WO2021052036A1 - 一种基于法兰盘螺栓的gis局部放电检测装置和方法 - Google Patents

一种基于法兰盘螺栓的gis局部放电检测装置和方法 Download PDF

Info

Publication number
WO2021052036A1
WO2021052036A1 PCT/CN2020/106428 CN2020106428W WO2021052036A1 WO 2021052036 A1 WO2021052036 A1 WO 2021052036A1 CN 2020106428 W CN2020106428 W CN 2020106428W WO 2021052036 A1 WO2021052036 A1 WO 2021052036A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse current
gis
flange
current sensor
partial discharge
Prior art date
Application number
PCT/CN2020/106428
Other languages
English (en)
French (fr)
Inventor
司文荣
傅晨钊
黄华
陆启宇
黄兴德
高凯
袁鹏
Original Assignee
国网上海市电力公司
华东电力试验研究院有限公司
西安茂荣电力设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网上海市电力公司, 华东电力试验研究院有限公司, 西安茂荣电力设备有限公司 filed Critical 国网上海市电力公司
Priority to AU2020239762A priority Critical patent/AU2020239762A1/en
Publication of WO2021052036A1 publication Critical patent/WO2021052036A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/181Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using coils without a magnetic core, e.g. Rogowski coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1254Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of gas-insulated power appliances or vacuum gaps

Definitions

  • the invention relates to the field of partial discharge detection of GIS equipment, in particular to a GIS partial discharge detection device and method based on flange bolts.
  • GIS gas insulated metal enclosed switchgear
  • GIS INSULATED SWITCHGEAR gas insulated metal enclosed switchgear
  • GIS equipment includes functional units such as busbars, circuit breakers, isolating switches, grounding switches, current transformers, voltage transformers, and lightning arresters.
  • GIS equipment uses SF 6 gas with high insulation strength as the insulating medium and the arc extinguishing medium of the circuit breaker, and all high-voltage components are sealed in the shell to realize the compactness of the GIS equipment.
  • SF 6 gas with high insulation strength as the insulating medium and the arc extinguishing medium of the circuit breaker, and all high-voltage components are sealed in the shell to realize the compactness of the GIS equipment.
  • the leakage of SF 6 gas, the infiltration of external moisture, the presence of conductive impurities, and the aging of insulators may all cause internal flashover failures and reduce the insulation performance of GIS equipment.
  • GIS equipment failures caused by reduced insulation performance account for a large proportion of GIS equipment failures. Therefore, in order to prevent the system from malfunctioning due to reduced insulation performance, in actual operation, insulation detection of GIS equipment and real-time monitoring of GIS The internal insulation of the equipment is very necessary.
  • Various potential defects in GIS equipment may cause partial discharges of different degrees, and long-term discharge will deteriorate the insulation and gradually expand, and even cause the entire insulation breakdown or flashover along the surface, which poses a great threat to the safe operation of the equipment , And even system power outages caused by operating failures, causing huge losses.
  • the power industry's tests on GIS equipment mainly focus on how to find their internal insulation defects, including the AC withstand voltage factory test and the on-site AC withstand voltage test, which are based on the partial discharge pulse current detection method of offline GIS equipment, and the partial discharge of GIS equipment Discharge will cause the internal pulse current signal to be generated.
  • the pulse current method is currently the only partial discharge detection method with international and national standards. It obtains the pulse current measured on the coupling capacitor side by measuring the impedance, or obtains the Rogowski coil from the power equipment The pulse current measured at the neutral point or ground point of the pulse current can be used to obtain information such as the discharge amount, discharge phase, and discharge frequency of the pulse current.
  • the detection method is shown in Figure 1.
  • This detection method requires that the GIS equipment be installed in the laboratory or on-site before setting up a coupling capacitor voltage divider, and grounding at a single point, so that the partial discharge pulse current signal is coupled from the grounding line.
  • most of the GIS equipment running on site is grounded at multiple points, so the method shown in Figure 1 cannot be used to detect the partial discharge pulse current of the GIS equipment.
  • the purpose of the present invention is to provide a GIS partial discharge detection device and method based on flange bolts in order to overcome the above-mentioned defects in the prior art.
  • a GIS partial discharge detection device based on flange bolts comprising a GIS device, a pulse current sensor connected to the GIS device, and a measurer connected to the pulse current sensor.
  • the GIS device includes a plurality of connected GIS devices. Shell, flanges, flange bolts, gaskets, nuts arranged at both ends of the GIS shell, and basin-type insulators and bus bar guide rods respectively arranged inside the GIS shell and connected to each other, the GIS shell And the basin-type insulator are connected to each other through flanges and flange bolts, the gaskets and nuts are respectively arranged at both ends of the flange bolts, and the pulse current sensor is installed on the flange through the flange bolts
  • the GIS shell, flange, nut, gasket, flange bolt and metal shell of the pulse current sensor form a pulse current flow path, and the pulse current flow path passes through the pulse current sensor.
  • the gasket is arranged between the nut and the outer surface of the flange, and the pulse current sensor is installed between the outer surface of the flange and the gasket.
  • the pulse current flow path passes through the GIS shell, flange, gasket and nut on one side of the flange bolt in turn, and then passes through the other side of the flange bolt in turn. Nuts, gaskets, metal shell of the pulse current sensor and the GIS shell on the other side of the flange bolt.
  • the pulse current signal follows the pulse current The circulation path flows from the GIS shell on one side of the flange bolt to the GIS shell on the other side of the flange bolt.
  • the pulse current signal flows from one end to the other end of the flange bolt along the pulse current flow path, it passes through the pulse current sensor at the same time, and the pulse current sensor converts the pulse current signal into a voltage signal.
  • one pulse current sensor is provided, and it is installed at one end of a flange bolt.
  • the pulse current sensor is a Rogowski coil HFCT.
  • the pulse current sensor adopts the conventional pulse current method.
  • the pulse current sensor adopts high Frequency pulse current method.
  • the measurement device is a live detection device or an online monitoring device.
  • the measurement device is used for inspection and detection of GIS equipment, and the measurement device is combined with the pulse during the detection process. Connect the current sensor, disconnect the measuring instrument from the pulse current sensor after the detection is complete; when the measuring instrument is an online monitoring device, the device is used for online monitoring of GIS equipment, and the measuring instrument and the pulse current sensor are always connection.
  • a method for GIS partial discharge detection using the flange bolt-based GIS partial discharge detection device includes the following steps:
  • the pulse current signal flows along the pulse current flow path from the GIS shell on one side of the flange bolt to the GIS shell on the other side of the flange bolt, and at the same time flows through the pulse current sensor, the pulse current sensor will pulse current signal Convert to voltage signal;
  • the measuring device measures the parameters of the received voltage signal, and detects the internal partial discharge of the GIS equipment according to the parameters of the voltage signal.
  • the pulse current sensor is a Rogowski coil HFCT.
  • the pulse current sensor adopts the conventional pulse current method.
  • the pulse current sensor adopts high Frequency pulse current method.
  • the measurement device is a live detection device or an online monitoring device.
  • the measurement device is a live detection device
  • the method is used for inspection and detection of GIS equipment, and the measurement device receives a voltage signal during the detection process.
  • the measuring device is an online monitoring device
  • the method is used for online monitoring of GIS equipment, and the measuring device receives and measures the voltage signal in real time during the normal operation of the GIS equipment.
  • the present invention has the following advantages:
  • the pulse current sensor is installed between the flanges and the gasket through the feature of the conduction of the fixing bolts.
  • the Rogowski coil HFCT is installed based on the flange bolts.
  • the installed Rogowski coil HFCT is an external type, which is convenient to install and does not damage the original sealing structure of the GIS equipment.
  • the internal insulation design can be installed under the existing operation and maintenance guidelines;
  • the measuring device in the present invention can be selected as live detection equipment or online monitoring equipment.
  • the online detection equipment by maintaining the connection between the coaxial cable and the pulse current sensor, the pulse on the pulse current flow path in the GIS equipment can be monitored in real time.
  • the current signal generation situation does not affect the normal operation of the GIS equipment, and the adaptability and practicability of the device of the invention are improved.
  • Figure 1 is a schematic diagram of an existing offline GIS partial discharge pulse current detection method
  • FIG. 2 is a schematic diagram of the principle of a GIS partial discharge detection device based on flange bolts of the present invention
  • Fig. 3 is a single pulse current waveform generated by partial discharge of a GIS guide rod tip burr defect collected using a flange bolt-based GIS partial discharge detection method of the present invention
  • Fig. 4 is a PRPD spectrum diagram of the partial discharge generated by the partial discharge at the tip of the GIS guide rod collected by the GIS partial discharge detection method based on flange bolts of the present invention.
  • Pulse current sensor Rogowski coil HFCT
  • Gasket 3. Nut
  • Flange bolt 5.
  • GIS shell 6.
  • Pulse current flow path 7.
  • Pot insulator 8.
  • Bus guide rod 9, coaxial cable, 10, measuring device, 11, flange, 20, GIS equipment, 30, high voltage power supply, 40, Rogowski coil HFCT.
  • the present invention provides a GIS partial discharge detection device based on flange bolts, which generally includes flange 11, pulse current sensor 1, gasket 2, nut 3, flange bolt 4, GIS Housing 5, basin-type insulator 7, bus guide rod 8, coaxial cable 9 and measuring instrument 10.
  • the GIS shell 5, flange 11, nut 3, gasket 2 and flange bolt 4 together form a pulse current flow path 6.
  • the pulse current sensor 1 can be a Rogowski coil HFCT. The specific location and connection of the components are explained:
  • a plurality of GIS shells 5 are connected in series with each other, and flanges 11 are provided at both ends of the GIS shell 5.
  • the left and right GIS shells 5 are connected in series via two flange bolts 4.
  • the basin-type insulator 7 and the busbar guide rod 8 are arranged in the GIS shell 5 and connected to each other.
  • the basin-type insulator 7 is connected to the GIS shell 5 through the flange 11 and the flange bolt 4, and the gasket 2 and the nut 3 are respectively It is arranged at both ends of the flange bolt 4 to ensure the sealing performance of the GIS equipment, thereby forming the GIS equipment.
  • the Rogowski coil HFCT as the pulse current sensor 1 is installed on the outer side of the flange 11 through the flange bolt 4. After the installation is completed, the positional relationship of the flange 11, gasket 2, pulse current sensor 1 and nut 3 is: A gasket 2 is provided between the nut 3 and the flange 11, and a pulse current sensor 1 is provided between the gasket 2 and the flange 11.
  • the pulse current flow path 6 formed by the GIS shell 5, the flange 10, the nut 3, the gasket 2, the metal shell of the pulse current sensor 1, and the flange bolt 4 together passes through the pulse current sensor 1, the pulse current sensor 1 is connected to the measuring instrument 10 through a coaxial cable 9.
  • only one pulse current sensor 1 is provided at one end of one flange bolt 4.
  • the pulse current flow path 6 passes through the GIS shell 5, flange 11, gasket 2 and nut 3 on the side of the flange bolt 4 in turn, and then passes through the flange bolt 4 in turn.
  • the pulse current signal flows along the pulse current flow path 6, from the GIS shell 5 on the side of the flange bolt 4 to the flange
  • the GIS housing 5 on the other side of the plate bolt 4 when the pulse current signal flows from one side of the flange plate bolt 4 to the other side along the pulse current flow path 6, it passes through the pulse current sensor 1 and the pulse current sensor 1 at the same time. Convert the pulse current signal into a voltage signal.
  • the working characteristics of the pulse current sensor 1 meet the requirements of the partial discharge pulse current method: when the detection frequency band is less than 1M, the conventional pulse current method is adopted; when the detection frequency band is 3MHz-30MHz, the high frequency pulse current method is adopted.
  • the size parameters of the pulse current sensor 1 are matched with the sizes of the gasket 2, the nut 3, and the bolt.
  • the single-point grounding method is to provide insulation at one end of each GIS shell 5, and use single-point grounding at the other end.
  • the two GIS shells 5 in series are insulated at the flange between the two GIS shells 5 in series. Insulation is provided at the housing support between the ground and the ground.
  • the multi-point grounding method is to use more than two multi-point grounding conductors in each GIS shell 5 to connect the GIS shell 5 and the ground.
  • the shell support is not insulated and the two GIS shells are connected in series. There is no insulation between the flanges of the body 5, and they are connected by fixing bolts.
  • the main principle of the present invention is: the partial discharge generated by the internal defects of the GIS equipment will pass through the capacitance existing between the bus bar guide 8 and the GIS shell 5, and a weak pulse current signal is generated on the GIS shell 5.
  • the pulse current signal Pass through GIS shell 5, flange 11, gasket 2, nut 3 and flange bolt 4 on one side of flange bolt 4 in turn, and then pass nut 3 on the other side of flange bolt 4 in turn And the gasket 2 finally flow to the GIS shell 5 on the other side of the flange bolt 4, thereby forming a passage.
  • the pulse current signal can be converted into a voltage signal, which can be transmitted to the measuring device 10 to form a partial discharge pulse current detection and charging of the GIS equipment based on the flange bolt 4. Online monitoring method.
  • the present invention also provides a GIS partial discharge detection method based on flange bolts, which includes the following steps:
  • the pulse current signal flows along the pulse current flow path 6, from the GIS shell 5 on one side of the flange bolt 4 to the GIS shell 5 on the other side of the flange bolt 4, and at the same time flows through the pulse current sensor 1, the pulse The current sensor 1 converts the pulse current signal into a voltage signal;
  • the measuring device 10 measures the parameters of the received voltage signal, and detects the internal partial discharge of the GIS equipment according to the parameters of the voltage signal.
  • the single pulse current waveform generated by the partial discharge of the GIS guide rod tip burr defect collected using the method of the present invention is shown in Figure 3, and the PRPD spectrum generated by the partial discharge of the GIS guide rod tip burr defect collected by the method of the present invention is shown in Figure 4 .
  • the measuring device 10 is a live detection device, which is used to inspect and detect the partial discharge pulse current signal of the GIS equipment. During the inspection, the measuring device 10 is connected to the pulse current sensor 1 through the coaxial cable 9 to collect pulses. The current sensor 1 converts the pulse current signal into a voltage signal, and the coaxial cable 9 is disconnected from the pulse current sensor 1 at the end of the work.
  • the measuring device 10 is an online monitoring device for online monitoring of the partial discharge pulse current signal of the GIS equipment.
  • the measuring device 10 is always connected to the pulse current sensor 1 through the coaxial cable 9 to monitor the pulse current sensor in real time. 1 The voltage signal converted from the pulse current signal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

一种基于法兰盘螺栓(4)的GIS局部放电检测装置,包括GIS设备(20)、与GIS设备(20)相互连接的脉冲电流传感器(1)以及与脉冲电流传感器(1)相互连接的测量器(10),GIS设备(20)包括多个相互连接的GIS壳体(5)、设置于GIS壳体(5)两端的法兰盘(11)、法兰盘螺栓(4)、垫片(2)、螺帽(3)以及分别设置于GIS壳体(5)内部且相互连接的盆式绝缘子(7)和母线导杆(8),GIS壳体(5)和盆式绝缘子(7)通过法兰盘(11)和法兰盘螺栓(4)相互连接,垫片(2)和螺帽(3)分别设置于法兰盘螺栓(4)的两端,脉冲电流传感器(1)通过法兰盘螺栓(4)安装于法兰盘(11)的侧面,GIS壳体(5)、法兰盘(11)、螺帽(3)、垫片(2)、法兰盘螺栓(4)和脉冲电流传感器(1)金属外壳形成脉冲电流流通路径(6),脉冲电流流通路径(6)经过脉冲电流传感器(1),与现有技术相比,本装置具有适用于多点接地GIS设备(20)等优点。

Description

一种基于法兰盘螺栓的GIS局部放电检测装置和方法 技术领域
本发明涉及GIS设备局部放电检测领域,尤其是涉及一种基于法兰盘螺栓的GIS局部放电检测装置和方法。
背景技术
GIS,即气体绝缘金属封闭开关设备(GAS INSULATED SWITCHGEAR),是运行可靠性高、维护工作量小、检修周期长的高压电气设备,是目前电力系统中大量使用的电力设备,因此GIS设备的有效维护和安全运行对于电力系统非常重要。
GIS设备中包含有母线、断路器、隔离开关、接地开关、电流互感器、电压互感器和避雷器等功能单元。GIS设备采用高绝缘强度的SF 6气体作为绝缘介质和断路器灭弧介质,将所有的高电压元件密封在壳体内,实现GIS设备的紧凑性。但是由于SF 6气体的泄漏、外部水分的渗入、导电杂质的存在、绝缘子老化等都可能导致内部闪络故障的发生,降低GIS设备的绝缘性能。
运行经验表明,绝缘性能降低引起的GIS设备故障占GIS设备故障发生的较大比例,因此,为防止系统因绝缘性能降低而发生故障,在实际运行中,对GIS设备进行绝缘检测并实时监控GIS设备内部绝缘状况十分必要。GIS设备中各种潜在的缺陷都可能导致不同程度的局部放电,而长期放电会使绝缘劣化,并且逐步扩大,甚至造成整个绝缘击穿或沿面闪络,从而对设备的安全运行造成很大威胁,以至出现运行故障引起的系统停电等,造成巨大损失。
目前,电力行业关于GIS设备的试验主要围绕如何发现其内部绝缘缺陷,包括交流耐压出厂试验和现场交接交流耐压试验,均是基于离线GIS设备的局部放电脉冲电流检测方法,GIS设备的局部放电会引起其内部产生脉冲电流信号,脉冲电流法是目前唯一有国际和国家标准的局部放电检测方法,它通过获取测量阻抗在耦合电容侧测取的脉冲电流,或者通过获取罗氏线圈从电力设备的中性点或接地点测取的脉冲电流,来获得脉冲电流的放电量、放电相位、放电频次等信息。该检测方法如图1所示。该检测方法需要GIS设备在实验室或现场安装投运前搭建耦合 电容分压器,并进行单点接地,使得局部放电脉冲电流信号从接地线上耦合。但是现场带电运行的GIS设备大部分为多点接地,因此不能利用图1所示的方法进行GIS设备局部放电脉冲电流检测。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于法兰盘螺栓的GIS局部放电检测装置和方法。
本发明的目的可以通过以下技术方案来实现:
一种基于法兰盘螺栓的GIS局部放电检测装置,包括GIS设备、与GIS设备相互连接的脉冲电流传感器以及与脉冲电流传感器相互连接的测量器,所述的GIS设备包括多个相互连接的GIS壳体、设置于GIS壳体两端的法兰盘、法兰盘螺栓、垫片、螺帽以及分别设置于GIS壳体内部且相互连接的盆式绝缘子和母线导杆,所述的GIS壳体和盆式绝缘子通过法兰盘和法兰盘螺栓相互连接,所述的垫片和螺帽分别设置于法兰盘螺栓的两端,所述的脉冲电流传感器通过法兰盘螺栓安装于法兰盘的侧面,所述的GIS壳体、法兰盘、螺帽、垫片、法兰盘螺栓和脉冲电流传感器的金属外壳形成脉冲电流流通路径,所述的脉冲电流流通路径经过脉冲电流传感器。
优选地,所述的垫片设置于螺帽与法兰盘外侧面之间,所述的脉冲电流传感器安装于法兰盘外侧面与垫片之间。
优选地,所述的脉冲电流流通路径依次通过法兰盘螺栓一侧的GIS壳体、法兰盘、垫片和螺帽以及法兰盘螺栓后,再依次通过法兰盘螺栓另一侧的螺帽、垫片、脉冲电流传感器的金属外壳和法兰盘螺栓另一侧的GIS壳体,当GIS设备内部发生局部放电,GIS壳体上产生脉冲电流信号时,该脉冲电流信号沿脉冲电流流通路径流通,从法兰盘螺栓一侧的GIS壳体流至法兰盘螺栓另一侧的GIS壳体。
优选地,所述的脉冲电流信号沿脉冲电流流通路径从法兰盘螺栓的一端流至另一端时,同时穿过脉冲电流传感器,所述的脉冲电流传感器将脉冲电流信号转换为电压信号。
优选地,所述的脉冲电流传感器设置一个,安装于一个法兰盘螺栓的一端。
优选地,所述的脉冲电流传感器为罗氏线圈HFCT,当检测频带小于1M时,所述的脉冲电流传感器采用常规脉冲电流法,当检测频带为3MHz-30MHz时,所 述的脉冲电流传感器采用高频脉冲电流法。
优选地,所述的测量器为带电检测装置或在线监测装置,当所述的测量器为带电检测装置时,该装置用于对GIS设备的巡检检测,在检测过程中将测量器与脉冲电流传感器连接,检测完成后将测量器与脉冲电流传感器断开;当所述的测量器为在线监测装置时,该装置用于对GIS设备的在线监测,所述的测量器与脉冲电流传感器始终连接。
一种使用所述的基于法兰盘螺栓的GIS局部放电检测装置进行GIS局部放电检测的方法,包括以下步骤:
1)GIS设备内部局部放电在GIS壳体上产生脉冲电流信号;
2)脉冲电流信号沿脉冲电流流通路径,从法兰盘螺栓一侧的GIS壳体流至法兰盘螺栓另一侧的GIS壳体,同时流经脉冲电流传感器,脉冲电流传感器将脉冲电流信号转换为电压信号;
4)电压信号传递至测量器;
5)测量器测量收到的电压信号的参数,根据该电压信号的参数,检测GIS设备内部局部放电的情况。
优选地,所述的脉冲电流传感器为罗氏线圈HFCT,当检测频带小于1M时,所述的脉冲电流传感器采用常规脉冲电流法,当检测频带为3MHz-30MHz时,所述的脉冲电流传感器采用高频脉冲电流法。
优选地,所述的测量器为带电检测装置或在线监测装置,当所述的测量器为带电检测装置时,该方法用于对GIS设备的巡检检测,测量器在检测过程中接收电压信号参数并进行测量;当所述的测量器为在线监测装置时,该方法用于对GIS设备的在线监测,测量器在GIS设备正常运行过程中实时接收电压信号并进行测量。
与现有技术相比,本发明具有以下优点:
1)本发明根据多点接地的GIS设备中,两个相互串联外壳的法兰盘之间不设绝缘,并通过固定螺栓导通的特点,在法兰盘和垫片之间安装脉冲电流传感器,利用两GIS壳体在法兰盘连接处的脉冲电流流通路径,直接进行脉冲电流的测取,而无需单点接地,解决了GIS设备在变电站安装后带电运行为多点接地,使得现场无法开展GIS设备局部放电的脉冲电流检测的问题;
2)本发明采用罗氏线圈HFCT为脉冲电流传感器时,基于法兰盘螺栓进行罗 氏线圈HFCT的安装,所安装的罗氏线圈HFCT为外置式,安装方便,且不破坏GIS设备原有的密封结构和内部的绝缘设计,可以在现有运行维护导则下安装;
3)本发明中的测量器可以选用带电检测设备或在线监测设备,选用在线检测设备时,通过保持同轴电缆与脉冲电流传感器之间的连接,实时监测GIS设备内脉冲电流流通路径上的脉冲电流信号产生情况,而不影响GIS设备正常的运行,提高本发明装置的适应性和实用性。
附图说明
图1为现有的离线GIS局部放电脉冲电流检测方法示意图;
图2为本发明的一种基于法兰盘螺栓的GIS局部放电检测装置原理示意图;
图3为使用本发明一种基于法兰盘螺栓的GIS局部放电检测方法采集的GIS导杆尖端毛刺缺陷局部放电产生的单个脉冲电流波形;
图4为使用本发明一种基于法兰盘螺栓的GIS局部放电检测方法采集的GIS导杆尖端毛刺缺陷局部放电产生的PRPD谱图。
其中,1、脉冲电流传感器(罗氏线圈HFCT),2、垫片,3、螺帽,4、法兰盘螺栓,5、GIS壳体,6、脉冲电流流通路径,7、盆式绝缘子,8、母线导杆,9、同轴电缆,10、测量器,11、法兰盘,20、GIS设备,30、高压电源,40、罗氏线圈HFCT。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
如图2所示,本发明提供一种基于法兰盘螺栓的GIS局部放电检测装置,一般包括法兰盘11、脉冲电流传感器1、垫片2、螺帽3、法兰盘螺栓4、GIS壳体5、盆式绝缘子7、母线导杆8、同轴电缆9和测量器10。GIS壳体5、法兰盘11、螺帽3、垫片2和法兰盘螺栓4共同形成一条脉冲电流流通路径6,本实施例中脉冲电流传感器1可以采用罗氏线圈HFCT,下面对各部件的具体位置和连接进行说明:
多个GIS壳体5相互串联,GIS壳体5的两端设有法兰盘11。参见图2,左右 设置的GIS壳体5通过2个法兰盘螺栓4相互串联。盆式绝缘子7和母线导杆8设置于GIS壳体5内且相互连接,盆式绝缘子7通过法兰盘11和法兰盘螺栓4与GIS壳体5连接,垫片2和螺帽3分别设置于法兰盘螺栓4的两端,保证GIS设备的密封性能,由此组成GIS设备。罗氏线圈HFCT作为脉冲电流传感器1通过法兰盘螺栓4安装于法兰盘11的外侧面,安装完成后,法兰盘11、垫片2、脉冲电流传感器1和螺帽3的位置关系为:螺帽3与法兰盘11之间设有垫片2,垫片2与法兰盘11之间设有脉冲电流传感器1。使得由GIS壳体5、法兰盘10、螺帽3、垫片2、脉冲电流传感器1的金属外壳和法兰盘螺栓4共同形成的脉冲电流流通路径6经过脉冲电流传感器1,脉冲电流传感器1通过同轴电缆9与测量器10连接。
本实施例中,参见图2,仅在其中一个法兰盘螺栓4的一端设置一个脉冲电流传感器1。
脉冲电流流通路径6依次通过法兰盘螺栓4一侧的GIS壳体5、法兰盘11、垫片2和螺帽3以及法兰盘螺栓4一侧后,再依次通过法兰盘螺栓4另一侧、法兰盘螺栓4另一侧的螺帽3、法兰盘螺栓4另一侧的垫片2、脉冲电流传感器1的金属外壳和法兰盘螺栓4另一侧的GIS壳体5,当GIS设备内部发生局部放电,GIS壳体5上产生脉冲电流信号时,该脉冲电流信号沿脉冲电流流通路径6流通,从法兰盘螺栓4一侧的GIS壳体5流至法兰盘螺栓4另一侧的GIS壳体5,当该脉冲电流信号沿脉冲电流流通路径6从法兰盘螺栓4一侧流至另一侧时,同时穿过脉冲电流传感器1,脉冲电流传感器1将脉冲电流信号转换为电压信号。
脉冲电流传感器1的工作特性满足局部放电脉冲电流法的要求:当检测频带小于1M时,采用常规脉冲电流法;当检测频带为3MHz-30MHz时,采用高频脉冲电流法。脉冲电流传感器1的尺寸参数与垫片2、螺帽3、螺栓的尺寸相互配合。
单点接地方式是在每个GIS壳体5的一端设置绝缘,另一端采用单点接地,一般在结构上,串联的两个GIS壳体5之间在法兰盘处绝缘,GIS壳体5与地之间在壳体支座处设置绝缘。多点接地方式是在每个GIS壳体5内,采用两点以上的多点接地用导体连接GIS壳体5和大地,一般在结构上,壳体支座不绝缘,串联的两个GIS壳体5的法兰盘之间也不设绝缘,并用固定螺栓导通。
本发明的主要原理是:GIS设备内部缺陷产生的局部放电会通过母线导杆8与GIS壳体5之间存在的电容,而在GIS壳体5上产生微弱的脉冲电流信号,该脉冲电流信号依次通过法兰盘螺栓4一侧的GIS壳体5、法兰盘11、垫片2、螺帽3以 及法兰盘螺栓4后,再依次通过法兰盘螺栓4另一侧的螺帽3和垫片2,最终流至法兰盘螺栓4另一侧的GIS壳体5,从而形成通路。因此在法兰盘螺栓4上加装脉冲电流传感器1,就可以将脉冲电流信号转换为电压信号,从而传送至测量器10,形成基于法兰盘螺栓4的GIS设备局部放电脉冲电流带电检测和在线监测方法。
本发明还提供一种基于法兰盘螺栓的GIS局部放电检测方法,包括以下步骤:
1)GIS设备内部局部放电在GIS壳体5上产生脉冲电流信号;
2)脉冲电流信号沿脉冲电流流通路径6,从法兰盘螺栓4一侧的GIS壳体5流至法兰盘螺栓4另一侧的GIS壳体5,同时流经脉冲电流传感器1,脉冲电流传感器1将脉冲电流信号转换为电压信号;
4)电压信号通过同轴电缆9传递至测量器10;
5)测量器10测量收到的电压信号的参数,根据该电压信号的参数,检测GIS设备内部局部放电的情况。
使用本发明方法采集的GIS导杆尖端毛刺缺陷局部放电产生的单个脉冲电流波形如图3所示,使用本发明方法采集的GIS导杆尖端毛刺缺陷局部放电产生的PRPD谱图如图4所示。
本实施例中,测量器10为带电检测装置,用于对GIS设备的局部放电脉冲电流信号进行巡检检测,在巡检时测量器10通过同轴电缆9与脉冲电流传感器1对接,采集脉冲电流传感器1将脉冲电流信号转换成的电压信号,工作结束时将同轴电缆9断开与脉冲电流传感器1的连接。
实施例2
本实施例中,测量器10为在线监测装置,用于对GIS设备进行局部放电脉冲电流信号的在线监测,测量器10通过同轴电缆9与脉冲电流传感器1始终保持连接,实时监测脉冲电流传感器1将脉冲电流信号转换成的电压信号。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的工作人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种基于法兰盘螺栓的GIS局部放电检测装置,包括GIS设备、与GIS设备相互连接的脉冲电流传感器以及与脉冲电流传感器相互连接的测量器(10),所述的GIS设备包括多个相互连接的GIS壳体(5)、设置于GIS壳体(5)两端的法兰盘(11)、法兰盘螺栓(4)、垫片(2)、螺帽(3)以及分别设置于GIS壳体(5)内部且相互连接的盆式绝缘子(7)和母线导杆(8),所述的GIS壳体(5)和盆式绝缘子(7)通过法兰盘(11)和法兰盘螺栓(4)相互连接,所述的垫片(2)和螺帽(3)分别设置于法兰盘螺栓(4)的两端,其特征在于,所述的脉冲电流传感器通过法兰盘螺栓(4)安装于法兰盘(11)的侧面,所述的GIS壳体(5)、法兰盘(11)、螺帽(3)、垫片(2)、法兰盘螺栓(4)和脉冲电流传感器(1)的金属外壳形成脉冲电流流通路径(6),所述的脉冲电流流通路径(6)经过脉冲电流传感器(1)。
  2. 根据权利要求1所述的一种基于法兰盘螺栓的GIS局部放电检测装置,其特征在于,所述的垫片(2)设置于螺帽(3)与法兰盘(11)外侧面之间,所述的脉冲电流传感器(1)安装于法兰盘(11)外侧面与垫片(2)之间。
  3. 根据权利要求2所述的一种基于法兰盘螺栓的GIS局部放电检测装置,其特征在于,所述的脉冲电流流通路径(6)依次通过法兰盘螺栓(4)一侧的GIS壳体(5)、法兰盘(11)、垫片(2)和螺帽(3)以及法兰盘螺栓(4)后,再依次通过法兰盘螺栓(4)另一侧的螺帽(3)、垫片(2)、脉冲电流传感器(1)的金属外壳和法兰盘螺栓(4)另一侧GIS壳体(5),当GIS设备内部发生局部放电,GIS壳体(5)上产生脉冲电流信号时,该脉冲电流信号沿脉冲电流流通路径(6)流通,从法兰盘螺栓(4)一侧的GIS壳体(5)流至法兰盘螺栓(4)另一侧的GIS壳体(5)。
  4. 根据权利要求3所述的一种基于法兰盘螺栓的GIS局部放电检测装置,其特征在于,所述的脉冲电流信号沿脉冲电流流通路径(6)从法兰盘螺栓(4)的一端流至另一端时,同时穿过脉冲电流传感器(1),所述的脉冲电流传感器(1)将脉冲电流信号转换为电压信号。
  5. 根据权利要求4所述的一种基于法兰盘螺栓的GIS局部放电检测装置,其 特征在于,所述的脉冲电流传感器(1)设置一个,安装于一个法兰盘螺栓(4)的一端。
  6. 根据权利要求5所述的一种基于法兰盘螺栓的GIS局部放电检测装置,其特征在于,所述的脉冲电流传感器(1)为罗氏线圈HFCT,当检测频带小于1M时,所述的脉冲电流传感器(1)采用常规脉冲电流法,当检测频带为3MHz-30MHz时,所述的脉冲电流传感器(1)采用高频脉冲电流法。
  7. 根据权利要求1所述的一种基于法兰盘螺栓的GIS局部放电检测装置,其特征在于,所述的测量器(10)为带电检测装置或在线监测装置,当所述的测量器(10)为带电检测装置时,该装置用于对GIS设备的巡检检测,在检测过程中将测量器(10)与脉冲电流传感器(1)连接,检测完成后将测量器(10)与脉冲电流传感器(1)断开;当所述的测量器(10)为在线监测装置时,该装置用于对GIS设备的在线监测,所述的测量器(10)与脉冲电流传感器(1)始终连接。
  8. 一种使用如权利要求4所述的基于法兰盘螺栓的GIS局部放电检测装置进行GIS局部放电检测的方法,其特征在于,包括以下步骤:
    1)GIS设备内部局部放电在GIS壳体(5)上产生脉冲电流信号;
    2)脉冲电流信号沿脉冲电流流通路径(6),从法兰盘螺栓(4)一侧的GIS壳体(5)流至法兰盘螺栓(4)另一侧的GIS壳体(5),同时流经脉冲电流传感器(1),脉冲电流传感器(1)将脉冲电流信号转换为电压信号;
    4)电压信号传递至测量器(10);
    5)测量器(10)测量收到的电压信号的参数,根据该电压信号的参数,检测GIS设备内部局部放电的情况。
  9. 根据权利要求8所述的一种基于法兰盘螺栓的GIS局部放电检测方法,其特征在于,所述的脉冲电流传感器(1)为罗氏线圈HFCT,当检测频带小于1M时,所述的脉冲电流传感器(1)采用常规脉冲电流法,当检测频带为3MHz-30MHz时,所述的脉冲电流传感器(1)采用高频脉冲电流法。
  10. 根据权利要求8所述的一种基于法兰盘螺栓的GIS局部放电检测方法,其特征在于,所述的测量器(10)为带电检测装置或在线监测装置,当所述的测量器(10)为带电检测装置时,该方法用于对GIS设备的巡检检测,测量器(10)在检测过程中接收电压信号参数并进行测量;当所述的测量器(10)为在线监测装置时,该方法用于对GIS设备的在线监测,测量器(10)在GIS设备正常运行过 程中实时接收电压信号并进行测量。
PCT/CN2020/106428 2019-09-16 2020-07-31 一种基于法兰盘螺栓的gis局部放电检测装置和方法 WO2021052036A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2020239762A AU2020239762A1 (en) 2019-09-16 2020-07-31 Device and method for detecting partial discharge of gas insulated switchgear based on flange bolt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910872790.5A CN110426616A (zh) 2019-09-16 2019-09-16 一种基于法兰盘螺栓的gis局部放电检测装置和方法
CN201910872790.5 2019-09-16

Publications (1)

Publication Number Publication Date
WO2021052036A1 true WO2021052036A1 (zh) 2021-03-25

Family

ID=68418173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106428 WO2021052036A1 (zh) 2019-09-16 2020-07-31 一种基于法兰盘螺栓的gis局部放电检测装置和方法

Country Status (3)

Country Link
CN (1) CN110426616A (zh)
AU (1) AU2020239762A1 (zh)
WO (1) WO2021052036A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110426616A (zh) * 2019-09-16 2019-11-08 国网上海市电力公司 一种基于法兰盘螺栓的gis局部放电检测装置和方法
CN112710934A (zh) * 2021-01-22 2021-04-27 杭州西湖电子研究所 气体绝缘金属封闭开关柜的局放检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1196838A (ja) * 1997-09-22 1999-04-09 Hitachi Ltd ブッシング監視装置
CN102736003A (zh) * 2012-07-09 2012-10-17 广州供电局有限公司 便携式局放脉冲电流传感器
CN203811754U (zh) * 2014-02-24 2014-09-03 大连电力勘察设计院有限公司 一种封闭式气体绝缘组合电器局部放电检测设备
CN107688139A (zh) * 2017-09-22 2018-02-13 福州大学 基于泄露电流的gis盆式绝缘子沿面放电监测方法
CN107807316A (zh) * 2017-11-27 2018-03-16 清华四川能源互联网研究院 局部放电检测装置及系统
CN108318788A (zh) * 2018-02-01 2018-07-24 清华大学 一种gis盆式绝缘子局部放电检测装置
CN110426616A (zh) * 2019-09-16 2019-11-08 国网上海市电力公司 一种基于法兰盘螺栓的gis局部放电检测装置和方法
CN210720633U (zh) * 2019-09-16 2020-06-09 国网上海市电力公司 一种基于法兰盘螺栓的gis局部放电检测装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334433B (zh) * 2014-08-07 2018-08-07 国家电网公司 电缆局部放电的检测方法及装置
CN104330713A (zh) * 2014-11-04 2015-02-04 日新电机(无锡)有限公司 实现高压电力电容器的局部放电检测结构
CN204989404U (zh) * 2015-09-22 2016-01-20 袁孝红 电缆局部放电在线监测系统
CN108152694A (zh) * 2018-02-01 2018-06-12 清华大学 一种gis盆式绝缘子局部放电检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1196838A (ja) * 1997-09-22 1999-04-09 Hitachi Ltd ブッシング監視装置
CN102736003A (zh) * 2012-07-09 2012-10-17 广州供电局有限公司 便携式局放脉冲电流传感器
CN203811754U (zh) * 2014-02-24 2014-09-03 大连电力勘察设计院有限公司 一种封闭式气体绝缘组合电器局部放电检测设备
CN107688139A (zh) * 2017-09-22 2018-02-13 福州大学 基于泄露电流的gis盆式绝缘子沿面放电监测方法
CN107807316A (zh) * 2017-11-27 2018-03-16 清华四川能源互联网研究院 局部放电检测装置及系统
CN108318788A (zh) * 2018-02-01 2018-07-24 清华大学 一种gis盆式绝缘子局部放电检测装置
CN110426616A (zh) * 2019-09-16 2019-11-08 国网上海市电力公司 一种基于法兰盘螺栓的gis局部放电检测装置和方法
CN210720633U (zh) * 2019-09-16 2020-06-09 国网上海市电力公司 一种基于法兰盘螺栓的gis局部放电检测装置

Also Published As

Publication number Publication date
AU2020239762A1 (en) 2021-04-01
CN110426616A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
CN108152693B (zh) Gil设备三支柱绝缘子故障模拟试验平台及模拟试验方法
US20170234758A1 (en) GIS leak monitoring method based on vibration signal
CN104833885A (zh) 变电一次设备的故障预测方法
WO2021052036A1 (zh) 一种基于法兰盘螺栓的gis局部放电检测装置和方法
CN104849630B (zh) 一种用于测量气体绝缘组合开关盆式绝缘子缺陷的装置
CN102305903B (zh) 带电运行单相一体gis上的脉冲电流局部放电检测方法
CN210720633U (zh) 一种基于法兰盘螺栓的gis局部放电检测装置
CN204758759U (zh) 一种用于测量气体绝缘组合开关盆式绝缘子缺陷的装置
CN214623009U (zh) 一种油气套管结构的变压器局部放电试验方波校准电路
CN205693210U (zh) 用于避雷器带电更换泄漏电流表专用成套工具
Su et al. Transformer bushing damage accident analysis
CN103308799B (zh) 一种与gis连接的电缆线路参数测量的设备及方法
Kang et al. Detection and analysis of internal abnormal heating for high voltage switchgear based on infrared thermometric technology
Xiu et al. Location and analysis of an intermittent discharge fault of switchgear
Jonsson Advantages vs. risks with on-line monitoring of transformer bushings
Liu et al. An analysis method of GIS equipment fault causes based on online monitoring and joint diagnosis
Wei et al. Case Study of High-Voltage Power Cable Fault Based on High-Frequency Partial Discharge Detection
Zhou et al. Defect Analysis and Preventive Measures of Main Transformer Bushing Based on Frequency Domain Dielectric Spectroscopy
CN204855624U (zh) 容性设备末屏电流无损取样装置
Zhang et al. Cause Analysis of an Internal Short Circuit Grounding Fault of Low-frequency 220kV GIS
Zhou et al. Wide-Frequency Range Voltage Monitoring Device for Current Transformer
ZHANG et al. Experimental Study on the Effectiveness of Partial Discharge Detection in Switchgear Based on Non-contact UHF sensing
Li et al. Diagnosis and Analysis of Abnormal Heat for Gas Insulated Metal-enclosed Switchgear
Chang et al. Diagnosis and analysis of high-frequency PD detection in cable equipment
Zhang et al. Application of distributed partial discharge detection technique synchronized with AC withstand voltage test of high voltage cable

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020239762

Country of ref document: AU

Date of ref document: 20200731

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866302

Country of ref document: EP

Kind code of ref document: A1