WO2021051997A1 - 指纹识别模组及电子设备 - Google Patents

指纹识别模组及电子设备 Download PDF

Info

Publication number
WO2021051997A1
WO2021051997A1 PCT/CN2020/103565 CN2020103565W WO2021051997A1 WO 2021051997 A1 WO2021051997 A1 WO 2021051997A1 CN 2020103565 W CN2020103565 W CN 2020103565W WO 2021051997 A1 WO2021051997 A1 WO 2021051997A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
identification module
fingerprint identification
filter
Prior art date
Application number
PCT/CN2020/103565
Other languages
English (en)
French (fr)
Inventor
吴华平
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021051997A1 publication Critical patent/WO2021051997A1/zh
Priority to US17/686,158 priority Critical patent/US11798313B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
    • G06Q20/401Transaction verification
    • G06Q20/4014Identity check for transactions
    • G06Q20/40145Biometric identity checks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1341Sensing with light passing through the finger
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • the embodiments of the present invention relate to the field of communication technology, and in particular to a fingerprint identification module and electronic equipment.
  • the principle of the photoelectric fingerprint recognition technology used in electronic equipment is: the light emitted by the organic light-emitting diode (OLED) screen of the electronic equipment is reflected by the finger above the display screen, and then passes through the optical lens and filter. Transmitted to the optical sensor in the electronic device, the optical sensor can form images of different gray scales by sensing the difference in the light reflection intensity between the fingerprint ridge and the fingerprint valley, that is, the fingerprint texture image, and then the electronic device can recognize the fingerprint texture image Perform fingerprint recognition.
  • OLED organic light-emitting diode
  • the light that reaches the optical sensor after being reflected by the finger is unevenly distributed on the optical sensor, the light intensity received by different areas of the optical sensor may have a large difference, which makes the fingerprint images collected by different areas of the optical sensor The poor quality balance of, which in turn leads to a low success rate of fingerprint recognition.
  • the embodiments of the present invention provide a fingerprint identification module and electronic equipment to solve the problem of low fingerprint identification success rate of existing electronic equipment.
  • an embodiment of the present invention provides a fingerprint identification module, the fingerprint identification module includes: a lens, an optical sensor, and a filter assembly located between the lens and the optical sensor; wherein, the filter assembly The thickness of the edge area of is greater than the thickness of the central area of the filter assembly, and the thickness of the filter assembly gradually decreases in the direction along the edge area toward the central area.
  • an embodiment of the present invention provides an electronic device that includes the fingerprint identification module in the first aspect described above.
  • the fingerprint recognition module includes a lens, an optical sensor, and a filter assembly located between the lens and the optical sensor; the thickness of the edge area of the filter assembly is greater than the thickness of the center area of the filter assembly , And in the direction from the edge area to the central area, the thickness of the filter element gradually decreases.
  • the fingerprint recognition module adopts a new type of filter assembly, which not only has a filter function, but also can adjust the propagation direction of the light entering the filter assembly. In this way, the light that reaches the optical sensor after being reflected by the finger can be uniformly distributed on the sensor, that is, the light intensity received by different areas of the optical sensor is approximately the same. Therefore, the embodiment of the present invention can improve the quality balance of fingerprint images collected by different regions of the optical sensor, and further can improve the fingerprint recognition success rate.
  • FIG. 1 is a schematic structural diagram of a fingerprint recognition module applied to electronic equipment in the prior art
  • FIG. 2 is a schematic diagram of the light path of the light reflected by the finger passing through the fingerprint recognition module in FIG. 1;
  • FIG. 3 is one of the structural schematic diagrams of the filter component in the fingerprint identification module provided by the embodiment of the present invention.
  • FIG 4 is the second structural diagram of the filter component in the fingerprint identification module provided by the embodiment of the present invention.
  • FIG 5 is the third structural diagram of the filter component in the fingerprint identification module provided by the embodiment of the present invention.
  • FIG. 6 is the fourth structural diagram of the filter component in the fingerprint identification module provided by the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a filter in a fingerprint recognition module provided by the prior art.
  • FIG. 9 is a sixth structural diagram of a filter component in a fingerprint recognition module provided by an embodiment of the present invention.
  • FIG. 10 is a seventh structural diagram of a filter component in a fingerprint recognition module provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of testing the light transmittance of a light filter assembly provided by an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention.
  • first and second in the specification and claims herein are used to distinguish different objects, rather than to describe a specific order of objects.
  • first substrate and the second substrate are used to indicate and distinguish different substrates, rather than to describe a specific order of the substrates.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiment of the present invention should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • multiple refers to two or more than two, for example, multiple processing units refers to two or more processing units, etc.; multiple An element refers to two or more elements, etc.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or a connection into a whole, etc. ; It can be directly connected or indirectly connected through an intermediary.
  • connection may be a fixed connection, a detachable connection, or a connection into a whole, etc. ; It can be directly connected or indirectly connected through an intermediary.
  • intermediary for those of ordinary skill in the art, the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • the photoelectric fingerprint recognition technology under the OLED screen has become a new direction of fingerprint recognition technology.
  • the basic principle of the optical fingerprint recognition technology under the OLED screen is usually: the organic light-emitting light source (also called pixel light source) of the OLED screen is used as the light source for fingerprint texture imaging (that is, the complementary light source), and the light emitted by the light source passes through the OLED screen panel ( Panel) and glass cover. After reaching the finger, the light is reflected by the finger to the fingerprint recognition module (the fingerprint recognition module can include a lens, filter and sensor), and then the fingerprint recognition module uses the fingerprint peaks and valleys to reflect the intensity of light The difference to form fingerprint texture images of different gray levels.
  • the fingerprint recognition module can include a lens, filter and sensor
  • FIG. 1 is a schematic structural diagram of a fingerprint identification module 10 applied to an electronic device in the prior art.
  • FIG. 2 is a schematic diagram of the light path of the light reflected by the finger passing through the fingerprint recognition module in FIG. 1.
  • the fingerprint recognition module 10 includes a lens 11, a filter 12, and a sensor 13.
  • the light (also referred to as a light signal) emitted by the light source 14 is reflected by the finger 15, and then passes through the Panel 16,
  • the lens 11 and the filter 12 reach the sensor 13 (also referred to as a pixel sensor), and the light signal is converted into an electrical signal by the sensor 13 to form fingerprint texture images of different gray scales.
  • the electronic device can perform fingerprint recognition by recognizing the fingerprint texture image.
  • the center of the filter is flush with the edge, the light reflected by the finger passes through the lens, and then after the filter, the light reaching the sensor 13 may be on the sensor 13
  • the distribution is not uniform, that is, most of the light may be concentrated in the middle area of the sensing area of the sensor 13, and the light reaching the edge area of the sensing area of the sensor 13 is very small. If the light that reaches the sensor after being reflected by the finger is not uniformly distributed on the sensor, it may cause large differences in the light intensity received by different areas of the sensor, resulting in high brightness in the middle and dark edge brightness, so that different areas of the sensor can be collected The quality balance of the fingerprint image obtained is poor, which in turn leads to a low fingerprint recognition success rate.
  • the fingerprint recognition module includes a lens, an optical sensor, and a filter assembly located between the lens and the optical sensor; wherein, the filter assembly
  • the incident direction of the first light is different from the direction of refraction, the first light is any light that enters the filter assembly except for the second light, and the second light is the light along the normal direction of the filter assembly .
  • the fingerprint recognition module adopts a new type of filter assembly, which not only has a filter function, but also can adjust the propagation direction of the light entering the filter assembly.
  • the embodiment of the present invention can improve the quality balance of fingerprint images collected by different regions of the optical sensor, and further can improve the fingerprint recognition success rate.
  • the fingerprint identification module provided by the embodiment of the present invention will be exemplarily described below with reference to the various drawings.
  • an embodiment of the present invention provides a fingerprint identification module 20.
  • the fingerprint identification module 20 may include: a lens 21, an optical sensor 22, and a filter located between the lens 21 and the optical sensor 22 Component 23.
  • the thickness of the edge area of the filter assembly 23 is greater than the thickness of the center area of the filter assembly 23, and the thickness of the filter assembly 23 gradually decreases in the direction along the edge area toward the center area.
  • the incident direction of the light entering the filter assembly is different from the direction of refraction.
  • the light is the light entering the filter assembly except for the central axis light (that is, the light along the normal direction of the filter assembly). ) Outside the light.
  • the fingerprint identification module 2 is a photoelectric fingerprint identification module.
  • the above-mentioned lens may be a convex lens, or may be a lens group composed of a plurality of lenses with a light converging function.
  • the lens can be used to collect the light reflected by the finger (hereinafter may be referred to as an optical signal), and transmit the optical signal to the filter component.
  • the above-mentioned filter assembly may be used to receive the optical signal transmitted through the lens, perform filter processing and dimming processing on the received optical signal, and transmit the processed optical signal to the optical sensor.
  • the filter component can transmit visible light in the wavelength range of about 400nm to 610nm, and light in other wavelength bands are filtered out (that is, the above-mentioned filtering process).
  • it can also transmit through other wavelength bands according to specific conditions. For filtering out visible light, the present invention does not specifically limit this.
  • the above-mentioned optical sensor may be used to receive the above-mentioned processed optical signal, and convert the processed optical signal into an electrical signal to form a fingerprint texture image.
  • the following describes the fingerprint identification module provided by the embodiment of the present invention from two aspects of the dimming processing of the filter assembly and the filter processing of the filter assembly.
  • the incident light entering the filter assembly 23 may include a light x, a light y, and a light z. It is assumed that the light z is a light along the normal direction of the filter assembly 23.
  • light rays such as ray x and ray y may be referred to as the first ray, and ray z may be referred to as the second ray. That is, the first light may be any light except the second light among the light entering the filter assembly.
  • the first light (such as light x or light y) entering the filter assembly 23 is refracted by the filter assembly 23. That is, after the first light passes through the filter assembly 23, the exit direction (ie, the refraction direction) is different from the incident direction, that is, the transmission direction of the first light changes.
  • the second light (ie, light z) entering the filter assembly 23 enters the filter assembly 23 along the normal direction of the filter assembly 23, and after being transmitted through the filter assembly 23, the exit direction is the same as the incident direction. That is, the transmission direction of the second light does not change.
  • the incident angle of the first light ray may be greater than the refraction angle of the first light ray.
  • the incident angle of the first light (for example, light x) entering the filter assembly 23 is ⁇ ° ( ⁇ is greater than 0), and the refraction angle of the first light is 0°, that is, the first light
  • the incident angle of a light ray is greater than the refraction angle of the first light ray.
  • the above description is exemplified by taking the first light as a light (such as light x or light y) as an example. It can be understood that in actual implementation, a large number of light (including the first light) entering the filter assembly 23 And the second light) can form a light beam.
  • the incident light is emitted as parallel light after passing through the aforementioned lens and filter assembly. That is, the light beam emitted from the filter assembly may be a parallel light beam. As shown in FIG. 3, when the light beam entering the filter assembly 23 is a convergent light beam, the light beam emitted from the filter assembly 23 may be a parallel light beam.
  • the embodiment of the present invention can improve the quality balance of fingerprint images collected by different regions of the optical sensor, and further can improve the fingerprint recognition success rate.
  • the above-mentioned filter assembly includes a filter layer.
  • the filter layer can be used to filter the light reflected by the finger.
  • At least one of the surface facing the lens and the surface facing away from the lens of the filter layer may be a concave surface.
  • the above-mentioned filter assembly may further include a light adjusting member.
  • the light adjusting member faces one of the first surface of the lens and the second surface away from the lens. At least one is concave.
  • the first surface of the light adjusting member may be a concave surface; or, the second surface of the light adjusting member may be a concave surface, or both the first surface and the second surface of the light adjusting member may be concave.
  • the filter layer may be provided on the surface of the light adjusting member, or may be provided with a certain gap between the light adjusting member. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • the above-mentioned light adjusting member may be a concave glass lens, or may be a liquid crystal lens (ie, a liquid crystal layer), which can be specifically determined according to actual usage requirements, and is not limited in the embodiment of the present invention.
  • the embodiment of the present invention can improve the filter layer structure in the filter assembly (for example, design the filter layer as a filter with a concave surface) to achieve dimming treatment of light;
  • the layer is combined with other dimming devices (for example, concave glass lens, liquid crystal lens) to realize the dimming treatment of light.
  • dimming devices for example, concave glass lens, liquid crystal lens
  • the above-mentioned filter component may be a filter layer, and at least one of a surface facing the lens and a surface facing away from the lens of the filter layer may be a concave surface.
  • the filter assembly 23 may be designed as a filter layer with a concave surface, and the surface of the filter layer facing the lens may be a curved surface (ie, concave surface) recessed into the filter assembly 23.
  • the optical component 23 may be designed as a filter layer with a concave surface, and the surface of the filter layer facing away from the lens may be a curved surface (ie, concave surface) that is recessed toward the interior of the filter component 23.
  • the optical component 23 can be designed as a filter layer with a concave surface, and both the surface of the filter layer facing the lens and the surface away from the lens can be curved surfaces recessed into the filter component 23 (ie concave surface). .
  • the filter assembly is in the form of a concave lens from the center to the edge.
  • the filter assembly can also make the lens focus After passing through the filter component, the light becomes a parallel beam, which can ensure the brightness difference between the middle area and the edge area of the optical sensor.
  • the middle area of the optical sensor is not too bright, the brightness of the edge area can be increased, which can improve The balance of fingerprint imaging quality in different areas of the optical sensor.
  • the filter layer can be designed to have different thicknesses and concave radians according to actual use needs to ensure that the light can reach the optical sensor uniformly and parallelly after passing through the filter layer, which ensures proper brightness of the fingerprint image in the center area. , And can improve the brightness of the fingerprint image in the edge area.
  • the above-mentioned filter assembly may include a filter layer and a concave glass lens (that is, a light adjusting member), wherein the filter layer may be disposed on one side of the concave glass lens.
  • the filter layer can be provided on the surface of the concave glass lens, or can be provided with a certain gap between it and the concave glass lens.
  • the above-mentioned filter assembly may include a filter layer and a liquid crystal lens (that is, a light adjusting member), wherein the filter layer may be disposed on one side of the liquid crystal lens.
  • the filter layer can be arranged on the surface of the liquid crystal lens, or can be arranged such that there is a certain gap between the filter layer and the liquid crystal lens.
  • the filter assembly may further include a first substrate and a second substrate, and the above-mentioned liquid crystal lens may be disposed between the first substrate and the second substrate.
  • the filter assembly 23 includes a liquid crystal lens 24, a filter layer 25, a first substrate 26 and a second substrate 27, and the liquid crystal lens 24 is provided Between the first substrate 26 and the second substrate 27.
  • the filter layer 25 may be disposed on the outer surface of the first substrate 26, or the filter layer 25 may be disposed on the outer surface of the first substrate 26.
  • first substrate and the second substrate may both be glass substrates, or may be made of any other material that meets actual use requirements, and can be specifically determined according to actual use requirements, which is not limited in the embodiment of the present invention.
  • the above-mentioned filter layer can be provided on the surface of the first substrate or the surface of the second substrate by plating, or can be provided on the surface of the first substrate or the surface of the second substrate by adhesion. , Or it can be set in any other manner that meets actual use requirements, and can be specifically determined according to actual use requirements, which is not limited in the embodiment of the present invention.
  • the aforementioned fingerprint identification module may further include a control module connected to the liquid crystal lens, and the control module may control the deflection of the liquid crystal in the liquid crystal lens.
  • the first substrate and/or the second substrate may be provided with conductive wires, and the above-mentioned liquid crystal lens is electrically connected to the conductive wires.
  • a flexible printed circuit FPC
  • the control module can control the movement and deflection of the liquid crystal molecules of the liquid crystal lens through the FPC provided on the first substrate and the second substrate, so that the liquid crystal lens presents a concave lens shape distribution.
  • the adjustment of any thickness and radian in any area can be realized, which is more flexible. In this way, it can be ensured that the light can reach the optical sensor uniformly and in parallel after passing through the filter layer, which not only ensures the proper brightness of the fingerprint image in the center area, but also improves the brightness of the fingerprint image in the edge area.
  • the propagation direction of the light entering the filter assembly can be adjusted.
  • the light that reaches the optical sensor after being reflected by the finger can be uniformly distributed on the sensor, that is, the light intensity received by different areas of the optical sensor is approximately the same. Therefore, the embodiment of the present invention can improve the quality balance of fingerprint images collected by different regions of the optical sensor, and further can improve the fingerprint recognition success rate.
  • the filter components commonly used in fingerprint recognition modules are infrared filters.
  • Traditional infrared filters can only transmit visible light, and all the infrared filters in the range of 400-610nm pass through the infrared filter, and the waveband is 620. Both red light and infrared light of ⁇ 1000nm are completely absorbed, and only visible light can be imaged in the sensor area. Specifically, after the light emitted by the light source passes through the filter, red light (wavelength band is between 620nm and 770nm) and infrared light (wavelength range is about 750nm ⁇ 1000nm) will be completely absorbed by the filter, only the wavelength band is about approx. Visible light from 400nm to 610nm can be transmitted through. In other words, the filter in the traditional fingerprint recognition module cannot use infrared light for imaging.
  • FIG. 7 is a schematic diagram of a filter in a traditional fingerprint recognition module.
  • the fingerprint recognition module 30 includes a lens 31, a filter 32, and a sensor 33. All areas of the filter 32 transmit visible light with a wavelength range of about 400 nm to 610 nm, that is, all areas of the filter 32 The transmittance of the area is the same.
  • the embodiments of the present invention provide a new type of filter assembly, which can change the transmittance of different areas of the filter layer to make the intensity of infrared light transmitted in different areas different, and ensure the transmission of visible light (may not include While red light), part of the area can transmit part of the infrared light, so as to ensure that the area can not only meet the requirements of imaging using visible light, but also meet the requirements of imaging using infrared light.
  • the filter component is a filter layer
  • the filter layer may include at least two regions, each of the at least two regions has a different transmittance, for example, each of the at least two regions
  • the transmittance of infrared light in different areas is different, that is, the intensity of infrared light transmitted in different areas is different.
  • the above-mentioned at least two regions may include a first region and a second region.
  • the first region is a light-transmitting region of infrared light and visible light with a wavelength less than the wavelength of red light
  • the second region is The transparent region of visible light whose wavelength is less than the wavelength of red light. That is, the first area can transmit infrared light and visible light with a wavelength less than the red light wavelength, and the second area can transmit visible light with a wavelength less than the red light wavelength.
  • FIG. 8 is a schematic diagram of a filter component in a fingerprint identification module provided by an embodiment of the present invention.
  • the fingerprint identification module 40 includes a lens 41, a filter assembly 42 and an optical sensor 43, and the filter assembly 42 is a filter.
  • the filter element 42 includes A zone and B zone.
  • the A zone can also transmit part of the infrared light in the wavelength range of 620 to 1000 nm.
  • the B zone maintains the traditional infrared filter. The characteristics of the film only transmit visible light in the wavelength range of 400 to 610 nm.
  • both the A region and the B region can transmit visible light with a wavelength of 400 to 610 nm
  • the A imaging area and the B imaging area of the optical sensor 43 both use visible light with a wavelength of 400 to 610 nm.
  • Perform imaging when the fill light source contains visible light with a wavelength of 400-610nm and some infrared light with a wavelength of 620-1000nm, area A can transmit visible light with a wavelength of 400-610nm and part of infrared light with a wavelength of 620-1000nm
  • the imaging area A of the optical sensor 43 can simultaneously use visible light and infrared light for imaging.
  • the spectral region of the optical sensor imaging can be broadened, and the adaptability of the optical sensor imaging can be enhanced.
  • the filter layer 23 includes a region 23a and a region 23b.
  • the region 23a can transmit infrared light and visible light with a wavelength less than the red light wavelength
  • the region 23b can transmit visible light with a wavelength less than the red light wavelength.
  • the filter layer 25 includes a region 25a and a region 25b.
  • the region 25a can transmit infrared light and visible light with a wavelength less than the red light wavelength
  • the region 25b can transmit visible light with a wavelength less than the red light wavelength.
  • the transmittance of different areas of the filter layer can be changed to make the infrared light transmitted in different areas different in intensity, ensuring that visible light (excluding red light) is transmitted while allowing some areas to pass through Part of the infrared light, so as to ensure that the area can not only meet the use of visible light for imaging, but also meet the use of infrared light for imaging, broaden the optical sensor imaging spectral region, and enhance the adaptability of optical sensor imaging.
  • the transmittance of the filter element can be adjusted according to the actual imaging effect.
  • FIG. 11 is a schematic diagram of testing the light transmittance of the filter assembly provided by an embodiment of the present invention. As shown in Figure 11, assuming that the intensity of the light emitted by the light source is Q1, and the intensity of the light after passing through the filter element 52 is Q2, the light transmittance of the filter element 52 can be calculated by the following formula: Q2/Q1 *100%.
  • the filter layer includes two regions. It can be understood that in actual implementation, by changing the transmittance of different regions of the filter layer, the transmittance of infrared light is measured.
  • the adjustment can be two different areas, or two or more different areas to adjust different transmittances to ensure that different light intensities have different utilization rates of infrared light, and can better meet the requirements of different environmental spectra and light intensity.
  • the thickness of the area infrared filter and the radian of the depression can be different, and it can be gradually changed from the center to the edge. It can also be combined with the filter layer itself to adjust the light transmittance, and the transmittance is different.
  • Areas can correspond to different thicknesses and concave arcs to ensure that the light can reach the optical sensor evenly and parallel after passing through the filter layer, which not only ensures proper brightness of the fingerprint image in the center area, but also improves the brightness of the fingerprint image in the edge area.
  • an embodiment of the present invention provides an electronic device 600, and the electronic device 600 may include a fingerprint identification module 601.
  • the fingerprint identification module please refer to the relevant description of the fingerprint identification module (for example, the fingerprint identification module 20 and the fingerprint identification module 40) in the above-mentioned embodiment, which will not be repeated here.
  • the electronic device may further include a touch panel and an organic light emitting diode OLED module, and the above-mentioned fingerprint recognition module may be disposed on a side of the OLED module away from the touch panel.
  • the light-emitting unit in the OLED module can be the light source of the fingerprint recognition module.
  • the electronic device provided by the embodiment of the present invention may adopt an OLED module and a fingerprint identification module to realize fingerprint identification under the screen.
  • the fingerprint recognition module includes a lens, an optical sensor, and a filter assembly located between the lens and the optical sensor; wherein, the incident direction of the first light entering the filter assembly is different from the refraction direction, and the first light enters Any one of the light of the filter assembly except the second light, and the second light is the light along the normal direction of the filter assembly.
  • the fingerprint recognition module adopts a new type of filter assembly, which not only has a filter function, but also can adjust the propagation direction of the light entering the filter assembly.
  • the embodiment of the present invention can improve the quality balance of fingerprint images collected by different regions of the optical sensor, and further can improve the fingerprint recognition success rate.
  • the electronic device in the embodiment of the present invention may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant
  • the non-mobile terminal may be a personal computer (PC), a television (television, TV), a teller machine, or a self-service machine, etc., which are not specifically limited in the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • Vascular Medicine (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Accounting & Taxation (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • General Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Finance (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明实施例提供了一种指纹识别模组及电子设备,涉及通信技术领域,以解决现有电子设备的指纹识别成功率较低的问题。该指纹识别模组包括:透镜、光学传感器,以及位于该透镜和该光学传感器之间的滤光组件;其中,该滤光组件的边缘区域的厚度大于滤光组件的中心区域的厚度,且在沿边沿区域朝向中心区域的方向上,滤光组件的厚度逐渐减小。该指纹识别模组可应用于电子设备的屏下指纹识别场景。

Description

指纹识别模组及电子设备
相关申请的交叉引用
本申请主张在2019年09月20日在中国提交的中国专利申请号201910891558.6的优先权,其全部内容通过引用包含于此。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种指纹识别模组及电子设备。
背景技术
随着终端技术的不断发展,电子设备的应用越来越广泛。为保护用户的信息安全,指纹识别功能在电子设备上的使用越来越普遍,比如用于手机解锁、移动支付(如支付、转账)等。
目前,电子设备采用的光电指纹识别技术的原理为:电子设备的有机发光二极管(Organic Light-Emitting Diode,OLED)屏幕发出的光经过显示屏上方的手指反射后,经过光学透镜与滤光片,传输到电子设备中的光学传感器上,光学传感器通过感应指纹脊和指纹谷对光反射强度的差异,可以形成不同灰度的图像,即形成指纹纹理图像,然后,电子设备可以通过识别指纹纹理图像进行指纹识别。
然而,当经手指反射后到达光学传感器的光线在光学传感器上分布不均匀时,可能使得光学传感器的不同区域接收到的光强度存在较大差异,从而使得光学传感器的不同区域采集到的指纹图像的质量均衡性较差,进而导致指纹识别成功率较低。
发明内容
本发明实施例提供一种指纹识别模组及电子设备,以解决现有电子设备的指纹识别成功率较低的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本发明实施例提供了一种指纹识别模组,该指纹识别模组包括:透镜、光 学传感器,以及位于该透镜和该光学传感器之间的滤光组件;其中,该滤光组件的边缘区域的厚度大于滤光组件的中心区域的厚度,且在沿边沿区域朝向中心区域的方向上,滤光组件的厚度逐渐减小。
第二方面,本发明实施例提供了一种电子设备,该电子设备包括上述第一方面中的指纹识别模组。
在本发明实施例中,指纹识别模组包括透镜、光学传感器,以及位于该透镜和该光学传感器之间的滤光组件;该滤光组件的边缘区域的厚度大于滤光组件的中心区域的厚度,且在沿边沿区域朝向中心区域的方向上,滤光组件的厚度逐渐减小。通过该方案,指纹识别模组采用新型的滤光组件,该滤光组件既具有滤光作用,还可以对进入滤光组件的光线进行传播方向的调整。如此,可以使得经手指反射后到达光学传感器的光线在传感器上分布均匀,即使得光学传感器的不同区域接收到的光强度大致相同。从而,本发明实施例可以提升光学传感器的不同区域采集到的指纹图像的质量均衡性,进而可以提升指纹识别成功率。
附图说明
图1为现有技术中应用于电子设备的指纹识别模组的结构示意图;
图2为经手指反射后的光线经过图1中的指纹识别模组的光路示意图;
图3为本发明实施例提供的指纹识别模组中的滤光组件的结构示意图之一;
图4为本发明实施例提供的指纹识别模组中的滤光组件的结构示意图之二;
图5为本发明实施例提供的指纹识别模组中的滤光组件的结构示意图之三;
图6为本发明实施例提供的指纹识别模组中的滤光组件的结构示意图之四;
图7为现有技术提供的指纹识别模组中的滤光片的示意图;
图8为本发明实施例提供的指纹识别模组中的滤光组件的结构示意图之五;
图9为本发明实施例提供的指纹识别模组中的滤光组件的结构示意图之六;
图10为本发明实施例提供的指纹识别模组中的滤光组件的结构示意图之七;
图11为本发明实施例提供的滤光组件的光透过率的测试示意图;
图12为本发明实施例提供的电子设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本文中符号“/”表示关联对象是或者的关系,例如A/B表示A或者B。
本文中的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一基板和第二基板等是用于表示和区分不同的基板,而不是用于描述基板的特定顺序。
在本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本发明实施例的描述中,除非另有说明,“多个”的含义是指两个或者两个以上,例如,多个处理单元是指两个或者两个以上的处理单元等;多个元件是指两个或者两个以上的元件等。
本发明实施例中,除非另有明确的规定和限制,术语“相连”、“连接”等应做广义理解,例如,可以是固定连接,也可以是可拆卸方式的连接,或连接成一体等;可以是直接相连,也可以是通过中间媒介间接相连等。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
随着电子设备的快速发展,OLED屏下光电指纹识别技术成为指纹识别技术的一个新方向。OLED屏下光学指纹识别技术的基本原理通常为:利用OLED屏的有机发光光源(也称为像素光源)作为指纹纹理成像的光源(即补光源),由光源发出的光线透过OLED屏面 板(Panel)以及玻璃盖板,到达手指后,光线被手指反射到指纹识别模组(指纹识别模组可以包括镜头、滤光片和传感器),然后指纹识别模组利用指纹波峰和波谷对光线反射强度的差异来形成不同灰阶的指纹纹理图像。
图1为现有技术中应用于电子设备的指纹识别模组10的结构示意图。图2为经手指反射后的光线经过图1中的指纹识别模组的光路示意图。如图1所示,指纹识别模组10包括镜头11、滤光片12和传感器13,其中,由光源14发出的光线(也称为光信号)被手指15反射后,依次透过Panel 16、镜头11、滤光片12到达传感器13(也称为像素传感器),经该传感器13将光信号转化为电信号,进而形成不同灰阶的指纹纹理图像。然后,电子设备可以通过识别指纹纹理图像进行指纹识别。
然而,在图2所示的传统滤光片中,滤光片的中心与边缘平齐,经手指反射的光线经过透镜,再经过滤光片之后,到达传感器13的光线在传感器13上可能会分布不均匀,即大部分光线可能会集中在传感器13的感应区的中间区域,而到达传感器13的感应区的边缘区域的光线很少。若经手指反射后到达传感器的光线在传感器上分布不均匀,则可能使得传感器的不同区域接收到的光强度存在较大差异,导致中间亮度高、边缘亮度偏暗,从而使得传感器的不同区域采集到的指纹图像的质量均衡性较差,进而导致指纹识别成功率较低。
鉴于此,本发明实施例提供一种指纹识别模组及电子设备,该指纹识别模组包括透镜、光学传感器,以及位于该透镜和该光学传感器之间的滤光组件;其中,进入滤光组件的第一光线的入射方向与折射方向不同,该第一光线为进入滤光组件的光线中除第二光线之外的任意一个光线,该第二光线为沿滤光组件的法线方向的光线。通过该方案,指纹识别模组采用新型的滤光组件,该滤光组件既具有滤光作用,还可以对进入滤光组件的光线进行传播方向的调整。如此,可以使得经手指反射后到达光学传感器的光线在传感器上分布均匀,即使得光学传感器的不同区域接收到的光强度大致相同。从而,本发明实施例可以提升光学传感器的不同区域采集到的指纹图像的质量均衡性,进而可以提升指纹识别成功率。
下面结合各个附图对本发明实施例提供的指纹识别模组进行示例性的说明。
如图3所示,本发明实施例提供一种指纹识别模组20,该指纹识别模组20可以包括: 透镜21、光学传感器22,以及位于该透镜21和该光学传感器22之间的滤光组件23。其中,该滤光组件23的边缘区域的厚度大于滤光组件23的中心区域的厚度,且在沿边沿区域朝向中心区域的方向上,滤光组件23的厚度逐渐减小。
从光线入射和出射的角度来看,进入滤光组件的光线的入射方向与折射方向不同,该光线为进入滤光组件的光线中除中轴光线(即沿滤光组件的法线方向的光线)之外的光线。
本发明实施例中,指纹识别模组2为光电指纹识别模组。
本发明实施例中,上述透镜可以为一个凸透镜,或者可以为由多个透镜构成的具有光线汇聚作用的透镜组。该透镜可以用于采集经手指反射后的光线(以下可称为光信号),并将该光信号传输给滤光组件。
本发明实施例中,上述滤光组件可以用于接收经透镜传输的光信号,并对接收到的该光信号进行滤光处理和调光处理,并将处理后的光信号传输给光学传感器。其中,滤光组件可以透过波段在约400nm~610nm的可见光,其它波段的光均被滤除(即上述滤光处理),当然,在其他实施例中,也可以根据具体情况透过其他波段的光,或对可见光进行滤除,本发明对此不作具体限定。
本发明实施例中,上述光学传感器可以用于接收上述处理后的光信号,并将处理后的光信号转换为电信号,形成指纹纹理图像。
下面分别从滤光组件的调光处理、滤光组件的滤光处理两方面,分别说明本发明实施例提供的指纹识别模组。
滤光组件的调光处理
下面结合图3,示例性的说明本发明实施例提供的指纹识别模组中滤光组件对光线进行调光处理的具体实现方式。
如图3所示,进入滤光组件23的入射光线可以包括光线x、光线y和光线z,假设该光线z为沿滤光组件23的法线方向的光线。为了便于描述,可以将光线x、光线y等光线称为第一光线,以及将光线z称为第二光线。即,该第一光线可以为进入滤光组件的光线中除第二光线之外的任意一个光线。
如图3所示,进入滤光组件23的第一光线(如光线x或光线y)被滤光组件23折射。即,第一光线在经过滤光组件23之后,出射方向(即折射方向)与入射方向不同,即第一光线的传输方向发生变化。
如图3所示,进入滤光组件23的第二光线(即光线z)沿滤光组件23的法线方向进入滤光组件23,经滤光组件23透射之后,出射方向与入射方向相同,即第二光线的传输方向不发生变化。
可选的,本发明实施例中,上述第一光线的入射角可以大于第一光线的折射角。示例性的,如图3所示,进入滤光组件23的第一光线(例如光线x)的入射角为α°(α大于0),以及该第一光线的折射角为0°,即第一光线的入射角大于第一光线的折射角。
需要说明的是,以上是以第一光线为一根光线(例如光线x或光线y)为例示例性说明的,可以理解,实际实现时,进入滤光组件23的大量光线(包括第一光线和第二光线)可以构成光束。
可选的,本发明实施例中,入射光线经过上述透镜和滤光组件后,以平行光射出。即,上述从滤光组件射出的光束可以为平行光束。如图3所示,在进入滤光组件23的光束为汇聚光束的情况下,从滤光组件23射出的光束可以为平行光束。
这样,到达光学传感器的平行光线可以均匀分布在传感器上,使得光学传感器的不同区域接收到的光强度大致相同。从而,本发明实施例可以提升光学传感器的不同区域采集到的指纹图像的质量均衡性,进而可以提升指纹识别成功率。
本发明实施例中,上述滤光组件包括滤光层。该滤光层可以用于对经手指反射后的光线进行滤光处理。该滤光层的朝向透镜的表面和背离透镜的表面中的至少一者可以为凹面。
可选的,本发明实施例中,上述滤光组件还可以包括光线调节件,在指纹识别模组处于工作状态下,该光线调节件朝向透镜的第一表面和背离透镜的第二表面中的至少一者为凹面。具体的,该光线调节件的第一表面可以为凹面;或者,该光线调节件的第二表面可以为凹面,或者该光线调节件的第一表面和第二表面均可以为凹面。
可选的,本发明实施例中,滤光层可以设置在光线调节件的表面,也可以设置成与光线调节件之间存在一定间隙。具体可以根据实际使用需求确定,本发明实施例不作限定。
可选的,本发明实施例中,上述光线调节件可以为凹面玻璃透镜,或者可以为液晶透镜(即液晶层),具体可以根据实际使用需求确定,本发明实施例不作限定。
可以理解,本发明实施例可以通过对滤光组件中的滤光层结构进行改进(例如将滤光层设计为具有凹面的滤光片),实现对光线的调光处理;也可以将滤光层结合其它调光器件(例如凹面玻璃透镜、液晶透镜),实现对光线的调光处理。下面通过下述的第一实现方式、第二实现方式和第三实现方式,示例性的说明本发明实施例提供的滤光组件的可能的硬件实现方式。
第一实现方式
在第一实现方式中,上述滤光组件可以为滤光层,该滤光层的朝向透镜的表面和背离透镜的表面中的至少一项可以为凹面。下面分别介绍具体实现方式。
如图3所示,滤光组件23可以被设计为具有凹面的滤光层,该滤光层的朝向透镜的表面可以为向滤光组件23内部凹陷的曲面(即凹面)。
如图4所示,光组件23可以被设计为具有凹面的滤光层,该滤光层的背离透镜的表面可以为向滤光组件23内部凹陷的曲面(即凹面)。
如图5所示,光组件23可以被设计为具有凹面的滤光层,该滤光层的朝向透镜的表面和背离透镜的表面均可以为向滤光组件23内部凹陷的曲面(即凹面)。
综合上述的(1)、(2)和(3),该滤光组件由中心往边缘,呈现凹透镜的形式,该滤光组件除了可以对光线进行滤光处理之外,还能使得经过透镜聚集的光线透过滤光组件之后,变成平行光束,如此可以保证光学传感器的中间区域和边缘区域的亮度差,在光学传感器的中间区域不至于太亮的情况下,提升边缘区域的亮度,从而可以提升光学传感器不同区域的指纹成像质量的均衡性。
通过本方案,可以根据实际使用需求,将滤光层设计成具有不同的厚度和凹陷弧度,以保证光线经过滤光层之后,能够均匀、平行的达到光学传感器,既保证中心区域指纹图像亮度适当,又能提升边缘区域指纹图像亮度。
第二实现方式
在第二实现方式中,上述滤光组件可以包括滤光层和凹面玻璃透镜(即光线调节件),其中,该滤光层可以设置在凹面玻璃透镜的一侧。
可选的,滤光层可以设置在凹面玻璃透镜的表面,也可以设置成与凹面玻璃透镜之间存在一定间隙。
第三实现方式
在第三实现方式中,上述滤光组件可以包括滤光层和液晶透镜(即光线调节件),其中,该滤光层可以设置在液晶透镜的一侧。
可选的,滤光层可以设置在液晶透镜的表面,也可以设置成与液晶透镜之间存在一定间隙。
可选的,本发明实施例中,滤光组件还可以包括第一基板和第二基板,上述液晶透镜可以设置于该第一基板与第二基板之间。
图6为本发明实施例提供的滤光组件的结构示意图,如图6所示,滤光组件23包括液晶透镜24、滤光层25、第一基板26和第二基板27,液晶透镜24设置于该第一基板26与该第二基板27之间。其中,该滤光层25可以设置于第一基板26的外表面,或者该滤光层25可以设置于第一基板26的外表面。
本发明实施例中,上述第一基板和第二基板可以均为玻璃基板,或者可以通过其它任意满足实际使用需求的材料制成,具体可以根据实际使用需求确定,本发明实施例不作限定。
本发明实施例中,上述滤光层可以通过镀覆的方式设置在第一基板的表面或第二基板的表面,或者可以通过粘合的方式设置在第一基板的表面或第二基板的表面,或者可以通过其它任意满足实际使用需求的方式进行设置,具体可以根据实际使用需求确定,本发明实施例不作限定。
可选的,本发明实施例中,上述指纹识别模组还可以包括与液晶透镜连接的控制模块,该控制模块可以控制液晶透镜中的液晶偏转。
可选的,本发明实施例中,第一基板和/或第二基板可以设置有导电线,上述液晶透 镜与导电线电连接。例如,可以通过走线的形式,在第一基板和/或第二基板上设置柔性电路(Flexible Printed Circuit,FPC)。控制模块通过设置在第一基板和第二基板上的FPC,可以控制液晶透镜的液晶分子进行移动和偏转,使得液晶透镜呈现凹透镜形状分布。通过控制液晶分子移动和偏转,可以实现任意区域任意厚度和弧度的调整,更具灵活性。如此,可以保证光线经过滤光层之后,能够均匀、平行的达到光学传感器,既保证中心区域指纹图像亮度适当,又能提升边缘区域指纹图像亮度。
通过本发明实施例提供的上述滤光组件,可以对进入滤光组件的光线进行传播方向的调整。如此,可以使得经手指反射后到达光学传感器的光线在传感器上分布均匀,即使得光学传感器的不同区域接收到的光强度大致相同。从而,本发明实施例可以提升光学传感器的不同区域采集到的指纹图像的质量均衡性,进而可以提升指纹识别成功率。
滤光组件的滤光处理
目前,指纹识别模组中通常采用的滤光组件为红外滤光片,传统的红外滤光片只能透过可见光,波段为400~610nm范围内的全部透过红外滤光片,波段为620~1000nm的红光以及红外光都完全被吸收掉,只有可见光部分能够在传感器区域成像。具体的,由光源发出的光线在透过滤光片之后,红光(波段在620nm~770nm)以及红外光(波段范围为约750nm~1000nm)都会被滤光片完全吸收掉,仅波段为约400nm~610nm的可见光可以透过。也就是说,传统指纹识别模组中的滤光片无法利用红外光进行成像。
图7为传统指纹识别模组中的滤光片的示意图。如图7所示,指纹识别模组30包括镜头31、滤光片32和传感器33,其中,滤光片32的所有区域均透过波段约400nm~610nm的可见光,即滤光片32的所有区域的透过率是相同的。
鉴于此,本发明实施例提供了一种新型的滤光组件,可以通过改变滤光层不同区域的透过率,使得不同区域红外光透过的强度不一样,保证透过可见光(可以不包括红光)的同时,让部分区域能够透过部分红外光,从而保证该区域既可以满足利用可见光成像,同时又能满足利用红外光进行成像。
可选的,该滤光组件为滤光层,该滤光层可以包括至少两个区域,该至少两个区域中的每个区域的透过率不同,例如该至少两个区域中的每个区域对红外光的透射率不同,即 不同区域红外光透过的强度不同。
可选的,本发明实施例中,上述至少两个区域可以包括第一区域和第二区域,该第一区域为红外光和波长小于红光波长的可见光的透光区,该第二区域为波长小于红光波长的可见光的透光区。即,该第一区域能够透射:红外光和波长小于红光波长的可见光,该第二区域能够透射:波长小于红光波长的可见光。
图8为本发明实施例提供的指纹识别模组中的滤光组件的示意图。如图8所示,指纹识别模组40包括透镜41、滤光组件42和光学传感器43,滤光组件42为滤光片。其中,滤光组件42包括A区域和B区域,A区域除了能透过波段为400~610nm的可见光之外,还可以透过波段为620~1000nm的部分红外光,B区域保持传统红外滤光片特性,只透过波段为400~610nm的可见光。
具体的,当补光光源为可见光波段时,A区域和B区域均能够透过波段为400~610nm的可见光,进而光学传感器43的A成像区和B成像区均利用波段为400~610nm的可见光进行成像;当补光光源中包含波段为400~610nm的可见光和波段为620~1000nm的部分红外光时,A区域能够透过波段为400~610nm的可见光和波段为620~1000nm的部分红外光,进而光学传感器43的A成像区可以同时利用可见光和红外光进行成像。从而,可以扩宽光学传感器成像的光谱区域,增强光学传感器成像的适应性。
下面再结合上述滤光组件的调光处理和滤光处理,说明本发明实施例提供的滤光组件。
结合图3,如图9所示,滤光层23包括区域23a和区域23b,区域23a能够透射:红外光和波长小于红光波长的可见光,区域23b能够透射:波长小于红光波长的可见光。
结合图6,如图10所示,滤光层25包括区域25a和区域25b,区域25a能够透射:红外光和波长小于红光波长的可见光,区域25b能够透射:波长小于红光波长的可见光。
本发明实施例中,可以通过改变滤光层不同区域的透过率,使得不同区域红外光透过的强度不一样,保证透过可见光(不包括红光)的同时,让部分区域能够透过部分红外光,从而保证该区域既可以满足利用可见光成像,同时又能满足利用红外光进行成像,扩宽光学传感器成像的光谱区域,增强光学传感器成像的适应性。
可选的,本发明实施例中,滤光组件的透过率可以根据实际成像效果进行调整。图11 为本发明实施例提供的滤光组件的光透过率的测试示意图。如图11所示,假设由光源发出的光的强度为Q1,在通过滤光组件52之后光的强度为Q2,那么滤光组件52的光透过率可以通过下述公式计算:Q2/Q1*100%。
需要说明的是,以上是以滤光层包括两个区域为例示例性说明的,可以理解,实际实现时,通过改变滤光层的不同区域的透过率,针对红外光的透过率进行调整,可以是两个不同区域,也可以是两个以上不同的区域调整不同的透过率,保证不同光线强度对红外光的利用率不同,更能满足不同环境光谱以及光强度的要求,不同区域红外滤光片的厚度和凹陷的弧度可以是不同的,可以从中心到边缘成阶梯式逐渐变化的形式,也可以结合滤光层本身对光的透过率进行调整,透过率不同的区域,可以对应不同的厚度和凹陷弧度,以保证光线经过滤光层之后,能够均匀、平行地达到光学传感器,既保证中心区域指纹图像亮度适当,又能提升边缘区域指纹图像亮度。
需要说明的是,所有通过改变红外滤光片透过率的方式,来利用环境中红外光来成像的光学指纹方案,均属于本权利要求的保护范围内。
如图12所示,本发明实施例提供一种电子设备600,该电子设备600可以包括指纹识别模组601。对于指纹识别模组的描述具体可以参见上述实施例中对指纹识别模组(例如指纹识别模组20、指纹识别模组40)的相关描述,此处不再赘述。
可选的,本发明实施例中,电子设备还可以包括触控面板和有机发光二极管OLED模组,上述指纹识别模组可以设置于该OLED模组的背离触控面板的一侧。
其中,该OLED模组中的发光单元可以为指纹识别模组的光源。
本发明实施例提供的电子设备,可以采用OLED模组和指纹识别模组实现屏下指纹识别。该指纹识别模组包括透镜、光学传感器,以及位于该透镜和该光学传感器之间的滤光组件;其中,进入滤光组件的第一光线的入射方向与折射方向不同,该第一光线为进入滤光组件的光线中除第二光线之外的任意一个光线,该第二光线为沿滤光组件的法线方向的光线。通过该方案,指纹识别模组采用新型的滤光组件,该滤光组件既具有滤光作用,还可以对进入滤光组件的光线进行传播方向的调整。如此,可以使得经手指反射后到达光学传感器的光线在传感器上分布均匀,即使得光学传感器的不同区域接收到的光强度大致相 同。从而,本发明实施例可以提升光学传感器的不同区域采集到的指纹图像的质量均衡性,进而可以提升指纹识别成功率。
本发明实施例中的电子设备可以为移动终端,也可以为非移动终端。示例性的,移动终端可以为手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动终端可以为个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本发明实施例不作具体限定。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (12)

  1. 一种指纹识别模组,应用于电子设备,其特征在于,所述指纹识别模组包括:透镜、光学传感器,以及位于所述透镜和所述光学传感器之间的滤光组件;
    其中,所述滤光组件的边缘区域的厚度大于所述滤光组件的中心区域的厚度,且在沿所述边沿区域朝向所述中心区域的方向上,所述滤光组件的厚度逐渐减小。
  2. 根据权利要求1所述的指纹识别模组,其特征在于,入射光线经过所述透镜和所述滤光组件后,以平行光射出。
  3. 根据权利要求1所述的指纹识别模组,其特征在于,所述滤光组件包括光线调节件,在所述指纹识别模组处于工作状态下,所述光线调节件朝向所述透镜的第一表面和背离所述透镜的第二表面中的至少一者为凹面。
  4. 根据权利要求3所述的指纹识别模组,其特征在于,所述滤光组件还包括滤光层,所述滤光层设置在所述光线调节件的一侧。
  5. 根据权利要求4所述的指纹识别模组,其特征在于,所述光线调节件为凹面玻璃透镜。
  6. 根据权利要求4所述的指纹识别模组,其特征在于,所述光线调节件为液晶透镜。
  7. 根据权利要求6所述的指纹识别模组,其特征在于,所述滤光组件还包括:第一基板和第二基板,所述液晶透镜设置于所述第一基板与所述第二基板之间;
    其中,所述滤光层设置于所述第一基板的表面,或者所述第二基板的表面。
  8. 根据权利要求7所述的指纹识别模组,其特征在于,所述第一基板和/或所述第二基板设置有导电线,所述液晶透镜与所述导电线电连接。
  9. 根据权利要求1至8中任一项所述的指纹识别模组,其特征在于,所述滤光组件包括至少两个区域,所述至少两个区域中的每个区域的透射率不同。
  10. 根据权利要求9所述的指纹识别模组,其特征在于,所述至少两个区域包括第一区域和第二区域,所述第一区域为红外光和波长小于红光波长的可见光的透光区,所述第二区域为波长小于红光波长的可见光的透光区。
  11. 一种电子设备,其特征在于,所述电子设备包括所述权利要求1至10中任一 项所述的指纹识别模组。
  12. 根据权利要求11所述的电子设备,其特征在于,所述电子设备还包括触控面板和有机发光二极管OLED模组,所述指纹识别模组设置于所述OLED模组的背离所述触控面板的一侧。
PCT/CN2020/103565 2019-09-20 2020-07-22 指纹识别模组及电子设备 WO2021051997A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/686,158 US11798313B2 (en) 2019-09-20 2022-03-03 Fingerprint identification module and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910891558.6 2019-09-20
CN201910891558.6A CN110751047B (zh) 2019-09-20 2019-09-20 一种指纹识别模组及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/686,158 Continuation US11798313B2 (en) 2019-09-20 2022-03-03 Fingerprint identification module and electronic device

Publications (1)

Publication Number Publication Date
WO2021051997A1 true WO2021051997A1 (zh) 2021-03-25

Family

ID=69276772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103565 WO2021051997A1 (zh) 2019-09-20 2020-07-22 指纹识别模组及电子设备

Country Status (3)

Country Link
US (1) US11798313B2 (zh)
CN (1) CN110751047B (zh)
WO (1) WO2021051997A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113589589A (zh) * 2021-07-21 2021-11-02 武汉华星光电技术有限公司 显示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110751047B (zh) * 2019-09-20 2021-08-31 维沃移动通信有限公司 一种指纹识别模组及电子设备
CN112132114A (zh) * 2020-06-07 2020-12-25 神盾股份有限公司 电子装置
CN111947774A (zh) * 2020-08-21 2020-11-17 深圳市汇顶科技股份有限公司 屏下环境光传感器组件及电子设备
CN112307956A (zh) * 2020-10-30 2021-02-02 维沃移动通信有限公司 显示屏及电子设备
CN112396965B (zh) * 2020-11-18 2023-04-07 合肥维信诺科技有限公司 一种显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001617A1 (en) * 2002-06-28 2004-01-01 Blume Leo Robert Biometric capture adapter for digital imaging devices
CN207663128U (zh) * 2017-11-28 2018-07-27 武汉真元生物数据有限公司 一种外挂虹膜镜头
CN108921005A (zh) * 2018-05-03 2018-11-30 武汉天马微电子有限公司 指纹识别模组及其制备方法、显示面板及显示装置
CN109840460A (zh) * 2017-11-28 2019-06-04 武汉真元生物数据有限公司 一种虹膜采集系统
CN110751047A (zh) * 2019-09-20 2020-02-04 维沃移动通信有限公司 一种指纹识别模组及电子设备

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1029533C (zh) 1992-09-23 1995-08-16 中国科学院上海光学精密机械研究所 偏振光成象1:1折反射式光学系统
CN102402679A (zh) * 2010-09-07 2012-04-04 北京北科慧识科技股份有限公司 非接触式掌纹掌脉识别系统
JP5736253B2 (ja) * 2011-06-30 2015-06-17 セイコーインスツル株式会社 光センサ装置
CN102510447B (zh) * 2011-09-28 2016-08-10 上海华虹宏力半导体制造有限公司 图像传感器
CN103543512B (zh) 2013-06-03 2016-05-11 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
TWI477813B (zh) * 2014-02-21 2015-03-21 Qisda Corp 投影鏡頭及相關投影裝置
CN105335693B (zh) * 2015-07-30 2018-11-09 江苏邦融微电子有限公司 一种基于指纹残留甄别的光学指纹系统及其检测方法
CN106022325B (zh) * 2016-08-05 2019-08-09 上海箩箕技术有限公司 光学指纹传感器模组
US10622389B2 (en) * 2016-09-10 2020-04-14 Himax Technologies Limited Image sensor
CN108399352A (zh) * 2017-02-04 2018-08-14 上海箩箕技术有限公司 指纹成像模组和电子设备
CN107544109B (zh) * 2017-09-30 2021-03-19 Oppo广东移动通信有限公司 镜头模组和成像模组
CN207751589U (zh) * 2018-01-05 2018-08-21 长春理工大学 新型偏振光谱相机
CN108226120B (zh) * 2018-01-23 2020-10-16 哈尔滨工业大学 一种测量片状激光光束尺寸和能量分布的装置及方法
JP2019148615A (ja) 2018-02-26 2019-09-05 O−FILM.Japan株式会社 撮像レンズおよび撮像装置
CN108985235A (zh) 2018-07-19 2018-12-11 京东方科技集团股份有限公司 光线准直膜片及其制造方法以及光学指纹识别装置
TWM577547U (zh) * 2018-08-01 2019-05-01 香港商印芯科技股份有限公司 屏下指紋辨識系統
TWM569426U (zh) 2018-08-13 2018-11-01 印芯科技股份有限公司 光學成像鏡組以及指紋辨識裝置
CN109284734A (zh) 2018-10-15 2019-01-29 Oppo广东移动通信有限公司 指纹识别模组、显示装置及电子设备
CN208796257U (zh) * 2018-10-29 2019-04-26 辽宁中蓝电子科技有限公司 用于屏下指纹识别的二片式镜头
CN209086953U (zh) 2018-10-30 2019-07-09 Oppo广东移动通信有限公司 指纹模组以及电子设备
KR102386104B1 (ko) * 2018-12-21 2022-04-13 삼성전자주식회사 후면조사형 이미지 센서 및 이를 포함하는 전자 기기
CN109975953B (zh) * 2019-02-28 2021-04-09 江西联益光学有限公司 光学镜头
WO2020220305A1 (zh) * 2019-04-30 2020-11-05 深圳市汇顶科技股份有限公司 屏下指纹识别装置和电子设备
US20220319225A1 (en) * 2019-09-06 2022-10-06 Egis Technology Inc. Fingerprint sensing module and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001617A1 (en) * 2002-06-28 2004-01-01 Blume Leo Robert Biometric capture adapter for digital imaging devices
CN207663128U (zh) * 2017-11-28 2018-07-27 武汉真元生物数据有限公司 一种外挂虹膜镜头
CN109840460A (zh) * 2017-11-28 2019-06-04 武汉真元生物数据有限公司 一种虹膜采集系统
CN108921005A (zh) * 2018-05-03 2018-11-30 武汉天马微电子有限公司 指纹识别模组及其制备方法、显示面板及显示装置
CN110751047A (zh) * 2019-09-20 2020-02-04 维沃移动通信有限公司 一种指纹识别模组及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113589589A (zh) * 2021-07-21 2021-11-02 武汉华星光电技术有限公司 显示装置
CN113589589B (zh) * 2021-07-21 2022-12-23 武汉华星光电技术有限公司 显示装置

Also Published As

Publication number Publication date
US11798313B2 (en) 2023-10-24
CN110751047A (zh) 2020-02-04
US20220270390A1 (en) 2022-08-25
CN110751047B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2021051997A1 (zh) 指纹识别模组及电子设备
WO2020035021A1 (zh) Lcd指纹识别系统、屏下光学指纹识别装置和电子装置
CN105868742B (zh) 显示组件和显示装置
WO2020181493A1 (zh) 屏下指纹识别装置和电子设备
US8743088B2 (en) Pointing device comprising a light control part and electronic apparatus comprising an input device
WO2020220305A1 (zh) 屏下指纹识别装置和电子设备
CN110426888A (zh) 显示面板及显示装置
CN211319246U (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
CN108256399B (zh) 指纹成像模组和电子设备
WO2021087741A1 (zh) 屏下指纹识别装置、lcd指纹识别系统和电子设备
US20220037622A1 (en) Display panel and display apparatus
CN110245631B (zh) 显示面板及指纹识别显示装置
WO2021087652A1 (zh) 液晶显示屏指纹识别系统、电子装置及指纹识别模组
EP3910544A1 (en) Electronic device
WO2021083231A1 (zh) 电子设备
US11734945B2 (en) Display module and display device
WO2021016951A1 (zh) 电子设备
WO2020243936A1 (zh) 屏下生物特征识别装置和电子设备
WO2021213005A1 (zh) 电子装置
US11962886B2 (en) Folded optic for multicamera device and multicamera device including the same
CN117075244A (zh) 红外截止滤光片、光电传感器、光学采集模组和电子设备
CN111754876B (zh) 一种显示面板以及显示装置
US20220164561A1 (en) Display apparatus
CN213210660U (zh) 背光模组、被动式发光的显示装置、屏下生物特征检测系统和电子设备
CN213182771U (zh) 屏下生物特征检测系统和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864471

Country of ref document: EP

Kind code of ref document: A1