiently. As a result, the battery unit 50 can be kept in an optimum state for a long period of time.
 (第2の実施の形態)
 本実施の形態に係る電池監視システムは、1つの電流センサが複数の電池管理装置に対して検出信号を出力する点において、第1の実施の形態に係る電池監視システム100(図2参照)とは異なる。その他の構成は、第1の実施の形態と同様である。
(Second Embodiment)
The battery monitoring system according to the first embodiment is the same as the battery monitoring system 100 according to the first embodiment (see FIG. 2) in that one current sensor outputs detection signals to a plurality of battery management devices. Is different. Other configurations are the same as in the first embodiment.
 図14を参照して、本実施の形態に係る電池監視システム100Aは、電池ユニット50の各組電池40をそれぞれ管理する複数の電池管理装置110(110_1,110_2,・・・,110_n)を含む。複数の電池管理装置110は、第1の実施の形態と同様、複数の組電池40に対応して設けられている。電池監視システム100Aは、電池監視装置300(図2参照)と同様の電池監視装置を含む。ただし、図14では、電池監視装置の記載が省略されている。 With reference to FIG. 14, the battery monitoring system 100A according to the present embodiment includes a plurality of battery management devices 110 (110_1, 110_2, ..., 110_n) for managing each set of batteries 40 of the battery unit 50. .. Similar to the first embodiment, the plurality of battery management devices 110 are provided corresponding to the plurality of assembled batteries 40. The battery monitoring system 100A includes a battery monitoring device similar to the battery monitoring device 300 (see FIG. 2). However, in FIG. 14, the description of the battery monitoring device is omitted.
 各組電池40の電流経路には、複数の電流センサ180が設けられている。ただし、電流センサ180の数は、組電池40の数より少ない。そのため、複数の電流センサ180のうちの一部の電流センサは、複数の電池管理装置110に対して検出信号を出力する。すなわち、一部の電流センサ180は、複数の電池管理装置110で共有されている。 A plurality of current sensors 180 are provided in the current path of each assembled battery 40. However, the number of current sensors 180 is smaller than the number of assembled batteries 40. Therefore, some of the current sensors 180 out of the plurality of current sensors 180 output detection signals to the plurality of battery management devices 110. That is, some of the current sensors 180 are shared by the plurality of battery management devices 110.
 具体的には、組電池40_2には電流センサ180が設けられており、組電池40_nにも電流センサ180が設けられている。一方、組電池40_1には電流センサ180が設けられていない。そのため、組電池40_1を管理する電池管理装置110_1には、組電池40_2の電流センサ180からの検出信号が入力される。複数のセル30は直列に接続されているため、各セル30の充放電電流は同じ値になる。そのため、1つの電流センサ180が複数の電池管理装置110_1及び110_2に対して検出信号を出力する構成であっても、各電池管理装置110_1及び110_2は、第1の実施の形態と同様、組電池40の状態をセル単位で精度よく推定できる。さらに、一部の電流センサ180を複数の電池管理装置110_1及び110_2で共有することによって、電流センサ180の設置数を削減できる。これにより、コスト低減効果も望める。 Specifically, the assembled battery 40_2 is provided with the current sensor 180, and the assembled battery 40_n is also provided with the current sensor 180. On the other hand, the assembled battery 40_1 is not provided with the current sensor 180. Therefore, the detection signal from the current sensor 180 of the assembled battery 40_1 is input to the battery management device 110_1 that manages the assembled battery 40_1. Since the plurality of cells 30 are connected in series, the charge / discharge currents of the cells 30 have the same value. Therefore, even if one current sensor 180 is configured to output detection signals to a plurality of battery management devices 110_1 and 110_2, each battery management device 110_1 and 110_2 is a battery assembly as in the first embodiment. The 40 states can be estimated accurately on a cell-by-cell basis. Further, by sharing a part of the current sensors 180 with a plurality of battery management devices 110_1 and 110_2, the number of installed current sensors 180 can be reduced. As a result, a cost reduction effect can be expected.
 なお、本実施の形態では、複数の電流センサ180を設ける例について示したが、本開示はこうした構成に限定されない。例えば、電池監視システムとして1つの電流センサ180を設け、この1つの電流センサ180が複数の電池管理装置110_1~110_nの全てに対して検出信号を出力するようにしてもよい。 Although the present embodiment has shown an example in which a plurality of current sensors 180 are provided, the present disclosure is not limited to such a configuration. For example, one current sensor 180 may be provided as a battery monitoring system, and the one current sensor 180 may output detection signals to all of the plurality of battery management devices 110_1 to 110_n.
 (第3の実施の形態)
 図15を参照して、本実施の形態に係る電池管理システム100Bは、複数の電池管理装置110が通信線400を介して直列に接続されており、かつ、電池監視装置300(図2参照)に代えて、電池監視装置300Aを含む点において、第1の実施の形態に係る電池監視システム100とは異なる。電池監視装置300Aは、制御装置318(図2参照)に代えて、制御装置318Aを含む。なお、通信線400は、フォトカプラ等のアイソレータ又はコンデンサ等を介して電池管理装置110と接続されていると好ましい。これにより、複数の電池管理装置110は互いに絶縁された状態が維持される。
(Third Embodiment)
With reference to FIG. 15, in the battery management system 100B according to the present embodiment, a plurality of battery management devices 110 are connected in series via a communication line 400, and the battery monitoring device 300 (see FIG. 2). Instead, it differs from the battery monitoring system 100 according to the first embodiment in that it includes the battery monitoring device 300A. The battery monitoring device 300A includes a control device 318A instead of the control device 318 (see FIG. 2). The communication line 400 is preferably connected to the battery management device 110 via an isolator such as a photocoupler or a capacitor. As a result, the plurality of battery management devices 110 are maintained in a state of being insulated from each other.
 各電池管理装置110は、通信部120を介して、所定の周期で各セル30の充放電電流を電池監視装置300Aに送信する。 Each battery management device 110 transmits the charge / discharge current of each cell 30 to the battery monitoring device 300A at a predetermined cycle via the communication unit 120.
 図16を参照して、電池監視装置300Aの制御装置318Aは、センサ異常検出部332及び異常通知部334を機能部としてさらに含む。センサ異常検出部332は、各電池管理装置110から送信された充放電電流に基づいて、電流センサ180の異常を検出する。具体的には、センサ異常検出部332は、例えば、集約された充放電電流の値を互いに比較することで、電流センサ180の異常を検出する。複数のセル30は直列に接続されているため、電流センサ180で検出される充放電電流の値は基本的には同じになる。そのため、ある電池管理装置110から送信された充放電電流の値が他の多くの充放電電流の値と異なる場合、その原因として、当該電池管理装置110に対応する電流センサ180の故障、又は検出信号を送信する配線の断線等が考えられる。したがって、集約された充放電電流の値を互いに比較することによって、センサ異常検出部332は、電流センサ180の異常を検出することが可能となる。 With reference to FIG. 16, the control device 318A of the battery monitoring device 300A further includes a sensor abnormality detection unit 332 and an abnormality notification unit 334 as functional units. The sensor abnormality detection unit 332 detects an abnormality in the current sensor 180 based on the charge / discharge current transmitted from each battery management device 110. Specifically, the sensor abnormality detection unit 332 detects an abnormality of the current sensor 180 by, for example, comparing the aggregated charge / discharge current values with each other. Since the plurality of cells 30 are connected in series, the values of the charge / discharge currents detected by the current sensor 180 are basically the same. Therefore, when the value of the charge / discharge current transmitted from a certain battery management device 110 is different from the value of many other charge / discharge currents, the cause is a failure or detection of the current sensor 180 corresponding to the battery management device 110. It is possible that the wiring that transmits the signal is broken. Therefore, by comparing the aggregated charge / discharge current values with each other, the sensor abnormality detection unit 332 can detect the abnormality of the current sensor 180.
 異常通知部334は、センサ異常検出部332が電流センサ180の異常を検出すると、通信制御部324を介して、異常が検出された電流センサ180からの検出信号が入力される電池管理装置110にセンサ異常を通知する。 When the sensor abnormality detection unit 332 detects an abnormality in the current sensor 180, the abnormality notification unit 334 sends a detection signal from the current sensor 180 in which the abnormality is detected to the battery management device 110 via the communication control unit 324. Notify the sensor abnormality.
 センサ異常が通知された電池管理装置110は、通信線400を介して、他の電池管理装置110から充放電電流(充放電電流を示す情報)を取得する。例えば、センサ異常が通知された電池管理装置110は、隣接する電池管理装置110と通信して当該電池管理装置110から充放電電流を取得する。これにより、一部の電流センサ180にセンサ異常が生じた場合でも、電池の状態を精度よく推定できる。 The battery management device 110 notified of the sensor abnormality acquires a charge / discharge current (information indicating the charge / discharge current) from another battery management device 110 via the communication line 400. For example, the battery management device 110 notified of the sensor abnormality communicates with the adjacent battery management device 110 to acquire the charge / discharge current from the battery management device 110. As a result, even if a sensor abnormality occurs in some of the current sensors 180, the state of the battery can be estimated accurately.
 なお、電池監視装置300Aは、異常が検出された電流センサ180からの検出信号が入力される電池管理装置110だけではなく、当該電池管理装置110に対して充放電電流の値を提供する電池管理装置110にも、センサ異常の通知を行うよう構成されていてもよい。この場合、通知を受けた電池管理装置110は、電池監視装置300Aから指示された電池管理装置110に充放電電流値を送信するよう構成されていると好ましい。 The battery monitoring device 300A provides not only the battery management device 110 to which the detection signal from the current sensor 180 in which the abnormality is detected is input, but also the battery management device 110 to provide the value of the charge / discharge current. The device 110 may also be configured to notify the sensor abnormality. In this case, it is preferable that the battery management device 110 that has received the notification is configured to transmit the charge / discharge current value to the battery management device 110 instructed by the battery monitoring device 300A.
 (変形例)
 上記実施の形態では、電池監視システムを車両に搭載する例について示したが、本開示はそのような実施の形態には限定されない。例えば定置蓄電池を監視するために本電池監視システムを用いてもよい。
(Modification example)
In the above embodiment, an example in which the battery monitoring system is mounted on the vehicle has been shown, but the present disclosure is not limited to such an embodiment. For example, the battery monitoring system may be used to monitor the stationary storage battery.
 上記実施の形態では、セルの電圧を各別に検出するとともに、セルバランスを実行するセル電圧検出/バランス回路を用いた例について示したが、本開示はそのような実施の形態には限定されない。セル電圧の検出と、セルバランスの実行とを別々の回路で行うようにしてもよい。 In the above embodiment, an example using a cell voltage detection / balance circuit that detects cell voltage separately and executes cell balance is shown, but the present disclosure is not limited to such an embodiment. The cell voltage detection and the cell balance execution may be performed by separate circuits.
 電池監視システムを構成する電池管理装置は、組電池の電圧を用いて組電池の状態を推定する構成であってもよいし、セルの電圧を用いてセルの状態を推定する構成であってもよい。電池管理装置はさらに、組電池及びセルの各々の電圧を用いて、組電池及びセルの両方の状態を推定する構成であってもよい。 The battery management device constituting the battery monitoring system may be configured to estimate the state of the assembled battery using the voltage of the assembled battery, or may be configured to estimate the state of the cell using the voltage of the cell. Good. The battery management device may further be configured to estimate the state of both the assembled battery and the cell using the respective voltages of the assembled battery and the cell.
 上記実施の形態では、各電池管理装置において、電圧、充放電電流、及び温度の情報に基づいて、組電池(セル)の異常を検出する例について示したが、本開示はそのような実施の形態には限定されない。各電池管理装置における異常の検出は、電圧、充放電電流、及び温度の少なくとも1つの情報に基づいて行うようにすることもできる。 In the above embodiment, an example of detecting an abnormality in the assembled battery (cell) based on voltage, charge / discharge current, and temperature information in each battery management device has been shown, but the present disclosure shows such an embodiment. It is not limited to the form. The detection of anomalies in each battery management device can also be based on at least one piece of information: voltage, charge / discharge current, and temperature.
 上記実施の形態では、セルが直列に接続された組電池、及び電池ユニットについて示したが、本開示はそのような実施の形態には限定されない。組電池及び電池ユニットを構成するセルは、例えば、直並列に接続されていてもよい。 In the above embodiment, an assembled battery in which cells are connected in series and a battery unit are shown, but the present disclosure is not limited to such an embodiment. The assembled battery and the cells constituting the battery unit may be connected in series-parallel, for example.
 上記実施の形態では、電池管理装置と電池監視装置とが無線通信する例について示したが、本開示はそのような実施の形態には限定されない。電池管理装置と電池監視装置との間の通信は、例えば、絶縁CAN通信等の有線通信であってもよい。 In the above embodiment, an example in which the battery management device and the battery monitoring device communicate wirelessly is shown, but the present disclosure is not limited to such an embodiment. The communication between the battery management device and the battery monitoring device may be, for example, wired communication such as isolated CAN communication.
 上記実施の形態では、電池ユニットを含まない電池監視システムの例について示したが、本開示はそのような実施の形態には限定されない。電池監視システムは監視対象の電池ユニットを含む構成であってもよい。 In the above embodiment, an example of a battery monitoring system that does not include a battery unit has been shown, but the present disclosure is not limited to such an embodiment. The battery monitoring system may be configured to include a battery unit to be monitored.
 なお、上記で開示された技術を適宜組合せて得られる実施の形態についても、本開示の技術的範囲に含まれる。 The embodiments obtained by appropriately combining the techniques disclosed above are also included in the technical scope of the present disclosure.
 今回開示された実施の形態は単に例示であって、本開示が上記した実施の形態のみに限定されるわけではない。本開示の範囲は、発明の詳細な説明の記載を参酌した上で、請求の範囲の各請求項によって示され、そこに記載された文言と均等の意味及び範囲内での全ての変更を含む。 The embodiments disclosed this time are merely examples, and the present disclosure is not limited to the above-described embodiments. The scope of the present disclosure is indicated by each claim of the claims, taking into consideration the description of the detailed description of the invention, and includes all changes within the meaning and scope equivalent to the wording described therein. ..
 20                車両
 30                セル
 40、40_1~40_n      組電池
 50                電池ユニット
 60                リレー
 62                インバータ
 64                モータ
 66                DC/DCコンバータ
 68                補機バッテリ
 70                電気負荷
 72                始動スイッチ
 74                上位ECU
 100、100A、100B     電池監視システム
 110、110_1~110_n   電池管理装置
 112               セル電圧検出/バランス回路
 114               温度検出回路
 116               電流検出回路
 118               電源回路
 120、310、316       通信部
 122、314           メモリ
 124、318、318A      制御装置
 130、320           制御部
 132               電圧取得部
 134               電流取得部
 136               温度取得部
 138、324           通信制御部
 140               ID管理部
 142、328           メモリ管理部
 144、326           タイマ
 146               状態推定部
 148               パラメータ推定部
 150               電池状態推定部
 152               セルバランス制御部
 154、330           異常判定部
 160               電流積算部
 162               充電率推定部
 164               満充電容量算出部
 166               劣化度算出部
 168               充放電可能電力算出部
 180、180_1~180_n   電流センサ
 200、200_1~200_n   電池モジュール
 300、300A          電池監視装置
 312               電源部
 322               モジュール間セルバランス制御部
 332               センサ異常検出部
 334               異常通知部
 400               通信線
20 Vehicle 30 cells 40, 40_1 to 40_n battery 50 Battery unit 60 Relay 62 Inverter 64 Motor 66 DC / DC converter 68 Auxiliary battery 70 Electric load 72 Start switch 74 Upper ECU
100, 100A, 100B Battery monitoring system 110, 110_1 to 110_n Battery management device 112 Cell voltage detection / balance circuit 114 Temperature detection circuit 116 Current detection circuit 118 Power supply circuit 120, 310, 316 Communication unit 122, 314 Memory 124, 318, 318A Control device 130, 320 Control unit 132 Voltage acquisition unit 134 Current acquisition unit 136 Temperature acquisition unit 138, 324 Communication control unit 140 ID management unit 142, 328 Memory management unit 144, 326 Timer 146 State estimation unit 148 Parameter estimation unit 150 Battery status Estimator 152 Cell balance control unit 154, 330 Abnormality determination unit 160 Current integration unit 162 Charge rate estimation unit 164 Full charge capacity calculation unit 166 Deterioration degree calculation unit 168 Charge / dischargeable power calculation unit 180, 180_1 to 180_n Current sensor 200, 200_1 ~ 200_n Battery module 300, 300A Battery monitoring device 312 Power supply unit 322 Cell balance control unit between modules 332 Sensor abnormality detection unit 334 Abnormality notification unit 400 Communication line

Claims (14)

  1.  第1の組電池を含む複数の組電池を含む電池ユニットを監視する電池監視システムであって、前記第1の組電池は複数のセルを含み、
     前記電池監視システムは、
      前記第1の組電池を管理する第1の電池管理装置と、
      前記複数のセルの充放電電流を検出してその検出信号を前記第1の電池管理装置に出力する電流センサとを含み、
     前記第1の電池管理装置は、
      前記第1の組電池の電流経路における所定位置の間の電圧を取得する電圧取得部と、
      前記電流センサを介して前記複数のセルの充放電電流を取得する電流取得部と、
      前記電圧取得部が取得した電圧及び前記電流取得部が取得した充放電電流を用いて、前記第1の組電池の状態を推定する状態推定部とを含む、電池監視システム。
    A battery monitoring system that monitors a battery unit including a plurality of assembled batteries including the first assembled battery, wherein the first assembled battery includes a plurality of cells.
    The battery monitoring system is
    A first battery management device that manages the first assembled battery,
    It includes a current sensor that detects the charge / discharge currents of the plurality of cells and outputs the detection signal to the first battery management device.
    The first battery management device is
    A voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the first assembled battery, and a voltage acquisition unit.
    A current acquisition unit that acquires charge / discharge currents of the plurality of cells via the current sensor, and a current acquisition unit.
    A battery monitoring system including a state estimation unit that estimates the state of the first assembled battery using the voltage acquired by the voltage acquisition unit and the charge / discharge current acquired by the current acquisition unit.
  2.  前記複数の組電池は、前記第1の組電池と異なる第2の組電池をさらに含み、
     前記第2の組電池は複数のセルを含み、
     前記電池管理システムはさらに、
      前記第2の組電池を管理する第2の電池管理装置と、
      前記第2の組電池の前記複数のセルの充放電電流を検出してその検出信号を前記第2の電池管理装置に出力する、前記第2の組電池の電流センサとを含み、
     前記第2の電池管理装置は、
      前記第2の組電池の電流経路における所定位置の間の電圧を取得する電圧取得部と、
      前記第2の組電池の前記電流センサを介して前記第2の組電池の前記複数のセルの充放電電流を取得する電流取得部と、
      前記第2の電池管理装置の前記電圧取得部が取得した電圧及び前記第2の電池管理装置の前記電流取得部が取得した充放電電流を用いて、前記第2の組電池の状態を推定する状態推定部とを含む、請求項1に記載の電池監視システム。
    The plurality of assembled batteries further include a second assembled battery different from the first assembled battery.
    The second assembled battery includes a plurality of cells and contains a plurality of cells.
    The battery management system further
    A second battery management device that manages the second assembled battery, and
    Including the current sensor of the second assembled battery, which detects the charge / discharge currents of the plurality of cells of the second assembled battery and outputs the detection signal to the second battery management device.
    The second battery management device is
    A voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the second assembled battery, and a voltage acquisition unit.
    A current acquisition unit that acquires charge / discharge currents of the plurality of cells of the second assembled battery via the current sensor of the second assembled battery, and a current acquisition unit.
    The state of the second assembled battery is estimated using the voltage acquired by the voltage acquisition unit of the second battery management device and the charge / discharge current acquired by the current acquisition unit of the second battery management device. The battery monitoring system according to claim 1, which includes a state estimation unit.
  3.  前記電池ユニットを監視する電池監視装置をさらに含み、
     前記第1の電池管理装置及び前記第2の電池管理装置の各々は、前記電池監視装置と通信する通信部をさらに含み、
     前記第1の電池管理装置の前記通信部及び前記第2の電池管理装置の前記通信部は、前記第1の電池管理装置の前記状態推定部、及び前記第2の電池管理装置の前記状態推定部がそれぞれ推定した、前記第1の組電池及び前記第2の組電池の状態をそれぞれ前記電池監視装置に送信する、請求項2に記載の電池監視システム。
    A battery monitoring device for monitoring the battery unit is further included.
    Each of the first battery management device and the second battery management device further includes a communication unit that communicates with the battery monitoring device.
    The communication unit of the first battery management device and the communication unit of the second battery management device are the state estimation unit of the first battery management device and the state estimation of the second battery management device. The battery monitoring system according to claim 2, wherein the states of the first assembled battery and the second assembled battery, which are estimated by each unit, are transmitted to the battery monitoring device, respectively.
  4.  前記第1の電池管理装置の前記通信部及び前記第2の電池管理装置の前記通信部はさらに、前記第1の電池管理装置の前記電流取得部及び前記第2の電池管理装置の前記電流取得部がそれぞれ取得した充放電電流を前記電池監視装置に送信し、
     前記電池監視装置は、
      前記第1及び前記第2の電池管理装置から送信された充放電電流に基づいて、前記第1及び前記第2の電池管理装置の少なくとも一方の前記電流センサの異常を検出するセンサ異常検出部と、
      前記センサ異常検出部が前記第1又は前記第2の電池管理装置の前記電流センサの異常を検出したことに応答して、前記第1又は前記第2の電池管理装置の前記電流センサのうち、異常が検出された前記電流センサの前記電池管理装置にセンサ異常を通知する異常通知部とを含む、請求項3に記載の電池監視システム。
    The communication unit of the first battery management device and the communication unit of the second battery management device further include the current acquisition unit of the first battery management device and the current acquisition of the second battery management device. The charge / discharge current acquired by each unit is transmitted to the battery monitoring device, and the charge / discharge current is transmitted to the battery monitoring device.
    The battery monitoring device is
    A sensor abnormality detection unit that detects an abnormality in at least one of the current sensors of the first and second battery management devices based on the charge / discharge current transmitted from the first and second battery management devices. ,
    Of the current sensors of the first or second battery management device, in response to the sensor abnormality detection unit detecting an abnormality of the current sensor of the first or second battery management device. The battery monitoring system according to claim 3, further comprising an abnormality notification unit for notifying the battery management device of the current sensor in which an abnormality has been detected.
  5.  前記第1及び前記第2の電池管理装置は、互いに通信することが可能であり、
     前記第1の電池管理装置は、前記異常通知部からのセンサ異常を受信したことに応答して、前記第2の電池管理装置との通信により前記第2の組電池の充放電電流を取得する、請求項4に記載の電池監視システム。
    The first and second battery management devices can communicate with each other and can communicate with each other.
    The first battery management device acquires the charge / discharge current of the second assembled battery by communicating with the second battery management device in response to receiving the sensor abnormality from the abnormality notification unit. , The battery monitoring system according to claim 4.
  6.  前記第1の電池管理装置はさらに、前記第1の電池管理装置において前記電圧取得部及び前記電流取得部がそれぞれ取得した電圧、及び充放電電流の少なくとも一方の情報に基づいて、前記第1の組電池が異常か否かを判定し、判定結果に応じて異常処理を実行する異常判定部を含む、請求項1から請求項5のいずれか1項に記載の電池監視システム。 The first battery management device further increases the first battery management device based on at least one of the voltage acquired by the voltage acquisition unit and the current acquisition unit and the charge / discharge current in the first battery management device. The battery monitoring system according to any one of claims 1 to 5, further comprising an abnormality determination unit that determines whether or not the assembled battery is abnormal and executes an abnormality process according to the determination result.
  7.  前記第1の電池管理装置はさらに、前記第1の電池管理装置において前記電圧取得部が取得した電圧、及び前記状態推定部が推定した状態に基づいて、前記第1の組電池のセルバランスを実行するセルバランス回路を含む、請求項1から請求項6のいずれか1項に記載の電池監視システム。 The first battery management device further adjusts the cell balance of the first assembled battery based on the voltage acquired by the voltage acquisition unit in the first battery management device and the state estimated by the state estimation unit. The battery monitoring system according to any one of claims 1 to 6, which includes a cell balance circuit to be executed.
  8.  前記第1の電池管理装置の前記状態推定部は、前記第1の電池管理装置において前記電圧取得部及び前記電流取得部がそれぞれ取得した電圧及び充放電電流に基づいて、前記第1の組電池の等価回路モデルのパラメータを推定するパラメータ推定部を含む、請求項1から請求項7のいずれか1項に記載の電池監視システム。 The state estimation unit of the first battery management device is the first assembled battery based on the voltage and charge / discharge current acquired by the voltage acquisition unit and the current acquisition unit in the first battery management device, respectively. The battery monitoring system according to any one of claims 1 to 7, further comprising a parameter estimation unit that estimates the parameters of the equivalent circuit model of the above.
  9.  前記第1の電池管理装置の前記電圧取得部は、前記第1の組電池における前記複数のセルの各々の電圧を取得し、
     前記第1の電池管理装置の前記状態推定部は、前記第1の組電池の前記複数のセルの各々の状態を推定し、
     前記第1の電池管理装置は、前記第1の電池管理装置の前記状態推定部で推定した前記複数のセルの各々の状態を、前記複数のセルを識別する識別情報と対応付けて記録する記録部をさらに含む、請求項1から請求項8のいずれか1項に記載の電池監視システム。
    The voltage acquisition unit of the first battery management device acquires the voltage of each of the plurality of cells in the first assembled battery, and obtains the voltage of each of the plurality of cells.
    The state estimation unit of the first battery management device estimates the state of each of the plurality of cells of the first assembled battery.
    The first battery management device records each state of the plurality of cells estimated by the state estimation unit of the first battery management device in association with identification information that identifies the plurality of cells. The battery monitoring system according to any one of claims 1 to 8, further comprising a part.
  10.  複数のセルを含む組電池と、
     前記組電池を管理する電池管理装置と、
     前記組電池の電流経路に設けられ、前記複数のセルの充放電電流を検出してその検出信号を前記電池管理装置に出力する電流センサとを含み、
     前記電池管理装置は、
      前記組電池の電流経路における所定位置の間の電圧を取得する電圧取得部と、
      前記電流センサを介して前記複数のセルの充放電電流を取得する電流取得部と、
      前記電圧取得部が取得した電圧及び前記電流取得部が取得した充放電電流を用いて前記組電池の状態を推定する状態推定部とを含む、電池モジュール。
    An assembled battery containing multiple cells and
    A battery management device that manages the assembled batteries and
    It includes a current sensor provided in the current path of the assembled battery, detecting charge / discharge currents of the plurality of cells, and outputting the detection signal to the battery management device.
    The battery management device is
    A voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the assembled battery, and a voltage acquisition unit.
    A current acquisition unit that acquires charge / discharge currents of the plurality of cells via the current sensor, and a current acquisition unit.
    A battery module including a state estimation unit that estimates the state of the assembled battery using the voltage acquired by the voltage acquisition unit and the charge / discharge current acquired by the current acquisition unit.
  11.  前記電圧取得部は、前記複数のセルの各々の電圧を取得し、
     前記状態推定部は、前記電圧取得部が取得した、前記複数のセルの各々の電圧及び前記電流取得部が取得した充放電電流を用いて前記複数のセルの各々の状態を推定するセル状態推定部を含み、
     前記電池管理装置は、前記セル状態推定部で推定した前記複数のセルの状態を、前記複数のセルを識別する識別情報と対応付けて記録する記録部をさらに含む、請求項10に記載の電池モジュール。
    The voltage acquisition unit acquires the voltage of each of the plurality of cells, and obtains the voltage of each of the plurality of cells.
    The state estimation unit estimates the state of each of the plurality of cells by using the voltage of each of the plurality of cells acquired by the voltage acquisition unit and the charge / discharge current acquired by the current acquisition unit. Including part
    The battery according to claim 10, wherein the battery management device further includes a recording unit that records the states of the plurality of cells estimated by the cell state estimation unit in association with identification information that identifies the plurality of cells. module.
  12.  複数のセルを含む組電池を管理する電池管理装置であって、
     前記組電池の電流経路には、前記複数のセルの充放電電流を検出してその検出信号を前記電池管理装置に出力する電流センサが設けられ、
     前記電池管理装置は、
      前記組電池の電流経路における所定位置の間の電圧を取得する電圧取得部と、
      前記電流センサを介して前記複数のセルの充放電電流を取得する電流取得部と、
      前記電圧取得部が取得した電圧及び前記電流取得部が取得した充放電電流を用いて前記組電池の状態を推定する状態推定部とを含む、電池管理装置。
    A battery management device that manages an assembled battery containing a plurality of cells.
    The current path of the assembled battery is provided with a current sensor that detects the charge / discharge currents of the plurality of cells and outputs the detection signal to the battery management device.
    The battery management device is
    A voltage acquisition unit that acquires a voltage between predetermined positions in the current path of the assembled battery, and a voltage acquisition unit.
    A current acquisition unit that acquires charge / discharge currents of the plurality of cells via the current sensor, and a current acquisition unit.
    A battery management device including a state estimation unit that estimates the state of the assembled battery using the voltage acquired by the voltage acquisition unit and the charge / discharge current acquired by the current acquisition unit.
  13.  複数のセルを含む組電池の管理方法であって、
     前記組電池の電流経路には、前記複数のセルの充放電電流を検出する電流センサが設けられ、
     前記管理方法は、
      前記組電池の電流経路における所定位置の間の電圧を測定するとともに、前記電流センサから出力される検出信号を取得して前記複数のセルの充放電電流を測定するステップと、
      前記測定するステップにおいて測定された電圧及び充放電電流を用いて、前記組電池の状態を推定するステップとを含む、管理方法。
    It is a method of managing an assembled battery containing multiple cells.
    A current sensor for detecting the charge / discharge currents of the plurality of cells is provided in the current path of the assembled battery.
    The management method is
    A step of measuring the voltage between predetermined positions in the current path of the assembled battery and acquiring a detection signal output from the current sensor to measure the charge / discharge currents of the plurality of cells.
    A management method including a step of estimating the state of the assembled battery using the voltage and charge / discharge current measured in the step of measuring.
  14.  請求項1から請求項9のいずれか1項に記載の電池監視システムと、
     前記電池監視システムと通信し、当該電池監視システムから所定の情報を取得する車載制御装置とを含む、車両。
    The battery monitoring system according to any one of claims 1 to 9.
    A vehicle including an in-vehicle control device that communicates with the battery monitoring system and acquires predetermined information from the battery monitoring system.
PCT/JP2020/029475 2019-09-19 2020-07-31 Battery monitoring system, battery module, battery management device, management method, and vehicle WO2021053976A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021546537A JPWO2021053976A1 (en) 2019-09-19 2020-07-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019170709 2019-09-19
JP2019-170709 2019-09-19

Publications (1)

Publication Number Publication Date
WO2021053976A1 true WO2021053976A1 (en) 2021-03-25

Family

ID=74884199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029475 WO2021053976A1 (en) 2019-09-19 2020-07-31 Battery monitoring system, battery module, battery management device, management method, and vehicle

Country Status (2)

Country Link
JP (1) JPWO2021053976A1 (en)
WO (1) WO2021053976A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744309A (en) * 2022-06-09 2022-07-12 深圳凌奈智控有限公司 BMS-based battery safety management method, device, equipment and storage medium
CN115166523A (en) * 2022-09-06 2022-10-11 江苏时代新能源科技有限公司 Mobile battery state detection device, system and method
CN115864565A (en) * 2022-11-16 2023-03-28 惠州恒立能源科技有限公司 Lithium ion battery energy storage system and method based on energy storage converter
WO2023129681A1 (en) * 2021-12-29 2023-07-06 Auto Motive Power Inc. Technique using a battery charger and battery management system to detect cell degradation and pack imminent failures
WO2024050772A1 (en) * 2022-09-08 2024-03-14 宁德时代新能源科技股份有限公司 Control method and apparatus for battery system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130827A (en) * 2008-11-28 2010-06-10 Hitachi Ltd Power storage device
JP2012090368A (en) * 2010-10-15 2012-05-10 Makita Corp Tool battery
WO2015092846A1 (en) * 2013-12-16 2015-06-25 株式会社日立製作所 Battery system and battery cell management device
JP2016086468A (en) * 2014-10-23 2016-05-19 株式会社豊田自動織機 Relay control device
WO2016147311A1 (en) * 2015-03-17 2016-09-22 株式会社東芝 Storage-battery management device, method, and program
JP2017059358A (en) * 2015-09-15 2017-03-23 本田技研工業株式会社 Failure type determination device for power storage system
WO2017159758A1 (en) * 2016-03-18 2017-09-21 Ntn株式会社 Secondary battery degradation determination device
JP2018054334A (en) * 2016-09-26 2018-04-05 矢崎総業株式会社 Battery state detection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130827A (en) * 2008-11-28 2010-06-10 Hitachi Ltd Power storage device
JP2012090368A (en) * 2010-10-15 2012-05-10 Makita Corp Tool battery
WO2015092846A1 (en) * 2013-12-16 2015-06-25 株式会社日立製作所 Battery system and battery cell management device
JP2016086468A (en) * 2014-10-23 2016-05-19 株式会社豊田自動織機 Relay control device
WO2016147311A1 (en) * 2015-03-17 2016-09-22 株式会社東芝 Storage-battery management device, method, and program
JP2017059358A (en) * 2015-09-15 2017-03-23 本田技研工業株式会社 Failure type determination device for power storage system
WO2017159758A1 (en) * 2016-03-18 2017-09-21 Ntn株式会社 Secondary battery degradation determination device
JP2018054334A (en) * 2016-09-26 2018-04-05 矢崎総業株式会社 Battery state detection device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023129681A1 (en) * 2021-12-29 2023-07-06 Auto Motive Power Inc. Technique using a battery charger and battery management system to detect cell degradation and pack imminent failures
CN114744309A (en) * 2022-06-09 2022-07-12 深圳凌奈智控有限公司 BMS-based battery safety management method, device, equipment and storage medium
CN114744309B (en) * 2022-06-09 2022-09-02 深圳凌奈智控有限公司 BMS-based battery safety management method, device, equipment and storage medium
CN115166523A (en) * 2022-09-06 2022-10-11 江苏时代新能源科技有限公司 Mobile battery state detection device, system and method
CN115166523B (en) * 2022-09-06 2022-12-02 江苏时代新能源科技有限公司 Mobile battery state detection device, system and method
WO2024050772A1 (en) * 2022-09-08 2024-03-14 宁德时代新能源科技股份有限公司 Control method and apparatus for battery system
CN115864565A (en) * 2022-11-16 2023-03-28 惠州恒立能源科技有限公司 Lithium ion battery energy storage system and method based on energy storage converter
CN115864565B (en) * 2022-11-16 2023-09-26 惠州因博利电子科技有限公司 Lithium ion battery energy storage system and method based on energy storage converter

Also Published As

Publication number Publication date
JPWO2021053976A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
WO2021053976A1 (en) Battery monitoring system, battery module, battery management device, management method, and vehicle
US11415635B2 (en) Determining battery DC impedance
EP3518374B1 (en) Power supply system
US9770997B2 (en) Detection of imbalance across multiple battery cells measured by the same voltage sensor
US11124072B2 (en) Battery control device and electric motor vehicle system
US8493031B2 (en) Equalization device, battery system and electric vehicle including the same, equalization processing program, and equalization processing method
EP2717421B1 (en) Power storage unit control circuit
US20100321025A1 (en) Method for use With A Vehicle Battery Pack Having A Number of Individual Battery Cells
WO2012169063A1 (en) Battery control device and battery system
US20080233469A1 (en) Battery management system
US20140042973A1 (en) Electric storage device
WO2014132403A1 (en) Device for assessing extent of degradation in secondary cell
JP6101714B2 (en) Battery control device, battery system
US20140239914A1 (en) Battery controller
JP2003219572A (en) Battery pack system
JP7338126B2 (en) Battery management device and battery management method
JP7173127B2 (en) BATTERY MONITORING METHOD, BATTERY MONITORING DEVICE, AND BATTERY MONITORING SYSTEM
JP7199021B2 (en) Management device, power storage system
US11230205B2 (en) Vehicular power supply system, and management device
WO2019142550A1 (en) Secondary battery system
JPWO2019163301A1 (en) Management device, power storage system
EP1918728A1 (en) Lithium-ion battery diagnostic and prognostic techniques
US20220355700A1 (en) Management device and power supply system
CN114188618A (en) Method for determining the state of charge of a battery system, and battery system
JP7182110B2 (en) battery system, battery management device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546537

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866034

Country of ref document: EP

Kind code of ref document: A1