WO2021052332A1 - 一种风水冷一体式制冷系统 - Google Patents

一种风水冷一体式制冷系统 Download PDF

Info

Publication number
WO2021052332A1
WO2021052332A1 PCT/CN2020/115367 CN2020115367W WO2021052332A1 WO 2021052332 A1 WO2021052332 A1 WO 2021052332A1 CN 2020115367 W CN2020115367 W CN 2020115367W WO 2021052332 A1 WO2021052332 A1 WO 2021052332A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
cooled
air
condenser
refrigeration system
Prior art date
Application number
PCT/CN2020/115367
Other languages
English (en)
French (fr)
Inventor
杜嵘
Original Assignee
杜嵘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杜嵘 filed Critical 杜嵘
Publication of WO2021052332A1 publication Critical patent/WO2021052332A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the utility model relates to the field of refrigeration, in particular to a wind-water cooling integrated refrigeration system.
  • the purpose of the utility model is to provide a wind-water-cooled integrated refrigeration system, which improves the problem of wasting heat energy when the existing refrigeration system releases heat, and some of the heat recovery systems have limited heat recovery.
  • the present invention provides an integrated air-water-cooled refrigeration system.
  • the integrated air-water-cooled refrigeration system includes a compressor, an air-cooled condenser, a water-cooled condenser, a liquid storage tank, a solenoid valve, and a throttling device. , Evaporator and pressure type water valve,
  • the output ends of the compressor are respectively connected to the refrigerant input ends of a water-cooled condenser and an air-cooled condenser, and the refrigerant output ends of the water-cooled condenser and the air-cooled condenser are both connected to the input end of the liquid storage tank,
  • the output end of the liquid storage tank is connected to the input end of the solenoid valve, the output end of the solenoid valve is connected to the input end of the throttle device, and the output end of the throttle device is connected to the input end of the evaporator ,
  • the output end of the evaporator is connected to the input end of the compressor;
  • the pressure-type water control valve is connected to the refrigerant channel of the water-cooled condenser, the water input end of the pressure-type water control valve is connected to the water inlet end, and the water output end is connected to the water input end of the water-cooled condenser.
  • the water output end of the device is connected to the water outlet.
  • the water-cooled condenser and the air-cooled condenser are integrated into a wind-water-cooled integrated condenser, the water-cooled condensing unit adopts a tube heat exchanger, and the tube heat exchanger adopts a plurality of U connected in series.
  • the U-shaped heat exchange sleeve includes an inner tube and an outer tube sleeved outside the inner tube.
  • the outer tube is connected to the refrigerant input end and the output end of the air-water-cooled integrated condenser, so
  • the inner pipe is connected to the water input end and the output end of the wind-water-cooled integrated condenser.
  • the air-cooled condenser includes heat dissipation fins and a fan, the plurality of U-shaped heat exchange sleeves connected in series are embedded in the heat dissipation fins, and the fan is arranged on one side of the heat dissipation fins.
  • the air-water-cooled integrated refrigeration system is also connected to a water system unit connected to the water output end of the water-cooled condenser, the water system unit includes a warm water reservoir, and the water-cooled condenser The water output end of the device is connected to the warm water reservoir, and the warm water reservoir is connected to the hot water user end.
  • the warm water reservoir is connected to one or more auxiliary heating devices in parallel.
  • the wind-water-cooled integrated refrigeration system includes a plurality of water-cooled condensers connected in parallel.
  • the water-cooled condenser adopts a double tube heat exchanger.
  • the tube-in-tube heat exchanger adopts a plurality of U-shaped heat exchange sleeves connected in series, and the U-shaped heat exchange sleeve includes an inner tube and an outer tube sleeved outside the inner tube.
  • the outer pipe is connected to the refrigerant input end and the output end of the water-cooled condenser
  • the inner pipe is connected to the water input end and the output end of the water-cooled condenser
  • the air-water-cooled integrated refrigeration system includes an air-cooled condenser and a water-cooled condenser.
  • an air-cooled condenser By heating the tap water input from the water-cooled condenser end with the heat of the refrigeration system, all the heat is recovered. The problem of wasting heat energy when the existing refrigeration system releases heat is improved.
  • the utility model recovers all heat and can provide hot water for users to use.
  • users can choose one of air-cooled condensers and water-cooled condensers to use according to their needs. In this way, when hot water is not needed, air-cooled condensation is used to avoid water waste.
  • water-cooled condensers are used. When the cooling effect is good and hot water is needed, the air-cooled condenser and the water-cooled condenser are turned on at the same time.
  • Fig. 1 is a schematic diagram of the structure of an air-water-cooled integrated refrigeration system provided by the first embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of a wind-water-cooled integrated refrigeration system provided by a second embodiment of the present invention.
  • the first embodiment of the present invention provides a wind-water-cooled integrated refrigeration system.
  • the wind-water-cooled integrated refrigeration system includes a compressor 10, an air-cooled condenser 12, a water-cooled condenser 11, and a liquid storage tank 13. , Solenoid valve 14, throttle device 15, evaporator 16, and pressure type water valve 17.
  • the output ends of the compressor 10 are respectively connected to the refrigerant input ends of the water-cooled condenser 11 and the air-cooled condenser 12, and the refrigerant output ends of the water-cooled condenser 11 and the air-cooled condenser 12 are both connected to the liquid storage
  • the input end of the tank 13, the output end 13 of the liquid storage tank 13 is connected to the input end of the solenoid valve 14, the output end of the solenoid valve 14 is connected to the input end of the throttle device 15, the throttle device
  • the output end of 15 is connected to the input end of the evaporator 16, and the output end of the evaporator 16 is connected to the input end of the compressor 10.
  • the input end of the pressure-type water control valve 17 is connected to the water inlet end, the output end is connected to the water input end of the water-cooled condenser 11, and the water output end of the water-cooled condenser 11 is connected to the water outlet end.
  • the evaporator 16, the condenser (including the air-cooled condenser 12 and the water-cooled condenser 11), the compressor 10, and the throttling device 15 in the refrigeration system are the four essential parts in the refrigeration system, of which the evaporator 16 It is a device for conveying cold capacity.
  • the refrigerant absorbs the heat of the object to be cooled to achieve cooling.
  • the compressor 10 is the heart, and plays the role of inhaling, compressing, and transporting refrigerant vapor.
  • the condenser is a device that emits heat, and transfers the heat absorbed in the evaporator 16 together with the heat converted by the work of the compressor 10 to the cooling medium (feng shui) to take away.
  • the throttling device 15 has a throttling and pressure reduction effect on the refrigerant, simultaneously controls and regulates the amount of refrigerant (liquid) flowing into the evaporator 16, and divides the system into two parts, a high-pressure side and a low-pressure side.
  • the tap water is controlled by the pressure type water valve 17 and the water is heated by the water-cooled condenser 11 in the process of condensing the refrigerant.
  • the pressure type water control valve 17 adjusts the size of the water valve switch according to the condensing pressure (mainly used in small refrigeration equipment) according to the change of the condensing pressure to adjust the size of the water valve switch, thereby adjusting the flow of cooling water.
  • the pressure-type water control valve 17 adjusts the valve to automatically open, so that more cooling water enters the water-cooled condenser 11 to accelerate the condensation speed.
  • the pressure-type water control valve 17 is automatically closed to reduce the cooling water supply.
  • the refrigerant (refrigerant) medium keep the condensing pressure within a specific range.
  • the water-cooled condenser 11 adopts a tube heat exchanger, which adopts a plurality of U-shaped heat exchange tubes connected in series, and the U-shaped heat exchange tube includes an inner tube and An outer tube set outside the inner tube.
  • the outer pipe is connected to the refrigerant input end and the output end of the water-cooled condenser 11.
  • the refrigerant enters from the refrigerant input end, enters the outer pipe, and is output through the refrigerant output end.
  • the refrigerant runs through the outer tube, with less resistance and better patency, thereby avoiding the impact on the refrigeration system.
  • the inner pipe is connected to the water input end and the output end of the water-cooled condenser 11. Tap water enters from the water input end, enters the inner pipe, and is output through the water output end.
  • the refrigerant flows through the outer tube and the water flows through the inner tube, thereby realizing heat exchange in the sleeve.
  • the higher temperature refrigerant enters the outer tube, undergoes heat exchange (heat exchange between the inner and outer tubes), and becomes a lower temperature refrigerant when it is output from the outer tube.
  • the water with lower temperature enters the inner pipe, undergoes heat exchange (heat exchange between the inner and outer pipes), and becomes hot water with higher temperature when it is output from the inner pipe.
  • the air-water-cooled integrated refrigeration system further includes a condensation switching device, which is connected to the compressor 10, the air-cooled condenser 12, and the water-cooled condenser 11 respectively, and uses The condensation switching device is switched to the water-cooled condenser 11 (the refrigerant passage from the compressor 10 to the air-cooled condenser 12 is closed), and the water-cooled condenser 11 performs condensation.
  • the condensation switching device is used to switch to the air-cooled condenser 12 (the refrigerant passage from the compressor 10 to the water-cooled condenser 11 is closed), and the air-cooled condenser 12 condenses.
  • the air-water-cooled integrated refrigeration system is also connected to a water system unit, and the water system unit is connected to the water output end of the water-cooled condenser 11.
  • the water system unit includes a warm water reservoir, the water output end of the water-cooled condenser 11 is connected to the warm water reservoir, and the warm water reservoir is connected to a hot water user end.
  • the warm water reservoir is connected to one or more auxiliary heating devices in parallel.
  • the air-water-cooled integrated refrigeration system includes a plurality of water-cooled condensers connected in parallel. Stand-alone or in parallel for full heat recovery treatment.
  • Fig. 2 is the structure of the air-water-cooled integrated refrigeration system provided by the second embodiment of the present invention.
  • the air-water-cooled integrated refrigeration system includes:
  • the compressor 10 the wind-water-cooled integrated condenser 20, the liquid storage tank 13, the solenoid valve 14, the throttling device 15, the evaporator 16, and the pressure type water control valve 17.
  • the output end of the compressor 10 is respectively connected to the refrigerant input end of the air-water-cooled integrated condenser 20, and the refrigerant output end of the air-water-cooled integrated condenser 20 is connected to the input end of the liquid storage tank 13, so
  • the output end of the liquid storage tank 13 is connected to the input end of the solenoid valve 14, the output end of the solenoid valve 14 is connected to the input end of the throttling device 15, and the output end of the throttling device 15 is connected to the evaporator.
  • the input end of the evaporator 16 and the output end of the evaporator 16 are connected to the input end of the compressor 10.
  • the refrigerant circulation is as follows: from the liquid storage tank 13 through the solenoid valve 14, the throttling device 15, the evaporator 16 to the compressor 10, and then from the compressor to the wind-water-cooled integrated condenser 20, and finally back to the liquid storage tank 13.
  • the input end of the pressure type water control valve 17 is connected to the water inlet end (for example, the tap water end), the output end is connected to the water input end of the air-water-cooled integrated condenser 20, and the water output end of the air-water-cooled integrated condenser 20 is connected Outlet.
  • the evaporator 16, wind-water-cooled integrated condenser 20, compressor 10, and throttling device 15 in the refrigeration system are the four essential parts in the refrigeration system.
  • the evaporator 16 is a device for conveying cold energy.
  • the refrigerant absorbs the heat of the object to be cooled to achieve cooling.
  • the compressor 10 is the heart, and plays the role of inhaling, compressing, and transporting refrigerant vapor.
  • the condenser is a device that emits heat, and transfers the heat absorbed in the evaporator 16 together with the heat converted by the work of the compressor 10 to the cooling medium (feng shui) to take away.
  • the throttling device 15 has a throttling and pressure reduction effect on the refrigerant, simultaneously controls and regulates the amount of refrigerant (liquid) flowing into the evaporator 16, and divides the system into two parts, a high-pressure side and a low-pressure side.
  • the tap water is controlled by the pressure type water valve 17 and the water is heated by the water-cooled condenser 11 in the process of condensing the refrigerant.
  • the pressure-type water valve 17 is also connected to the refrigerant passage of the air-water-cooled integrated condenser 20, and adjusts the size of the water valve switch according to the current condensation pressure of the refrigerant in the air-water-cooled integrated condenser 20, thereby adjusting the cooling The flow of water.
  • the pressure-type water valve 17 adjusts the valve to automatically open, so that more cooling water enters the wind-water-cooled integrated condenser 20. Speed up the condensation rate.
  • the pressure-type water control valve 17 is automatically closed to reduce the incoming cooling water.
  • the refrigerant (refrigerant) medium keep the condensing pressure within a specific range.
  • the air-water-cooled integrated condenser integrates an air-cooled condensing unit and a water-cooled condensing unit.
  • the water-cooled condensing unit adopts a double-pipe heat exchanger, and the double-pipe heat exchanger adopts multiple A U-shaped heat exchange sleeve connected in series, the U-shaped heat exchange sleeve includes an inner tube and an outer tube sleeved outside the inner tube.
  • the outer pipe is connected to the refrigerant input end and the output end of the air-water-cooled integrated condenser 20.
  • the refrigerant is input from the refrigerant input end of the air-water-cooled integrated condenser 20, enters the outer pipe, and is then condensed by the air-water-cooled integrated condenser.
  • the refrigerant output end of the device 20 is output.
  • the refrigerant runs through the outer tube, with less resistance and better patency, thereby avoiding the impact on the refrigeration system.
  • the inner pipe is connected to the water input end and the output end of the wind-water-cooled integrated condenser 20. Tap water enters from the water input end, enters the inner pipe, and is output through the water output end.
  • An air-cooled condensing unit is embedded outside the water-cooled condensing unit.
  • the air-cooled condensing unit includes heat dissipation fins and a fan, a plurality of U-shaped heat exchange sleeves connected in series are embedded in the heat dissipation fins, and the fan is arranged on one side of the heat dissipation fins.
  • the refrigerant flows from the liquid storage tank 13 through the solenoid valve 14,
  • the throttling device 15 and the evaporator 16 reach the compressor 10.
  • the refrigerant enters the outer tube of a plurality of U-shaped heat exchange sleeves in series, and passes through the radiating fins embedded in the outer tube and is installed in the outer tube.
  • the fan on one side of the radiating fins takes away the heat of the outer tube, so that the refrigerant achieves the purpose of cooling down.
  • the pressure type water control valve 17 is connected to the refrigerant channel of the air-water-cooled integrated condenser 20 (that is, connected to the outer tube), the water valve switch is adjusted according to the current condensation pressure of the refrigerant in the air-water-cooled integrated condenser 20 And then adjust the flow of cooling water.
  • the cooling water in the inner tube and the refrigerant in the outer tube exchange heat, so as to achieve the purpose of cooling the refrigerant.
  • the water with a lower temperature enters the inner tube and undergoes heat exchange (heat exchange between the inner and outer tubes).
  • heat exchange between the inner and outer tubes When the inner tube is output, it becomes hot water with a higher temperature for users to use. This not only completes the refrigeration, but also recovers the heat in the refrigeration process.
  • the refrigerant When the user needs an integrated air-water-cooled condenser (mode) (for example, the customer wants to use hot water, or when the cooling effect of a single air-cooled condenser or a single water-cooled condenser is not satisfactory), turn on the air-cooled condenser switch (fan switch) ), turn on the water switch at the water inlet (such as a tap water switch), the refrigerant will reach the compressor 10 from the liquid storage tank 13 through the solenoid valve 14, the throttling device 15, and the evaporator 16. After the compressor 10 is output, the refrigerant enters The outer tube of a plurality of U-shaped heat exchange sleeves connected in series.
  • mode for example, the customer wants to use hot water, or when the cooling effect of a single air-cooled condenser or a single water-cooled condenser is not satisfactory
  • the air-cooled condenser switch fan switch
  • the water switch at the water inlet such as a tap water switch
  • the pressure type water control valve 17 is connected to the refrigerant channel of the air-water-cooled integrated condenser 20 (that is, connected to the outer tube), the water valve switch is adjusted according to the current condensation pressure of the refrigerant in the air-water-cooled integrated condenser 20 And then adjust the flow of cooling water.
  • the cooling water in the inner tube and the refrigerant in the outer tube for heat exchange on the other hand, through the radiating fins embedded in the outer tube and a fan installed on one side of the radiating fins, the outer tube The heat is taken away, so as to achieve the purpose of double cooling of the refrigerant, and the cooling effect is good.
  • the water with a lower temperature enters the inner tube and undergoes heat exchange (heat exchange between the inner and outer tubes).
  • heat exchange heat exchange between the inner and outer tubes.
  • the inner tube When the inner tube is output, it becomes hot water with a higher temperature for users to use. Thus, a good refrigeration effect is achieved and the heat in the refrigeration process is recovered.
  • the air-water-cooled integrated refrigeration system is also connected with a water system unit, and the water system unit is connected to the water output end of the air-water-cooled integrated condenser 20.
  • the water system unit includes a warm water reservoir, a water output end of the wind-water-cooled integrated condenser 20 is connected to the warm water reservoir, and the warm water reservoir is connected to a hot water user end.
  • the warm water reservoir is connected to one or more auxiliary heating devices in parallel.
  • the air-water-cooled integrated refrigeration system includes a plurality of air-water-cooled integrated condensers 20 connected in parallel. Stand-alone or parallel connection for full heat recovery treatment.
  • the main function of the unit is refrigeration. While ensuring refrigeration, it converts the released heat into thermal energy and effectively utilizes the discharged heat, thus achieving the purpose of heating water. In a macroscopic sense, it reduces the "heat island effect" on the earth. From the energy point of view, the limited energy is used to the extreme.

Abstract

一种风水冷一体式制冷系统,该风水冷一体式制冷系统包括风冷冷凝器(12)以及水冷冷凝器(11)。通过将制冷系统的热量对水冷冷凝器(11)端输入的自来水进行加热,从而实现了热量的全部回收。改善了现有的制冷系统放热时,浪费热能的问题。回收全部热量,并且能够提供热水供用户使用。同时,用户可以根据需求,选择风冷冷凝器、水冷冷凝器之一使用。

Description

一种风水冷一体式制冷系统 技术领域
本实用新型涉及制冷领域,具体而言,涉及一种风水冷一体式制冷系统。
背景技术
目前,传统制冷设备的冷源大多为压缩式制冷机组。这种传统的冷源在消耗电能,输出冷冻水的同时,放出非常可观的废热量,向室外排放。
大型冷冻系统一般采用直接排放或者采用部分热回收。部分热回收通常只利用压缩机出口的蒸汽热量,蒸汽热量一般占全部冷凝热的15﹪左右,其它的冷凝热在冷凝器中被风机带走。
实用新型内容
本实用新型的目的在于提供一种风水冷一体式制冷系统,改善了现有的制冷系统放热时,浪费热能,而部分有热回收系统,其回收热量有限的问题。
为解决上述问题,本实用新型在于提供一种风水冷一体式制冷系统,所述风水冷一体式制冷系统包括压缩机、风冷冷凝器、水冷冷凝器、储液罐、电磁阀、节流装置、蒸发器以及压力式制水阀,
所述压缩机的输出端分别与水冷冷凝器、风冷冷凝器的制冷剂输入端相连,所述水冷冷凝器、风冷冷凝器的制冷剂输出端均连接所述储液罐的输入端,所述储液罐的输出端连接所述电磁阀的输入端,所述电磁阀的输出端连接所述节流装置的输入端,所述节流装置的输出端连接所述蒸发器的输入端,所述蒸发器的输出端连接所述压缩机的输入端;
所述压力式制水阀连通所述水冷冷凝器的制冷剂通道,所述压力式制水阀的水输入端连接进水端,水输出端连接水冷冷凝器的水输入端,所述水冷冷凝器的水输出端连接出水端。
进一步地,所述水冷冷凝器、风冷冷凝器一体集成为风水冷一体式冷凝器,所述水冷冷凝单元采用套管式换热器,所述套管式换热器采用多个串联的U型换热套管,所述U型换热套管包括内管以及套于内管外部的外管,所述外管连接所述风水冷一体式冷凝器的制冷剂输入端及输出端,所述内管连接风水冷一体式冷凝器的水输入端及输出端。
进一步地,所述风冷冷凝器包括散热鳍片以及风扇,所述多个串联的U型换热套管嵌入所述散热鳍片,所述风扇设置于所述散热鳍片的一侧。
进一步地,所述风水冷一体式制冷系统还连接有水系统单元,所述水系统单元连接于所述水冷冷凝器的水输出端,所述水系统单元包括温水储水器,所述水冷冷凝器的水输出端连接所述温水储水器,所述温水储水器连接热水用户端。
进一步地,所述温水储水器并联连接一台或数台辅助加热装置。
进一步地,所述风水冷一体式制冷系统包括多个并联的水冷冷凝器。
进一步地,所述水冷冷凝器采用套管式换热器。
进一步地,所述套管式换热器采用多个串联的U型换热套管,所述U型换热套管包括内管以及套于内管外部的外管。
进一步地,所述外管连接水冷冷凝器的制冷剂输入端、输出端,所述内管连接水冷冷凝器的水输入端、输出端。
在本实用新型中,该风水冷一体式制冷系统包括风冷冷凝器以及水冷冷凝器。通过将制冷系统的热量对水冷冷凝器端输入的自来水进行加热,从而实现了热量的全部回收。改善了现有的制冷系统放热时,浪费热能的问题。对于部分热回收的装置,本实用新型回收全部热量,并且能够提供热水供用户使用。同时,用户可以根据需求,选择风冷冷凝器、水冷冷凝器之一使用,这样,不需要热水时,就使用风冷冷凝,避免浪费水,需要热水时,使用水冷冷凝器。需要制冷效果好且需要热水时,同时开启风冷冷凝器及水冷冷凝器。
附图说明
图1是本实用新型第一实施例提供的风水冷一体式制冷系统结构示意图;
图2是本实用新型第二实施例提供的风水冷一体式制冷系统结构示意图。
具体实施方式
下面通过具体的实施例并结合附图对本实用新型做进一步的详细描述。
参阅图1,本实用新型第一实施例提供了一种风水冷一体式制冷系统,所述风水冷一体式制冷系统包括压缩机10、风冷冷凝器12、水冷冷凝器11、储液罐13、电磁阀14、节流装置15、蒸发器16以及压力式制水阀17。
所述压缩机10的输出端分别与水冷冷凝器11、风冷冷凝器12的制冷剂输入端相连,所述水冷冷凝器11、风冷冷凝器12的制冷剂输出端均连接所述储液罐13的输入端,所述储液罐13的输出端13连接所述电磁阀14的输入端,所述电磁阀14的输出端连接所述节流装置15的输入端,所述节流装置15的输出端连接所述蒸发器16的输入端,所述蒸发器16的输出端连接所述压缩机10的输入端。
所述压力式制水阀17输入端连接进水端,输出端连接水冷冷凝器11的水输入端,所述水冷冷凝器11的水输出端连接出水端。
该制冷系统中的蒸发器16、冷凝器(包括风冷冷凝器12及水冷冷凝器11)、压缩机10以及节流装置15是制冷系统中必不可少的四大件,这当中蒸发器16是输送冷量的设备。制冷剂在其中吸收被冷却物体的热量实现制冷。压缩机10是心脏,起着吸入、压缩、输送 制冷剂蒸汽的作用。冷凝器是放出热量的设备,将蒸发器16中吸收的热量连同压缩机10做功所转化的热量一起传递给冷却介质(风水)带走。
节流装置15对制冷剂起节流降压作用、同时控制和调节流入蒸发器16中制冷剂(液体)的数量,并将系统分为高压侧和低压侧两大部分。
对于水系统,自来水由压力式制水阀17控制水量大小,经水冷冷凝器11,在冷凝制冷剂的过程中对水进行了加热,我们将热水收集起来,再用水泵将热水输送至热水器或用水点。从而,减少对水加热带来的能耗。
该压力式制水阀17根据冷凝压力来调节水阀开关大小(主要运用在小型制冷设备上)根据冷凝压力的变化来调节水阀开关大小,进而调节冷却水的流量。当压缩机10的排出压力升高时,压力式制水阀17调节阀门自动开大,使较多的冷却水进入水冷冷凝器11加快冷凝速度。反之,当压缩机10的排出压力下降时,压力式制水阀17调节阀门自动关小,使供入的冷却水减小。根据制冷剂(冷媒)的介质不同,保持冷凝压力在特定范围内。
作为本实用新型的实施例,该水冷冷凝器11采用套管式换热器,该套管式换热器采用多个串联的U型换热套管,U型换热套管包括内管以及套于内管外部的外管。
所述外管连接水冷冷凝器11的制冷剂输入端、输出端,制冷剂由制冷剂输入端进入,进入外管,再通过制冷剂输出端输出。
通过外管走制冷剂,阻力较小,通畅性较好,从而避免了对制冷系统的影响。
所述内管连接水冷冷凝器11的水输入端、输出端,自来水从水输入端进入,进入内管,再通过水输出端输出。
当采用水冷冷凝模式时,制冷剂通过外管流动,水通过内管流动,从而在套管中实现热交换。温度较高的制冷剂进入外管,经过热交换(内外管热交换),输出外管时变成温度较低的制冷剂。温度较低的水进入内管,经过热交换(内外管热交换),输出内管时变成温度较高的热水。
作为本实用新型的实施例,该风水冷一体式制冷系统还包括冷凝切换装置,该冷凝切换装置分别连接所述压缩机10、风冷冷凝器12以及水冷冷凝器11,当风量不够时,利用该冷凝切换装置切换到水冷冷凝器11(关闭压缩机10到风冷冷凝器12的制冷剂通路),水冷冷凝器11进行冷凝。当水有富余时,利用该冷凝切换装置切换到风冷冷凝器12(关闭压缩机10到水冷冷凝器11的制冷剂通路),风冷冷凝器12进行冷凝。
作为本实用新型的实施例,所述风水冷一体式制冷系统还连接有水系统单元,所述水系统单元连接于所述水冷冷凝器11的水输出端。所述水系统单元包括温水储水器,所述水冷冷凝器11的水输出端连接所述温水储水器,所述温水储水器连接热水用户端。
作为本实用新型的实施例,所述温水储水器并联连接一台或数台辅助加热装置。
作为本实用新型的实施例,所述风水冷一体式制冷系统包括多个并联的水冷冷凝器。单机或并联做做全热回收处理。
图2是本实用新型第二实施例提供的风水冷一体式制冷系统结构,所述风水冷一体式制冷系统包括:
压缩机10、风水冷一体式冷凝器20、储液罐13、电磁阀14、节流装置15、蒸发器16以及压力式制水阀17。
所述压缩机10的输出端分别与风水冷一体式冷凝器20的制冷剂输入端相连,所述风水冷一体式冷凝器20的制冷剂输出端连接所述储液罐13的输入端,所述储液罐13的输出端连接所述电磁阀14的输入端,所述电磁阀14的输出端连接所述节流装置15的输入端,所述节流装置15的输出端连接所述蒸发器16的输入端,所述蒸发器16的输出端连接所述压缩机10的输入端。
这样,制冷剂的循环如下:从储液罐13经电磁阀14、节流装置15、蒸发器16到压缩机10,再从压缩机到风水冷一体式冷凝器20,最后回到储液罐13。
所述压力式制水阀17输入端连接进水端(例如:自来水端),输出端连接风水冷一体式冷凝器20的水输入端,所述风水冷一体式冷凝器20的水输出端连接出水端。
该制冷系统中的蒸发器16、风水冷一体式冷凝器20、压缩机10以及节流装置15是制冷系统中必不可少的四大件,这当中蒸发器16是输送冷量的设备。制冷剂在其中吸收被冷却物体的热量实现制冷。压缩机10是心脏,起着吸入、压缩、输送制冷剂蒸汽的作用。冷凝器是放出热量的设备,将蒸发器16中吸收的热量连同压缩机10做功所转化的热量一起传递给冷却介质(风水)带走。
节流装置15对制冷剂起节流降压作用、同时控制和调节流入蒸发器16中制冷剂(液体)的数量,并将系统分为高压侧和低压侧两大部分。
对于水系统,自来水由压力式制水阀17控制水量大小,经水冷冷凝器11,在冷凝制冷剂的过程中对水进行了加热,我们将热水收集起来,再用水泵将热水输送至热水器或用水点(当然也可以用储水器储存起来)。从而,减少对水加热带来的能耗。
该压力式制水阀17还与风水冷一体式冷凝器20的制冷剂通道相连,根据当前风水冷一体式冷凝器20中的制冷剂的冷凝压力,来调节水阀开关的大小,进而调节冷却水的流量。当压缩机10的排出制冷剂的压力升高时,随着制冷剂的压力升高,压力式制水阀17调节阀门自动开大,使较多的冷却水进入风水冷一体式冷凝器20,加快冷凝速度。反之,当压缩机10的排出制冷剂的压力下降时,随着制冷剂的压力下降,压力式制水阀17调节阀门 自动关小,使进入的冷却水减小。根据制冷剂(冷媒)的介质不同,保持冷凝压力在特定范围内。
作为本实用新型的实施例,该风水冷一体式冷凝器一体集成了风冷冷凝单元以及水冷冷凝单元,其中,水冷冷凝单元采用套管式换热器,该套管式换热器采用多个串联的U型换热套管,U型换热套管包括内管以及套于内管外部的外管。
所述外管连接风水冷一体式冷凝器20的制冷剂输入端及输出出端,制冷剂由风水冷一体式冷凝器20的制冷剂输入端输入,进入外管,再通过风水冷一体式冷凝器20的制冷剂输出端输出。
通过外管走制冷剂,阻力较小,通畅性较好,从而避免了对制冷系统的影响。
所述内管连接风水冷一体式冷凝器20的水输入端、输出端,自来水从水输入端进入,进入内管,再通过水输出端输出。
在该水冷冷凝单元的外部嵌入风冷冷凝单元。具体地,该风冷冷凝单元包括散热鳍片以及风扇,将多个串联的U型换热套管嵌入散热鳍片,并将风扇设置于散热鳍片的一侧。
用户在使用本系统时,可以根据需求,分别选择单一的风冷冷凝器(模式),单一的水冷冷凝器(模式)或者风水冷一体式冷凝器(同时开启了风冷和水冷模式)。
当用户需要采用单一的风冷冷凝器(模式)时,开启风冷冷凝器开关(风扇开关),关闭进水端的水开关(例如自来水开关),制冷剂从储液罐13经电磁阀14、节流装置15、蒸发器16到达压缩机10,经压缩机10工作输出后,制冷剂进入多个串联的U型换热套管的外管,通过嵌于外管的散热鳍片以及安装于散热鳍片的一侧的风扇,将外管的热量带走,从而制冷剂达到降温的目的。
当用户需要采用单一的水冷冷凝器(模式)时(例如客户想使用热水,节约能源),关闭风冷冷凝器开关(风扇开关),打开进水端的水开关(例如自来水开关),制冷剂从储液罐13经电磁阀14、节流装置15、蒸发器16到达压缩机10,经压缩机10工作输出后,制冷剂进入多个串联的U型换热套管的外管。由于压力式制水阀17连通了风水冷一体式冷凝器20的制冷剂通道(即连通了外管),根据当前风水冷一体式冷凝器20中的制冷剂的冷凝压力,来调节水阀开关的大小,进而调节冷却水的流量。通过内管中的冷却水与外管中的制冷剂进行热量交换,从而达到制冷剂降温的目的。温度较低的水进入内管,经过热交换(内外管热交换),输出内管时变成温度较高的热水,供用户使用。从而既完成了制冷,又回收了制冷过程中的热量。
当用户需要风水冷一体冷凝器(模式)时(例如客户想使用热水,或者使用单一的风冷冷凝器或单一的水冷冷凝器制冷效果不理想时),打开风冷冷凝器开关(风扇开关),打 开进水端的水开关(例如自来水开关),制冷剂从储液罐13经电磁阀14、节流装置15、蒸发器16到达压缩机10,经压缩机10工作输出后,制冷剂进入多个串联的U型换热套管的外管。由于压力式制水阀17连通了风水冷一体式冷凝器20的制冷剂通道(即连通了外管),根据当前风水冷一体式冷凝器20中的制冷剂的冷凝压力,来调节水阀开关的大小,进而调节冷却水的流量。一方面,通过内管中的冷却水与外管中的制冷剂进行热量交换,另一方面,通过嵌于外管的散热鳍片以及安装于散热鳍片的一侧的风扇,将外管的热量带走,从而达到制冷剂双重冷却的目的,冷却效果良好。
温度较低的水进入内管,经过热交换(内外管热交换),输出内管时变成温度较高的热水,供用户使用。从而既实现了良好的制冷效果,又回收了制冷过程中的热量。
作为本实用新型的实施例,所述风水冷一体式制冷系统还连接有水系统单元,所述水系统单元连接于所述风水冷一体式冷凝器20的水输出端。所述水系统单元包括温水储水器,所述风水冷一体式冷凝器20的水输出端连接所述温水储水器,所述温水储水器连接热水用户端。
作为本实用新型的实施例,所述温水储水器并联连接一台或数台辅助加热装置。
作为本实用新型的实施例,所述风水冷一体式制冷系统包括多个并联的风水冷一体式冷凝器20。单机或并联做做全热回收处理。
该机组的主要功能是制冷。在保障制冷的同时,将释放的热量转变为热能源,有效的利用了排放热量,从而到达了加热水的目的。从宏观意义上来讲,减少了对地球的“热岛效应”。从能源的角度来讲,把有限的能源用到了极致。
以上所述仅为本实用新型的优选实施例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (9)

  1. 一种风水冷一体式制冷系统,其特征在于,所述风水冷一体式制冷系统包括压缩机、风冷冷凝器、水冷冷凝器、储液罐、电磁阀、节流装置、蒸发器以及压力式制水阀,
    所述压缩机的输出端分别与水冷冷凝器、风冷冷凝器的制冷剂输入端相连,所述水冷冷凝器、风冷冷凝器的制冷剂输出端均连接所述储液罐的输入端,所述储液罐的输出端连接所述电磁阀的输入端,所述电磁阀的输出端连接所述节流装置的输入端,所述节流装置的输出端连接所述蒸发器的输入端,所述蒸发器的输出端连接所述压缩机的输入端;
    所述压力式制水阀连通所述水冷冷凝器的制冷剂通道,所述压力式制水阀的水输入端连接进水端,水输出端连接水冷冷凝器的水输入端,所述水冷冷凝器的水输出端连接出水端。
  2. 根据权利要求1所述的风水冷一体式制冷系统,其特征在于,所述水冷冷凝器、风冷冷凝器一体集成为风水冷一体式冷凝器,所述水冷冷凝单元采用套管式换热器,所述套管式换热器采用多个串联的U型换热套管,所述U型换热套管包括内管以及套于内管外部的外管,所述外管连接所述风水冷一体式冷凝器的制冷剂输入端及输出端,所述内管连接风水冷一体式冷凝器的水输入端及输出端。
  3. 根据权利要求2所述的风水冷一体式制冷系统,其特征在于,所述风冷冷凝器包括散热鳍片以及风扇,所述多个串联的U型换热套管嵌入所述散热鳍片,所述风扇设置于所述散热鳍片的一侧。
  4. 根据权利要求1所述的风水冷一体式制冷系统,其特征在于,所述风水冷一体式制冷系统还连接有水系统单元,所述水系统单元连接于所述水冷冷凝器的水输出端,所述水系统单元包括温水储水器,所述水冷冷凝器的水输出端连接所述温水储水器,所述温水储水器连接热水用户端。
  5. 根据权利要求4所述的风水冷一体式制冷系统,其特征在于,所述温水储水器并联连接一台或数台辅助加热装置。
  6. 根据权利要求1所述的风水冷一体式制冷系统,其特征在于,所述风水冷一体式制冷系统包括多个并联的水冷冷凝器。
  7. 根据权利要求1所述的风水冷一体式制冷系统,其特征在于,所述水冷冷凝器采用套管式换热器。
  8. 根据权利要求7所述的风水冷一体式制冷系统,其特征在于,所述套管式换热器采用多个串联的U型换热套管,所述U型换热套管包括内管以及套于内管外部的外管。
  9. 根据权利要求8所述的风水冷一体式制冷系统,其特征在于,所述外管连接水冷冷凝器的制冷剂输入端、输出端,所述内管连接水冷冷凝器的水输入端、输出端。
PCT/CN2020/115367 2019-09-16 2020-09-15 一种风水冷一体式制冷系统 WO2021052332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201921534019.9 2019-09-16
CN201921534019.9U CN210861711U (zh) 2019-09-16 2019-09-16 一种风水冷一体式制冷系统

Publications (1)

Publication Number Publication Date
WO2021052332A1 true WO2021052332A1 (zh) 2021-03-25

Family

ID=71290295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115367 WO2021052332A1 (zh) 2019-09-16 2020-09-15 一种风水冷一体式制冷系统

Country Status (2)

Country Link
CN (1) CN210861711U (zh)
WO (1) WO2021052332A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110056227A1 (en) * 2009-09-08 2011-03-10 Hoon Jung Heat recovery system of plant using heat pump
CN202101469U (zh) * 2011-04-15 2012-01-04 上海理工大学 一种多功能热泵空调热水器
CN203518084U (zh) * 2013-08-29 2014-04-02 合肥天鹅制冷科技有限公司 一种除湿调温的风冷机组
CN204254827U (zh) * 2014-10-31 2015-04-08 山东雅士股份有限公司 一种热回收模块式风冷机组
CN207688325U (zh) * 2017-12-01 2018-08-03 荣轩平 三冷源空调机组
CN110513876A (zh) * 2019-09-16 2019-11-29 杜嵘 一种风水冷一体式制冷系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110056227A1 (en) * 2009-09-08 2011-03-10 Hoon Jung Heat recovery system of plant using heat pump
CN202101469U (zh) * 2011-04-15 2012-01-04 上海理工大学 一种多功能热泵空调热水器
CN203518084U (zh) * 2013-08-29 2014-04-02 合肥天鹅制冷科技有限公司 一种除湿调温的风冷机组
CN204254827U (zh) * 2014-10-31 2015-04-08 山东雅士股份有限公司 一种热回收模块式风冷机组
CN207688325U (zh) * 2017-12-01 2018-08-03 荣轩平 三冷源空调机组
CN110513876A (zh) * 2019-09-16 2019-11-29 杜嵘 一种风水冷一体式制冷系统

Also Published As

Publication number Publication date
CN210861711U (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
CN104713266A (zh) 一种可实现无霜冻与蒸发冷却的热泵型冷热源机组
CN110454897A (zh) 一种蒸发冷却-太阳能吸收式制冷空调系统
CN109682110A (zh) 分段溶液吸收的微型分布式冷热电联供装置及其控制方法
CN206094374U (zh) 一种分体低温变频三联供热泵系统
CN106705203B (zh) 一种采用热泵和电热复合的户用热管散热装置
CN101294753A (zh) 一种内循环复合能供热制冷技术及装置
WO2021052332A1 (zh) 一种风水冷一体式制冷系统
CN110513876A (zh) 一种风水冷一体式制冷系统
WO2021052331A1 (zh) 一种带热回收功能的小型制冷设备
CN202008223U (zh) 复合加热的热泵热水器
CN204115286U (zh) 一种复叠式直热高温热泵
CN102235746A (zh) 快速热泵热水装置
CN101713598B (zh) 吸收式冷冻机
CN101545695B (zh) 吸收式冷温水机
CN207865810U (zh) 回收冷凝热提高冲霜水温度的冷库制冷除霜集成系统
CN201050838Y (zh) 一种高效即热式热泵热水系统
CN206330196U (zh) Co2空气源热泵机组
CN108895715A (zh) 一种适用于中国南方地区的基于冷热平衡理念的使用蓄能的地源热泵系统
CN201093735Y (zh) 一种即热风冷热泵热水装置
CN108870794A (zh) 一种量子热超导空调系统及其运行控制方法
CN208704265U (zh) 一种间接制冷新型节能冷库融霜系统
CN209512329U (zh) 分段溶液吸收的微型分布式冷热电联供装置
CN208519924U (zh) 一种新风全热交换双向流调温一体机
CN209623149U (zh) 一种适用于南方基于冷热平衡的使用蓄能的地源热泵系统
CN208075327U (zh) 一种冷凝加热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20865404

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20865404

Country of ref document: EP

Kind code of ref document: A1