WO2021052228A1 - 雨量检测装置 - Google Patents

雨量检测装置 Download PDF

Info

Publication number
WO2021052228A1
WO2021052228A1 PCT/CN2020/114295 CN2020114295W WO2021052228A1 WO 2021052228 A1 WO2021052228 A1 WO 2021052228A1 CN 2020114295 W CN2020114295 W CN 2020114295W WO 2021052228 A1 WO2021052228 A1 WO 2021052228A1
Authority
WO
WIPO (PCT)
Prior art keywords
rain
elastic
rain cover
piezoelectric ceramic
detection device
Prior art date
Application number
PCT/CN2020/114295
Other languages
English (en)
French (fr)
Inventor
徐志平
张胜德
黄元龙
李海孟
赵秀龙
郑雷奇
朱志贝
李晓浩
Original Assignee
浙江贝良风能电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江贝良风能电子科技有限公司 filed Critical 浙江贝良风能电子科技有限公司
Publication of WO2021052228A1 publication Critical patent/WO2021052228A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the utility model relates to the technical field of rain detection, in particular to a rain detection device.
  • the data of the regional rainfall is mainly from the measurement data fed back by the rainfall sensor of the region.
  • rainfall sensors mostly adopt weighing type, tipping bucket type and siphon type. All of the above methods require manual collection of data in a rain gauge or rain gauge, and manual calculation and processing of the collected data, which increases the work of detection At the same time, due to the technical level and experience of the personnel, the accuracy of the measurement data is low.
  • the technical problem to be solved by the present utility model is to overcome the defect of low rainfall measurement accuracy in the prior art, thereby providing a rainfall detection device.
  • the present invention provides a rain detection device including: an elastic rain cover; piezoelectric ceramics, which are arranged inside the elastic rain cover, and the piezoelectric ceramics can receive the deformation of the elastic rain cover; A signal processing system is electrically connected to the piezoelectric ceramic to process the signals collected by the piezoelectric ceramic.
  • the piezoelectric ceramic is adhered to the elastic rain cover with hard glue.
  • the elastic rain cover is constructed as a thin-walled shell made of stainless steel.
  • the elastic rain cover is configured as a curved surface structure and is curved toward the rain falling direction.
  • the end surface of the elastic rain cover receiving rainwater is provided with a waterproof coating.
  • a plurality of the piezoelectric ceramics are arranged on the inner surface of the elastic rain cover at equal intervals with the center of the elastic rain cover as the center.
  • the signal processing system includes: a signal acquisition board electrically connected to the piezoelectric ceramic to collect electrical signals generated by the piezoelectric ceramic; a main control board electrically connected to the signal acquisition board , Used to process the signals collected by the signal collection board.
  • it further includes: a carrier on which the signal acquisition board and the main control board are arranged; a housing, which is arranged around the carrier, and the elastic rain cover is arranged on the upper end of the housing.
  • the rain detection device in the utility model includes: an elastic rain cover; piezoelectric ceramics, which are arranged inside the elastic rain cover, and the piezoelectric ceramics can receive the occurrence of the elastic rain cover The deformation; a signal processing system, electrically connected to the piezoelectric ceramics, used to process the signals collected by the piezoelectric ceramics.
  • the falling raindrops act on the elastic rain cover, the elastic rain cover undergoes elastic deformation, the deformation signal is detected by the piezoelectric ceramic set on the elastic rain cover, and the piezoelectric ceramic will detect the deformation signal It is converted into an electric signal and transmitted to the signal processing system.
  • the signal processing system calculates the rainfall within the statistical time according to the above-mentioned electric signal.
  • the invention uses piezoelectric ceramics to automatically detect rainfall, and under the impact of rain, the elastic rain cover can transmit the deformation signal to the piezoelectric ceramics in real time. Later, it is handed over to the signal processing system for calculation and processing.
  • the real-time feedback signal acquisition method can collect as much rainfall sample data as possible. The more sample data, the more accurate the rainfall measurement.
  • the piezoelectric ceramics are adhered to the elastic rain cover with hard glue, and the hard glue can better transmit the deformation of the elastic rain cover to the piezoelectric ceramics. This ensures the accuracy of the rainfall collection signal terminal.
  • the elastic rain cover is constructed as a thin-walled shell made of stainless steel.
  • the stainless steel material can ensure the structural strength of the rain cover and increase the service life of the entire rain detection device.
  • the thin-walled shell structure can also be elastically deformed when the rainfall is small and the impact of rain is low, so as to ensure the accurate detection of rainfall such as light rain.
  • the elastic rain cover is constructed as a curved surface structure, and is curved toward the rain falling direction.
  • the advantage of this design is that the curved structure can guide rainwater away from the surface of the elastic rain cover, prevent rainwater from accumulating on the surface of the rain cover, and prevent the accumulated rainwater from affecting the deformation of the elastic rain cover under the action of gravity, thereby affecting the rainfall detection The accuracy.
  • the end surface of the elastic rain cover that receives rainwater is provided with a waterproof coating, which can accelerate the rain falling from the elastic rain cover, so as to shorten the collection interval of each set of rainfall collection signals, so as to realize the perfection. It is possible that the collection of heavy rainfall data can improve the accuracy of detection.
  • the rainfall detection device of the present invention several piezoelectric ceramics are centered on the center of the elastic rain cover, and are arranged on the inner surface of the elastic rain cover at equal intervals.
  • the characteristic of the arc structure is the distance from the apex or the center.
  • the structural strengths at different distances from the point are different.
  • the above-mentioned implementation is adopted in this utility model to ensure the accuracy of the piezoelectric ceramics detecting the deformation signals. Sex.
  • the rainfall detection device in the present invention further includes: a carrier on which the signal acquisition board and the main control board are arranged; a shell is arranged around the carrier, and the elastic rain cover is arranged on the shell The upper end of the body.
  • the carrier is convenient for the placement and installation of the rain detection device, and the shell can well protect the internal piezoelectric ceramics, signal acquisition board, main control board and other devices.
  • Fig. 1 is a schematic diagram of a full-sectional structure of a rainfall detection device in an embodiment provided by the utility model.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or an optional connection.
  • Detachable connection, or integral connection it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection can be a fixed connection or an optional connection.
  • Detachable connection, or integral connection it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present utility model can be understood under specific circumstances.
  • a rain detection device As shown in Fig. 1, a rain detection device provided by this embodiment includes an elastic rain cover 1; piezoelectric ceramics 2 are arranged inside the elastic rain cover 1, and the piezoelectric ceramics 2 can receive the elastic rain cover 1 Deformation that occurs; a signal processing system, which is electrically connected to the piezoelectric ceramic 2 to process the signals collected by the piezoelectric ceramic 2.
  • the falling raindrops act on the elastic rain cover 1, and the elastic rain cover 1 undergoes elastic deformation.
  • the signal of the deformation is detected by the piezoelectric ceramic 2 set on the elastic rain cover 1, and the piezoelectric ceramic 2 will
  • the detected deformation signal is converted into an electric signal and transmitted to the signal processing system, and the signal processing system calculates the rainfall within the statistical time according to the above-mentioned electric signal.
  • the piezoelectric ceramic 2 is used in this utility model to realize the automatic detection of rainfall, and under the impact of rain, the elastic rain cover 1 can transmit the deformation signal to the piezoelectric ceramic 2 in real time. After the electric ceramic 2 acts, it is handed over to the signal processing system for calculation and processing.
  • the real-time feedback signal acquisition method can collect as much rainfall sample data as possible. The more sample data, the more accurate the rainfall measurement.
  • the piezoelectric ceramic 2 is adhered to the elastic rain cover 1 with hard glue 3.
  • the hard glue 3 in this embodiment is epoxy resin. After curing, it has high hardness and can be The deformation of the elastic rain cover 1 is better transmitted to the piezoelectric ceramic 2, so as to ensure the accuracy of the rainfall collection signal terminal.
  • the hard glue 3 can also be a structural glue.
  • the choice of the hard glue 3 is based on the material characteristics of the elastic rain cover 1. While ensuring good force transmission, it is also necessary to ensure the reliability of pasting.
  • the elastic rain cover 1 in this embodiment is constructed as a thin-walled stainless steel shell.
  • the thin-walled structure has low rainfall and low rain impact.
  • elastic deformation can also occur to ensure accurate detection of rainfall such as light rain.
  • the stainless steel material can ensure that the rainfall detection device has a higher structural strength, which will bring about a longer service life.
  • the elastic rain cover 1 In the actual detection process of this device, if the elastic rain cover 1 adopts a flat structure, it will form rainwater accumulation. The accumulated rainwater has a considerable weight, which will affect the elastic deformation of the elastic rain cover 1.
  • the elastic rain cover 1 is constructed as a curved surface structure and is curved toward the rain falling direction. When rain falls on the elastic rain cover 1, it can quickly slide off the surface of the elastic rain cover 1 under the action of the curved surface. The accumulation of rainwater on the elastic rain cover 1 is prevented.
  • the end surface of the elastic rain cover 1 that receives rainwater is coated with a waterproof coating to accelerate the rainwater falling from the elastic rain cover, so as to shorten the collection interval of each set of rainfall collection signals, so as to achieve as much rainfall data as possible.
  • the collection improves the accuracy of detection.
  • the acrylic water-proof paint is a one-component water-emulsion type water-repellent paint prepared by adding other additives to a pure acrylic polymer emulsion as a base material. After the waterproof coating is cured, the waterproof film formed has a certain degree of extensibility, elasticity, plasticity, crack resistance, impermeability and weather resistance, and can play a role in waterproof, anti-seepage and protection.
  • the characteristics of the arc surface structure is that the structural strength at different distances from the apex or the center point is different.
  • the detected deformation variables are basically the same.
  • the center of the elastic rain cover 1 is the center of the circle, and the elastic rain cover 1 is adhered to the inner surface of the elastic rain cover 1 at equal intervals.
  • the arc surface structure in this embodiment is a circular arc structure surface, which is easy to process.
  • the arc surface structure may also be other convex curved surface structures, such as hyperbolic surfaces, parabolic surfaces, and the like.
  • the signal processing system in this embodiment includes: a signal acquisition board 4, which is electrically connected to the piezoelectric ceramic 2 to collect electrical signals generated by the piezoelectric ceramic 2; a main control board 5, which is electrically connected to the signal acquisition board, is used To process the signals collected by the signal acquisition board.
  • This embodiment also includes: a carrier 6 on which a signal acquisition board 4 and a main control board 5 are installed.
  • the carrier 6 has a circular platform structure, and the signal acquisition board 4 and the main control board 5 pass The screw is fixed on the upper surface of the carrier 6; the housing 7 is arranged around the carrier 6, and the housing 7 is a hollow cylindrical structure, which is covered on the circumferential surface of the carrier 6, and is locked on the carrier 6 by screws.
  • the elastic rain cover 1 is installed on the upper end of the housing 7 on the circumferential surface of the housing 7.
  • the carrier 6 facilitates the placement and installation of the rain detection device, and the housing 7 can well protect the piezoelectric ceramic 2 inside, the signal acquisition board 4, the main control board 5 and other devices.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

一种雨量检测装置,包括:弹性雨盖(1);压电陶瓷(2),设置在弹性雨盖(1)内侧,压电陶瓷(2)能够接收弹性雨盖(1)发生的变形;信号处理系统,电连在压电陶瓷(2)上,用以处理压电陶瓷(2)采集的信号。相比于传统的雨量统计方式,该雨量检测装置利用压电陶瓷(2)实现对雨量的自动检测,且在雨水的冲击下,弹性雨盖(1)可将形变信号实时传递给压电陶瓷(2),经压电陶瓷(2)作用后在交给信号处理系统进行计算处理,实时反馈的信号采集方式,可尽可能多的采集雨量的样本数据,样本数据越多,对雨量的测量越精确。

Description

雨量检测装置 技术领域
本实用新型涉及雨水检测技术领域,具体涉及一种雨量检测装置。
背景技术
气象报告中,地区雨量的数据主要是来自该地域雨量传感器反馈的测量数据。
现有技术中雨量传感器多采用称重式、翻斗式和虹吸式,上述方式都需要人工去采集雨量筒或雨量计中的数据,并对采集到的数据进行人工计算处理,增加了检测的工作量同时,因人员的技术水平和经验等问题,导致测量数据精确度低。
技术问题
因此,本实用新型要解决的技术问题在于克服现有技术中雨量测量精确度低的缺陷,从而提供一种雨量检测装置。
技术解决方案
为了解决上述问题,本实用新型提供了一种雨量检测装置包括:弹性雨盖;压电陶瓷,设置在所述弹性雨盖内侧,所述压电陶瓷能够接收所述弹性雨盖发生的变形;信号处理系统,电连在所述压电陶瓷上,用以处理所述压电陶瓷采集的信号。
进一步地,所述压电陶瓷以硬胶粘附在所述弹性雨盖上。
进一步地,所述弹性雨盖被构造为不锈钢材质的薄壁壳体。
进一步地,所述弹性雨盖被构造为弧面结构,且朝向雨水降落方向弯曲。
进一步地,所述弹性雨盖承接雨水的端面上设置有防水涂层。
进一步地,若干个所述压电陶瓷以所述弹性雨盖的中心为圆心,等间距设置在所述弹性雨盖的内表面上。
进一步地,所述信号处理系统包括:信号采集板,电连在所述压电陶瓷上,用以采集所述压电陶瓷产生的电信号;主控板,电连在所述信号采集板上,用以处理所述信号采集板采集的信号。
进一步地,还包括:载台,其上设置有所述信号采集板和所述主控板;壳体,环绕所述载台设置,所述弹性雨盖设置在所述壳体的上端。
有益效果
本实用新型技术方案,具有如下优点:本实用新型中的雨量检测装置包括:弹性雨盖;压电陶瓷,设置在所述弹性雨盖内侧,所述压电陶瓷能够接收所述弹性雨盖发生的变形;信号处理系统,电连在所述压电陶瓷上,用以处理所述压电陶瓷采集的信号。
于雨量检测时,下落的雨滴作用在弹性雨盖上,弹性雨盖发生弹性形变,形变量的信号被设置在弹性雨盖上的压电陶瓷所检测到,压电陶瓷将检测的形变量信号转换为电信号,并传输给信号处理系统,信号处理系统根据上述的电信号计算出统计时间内的雨量。
相比于传统的雨量统计方式,本实用新型中利用压电陶瓷实现对雨量的自动检测,且在雨水的冲击下,弹性雨盖可将形变信号实时传递给压电陶瓷,经压电陶瓷作用后在交给信号处理系统进行计算处理,实时反馈的信号采集方式,可尽可能多的采集雨量的样本数据,样本数据越多,对雨量的测量越精确。
本实用新型中的雨量检测装置所述压电陶瓷以硬胶粘附在所述弹性雨盖上,硬胶粘贴的方式可将弹性雨盖的形变量更好地传递给压电陶瓷,以此保证雨量采集信号端的精确性。
本实用新型中的雨量检测装置所述弹性雨盖被构造为不锈钢材质的薄壁壳体,不锈钢材质可保证雨盖的结构强度,增加整个雨量检测装置的使用寿命。另薄壁的壳体结构,于雨量较小,雨水冲击力低时,亦可发生弹性形变,以保证对小雨等雨量的精确检测。
本实用新型中的雨量检测装置所述弹性雨盖被构造为弧面结构,且朝向雨水降落方向弯曲。此种设计的好处在于,弧面结构可引导雨水脱离弹性雨盖的表面,防止雨水在雨盖表面堆积,防止堆积的雨水在重力作用下,影响弹性雨盖的形变大小,进而影响到雨量检测的精确性。
本实用新型中的雨量检测装置所述弹性雨盖承接雨水的端面上设置有防水涂层,可加速雨水从弹性雨盖上的滑落,以缩短每组雨量采集信号的采集间隔,从而实现对尽可能多雨量数据的采集,提高检测的精度。
本实用新型中的雨量检测装置若干个所述压电陶瓷以所述弹性雨盖的中心为圆心,等间距设置在所述弹性雨盖的内表面上,弧面结构的特性是距离顶点或中心点不同距离的位置的结构强度各不相同,为了保证在雨水冲力下,检测到的形变量基本相同,本实用新型中采用了上述的实施方案,以保证压电陶瓷检测到形变量信号的准确性。
本实用新型中的雨量检测装置还包括:载台,其上设置有所述信号采集板和所述主控板;壳体,环绕所述载台设置,所述弹性雨盖设置在所述壳体的上端。载台便于雨量检测装置的放置和安装,而壳体可以很好地保护内部的压电陶瓷和信号采集板、主控板等装置。
附图说明
为了更清楚地说明本实用新型具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本实用新型的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型提供的实施例中的雨量检测装置的全剖结构示意图。
附图标记说明:1-弹性雨盖;2-压电陶瓷;3-硬胶;4-信号采集板;5-主控板;6-载台;7-壳体。
本发明的最佳实施方式
下面将结合附图对本实用新型的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
在本实用新型的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本实用新型的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实用新型中的具体含义。
此外,下面所描述的本实用新型不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1:如图1所示,为本实施例提供的一种雨量检测装置包括弹性雨盖1;压电陶瓷2,设置在弹性雨盖1内侧,压电陶瓷2能够接收弹性雨盖1发生的变形;信号处理系统,电连在压电陶瓷2上,用以处理压电陶瓷2采集的信号。
于雨量检测时,下落的雨滴作用在弹性雨盖1上,弹性雨盖1发生弹性形变,形变量的信号被设置在弹性雨盖1上的压电陶瓷2所检测到,压电陶瓷2将检测的形变量信号转换为电信号,并传输给信号处理系统,信号处理系统根据上述的电信号计算出统计时间内的雨量。
相比于传统的雨量统计方式,本实用新型中利用压电陶瓷2实现对雨量的自动检测,且在雨水的冲击下,弹性雨盖1可将形变信号实时传递给压电陶瓷2,经压电陶瓷2作用后在交给信号处理系统进行计算处理,实时反馈的信号采集方式,可尽可能多的采集雨量的样本数据,样本数据越多,对雨量的测量越精确。
如图1中给出的示例,压电陶瓷2以硬胶3粘附在弹性雨盖1上,本实施例中的硬胶3为环氧树脂胶,其在固化后,硬度高,可将弹性雨盖1的形变量更好地传递给压电陶瓷2,以此保证雨量采集信号端的精确性。
在其他一些实施方式中硬胶3也可为结构胶,硬胶3的选择根据弹性雨盖1的材料特征进行合理选择,在保证良好的力传导的同时,亦需要保证粘贴的可靠性。
在雨量的实际检测过程中,降雨的过程中,雨量的大小程度在不同的时间段是不断变化的,一般在开始和结束阶段,雨量较小,或者在不同的季节或地区,以小雨或微量降水为主,为了本套装置亦能对上述的情况实现检测,本实施例中的弹性雨盖1被构造为不锈钢材质的薄壁壳体,薄壁的结构于雨量较小,雨水冲击力低时,亦可发生弹性形变,以保证对小雨等雨量的精确检测。进一步地,不锈钢材质可保证雨量检测装置具有较高的结构强度,其会带来较长的使用寿命。
本套装置在实际的检测过程中,如弹性雨盖1采用平面结构,会在其上形成雨水的堆积,堆积的雨水具有相当的重量,会影响到弹性雨盖1的弹性形变量,故在本实施例中弹性雨盖1被构造为弧面结构,且朝向雨水降落方向弯曲,雨水降落到弹性雨盖1上时,在弧面的作用下可快速的从弹性雨盖1的表面滑落,防止了雨水在弹性雨盖1上的堆积。
进一步地,弹性雨盖1承接雨水的端面上涂布有防水涂层,以加速雨水从弹性雨盖上的滑落,这样可缩短每组雨量采集信号的采集间隔,从而实现对尽可能多雨量数据的采集,提高检测的精度。
本实施例中采用的是丙烯酸防水涂料是以纯丙烯酸聚合物乳液为基料,加入其他添加剂而制得的单组份水乳型防水涂料。防水涂料经固化后形成的防水薄膜具有一定的延伸性、弹塑性、抗裂性、抗渗性及耐候性,能起到防水、防渗和保护作用。
进一步需要阐述的是:弧面结构的特性是距离顶点或中心点不同距离的位置的结构强度各不相同,为了保证在雨水冲力下,检测到的形变量基本相同,六个压电陶瓷2以弹性雨盖1的中心为圆心,等间距粘附在弹性雨盖1的内表面上。
本实施例中的弧面结构为圆弧结构面,其加工简单,在其他的一些实施方式中,弧面结构也可为其他的凸起的曲面结构,如双曲线曲面、抛物面等结构。
本实施例中的信号处理系统包括:信号采集板4,电连在压电陶瓷2上,用以采集压电陶瓷2产生的电信号;主控板5,电连在信号采集板上,用以处理信号采集板采集的信号。
本实施例中还包括:载台6,其上安装有信号采集板4和主控板5,如图1中的示出,载台6为圆台结构,信号采集板4和主控板5通过螺钉固定在载台6的上表面上;壳体7,环绕载台6设置,壳体7呈中空的圆柱结构,其罩设在载台6的圆周面上,通过螺钉锁付在载台6的圆周面上,弹性雨盖1安装在壳体7的上端。载台6便于雨量检测装置的放置和安装,而壳体7可以很好地保护内部的压电陶瓷2和信号采集板4、主控板5等装置。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本实用新型创造的保护范围之中。

Claims (8)

  1. 一种雨量检测装置,其特征在于,包括:弹性雨盖(1);压电陶瓷(2),设置在所述弹性雨盖(1)内侧,所述压电陶瓷(2)能够接收所述弹性雨盖(1)发生的变形;信号处理系统,电连在所述压电陶瓷(2)上,用以处理所述压电陶瓷(2)采集的信号。
  2. 根据权利要求1所述的雨量检测装置,其特征在于,所述压电陶瓷(2)以硬胶(3)粘附在所述弹性雨盖(1)上。
  3. 根据权利要求2所述的雨量检测装置,其特征在于,所述弹性雨盖(1)被构造为不锈钢材质的薄壁壳体。
  4. 根据权利要求3所述的雨量检测装置,其特征在于,所述弹性雨盖(1)被构造为弧面结构,且朝向雨水降落方向弯曲。
  5. 根据权利要求4所述的雨量检测装置,其特征在于,所述弹性雨盖(1)承接雨水的端面上设置有防水涂层。
  6. 根据权利要求4或5任一所述的雨量检测装置,其特征在于,若干个所述压电陶瓷(2)以所述弹性雨盖(1)的中心为圆心,等间距设置在所述弹性雨盖(1)的内表面上。
  7. 根据权利要求6所述的雨量检测装置,其特征在于,所述信号处理系统包括:信号采集板(4),电连在所述压电陶瓷(2)上,用以采集所述压电陶瓷(2)产生的电信号;主控板(5),电连在所述信号采集板上,用以处理所述信号采集板采集的信号。
  8. 根据权利要求1所述的雨量检测装置,其特征在于,还包括:载台(6),其上设置有所述信号采集板和所述主控板;壳体(7),环绕所述载台设置,所述弹性雨盖(1)设置在所述壳体的上端。
PCT/CN2020/114295 2019-09-19 2020-09-10 雨量检测装置 WO2021052228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201921566414.5U CN210243876U (zh) 2019-09-19 2019-09-19 雨量检测装置
CN201921566414.5 2019-09-19

Publications (1)

Publication Number Publication Date
WO2021052228A1 true WO2021052228A1 (zh) 2021-03-25

Family

ID=69966392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114295 WO2021052228A1 (zh) 2019-09-19 2020-09-10 雨量检测装置

Country Status (2)

Country Link
CN (1) CN210243876U (zh)
WO (1) WO2021052228A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501763A (zh) * 2019-09-19 2019-11-26 浙江贝良风能电子科技有限公司 雨量检测装置
CN210243876U (zh) * 2019-09-19 2020-04-03 浙江贝良风能电子科技有限公司 雨量检测装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120272726A1 (en) * 2011-04-29 2012-11-01 Cullen Robert M Precipitation Sensor
CN103926636A (zh) * 2014-03-31 2014-07-16 卢会国 基于压电加速度传感器的雨量数据处理系统
CN104316980A (zh) * 2014-10-28 2015-01-28 中国科学院电子学研究所 压电式雨量测量装置
CN108196321A (zh) * 2017-12-21 2018-06-22 苏州斯威高科信息技术有限公司 一种降雨测量装置和方法
CN208172278U (zh) * 2018-05-23 2018-11-30 广州大学 一种雨雹强度测量仪
CN208255448U (zh) * 2018-06-13 2018-12-18 广西北斗应用工程技术有限责任公司 一种雨水监测装置
CN208537740U (zh) * 2018-04-25 2019-02-22 北京东方润泽生态科技股份有限公司 一种电子式雨量测量装置
CN110501763A (zh) * 2019-09-19 2019-11-26 浙江贝良风能电子科技有限公司 雨量检测装置
CN110794486A (zh) * 2018-08-02 2020-02-14 北京交通大学 一种降雨量传感器
CN210243876U (zh) * 2019-09-19 2020-04-03 浙江贝良风能电子科技有限公司 雨量检测装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120272726A1 (en) * 2011-04-29 2012-11-01 Cullen Robert M Precipitation Sensor
CN103926636A (zh) * 2014-03-31 2014-07-16 卢会国 基于压电加速度传感器的雨量数据处理系统
CN104316980A (zh) * 2014-10-28 2015-01-28 中国科学院电子学研究所 压电式雨量测量装置
CN108196321A (zh) * 2017-12-21 2018-06-22 苏州斯威高科信息技术有限公司 一种降雨测量装置和方法
CN208537740U (zh) * 2018-04-25 2019-02-22 北京东方润泽生态科技股份有限公司 一种电子式雨量测量装置
CN208172278U (zh) * 2018-05-23 2018-11-30 广州大学 一种雨雹强度测量仪
CN208255448U (zh) * 2018-06-13 2018-12-18 广西北斗应用工程技术有限责任公司 一种雨水监测装置
CN110794486A (zh) * 2018-08-02 2020-02-14 北京交通大学 一种降雨量传感器
CN110501763A (zh) * 2019-09-19 2019-11-26 浙江贝良风能电子科技有限公司 雨量检测装置
CN210243876U (zh) * 2019-09-19 2020-04-03 浙江贝良风能电子科技有限公司 雨量检测装置

Also Published As

Publication number Publication date
CN210243876U (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
WO2021052228A1 (zh) 雨量检测装置
CN102175887B (zh) 移动式超声波风速风向仪及测量风速风向的方法
CN111998912B (zh) 一体化全量程窨井水位监测设备及监测方法
CN103792263A (zh) 用于混凝土结构的无线智能骨料健康监测装置及方法
CN104316980B (zh) 压电式雨量测量装置
CN104897924A (zh) 一种二维反射式超声波风速风向仪及测量方法
CN207963881U (zh) 一种索股坐标测量工装
CN201984080U (zh) 移动式超声波风速风向仪
CN111638027B (zh) 一种基于多目标位移传递的高墩连续钢构桥位移监测方法
CN115598007A (zh) 一种预应力波纹管压浆质量检测装置及检测方法
CN101915853A (zh) 基于光点位置敏感的风速风向测试装置
CN110501763A (zh) 雨量检测装置
CN110456392B (zh) 一种建筑塔机横臂位置精准定位可靠性验证方法
CN110632682A (zh) 一种降雨信息智慧检测装置及方法
CN218469908U (zh) 城市住房监测预警装置
CN202075303U (zh) 一种微差压式高精度测风装置
CN109387887B (zh) 基于被动式冲量法的降水量测量方法及测量装置
CN111013829B (zh) 一种浮选机充气量检测装置
CN205981382U (zh) 一种机械式远传水表机电同步检测系统
CN209043844U (zh) 一种非接触管段式的固含量超声波测量装置
CN113092711A (zh) 一种水利信息化水利工程用水质检测系统
CN219368870U (zh) 一种水位监测装置
CN105651343B (zh) 带有姿态传感器的数字远传水位水温监测仪
CN205940496U (zh) 一种橡胶动态磨损指数检测装置
CN112857487A (zh) 一种多传输方式的超声波水表

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866631

Country of ref document: EP

Kind code of ref document: A1