WO2021052427A1 - 调谐质量阻尼装置 - Google Patents

调谐质量阻尼装置 Download PDF

Info

Publication number
WO2021052427A1
WO2021052427A1 PCT/CN2020/115954 CN2020115954W WO2021052427A1 WO 2021052427 A1 WO2021052427 A1 WO 2021052427A1 CN 2020115954 W CN2020115954 W CN 2020115954W WO 2021052427 A1 WO2021052427 A1 WO 2021052427A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
damping device
tuned mass
mass damping
connecting rod
Prior art date
Application number
PCT/CN2020/115954
Other languages
English (en)
French (fr)
Inventor
林胜
胡伟辉
岳涛
袁鹏飞
杨超
苏泽涛
潘战
秦中正
陈聪聪
Original Assignee
株洲时代新材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910891522.8A external-priority patent/CN110805529B/zh
Priority claimed from CN201910891779.3A external-priority patent/CN110805530B/zh
Application filed by 株洲时代新材料科技股份有限公司 filed Critical 株洲时代新材料科技股份有限公司
Priority to US17/753,858 priority Critical patent/US20220333661A1/en
Priority to EP20865482.2A priority patent/EP4033094B1/en
Publication of WO2021052427A1 publication Critical patent/WO2021052427A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1028Vibration-dampers; Shock-absorbers using inertia effect the inertia-producing means being a constituent part of the system which is to be damped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/393Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type with spherical or conical sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • F05B2260/964Preventing, counteracting or reducing vibration or noise by damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/08Inertia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • F16F7/116Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted on metal springs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the invention relates to the technical field of vibration reduction of wind power generators, in particular to a tuned mass damping device.
  • Wind power is a kind of clean energy and has received extensive attention in recent years.
  • high-tower wind turbines installed in the areas of medium and low wind speeds and offshore wind farms have gradually become an important direction for competition among wind turbine manufacturers.
  • Increasing the height of the tower can effectively improve the efficiency of power generation, but at the same time it will cause the tower to easily vibrate and even swing to a large extent. This kind of vibration and swing itself will have a bad influence on the structural stability of the generator.
  • the speed of the unit may exceed the first-order frequency of the tower. When the speed exceeds the tower frequency, resonance will occur, which will bring very serious safety hazards.
  • the lateral swing of the tower is reduced by hoisting sandbags in the tower of the tower.
  • the cost of this method is very low and easy to implement.
  • sandbags are prone to spin.
  • the movement trajectory of the sandbag is very complicated and difficult to predict. This makes it difficult for the sandbag to achieve the expected effect of weakening the swing of the tower. Even, in some cases, it may aggravate the swing of the tower.
  • the present invention proposes a tuned mass damping device, which can effectively weaken the swing of the tower of the wind power engine.
  • a tuned mass damping device comprising: a connecting rod extending in the longitudinal direction; a weighting component connected at the lower end of the connecting rod; and a top connecting component, so The top connecting component is connected between the upper end of the connecting rod and the tower beam of the tower tube, and includes an anti-rotation mechanism.
  • the anti-rotation mechanism includes: a horizontally extending fixed plate, the fixed plate is fixedly connected to the tower beam through a longitudinally extending support; a horizontally extending first movable plate, the first movable plate is arranged on the Under the fixed plate and fixedly connected to the upper end of the connecting rod; a pair of connecting shafts, the pair of connecting shafts are arranged relatively spaced apart, each of the pair of connecting shafts extends in the longitudinal direction , The lower end of the connecting shaft is fixedly connected to the first movable plate, and the upper end of the connecting shaft is inserted into the fixed plate and connected to the fixed plate through a connector; and the connector ,
  • the connecting head includes an outer sleeve connected to the fixing plate, an inner sleeve sleeved in the outer sleeve and connected with the connecting shaft, and an inner sleeve set between the inner sleeve and the outer sleeve The middle elastic layer.
  • the structure of the connecting head consisting of the outer sleeve, the middle elastic layer and the inner sleeve in sequence from the outside to the inside has a larger radial rigidity (lateral rigidity) on the one hand, and a smaller deflection rigidity on the other hand.
  • the joint allows the connecting shaft, the first movable plate and the connecting rod, and the weighting component to swing relative to the fixed plate and the tower tube, so as to weaken the swing of the tower tube itself.
  • the weighting component, the connecting rod and the first movable plate have a tendency to rotate, the pair of shafts and the connecting head can cooperate with the fixed plate to eliminate this tendency.
  • the rotation of the tuned mass damping device can be effectively avoided, and thus the swing of the device can be performed as expected.
  • the swing of the tower can be effectively weakened, so as to ensure the structural stability of the wind turbine. In particular, this can avoid resonance between the swing of the tower and the rotation of the unit, and can effectively avoid potential safety hazards.
  • the inner side surface of the outer sleeve and/or the outer side surface of the inner sleeve is configured as an arched surface, and the middle portion of the arched surface protrudes radially outward.
  • the top connection assembly further includes an outer mounting sleeve, the connecting head is connected to the fixing plate through the outer mounting sleeve, and the outer mounting sleeve is configured to be pre-extruded
  • the middle elastic layer of the connecting head is pre-compressed
  • the top connecting assembly further includes an inner mounting sleeve, and the connecting head is connected to the connecting shaft through the inner mounting sleeve. The rods are connected, and the inner mounting sleeve is configured to be pre-squeezed and sleeved in the inner sleeve, so that the middle elastic layer of the connecting head is pre-compressed.
  • the lower end of the connecting shaft is configured as an expansion cone end
  • the expansion cone end is inserted into the first movable plate from the first side of the first movable plate, and passes through the The first screw on the second side of the first movable plate is fixedly connected to the first movable plate, a pressure plate is fixedly connected to the first side of the first movable plate, and the pressure plate is configured to cover the expansion cone end .
  • a gap is provided between the connecting shaft and the inner sleeve of the connecting head, or a linear bearing or a wear-resistant material body is provided, so that the connecting shaft can be relative to the connecting head.
  • the inner sleeve slides in the axial direction.
  • the top connection assembly includes a longitudinal bearing mechanism, the longitudinal bearing mechanism includes a fixed connection member, the fixed connection member includes the fixed plate, and is arranged on the fixed plate
  • the lower ball seat, the lower ball seat is configured with a convex arc-shaped fixed joint surface facing upward;
  • a movable connection member, the movable connection member includes a fixed connection member disposed on the fixed connection member and fixed connection A second movable plate with spaced apart components, and an upper ball seat arranged under the second movable plate, the upper ball seat is configured with a concave arc-shaped movable joint surface facing downward, the second movable plate Is fixedly connected to the first movable plate through a longitudinally extending auxiliary connecting piece;
  • an elastic connecting piece the elastic connecting piece is arranged between the fixed joint surface and the movable joint surface, and the elastic connecting piece has and
  • the fixed joint surface and the movable joint surface have matching shapes.
  • the arc-shaped fixed joint surface has a flat part extending in the transverse direction at the center
  • the arc-shaped movable joint surface has a flat part extending in the transverse direction at the center
  • a second recessed portion is provided at the edge of the elastic connector, and the second recessed portion is configured to be at least partially closed when loaded in the longitudinal direction.
  • a metal partition is embedded in the elastic connecting member, and the metal partition extends in the entire elastic connecting member, or the metal partition is only provided on the elastic connecting member. The edge does not extend to the center of the elastic connector.
  • the top connection assembly includes a longitudinal bearing mechanism, the longitudinal bearing mechanism includes a fixed connection member, the fixed connection member includes the fixed plate, and a bearing seat provided on the fixed plate, The bearing seat is configured with an arc-shaped concave first bearing engagement surface facing upward; a movable connecting member, the movable connecting member includes a second movable plate arranged on the fixed connecting member, and a second movable plate arranged on the first
  • the bearing slider under the two movable plates, the bearing slider is configured with a downward arc-shaped convex second bearing engagement surface, the second bearing engagement surface and the first bearing engagement surface are in contact with each other, so that The bearing slider can slide along the first bearing joint surface of the bearing seat.
  • one or more wear plates are provided on the first bearing joint surface.
  • the bearing slider is further configured with an arc-shaped concave third bearing engagement surface facing upward
  • the longitudinal bearing mechanism further includes a limit plate arranged on the bearing slider
  • the The limiting plate is configured with a downwardly curved, convex fourth bearing engagement surface
  • the fourth bearing engagement surface is in contact with the third bearing engagement surface, so that the bearing slider can be positioned along the limit The fourth bearing engagement surface of the plate slides; wherein, the first bearing engagement surface is configured to be annular, the bearing seat is also configured with a connecting protrusion extending upward from the middle of the annular bearing engagement surface, and the bearing slider
  • the connecting protrusion extends through the bearing slider and is fixedly connected to the limiting plate.
  • the inner diameter of the ring-shaped bearing slider is larger than the outer diameter of the connecting protrusion and passes through the bearing slider The inner diameter of and the outer diameter of the connecting protrusion limit the sliding range of the bearing slider.
  • the bearing housing is configured with a lubricant channel extending from the outer surface of the bearing housing to the first bearing joint surface for joining the first bearing joint surface and the second bearing Lubricant is supplied between the faces.
  • the connecting rod includes a connecting mandrel connected between the top connecting component and the weighting component, and the connecting mandrel is configured to be elongated to lower it Weight; and an outer casing, the outer casing extending in the longitudinal direction to abut between the top connecting component and the weighting component, the outer casing surrounding the connecting mandrel.
  • the weighting assembly includes a weighting unit, and a collision mechanism is provided under the weighting unit, and the collision mechanism is configured to correspond to a matching collision piece installed in the tower, so as to Able to collide with each other.
  • the weighting assembly includes at least two weighting units, the at least two weighting units are spaced apart from each other in the longitudinal direction, and a collision is provided between two of the at least two weighting units.
  • the collision mechanism is configured to correspond to a matching collision member installed in the tower barrel to be able to collide with each other, and the at least two weighting units are configured to adjust the center of gravity of the tuned mass damping device to the desired level. The collision mechanism.
  • the collision mechanism includes: a collision body, the collision body is sleeved in the ring-shaped matching collision member; and a buffer elastic member, the buffer elastic member is connected to the collision body and located at Between the weighting units above the collision body.
  • the buffer elastic member is configured as a columnar elastic member extending in the longitudinal direction.
  • an elastic pad is provided between the collision body and the matching collision member, and the elastic pad is made of a softer metal or polymer material than the collision body.
  • the weighting unit includes a pallet extending in a transverse direction, and a weighting plate stacked on the pallet.
  • the tuned mass damping device further includes a bottom spring assembly disposed under the weighting assembly, and the bottom spring assembly includes a bottom spring assembly extending in the longitudinal direction and connected to the bottom wall of the tower and the The bottom elastic piece between the weight components.
  • the bottom spring assembly further includes: a first connecting rod extending downward in the longitudinal direction from the weighting assembly; and a second connecting rod, the second connecting rod Extending in the longitudinal direction, the upper end of the second connecting rod is hinged with the first connecting rod, and the lower end of the second connecting rod is connected with the bottom elastic member.
  • the bottom spring assembly further includes a third connecting rod connected between the bottom elastic member and the bottom wall of the tower tube, and the third connecting rod is connected to the bottom wall of the tower tube. Articulated.
  • the tuned mass damping device further includes a damper connected between the first connecting rod and the side wall of the tower tube, the damper extending in a transverse direction, and the damper Both ends are respectively hinged with the first connecting rod and the tower tube.
  • both ends of the damper are hinged to the first connecting rod and the side wall of the tower tube, respectively.
  • the two dampers are separated from each other by an included angle of 90° in the transverse direction.
  • the damper is inclined in a longitudinal direction, and both ends of the damper are hinged with the first connecting rod and the bottom wall of the tower tube, respectively.
  • the connecting rod includes a connecting mandrel connected between the top connecting component and the weighting component, and the connecting mandrel is configured to be long and narrow to reduce its weight And an outer shell, the outer shell extending in the longitudinal direction to abut between the top connecting component and the weighting component, the outer shell surrounding the connecting mandrel.
  • the present invention has the advantage of being able to effectively avoid the rotation of the tuned mass damping device, and thus can more effectively weaken the swing of the tower.
  • the collision mechanism collides with the matching colliding member to dissipate the energy of the device swing and at the same time prompt the device to swing in the opposite direction.
  • Figure 1 shows an exemplary embodiment of the tuned mass damping device of the present invention
  • Figure 2 shows a partial enlarged view of the top connection assembly of the device in Figure 1;
  • Figure 3 shows a cross-sectional view of the top connection assembly in Figure 2;
  • Figure 4 shows a partial cross-sectional view of the top connection assembly in Figure 3;
  • Figure 5 shows a partial enlarged view of a preferred embodiment of the top connection assembly
  • Fig. 6 and Fig. 7 respectively show the structure diagram of the top connecting component in Fig. 5 in different states;
  • FIGS 8 and 9 respectively show another embodiment of the top connection assembly
  • Figures 10 and 11 show a perspective view of a part of the top connection assembly
  • Figure 12 shows a cross-sectional view of an embodiment of the connector in the top connector assembly
  • Figures 13 and 14 show schematic structural diagrams of an embodiment of the connecting rod of the tuned mass damping device
  • Figures 15 and 16 show an embodiment of the weighting component of the tuned mass damping device
  • Figures 17 and 18 show an embodiment of the collision mechanism of the tuned mass damping device
  • Figure 19 shows an embodiment of the bottom spring assembly in the tuned mass damping device
  • Figure 20 shows another embodiment of the bottom spring assembly in the tuned mass damping device
  • Figures 21 and 22 show another embodiment of the top connection assembly of the tuned mass damping device of the present invention.
  • Figures 23 and 24 show another embodiment of the collision mechanism
  • Figure 25 shows another embodiment of the collision mechanism
  • Figures 26 to 28 respectively show different embodiments in which the connecting head is installed between the connecting shaft and the fixing plate 14;
  • Figure 29 shows another embodiment of the top connection assembly of the tuned mass damping device of the present invention.
  • Figure 30 shows a cross-sectional view of a part of the top connection assembly in Figure 29;
  • FIG. 31 shows an enlarged view of a part of the top connection assembly in FIG. 30.
  • Fig. 1 shows an embodiment of the tuned mass damping device (hereinafter referred to as "device") 100 of the present invention.
  • the device 100 is arranged in the tower 9 of the wind generator, and includes a top connecting assembly 1, a connecting rod 2, a weighting assembly 3, and a bottom spring assembly 6 arranged from top to bottom, wherein the top connecting assembly 1 and the tower 9
  • the tower beam 91 at the top is connected, and the bottom spring assembly 6 is connected with the bottom wall 92 of the tower 9.
  • a collision mechanism 4 can also be provided near the weighting assembly 3.
  • a damper connected to the side wall of the tower 9 is also provided at the bottom spring assembly 6.
  • the top connection assembly 1 includes a fixing plate 14 extending in the transverse direction, and the fixing plate 14 is substantially parallel to the tower cross beam 91 and is arranged under the tower cross beam 91.
  • a support pipe 11 is provided between the tower beam 91 and the fixed plate 14. The bolts pass through the tower beam 91, the support pipe 11 and the fixing plate 14 to fix them together.
  • the top connection assembly 1 also includes a first movable plate 15 extending in the transverse direction and arranged under the fixed plate 14.
  • a connecting shaft 18 extending in the longitudinal direction passes through the fixed plate 14 and the first movable plate 15 to connect them together.
  • One end of the connecting shaft 18 is fixedly connected to the first movable plate 15 and the other end is connected through a connecting head 16. It is connected to the fixed plate 14.
  • the first movable plate 15 can be fixedly connected with the connecting rod 2 below.
  • the top connection assembly 1 further includes a lower ball seat 133 disposed on the fixing plate 14, and the lower ball seat 133 protrudes upward relative to the fixing plate 14 to form an arc-shaped fixed joint surface.
  • An elastic connecting member 132 is provided on the fixed joint surface.
  • An upper ball seat 131 is provided on the elastic connecting member, and the upper ball seat 131 is configured with a lower surface facing downward, and the lower surface is also arc-shaped.
  • the upper ball seat 131 and the lower ball seat 133 are spaced apart from each other in the longitudinal direction, and the elastic connecting member 132 is connected between them.
  • the elastic connecting member 132, the lower ball seat 133 and the upper ball seat 131 can be fixedly connected together by vulcanization, for example, to form an integral part.
  • a second movable plate 12 can also be provided on the upper ball seat 131, and the second movable plate is fixedly connected to the first movable plate 15 through an auxiliary connecting member 19 extending across the fixed plate 14 in the longitudinal direction.
  • the weight of the weighting assembly 3 can be transferred to the upper ball seat 131 through the connecting rod 2, the first movable plate 15, the auxiliary connecting member 19, and the second movable plate 12, and thereby compress the elastic connecting member 132 downward.
  • This arrangement enables the elastic connecting member 132 to be designed to have a greater longitudinal rigidity and a higher longitudinal bearing capacity.
  • the elastic connecting member 132 has a small deflection rigidity (that is, around the center of the arc), which allows the upper ball seat 131 to rotate relative to the lower ball seat 133, thereby allowing the connecting rod fixed with the upper ball seat 131 2 and the weighting assembly 3 swing relative to the tower 9 fixed to the lower ball seat 133.
  • the above-mentioned fixed plate 14, the tower beam 91 and the support tube 11 are connected by bolts to form a substantially lip-shaped ring structure.
  • the second movable plate 12, the auxiliary connecting member 19 and the first movable plate 15 are connected by bolts to form another ring-shaped structure substantially in the shape of a mouth.
  • the two ring structures are sleeved together, and they are connected together by the upper ball seat 131, the lower ball seat 133 and the elastic connecting member 132, so as to realize the bearing effect in the longitudinal direction.
  • the lower surface (i.e., the movable joint surface) 131S of the upper ball seat 131 and the upper surface (i.e., the fixed joint surface) 133S of the lower ball seat 133 are both configured as part of a spherical surface, And they have the same center.
  • the elastic connecting member between them has a uniform thickness. This kind of arrangement is easy to process, and at the same time has good longitudinal load-bearing capacity and shear deformation capacity.
  • the lower surface of the upper ball seat 131 and the upper surface of the lower ball seat 133 are configured as part of a spherical surface, but they have different radii.
  • the radius of the upper surface of the ball seat 133 is relatively large. Therefore, the middle part of the elastic elastic connecting member between them is thicker and the edge part is thinner. This arrangement is beneficial to reduce the rubber stress of the middle part, so that the elastic connecting member 132 is not easy to be fatigued, and has a higher longitudinal (vertical) load-bearing capacity.
  • the lower surface of the upper ball seat 131 and the upper surface of the lower ball seat 133 both include a straight section in the middle and an arc-shaped portion at the edge.
  • This arrangement is beneficial to reduce the strain of the middle elastic member 132 in the middle part and improve the longitudinal bearing capacity.
  • a second recessed portion 132A is also preferably configured at the edge of the middle elastic member 132. As shown in FIG. 6, when the middle elastic member 132 is not loaded (that is, when in a free state), the second recessed portion 132A has an obvious acute-angled notch. As shown in FIG.
  • the middle elastic member 132 when the middle elastic member 132 is loaded (that is, in a loaded state), the middle elastic member 132 is compressed and deformed, so that the opening of the second recessed portion 132A is at least partially closed, that is, the opening The upper and lower side walls are close to each other and at least partially close together. Therefore, when the weighting assembly 3 swings relative to the tower tube 9, the load at the edge of the intermediate elastic member 132 is a static load. This is very beneficial to prolong the fatigue life of the intermediate elastic member 132.
  • the second recessed portion 132A is closer to the upper ball seat 131. This structure facilitates the manufacture of the mold and can effectively reduce the manufacturing cost of the device 100.
  • a metal partition 134 can also be embedded in the middle elastic member 132.
  • the metal partition 134 extends throughout the middle elastic member 132. This arrangement is more conducive to improving the longitudinal rigidity of the intermediate elastic member 132, and thus its longitudinal bearing capacity.
  • the metal partition 134 only extends at the edge of the middle elastic piece 132 and does not extend to the middle of the middle elastic piece 132. Compared with the embodiment in FIG. 8, this is more conducive to reducing the strain of the middle part of the middle elastic member 132 and thus makes it less prone to fatigue.
  • the metal separator 134 may be one layer or multiple layers.
  • the upper ball seat 131 can be fixedly connected to the second movable plate 12 by bolts.
  • a positioning boss 131A may be provided on the upper part of the upper ball seat 131.
  • a matching groove can be provided on the lower side of the second movable plate 12.
  • the above-mentioned positioning boss 131A can be used with bolts to realize a fixed connection between the upper ball seat 131 and the second movable plate 12.
  • the lower ball seat 133 can be fixedly connected to the fixing plate 14 by bolts.
  • a positioning boss 133A may be provided at the lower portion of the lower ball seat 133.
  • a matching groove can be provided on the upper side of the fixing plate.
  • the fixed plate 14, the lower ball seat 133, the elastic connecting member 132, the upper ball seat 131 and the second movable plate 12 of the top connection assembly 1 form the longitudinal bearing plate in the present invention.
  • various structures in the longitudinal bearing mechanism can be added, reduced or replaced accordingly.
  • the longitudinal bearing mechanism and the anti-rotation mechanism have some structural correspondences.
  • the fixed plate 14 and the lower ball seat 133 relate to both the fixed connecting member in the longitudinal bearing mechanism and the first connecting part in the anti-rotation mechanism.
  • the embodiments shown in FIGS. 2 and 3 include an organic combination of a longitudinal bearing mechanism and an anti-rotation mechanism.
  • the structure of the above-mentioned connector 16 is shown in more detail in FIG. 12.
  • the connector 16 includes a substantially cylindrical inner sleeve 161 extending in the longitudinal direction, an outer sleeve 163 sleeved outside the inner sleeve 161 spaced apart from the inner sleeve 161, and an inner sleeve 161 and an outer sleeve.
  • the middle elastic layer 162 may be made of rubber, for example. Therefore, the connector 16 (especially the middle elastic layer 162 therein) has a relatively large radial rigidity, and at the same time, a relatively small deflection rigidity.
  • the middle elastic layer 162 when the connector 16 is subjected to a force in the radial direction, the middle elastic layer 162 is mainly subjected to pressure in the radial direction and is not easily compressed and deformed in the radial direction; and when the connector 16 is subjected to a force in the deflection direction, the middle elastic layer 162 is 162 is mainly subjected to the shearing force in the longitudinal direction and is prone to shear deformation.
  • the middle elastic layer 162 is squeezed installed between the inner sleeve 161 and the outer sleeve 163 to achieve pre-compression in the radial direction.
  • This pre-compression helps to extend the service life of the connector 16.
  • This pre-compression can be achieved by extruding the outer sleeve 163.
  • the outer sleeve 163 may be made of materials such as 20# steel, 45# steel, etc., for example.
  • the outer sleeve 163 has the characteristic of a relatively thin wall. During extrusion, the outer sleeve 163 can be slightly plastically deformed to achieve pre-compression.
  • the connector 16 can be directly installed in the step hole on the fixing plate 14.
  • the outer sleeve 163 is connected to the fixing plate 14, and the lower end of the outer sleeve 163 is connected with the step surface of the step hole.
  • the connecting shaft 18 is inserted into the inner sleeve 161.
  • the pre-compression of the middle elastic layer 162 (connecting head 16) is achieved by fitting between the connecting shaft 18 and the fixing plate 14.
  • the inner sleeve 161 can be fixedly connected to the connecting shaft 18. As shown in FIG.
  • the inner sleeve 161 is in contact with the connecting shaft 18 without being connected to allow the inner sleeve 161 to slide relative to the shaft 18 in the axial direction.
  • the connecting head 16 does not carry the shaft 18 in the axial direction. This can prevent the shaft 18 from pulling the inner sleeve 161 in the axial direction, and thus is beneficial to avoid the axial displacement of the inner sleeve 161 relative to the outer sleeve 163 to cause the middle elastic layer 162 to have a shear deformation in the axial direction. This is beneficial to prolong the service life of the connector 16.
  • the connecting head 16 is connected to the fixing plate 14 through an outer mounting sleeve 17.
  • the outer mounting sleeve 17 is fixedly connected in the stepped hole of the fixing plate 14 by threads or screws.
  • a card slot is opened on the outer mounting sleeve 17 for mounting the outer sleeve 163 of the connector 16, and the inner sleeve 161 is connected with the connecting shaft 18 inserted therein.
  • the outer mounting sleeve 17 is configured with a stepped surface that matches with the lower end of the outer sleeve 163 of the connector 16. With this arrangement, the mounting sleeve 17, the connecting head 16 and the connecting shaft 18 can be installed together to form a whole.
  • the pre-compression of the middle elastic layer 162 is achieved by fitting between the mounting sleeve 17 and the connecting shaft 18. Thereafter, the mounting sleeve 17, the connecting head 16 and the connecting shaft 18 can be assembled to the fixed plate 14 and the first movable plate 15 together. Pre-compressing the connector 16 in advance can make the operation at the construction site for installing the entire device 100 more convenient and simple. In the embodiment shown in FIG. 27, a certain gap is left between the inner sleeve 161 and the connecting shaft 18. As a result, it can be effectively ensured that the connecting shaft 18 can slide freely in the axial direction relative to the inner sleeve 161.
  • the connecting head 16 is connected to the fixing plate 14 through an outer mounting sleeve 17.
  • a linear bearing or a wear-resistant material body 82 is also provided between the inner sleeve 161 of the connecting head 16 and the connecting shaft 18, and an inner mounting is also provided between the linear bearing or wear-resistant material body 82 and the inner sleeve 161.
  • Set of 81 By first applying the inner mounting sleeve 81 and the outer mounting sleeve 17 to the inner and outer sides of the connecting head 16 respectively, the connecting head 16 can be pre-compressed. Then, they can be installed together between the fixed plate 14 and the linear bearing or the body 82 of wear-resistant material.
  • the outer mounting sleeve 17, the connecting head 16, the inner mounting sleeve 81, the linear bearing or the wear-resistant material body 82 and the connecting shaft 18 are squeezedly joined to each other, which is conducive to compact and stable installation, and is also conducive to further compression of the connector The middle elastic layer 162 in 16.
  • the linear bearing or the wear-resistant material body 82 can effectively realize the sliding movement of the connecting shaft 18 relative to the connecting head 16 in the axial direction.
  • the wear-resistant material body 82 here can be made of, for example, modified high molecular weight polyethylene, nylon and other materials.
  • the inner side surface 163A of the outer sleeve 163 and the outer side surface 161A of the inner sleeve 161 are configured as arcuate surfaces whose central portion in the longitudinal direction protrudes radially outward.
  • the middle elastic layer can produce relatively more shear deformation and relatively less compression deformation.
  • both the upper edge and the lower edge of the middle elastic layer are configured with a first recessed portion 162A.
  • first recessed portion 162A when the outer sleeve 163 and the inner sleeve 161 are respectively subjected to opposite forces in the longitudinal direction, the deformation at the edge of the middle elastic layer is basically shear deformation, and there is basically no compression deformation. . Therefore, it is further advantageous to reduce the shear rigidity of the connector 16.
  • the top connecting assembly 1 includes a pair of the above-mentioned connecting shafts 18, and a pair of connecting heads 16 are correspondingly provided.
  • the pair of connecting shafts 18 and the corresponding connecting head 16 are spaced apart from each other in the transverse direction. Since the connecting head 16 has a great radial rigidity, when the weighting assembly 3 and the connecting rod 2 together with the first movable plate 15, the connecting shaft 18 and the inner sleeve 161 tend to rotate horizontally, the connecting head 16
  • the middle elastic layer 162 will not undergo significant compression deformation. In this case, the above trend will not be transformed into the actual movement process, or the resulting rotation is very small and can be ignored.
  • the distance between the two connecting shafts 18 can be adjusted. The greater the distance, the easier it is to prevent the above-mentioned rotation from occurring.
  • the above-mentioned fixed plate 14, the first movable plate 15, a pair of connecting shafts 18 and a pair of connecting heads 16 in the top connecting assembly 1 form the anti-rotation mechanism in the present invention.
  • the fixed plate 14 forms a first connecting portion
  • the first movable plate 15 forms a second connecting portion.
  • the rotation center R2 of the elastic connector 132 and the rotation center R2 of the middle elastic layer 162 of the connector 16 are aligned in the transverse direction, that is, at the same height.
  • a lifting hole 154 may also be provided on the fixing plate 14. If it is necessary to replace and maintain each structure in the top connection assembly 1, the second movable plate 15 and the tower tube 9 can be temporarily connected by connecting a lifting rod (not shown) between the lifting hole 154 and the tower beam 91 The tops are fixed together. At this point, you can easily replace and maintain the various components in Figure 2.
  • Figures 21 and 22 show another embodiment of the top connection assembly 1.
  • the second movable plate 12 and the auxiliary connecting piece 19 are replaced with an integrated U-shaped movable piece 71. That is to say, in this embodiment, for the longitudinal bearing mechanism, its movable connection members are the upper ball seat 131 and the movable part 71.
  • the movable member 71 can also be used in the embodiment shown in FIG. 2.
  • the independent movable plate 12 and the auxiliary connecting member 19 are easier to disassemble; on the contrary, the integrated movable member 71 is easier to install.
  • the anti-rotation mechanism includes a top fixing member 72 fixedly connected to the tower beam 91 by bolts.
  • a pair of connecting heads 16 spaced apart from each other are provided in the top fixing member 72.
  • the upper ends of a pair of spaced apart connecting shafts 18 are respectively inserted into the pair of connecting heads 16, and the lower ends extend longitudinally downward to be fixedly connected with the movable member 71.
  • This arrangement is convenient for setting the connecting shaft 18 to be longer.
  • the structure shown in FIG. 2 is advantageous for setting the distance between the two connecting shafts 18 to be larger, which is more advantageous for avoiding the occurrence of the rotation of the weighting assembly 3.
  • the longitudinal bearing mechanism and the anti-rotation structure also have a certain structural correspondence.
  • the movable part 71 not only relates to the movable connecting member in the longitudinal bearing mechanism, but also relates to the second connecting part in the anti-rotation mechanism.
  • the embodiment shown in FIGS. 21 and 22 also includes an organic combination of a longitudinal bearing mechanism and an anti-rotation mechanism.
  • Figures 29-31 show another embodiment of the top connection assembly 1 in the tuned mass damping device 100 according to the present invention. This embodiment is similar to the embodiment in Figs. 2-3, and the difference lies in the following aspects.
  • the lower end of the connecting shaft 18 is configured as an expansion cone end 181, which is inserted into the first movable plate 15 from one side of the first movable plate 15 and passed from the first movable plate 15
  • the first screw 301 inserted on the other side of the connector is connected to the first movable plate 15.
  • the pre-tensioning of the connecting shaft 18 can be achieved.
  • the pressure plate 302 (for example, by a screw) which covers the expansion cone end 181 on the first side of the first movable plate 15 and is fixedly connected to the first movable plate 15 to limit the expansion cone end 181 within the first movable plate 15.
  • loosening of the connection between the connecting shaft 18 and the first movable plate 15 can be further avoided.
  • a bearing seat 200 is fixedly mounted on the fixing plate 14.
  • the bearing housing 200 may include a bearing housing 210 and a filler 220 provided in the bearing housing 210.
  • the filling body 220 is configured with a first bearing engagement surface 221 which is arc-shaped and recessed toward the upper side. It should be understood that the filling body 220 and the bearing housing 210 may also be integrally formed according to requirements.
  • a bearing slider 230 is provided under the second movable plate above the bearing seat 200.
  • the bearing slider 230 is configured with a second bearing engagement surface 231 that is arc-shaped and protrudes downward.
  • the second bearing engagement surface 231 and the first bearing engagement surface 221 are in contact with each other, so that the bearing slider 230 can slide along the first bearing engagement surface 221.
  • one or more wear-resistant plates 240 are provided on the first bearing engagement surface 221.
  • the wear-resistant plate 240 is beneficial to improve the effectiveness and durability of the cooperation between the bearing slider 230 and the bearing seat 200.
  • the filler 220 is preferably made of a relatively soft metal material (for example, copper) to facilitate the attachment of the wear-resistant sheet 240.
  • the bearing housing 210 can be made of a relatively hard metal material to provide sufficient protection.
  • the bearing slider 230 is also configured with a third bearing engagement surface 232 that is arc-shaped and recessed toward the upper side.
  • the bearing slider 230 is substantially formed in a bowl shape.
  • a limit plate 250 is provided on the bearing slider 230.
  • the limiting plate 250 is configured with a fourth bearing engagement surface 251 that is arc-shaped and protrudes downward.
  • the fourth bearing engagement surface 251 is attached to the third bearing engagement surface 232 so that the bearing slider can slide along the fourth bearing engagement surface 251.
  • an arc-shaped sliding channel is defined between the limiting plate 250 and the filling body 220.
  • the bearing slider 230 can correspondingly slide in the channel.
  • the filling body 220 and the first bearing engagement surface 221 are configured to be annular.
  • the bearing slide 230 is also designed to be ring-shaped.
  • a connecting protrusion 211 extends upward from the middle of the bearing housing 210.
  • the connecting protrusion 211 passes through the center of the filling body 220 and the bearing slider 230, and is fixedly connected to the limiting plate 250 (for example, by a screw).
  • the inner diameter of the annular bearing slider 230 is larger than the outer diameter of the connecting protrusion 211. Therefore, the sliding range of the bearing slider 230 can be restricted by the inner diameter of the bearing slider 230 and the outer diameter of the connecting protrusion 211.
  • lubricant channels 210P and 220P are provided on the bearing housing 210 and the filler 220 of the bearing housing 200 for communicating from the outside of the bearing housing 200 to the first bearing joint surface 221,
  • lubricant can be supplied between the first bearing engagement surface 221 and the second bearing engagement surface 231 through the lubricant passages 210P and 220P.
  • FIG. 13 and 14 show the structure of the connecting rod 2 in detail.
  • the connecting rod 2 includes an elongated connecting mandrel.
  • the connecting mandrel can be one or more screws 23.
  • a plurality of screws 23 can be continuously connected together in the longitudinal direction through the joint 22.
  • the upper end of the screw 23 is threadedly connected with the first movable plate 15 of the top connecting assembly 1, and the lower end is fixedly connected with the weighting assembly 3.
  • a plurality of connecting mandrels can be arranged parallel to each other to ensure the stability of the connection between the top connecting assembly 1 and the weighting assembly 3.
  • the connecting mandrel can also be a steel wire rope or a sling.
  • the connecting rod 2 also includes an outer shell 21 sleeved outside the connecting mandrel.
  • the outer shell 21 abuts between the top connecting assembly 1 and the weighting assembly 3, which can effectively prevent the elongated connecting mandrel from bending.
  • the above-mentioned connecting rod 2 can effectively reduce its own weight on the one hand, and can be firmly connected on the other hand.
  • FIGS 15 and 16 show the structure of the weighting assembly 3 in detail.
  • the weighting assembly 3 includes two weighting units 3A, 3B, which are arranged spaced apart from each other in the longitudinal direction.
  • the weighting unit 3A is fixedly connected to the lower end of the connecting rod 2.
  • the weighting unit 3B is connected to the weighting unit 3A through the connecting rod 34.
  • the structure of the connecting rod 34 is similar to that of the connecting rod 2 and includes a screw 341 and an outer shell 342. The specific structure coordination will not be repeated here.
  • the weighting unit 3A includes a tray 33 extending in the transverse direction, and one or more weighting plates 31 stacked on the tray 33.
  • the connecting rod 2 can extend to the tray 33 and is fixedly connected with the tray 33.
  • the weighting plate 31 can be composed of two parts, which are arranged around the connecting rod 2 in a surrounding manner. This is beneficial to increase or decrease the weighting plate during use, thereby facilitating adjustment of the weight of the weighting unit to adjust the center of gravity of the device 100.
  • the weight plate 31 can be fixed to the tray 33 by bolts 32.
  • a corresponding groove can be provided at a position corresponding to the connecting rod 34 on the lower surface of the tray 33, so that the upper end of the connecting rod 34 can be inserted into the groove during assembly to facilitate positioning.
  • the weighting unit 3B includes a tray 36 and one or more weighting plates 35.
  • the weighting plate 35 is provided around the connecting rod 34 in a surrounding manner. As shown in FIG. 16, the connecting rod 34 extends downward to the tray 36, the screw 341 therein extends through the tray 36 and is fixedly connected to the tray 36 by a backing plate 343 and a nut 344.
  • weighting plate may be configured in a rectangular, circular, triangular, or any other appropriate shape as required.
  • collision mechanism 4 is provided under the one weighting unit. In the case where three or more weighting units are provided, a collision mechanism 4 may be provided between two of the weighting units.
  • a collision mechanism 4 can also be provided between the two weighting units 3A, 3B.
  • Figures 17 and 18 show the specific structure of the collision mechanism 4.
  • the collision mechanism 4 includes a cushioning elastic member 44 made of rubber.
  • the buffer elastic member 44 is configured as a columnar structure extending in the longitudinal direction.
  • the upper end of the buffer elastic member 44 is fixedly connected with the mounting plate 42, and the lower end is fixedly connected with the collision body 45.
  • the mounting plate 42 is connected to the tray 33 of the weight unit 3A by bolts 43.
  • One or more spacers 41 can be added between the mounting plate 42 and the tray 33 according to needs, so as to adjust the height of the mounting plate 42 and finally adjust the height of the collision body 45.
  • a matching collision member 46 fixed relative to the tower tube 9 is provided in the tower tube 9.
  • the cooperating striker 46 may be configured to be annular, for example, and the striker 45 is surrounded by the cooperating striker 46.
  • the height of the collision body 45 is adjusted to correspond to the height of the mating collision member 46.
  • This shear deformation energy dissipates the energy of the weighting component 3 continuing to swing, and causes it to generate force in the opposite direction to restrain the weighting component 3 from continuing to swing. In this way, it is beneficial to prevent the swing amplitude of the weighting assembly 3 from further increasing.
  • the collision body 45 may be configured to be ring-shaped so that the connecting rod 34 can pass therethrough to connect the two weighting units 3A, 3B together. A certain interval is left between the connecting rod 34 and the collision body 45 to reserve space for the swing of the connecting rod 34 when the collision body 45 stops swinging and the connecting rod 34 continues to swing under the action of inertia.
  • An elastic pad 48 may be sleeved on the connecting rod 34 to buffer the possible collision between the connecting rod 34 and the collision body 45. As an alternative or in addition, a corresponding elastic pad may also be provided on the inner side of the collision body 45.
  • an elastic pad 47 is provided on the inner side of the collision member 46 to buffer the collision between the collision member 46 and the collision body 45.
  • a corresponding elastic pad may also be provided on the outer side of the collision body 45.
  • the above-mentioned elastic pads 47 and 48 can be made of softer metal or polymer materials (for example, pure aluminum or polyurethane).
  • the weighting assembly 3 can be used to adjust the center of gravity of the device 100 to the collision mechanism 4, especially the collision body 45. Therefore, when the collision body 45 collides with the mating collision member 46, the swing of the weighting assembly 3 can be conveniently and effectively stopped.
  • a plurality of cylindrical cushion elastic members 44 are provided. These buffer elastic members 44 are arranged next to each other on the annular collision member 46 in order to form a ring.
  • Figures 23 and 24 show a cushioning elastic member 44' as another embodiment.
  • the buffer elastic member is configured as an integral ring member.
  • a plurality of studs 49 are provided along the circular extending path of the buffer elastic member 44'. These studs 49 can be used for fixed connection with the mounting plate 42 and the collision body 45. Compared with the arrangement of the cushioning elastic member 44 in Fig. 17, the manufacturing cost of this cushioning elastic member 44' is higher, but it has higher rigidity.
  • FIG. 25 shows a cushion elastic member 44" as another embodiment.
  • the cushion elastic member 44" is configured as a part of a fan-shaped body.
  • a plurality of elastic buffer members 44 ′′ can form a whole ring and be fixedly arranged between the mounting plate 42 and the collision body 45.
  • FIG. 19 shows the specific structure of the bottom spring assembly 6 of the device 100.
  • the bottom spring assembly 6 includes a first connecting rod 61 fixedly connected to the tray 36 and extending downward from the tray 36, a second connecting rod 62 connected under the first connecting rod 61, and a second connecting rod 62 connected to the The bottom elastic member (spring) 63 between the bottom wall 92 of the tower 9.
  • the second connecting rod 62 is fixedly connected to the spring 63 and is hinged to the first connecting rod 61.
  • FIG. 20 shows another embodiment of the bottom spring assembly 6.
  • a third connecting rod 64 is connected between the spring 63 and the bottom wall 92 of the tower 9.
  • One end of the third connecting rod 64 is fixedly connected with the spring 63, and the other end is hinged with the bottom wall 92.
  • the spring 63 can basically deform only in the direction of its axis. This is beneficial to improve the working efficiency of the spring 63 and prolong the service life of the spring 63.
  • a first mounting disk 65 may be provided at the lower end of the second connecting rod 62 and a second mounting disk 66 may be provided at the upper end of the third connecting rod 64.
  • the spring 63 is connected between the first mounting disk 65 and the second mounting disk 66. This allows a plurality of springs 63 parallel to each other to be arranged between the first mounting disk 65 and the second mounting disk 66 to form a spring group.
  • the spring group can have higher axial deformation rigidity.
  • a damper 5 extending in the transverse direction can also be provided between the first connecting rod 61 and the side wall of the tower tube 9, and both ends of the damper 5 are hinged to the first connecting rod 61 and the tower tube 9 respectively.
  • the damper 5 extends substantially in the horizontal direction, thereby being connected to the side wall of the tower 9.
  • the damper 5 has an inclination component in the longitudinal direction, thereby being connected to the bottom wall 92 of the tower 9.
  • the damper 5 is directly connected to the first connecting rod 61.
  • a laterally extending plate is installed on the first connecting rod 61, and the damper 5 is connected to the first connecting rod 61 by being hinged on the laterally extending plate.
  • multiple dampers 5 may be provided.
  • two dampers 5 are provided.
  • the extension directions of the two dampers 5 in the lateral direction are perpendicular to each other. Through this arrangement, it is more advantageous to adjust the relative swing relationship between the device 100 and the tower 9.
  • three dampers 5 can be provided.
  • the three dampers 5 are set 120° apart from each other.
  • the oblique arrangement of the three dampers in FIG. 20 is further conducive to adjusting the swing frequency of the weighting assembly 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

一种调谐质量阻尼装置(100),包括:连杆(2),其沿着纵向方向延伸;加重组件(3),其连接在连杆(2)的下端处;以及顶部连接组件(1),其连接在连杆(2)的上端与塔筒(9)的塔架横梁(91)之间,并包括防自转机构;防自转机构包括:横向延伸的固定板(14),其通过纵向延伸的支撑件(11)与塔架横梁(91)固定相连;横向延伸的第一活动板(15),其设置在固定板(14)之下并与连杆(2)的上端固定相连;一对连接轴杆(18),该一对连接轴杆(18)相对间隔开设置,其中每一个均沿纵向方向延伸;连接轴杆(18)的下端与第一活动板(15)固定相连,连接轴杆(18)的上端插入到固定板(14)内,并通过连接头(16)而与固定板(14)相连;该连接头(16)包括与固定板(14)相连的外套件(163),套设在外套件(163)内的与连接轴杆(18)相连的内套件(161),以及设置在内套件(161)和外套件(163)之间的中间弹性层(162)。

Description

调谐质量阻尼装置 技术领域
本发明涉及风力发电机的减振技术领域,特别是涉及一种调谐质量阻尼装置。
背景技术
风力发电是一种清洁能源,近年来受到广泛的关注。为了提高发电效率,在中低风速及海上风场区域设置的高塔筒风机逐渐成为了各风机主机厂竞争的重要方向。塔筒的高度增加能有效提高发电效率,但同时会导致塔筒容易产生振动、甚至较大幅度的摆动。这种振动和摆动本身就会对发电机的结构稳定性带来不好的影响。另外,机组的转速有可能会跨越塔架一阶频率。在该转速跨越塔架频率时,就会产生共振,由此会带来非常严重的安全隐患。
在现有技术中,通过在塔架的塔筒内吊设沙袋来减小塔筒的横向摆动。这种方式的成本很低,且易于实施。然而,在具体的使用过程中,沙袋容易产生自转。在这种情况下,沙袋的移动轨迹非常复杂,难以预期。这就导致该沙袋很难实现预期的削弱塔筒摆动的作用。甚至,在有些情况下,还有可能加剧塔筒的摆动。
因此,需要一种能够有效削弱风电发动机的塔筒的摆动的装置。
发明内容
针对上述问题,本发明提出了一种调谐质量阻尼装置,其能够有效削弱风电发动机的塔筒的摆动。
根据本发明提出了一种调谐质量阻尼装置,包括:连杆,所述连杆沿着纵向方向延伸;加重组件,所述加重组件连接在所述连杆的下端处;以及顶部连接组件,所述顶部连接组件连接在所述连杆的上端与塔筒的塔架横梁之间,并包括防自转机构。所述防自转机构包括:横向延伸的固定板,所述固定板通过纵向延伸的支撑件与所述塔架横梁固定相连;横向延伸的第一活动板,所述第一活动板设置在所述固定板之下,并与所述连杆的上端固定相连;一对连接轴杆,所述一对连接轴杆相对间隔开设置,所述一对连接轴杆中的每一个均沿纵向方向延伸,所 述连接轴杆的下端与所述第一活动板固定相连,所述连接轴杆的上端插入到所述固定板内,并通过连接头而与所述固定板相连;以及所述连接头,所述连接头包括与所述固定板相连的外套件,套设在所述外套件内的与所述连接轴杆相连的内套件,以及设置在所述内套件和所述外套件之间的中间弹性层。
连接头的这种从外到内依次为外套件、中间弹性层和内套件的这种结构一方面具有较大的径向刚度(横向刚度),另一方面具有较小的偏转刚度。由此,该接头允许连接轴杆、第一活动板和连杆以及加重组件相对于固定板和塔筒进行摆动,以此来削弱塔筒本身的摆动。同时,在加重组件、连杆和第一活动板有自转趋势时,该一对轴杆和连接头能与固定板配合而消除该趋势。由此,能够有效地避免调谐质量阻尼装置的自转,并由此使得该装置的摆动可如预期进行。在这种情况下,能够有效地削弱塔筒的摆动,以此来确保风力发电机的结构稳定性。尤其是,这能避免塔架摆动与机组转动之间产生共振,能有有效免除安全隐患。
在一个实施例中,所述外套件的内侧面和/或所述内套件的外侧面构造为拱形表面,所述拱形表面的中间部分径向向外凸出。
在一个实施例中,所述顶部连接组件还包括外安装套,所述连接头通过所述外安装套而与所述固定板相连,所述外安装套构造为能预先挤压式套设在所述外套件之外,以使所述连接头的中间弹性层预压缩,和/或所述顶部连接组件还包括内安装套,所述连接头通过所述内安装套而与所述连接轴杆相连,所述内安装套构造为能预先挤压式套设在所述内套件之内,以使所述连接头的中间弹性层预压缩。
在一个实施例中,所述连接轴杆的下端构造为膨胀锥端,所述膨胀锥端从所述第一活动板的第一侧插入到所述第一活动板内,并通过位于所述第一活动板的第二侧的第一螺钉与所述第一活动板固定相连,在所述第一活动板的第一侧上固定连接有压板,所述压板构造为覆盖所述膨胀锥端。
在一个实施例中,在所述连接轴杆与所述连接头的内套件之间设置有间隙,或设置有直线轴承或耐磨材料体,使得所述连接轴杆能相对于所述连接头的内套件在轴向方向上滑动。
在一个实施例中,其特征在于,所述顶部连接组件包括纵向承载机构,所述纵向承载机构包括:固定连接构件,所述固定连接构件包括所述固定板,以及设置在所述固定板上的下球座,所述下球座构造有朝向上方的凸起的弧形的固定接 合面;活动连接构件,所述活动连接构件包括设置在所述固定连接构件之上并与所述固定连接构件间隔开的第二活动板,以及设置在所述第二活动板之下的上球座,所述上球座构造有朝向下方的凹陷的弧形的活动接合面,所述第二活动板通过纵向延伸的辅助连接件与所述第一活动板固定相连;以及弹性连接件,所述弹性连接件设置在所述固定接合面与所述活动接合面之间,所述弹性连接件具有与所述固定接合面和活动接合面相匹配的形状。
在一个实施例中,弧形的所述固定接合面在中心处具有沿横向方向延伸的平面部分,和/或弧形的所述活动接合面在中心处具有沿横向方向延伸的平面部分。
在一个实施例中,在所述弹性连接件的边缘处设置有第二凹陷部分,所述第二凹陷部分构造为在纵向方向上受载时至少部分地闭合。
在一个实施例中,在所述弹性连接件内嵌设有金属隔板,所述金属隔板在整个所述弹性连接件内延伸,或者所述金属隔板仅设置在所述弹性连接件的边缘处而不延伸至所述弹性连接件的中心处。
在一个实施例中,所述顶部连接组件包括纵向承载机构,所述纵向承载机构包括:固定连接构件,所述固定连接构件包括所述固定板,以及设置在所述固定板上的轴承座,所述轴承座构造有朝向上方的弧形凹陷的第一轴承接合面;活动连接构件,所述活动连接构件包括设置在所述固定连接构件之上的第二活动板,以及设置在所述第二活动板之下的轴承滑块,所述轴承滑块构造有朝向下方的弧形凸起的第二轴承接合面,所述第二轴承接合面与所述第一轴承接合面彼此接触,使得所述轴承滑块能沿着所述轴承座的第一轴承接合面进行滑动。
在一个实施例中,在所述第一轴承接合面上设置有一个或多个耐磨片。
在一个实施例中,所述轴承滑块还构造有朝向上方的弧形凹陷的第三轴承接合面,所述纵向轴承机构还包括设置在所述轴承滑块之上的限位板,所述限位板构造有朝向下方的弧形凸起的第四轴承接合面,所述第四轴承接合面与所述第三轴承接合面相贴合,使得所述轴承滑块能沿着所述限位板的第四轴承接合面进行滑动;其中,所述第一轴承接合面构造为环形的,所述轴承座还构造有从环形的轴承接合面中间向上延伸的连接凸起,所述轴承滑块构造为环形的,所述连接凸起延伸穿过所述轴承滑块与所述限位板固定相连,环形的轴承滑块的内径大于所述连接凸起的外径,通过所述轴承滑块的内径与所述连接凸起的外径限制所述轴承滑块的滑动范围。
在一个实施例中,所述轴承座构造有从所述轴承座的外表面延伸至所述第一轴承接合面处的润滑剂通道,用于向所述第一轴承接合面与第二轴承接合面之间供应润滑剂。
在一个实施例中,所述连杆包括:连接芯轴,所述连接芯轴连接在所述顶部连接组件与所述加重组件之间,所述连接芯轴构造为细长的,以降低其重量;以及外壳体,所述外壳体沿纵向方向延伸以抵在所述顶部连接组件与所述加重组件之间,所述外壳体包围所述连接芯轴。
在一个实施例中,所述加重组件包括一个加重单元,在所述一个加重单元之下设置有碰撞机构,所述碰撞机构构造为与安装在所述塔筒内的配合碰撞件相对应,以能够相互碰撞。
在一个实施例中,所述加重组件包括至少两个加重单元,所述至少两个加重单元在纵向方向上彼此间隔开,在所述至少两个加重单元中的其中两个之间设置有碰撞机构,所述碰撞机构构造为与安装在所述塔筒内的配合碰撞件相对应,以能够相互碰撞,所述至少两个加重单元构造为能将所述调谐质量阻尼装置的重心调节到所述碰撞机构处。
在一个实施例中,碰撞机构包括:碰撞体,所述碰撞体套设在构造为环状的所述配合碰撞件内;以及缓冲弹性件,所述缓冲弹性件连接在所述碰撞体和位于所述碰撞体之上的加重单元之间。
在一个实施例中,所述缓冲弹性件构造为沿纵向方向延伸的柱状弹性件。
在一个实施例中,在所述碰撞体和所述配合碰撞件之间设置有弹性垫,所述弹性垫由比所述碰撞体软的金属或者高分子材料制成。
在一个实施例中,所述加重单元包括沿横向方向延伸的托板,以及叠置在所述托板上的加重板。
在一个实施例中,所述调谐质量阻尼装置还包括设置在所述加重组件之下的底部弹簧组件,所述底部弹簧组件包括沿纵向方向延伸并连接在所述塔筒的底壁与所述加重组件之间的底部弹性件。
在一个实施例中,所述底部弹簧组件还包括:第一连接杆,所述第一连接杆从所述加重组件处沿纵向方向向下延伸;以及第二连接杆,所述第二连接杆沿纵向方向延伸,所述第二连接杆的上端与所述第一连接杆铰接,所述第二连接杆的下端与所述底部弹性件相连。
在一个实施例中,所述底部弹簧组件还包括连接在所述底部弹性件与所述塔筒的底壁之间的第三连接杆,所述第三连接杆与所述塔筒的底壁铰接。
在一个实施例中,所述调谐质量阻尼装置还包括连接在所述第一连接杆与所述塔筒的侧壁之间的阻尼器,所述阻尼器沿横向方向延伸,所述阻尼器的两端分别与所述第一连接杆和所述塔筒铰接。
在一个实施例中,所述阻尼器的两端分别与所述第一连接杆和所述塔筒的侧壁铰接。
在一个实施例中,两个所述阻尼器在横向方向上彼此间隔90°的夹角。
在一个实施例中,所述阻尼器具有在纵向方向上倾斜,所述阻尼器的两端分别与所述第一连接杆和所述塔筒的底壁铰接。
在一个实施例中,所述连杆包括:连接芯轴,所述连接芯轴连接在所述顶部连接组件与所述加重组件之间,所述连接芯轴构造为狭长的,以降低其重量;以及外壳体,所述外壳体沿纵向方向延伸以抵在所述顶部连接组件与所述加重组件之间,所述外壳体包围所述连接芯轴。
与现有技术相比,本发明的优点在于:能够有效避免调谐质量阻尼装置的自转,并由此能更有效地削弱塔筒的摆动。另外,在该装置的摆动超过一定幅度时,碰撞机构与配合碰撞件发生碰撞,以耗散该装置摆动的能量,同时促使该装置朝向相反的方向摆动。
附图说明
在下文中参考附图来对本发明进行更详细的描述。其中:
图1显示了本发明的调谐质量阻尼装置的一个示例性实施方案;
图2显示了图1中的装置的顶部连接组件的局部放大图;
图3显示了图2中的顶部连接组件的剖视图;
图4显示了图3中的顶部连接组件的局部剖视图;
图5显示了顶部连接组件的一个优选的实施例的局部放大图;
图6和图7分别显示了图5中的顶部连接组件在不同的状态下的结构图;
图8和图9分别显示了顶部连接组件的另一个实施例;
图10和图11显示了顶部连接组件的一部分的立体图;
图12显示了顶部连接组件中的连接头的一个实施例的剖视图;
图13和图14显示了调谐质量阻尼装置的连杆的一个实施例的示意性结构图;
图15和图16显示了调谐质量阻尼装置的加重组件的一个实施例;
图17和图18显示了调谐质量阻尼装置的碰撞机构的一个实施例;
图19显示了调谐质量阻尼装置中的底部弹簧组件的一个实施例;
图20显示了调谐质量阻尼装置中的底部弹簧组件的另一个实施例;
图21和图22显示了本发明的调谐质量阻尼装置的顶部连接组件的另一个实施例;
图23和图24显示了碰撞机构的另一个实施例;
图25显示了碰撞机构的又一个实施例;
图26至图28分别显示了连接头安装在连接轴杆和固定板14之间的不同的实施例;
图29显示了本发明的调谐质量阻尼装置的顶部连接组件的另一个实施例;
图30显示了图29中的顶部连接组件的一部分的截面图;
图31显示了图30中的顶部连接组件的一部分的放大图。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将结合附图对本发明作进一步说明。
图1显示了本发明的调谐质量阻尼装置(以下简称为“装置”)100的一个实施方案。该装置100设置在风力发电机的塔筒9内,并包括从上到下依次设置的顶部连接组件1、连杆2、加重组件3和底部弹簧组件6,其中顶部连接组件1与塔筒9顶部的塔架横梁91相连,底部弹簧组件6与塔筒9的底壁92相连。另外,在加重组件3附近还可设置有碰撞机构4。在底部弹簧组件6处还设置有与塔筒9的侧壁相连的阻尼器。
下面将结合图2-25对装置100的详细结构进行更加详细的描述。
如图2和图3所示,顶部连接组件1包括在横向方向上延伸的固定板14,该固定板14大体上与塔架横梁91平行地设置在塔架横梁91之下。在塔架横梁91与固定板14之间设置有支撑管11。螺栓穿过塔架横梁91、支撑管11和固定板14而将它们固定在一起。
顶部连接组件1还包括设置在该固定板14之下的沿横向方向延伸的第一活动板15。沿纵向方向延伸的连接轴杆18穿过固定板14和第一活动板15而将它们连接在一起,其中,连接轴杆18的一端与第一活动板15固定连接,另一端通过连接头16而与固定板14相连。第一活动板15可与下方的连杆2固定相连。
另外,顶部连接组件1还包括设置在固定板14上的下球座133,该下球座133相对于固定板14向上凸出而形成弧形的固定接合面。在该固定接合面上设置弹性连接件132。在弹性连接件上设置上球座131,该上球座131构造有朝向下方的凹陷的下表面,该下表面也是弧形的。由此,上球座131与下球座133在纵向方向上彼此间隔开,弹性连接件132连接在它们之间。弹性连接件132、下球座133和上球座131例如可通过硫化而固定连接在一起,形成一个整体部件。在上球座131之上还可设置第二活动板12,该第二活动板通过沿纵向方向延伸跨过固定板14的辅助连接件19而与第一活动板15固定相连。由此,加重组件3的重量可通过连杆2、第一活动板15、辅助连接件19和第二活动板12而传递至上球座131,并由此而向下压缩弹性连接件132。这种设置使得该弹性连接件132设计为具有较大的纵向刚度,纵向承载能力较高。同时,该弹性连接件132具有较小的偏转刚度(即,绕弧面的中心),其允许上球座131相对于下球座133发生转动,由此允许与上球座131固定的连杆2和加重组件3相对于与下球座133固定的塔筒9发生摆动。
从另一角度来看,上述固定板14、塔架横梁91和支撑管11通过螺栓连接形成大体上呈口字型的环状结构。第二活动板12、辅助连接件19和第一活动板15通过螺栓连接形成另一个大体上呈口字型的环状结构。这两个环状结构彼此套设在一起,它们之间通过上球座131、下球座133和弹性连接件132而连接在一起,以实现纵向方向上的承载作用。
在一个实施例中,如图3所示,上球座131的下表面(即,活动接合面)131S与下球座133的上表面(即,固定接合面)133S均构造为球面的一部分,并且它们具有相同的圆心。由此,它们之间的弹性连接件具有均匀的厚度。这种设置易于加工,同时能具有较好的纵向承载能力和剪切变形能力。
在另一个实施例中,上球座131的下表面与下球座133的上表面构造为球面的一部分,但它们具有不同的半径,其中,上球座131的下表面的半径较小而下球座133的上表面的半径较大。由此,它们之间的弹性弹性连接件的中间部分较 厚而边缘部分较薄。这种设置有利于减小该中间部分的橡胶应力,使得该弹性连接件132不易疲劳,具有较高的纵向(垂向)承载能力。
在图5所示的实施例中,上球座131的下表面和下球座133的上表面均包括中间的直线段部分以及边缘处的弧形部分。这种设置有利于减小中间弹性件132在中间部分的应变,提高纵向承载能力。另外,在该中间弹性件132的边缘处还优选地构造有第二凹陷部分132A。如图6所示,在中间弹性件132未受载时(即,处于自由状态时),该第二凹陷部分132A具有明显的锐角式的豁口。如图7所示,在中间弹性件132受载时(即,处于受载状态时),中间弹性件132压缩变形,从而使得该第二凹陷部分132A的豁口至少部分地闭合,即,该豁口的上侧壁和下侧壁彼此贴近而至少部分地紧贴在一起。由此,在加重组件3相对于塔筒9进行摆动时,中间弹性件132的边缘处的载荷为静载荷。这非常有利于延长中间弹性件132的疲劳寿命。优选地,如图5-7所示,该第二凹陷部分132A更加靠近上球座131。这种结构便于模具的制作,能够有效降低装置100的制造成本。
如图8和图9所示,还可在中间弹性件132内嵌入金属隔板134。在图8所示的实施例中,金属隔板134在整个中间弹性件132内延伸。这种设置更有利于提高中间弹性件132的纵向刚度,并由此提高其纵向承载能力。在图9所示的实施例中,金属隔板134仅在中间弹性件132的边缘处延伸,而不延伸至中间弹性件132的中部。相对于图8中的实施例而言,这更有利于减小中间弹性件132的中间部分的应变,并由此使其不易疲劳。应当理解的是,金属隔板134可以是一层的,也可以是多层的。
上球座131可通过螺栓而与第二活动板12固定相连。另外,如图10所示,在上球座131的上部可设置定位凸台131A。相应地,可在第二活动板12的下侧设置相匹配的凹槽。在装置100装配好时,上球座131和第二活动板12可通过该定位凸台131A和凹槽的配合而实现定位和接合。优选地,上述定位凸台131A可与螺栓一起实现上球座131与第二活动板12之间的固定连接。由此,即便螺栓非预期地损坏或不能再发挥其作用,定位凸台131A与凹槽的配合仍能确保上球座131与第二活动板12之间的连接性,进而可确保加重组件3的摆动运动顺利进行。
类似地,下球座133可通过螺栓而与固定板14固定相连。另外,如图11所示,在下球座133的下部可设置定位凸台133A。相应地,可在固定板的上侧设 置相匹配的凹槽。在装置100装配好时,下球座133和固定板14可通过该定位凸台133A和凹槽的配合而实现定位和接合。优选地,上述定位凸台133A可与螺栓一起实现下球座133与固定板14之间的固定连接。由此,即便螺栓非预期地损坏或不能再发挥其作用,定位凸台133A与凹槽的配合仍能确保下球座133与固定板14之间的连接性,进而可确保加重组件3的摆动运动顺利进行。
在图2和图3所示的实施例中,顶部连接组件1的固定板14、下球座133、弹性连接件132、上球座131和第二活动板12形成了本发明中的纵向承载机构,其中固定板14和下球座133形成了固定连接构件,上球座和第二活动板形成了活动连接构件。应当理解的是,根据需要,可相应地增加、减少或替换纵向承载机构中的各个结构。还应当理解的是,在图2和图3所示的实施例中,纵向承载机构与防自转机构在一些结构上存在对应关系。例如,固定板14和下球座133既涉及纵向承载机构中的固定连接构件,也涉及防自转机构中的第一连接部。也就是说,图2和图3所示的实施例中包含纵向承载机构与防自转机构的有机结合。
在图12中更加详细地显示了上述连接头16的结构。连接头16包括沿纵向方向延伸的、大体上为圆筒状的内套件161,与内套件161间隔开地套设在该内套件161之外的外套件163,以及设置在内套件161与外套件163之间的中间弹性层162。中间弹性层162例如可由橡胶制成。由此,这种连接头16(尤其是其中的中间弹性层162)具备较大的径向刚度,同时,还具有较小的偏转刚度。也就是说,在连接头16受到径向方向的力时,中间弹性层162主要受到径向方向的压力,不容易径向压缩变形;而在连接头16受到偏转方向的力时,中间弹性层162主要受到纵向方向的剪切力,容易产生剪切变形。
优选地,在装配时,中间弹性层162被挤压式安装在内套件161与外套件163之间,以实现径向方向的预压缩。这种预压缩有助于延长连接头16的使用寿命。该预压缩可通过挤压外套件163来实现。外套件163例如可由20#钢、45#钢等材料制成。外套件163具有壁厚较薄的特点,在挤压时,外套件163可产生略微的塑性变形,以实现预压缩。
在一个实施例中,如图26所示,连接头16可直接安装在固定板14上的台阶孔内,外套件163与固定板14相连,其下端与台阶孔的台阶面相接合。另外,连接轴杆18插入到内套件161中。由此,中间弹性层162(连接头16)的预压缩是通过装配在连接轴杆18和固定板14之间来实现的。在图26所示的实施例 中,内套件161可与连接轴杆18固定相连。然而,优选地,内套件161与连接轴杆18接触而不连接,以允许内套件161相对于轴杆18沿轴向方向滑动。在这种情况下,连接头16不在轴向方向上承载轴杆18。这能避免轴杆18沿轴向方向拉扯内套件161,并进而有益于避免因内套件161相对于外套件163的轴向位移而导致中间弹性层162具有在轴向上的剪切变形。这有益于延长连接头16的使用寿命。
在另一个实施例中,如图27所示,连接头16通过外安装套17而与固定板14相连。外安装套17通过螺纹或螺钉而固定连接在固定板14的台阶孔内。在外安装套17上开设有卡槽,以用于安装连接头16的外套件163,而内套件161与插入其中的连接轴杆18相连。在这种情况下,在外安装套17上构造有与连接头16的外套件163的下端相配合的台阶面。通过这种设置,可先将安装套17、连接头16和连接轴杆18安装在一起,形成一个整体。由此,中间弹性层162(连接头16)的预压缩是通过装配在安装套17与连接轴杆18之间来实现的。此后,可将安装套17、连接头16和连接轴杆18一起装配到固定板14和第一活动板15处。通过预先使连接头16预压缩可使得用于安装整个装置100的施工现场处的操作更加方便、简单。在图27所示的实施例中,内套件161与连接轴杆18之间留有一定间隙。由此,可有效确保连接轴杆18能相对于内套件161而在轴向上自由滑动。
在图28所示的实施例中,连接头16通过外安装套17而与固定板14相连。另外,在连接头16的内套件161与连接轴杆18之间还设置有直线轴承或耐磨材料体82,在该直线轴承或耐磨材料体82与内套件161之间还设置有内安装套81。通过先将内安装套81和外安装套17分别施加在连接头16的内外两侧,可使连接头16预压缩。然后,可再将它们一起安装到固定板14和直线轴承或耐磨材料体82之间。外安装套17、连接头16、内安装套81、直线轴承或耐磨材料体82和连接轴杆18彼此挤压地接合在一起,有利于安装紧凑和稳定,同时还有利于进一步压缩连接头16中的中间弹性层162。同时,通过直线轴承或耐磨材料体82可有效实现连接轴杆18相对于连接头16在轴向方向上的滑移。
这里的耐磨材料体82例如可由改性高分子聚乙烯、尼龙等材料制成。
应当理解的是,需要确保固定板14与连接轴杆18之间存在一定间隙(参见图3),以确保连接轴杆18能够自由地摆动。
优选地,如图12所示,外套件163的内侧面163A和内套件161的外侧面161A构造为拱形表面,该拱形表面在纵向方向上的中心部分径向向外凸出。通过这种设置,更有利于降低连接头16的偏转刚度。这是因为在外套件163和内套件161分别受到纵向方向上相反的力时,中间弹性层能相对更多地产生剪切变形,而相对更少地产生压缩变形。
另外,还优选地,如图12所示,中间弹性层的上边缘和下边缘处均构造有第一凹陷部分162A。通过设置这种第一凹陷部分162A,在外套件163和内套件161分别受到纵向方向上相反的作用力时,中间弹性层的边缘处的变形基本上均为剪切变形,而基本上没有压缩变形。由此,进一步有利于降低连接头16的剪切刚度。
通过上述设置,在加重组件3和连杆2相对于塔筒9横向摆动时,加重组件3、连杆2、第一活动板15、连接轴杆18和内套件161可一起相对于外套件163、外安装套17(如果有的话)、固定板14、支撑管11和塔架横梁91进行摆动。由此,在塔筒9本身产生横向晃动时,上述结构可产生相反方向上的摆动,以此来削弱塔筒9的横向晃动。
另外,如图2和图3所示,顶部连接组件1包括一对上述连接轴杆18,并相应地设置有一对连接头16。这一对连接轴杆18和相应的连接头16在横向方向上彼此间隔开。由于连接头16具有很大的径向刚度,因此,在加重组件3和连杆2连带着第一活动板15、连接轴杆18和内套件161一起有横向转动的趋势时,连接头16的中间弹性层162不会发生明显的压缩变形。在这种情况下,上述趋势不会转化为实际的运动过程,或者所产生的转动非常小,可忽略不计。
根据需要,可调节两个连接轴杆18之间的距离。距离越大,就越容易阻止上述自转的发生。
在图2和3所示的实施例中,顶部连接组件1中的上述固定板14、第一活动板15、一对连接轴杆18和一对连接头16形成了本发明中的防自转机构,其中固定板14形成了第一连接部,第一活动板15形成了第二连接部。应当理解的是,根据需要,也可相应地增加、减少或替换防自转机构中的各个结构。
在一个优选的实施例中,如图4所示,弹性连接件132的旋转中心R2与连接头16的中间弹性层162的旋转中心R2在横向方向上对齐,即,处在同一高度上。通过这种设置,使得弹性连接件132和中间弹性层162所承载的应力和应变 较为均匀,由此可有效延长顶部连接组件的使用寿命。
另外,在固定板14上还可设置有吊装孔154。如果需要对顶部连接组件1中的各个结构进行更换和维护,可通过将吊装杆(未显示)连接在吊装孔154和塔架横梁91之间而暂时地将第二活动板15与塔筒9的顶部固定在一起。此时,可方便地更换和维护图2中的各个部件。
图21和图22显示了顶部连接组件1的另一个实施方案。在该方案中,第二活动板12和辅助连接件19替换为了一体式的U形的活动件71。也就是说,在该实施方案中,对于纵向承载机构来说,其活动连接构件为上球座131和活动件71。应当理解的是,该活动件71也可用于图2所示的实施例中。然而,相较于一体式的活动件71,彼此独立的第二活动板12和辅助连接件19更容易拆卸;相反,一体式的活动件71更易于安装。
另外,在图21和图22所示的实施方案中,防自转机构包括通过螺栓而与塔架横梁91固定连接的顶部固定件72。在该顶部固定件72内设置一对彼此间隔开的连接头16。一对彼此间隔开的连接轴杆18的上端分别插入到该一对连接头16内,下端纵向向下延伸至与活动件71固定连接。这种设置方便于将连接轴杆18设置得较长,与图2所示的实施例相比,这有利于使加重组件3的摆动更加灵活。然而,图2所示的结构有利于将两个连接轴杆18之间的距离设置得更大,从而更有利于避免加重组件3的自转的发生。
在图21和图22所示的实施例中,纵向承载机构与防自转结构也在结构上存在一定的对应关系。例如,活动件71既涉及纵向承载机构中的活动连接构件,也涉及防自转机构中的第二连接部。也就是说,图21和图22所示的实施例中也包含纵向轴承机构与防自转机构的有机结合。
图29-31显示了根据本发明的调谐质量阻尼装置100中的顶部连接组件1的另一个实施例。该实施例与图2-3中的实施例类似,其区别在于以下几个方面。
如图30所示,连接轴杆18的下端构造为膨胀锥端181,该膨胀锥端181从第一活动板15的一侧插入到第一活动板15内,并通过从第一活动板15的另一侧插入的第一螺钉301与第一活动板15相连。由此,可实现对连接轴杆18的预紧。在膨胀锥端181插入到第一活动板15内时,通过在第一活动板15的第一侧覆盖在膨胀锥端181上并与第一活动板15固定相连的压板302(例如通过螺钉)来将膨胀锥端181限制在第一活动板15内。由此,可进一步避免连接轴杆18与 第一活动板15之间的连接发生松动。
另外,如图30和31所示,固定板14上固定安装有轴承座200。如图30和图31所示,轴承座200可以包括轴承壳体210,以及设置在轴承壳体210内的填充体220。填充体220构造有朝向上方的弧形凹陷的第一轴承接合面221。应当理解的是,根据需要,填充体220与轴承壳体210也可以一体成型。
在该轴承座200之上的第二活动板之下设置有轴承滑块230。轴承滑块230构造有朝向下方的弧形凸起的第二轴承接合面231。第二轴承接合面231与第一轴承接合面221彼此接触配合,使得轴承滑块230能沿着该第一轴承接合面221进行滑动。
在如图31所示的优选实施例中,在第一轴承接合面221上设置有一个或多个耐磨片240。耐磨片240有利于提高轴承滑块230与轴承座200配合的有效性和持久性。对于设置耐磨片240的实施例来说,填充体220优选地由相对较软的金属材料制成(例如,铜),以便于贴设耐磨片240。轴承壳体210则可由相对较硬的金属材料制成,提供充足的保护能力。
还如图30和图31所示,轴承滑块230还构造有朝向上方的弧形凹陷的第三轴承接合面232。由此,轴承滑块230大体上形成为碗状。在轴承滑块230之上设置有限位板250。限位板250构造有朝向下方的弧形凸起的第四轴承接合面251。第四轴承接合面251与第三轴承接合面232相贴合,使得轴承滑块能沿该第四轴承接合面251进行滑动。也就是说,在限位板250与填充体220之间限定了一个弧形的滑动通道。轴承滑块230可以在该通道内相应地滑动。
在如图31所示的实施例中,填充体220和第一轴承接合面221构造为环形的。轴承滑块230也构造为环形的。从轴承壳体210的中部向上延伸形成连接凸起211。该连接凸起211穿过填充体220和轴承滑块230的中心,并与限位板250固定相连(例如通过螺钉)。环形的轴承滑块230的内径大于连接凸起211的外径。由此,可以通过轴承滑块230的内径与连接凸起211的外径限制轴承滑块230的滑动范围。
此外,还如图31所示,在轴承座200的轴承壳体210和填充体220上设置有润滑剂通道210P、220P,用于从轴承座200的外侧连通到第一轴承接合面221处,由此可通过润滑剂通道210P、220P而在第一轴承接合面221与第二轴承接合面231之间供应润滑剂。
图13和图14详细地显示了连杆2的结构。连杆2包括细长式的连接芯轴。连接芯轴可以为一个或多个螺杆23。例如在连杆2非常长的情况下,多个螺杆23可通过接头22而在纵向方向上续接在一起。螺杆23的上端与顶部连接组件1的第一活动板15螺纹连接,下端与加重组件3固定连接。可如图13所示,彼此平行地设置多个连接芯轴,以确保顶部连接组件1与加重组件3中间的连接的稳定性。作为替代,该连接芯轴也可以是钢丝绳或吊索等。另外,连杆2还包括套设在连接芯轴之外的外壳体21。外壳体21抵在顶部连接组件1与加重组件3之间,能够有效防止细长的连接芯轴弯曲。上述这种连杆2一方面可有效降低其本身的重量,另一方面能够进行稳固的连接。
图15和图16详细地显示了加重组件3的结构。加重组件3包括两个加重单元3A、3B,它们在纵向方向上彼此间隔开地排列。加重单元3A与连杆2的下端固定相连。加重单元3B通过连接杆34而与加重单元3A相连。连接杆34的结构与连杆2的结构类似,包括螺杆341和外壳体342。其具体的结构配合在此不加赘述。
加重单元3A包括沿横向方向延伸的托盘33,以及叠置在该托盘33上的一个或多个加重板31。连杆2可延伸至托盘33处,并与托盘33固定相连。加重板31可由两部分组成,它们包围式设置在连杆2的周围。这有利于在使用过程中增减加重板,从而便于调整加重单元的重量,以调节装置100的重心。加重板31可通过螺栓32而固定到托盘33上。
优选地,可在托盘33的下表面处与连接杆34相对应的位置设置相应的凹槽,从而在装配时可将连接杆34的上端插入该凹槽内,以便于定位。
类似地,加重单元3B包括托盘36和一个或多个加重板35。加重板35包围式设置在连接杆34的周围。如图16所示,连接杆34向下延伸至托盘36处,其中的螺杆341延伸穿过托盘36,并通过垫板343和螺母344而与托盘36固定连接。
应当理解的是,根据需要,也可仅设置一个加重单元,或者设置三个、四个或更多个加重单元。另外,根据需要,加重板可构造为矩形、圆形、三角形、或任意其他适当形状。在设置一个加重单元的情况下,碰撞机构4设置在该一个加重单元之下。在设置有三个或更多加重单元的情况下,可在其中两个加重单元之 间设置碰撞机构4。
如图15所示,还可在两个加重单元3A、3B之间设置碰撞机构4。图17和图18显示了该碰撞机构4的具体结构。
如图17所示,碰撞机构4包括由橡胶制成的缓冲弹性件44。该缓冲弹性件44构造为沿纵向方向延伸的柱状结构。缓冲弹性件44的上端与安装板42固定连接,下端与碰撞体45固定连接。安装板42通过螺栓43而连接到加重单元3A的托盘33上。在安装板42与托盘33之间可根据需要而加装一个或多个垫片41,以此来调节安装板42的高度,最终来实现调节碰撞体45所在的高度。
与碰撞体45相对应地,在塔筒9内设置相对于塔筒9固定的配合碰撞件46。配合碰撞件46例如可构造为环形的,碰撞体45被该配合碰撞件46所包围。碰撞体45的高度调节为与配合碰撞件46的高度相对应。在加重组件3进行摆动时,碰撞体45会随之一同摆动。当加重组件3和碰撞体45的摆动超过一定幅度时,碰撞体45可与配合碰撞件46碰撞在一起。此时,碰撞体45的摆动会受到阻止,然而在惯性作用下,加重组件3的摆动仍会继续,从而使缓冲弹性件44产生剪切变形。该剪切变形能耗散掉加重组件3继续摆动的能量,并使其向相反的方向产生力,以约束加重组件3的继续摆动。通过这种方式,有利于阻止加重组件3的摆动幅度进一步加大。
如图18所示,碰撞体45可构造为环状的,以使连接杆34能穿过其中以将两个加重单元3A、3B连接在一起。在连接杆34与碰撞体45之间留有一定间隔,以在碰撞体45停止摆动而连接杆34在惯性作用下继续摆动的情况下,为连接杆34的摆动预留空间。在连接杆34上可套设弹性垫48,以缓冲连接杆34与碰撞体45之间的可能的碰撞。作为替代或附加,也可在碰撞体45的内侧设置相应的弹性垫。
优选地,如图18所示,在配合碰撞件46的内侧设置弹性垫47,以缓冲配合碰撞件46与碰撞体45之间的碰撞。作为替代或附加,也可在碰撞体45的外侧设置相应的弹性垫。上述弹性垫47和48均可由较软的金属或者高分子材料(例如,纯铝或聚氨酯等)制成。
在一个优选的实施例中,可通过加重组件3而将装置100的重心调节至碰撞机构4处,尤其是碰撞体45处。由此,在碰撞体45与配合碰撞件46发生碰撞时,加重组件3的摆动能方便而有效地停下。
在图17所示的实施例中,设置有多个圆柱状的缓冲弹性件44。这些缓冲弹性件44彼此相邻地依次排列在环形的碰撞件46上,以形成环的形式。
图23和图24显示了作为另一个实施例的缓冲弹性件44’。该缓冲弹性件构造为一整体式的环形件。沿着该缓冲弹性件44’的环形延伸路径而设置有多个螺柱49。这些螺柱49可用于与安装板42和碰撞体45固定连接。与图17中的缓冲弹性件44的设置相比,这种缓冲弹性件44’的制造成本较高,但具有更高的刚度。
图25显示了作为另一个实施例的缓冲弹性件44”。缓冲弹性件44”构造为扇形体的一部分。多个缓冲弹性件44”可围成一整个圆环而固定设置在安装板42与碰撞体45之间。
图19显示了装置100的底部弹簧组件6的具体结构。底部弹簧组件6包括与托盘36固定连接并从托盘36处向下延伸的第一连接杆61,连接在第一连接杆61之下的第二连接杆62,以及连接在第二连接杆62与塔筒9的底壁92之间的底部弹性件(弹簧)63。第二连接杆62与弹簧63固定连接,而与第一连接杆61铰接。通过这种设置,在加重组件3摆动时,可调整加重组件3摆动的频率,从而使其与塔筒9的摆动频率完全匹配。
图20显示了底部弹簧组件6的另一种实施例。图20中的实施例与图19中的实施例的区别在于,在弹簧63与塔筒9的底壁92之间连接有第三连接杆64。第三连接杆64的一端与弹簧63固定连接,另一端与底壁92铰接。由此,弹簧63能够基本上仅产生沿其轴线方向上的变形。这有利于提高弹簧63的工作效率,并延长弹簧63的使用寿命。
此外,可在第二连接杆62的下端处设置第一安装盘65,在第三连接杆64的上端处设置第二安装盘66。弹簧63连接在该第一安装盘65和第二安装盘66之间。这允许在第一安装盘65与第二安装盘66之间设置多个彼此平行的弹簧63来形成弹簧组。该弹簧组可具有较高的轴向变形刚度。
另外,还可在第一连接杆61与塔筒9的侧壁之间设置沿横向方向延伸的阻尼器5,阻尼器5的两端分别与第一连接杆61和塔筒9铰接。在图19所示的实施例中,阻尼器5基本上沿水平方向延伸,由此而连接在塔筒9的侧壁上。在图20所示的实施例中,阻尼器5具有纵向方向的倾斜分量,由此而连接在塔筒9的底壁92上。
另外,在图19所示的实施例中,阻尼器5直接连接在第一连接杆61上。在 图20所示的实施例中,在第一连接杆61上安装有横向延伸板,阻尼器5通过铰接在该横向延伸板上而连接在第一连接杆61上。
优选地,可设置多个阻尼器5。例如,在图19中设置有2个阻尼器5。这两个阻尼器5在横向方向上的延伸方向彼此垂直。通过这种设置,更有利于调整装置100与塔筒9之间的相对摆动关系。另外,如图20所示,可设置3个阻尼器5。这三个阻尼器5彼此相差120°设置。图20中这种3个阻尼器倾斜设置的方式进一步有利于调整加重组件3摆动的频率。
虽然已经参考优选实施例对本发明进行了描述,但在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (20)

  1. 一种调谐质量阻尼装置(100),包括:
    连杆(2),所述连杆沿着纵向方向延伸;
    加重组件(3),所述加重组件连接在所述连杆的下端处;以及
    顶部连接组件(1),所述顶部连接组件连接在所述连杆的上端与塔筒(9)的塔架横梁(91)之间,并包括防自转机构,所述防自转机构包括:
    横向延伸的固定板(14),所述固定板通过纵向延伸的支撑件(11)与所述塔架横梁固定相连;
    横向延伸的第一活动板(15),所述第一活动板设置在所述固定板之下,并与所述连杆的上端固定相连;
    一对连接轴杆(18),所述一对连接轴杆相对间隔开设置,所述一对连接轴杆中的每一个均沿纵向方向延伸,所述连接轴杆的下端与所述第一活动板固定相连,所述连接轴杆的上端插入到所述固定板内,并通过连接头(16)而与所述固定板相连;以及
    所述连接头,所述连接头包括与所述固定板相连的外套件(163),套设在所述外套件内的与所述连接轴杆相连的内套件(161),以及设置在所述内套件和所述外套件之间的中间弹性层(162)。
  2. 根据权利要求1所述的调谐质量阻尼装置,其特征在于,所述外套件的内侧面和/或所述内套件的外侧面构造为拱形表面,所述拱形表面的中间部分径向向外凸出。
  3. 根据权利要求1所述的调谐质量阻尼装置,其特征在于,所述顶部连接组件还包括外安装套(17),所述连接头通过所述外安装套而与所述固定板相连,所述外安装套构造为能预先挤压式套设在所述外套件之外,以使所述连接头的中间弹性层预压缩,和/或
    所述顶部连接组件还包括内安装套(81),所述连接头通过所述内安装套而与所述连接轴杆相连,所述内安装套构造为能预先挤压式套设在所述内套件之内,以使所述连接头的中间弹性层预压缩。
  4. 根据权利要求1所述的调谐质量阻尼装置,其特征在于,所述连接轴杆的下端构造为膨胀锥端(181),所述膨胀锥端从所述第一活动板的第一侧插入 到所述第一活动板内,并通过位于所述第一活动板的第二侧的第一螺钉(301)与所述第一活动板固定相连,在所述第一活动板的第一侧上固定连接有压板(302),所述压板构造为覆盖所述膨胀锥端。
  5. 根据权利要求1所述的调谐质量阻尼装置,其特征在于,在所述连接轴杆与所述连接头的内套件之间设置有间隙,或设置有直线轴承或耐磨材料体(82),使得所述连接轴杆能相对于所述连接头的内套件在轴向方向上滑动。
  6. 根据权利要求1到5中任一项所述的调谐质量阻尼装置,其特征在于,所述顶部连接组件包括纵向承载机构,所述纵向承载机构包括:
    固定连接构件,所述固定连接构件包括所述固定板,以及设置在所述固定板上的下球座(133),所述下球座构造有朝向上方的凸起的弧形的固定接合面(133S);
    活动连接构件,所述活动连接构件包括设置在所述固定连接构件之上并与所述固定连接构件间隔开的第二活动板(12),以及设置在所述第二活动板之下的上球座(131),所述上球座构造有朝向下方的凹陷的弧形的活动接合面(131S),所述第二活动板通过纵向延伸的辅助连接件(19)与所述第一活动板固定相连;以及
    弹性连接件(132),所述弹性连接件设置在所述固定接合面与所述活动接合面之间,所述弹性连接件具有与所述固定接合面和活动接合面相匹配的形状。
  7. 根据权利要求6所述的调谐质量阻尼装置,其特征在于,弧形的所述固定接合面在中心处具有沿横向方向延伸的平面部分,和/或
    弧形的所述活动接合面在中心处具有沿横向方向延伸的平面部分。
  8. 根据权利要求6所述的调谐质量阻尼装置,其特征在于,在所述弹性连接件的边缘处设置有第二凹陷部分,所述第二凹陷部分构造为在纵向方向上受载时至少部分地闭合。
  9. 根据权利要求6所述的调谐质量阻尼装置,其特征在于,在所述弹性连接件内嵌设有金属隔板,
    所述金属隔板在整个所述弹性连接件内延伸,或者所述金属隔板仅设置在所述弹性连接件的边缘处而不延伸至所述弹性连接件的中心处。
  10. 根据权利要求1到5中任一项所述的调谐质量阻尼装置,其特征在于,所述顶部连接组件包括纵向承载机构,所述纵向承载机构包括:
    固定连接构件,所述固定连接构件包括所述固定板,以及设置在所述固定板上的轴承座(200),所述轴承座构造有朝向上方的弧形凹陷的第一轴承接合面(221);
    活动连接构件,所述活动连接构件包括设置在所述固定连接构件之上的第二活动板(12),以及设置在所述第二活动板之下的轴承滑块(230),所述轴承滑块构造有朝向下方的弧形凸起的第二轴承接合面(231),所述第二轴承接合面与所述第一轴承接合面彼此接触,使得所述轴承滑块能沿着所述轴承座的第一轴承接合面进行滑动。
  11. 根据权利要求10所述的调谐质量阻尼装置,其特征在于,在所述第一轴承接合面上设置有一个或多个耐磨片(240)。
  12. 根据权利要求10所述的调谐质量阻尼装置,其特征在于,所述轴承滑块还构造有朝向上方的弧形凹陷的第三轴承接合面(232),
    所述纵向轴承机构还包括设置在所述轴承滑块之上的限位板(250),所述限位板构造有朝向下方的弧形凸起的第四轴承接合面(251),所述第四轴承接合面与所述第三轴承接合面相贴合,使得所述轴承滑块能沿着所述限位板的第四轴承接合面进行滑动;
    其中,所述第一轴承接合面构造为环形的,所述轴承座还构造有从环形的轴承接合面中间向上延伸的连接凸起(211),所述轴承滑块构造为环形的,所述连接凸起延伸穿过所述轴承滑块与所述限位板固定相连,环形的轴承滑块的内径大于所述连接凸起的外径,通过所述轴承滑块的内径与所述连接凸起的外径限制所述轴承滑块的滑动范围。
  13. 根据权利要求10所述的调谐质量阻尼装置,其特征在于,所述轴承座构造有从所述轴承座的外表面延伸至所述第一轴承接合面处的润滑剂通道(210P,220P),用于向所述第一轴承接合面与第二轴承接合面之间供应润滑剂。
  14. 根据权利要求1到5中任一项所述的调谐质量阻尼装置,其特征在于,所述连杆包括:
    连接芯轴(23),所述连接芯轴连接在所述顶部连接组件与所述加重组件之间,所述连接芯轴构造为细长的,以降低其重量;以及
    外壳体(21),所述外壳体沿纵向方向延伸以抵在所述顶部连接组件与所述加重组件之间,所述外壳体包围所述连接芯轴。
  15. 根据权利要求1到5中任一项所述的调谐质量阻尼装置,其特征在于,所述加重组件包括至少两个加重单元(3A,3B),所述至少两个加重单元在纵向方向上彼此间隔开,在所述至少两个加重单元中的其中两个之间设置有碰撞机构(4),所述碰撞机构构造为与安装在所述塔筒内的配合碰撞件(46)相对应,以能够相互碰撞,所述至少两个加重单元构造为能将所述调谐质量阻尼装置的重心调节到所述碰撞机构处,
    所述碰撞机构包括:
    碰撞体(45),所述碰撞体套设在构造为环状的所述配合碰撞件内;以及
    缓冲弹性件(44),所述缓冲弹性件连接在所述碰撞体和位于所述碰撞体之上的加重单元之间,所述缓冲弹性件构造为沿纵向方向延伸的柱状弹性件。
  16. 根据权利要求15所述的调谐质量阻尼装置,其特征在于,在所述碰撞体和所述配合碰撞件之间设置有弹性垫(47),所述弹性垫由比所述碰撞体软的金属或者高分子材料制成。
  17. 根据权利要求15所述的调谐质量阻尼装置,其特征在于,所述加重单元包括沿横向方向延伸的托盘(36),以及叠置在所述托盘上的一个或多个加重板(35)。
  18. 根据权利要求1到5中任一项所述的调谐质量阻尼装置,其特征在于,所述调谐质量阻尼装置还包括设置在所述加重组件之下的底部弹簧组件(6),所述底部弹簧组件包括沿纵向方向延伸并连接在所述塔筒的底壁(92)与所述加重组件之间的底部弹性件(63)。
  19. 根据权利要求18所述的调谐质量阻尼装置,其特征在于,所述底部弹簧组件还包括:
    第一连接杆(61),所述第一连接杆从所述加重组件处沿纵向方向向下延伸;以及
    第二连接杆(62),所述第二连接杆沿纵向方向延伸,所述第二连接杆的上端与所述第一连接杆铰接,所述第二连接杆的下端与所述底部弹性件相连。
  20. 根据权利要求19所述的调谐质量阻尼装置,其特征在于,所述底部弹簧组件还包括连接在所述底部弹性件与所述塔筒的底壁之间的第三连接杆(64),所述第三连接杆与所述塔筒的底壁铰接。
PCT/CN2020/115954 2019-09-20 2020-09-17 调谐质量阻尼装置 WO2021052427A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/753,858 US20220333661A1 (en) 2019-09-20 2020-09-17 Tuned mass damping device
EP20865482.2A EP4033094B1 (en) 2019-09-20 2020-09-17 Tuned mass damping device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910891522.8A CN110805529B (zh) 2019-09-20 2019-09-20 调谐质量阻尼装置
CN201910891522.8 2019-09-20
CN201910891779.3 2019-09-20
CN201910891779.3A CN110805530B (zh) 2019-09-20 2019-09-20 调谐质量阻尼装置

Publications (1)

Publication Number Publication Date
WO2021052427A1 true WO2021052427A1 (zh) 2021-03-25

Family

ID=74883376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115954 WO2021052427A1 (zh) 2019-09-20 2020-09-17 调谐质量阻尼装置

Country Status (3)

Country Link
US (1) US20220333661A1 (zh)
EP (1) EP4033094B1 (zh)
WO (1) WO2021052427A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1008747A2 (de) * 1998-12-08 2000-06-14 Franz Mitsch Schwingungstilger für Windkraftanlagen
CN103306394A (zh) * 2013-06-28 2013-09-18 山东大学 一种混合型双向可调式减振器
CN105756219A (zh) * 2016-05-09 2016-07-13 福州大学 水平双向粘弹性碰撞调谐质量阻尼器系统及其工作方法
CN107620675A (zh) * 2017-08-31 2018-01-23 新疆金风科技股份有限公司 阻尼器的悬吊结构、塔筒缓冲装置、塔筒及风力发电机组
CN207315575U (zh) * 2017-10-26 2018-05-04 北京金风科创风电设备有限公司 塔筒及风力发电机组
CN207974602U (zh) * 2018-01-18 2018-10-16 广东电网有限责任公司电力科学研究院 一种风力机塔架调谐质量阻尼器
CN110805529A (zh) * 2019-09-20 2020-02-18 株洲时代新材料科技股份有限公司 调谐质量阻尼装置
CN110805530A (zh) * 2019-09-20 2020-02-18 株洲时代新材料科技股份有限公司 调谐质量阻尼装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1008747A2 (de) * 1998-12-08 2000-06-14 Franz Mitsch Schwingungstilger für Windkraftanlagen
CN103306394A (zh) * 2013-06-28 2013-09-18 山东大学 一种混合型双向可调式减振器
CN105756219A (zh) * 2016-05-09 2016-07-13 福州大学 水平双向粘弹性碰撞调谐质量阻尼器系统及其工作方法
CN107620675A (zh) * 2017-08-31 2018-01-23 新疆金风科技股份有限公司 阻尼器的悬吊结构、塔筒缓冲装置、塔筒及风力发电机组
CN207315575U (zh) * 2017-10-26 2018-05-04 北京金风科创风电设备有限公司 塔筒及风力发电机组
CN207974602U (zh) * 2018-01-18 2018-10-16 广东电网有限责任公司电力科学研究院 一种风力机塔架调谐质量阻尼器
CN110805529A (zh) * 2019-09-20 2020-02-18 株洲时代新材料科技股份有限公司 调谐质量阻尼装置
CN110805530A (zh) * 2019-09-20 2020-02-18 株洲时代新材料科技股份有限公司 调谐质量阻尼装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4033094A4 *

Also Published As

Publication number Publication date
US20220333661A1 (en) 2022-10-20
EP4033094A1 (en) 2022-07-27
EP4033094B1 (en) 2024-01-31
EP4033094C0 (en) 2024-01-31
EP4033094A4 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
CN110805529B (zh) 调谐质量阻尼装置
CN110805530B (zh) 调谐质量阻尼装置
KR100692956B1 (ko) 구조물 지지장치 및 이를 위한 탄성기구
US6095257A (en) Hydraulic hammer having buffer assembly
US20070069434A1 (en) Vibration damping device
TW200928148A (en) Spring assembly
CN110835886A (zh) 桥墩减震装置
WO2021052427A1 (zh) 调谐质量阻尼装置
CN109166635B (zh) 用于多容器系统的一体化整体支承装置
CN113463784A (zh) 一种竖向隔震装置
CN110056603A (zh) 一种外镶式行星滚柱丝杠-橡胶复合减振器
CN113503336B (zh) 一种恒准零刚度隔振器
US20070164492A1 (en) Vibration mounting
CN101865430A (zh) 一种减振器及包括该减振器的灯具
CN216242026U (zh) 一种减振限位装置及设置其的机械设备
CN202047948U (zh) 一种两叶片风力发电机组翘板轮毂用弹性元件
CN213512695U (zh) 一种lng泵的减震底座
CN105041960B (zh) 包含调节平台的减振器
CN210440161U (zh) 调质阻尼风电塔架
CN210566009U (zh) 一种建筑机电设备减震连接装置
CN209989690U (zh) 大跨桥梁复合型多方向抗风抗震减振器
CN109243628B (zh) 用于多容器系统的多点支承装置
CN208472560U (zh) 一种单元式大转角阻尼减震多向变位桥梁伸缩装置
WO2019232975A1 (zh) 阻尼器限位装置、塔筒及风力发电机组
CN219824884U (zh) 一种调谐质量阻尼器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020865482

Country of ref document: EP

Effective date: 20220420