WO2021052298A1 - 一种特高压柔性直流全桥半桥混合换流器充电方法 - Google Patents

一种特高压柔性直流全桥半桥混合换流器充电方法 Download PDF

Info

Publication number
WO2021052298A1
WO2021052298A1 PCT/CN2020/115205 CN2020115205W WO2021052298A1 WO 2021052298 A1 WO2021052298 A1 WO 2021052298A1 CN 2020115205 W CN2020115205 W CN 2020115205W WO 2021052298 A1 WO2021052298 A1 WO 2021052298A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
module
full
charging
short
Prior art date
Application number
PCT/CN2020/115205
Other languages
English (en)
French (fr)
Inventor
彭茂兰
王海军
甘宗跃
刘航
Original Assignee
中国南方电网有限责任公司超高压输电公司检修试验中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国南方电网有限责任公司超高压输电公司检修试验中心 filed Critical 中国南方电网有限责任公司超高压输电公司检修试验中心
Publication of WO2021052298A1 publication Critical patent/WO2021052298A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage

Definitions

  • the invention relates to the technical field of electric power, in particular to a charging method for an ultra-high voltage flexible DC full-bridge half-bridge hybrid converter.
  • Modular multilevel converter-based HVDC is a new type of power transmission technology. With its modularity, low harmonic content, low loss and other advantages, it can be used in large-scale wind farms. Grid, grid interconnection, DC transmission, etc. have been widely used. At present, a number of flexible DC projects have been put into operation at home and abroad, such as the domestic Luxi back-to-back DC, the three-terminal flexible DC demonstration project in South Australia, the TransBay Cable project in the United States, etc. In recent years, flexible DC transmission technology has developed rapidly and has entered special The development stage of high-voltage large-capacity flexible DC transmission.
  • the MMC-HVDC system with mixed full-bridge and half-bridge modules is shown in Figure 1.
  • Each phase unit consists of two upper and lower bridge arm units, and each bridge arm unit is composed of n sub-modules in series.
  • the internal structure of the module can be half
  • the bridge module can also be a full-bridge module.
  • the ratio of full-bridge and half-bridge modules is not limited.
  • the half-bridge sub-module includes two IGBT power devices, T1 and T2, corresponding to the parallel connection of two D1 and D2 on T1 and T2 in anti-parallel A diode and a capacitor C.
  • the full-bridge sub-module includes four IGBT power devices T1, T2, T3, and T4 connected counterclockwise, corresponding to D1, D2, D3, and D4 on T1, T2, T3, and T4.
  • IGBT power devices T1, T2, T3, and T4 connected counterclockwise, corresponding to D1, D2, D3, and D4 on T1, T2, T3, and T4.
  • L is the reactance of the bridge arm
  • U dc is the DC voltage.
  • the UHV flexible DC transmission project adopts a symmetrical bipolar system main wiring method in which two valve unit units are connected in series to form one pole.
  • the bridge arm adopts a hybrid converter based on half-bridge and full-bridge sub-modules, which has broad application prospects.
  • the work of the sub-module depends on the self-derived power supply in the module.
  • the voltage of the capacitor in the module is low, the self-derived power supply cannot be started, and the module cannot work normally. Therefore, a reasonable charging strategy is adopted to make all modules work normally.
  • the charging modes of the flexible DC converter mainly include DC side short-circuit charging and DC side non-short-connection charging.
  • the DC-side short-circuit charging is to prepare the UHV flexible DC valve group for online input before unlocking, and in the uncontrolled charging stage In order to charge the half-bridge module, it is necessary to cut off part of the full-bridge module after the full-bridge module is powered on.
  • Non-short-circuit charging on the DC side is a commonly used charging method for flexible DC converters.
  • Some documents have proposed a three-stage charging strategy. By triggering a specific power device in the module to cut off some modules, the module voltage can be charged to the rated value. During the charging process, keeping a specific power device triggered for a period of time increases the loss of the power device and affects the service life of the device.
  • the definition of removal refers to: removing the module so that the module capacitance is not connected in series to the charging circuit for charging.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a charging method for UHV flexible DC full-bridge half-bridge hybrid converters, which can be used to trigger the full-bridge module in the DC side short-circuit or non-short-circuit charging mode
  • the specific power device in the half-bridge module can be powered on and work normally, and the specific power device in the full-bridge module is triggered by rotation to achieve the purpose of reducing the loss of the module.
  • the full-bridge and half-bridge hybrid converters include three-phase units A, B, and C. Each phase unit includes two upper and lower bridge arm units. Each bridge arm unit is mainly composed of a full-bridge sub-module and a half-bridge sub-module in series, and the ratio of the full-bridge to the half-bridge module is not limited.
  • the half-bridge sub-module includes two IGBT power devices, T1 and T2, which are connected in parallel to T1.
  • the full-bridge sub-module includes four IGBT power devices T1, T2, T3, and T4 connected in a counterclockwise order, correspondingly connected in parallel with T1, T2, and T2.
  • the method includes:
  • the uncontrollable charging and controllable charging stages trigger the power device T2 or T3 in the full-bridge module in the DC side short-circuit charging mode, and the uncontrollable charging stage triggers the rate device T1 or T4 in the full-bridge module when the DC side does not short-circuit the charging mode.
  • the controllable charging stage triggers the power devices T1, T3 or T2, T4 in the full-bridge module to increase the capacitor voltage of the full-bridge and half-bridge modules until all modules reach the rated voltage.
  • the charging method of the UHV flexible DC full-bridge half-bridge hybrid converter further includes:
  • the uncontrollable charging and the controllable charging phase will alternately trigger the power devices T2 and T3 in the full-bridge module.
  • the uncontrollable charging stage will trigger the full bridge in turns.
  • the power devices T1 and T4 in the module, the two cycles before and after the controllable charging phase, trigger the power devices T1, T3, T2, T4 in the full-bridge module in turn.
  • the present invention has the following beneficial effects:
  • T2 and T3 are triggered in turn in two cycles before and after the DC side is not short-circuited in the charging mode.
  • T3 and T2, T4 through the alternating triggering of the front and rear cycles of the power device, a certain power device will not be kept in the triggered conduction state for a long time, which can achieve the purpose of reducing the loss of the module device.
  • Figure 1 is a schematic diagram of the composition of the MMC-HVDC system with mixed full-bridge and half-bridge modules
  • Figure 2 shows the equivalent circuit of DC side short-circuit charging mode
  • Figure 3 shows the current loop of the removed module and the charging module in the DC side short-circuit charging mode
  • Figure 4 shows the equivalent circuit diagram of DC side charging without short circuit connection
  • Figure 5 is the current loop diagram of the uncontrollable charging removed module and the charging module in the charging mode without short-circuiting the DC side;
  • Figure 6 is the current loop diagram of the controlled charging removed module and the charging module in the DC side non-shorting charging mode.
  • the MMC-HVDC system with a mixed bridge arm full bridge and half bridge modules is shown in Figure 1, and its DC side short-circuit charging equivalent circuit is shown in Figure 2, assuming the AC side A phase voltage The highest, the B-phase voltage is the lowest.
  • the upper bridge arm of the A phase returns via the DC short wire via the B-phase lower bridge arm (arrow path No. 1), and the lower bridge arm of the A phase passes the DC short wire via the B phase the two charging circuits arm returns (arrow path No. 2), wherein U sa, U sb, U sc represent the ABC three-phase AC voltage side, P, N, respectively positive and negative electrodes of the DC side.
  • the anti-parallel diode in the A-phase lower arm is turned off due to the back pressure, and the charging current is only from the A phase
  • the upper bridge arm flows and the lower bridge arm branch of Phase A is disconnected, that is, only the module capacitor on the charging path of arrow No. 1 can be charged, and the half-bridge module capacitor in the bridge arm cannot be charged.
  • the module cannot work normally.
  • the three-phase voltage changes alternately, and the charging path analysis method is similar when the other phase voltages are the highest or the lowest.
  • the uncontrolled charging phase triggers the specific power device in the full-bridge module with the highest voltage of the A-phase lower leg and the B-phase upper leg capacitor, and cuts off a certain number of full-bridge modules to reduce the A phase.
  • the anti-parallel diodes in the lower bridge arm and the B-phase upper bridge arm are subjected to the back pressure, so that the charging circuit is switched to the charging path of the arrow No. 2.
  • the T2 current that triggers the removed full bridge module flows through T2 and D4 of the module
  • the T3 current that triggers the removed module flows through T3 and D1 of the module
  • the current in the charged full bridge module flows through D2 and D2.
  • the half-bridge module cuts off the module by triggering T2, the current of the cut-off module of trigger T2 flows through T2, and the current of the charged half-bridge module flows through D1.
  • the two cycles of T2 and T3 are triggered in turn, which can maintain the arrow path of the current flowing through the A-phase lower bridge arm and the B-phase upper bridge arm, and the T2 and T3 triggering in turn can reduce the loss of the module device.
  • Other bridge arm processing methods are similar, the three-phase voltage alternates, and the charging path has a common law, that is, the charging current flows from the lower bridge arm with high phase voltage to the backflow AC system through the upper bridge arm with low phase voltage.
  • the full-bridge module still triggers the T2 and T3 removal modules in turn through two cycles before and after; the half-bridge module triggers the T2 removal module, triggering the T2 current to flow through T2 of the removal module, and the charged half-bridge module current flows through D1 until all modules reach the rated value Capacitor voltage value.
  • the charging equivalent circuit of the uncontrolled charging stage in the DC non-short-circuit charging mode is shown in Figure 4.
  • the AB-phase charging circuit there is the No. 1 arrow path returning from the A-phase upper arm to the B-phase upper arm, and a positive electrode is lower relative to the arm 2 by the arrow B relative to the path of return arm two charging circuit, wherein U sa, U sb, U sc represent the ABC three-phase AC voltage side, P, N are DC side With negative electrode. Since the charging time of the full-bridge module is twice that of the half-bridge module, the capacitor voltage of the full-bridge module is twice that of the half-bridge module.
  • the specific power devices that can trigger all the full-bridge modules are shown in Figure 5. Trigger the full-bridge module T1 current flows through T1 and D3 of the excision module, and the charged full-bridge module current flows through D1 and D4; trigger the full-bridge module T4 current flows through T4 and D2 of the excision module, and the charged full-bridge module current flows through D1 and D4.
  • the two cycles of T1 and T4 are triggered in turn, which can make the charging time of the full-bridge module and the half-bridge module consistent and increase the capacitor voltage of the half-bridge module, and triggering T2 and T3 in turn can reduce the loss of the module device.
  • the full bridge module triggers T1, T3, T2, and T4 removal modules in turn through two cycles before and after. As shown in FIG. 6, the currents of the removed modules that trigger T1 and T3 flow through T1 and D3, and the currents of the removed modules that trigger T2 and T4 flow through D2 and T4.
  • the current loop of the charging module is the same as in FIG.
  • the half-bridge module triggers T2 to cut off the module, triggers the T2 current to flow through T2 of the cut off module, and the charged half-bridge module current flows through D1 until all modules reach the rated capacitor voltage value.

Abstract

一种特高压柔性直流全桥半桥混合换流器充电方法,所述全桥半桥混合换流器的每一个相单元包括上下两个桥臂单元,每个桥臂单元主要由全桥子模块和半桥子模块串联而成,所述方法包括:直流侧短接充电方式下触发全桥模块内的功率器件T2或T3,直流侧不短接充电方式下不可控充电阶段触发全桥模块内的率器件T1或T4,可控充电阶段通过触发全桥模块内的功率器件T1、T3或T2、T4,以提高全桥和半桥模块电容电压直至所有模块达到额定电压。本方法通过直流侧短接充电方式下触发全桥模块内特定功率器件T2或T3,只需下发模块功率器件触发命令,而无需引入交流电压等测量量,无需增加额外判据,即可实现全桥和半桥模块均能上电正常工作。

Description

一种特高压柔性直流全桥半桥混合换流器充电方法 技术领域
本发明涉及电力技术领域,具体涉及一种特高压柔性直流全桥半桥混合换流器充电方法。
背景技术
模块化多电平换流器高压直流输电(modular multilevel converter based HVDC,MMC-HVDC)作为一种新型输电技术,凭借其模块化、低谐波含量、低损耗等优点,在大规模风电场并网、电网互联、直流输电等方面已广泛应用。目前国内外已有多项柔性直流工程投运,如国内的鲁西背靠背直流、南澳三端柔性直流示范工程、美国的Trans Bay Cable工程等,近年来柔性直流输电技术迅猛发展,已迈入特高压大容量柔性直流输电发展阶段。
全桥与半桥模块混合的MMC-HVDC系统如附图1所示,每个相单元由上下两个桥臂单元组成,每个桥臂单元由n个子模块串联组成,模块内部结构可以为半桥模块也可以为全桥模块,全桥与半桥模块比例不受限制,该半桥子模块包括T1和T2两个IGBT功率器件,对应并接T1和T2上的D1和D2两个反并联二极管及一电容C,该全桥子模块包括按照逆时针依次连接的T1、T2、T3、T4四个IGBT功率器件,对应并接T1、T2、T3、T4上的D1、D2、D3、D4四个反并联二极管及一电容C,L为桥臂电抗、U dc为直流电压。
为进一步提升柔性直流输电系统传输容量和电压等级,特高压柔性直流输电工程采用两个阀组单元串联构成一极的对称双极系统主接线方式。为了使得换流器具有直流故障清除能力,并降低功率器件运行损耗,桥臂采用基于半桥和全桥子模块的混合型换流器,具有广阔的应用前景。
子模块的工作依赖于模块内自取能电源,在充电的初始阶段模块内电容电压较低,自取能电源无法启动,模块无法正常工作,因此采取合理的充电策略让所有模块能正常工作是换流阀运行的前提。柔性直流换流器充电模式主要有直流侧短接充电和直流侧不短接充电两种,直流侧短接充电是为特高压柔性直流阀组在线投入做好解锁前准备,在不控充电阶段为使半桥模块能充电需要在全桥模块上电后切除部分全桥模块,现有文献研究需采集各相相电压瞬时值并进行排序找出合适的桥臂切除模块,但阀控装置引入交流电压测量量,增加了设备运行风险。直流侧不短接充电是柔性直流换流器常用的充电方式,有文献提出了三段式充电策略,通过触发模块内特定功率器件切除部分模块,使模块电压可充电至额定值,但在整个充电过程中保持特定功率器件触发一段时间增加了功率器件损耗,影响器件使用寿命。在申请中,切除的定义是指:切除模块使模块电容不串联入充电回路中充电。
因此,有必要对半桥和全桥子模块混合型换流器的充电策略进行深入研究,为实际工程设计提供参考。
发明内容
本发明的目的在于克服上述现有技术的不足,提供一种特高压柔性直流全桥半桥混合换流器充电方法,以在直流侧短接或不短接充电方式下,通过触发全桥模块内特定功率器件可使半桥模块上电正常工作,并通过轮换触发全桥模块内特定功率器件,达到降低模块损耗的目的。
为实现上述目的,本发明的技术方案是:
一种特高压柔性直流全桥半桥混合换流器充电方法,所述全桥半桥混合换流器包括A、B、C三相单元,每一个相单元包括上下两个桥臂单元,每个桥臂单元主要由全桥子模块和半桥子模块串联而成,全桥与半桥模块比例不受限制,所述半桥子模块包括T1和T2两个IGBT功率器件,对应并接T1和T2上的D1和D2两个反并联二极管及一电容C,所述全桥子模块包括按照逆时针依次连接的T1、T2、T3、T4四个IGBT功率器件,对应并接T1、T2、T3、T4上的D1、D2、D3、D4四个反并联二极管及一电容C,所述方法包括:
直流侧短接充电方式下不可控充电和可控充电阶段触发全桥模块内的功率器件T2或T3,直流侧不短接充电方式下不可控充电阶段触发全桥模块内的率器件T1或T4,可控充电阶段通过触发全桥模块内的功率器件T1、T3或T2、T4,以提高全桥和半桥模块电容电压直至所有模块达到额定电压。
进一步地,所述的特高压柔性直流全桥半桥混合换流器充电方法还包括:
直流侧短接充电方式下不可控充电和可控充电阶段前后两周波轮流触发全桥模块内的功率器件T2和T3,直流侧不短接充电方式下不可控充电阶段前后两周波轮流触发全桥模块内的功率器件T1和T4,可控充电阶段前后两周波轮流触发全桥模块内的功率器件T1、T3和T2、T4。
本发明与现有技术相比,具有如下有益效果:
(1)直流侧短接充电方式下触发全桥模块内特定功率器件T2或T3,只需下发模块功率器件触发命令,而无需引入交流电压等测量量,无需增加额外判据,即可实现全桥和半桥模块均能上电正常工作。
(2)直流侧短接充电方式下前后两周波轮流触发T2和T3,直流侧不短接充电方式下不可控充电阶段前后两周波轮流触发T1和T4,可控充电阶段前后两周波轮流触发T1、T3和T2、 T4,通过功率器件前后周波的轮流触发,不会出现某一功率器件长时间保持触发导通状态,可达到降低模块器件损耗的目的。
附图说明
图1为全桥与半桥模块混合的MMC-HVDC系统的组成示意图;
图2为直流侧短接方式充电等效回路;
图3为直流侧短接充电方式下被切除模块和充电模块电流回路;
图4为直流侧不短接方式充电等效回路图;
图5为直流侧不短接充电方式下不可控充电被切除模块和充电模块电流回路图;
图6为直流侧不短接充电方式下可控充电被切除模块和充电模块电流回路图。
具体实施方式
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
实施例:
在本实施例中,桥臂全桥与半桥模块混合的MMC-HVDC系统如附图1所示,其直流侧短接方式充电等效回路如附图2所示,假设交流侧A相电压最高,B相电压最低,不控充电阶段存在由A相上桥臂通过直流短接线经B相下桥臂返回(1号箭头路径),及由A相下桥臂通过直流短接线经B相上桥臂返回两条充电回路(2号箭头路径),其中U sa、U sb、U sc分别表示交流侧ABC三相电压,P、N分别表示直流侧的正极与负极。由于A相下桥臂直流电容上的压降总和大于A相上桥臂的直流压降总和,则A相下桥臂中的反并联二极管因承受反压而关断,充电电流仅从A相上桥臂流过,A相下桥臂支路断开,即仅1号箭头充电路径上的模块电容可被充电,则桥臂中半桥模块电容无法充电模块无法正常工作。三相电压交替变化,当其他相电压最高或最低时充电路径分析方法类似。
为使半桥模块电容也能充电,不控充电阶段通过触发A相下桥臂和B相上桥臂电容电压最高的全桥模块内特定功率器件,切除一定数量的全桥模块可降低A相下桥臂和B相上桥臂中反并联二极管所承受反压,从而使充电回路切换至2号箭头充电路径。如附图3所示,触发被切除全桥模块的T2电流流经模块的T2和D4,触发被切除模块的T3电流流经模块的T3和D1,充电的全桥模块中电流流经D2和D3,半桥模块通过触发T2切除模块,触发T2被切除模块电流流经T2,充电的半桥模块电流流经D1。通过T2和T3前后两周波轮流触发,可保持电流流经A相下桥臂和B相上桥臂的箭头路径,且T2和T3轮流触发可降低模块器件损耗。 其他桥臂处理方法类似,三相电压交替变化,充电路径有共同的规律,即充电电流从相电压高的下桥臂流入经相电压低的上桥臂回流交流系统。可控充电阶段,根据桥臂中所有模块电容电压由高到低的排序结果,切除更多电压较高的模块,可进一步提高模块电容电压。全桥模块仍通过前后两周波轮流触发T2和T3切除模块;半桥模块通过触发T2切除模块,触发T2电流流经切除模块的T2,充电的半桥模块电流流经D1,直至所有模块达到额定电容电压值。
直流不短接充电方式下不控充电阶段充电等效回路如附图4所示,以AB相充电回路为例,存在A相上桥臂经B相上桥臂返回的1号箭头路径,及由A相下桥臂经B相下桥臂返回的2号箭头路径两条充电回路,其中U sa、U sb、U sc分别表示交流侧ABC三相电压,P、N分别为直流侧的正极与负极。因全桥模块充电时间是半桥模块充电时间的两倍,全桥模块电容电压是半桥模块的两倍。为提高半桥模块电容电压,可触发所有全桥模块的特定功率器件如附图5所示。触发全桥模块T1电流流经切除模块的T1和D3,充电的全桥模块电流流经D1和D4;触发全桥模块T4电流流经切除模块的T4和D2,充电的全桥模块电流流经D1和D4。通过T1和T4前后两周波轮流触发,可使全桥模块和半桥模块充电时间一致提高半桥模块电容电压,且T2和T3轮流触发可降低模块器件损耗。
为进一步提高模块电容电压,根据桥臂中所有模块电容电压由高到低的排序结果,切除更多电压较高的模块,全桥模块通过前后两周波轮流触发T1、T3和T2、T4切除模块,如附图6所示,触发T1、T3被切除模块电流流经T1和D3,触发T2、T4被切除模块电流流经D2和T4,充电模块电流回路与附图5中相同。半桥模块通过触发T2切除模块,触发T2电流流经切除模块的T2,充电的半桥模块电流流经D1,直至所有模块达到额定电容电压值。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (2)

  1. 一种特高压柔性直流全桥半桥混合换流器充电方法,所述全桥半桥混合换流器包括A、B、C三相单元,每一个相单元包括上下两个桥臂单元,每个桥臂单元主要由全桥子模块和半桥子模块串联而成,所述半桥子模块包括T1和T2两个IGBT功率器件,对应并接T1和T2上的D1和D2两个反并联二极管及一电容C,所述全桥子模块包括按照逆时针依次连接的T1、T2、T3、T4四个IGBT功率器件,对应并接T1、T2、T3、T4上的D1、D2、D3、D4四个反并联二极管及一电容C,其特征在于,所述方法包括:
    直流侧短接充电方式下可控充电和不可控充电阶段触发全桥模块内的功率器件T2或T3,直流侧不短接充电方式下不可控充电阶段触发全桥模块内的功率器件T1或T4,可控充电阶段通过触发全桥模块内的功率器件T1、T3或T2、T4,以提高全桥和半桥模块电容电压直至所有模块达到额定电压。
  2. 如权利要求1所述的特高压柔性直流全桥半桥混合换流器充电方法,其特征在于,所述方法还包括:
    直流侧短接充电方式下可控充电和不可控充电阶段前后两周波轮流触发全桥模块内的功率器件T2和T3,直流侧不短接充电方式下不可控充电阶段前后两周波轮流触发全桥模块内的功率器件T1和T4,可控充电阶段前后两周波轮流触发全桥模块内的功率器件T1、T3和T2、T4。
PCT/CN2020/115205 2019-09-19 2020-09-15 一种特高压柔性直流全桥半桥混合换流器充电方法 WO2021052298A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910886504.0A CN110739839B (zh) 2019-09-19 2019-09-19 一种特高压柔性直流全桥半桥混合换流器充电方法
CN201910886504.0 2019-09-19

Publications (1)

Publication Number Publication Date
WO2021052298A1 true WO2021052298A1 (zh) 2021-03-25

Family

ID=69268118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115205 WO2021052298A1 (zh) 2019-09-19 2020-09-15 一种特高压柔性直流全桥半桥混合换流器充电方法

Country Status (2)

Country Link
CN (1) CN110739839B (zh)
WO (1) WO2021052298A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117155105A (zh) * 2023-11-01 2023-12-01 国网浙江省电力有限公司电力科学研究院 一种全直流系统直流变压器启动控制方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739839B (zh) * 2019-09-19 2020-10-20 中国南方电网有限责任公司超高压输电公司检修试验中心 一种特高压柔性直流全桥半桥混合换流器充电方法
CN113422380B (zh) * 2021-07-29 2021-11-16 中国南方电网有限责任公司超高压输电公司检修试验中心 直流多馈入系统和电网系统
CN113890395A (zh) * 2021-09-03 2022-01-04 广东电网有限责任公司广州供电局 柔性直流换流器、空载加压试验方法及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103051167A (zh) * 2012-12-12 2013-04-17 广东电网公司电力科学研究院 一种基于mmc的upqc充电启动方法
CN105119508A (zh) * 2015-09-18 2015-12-02 山东建筑大学 全桥与半桥子模块混联的模块化多电平换流器及启动方法
CN105703386A (zh) * 2014-12-05 2016-06-22 特变电工新疆新能源股份有限公司 一种柔性直流输电系统的启动方法
CN105703387A (zh) * 2014-12-05 2016-06-22 特变电工新疆新能源股份有限公司 一种柔性直流输电系统的启动方法
US20160268915A1 (en) * 2014-05-29 2016-09-15 Huazhong University Of Science And Technology Submodule for modular multi-level converter and application thereof
CN106712238A (zh) * 2017-01-16 2017-05-24 南京南瑞继保电气有限公司 一种子模块混合型换流器的充电方法
CN107317472A (zh) * 2017-06-30 2017-11-03 中国西电电气股份有限公司 一种全桥与半桥混合型模块化多电平换流器启动方法
CN207732449U (zh) * 2017-12-12 2018-08-14 荣信汇科电气技术有限责任公司 一种用于柔性直流输电换流阀的子模块拓扑结构
CN108683204A (zh) * 2018-04-08 2018-10-19 许继集团有限公司 一种子模块混合式换流器直流侧短路时的充电方法
CN110739839A (zh) * 2019-09-19 2020-01-31 中国南方电网有限责任公司超高压输电公司检修试验中心 一种特高压柔性直流全桥半桥混合换流器充电方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204967648U (zh) * 2015-09-18 2016-01-13 山东建筑大学 全桥与半桥子模块混联的模块化多电平换流器
CN107800317A (zh) * 2017-10-26 2018-03-13 华北电力大学 一种新型并联半桥‑全桥混合子模块mmc拓扑
CN208241326U (zh) * 2018-03-28 2018-12-14 南方电网科学研究院有限责任公司 一种特高压柔性直流输电换流器装置
CN208539577U (zh) * 2018-06-28 2019-02-22 南方电网科学研究院有限责任公司 一种柔性直流输电换流器及双极柔性直流输电系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103051167A (zh) * 2012-12-12 2013-04-17 广东电网公司电力科学研究院 一种基于mmc的upqc充电启动方法
US20160268915A1 (en) * 2014-05-29 2016-09-15 Huazhong University Of Science And Technology Submodule for modular multi-level converter and application thereof
CN105703386A (zh) * 2014-12-05 2016-06-22 特变电工新疆新能源股份有限公司 一种柔性直流输电系统的启动方法
CN105703387A (zh) * 2014-12-05 2016-06-22 特变电工新疆新能源股份有限公司 一种柔性直流输电系统的启动方法
CN105119508A (zh) * 2015-09-18 2015-12-02 山东建筑大学 全桥与半桥子模块混联的模块化多电平换流器及启动方法
CN106712238A (zh) * 2017-01-16 2017-05-24 南京南瑞继保电气有限公司 一种子模块混合型换流器的充电方法
CN107317472A (zh) * 2017-06-30 2017-11-03 中国西电电气股份有限公司 一种全桥与半桥混合型模块化多电平换流器启动方法
CN207732449U (zh) * 2017-12-12 2018-08-14 荣信汇科电气技术有限责任公司 一种用于柔性直流输电换流阀的子模块拓扑结构
CN108683204A (zh) * 2018-04-08 2018-10-19 许继集团有限公司 一种子模块混合式换流器直流侧短路时的充电方法
CN110739839A (zh) * 2019-09-19 2020-01-31 中国南方电网有限责任公司超高压输电公司检修试验中心 一种特高压柔性直流全桥半桥混合换流器充电方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117155105A (zh) * 2023-11-01 2023-12-01 国网浙江省电力有限公司电力科学研究院 一种全直流系统直流变压器启动控制方法及系统

Also Published As

Publication number Publication date
CN110739839B (zh) 2020-10-20
CN110739839A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
WO2021052298A1 (zh) 一种特高压柔性直流全桥半桥混合换流器充电方法
CN104052026B (zh) 用于模块化多电平换流器的子模块拓扑及其应用
CN104410260B (zh) 一种具有容错能力可实现直流故障自主防护的mmc子模块结构及其mmc调制方法
US10483788B2 (en) Charging method for sub-module based hybrid converter
CN104868748B (zh) 一种换流器模块单元、换流器、直流输电系统及控制方法
WO2018130205A1 (zh) 一种子模块混合型换流器的充电方法
CN110224623B (zh) 一种直流故障阻断的模块化多电平换流器及子模块
CN113938037B (zh) 模块化多电平换流器、故障穿越方法及电子设备
CN104009497B (zh) 一种风电机组低电压穿越和有源滤波补偿装置及切换方法
CN109067162B (zh) 一种混合型模块化多电平换流器的启动方法及装置
CN107612408B (zh) 一种储能变流器和储能系统
CN111525826A (zh) 一种模块化电容换相换流器和方法
Yu et al. New submodule circuits for modular multilevel current source converters with DC fault ride through capability
CN203399013U (zh) 基于三电平h桥级联的静止同步补偿器及电压源逆变模块
CN207732448U (zh) 一种储能变流器和储能变流系统
Cao et al. Comparison of cascaded multilevel and modular multilevel converters with energy storage system
CN114553020B (zh) 一种电容复用型模块化多电平换流器及其控制方法
CN116488228A (zh) 一种多电平转换器及其控制方法
CN208046465U (zh) 一种改进型双箝位子模块和模块化多电平换流器
Tan et al. A fast restart hybrid MMC topology with fault ride-through ability
CN111446736B (zh) 一种风电机组控制系统逆变应急电源装置
Zhang et al. A strategy of DC fault ride through and capacitor voltage balancing for hybrid modular multilevel converter (MMC)
CN217882862U (zh) 一种三相链式电池储能电压源变流器
CN217469467U (zh) 光伏微逆变器系统及其控制装置
CN217656427U (zh) 具有黑启动功能的直流配网直供用户侧mmc系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20865056

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.08.2022)