WO2021051926A1 - 音频播放方法、终端及存储介质 - Google Patents

音频播放方法、终端及存储介质 Download PDF

Info

Publication number
WO2021051926A1
WO2021051926A1 PCT/CN2020/098519 CN2020098519W WO2021051926A1 WO 2021051926 A1 WO2021051926 A1 WO 2021051926A1 CN 2020098519 W CN2020098519 W CN 2020098519W WO 2021051926 A1 WO2021051926 A1 WO 2021051926A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameters
audio
sound
flexible screen
parameter
Prior art date
Application number
PCT/CN2020/098519
Other languages
English (en)
French (fr)
Inventor
王玲
杨曜华
孙晓帆
王刚
谢岚汐
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021051926A1 publication Critical patent/WO2021051926A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/165Management of the audio stream, e.g. setting of volume, audio stream path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • H04M1/0268Details of the structure or mounting of specific components for a display module assembly including a flexible display panel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72442User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality for playing music files
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions

Definitions

  • the embodiments of the present application relate to, but are not limited to, the technical field of terminals, and in particular to audio playback methods, terminals, and storage media.
  • terminal audio playback generally uses electromagnetic speakers to achieve audio sounding.
  • the audio effects that can be expressed by this method are very limited. The sounding cannot be changed according to the audio characteristics of the played audio or the environmental sound, making the audio listening effect suffer. influences.
  • the embodiments of the present application provide an audio playback method, a terminal, and a storage medium, and aim to solve one of the technical problems in the related technology at least to a certain extent.
  • an embodiment of the present application provides an audio playback method for a terminal with a flexible screen.
  • the method includes: collecting environmental sound and/or audio data to be played; analyzing the environmental sound to obtain corresponding environmental sound parameters and /Or analyze the audio data to be played to obtain corresponding audio parameters; adjust the bending parameters and/or vibration parameters of the flexible screen according to the environmental sound parameters and/or the audio parameters to adjust the audio playback effect.
  • an embodiment of the present application provides a terminal, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • a terminal including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the processor executes the program, the following is achieved: The audio playback method described.
  • an embodiment of the present application provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the audio playback method described in the first aspect.
  • FIG. 1 is a flowchart of an audio playback method provided by an embodiment of the present application
  • FIG. 2 is a flowchart of an audio playback method provided by another embodiment of the present application.
  • FIG. 3 is a flowchart of an audio playback method provided by another embodiment of the present application.
  • FIG. 4a is a schematic diagram of the terminal structure when the bending parameter provided by an embodiment of the present application is bending C1;
  • 4b is a schematic diagram of the terminal structure when the bending parameter provided by an embodiment of the present application is bending C2;
  • FIG. 5 is a flowchart of an audio playback method provided by another embodiment of the present application.
  • FIG. 6 is a flowchart of an audio playback method provided by another embodiment of the present application.
  • FIG. 7 is a flowchart of an audio playback method provided by another embodiment of the present application.
  • FIG. 8 is a flowchart of an audio playback method provided by another embodiment of the present application.
  • Fig. 9a is a frequency spectrum diagram of audio data according to an embodiment of the present application.
  • FIG. 9b is a frequency spectrum diagram of audio data according to another embodiment of the present application.
  • FIG. 9c is a frequency spectrum diagram of audio data according to another embodiment of the present application.
  • FIG. 10 is a flowchart of an audio playback method provided by another embodiment of the present application.
  • FIG. 11 is a flowchart of an audio playback method provided by another embodiment of the present application.
  • FIG. 12 is a flowchart of an audio playback method provided by another embodiment of the present application.
  • FIG. 13 is a flowchart of an audio playback method provided by another embodiment of the present application.
  • FIG. 14 is a flowchart of an audio playback method provided by another embodiment of the present application.
  • FIG. 16 is a flowchart of an audio playback method provided by another embodiment of the present application.
  • FIG. 17 is a flowchart of an audio playback method provided by another embodiment of the present application.
  • FIG. 18 is a flowchart of an audio playback method provided by another embodiment of the present application.
  • FIG. 19 is a block diagram of internal modules of a terminal according to an embodiment of the present application.
  • FIG. 20 is a block diagram of internal modules of a terminal according to another embodiment of the present application.
  • the vibration of the object produces sound, and the sound can be reflected.
  • the sound is reflected by the object and then transmitted to the human ear, we hear the echo. If the time interval for the echo to reach the human ear is shorter than that of the original sound, the echo and the original sound are mixed together, and the original sound is strengthened.
  • the level of the sound that people feel is called the pitch, and the pitch is related to the frequency of the sounding body's vibration.
  • the level of frequency will affect the pitch (the level of the sound); the size of the sound felt by the human ear is called the loudness, and the loudness is related to the amplitude of the sounding body. There is a relationship, the magnitude of the amplitude will affect the loudness (the strength of the sound).
  • the speaker itself is limited by the material, structure and volume, and at the same time is affected by environmental noise.
  • the volume of the audio file (audio data) is limited during playback, and there will be loss and noise at the same time, and the sound quality will also be affected. .
  • the embodiments of the present application provide an audio playback method, a terminal, and a storage medium, which can adjust the audio playback effect according to the audio characteristics of the played audio or the environmental sound, thereby improving the audio listening effect.
  • the generated audio changes, and the audio playback effects are adjusted together, so that different audios in different environments can achieve better listening effects.
  • the terminal may be a mobile terminal device or a non-mobile terminal device.
  • Mobile terminal devices can be mobile phones, tablets, laptops, handheld computers, vehicle-mounted terminal devices, wearable devices, ultra-mobile personal computers, netbooks or personal digital assistants, etc.; non-mobile terminal devices can be personal computers, televisions, teller machines, or Self-service machines and so on.
  • the input device of the terminal can be a common input device such as a touch screen, a mouse, and a keyboard, or it can be an intelligent input device such as a visual sensor and a sound sensor.
  • corresponding user operation instructions can be obtained by analyzing user operations on input devices such as touch screens, mice, keyboards, etc.; image recognition, voice recognition and other algorithms can also be used to analyze image, sound and other information to obtain corresponding user operation instructions.
  • the user operation can be a touch or click operation on the terminal display interface.
  • the terminal has a first sound sensor, a second sound sensor, and a speaker.
  • the first sound sensor is used to collect environmental sound;
  • the second sound sensor is used to receive the sound signal emitted by the speaker, so as to determine the bending state of the flexible screen according to the sound signal.
  • the terminal has a second sound sensor 270, the speaker 260 is arranged at one end of the terminal, and the second sound sensor 270 is arranged at the other end of the terminal, which can be driven by a flexible screen control chip.
  • the two ends of the flexible screen 250 are bent to form a sound cavity 280, and at the same time, the second sound sensor 270 and the speaker 260 arranged at both ends of the terminal are brought closer to each other as they are bent, and the sound signal emitted by the speaker 260 is received through the second sound sensor 270.
  • the bending state of the flexible screen 250 is determined according to the sound signal.
  • the first sound sensor and the second sound sensor are two independent sound sensors
  • the first sound sensor and the speaker are arranged at the bottom of the terminal, and the first sound sensor is used to receive voice information and collect environmental sounds.
  • the second sound sensor is arranged at the top of the terminal, and the second sound sensor is used to receive the sound signal emitted by the speaker.
  • the first sound sensor and the second sound sensor are two independent sound sensors.
  • the sensor and the speaker are set at the bottom of the terminal, the first sound sensor is used to receive voice information, the second sound sensor is set at the top of the terminal, and the second sound sensor is used to collect ambient sound and receive the sound signal from the speaker;
  • the second sound sensor and the first sound sensor are the same sound sensor, the sound sensor is arranged at the opposite end of the speaker, and the sound sensor is used to simultaneously collect environmental sound and receive sound signals from the speaker.
  • the embodiments of the present application provide an audio playback method for a terminal.
  • the terminal has a central processing unit, a memory, a flexible screen control chip, a first sound sensor, a flexible screen, and a speaker.
  • the speaker is used to play audio.
  • Example 1A the audio playback method of Example 1A includes steps:
  • step S110 includes the following sub-steps:
  • S112 According to the turn-on signal, use the first sound sensor of the terminal to collect environmental sound.
  • step S111 the user operation can be obtained through the input device of the terminal, and the activation signal of the audio playback software can be obtained by analyzing the user operation; or the central processing unit of the terminal can directly read the activated state of the audio playback software to generate the activation signal.
  • the first sound sensor may be used to collect environmental sounds.
  • the sound sensor of the microphone can be used as the first sound sensor to collect environmental sounds.
  • step S110 further includes the following sub-steps:
  • the environmental acquisition trigger signal In the process of playing the audio, obtain the environmental acquisition trigger signal; the environmental acquisition trigger signal may be a periodic trigger signal or a random trigger signal.
  • the first sound sensor of the terminal is used to collect environmental sound.
  • steps S113 and S114 can be used to intermittently detect environmental sounds during the audio playback process, so as to dynamically provide environmental sound parameters to subsequent processing steps.
  • Step S120 Analyze the environmental sound to obtain corresponding environmental sound parameters.
  • the first sound sensor converts the collected environmental sound into an environmental sound signal and transmits it to the central processing unit.
  • the central processing unit analyzes the received environmental sound parameters to determine the current environmental situation.
  • the environmental sound level of the environmental sound can be obtained according to the decibel value of the environmental sound and the first correspondence table; the first correspondence table contains the correspondence between the decibel value and the environmental sound level.
  • the first correspondence table may classify environmental sounds into D1, D2, and D3.
  • the content of the first correspondence table is as follows:
  • Table 1 The first correspondence table
  • D is taken from the initials of decibel (decibel)
  • D1, D2, and D3 respectively represent environmental sound levels of different intensities
  • the environmental sound level corresponding to the environmental sound is taken as the environmental sound parameter.
  • the environmental sound is analyzed to obtain the decibel value of the environmental sound, and the corresponding environmental sound parameter can be obtained by querying the first correspondence table.
  • the flexible screen control chip may receive the control signal of the central processing unit, and drive the flexible screen to bend according to the control signal.
  • a flexible screen bending parameter C is preset in the memory, where C is taken from the initials of curve.
  • the bending parameters include but are not limited to the following sub-parameters: the area where the flexible screen is bent and the flexible screen is bent. Curvature, the angle of the flexible screen bending change, the arc of the flexible screen bending change, and the direction of the flexible screen bending change.
  • the bending parameters of the flexible screen can be adjusted according to the environmental sound parameters and the second correspondence table; the second correspondence table includes the correspondence between the environmental sound parameters and the bending parameters.
  • the second correspondence table can divide the bending parameters into two gears: bending C1 and bending C2. among them:
  • Bend C1 Referring to Figure 4a, both ends of the flexible screen are bent inward, and each sub-parameter in the bending parameter C is adjusted so that the flexible screen forms a semi-open sound cavity;
  • Bend C2 Referring to Figure 4b, if the C1 gear is bent to form a semi-open sound cavity, the bending curvature of the flexible screen is deepened, so that the flexible screen forms a closed sound cavity.
  • the content of the second correspondence table is as follows:
  • the corresponding bending parameters can be obtained according to the environmental sound parameters and the second correspondence table, the central processing unit can send corresponding control signals to the flexible screen control chip, and the flexible screen control chip can drive the flexible screen to perform corresponding bending according to the control signal.
  • the terminal has a second sound sensor 270
  • the speaker 260 is arranged at one end of the terminal
  • the second sound sensor 270 is arranged at the other end of the terminal, which can be driven by a flexible screen control chip.
  • the two ends of the flexible screen 250 are bent to form a sound cavity 280, and at the same time, the second sound sensor 270 and the speaker 260 arranged at both ends of the terminal are brought closer to each other as they are bent, and the sound signal emitted by the speaker 260 is received through the second sound sensor 270.
  • the bending state of the flexible screen 250 is determined according to the sound signal.
  • Example 1A using the principle of echo, in the sound cavity formed by the bending of the flexible screen, not only the audio emitted by the speaker but also the echo formed by reflection and refraction after the sound encounters the flexible screen wall (flexible screen), the echo and the original sound are mixed in At the same time, the original sound is strengthened and a mixing effect is formed, so that the sound quality effect of the audio file is better when it is played.
  • the use of the flexible screen shell to bend can use the sound cavity formed by the bending to reduce the loss of sound quality when audio is played in an open space, and improve the discomfort caused by the UHF sound to the listener.
  • the reflected sound can be increased, and the harsh high-frequency and ultra-high-frequency sound can be lost, making the sound softer, and increasing the listening effect of direct sound.
  • the sound quality is clearer; the reverberation function can be increased by bending the flexible screen into a closed sound cavity (bending C2), which can modify the sound.
  • the terminal has a central processing unit, a memory, a flexible screen control chip, a first sound sensor, a speaker, a flexible screen, and a built-in sound cavity arranged under the flexible screen.
  • the speaker is used to play audio; the built-in sound cavity is used to make the flexible screen produce sound when it vibrates.
  • the audio playback method of Example 1B includes the steps:
  • step S210 is consistent with step S110 in Example 1A, and you can refer to the related description of step S110;
  • step S220 is consistent with step S120 in Example 1A, and you can refer to the related description of step S120;
  • step S230 the vibration parameters of the flexible screen are adjusted according to the environmental sound parameters to adjust the audio playback effect.
  • the flexible screen control chip may receive the control signal of the central processing unit, and drive the flexible screen to vibrate according to the control signal.
  • the central processor matches the environmental sound parameters with the vibration parameters: firstly, obtain the corresponding relationship between each note to be output and the screen vibration frequency from the memory; secondly, according to different environmental sound parameters and the third The relationship correspondence table determines the corresponding vibration parameters; again, the central processing unit sends corresponding control signals to the flexible screen control chip to drive the flexible screen to vibrate.
  • a flexible screen vibration parameter V is preset in the memory, where V is taken from the initials of Vibrate (vibration).
  • the flexible screen vibration parameter V includes, but is not limited to: the flexible screen vibration amplitude, the corresponding relationship between the audio notes and the screen vibration frequency.
  • the vibration parameters of the flexible screen can be adjusted according to the environmental sound parameters and the third correspondence table; the third correspondence table includes the correspondence between the environmental sound parameters and the vibration parameters.
  • the third correspondence table can divide the flexible screen vibration parameters into 4 levels: no vibration V0, vibration V1, vibration V2, and vibration V3. among them,
  • Vibration V1 is the screen vibration amplitude of the audio note between the bass Do and the treble Si, which is the lowest vibration amplitude (basic vibration amplitude);
  • the content of the third correspondence table is as follows:
  • Table 3 The third correspondence table
  • the corresponding vibration parameters can be obtained according to the environmental sound parameters and the third correspondence table, and the central processing unit can send corresponding control signals to the flexible screen control chip, and the flexible screen control chip drives the flexible screen to vibrate according to the control signal.
  • Example 1B the effect of increasing the volume can be achieved through the vibration of the flexible screen, so that the flexible screen can vibrate regularly according to the audio notes, increasing the volume of audio playback, so that the weaker elements in the audio file can be better represented; and through Increase the vibration amplitude level setting, use different vibration amplitudes in different environmental sounds, you can increase the volume in different multiples, so as to adjust the audio playback effect and improve the audio listening effect.
  • the way of vibration can also increase the performance effect of bass, and the stereo effect can be formed through two ways of sounding through the speaker and screen vibration.
  • the terminal has a central processing unit, a memory, a flexible screen control chip, a flexible screen, and a speaker.
  • the speaker is used to play audio.
  • the audio playback method of Example 1C includes the steps:
  • S310 Collect audio data to be played
  • step S310 includes the following sub-steps:
  • S311 Acquire an audio playback trigger signal of the audio playback software
  • S312 According to the audio playback trigger signal, use the memory to collect audio data to be played.
  • the user operation can be acquired through the input device of the terminal, and the audio playback trigger signal of the audio playback software can be obtained by analyzing the user operation; or the central processor of the terminal can directly read the audio playback status of the audio playback software to generate audio Play the trigger signal.
  • the audio playback trigger signal may be generated before the audio playback software plays the audio, may be generated when the audio playback software starts to play the audio, or may be generated during the audio playback software of the audio playback software.
  • step S312 according to the audio playback trigger signal, the audio file (audio data to be played) can be stored in the temporary memory for subsequent reading of the audio file from the temporary memory by the central processing unit, and the audio parameters of the audio file are quickly analyzed .
  • Step S320 Analyze the audio data to be played to obtain corresponding audio parameters.
  • step S320 includes sub-steps:
  • S321 Analyze the audio data to be played to obtain the frequency spectrum of the audio data to be played;
  • S322 Determine the frequency spectrum distribution parameter and the vibration amplitude parameter obtained according to the frequency spectrum of the audio data to be played.
  • step S321 referring to the spectrograms of FIGS. 9a to 9c, in the spectrogram, the abscissa and the ordinate respectively represent the relationship between the frequency and the amplitude of the audio data, that is, the relationship between the signal frequency and the energy.
  • the central processing unit can first quickly extract audio data with a higher frequency (more concentrated notes) and larger amplitude, and analyze its distribution area in the spectrogram.
  • the distribution of common audio frequency in the frequency spectrum is: 20-40Hz ultra low frequency; 40-80Hz low frequency; 80-160Hz medium and low frequency; 160-1280Hz intermediate frequency; 1280-2560Hz medium and high frequency; 2560-5120Hz high frequency; 5120-20000Hz ultra high frequency.
  • the frequency spectrum can be divided into three types S1, S2, and S3 according to the frequency distribution area where it is located:
  • Audio parameters include spectral distribution parameters and vibration amplitude parameters.
  • the spectral distribution parameter S appears concentrated in a certain frequency band area of S1, S2, and S3, or when it appears in the spectral distribution area of S1+S2, that is, the spectral distribution If the parameter S ⁇ S1+S2, and the average amplitude (amplitude parameter A) does not exceed 40dB (A ⁇ 40dB), the audio is judged to be classical music, nursery rhymes, country, folk songs and other music styles. This type of music style has less audio elements. The rhythm is more relaxed.
  • This kind of music style has more energy and more audio elements.
  • the existing music styles are compared with the pre-set spectral distribution modes in the memory.
  • different music The corresponding relationship between styles and audio parameters of audio files is as follows:
  • Table 4 Correspondence table of music style and audio parameters
  • Step S330 Adjust the bending parameters of the flexible screen according to the audio parameters to adjust the audio playback effect.
  • the bending parameters of the flexible screen can be adjusted according to the audio parameters and the fourth correspondence table; the fourth correspondence table includes the correspondence between the audio parameters and the bending parameters.
  • the related description of the bending parameter please refer to the related description of the bending parameter in step S130 of Example 1A, which will not be repeated here.
  • the content of the fourth correspondence table is as follows:
  • Table 5 The fourth correspondence table
  • the corresponding bending parameters can be obtained according to the audio parameters and the fourth correspondence table, the central processing unit can send corresponding control signals to the flexible screen control chip, and the flexible screen control chip can drive the flexible screen to perform corresponding bending according to the control signal.
  • Example 1C using the principle of echo, in the sound cavity formed by the bending of the flexible screen, not only the audio from the speaker but also the echo formed by reflection and refraction after the sound encounters the flexible screen (flexible screen), the echo and the original sound are mixed in At the same time, the original sound is strengthened and a mixing effect is formed, so that the sound quality effect of the audio file is better when it is played.
  • the use of the flexible screen shell to bend can use the sound cavity formed by the bending to reduce the loss of sound quality when audio is played in an open space, and improve the discomfort caused by the UHF sound to the listener.
  • the reflected sound can be increased, and the harsh high-frequency and ultra-high-frequency sound can be lost, making the sound softer, and increasing the listening effect of direct sound.
  • the sound quality is clearer; the reverberation function can be increased by bending the flexible screen into a closed sound cavity (bending C2), which can modify the sound.
  • the terminal has a second sound sensor 270
  • the speaker 260 is arranged at one end of the terminal
  • the second sound sensor 270 is arranged at the other end of the terminal, which can be driven by a flexible screen control chip.
  • the two ends of the flexible screen 250 are bent to form a sound cavity 280, and at the same time, the second sound sensor 270 and the speaker 260 arranged at both ends of the terminal are brought closer to each other as they are bent, and the sound signal emitted by the speaker 260 is received through the second sound sensor 270.
  • the bending state of the flexible screen 250 is determined according to the sound signal.
  • the terminal has a central processing unit, a memory, a flexible screen control chip, a speaker, a flexible screen, and a built-in sound cavity arranged under the flexible screen.
  • the speaker is used to play audio;
  • the built-in sound cavity is used to make the flexible screen produce sound when it vibrates.
  • the audio playback method of Example 1D includes the steps:
  • S410 Collect audio data to be played
  • step S410 is consistent with step S310 in Example 1C, and you can refer to the related description of step S310;
  • step S420 is consistent with step S320 in Example 1C, and you can refer to the related description of step S320; it will not be repeated here.
  • the vibration parameter of the flexible screen is adjusted according to the audio parameter and the fifth correspondence table; the fifth correspondence table includes the correspondence between the audio parameter and the vibration parameter.
  • the content of the fifth correspondence table is as follows:
  • the corresponding vibration parameters can be obtained according to the audio parameters and the fifth correspondence table, and the central processing unit can send corresponding control signals to the flexible screen control chip, and the flexible screen control chip drives the flexible screen according to the control signal. Corresponds to vibration.
  • the effect of increasing the volume can be achieved through the vibration of the flexible screen, so that the flexible screen can vibrate regularly according to the audio notes, increasing the volume of the audio playback, so that the weaker elements in the audio file can be better expressed; and through Increase the vibration amplitude level setting, use different vibration amplitudes for different audio parameters, you can increase the volume by different multiples, so as to adjust the audio playback effect, and then improve the audio listening effect.
  • the way of vibration can also increase the performance effect of bass, and the stereo effect can be formed through two ways of sounding through the speaker and screen vibration.
  • the terminal has a central processing unit, a memory, a flexible screen control chip, a first sound sensor, a flexible screen, and a speaker.
  • the speaker is used to play audio.
  • the audio playback method of Example 1E includes the steps:
  • S510 Collect environmental sound and audio data to be played
  • S520 Analyze the environmental sound to obtain the corresponding environmental sound parameter and analyze the to-be-played audio data to obtain the corresponding audio parameter;
  • step S510 can adopt the method of step S110 in Example 1A to collect environmental sound, and adopt the method of step S310 in Example 1C to collect the audio data to be played.
  • step S520 can be adopted
  • the method of step S120 in Example 1A is used to obtain the environmental sound parameters
  • the method of step S320 in Example 1C is used to obtain the audio parameters.
  • step S120 and step S320 respectively;
  • the bending parameters of the flexible screen can be adjusted according to the environmental sound parameters, the audio parameters, and the sixth correspondence table; the sixth correspondence table includes the correspondence between the environmental sound parameters, the audio parameters, and the bending parameters.
  • the content of the sixth correspondence table is as follows:
  • Table 7 The sixth correspondence table
  • the corresponding bending parameters can be obtained according to the environmental sound parameters, audio parameters and the sixth correspondence table.
  • the central processing unit can send corresponding control signals to the flexible screen control chip, and the flexible screen control chip can drive the flexible screen according to the control signal to correspond Bend.
  • Example 1E using the principle of echo, in the sound cavity formed by the bending of the flexible screen, not only the audio from the speaker but also the echo formed by reflection and refraction after the sound encounters the flexible screen (flexible screen), the echo and the original sound are mixed in At the same time, the original sound is strengthened and a mixing effect is formed, so that the sound quality effect of the audio file is better when it is played.
  • the use of the flexible screen shell to bend can use the sound cavity formed by the bending to reduce the loss of sound quality when audio is played in an open space, and improve the discomfort caused by the UHF sound to the listener.
  • the reflected sound can be increased, and the harsh high-frequency and ultra-high-frequency sound can be lost, making the sound softer, and increasing the listening effect of direct sound.
  • the sound quality is clearer; the reverberation function can be increased by bending the flexible screen into a closed sound cavity (bending C2), which can modify the sound.
  • the terminal has a second sound sensor 270
  • the speaker 260 is arranged at one end of the terminal
  • the second sound sensor 270 is arranged at the other end of the terminal, which can be driven by a flexible screen control chip.
  • the two ends of the flexible screen 250 are bent to form a sound cavity 280, and at the same time, the second sound sensor 270 and the speaker 260 arranged at both ends of the terminal are brought closer to each other as they are bent, and the sound signal emitted by the speaker 260 is received through the second sound sensor 270.
  • the bending state of the flexible screen 250 is determined according to the sound signal.
  • the terminal has a central processing unit, a memory, a flexible screen control chip, a first sound sensor, a speaker, a flexible screen, and a built-in sound cavity arranged under the flexible screen.
  • the speaker is used to play audio; the built-in sound cavity is used to make the flexible screen produce sound when it vibrates.
  • the audio playback method of Example 1F includes the steps:
  • S610 Collect environmental sound and audio data to be played
  • S620 Analyze the environmental sound to obtain the corresponding environmental sound parameter and analyze the to-be-played audio data to obtain the corresponding audio parameter;
  • S630 Adjust the vibration parameter of the flexible screen according to the environmental sound parameter and the audio parameter to adjust the audio playback effect.
  • step S610 can adopt the method of step S110 in Example 1A to collect environmental sound, and adopt the method of step S310 in Example 1C to collect the audio data to be played.
  • step S620 can be adopted
  • the method of step S120 in Example 1A is used to obtain the environmental sound parameters
  • the method of step S320 in Example 1C is used to obtain the audio parameters.
  • step S120 and step S320 respectively;
  • the vibration parameters of the flexible screen can be adjusted according to the environmental sound parameters, audio parameters, and the seventh correspondence table; the seventh correspondence table includes the correspondence between the environmental sound parameters, the audio parameters, and the vibration parameters.
  • the content of the seventh correspondence table is as follows:
  • Table 8 The seventh correspondence table
  • the corresponding vibration parameters can be obtained according to the environmental sound parameters, audio parameters and the seventh correspondence table.
  • the central processing unit can send corresponding control signals to the flexible screen control chip, and the flexible screen control chip drives the flexible screen to perform corresponding vibrations according to the control signal. .
  • the effect of increasing the volume can be achieved by vibrating the flexible screen, so that the flexible screen can vibrate regularly according to the audio notes, increasing the volume of the audio playback, so that the weaker elements in the audio file can be better expressed; and through
  • the vibration amplitude level setting has been increased, and different vibration amplitudes can be used for different environmental sound parameters and different audio parameters to increase the volume by different multiples, thereby adjusting the audio playback effect and improving the audio listening effect.
  • the way of vibration can also increase the performance effect of bass, and the stereo effect can be formed through two ways of sounding through the speaker and screen vibration.
  • the terminal has a central processing unit, a memory, a flexible screen control chip, a first sound sensor, a speaker, a flexible screen, and a built-in sound cavity arranged under the flexible screen.
  • the speaker is used to play audio; the built-in sound cavity is used to make the flexible screen produce sound when it vibrates.
  • the audio playback method of Example 1G includes the steps:
  • step S710 is consistent with step S110 in Example 1A, and you can refer to the related description of step S110;
  • step S720 is consistent with step S120 in Example 1A, and you can refer to the related description of step S120;
  • the bending parameters and vibration parameters of the flexible screen are adjusted according to the environmental sound parameters and the eighth correspondence table; the eighth correspondence table includes the correspondence between the environmental sound parameters, the bending parameters, and the vibration parameters.
  • the content of the eighth correspondence table is as follows:
  • Table 9 The eighth correspondence table
  • the corresponding bending parameters and vibration parameters can be obtained according to the environmental sound parameters and the eighth correspondence table.
  • the central processing unit can send corresponding control signals to the flexible screen control chip, and the flexible screen control chip can drive the flexible screen according to the control signal to correspond Bending and shaking.
  • the terminal has a second sound sensor 270
  • the speaker 260 is arranged at one end of the terminal
  • the second sound sensor 270 is arranged at the other end of the terminal, which can be driven by a flexible screen control chip.
  • the two ends of the flexible screen 250 are bent to form a sound cavity 280, and at the same time, the second sound sensor 270 and the speaker 260 arranged at both ends of the terminal are brought closer to each other as they are bent, and the sound signal emitted by the speaker 260 is received through the second sound sensor 270.
  • the bending state of the flexible screen 250 is determined according to the sound signal.
  • Example 1G on the one hand, the flexible screen shell can be bent into a closed sound cavity to increase the reverberation function and modify the sound; on the other hand, the flexible screen vibration can achieve the effect of increasing the volume and make the audio
  • the weaker elements in the file can perform better.
  • this example also presets a second sound sensor in the microphone to detect changes in the current playback environment, thereby driving changes in the vibration amplitude and bending angle of the flexible screen, so that the flexible screen terminal can be intelligently adjusted in different environments. Make the audio file play better in the current environment.
  • the central processing unit detects changes in the environment, and then the flexible screen control chip drives the screen vibration to increase the volume and drive flexibility.
  • the screen shell is bent to form a sound cavity, so as to improve the sound quality, increase the volume, enhance the reverberation, and even enhance the stereo effect.
  • the terminal has a central processing unit, a memory, a flexible screen control chip, a speaker, a flexible screen, and a built-in sound cavity arranged under the flexible screen.
  • the speaker is used to play audio;
  • the built-in sound cavity is used to make the flexible screen produce sound when it vibrates.
  • the audio playback method of Example 1H includes the steps:
  • S810 Collect audio data to be played
  • step S810 is consistent with step S310 in Example 1C, and you can refer to the related description of step S310;
  • step S820 is consistent with step S320 in Example 1C, and you can refer to the related description of step S320; it will not be repeated here.
  • the bending parameters and vibration parameters of the flexible screen are adjusted according to the audio parameters and the ninth correspondence table; the ninth correspondence table includes the correspondence between the audio parameters, the bending parameters, and the vibration parameters.
  • the content of the ninth correspondence table is as follows:
  • the corresponding bending parameters and vibration parameters can be obtained according to the audio parameters and the ninth correspondence table.
  • the central processing unit can send corresponding control signals to the flexible screen control chip, and the flexible screen control chip can drive the flexible screen to perform corresponding bending according to the control signal. Fold and shake.
  • the terminal has a second sound sensor 270
  • the speaker 260 is arranged at one end of the terminal
  • the second sound sensor 270 is arranged at the other end of the terminal, which can be driven by a flexible screen control chip.
  • the two ends of the flexible screen 250 are bent to form a sound cavity 280, and at the same time, the second sound sensor 270 and the speaker 260 arranged at both ends of the terminal are brought closer to each other as they are bent, and the sound signal emitted by the speaker 260 is received through the second sound sensor 270.
  • the bending state of the flexible screen 250 is determined according to the sound signal.
  • Example 1H on the one hand, the flexible screen shell can be bent into a closed sound cavity to increase the reverberation function and modify the sound; on the other hand, the flexible screen vibration can achieve the effect of increasing the volume and make the audio
  • the weaker elements in the file can perform better.
  • this example also presets a second sound sensor in the microphone to detect changes in the audio data to be output, thereby driving changes in the vibration amplitude and bending angle of the flexible screen, so as to intelligently adjust the flexibility when playing different audio data.
  • the screen terminal makes the playback effect of audio data better.
  • the central processing unit detects the changes in the audio to be played, and then the flexible screen control chip drives the screen to vibrate to increase the volume and drive the flexible screen
  • the shell is bent to form a sound cavity, so as to improve the sound quality, increase the volume, enhance the reverberation, and even enhance the stereo effect.
  • the terminal has a central processing unit, a memory, a flexible screen control chip, a first sound sensor, a speaker, a flexible screen, and a built-in sound cavity arranged under the flexible screen.
  • the speaker is used to play audio; the built-in sound cavity is used to make the flexible screen produce sound when it vibrates.
  • the audio playback method of Example 1I includes the steps:
  • S910 Collect environmental sound and audio data to be played
  • S920 Analyze the environmental sound to obtain the corresponding environmental sound parameter and analyze the to-be-played audio data to obtain the corresponding audio parameter;
  • step S910 can adopt the method of step S110 in Example 1A to collect environmental sound, and adopt the method of step S310 in Example 1C to collect the audio data to be played.
  • step S920 can be adopted
  • the method of step S120 in Example 1A is used to obtain the environmental sound parameters
  • the method of step S320 in Example 1C is used to obtain the audio parameters.
  • step S120 and step S320 respectively;
  • the bending parameters and vibration parameters of the flexible screen are adjusted according to the environmental sound parameters, audio parameters, and the tenth correspondence table; the tenth correspondence table includes environmental sound parameters, audio parameters, and flexible screen bending parameters, Correspondence of vibration parameters.
  • the content of the tenth correspondence table is as follows:
  • the corresponding bending parameters and vibration parameters can be obtained according to the environmental sound parameters, audio parameters and the tenth correspondence table.
  • the central processing unit can send corresponding control signals to the flexible screen control chip, and the flexible screen control chip can drive the flexible screen according to the control signal. The screen bends and vibrates accordingly.
  • the read output audio parameters are: spectrum distribution parameter S ⁇ S1+S2, amplitude parameter A ⁇ 40dB, that is, when playing soothing music in a quiet environment, it is flexible
  • the screen control chip drives the flexible screen vibration as V1, and the flexible screen shell bending parameter is C1. Realize the vibration of the flexible screen in the semi-closed sound cavity, which can increase the volume to 10%, and increase the reflected sound at the same time, which will reduce the harsh high and ultra high frequency sounds, make the sound softer, increase the direct sound listening effect, and make the sound quality clearer.
  • the flexible screen control chip drives the flexible screen vibration to V2, and the bending parameter of the flexible screen shell is C1, which realizes the vibration of the flexible screen in a closed sound cavity, which can increase the volume to 30%, and at the same time increase the reverberation, which modifies the sound .
  • the flexible screen control chip drives the flexible screen vibration to V3, and the flexible screen shell bending parameter is C2 to realize the vibration of the flexible screen in a closed sound cavity, which can increase the volume to 50%, and increase the reverberation at the same time, which modifies the sound .
  • the read output audio parameters are: spectrum distribution parameter S ⁇ S1+S2, amplitude parameter A ⁇ 40dB, that is, when playing soothing music in a normal environment, it is flexible
  • the screen control chip drives the flexible screen vibration as V2, and the flexible screen shell bending parameter is C1.
  • the flexible screen can be vibrated in a semi-enclosed sound cavity, and the volume can be increased to 30%, thereby covering up the environmental noise, while increasing the reflected sound and direct sound to enhance the listening effect.
  • the flexible screen control chip drives the flexible screen vibration as V2, and the flexible screen shell bending parameter is C1.
  • the flexible screen can be vibrated in a semi-enclosed sound cavity, and the volume can be increased to 30%, thereby covering up the environmental noise, while increasing the reflected sound and direct sound to enhance the listening effect.
  • the flexible screen control chip drives the flexible screen vibration as V3, and the flexible screen shell bending parameter is C2.
  • the flexible screen can be vibrated in a closed sound cavity, and the volume can be increased to 50%. At the same time, it can increase the bass effect and reverberation effect, and enhance the sense of rhythm.
  • the environmental sound parameter is between 60-100 decibels (D3)
  • D3 decibels
  • the flexible screen vibration V3 is adopted, and the flexible screen shell is bent to C1 to increase the volume to 50%.
  • the semi-enclosed sound cavity is used to increase the direct sound listening effect and make the audio Listen more clearly.
  • the corresponding vibration parameter is no vibration V0.
  • the terminal has a second sound sensor 270
  • the speaker 260 is arranged at one end of the terminal
  • the second sound sensor 270 is arranged at the other end of the terminal, which can be driven by a flexible screen control chip.
  • the two ends of the flexible screen 250 are bent to form a sound cavity 280, and at the same time, the second sound sensor 270 and the speaker 260 arranged at both ends of the terminal are brought closer to each other as they are bent, and the sound signal emitted by the speaker 260 is received through the second sound sensor 270.
  • the bending state of the flexible screen 250 is determined according to the sound signal.
  • Example 1I can solve this problem.
  • Example 11 on the one hand, the flexible screen shell can be bent into a closed sound cavity to increase the reverberation function and modify the sound; on the other hand, the flexible screen vibration can achieve the effect of increasing the volume and make the audio
  • the weaker elements in the file can perform better.
  • this example also presets a second sound sensor in the microphone to detect changes in the current playback environment and audio files to be output, thereby driving changes in the vibration amplitude and bending angle of the flexible screen to achieve different audio playback in different environments
  • the flexible screen terminal can be intelligently adjusted when files are being used to make the audio files play better in the current environment.
  • the central processor detects changes in the environment and the audio to be played, and then is controlled by the flexible screen
  • the chip drives the screen to vibrate to increase the volume, and drives the flexible screen shell to bend to form a sound cavity, so as to improve the sound quality, increase the volume, enhance the reverberation, and even enhance the stereo effect.
  • the audio playback method of Example 1J further includes the steps:
  • the central processor drives the flexible screen control chip to change the flexible screen vibration parameters or bending parameters according to the newly acquired environmental audio parameters, so as to achieve better performance when playing audio files in different environments Listening effect.
  • the audio playback method of Example 1K further includes the steps:
  • the central processing unit drives the flexible screen control chip to change the flexible screen vibration parameters or bending parameters according to the newly acquired audio parameters, so as to play different types of audio files It can have a better listening effect at any time.
  • the audio playback method of Example 1L further includes the steps:
  • the central processing unit drives the flexible screen control chip to change the flexibility according to the newly acquired new environmental audio parameters and output audio parameters.
  • Screen vibration parameters or bending parameters so as to achieve a better listening effect when playing different types of audio files in different environments.
  • the terminal of Example 1K has at least two relatively arranged flexible screens, and a sound cavity is provided under the flexible screens.
  • At least two sound cavities arranged relative to the flexible screen are preset in the terminal.
  • the flexible screen control chip can simultaneously drive at least two oppositely arranged flexible screens to produce sound, so as to achieve a stereo effect.
  • an embodiment of the present application provides a terminal, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the processor executes the program, it is implemented: as in the audio playback method of the first aspect.
  • the terminal may be a mobile terminal device or a non-mobile terminal device.
  • Mobile terminal devices can be mobile phones, tablets, laptops, handheld computers, vehicle-mounted terminal devices, wearable devices, ultra-mobile personal computers, netbooks or personal digital assistants, etc.; non-mobile terminal devices can be personal computers, televisions, teller machines, or Self-service machines and so on.
  • the input device of the terminal can be a common input device such as a touch screen, a mouse, and a keyboard, or it can be an intelligent input device such as a visual sensor and a sound sensor.
  • corresponding user operation instructions can be obtained by analyzing user operations on input devices such as touch screens, mice, keyboards, etc.; image recognition, voice recognition and other algorithms can also be used to analyze image, sound and other information to obtain corresponding user operation instructions.
  • the user operation can be a touch or click operation on the terminal display interface.
  • the terminal has a first sound sensor, a second sound sensor, and a speaker.
  • the first sound sensor is used to collect environmental sound;
  • the second sound sensor is used to receive the sound signal emitted by the speaker, so as to determine the bending state of the flexible screen according to the sound signal.
  • the terminal has a second sound sensor 270, the speaker 260 is arranged at one end of the terminal, and the second sound sensor 270 is arranged at the other end of the terminal, which can be driven by a flexible screen control chip.
  • the two ends of the flexible screen 250 are bent to form a sound cavity 280, and at the same time, the second sound sensor 270 and the speaker 260 arranged at both ends of the terminal are brought closer to each other as they are bent, and the sound signal emitted by the speaker 260 is received through the second sound sensor 270.
  • the bending state of the flexible screen 250 is determined according to the sound signal.
  • the first sound sensor and the second sound sensor are two independent sound sensors
  • the first sound sensor and the speaker are arranged at the bottom of the terminal, and the first sound sensor is used to receive voice information and collect environmental sounds.
  • the second sound sensor is arranged at the top of the terminal, and the second sound sensor is used to receive the sound signal emitted by the speaker.
  • the first sound sensor and the second sound sensor are two independent sound sensors.
  • the sensor and the speaker are set at the bottom of the terminal, the first sound sensor is used to receive voice information, the second sound sensor is set at the top of the terminal, and the second sound sensor is used to collect ambient sound and receive the sound signal from the speaker;
  • the second sound sensor and the first sound sensor are the same sound sensor, the sound sensor is arranged at the opposite end of the speaker, and the sound sensor is used to simultaneously collect environmental sound and receive sound signals from the speaker.
  • the terminal of Example 2A may be a terminal for implementing the audio playback method of Example 1A or Example 1B or Example 1E or Example 1F or Example 1G or Example 1I or Example 1J in the first aspect.
  • the terminal has a central processing unit 210, a memory 220, a flexible screen control chip 230, a first sound sensor 240, a flexible screen 250, and a speaker 260.
  • the central processing unit 210 is connected to the memory 220
  • the flexible screen control chip 230 is connected to the central processing unit 210
  • the output end of the flexible screen control chip 230 is connected to the input end of the flexible screen 250
  • the first sound sensor 240 is connected to the memory 220 and the central processing unit respectively.
  • the output terminal of the central processing unit 210 is connected to the speaker 260.
  • the speaker 260 is used for playing audio
  • the flexible screen 250 may be one or more.
  • a first computer program is stored in the memory 220.
  • the first computer program can run on the central processing unit 210.
  • the central processing unit 210 executes the first computer program, the implementation is as in Example 1A or Example 1B or Example 1E or Example in the first aspect.
  • the terminal has a second sound sensor 270, and the second sound sensor 270 is connected to the central processing unit 210.
  • the speaker 260 is arranged at one end of the terminal, and the second sound sensor 270 is arranged at the other end of the terminal.
  • the flexible screen control chip 230 can be used to drive the two ends of the flexible screen 250 to bend to form a sound cavity, and at the same time make the second sound arranged at both ends of the terminal.
  • the sensor 270 and the speaker 260 approach each other as they bend, and receive the sound signal from the speaker 260 through the second sound sensor 270, and determine the bending state of the flexible screen 250 according to the sound signal.
  • the terminal of Example 2B may be a terminal that implements the audio playback method of Example 1C or Example 1D or Example 1E or Example 1F or Example 1H or Example 1I or Example 1K in the first aspect.
  • the terminal has a central processing unit 210, a memory 220, a flexible screen control chip 230, a first sound sensor 240, a speaker 260, a flexible screen 250, and a built-in sound cavity disposed under the flexible screen 250.
  • the central processing unit 210 is connected to the memory 220
  • the flexible screen control chip 230 is connected to the central processing unit 210
  • the output end of the flexible screen control chip 230 is connected to the input end of the flexible screen 250
  • the first sound sensor 240 is connected to the memory 220 and the central processing unit respectively.
  • the output terminal of the central processing unit 210 is connected to the speaker 260.
  • the speaker 260 is used to play audio; the built-in sound cavity is used to make the flexible screen 250 emit sound when vibrating.
  • a second computer program is stored in the memory 220. The second computer program can run on the central processing unit 210. When the central processing unit 210 executes the second computer program, the implementation is as described in Example 1C or Example 1D or Example 1E or Example in the first aspect. 1F or Example 1H or Example 1I or Example 1K audio playback method.
  • the terminal has at least two oppositely arranged flexible screens 250, and a sound cavity is arranged under the flexible screen 250. At least two sound cavities set relative to the flexible screen 250 are preset in the terminal. In this way, the flexible screen control chip 230 can simultaneously drive at least two oppositely arranged flexible screens 250 to produce sound, thereby achieving a stereo effect.
  • the terminal of Example 2C may be implemented as in Example A or Example 1B or Example 1C or Example 1D or Example 1E or Example 1F or Example 1G or Example 1H or Example 1I or Example 1J or Example 1K or Example 1L or Example 1M in the first aspect
  • the audio playback method of the terminal may be implemented as in Example A or Example 1B or Example 1C or Example 1D or Example 1E or Example 1F or Example 1G or Example 1H or Example 1I or Example 1J or Example 1K or Example 1L or Example 1M in the first aspect
  • the audio playback method of the terminal may be implemented as in Example A or Example 1B or Example 1C or Example 1D or Example 1E or Example 1F or Example 1G or Example 1H or Example 1I or Example 1J or Example 1K or Example 1L or Example 1M in the first aspect
  • the audio playback method of the terminal may be implemented as in Example A or Example 1B or Example 1C or Example 1D or Example 1E or Example 1F or Example 1G or Example 1H or Example 1I or Example
  • the terminal has a central processing unit 210, a memory 220, a flexible screen control chip 230, a first sound sensor 240, a speaker 260, a flexible screen 250, and a built-in sound cavity disposed under the flexible screen 250.
  • the central processing unit 210 is connected to the memory 220
  • the flexible screen control chip 230 is connected to the central processing unit 210
  • the output end of the flexible screen control chip 230 is connected to the input end of the flexible screen 250
  • the first sound sensor 240 is connected to the memory 220 and the central processing unit respectively.
  • the output terminal of the central processing unit 210 is connected to the speaker 260.
  • the speaker 260 is used to play audio; the built-in sound cavity is used to make the flexible screen 250 emit sound when vibrating.
  • a third computer program is stored in the memory 220. The third computer program can be run on the central processing unit 210. When the central processing unit 210 executes the third computer program, the implementation is as in Example A or Example 1B or Example 1C or Example in the first aspect. 1D or example 1E or example 1F or example 1G or example 1H or example 1I or example 1J or example 1K or example 1L or example 1M audio playback method.
  • the terminal has a second sound sensor 270, and the second sound sensor 270 is connected to the central processing unit 210.
  • the speaker 260 is arranged at one end of the terminal, and the second sound sensor 270 is arranged at the other end of the terminal.
  • the flexible screen control chip 230 can be used to drive the two ends of the flexible screen 250 to bend to form a sound cavity, and at the same time make the second sound arranged at both ends of the terminal.
  • the sensor 270 and the speaker 260 approach each other as they bend, and receive the sound signal from the speaker 260 through the second sound sensor 270, and determine the bending state of the flexible screen 250 according to the sound signal.
  • the terminal has at least two oppositely arranged flexible screens 250, and a sound cavity is arranged under the flexible screen 250. At least two sound cavities set relative to the flexible screen 250 are preset in the terminal. In this way, the flexible screen control chip 230 can simultaneously drive at least two oppositely arranged flexible screens 250 to produce sound, thereby achieving a stereo effect.
  • the embodiments of the present application provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to:
  • the embodiment of the present application includes: adjusting the bending parameter and/or the vibration parameter of the flexible screen according to the environmental sound parameter and/or the audio parameter. According to the solution provided by the embodiments of the present application, it is possible to adjust the audio playback effect according to the audio characteristics of the played audio or the environmental sound, thereby improving the audio listening effect.
  • the device embodiments described above are merely illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • computer storage medium includes volatile and non-volatile data implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data).
  • Information such as computer-readable instructions, data structures, program modules, or other data.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or Any other medium used to store desired information and that can be accessed by a computer.
  • communication media usually contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Environmental & Geological Engineering (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

音频播放方法、终端及存储介质,所述音频播放方法包括:采集环境声音和/或待播放音频数据(S110);分析所述环境声音得到对应的环境音参数和/或分析所述待播放音频数据得到对应的音频参数(S120);根据所述环境音参数和/或所述音频参数,调整所述柔性屏幕的弯折参数和/或震动参数,以调整音频播放效果(S130)。

Description

音频播放方法、终端及存储介质
相关申请的交叉引用
本申请基于申请号为201910881459.X、申请日为2019年9月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于终端技术领域,尤其涉及音频播放方法、终端及存储介质。
背景技术
科技发展日新月异,手机、平板电脑等终端的技术发展更是突飞猛进,可弯折的柔性屏幕由于屏幕材质特殊、结构柔韧性佳被广泛应用于终端设备中。
目前,终端音频播放普遍单纯采用电磁式扬声器来实现音频的发声,但是此种方法能够表现的音频效果却很有限,发声也不能根据播放音频的音频特性或环境声音而改变,使得音频收听效果受到影响。
发明内容
本申请实施例提供了音频播放方法、终端及存储介质,旨在至少在一定程度上解决相关技术中的技术问题之一。
第一方面,本申请实施例提供了音频播放方法,用于具有柔性屏幕的终端,所述方法包括:采集环境声音和/或待播放音频数据;分析所述环境声音得到对应的环境音参数和/或分析所述待播放音频数据得到对应的音频参数;根据所述环境音参数和/或所述音频参数,调整所述柔性屏幕的弯折参数和/或震动参数,以调整音频播放效果。
第二方面,本申请实施例提供了终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现:如第一方面所述的音频播放方法。
第三方面,本申请实施例提供了计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于:执行第一方面所述的音频播放方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的音频播放方法的流程图;
图2是本申请另一实施例提供的音频播放方法的流程图;
图3是本申请另一实施例提供的音频播放方法的流程图;
图4a是本申请一个实施例提供的弯折参数为弯折C1时的终端结构示意图;
图4b是本申请一个实施例提供的弯折参数为弯折C2时的终端结构示意图;
图5是本申请另一实施例提供的音频播放方法的流程图;
图6是本申请另一实施例提供的音频播放方法的流程图;
图7是本申请另一实施例提供的音频播放方法的流程图;
图8是本申请另一实施例提供的音频播放方法的流程图;
图9a是本申请一个实施例音频数据的频谱图;
图9b是本申请另一个实施例音频数据的频谱图;
图9c是本申请另一个实施例音频数据的频谱图;
图10是本申请另一实施例提供的音频播放方法的流程图;
图11是本申请另一实施例提供的音频播放方法的流程图;
图12是本申请另一实施例提供的音频播放方法的流程图;
图13是本申请另一实施例提供的音频播放方法的流程图;
图14是本申请另一实施例提供的音频播放方法的流程图;
图15是本申请另一实施例提供的音频播放方法的流程图;
图16是本申请另一实施例提供的音频播放方法的流程图;
图17是本申请另一实施例提供的音频播放方法的流程图;
图18是本申请另一实施例提供的音频播放方法的流程图;
图19是本申请一实施例提供的终端内部模块框图;
图20是本申请另一实施例提供的终端内部模块框图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
物体的振动产生声音,声音能够被反射,当声音被物体反射回来,再传入人耳朵,我们就听到了回声。如果回声到达人耳比原声到达人耳的时间间隔小,回声和原声混合在一起,则使原声加强。
人们感觉到的声音的高低叫做音调,音调跟发声体振动的频率有关系,频率的高低会影响到音调(声音的高低);人耳感觉到的声音的大小叫做响度,响度跟发声体的振幅有关系,振幅的大小会影响到响度(声音的强弱)。
目前终端在使用扬声器播放音频时,扬声器本身受材质、结构和体积限制,同时受环境噪音影响,音频文件(音频数据)在播放时音量受到限制,同时会有损耗和噪音,音质也会受到影响。
基于此,本申请实施例提供了音频播放方法、终端及存储介质,能够实现根据播放音频的音频特性或环境声音,调整音频播放效果,从而提升音频收听效果。例如,可以利用终端麦克风内置的声音传感器获取环境声音,对比不同环境声音和待播放音频数据的音频特性调整柔性屏幕弯折角度和屏幕震动频率、强度,通过弯折屏幕形成的音腔和屏幕震动产生的音频变化,共同调整音频播放效果,使得在不同环境下不同的音频能够达到更好的收听效果。
需要说明的是,下列多种实施例中,终端可以为移动终端设备,也可以为非移动终端设备。移动终端设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载终端设备、可穿戴设备、超级移动个人计算机、上网本或者个人数字助理等;非移动终端设备可以为个人计算机、电视机、柜员机或者自助机等。终端的输入装置可以是触摸屏、鼠标、键盘等常见输入装置,也可以是视觉传感器、声音传感器等智能输入装置。对应的,可通过解析用户对触摸屏、鼠标、键盘等输入装置的操作,得到相应的用户操作指令;也可利用图像识别、语音识别等算法解析图像、声音等信息以得到相应的用户操作指令。用户操作可以是对终端显示界面的触摸、点击操作。
在一些实施例中,终端具有第一声音传感器、第二声音传感器和扬声器。其中,第一声音传感器用于采集环境声音;第二声音传感器用于接收扬声器发出的声音信号,以便根据声音信号确定柔性屏幕的弯折状态。在一些实施例中,如图4a和图4b所示,终端具有第二声音传感器270,扬声器260设置在终端的一端,第二声音传感器270设置在终端的另一端,可利用柔性屏控制芯片驱动柔性屏幕250两端进行弯折形成音腔280,同时使得设置在终端两端的第二声音传感器270和扬声器260随着弯折彼此靠近,并通过第二声音传感器270接收扬声器260发出的声音信号,根据声音信号确定柔性屏幕250的弯折状态。
在一些实施例中,第一声音传感器和第二声音传感器为两个独立的声音传感器,第一声音传感器和扬声器设置在终端的底端,第一声音传感器用于接收语音信息和采集环境声音,第二声音传感器设置在终端的顶端,第二声音传感器用于接收扬声器发出的声音信号;在另一些实施例中,第一声音传感器和第二声音传感器为两个独立的声音传感器,第一声音传感器和扬声器设置在终端的底端,第一声音传感 器用于接收语音信息,第二声音传感器设置在终端的顶端,第二声音传感器用于采集环境声音和接收扬声器发出的声音信号;在另一些实施例中,第二声音传感器和第一声音传感器为同一声音传感器,该声音传感器设置在扬声器的对端,该声音传感器同时用于采集环境声音和接收扬声器发出的声音信号。
第一方面,本申请实施例提供用于终端的音频播放方法。
示例1A
在示例1A中,终端具有中央处理器、存储器、柔性屏控制芯片、第一声音传感器、柔性屏幕、扬声器。其中,扬声器用于播放音频。
参照图1,示例1A的音频播放方法包括步骤:
S110,采集环境声音;
S120,分析环境声音得到对应的环境音参数;
S130,根据环境音参数,调整柔性屏幕的弯折参数,以调整音频播放效果。
参照图2,在一些实施例中,步骤S110包括以下子步骤:
S111,获取音频播放软件的开启信号;
S112,根据开启信号,利用终端的第一声音传感器采集环境声音。
步骤S111中,可以通过终端的输入装置获取用户操作,通过解析用户操作得到音频播放软件的开启信号;也可以由终端的中央处理器直接读取到音频播放软件被开启的状态,生成开启信号。
步骤S112中,可以利用第一声音传感器采集环境声音。例如,在一些具有麦克风的终端中,可以利用麦克风的声音传感器作为第一声音传感器采集环境声音。
参照图3,在一些实施例中,步骤S110还包括以下子步骤:
S113,在播放音频过程中,获取环境采集触发信号;环境采集触发信号可以是周期触发信号,也可以是随机触发信号。
S114,根据环境采集触发信号,利用终端的第一声音传感器采集环境声音。
在一些实施例中,可以利用步骤S113和步骤S114,实现在音频播放过程中间断性检测环境声音,以动态提供环境音参数给后续处理步骤。
步骤S120,分析环境声音得到对应的环境音参数。
在一些实施例中,第一声音传感器将采集到的环境声音转换为环境声音信号传输给中央处理器,中央处理器分析接收到的环境音参数,确定当前环境情况。
常用环境音分级方式为:0-20分贝,寂静;20-40分贝,安静;40-60分贝,普通室内谈话;60-70分贝,吵闹、有损神经;70-90分贝,很吵、神经细胞受到破坏;90-100分贝,吵闹加剧、听力受损。在一些实施例中,可以根据环境声音的分贝值和第一对应关系表,得到环境声音的环境音等级;第一对应关系表包含分贝值与环境音等级的对应关系。例如,第一对应关系表可将环境音分级为D1、D2、D3,在一实施例中,第一对应关系表内容如下:
环境音等级 分贝值
D1 0-30分贝
D2 30-60分贝
D3 60-100分贝
表1:第一对应关系表
其中,D取自decibel(分贝)的首字母,D1、D2、D3分别代表不同强度的环境音等级,将环境声音对应的环境音等级作为环境音参数。分析环境声音得到环境声音的分贝值,通过查询第一对应关系表,即可获得对应的环境音参数。
S130,根据环境音参数,调整柔性屏幕的弯折参数,以调整音频播放效果。
在一些实施例中,可以由柔性屏控制芯片接收到中央处理器的控制信号,并根据控制信号驱动柔性屏幕进行弯折。在存储器中预置有柔性屏幕弯折参数C,其中,C取自curve(弯曲)的首字母,弯折参数包括但不限于下列子参数:柔性屏幕弯折变化的区域、柔性屏幕弯折的曲率、柔性屏幕弯折变化的角度、柔性屏幕弯折变化的弧度、柔性屏幕弯折变化的方向。
在一些实施例中,可根据环境音参数和第二对应关系表,调整柔性屏幕的弯折参数;第二对应关系 表包含环境音参数与弯折参数的对应关系。
例如,第二对应关系表可将弯折参数分为2个档位:弯折C1、弯折C2。其中:
弯折C1:参照图4a,柔性屏幕两端向内弯折,调节弯折参数C中的各子参数,使得柔性屏幕形成一个半开放式音腔;
弯折C2:参照图4b,如弯折C1档位形成一个半开放式音腔后,再加深柔性屏幕弯折的曲率,使得柔性屏幕形成闭合式音腔。
在一实施例中,第二对应关系表的内容如下:
环境音参数 弯折参数
D1 C1
D2 C2
D3 C1
表2:第二对应关系表
可根据环境音参数和第二对应关系表,获得对应的弯折参数,可以由中央处理器发出对应控制信号到柔性屏控制芯片,由柔性屏控制芯片根据控制信号驱动柔性屏幕进行对应弯折。
在一些实施例中,如图4a和图4b所示,终端具有第二声音传感器270,扬声器260设置在终端的一端,第二声音传感器270设置在终端的另一端,可利用柔性屏控制芯片驱动柔性屏幕250两端进行弯折形成音腔280,同时使得设置在终端两端的第二声音传感器270和扬声器260随着弯折彼此靠近,并通过第二声音传感器270接收扬声器260发出的声音信号,根据声音信号确定柔性屏幕250的弯折状态。
示例1A中,利用回声原理,在柔性屏幕弯折形成的音腔中,不但有扬声器发出的音频还有声音遇到柔性屏壁(柔性屏幕)后反射和折射形成的回声,回声和原声混合在一起,使原声加强并形成混音效果,使得音频文件播放时的音质效果更佳。另外,使用柔性屏壳体弯折可以利用弯折形成的音腔降低音频在开放空间播放时的音质损耗,改善超高频声音给收听者带来的不适感。例如,可通过将柔性屏幕弯折为半封闭音腔(弯折C1)可以达到增加反射音,损耗掉刺耳的高频及超高频声音,使音色更柔和,增加直达音的收听效果,使音质更清晰;可通过将柔性屏幕弯折为封闭音腔(弯折C2)可以达到增加混响功能,对声音起到修饰效果。
示例1B
在示例1B中,终端具有中央处理器、存储器、柔性屏控制芯片、第一声音传感器、扬声器、柔性屏幕和设置在柔性屏幕下方的内置音腔。其中,扬声器用于播放音频;内置音腔用于使得柔性屏幕震动时可发出声音。
参照图5,示例1B的音频播放方法包括步骤:
S210,采集环境声音;
S220,分析环境声音得到对应的环境音参数;
S230,根据环境音参数,调整柔性屏幕的震动参数,以调整音频播放效果。
其中,步骤S210与示例1A中的步骤S110一致,可参照上述步骤S110的相关说明;步骤S220与示例1A中的步骤S120一致,可参照上述步骤S120的相关说明;在此不做赘述。
步骤S230中,根据环境音参数,调整柔性屏幕的震动参数,以调整音频播放效果。
在一些实施例中,可以由柔性屏控制芯片接收到中央处理器的控制信号,并根据控制信号驱动柔性屏幕进行震动。例如,在播放音频文件时,中央处理器将环境音参数和震动参数进行匹配:首先,从存储器中获取每个待输出音符与屏幕震动频率的对应关系;其次,根据不同环境音参数和第三关系对应表确定对应的震动参数;再次,由中央处理器发送对应控制信号给柔性屏控制芯片,从而驱动柔性屏幕震动。在存储器中预置有柔性屏幕震动参数V,其中,V取自Vibrate(震动)的首字母,柔性屏幕震动参数V包括但不限于:柔性屏幕震动幅度、音频音符与屏幕震动频率的对应关系。
在一些实施例中,可根据环境音参数和第三对应关系表,调整柔性屏幕的震动参数;第三对应关系表包含环境音参数与震动参数的对应关系。
例如,第三对应关系表可将柔性屏幕震动参数分为4档:无震动V0、震动V1、震动V2、震动V3。其中,
无震动V0:柔性屏幕静止不震动状态;
震动V1为音频音符在低音Do--高音Si之间的屏幕震动幅度,为最低震动幅度(基础震动幅度);
震动V2为震动V1的震动幅度的两倍,即V2=V1×2;
震动V3为震动V1的震动幅度的三倍,即V3=V1×3;
在一实施例中,第三对应关系表的内容如下:
环境音参数 震动参数
D1 V1
D2 V2
D3 V3
表3:第三对应关系表
可根据环境音参数和第三对应关系表,获得对应的震动参数,可以由中央处理器发出对应控制信号到柔性屏控制芯片,由柔性屏控制芯片根据控制信号驱动柔性屏幕进行对应震动。
示例1B中,通过柔性屏幕震动可以达到增强音量的效果,使柔性屏幕可根据音频音符有规律的颤动,增大音频播放的音量,使音频文件中的较弱元素可以更好的表现;并通过增加了震动幅度级别设置,在不同环境声音时使用不同的震动幅度,可以实现不同倍数地增加音量,从而实现调整音频播放效果,进而提升音频收听效果。另外,通过震动的方式还可以增加低音的表现效果,通过扬声器和屏幕震动两种发声方式,可以形成立体声效果。
示例1C
在示例1C中,终端具有中央处理器、存储器、柔性屏控制芯片、柔性屏幕、扬声器。其中,扬声器用于播放音频。
参照图6,示例1C的音频播放方法包括步骤:
S310,采集待播放音频数据;
S320,分析待播放音频数据得到对应的音频参数;
S330,根据音频参数,调整柔性屏幕的弯折参数,以调整音频播放效果。
参照图7,在一些实施例中,步骤S310包括以下子步骤:
S311,获取音频播放软件的音频播放触发信号;
S312,根据音频播放触发信号,利用存储器采集待播放音频数据。
步骤S311中,可以通过终端的输入装置获取用户操作,通过解析用户操作得到音频播放软件的音频播放触发信号;也可以由终端的中央处理器直接读取到音频播放软件的音频播放状态,生成音频播放触发信号。音频播放触发信号可以是在音频播放软件播放音频之前产生,可以是在音频播放软件开始播放音频时产生,也可以是在音频播放软件播放音频中产生。
步骤S312中,根据音频播放触发信号,可以将音频文件(待播放音频数据)存储在临时存储器中,以供后续由中央处理器从临时存储器读取音频文件,并快速分析该音频文件的音频参数。
步骤S320,分析待播放音频数据得到对应的音频参数。
在一些实施例中,音频参数包括频谱分布参数和振动幅度参数,参照图8,步骤S320包括子步骤:
S321,分析待播放音频数据得到待播放音频数据的频谱;
S322,根据待播放音频数据的频谱判断得到的频谱分布参数和振动幅度参数。
步骤S321中,参照图9a至图9c的频谱图,在频谱图中,横坐标和纵坐标分别表示音频数据的频率和振幅关系,即信号频率和能量的关系。
步骤S322中,可由中央处理器先快速提取出现频率较高(音符出现比较集中)且振幅较大的音频数据,分析其在该频谱图中的分布区域。
常用音频在频谱中的分布为:20-40Hz超低频;40-80Hz低频;80-160Hz中低频;160-1280Hz中频;1280-2560Hz中高频;2560-5120Hz高频;5120-20000Hz超高频。
在一些实施例中,可将频谱按照其所在频率分布区域分为三种S1、S2、S3:
S1:超低频-中低频20-160Hz;
S2:中低频-中高频160-2560Hz;
S3:高频-超高频2560-20KHz;
其中,S取自spectrum(频谱)的首字母。音频参数包括频谱分布参数和振动幅度参数。可通过快速提取出现频率较高(音符出现比较集中)且振幅较大的音频数据,分析其在该频谱图中的分布区域,可到待播放音频的频谱分布参数和振动幅度参数。分析过程如下:
参照图9a,如果出现频率较高且振幅较大的音频数据,频谱分布参数S集中出现在S1、S2、S3中的某一频段区域,或出现在S1+S2频谱分布区域时,即频谱分布参数S≤S1+S2,且平均振幅(振幅参数A)不超过40dB(A<40dB),则判断此音频为古典乐、儿歌、乡村、民谣等音乐风格,此类音乐风格音频元素较少,节奏较舒缓。
参照图9b,如果音频参数在频谱图中分布的频率范围较广,例如,频谱分布参数S在频谱图中的区域为S=S1+S2+S3;且平均振幅(振幅参数A)不超过40dB(A<40dB),则判断此音乐为流行乐、民谣等音乐风格,此类音乐风格音频较广、比较舒缓。
参照图9c,如果音频数据在频谱图中显示的频率范围较广且振幅参数A较大,例如,频谱分布参数S分布为S=S1+S2+S3,平均振幅(振幅参数A)超过40dB(A>40dB),判断此音乐为交响乐、摇滚乐、爵士乐或金属乐等音乐风格,此类音乐风格能量较大并且音频元素较多。
综上,通过读取待播放音频文件频率较高且振幅较大的音频参数在频谱图中的分布,将现有音乐风格对比存储器中预置的频谱分布方式,在一些实施例中,不同音乐风格和音频文件的音频参数对应关系如下表:
Figure PCTCN2020098519-appb-000001
表4:音乐风格与音频参数对应表
步骤S330,根据音频参数,调整柔性屏幕的弯折参数,以调整音频播放效果。
在一些实施例中,可根据音频参数和第四对应关系表,调整柔性屏幕的弯折参数;第四对应关系表包含音频参数与弯折参数的对应关系。对于弯折参数的相关说明可参照示例1A步骤S130中关于弯折参数的相关说明,在此不做赘述。
在一实施例中,第四对应关系表的内容如下:
频谱分布参数S 振幅参数A 弯折参数
S≤S1+S2 A<40dB C1
S=S1+S2+S3 A<40dB C1
S=S1+S2+S3 A>40dB C2
表5:第四对应关系表
可根据音频参数和第四对应关系表,获得对应的弯折参数,可以由中央处理器发出对应控制信号到柔性屏控制芯片,由柔性屏控制芯片根据控制信号驱动柔性屏幕进行对应弯折。
示例1C中,利用回声原理,在柔性屏幕弯折形成的音腔中,不但有扬声器发出的音频还有声音遇到柔性屏壁(柔性屏幕)后反射和折射形成的回声,回声和原声混合在一起,使原声加强并形成混音效果,使得音频文件播放时的音质效果更佳。另外,使用柔性屏壳体弯折可以利用弯折形成的音腔降低音频在开放空间播放时的音质损耗,改善超高频声音给收听者带来的不适感。例如,可通过将柔性屏幕弯折为半封闭音腔(弯折C1)可以达到增加反射音,损耗掉刺耳的高频及超高频声音,使音色更柔和,增加直达音的收听效果,使音质更清晰;可通过将柔性屏幕弯折为封闭音腔(弯折C2)可以达到增加混响功能,对声音起到修饰效果。
在一些实施例中,如图4a和图4b所示,终端具有第二声音传感器270,扬声器260设置在终端的一端,第二声音传感器270设置在终端的另一端,可利用柔性屏控制芯片驱动柔性屏幕250两端进行弯折形成音腔280,同时使得设置在终端两端的第二声音传感器270和扬声器260随着弯折彼此靠近,并通过第二声音传感器270接收扬声器260发出的声音信号,根据声音信号确定柔性屏幕250的弯折状态。
示例1D
在示例1D中,终端具有中央处理器、存储器、柔性屏控制芯片、扬声器、柔性屏幕和设置在柔性屏幕下方的内置音腔。其中,扬声器用于播放音频;内置音腔用于使得柔性屏幕震动时可发出声音。
参照图10,示例1D的音频播放方法包括步骤:
S410,采集待播放音频数据;
S420,分析待播放音频数据得到对应的音频参数;
S430,根据音频参数,调整柔性屏幕的震动参数,以调整音频播放效果。
其中,步骤S410与示例1C中的步骤S310一致,可参照上述步骤S310的相关说明;步骤S420与示例1C中的步骤S320一致,可参照上述步骤S320的相关说明;在此不做赘述。
在一些实施例中,根据音频参数和第五对应关系表,调整柔性屏幕的震动参数;第五对应关系表包含音频参数与震动参数的对应关系。
在一实施例中,第五对应关系表的内容如下:
频谱分布参数S 振幅参数A 震动参数
S≤S1+S2 A<40dB V1
S=S1+S2+S3 A<40dB V2
S=S1+S2+S3 A>40dB V3
表6:第五对应关系表
在一些实施例中,可根据音频参数和第五对应关系表,获得对应的震动参数,可以由中央处理器发出对应控制信号到柔性屏控制芯片,由柔性屏控制芯片根据控制信号驱动柔性屏幕进行对应震动。
示例1D中,通过柔性屏幕震动可以达到增强音量的效果,使柔性屏幕可根据音频音符有规律的颤动,增大音频播放的音量,使音频文件中的较弱元素可以更好的表现;并通过增加了震动幅度级别设置,在不同音频参数时使用不同的震动幅度,可以实现不同倍数地增加音量,从而实现调整音频播放效果,进而提升音频收听效果。另外,通过震动的方式还可以增加低音的表现效果,通过扬声器和屏幕震动两种发声方式,可以形成立体声效果。
示例1E
在示例1E中,终端具有中央处理器、存储器、柔性屏控制芯片、第一声音传感器、柔性屏幕、扬声器。其中,扬声器用于播放音频。
参照图11,示例1E的音频播放方法包括步骤:
S510,采集环境声音和待播放音频数据;
S520,分析环境声音得到对应的环境音参数和分析待播放音频数据得到对应的音频参数;
S530,根据环境音参数和音频参数,调整柔性屏幕的弯折参数,以调整音频播放效果。
其中,步骤S510可采用如示例1A中步骤S110的方法采集环境声音,采用如示例1C中步骤S310的方法采集待播放音频数据,可分别参照上述步骤S110和步骤S310的相关说明;步骤S520可采用如示例1A中步骤S120的方法得到环境声音参数,采用如示例1C中步骤S320的方法得到音频参数,可分别参照上述步骤S120和步骤S320的相关说明;在此不做赘述。
在一些实施例中,可根据环境音参数、音频参数和第六对应关系表,调整柔性屏幕的弯折参数;第六对应关系表包含环境音参数、音频参数与弯折参数的对应关系。
在一实施例中,第六对应关系表的内容如下:
Figure PCTCN2020098519-appb-000002
Figure PCTCN2020098519-appb-000003
表7:第六对应关系表
可根据环境音参数、音频参数和第六对应关系表,获得对应的弯折参数,可以由中央处理器发出对应控制信号到柔性屏控制芯片,由柔性屏控制芯片根据控制信号驱动柔性屏幕进行对应弯折。
示例1E中,利用回声原理,在柔性屏幕弯折形成的音腔中,不但有扬声器发出的音频还有声音遇到柔性屏壁(柔性屏幕)后反射和折射形成的回声,回声和原声混合在一起,使原声加强并形成混音效果,使得音频文件播放时的音质效果更佳。另外,使用柔性屏壳体弯折可以利用弯折形成的音腔降低音频在开放空间播放时的音质损耗,改善超高频声音给收听者带来的不适感。例如,可通过将柔性屏幕弯折为半封闭音腔(弯折C1)可以达到增加反射音,损耗掉刺耳的高频及超高频声音,使音色更柔和,增加直达音的收听效果,使音质更清晰;可通过将柔性屏幕弯折为封闭音腔(弯折C2)可以达到增加混响功能,对声音起到修饰效果。
在一些实施例中,如图4a和图4b所示,终端具有第二声音传感器270,扬声器260设置在终端的一端,第二声音传感器270设置在终端的另一端,可利用柔性屏控制芯片驱动柔性屏幕250两端进行弯折形成音腔280,同时使得设置在终端两端的第二声音传感器270和扬声器260随着弯折彼此靠近,并通过第二声音传感器270接收扬声器260发出的声音信号,根据声音信号确定柔性屏幕250的弯折状态。
示例1F
在示例1F中,终端具有中央处理器、存储器、柔性屏控制芯片、第一声音传感器、扬声器、柔性屏幕和设置在柔性屏幕下方的内置音腔。其中,扬声器用于播放音频;内置音腔用于使得柔性屏幕震动时可发出声音。
参照图12,示例1F的音频播放方法包括步骤:
S610,采集环境声音和待播放音频数据;
S620,分析环境声音得到对应的环境音参数和分析待播放音频数据得到对应的音频参数;
S630,根据环境音参数和音频参数,调整柔性屏幕的震动参数,以调整音频播放效果。
其中,步骤S610可采用如示例1A中步骤S110的方法采集环境声音,采用如示例1C中步骤S310的方法采集待播放音频数据,可分别参照上述步骤S110和步骤S310的相关说明;步骤S620可采用如示例1A中步骤S120的方法得到环境声音参数,采用如示例1C中步骤S320的方法得到音频参数,可分别参照上述步骤S120和步骤S320的相关说明;在此不做赘述。
在一些实施例中,可根据环境音参数、音频参数和第七对应关系表,调整柔性屏幕的震动参数;第七对应关系表包含环境音参数、音频参数与震动参数的对应关系。
在一实施例中,第七对应关系表的内容如下:
Figure PCTCN2020098519-appb-000004
Figure PCTCN2020098519-appb-000005
表8:第七对应关系表
可根据环境音参数、音频参数和第七对应关系表,获得对应的震动参数,可以由中央处理器发出对应控制信号到柔性屏控制芯片,由柔性屏控制芯片根据控制信号驱动柔性屏幕进行对应震动。
示例1F中,通过柔性屏幕震动可以达到增强音量的效果,使柔性屏幕可根据音频音符有规律的颤动,增大音频播放的音量,使音频文件中的较弱元素可以更好的表现;并通过增加了震动幅度级别设置,在不同环境音参数和不同音频参数时使用不同的震动幅度,可以实现不同倍数地增加音量,从而实现调整音频播放效果,进而提升音频收听效果。另外,通过震动的方式还可以增加低音的表现效果,通过扬声器和屏幕震动两种发声方式,可以形成立体声效果。
示例1G
在示例1G中,终端具有中央处理器、存储器、柔性屏控制芯片、第一声音传感器、扬声器、柔性屏幕和设置在柔性屏幕下方的内置音腔。其中,扬声器用于播放音频;内置音腔用于使得柔性屏幕震动时可发出声音。
参照图13,示例1G的音频播放方法包括步骤:
S710,采集环境声音;
S720,分析环境声音得到对应的环境音参数;
S730,根据环境音参数,调整柔性屏幕的弯折参数和震动参数,以调整音频播放效果。
其中,步骤S710与示例1A中的步骤S110一致,可参照上述步骤S110的相关说明;步骤S720与示例1A中的步骤S120一致,可参照上述步骤S120的相关说明;在此不做赘述。
在一些实施例中,根据环境音参数和第八对应关系表,调整柔性屏幕的弯折参数和震动参数;第八对应关系表包含环境音参数与弯折参数、震动参数的对应关系。
在一实施例中,第八对应关系表的内容如下:
环境音参数 震动参数 弯折参数
D1 V1 C1
D2 V2 C2
D3 V3 C1
表9:第八对应关系表
可根据环境音参数和第八对应关系表,获得对应的弯折参数和震动参数,可以由中央处理器发出对应控制信号到柔性屏控制芯片,由柔性屏控制芯片根据控制信号驱动柔性屏幕进行对应弯折和震动。
在一些实施例中,如图4a和图4b所示,终端具有第二声音传感器270,扬声器260设置在终端的一端,第二声音传感器270设置在终端的另一端,可利用柔性屏控制芯片驱动柔性屏幕250两端进行弯折形成音腔280,同时使得设置在终端两端的第二声音传感器270和扬声器260随着弯折彼此靠近,并通过第二声音传感器270接收扬声器260发出的声音信号,根据声音信号确定柔性屏幕250的弯折状态。
示例1G中,一方面通过柔性屏壳体弯折为封闭音腔可以达到增加混响功能,对声音起到修饰效果;另一方面,本申请通过柔性屏幕震动可以达到增强音量的效果,使音频文件中的较弱元素可以更好的表 现。另外,本示例还通过在麦克风中预置第二声音传感器,可以检测当前播放环境的变化,从而驱动柔性屏幕震动幅度和弯折角度变化,以达到在不同环境时可以智能的调整柔性屏终端,使音频文件在当前环境下的播放效果更佳。
本示例通过检测环境变化,分析对比环境音参数,结合柔性屏幕特有的屏幕可震动可弯折特性,由中央处理器通过检测环境的变化,进而由柔性屏控制芯片驱动屏幕震动增加音量、驱动柔性屏壳体弯折形成音腔,从而达到改善音质、增大音量、增强混响,乃至增强立体声的效果。
示例1H
在示例1H中,终端具有中央处理器、存储器、柔性屏控制芯片、扬声器、柔性屏幕和设置在柔性屏幕下方的内置音腔。其中,扬声器用于播放音频;内置音腔用于使得柔性屏幕震动时可发出声音。
参照图14,示例1H的音频播放方法包括步骤:
S810,采集待播放音频数据;
S820,分析待播放音频数据得到对应的音频参数;
S830,根据音频参数,调整柔性屏幕的弯折参数和震动参数,以调整音频播放效果。
其中,步骤S810与示例1C中的步骤S310一致,可参照上述步骤S310的相关说明;步骤S820与示例1C中的步骤S320一致,可参照上述步骤S320的相关说明;在此不做赘述。
在一些实施例中,根据音频参数和第九对应关系表,调整柔性屏幕的弯折参数和震动参数;第九对应关系表包含音频参数与弯折参数、震动参数的对应关系。
在一实施例中,第九对应关系表的内容如下:
Figure PCTCN2020098519-appb-000006
表10:第九对应关系表
可根据音频参数和第九对应关系表,获得对应的弯折参数和震动参数,可以由中央处理器发出对应控制信号到柔性屏控制芯片,由柔性屏控制芯片根据控制信号驱动柔性屏幕进行对应弯折和震动。
在一些实施例中,如图4a和图4b所示,终端具有第二声音传感器270,扬声器260设置在终端的一端,第二声音传感器270设置在终端的另一端,可利用柔性屏控制芯片驱动柔性屏幕250两端进行弯折形成音腔280,同时使得设置在终端两端的第二声音传感器270和扬声器260随着弯折彼此靠近,并通过第二声音传感器270接收扬声器260发出的声音信号,根据声音信号确定柔性屏幕250的弯折状态。
示例1H中,一方面通过柔性屏壳体弯折为封闭音腔可以达到增加混响功能,对声音起到修饰效果;另一方面,本申请通过柔性屏幕震动可以达到增强音量的效果,使音频文件中的较弱元素可以更好的表现。另外,本示例还通过在麦克风中预置第二声音传感器,可以检测待输出音频数据的变化,从而驱动柔性屏幕震动幅度和弯折角度变化,以达到在播放不同音频数据时可以智能的调整柔性屏终端,使音频数据的播放效果更佳。
本示例通过检测待播放音频参数变化,结合柔性屏幕特有的屏幕可震动可弯折特性,由中央处理器通过检测待播放音频的变化,进而由柔性屏控制芯片驱动屏幕震动增加音量、驱动柔性屏壳体弯折形成音腔,从而达到改善音质、增大音量、增强混响,乃至增强立体声的效果。
示例1I
在示例1I中,终端具有中央处理器、存储器、柔性屏控制芯片、第一声音传感器、扬声器、柔性屏幕和设置在柔性屏幕下方的内置音腔。其中,扬声器用于播放音频;内置音腔用于使得柔性屏幕震动时可发出声音。
参照图15,示例1I的音频播放方法包括步骤:
S910,采集环境声音和待播放音频数据;
S920,分析环境声音得到对应的环境音参数和分析待播放音频数据得到对应的音频参数;
S930,根据环境音参数和音频参数,调整柔性屏幕的弯折参数和震动参数,以调整音频播放效果。
其中,步骤S910可采用如示例1A中步骤S110的方法采集环境声音,采用如示例1C中步骤S310的方法采集待播放音频数据,可分别参照上述步骤S110和步骤S310的相关说明;步骤S920可采用如示例1A中步骤S120的方法得到环境声音参数,采用如示例1C中步骤S320的方法得到音频参数,可分别参照上述步骤S120和步骤S320的相关说明;在此不做赘述。
在一些实施例中,根据环境音参数、音频参数和第十对应关系表,调整柔性屏幕的弯折参数和震动参数;第十对应关系表包含环境音参数、音频参数与柔性屏幕弯折参数、震动参数的对应关系。
在一实施例中,第十对应关系表的内容如下:
Figure PCTCN2020098519-appb-000007
表11:第十对应关系表
可根据环境音参数、音频参数和第十对应关系表,获得对应的弯折参数和震动参数,可以由中央处理器发出对应控制信号到柔性屏控制芯片,由柔性屏控制芯片根据控制信号驱动柔性屏幕进行对应弯折和震动。
当环境音参数在0-30分贝之间(D1),读取到的输出音频参数为:频谱分布参数S≤S1+S2,振幅参数A<40dB,即在安静环境下播放舒缓音乐时,柔性屏控制芯片驱动柔性屏幕震动为V1,柔性屏壳体弯折参数为C1。实现在半封闭的音腔中震动柔性屏幕,可增加音量至10%,同时增加反射音,损耗掉刺耳的高频及超高频声音,使音色更柔和,增加直达音的收听效果,使音质更清晰。
当环境音参数在0-30分贝之间(D1),读取到的输出音频参数为:频谱分布参数S=S1+S2+S3,振幅参数A<40dB,即在安静环境下播放流行音乐,柔性屏控制芯片驱动柔性屏幕震动为V2,柔性屏壳体弯折参数为C1,实现在封闭的音腔中震动柔性屏幕,可增加音量至30%,同时增加混响,对声音起到修饰作用。
当环境音参数在0-30分贝之间(D1),读取到的输出音频参数为:频谱分布参数S=S1+S2+S3,振幅参数A>40dB,即在安静环境下播放摇滚音乐,柔性屏控制芯片驱动柔性屏幕震动为V3,柔性屏壳体弯折参数为C2,实现在封闭的音腔中震动柔性屏幕,可增加音量至50%,同时增加混响,对声音起 到修饰作用。
当环境音参数在30-60分贝之间(D2),读取到的输出音频参数为:频谱分布参数S≤S1+S2,振幅参数A<40dB,即在普通环境下播放舒缓音乐时,柔性屏控制芯片驱动柔性屏幕震动为V2,柔性屏壳体弯折参数为C1。实现在半封闭的音腔中震动柔性屏幕,可增加音量至30%,从而遮盖住环境噪音,同时增加反射音和直达音,增强收听效果。
当环境音参数在30-60分贝之间(D2),读取到的输出音频参数为:频谱分布参数S=S1+S2+S3,振幅参数A<40dB,即在普通环境下播放流行音乐时,柔性屏控制芯片驱动柔性屏幕震动为V2,柔性屏壳体弯折参数为C1。实现在半封闭的音腔中震动柔性屏幕,可增加音量至30%,从而遮盖住环境噪音,同时增加反射音和直达音,增强收听效果。
当环境音参数在30-60分贝之间(D2),读取到的输出音频参数为:频谱分布参数S=S1+S2+S3,振幅参数A>40dB,即在普通环境下播放摇滚音乐时,柔性屏控制芯片驱动柔性屏幕震动为V3,柔性屏壳体弯折参数为C2。实现在封闭的音腔中震动柔性屏幕,可增加音量至50%,同时增加低音效果和混响效果,增强律动节奏感。
当环境音参数在60-100分贝之间(D3),y由于此环境下用终端设备的扬声器播放任何频段的音频文件,都很难听清楚,都会被环境噪音遮盖。因此在此环境下输出音频文件时,都采用柔性屏幕震动V3,柔性屏壳体弯折为C1的方式,用以增加音量至50%,利用半封闭式音腔增加直达音收听效果,使音频收听更清晰。
在一些实施例中,当检测到用户将柔性屏幕平铺的操作信号时,对应的震动参数为无震动V0。
在一些实施例中,如图4a和图4b所示,终端具有第二声音传感器270,扬声器260设置在终端的一端,第二声音传感器270设置在终端的另一端,可利用柔性屏控制芯片驱动柔性屏幕250两端进行弯折形成音腔280,同时使得设置在终端两端的第二声音传感器270和扬声器260随着弯折彼此靠近,并通过第二声音传感器270接收扬声器260发出的声音信号,根据声音信号确定柔性屏幕250的弯折状态。
特别地,当用户在吵闹的环境播放频谱范围较窄、震动能量较小的音频文件时,柔性屏屏幕振动和弯折方式只能增加音量和低音表现,音频文件中的细致元素和舒缓节奏会在吵闹的环境中有严重损耗,及环境噪音会遮盖住细致元素的,导致舒缓的音频文件的播放效果不佳,采用示例1I的方法可以很好的解决该问题。
示例1I中,一方面通过柔性屏壳体弯折为封闭音腔可以达到增加混响功能,对声音起到修饰效果;另一方面,本申请通过柔性屏幕震动可以达到增强音量的效果,使音频文件中的较弱元素可以更好的表现。另外,本示例还通过在麦克风中预置第二声音传感器,可以检测当前播放环境和待输出音频文件的变化,从而驱动柔性屏幕震动幅度和弯折角度变化,以达到在不同环境、播放不同音频文件时可以智能的调整柔性屏终端,使音频文件在当前环境下的播放效果更佳。
本示例通过检测环境变化,分析对比环境音参数和待播放音频参数,结合柔性屏幕特有的屏幕可震动可弯折特性,由中央处理器通过检测环境和待播放音频的变化,进而由柔性屏控制芯片驱动屏幕震动增加音量、驱动柔性屏壳体弯折形成音腔,从而达到改善音质、增大音量、增强混响,乃至增强立体声的效果。
示例1J
参照图16,相对于示例1A或示例1B或示例1E或示例1F或示例1G或示例1I,示例1J的音频播放方法还包括步骤:
S1031,监测环境音参数是否发生变化;
S1032,当环境音参数发生变化时,对应根据环境音参数,调整柔性屏幕的弯折参数和/或震动参数。
当环境音参数发生跨级别的变化,中央处理器根据新获取到的环境音频参数驱动柔性屏控制芯片改变柔性屏幕震动参数或弯折参数,从而达到在不同环境播放音频文件时都能有较好的收听效果。
示例1K
参照图17,相对于示例1C或示例1D或示例1E或示例1F或示例1H或示例1I,示例1K的音频播放方法还包括步骤:
S1131,监测音频参数是否发生变化;
S1132,当音频参数发生变化时,对应根据音频参数,调整柔性屏幕的弯折参数和/或震动参数。
当输出音频数据的频谱分布参数或震动参数发生较大变化时,中央处理器根据新获取到的音频参数驱动柔性屏控制芯片改变柔性屏幕震动参数或弯折参数,从而达到播放不同类型的音频文件时都能有较好的收听效果。
示例1L
参照图18,相对于示例1E或示例1F或示例1I,示例1L的音频播放方法还包括步骤:
S1231,监测环境音参数和音频参数是否发生变化;
S1232,当环境音参数和音频参数发生变化时,对应根据环境音参数和音频参数,调整柔性屏幕的弯折参数和震动参数。
当环境音参数发生跨级别的变化和输出音频数据的频谱分布参数或震动参数发生较大变化时,中央处理器根据新获取到的新的环境音频参数和输出音频参数驱动柔性屏控制芯片改变柔性屏幕震动参数或弯折参数,从而达到在不同环境播放不同类型的音频文件时都能有较好的收听效果。
示例1M
相对于示例1B或示例1D或示例1F或示例1G或示例1H或示例1I,示例1K的终端具有至少两个相对设置的柔性屏幕,柔性屏幕下方设置有音腔。
在一些实施例中,在终端中预置至少两个相对柔性屏幕设置的音腔。这种方式使得柔性屏控制芯片可以同时驱动至少两个相对设置的柔性屏幕发声,从而达到立体声的效果。
第二方面,本申请实施例提供了终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现:如第一方面的音频播放方法。
需要说明的是,终端可以为移动终端设备,也可以为非移动终端设备。移动终端设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载终端设备、可穿戴设备、超级移动个人计算机、上网本或者个人数字助理等;非移动终端设备可以为个人计算机、电视机、柜员机或者自助机等。终端的输入装置可以是触摸屏、鼠标、键盘等常见输入装置,也可以是视觉传感器、声音传感器等智能输入装置。对应的,可通过解析用户对触摸屏、鼠标、键盘等输入装置的操作,得到相应的用户操作指令;也可利用图像识别、语音识别等算法解析图像、声音等信息以得到相应的用户操作指令。用户操作可以是对终端显示界面的触摸、点击操作。
在一些实施例中,终端具有第一声音传感器、第二声音传感器和扬声器。其中,第一声音传感器用于采集环境声音;第二声音传感器用于接收扬声器发出的声音信号,以便根据声音信号确定柔性屏幕的弯折状态。在一些实施例中,如图4a和图4b所示,终端具有第二声音传感器270,扬声器260设置在终端的一端,第二声音传感器270设置在终端的另一端,可利用柔性屏控制芯片驱动柔性屏幕250两端进行弯折形成音腔280,同时使得设置在终端两端的第二声音传感器270和扬声器260随着弯折彼此靠近,并通过第二声音传感器270接收扬声器260发出的声音信号,根据声音信号确定柔性屏幕250的弯折状态。
在一些实施例中,第一声音传感器和第二声音传感器为两个独立的声音传感器,第一声音传感器和扬声器设置在终端的底端,第一声音传感器用于接收语音信息和采集环境声音,第二声音传感器设置在终端的顶端,第二声音传感器用于接收扬声器发出的声音信号;在另一些实施例中,第一声音传感器和第二声音传感器为两个独立的声音传感器,第一声音传感器和扬声器设置在终端的底端,第一声音传感器用于接收语音信息,第二声音传感器设置在终端的顶端,第二声音传感器用于采集环境声音和接收扬声器发出的声音信号;在另一些实施例中,第二声音传感器和第一声音传感器为同一声音传感器,该声音传感器设置在扬声器的对端,该声音传感器同时用于采集环境声音和接收扬声器发出的声音信号。
示例2A
示例2A的终端可以是用于实施如第一方面中示例1A或示例1B或示例1E或示例1F或示例1G或示例1I或示例1J的音频播放方法的终端。
参照图19,在一些实施例中,终端具有中央处理器210、存储器220、柔性屏控制芯片230、第一声音传感器240、柔性屏幕250、扬声器260。中央处理器210与存储器220连接,柔性屏控制芯片230与中央处理器210连接,柔性屏控制芯片230的输出端与柔性屏幕250的输入端连接,第一声音传感器 240分别与存储器220和中央处理器210连接,中央处理器210的输出端与扬声器260连接。其中,扬声器260用于播放音频,柔性屏幕250可以是一个,也可以是多个。存储器220上存储有第一计算机程序,第一计算机程序可在中央处理器210上运行,中央处理器210执行第一计算机程序时实现如上述第一方面中示例1A或示例1B或示例1E或示例1F或示例1G或示例1I或示例1J的音频播放方法。
在一些实施例中,终端具有第二声音传感器270,第二声音传感器270与中央处理器210连接。扬声器260设置在终端的一端,第二声音传感器270设置在终端的另一端,可利用柔性屏控制芯片230驱动柔性屏幕250两端进行弯折形成音腔,同时使得设置在终端两端的第二声音传感器270和扬声器260随着弯折彼此靠近,并通过第二声音传感器270接收扬声器260发出的声音信号,根据声音信号确定柔性屏幕250的弯折状态。
示例2B
示例2B的终端可以是实施如第一方面中示例1C或示例1D或示例1E或示例1F或示例1H或示例1I或示例1K的音频播放方法的终端。
参照图20,在一些实施例中,终端具有中央处理器210、存储器220、柔性屏控制芯片230、第一声音传感器240、扬声器260、柔性屏幕250和设置在柔性屏幕250下方的内置音腔。中央处理器210与存储器220连接,柔性屏控制芯片230与中央处理器210连接,柔性屏控制芯片230的输出端与柔性屏幕250的输入端连接,第一声音传感器240分别与存储器220和中央处理器210连接,中央处理器210的输出端与扬声器260连接。其中,扬声器260用于播放音频;内置音腔用于使得柔性屏幕250震动时可发出声音。存储器220上存储有第二计算机程序,第二计算机程序可在中央处理器210上运行,中央处理器210执行第二计算机程序时实现如上述第一方面中示例1C或示例1D或示例1E或示例1F或示例1H或示例1I或示例1K的音频播放方法。
在一些实施例中,终端具有至少两个相对设置的柔性屏幕250,柔性屏幕250下方设置有音腔。在终端中预置至少两个相对柔性屏幕250设置的音腔。这种方式使得柔性屏控制芯片230可以同时驱动至少两个相对设置的柔性屏幕250发声,从而达到立体声的效果。
示例2C
示例2C的终端可以是实施如第一方面中示例A或示例1B或示例1C或示例1D或示例1E或示例1F或示例1G或示例1H或示例1I或示例1J或示例1K或示例1L或示例1M的音频播放方法的终端。
参照图19,在一些实施例中,终端具有中央处理器210、存储器220、柔性屏控制芯片230、第一声音传感器240、扬声器260、柔性屏幕250和设置在柔性屏幕250下方的内置音腔。中央处理器210与存储器220连接,柔性屏控制芯片230与中央处理器210连接,柔性屏控制芯片230的输出端与柔性屏幕250的输入端连接,第一声音传感器240分别与存储器220和中央处理器210连接,中央处理器210的输出端与扬声器260连接。其中,扬声器260用于播放音频;内置音腔用于使得柔性屏幕250震动时可发出声音。存储器220上存储有第三计算机程序,第三计算机程序可在中央处理器210上运行,中央处理器210执行第三计算机程序时实现如上述第一方面中示例A或示例1B或示例1C或示例1D或示例1E或示例1F或示例1G或示例1H或示例1I或示例1J或示例1K或示例1L或示例1M的音频播放方法。
在一些实施例中,终端具有第二声音传感器270,第二声音传感器270与中央处理器210连接。扬声器260设置在终端的一端,第二声音传感器270设置在终端的另一端,可利用柔性屏控制芯片230驱动柔性屏幕250两端进行弯折形成音腔,同时使得设置在终端两端的第二声音传感器270和扬声器260随着弯折彼此靠近,并通过第二声音传感器270接收扬声器260发出的声音信号,根据声音信号确定柔性屏幕250的弯折状态。
在一些实施例中,终端具有至少两个相对设置的柔性屏幕250,柔性屏幕250下方设置有音腔。在终端中预置至少两个相对柔性屏幕250设置的音腔。这种方式使得柔性屏控制芯片230可以同时驱动至少两个相对设置的柔性屏幕250发声,从而达到立体声的效果。
第三方面,本申请实施例提供了计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于:
执行第一方面的音频播放方法。
本申请实施例包括:根据所述环境音参数和/或所述音频参数,调整所述柔性屏幕的弯折参数和/或震动参数。根据本申请实施例提供的方案,能够实现根据播放音频的音频特性或环境声音,调整音频播放效果,从而提升音频收听效果。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的较佳实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (12)

  1. 音频播放方法,用于具有柔性屏幕和扬声器的终端,所述方法包括:
    采集环境声音和/或待播放音频数据;
    分析所述环境声音得到对应的环境音参数和/或分析所述待播放音频数据得到对应的音频参数;
    根据所述环境音参数和/或所述音频参数,调整所述柔性屏幕的弯折参数和/或震动参数,以调整音频播放效果。
  2. 根据权利要求1所述的方法,其中,所述环境音参数包括环境音等级;所述分析所述环境声音得到对应的环境音参数,包括:
    根据环境声音的分贝值和第一对应关系表,得到所述环境声音的环境音等级;所述第一对应关系表包含分贝值与环境音等级的对应关系。
  3. 根据权利要求1所述的方法,其中,所述音频参数包括频谱分布参数和振动幅度参数;所述分析所述待播放音频数据得到对应的音频参数,包括:
    根据所述待播放音频数据的频谱判断得到的频谱分布参数和振动幅度参数。
  4. 根据权利要求1所述的方法,其中,所述弯折参数包括以下参数的一种或多种:柔性屏幕弯折变化的区域、柔性屏幕弯折的曲率、柔性屏幕弯折变化的角度、柔性屏幕弯折变化的弧度、柔性屏幕弯折变化的方向。
  5. 根据权利要求1所述的方法,其中,所述震动参数为所述柔性屏幕震动的幅度参数。
  6. 根据权利要求1至5任一项所述的方法,其中,所述根据所述环境音参数和/或所述音频参数,调整所述柔性屏幕的弯折参数和/或震动参数,包括:
    根据所述环境音参数和第二对应关系表,调整所述柔性屏幕的弯折参数;所述第二对应关系表包含环境音参数与弯折参数的对应关系;
    或者,
    根据所述环境音参数和第三对应关系表,调整所述柔性屏幕的震动参数;所述第三对应关系表包含环境音参数与震动参数的对应关系;
    或者,
    根据所述音频参数和第四对应关系表,调整所述柔性屏幕的弯折参数;所述第四对应关系表包含音频参数与弯折参数的对应关系;
    或者,
    根据所述音频参数和第五对应关系表,调整所述柔性屏幕的震动参数;所述第五对应关系表包含音频参数与震动参数的对应关系;
    或者,
    根据所述环境音参数、所述音频参数和第六对应关系表,调整所述柔性屏幕的弯折参数;所述第六对应关系表包含环境音参数、音频参数与弯折参数的对应关系;
    或者,
    根据所述环境音参数、所述音频参数和第七对应关系表,调整所述柔性屏幕的震动参数;所述第七对应关系表包含环境音参数、音频参数与震动参数的对应关系;
    或者,
    根据所述环境音参数和第八对应关系表,调整所述柔性屏幕的弯折参数和震动参数;所述第八对应关系表包含环境音参数与弯折参数、震动参数的对应关系;
    或者,
    根据所述音频参数和第九对应关系表,调整所述柔性屏幕的弯折参数和震动参数;所述第九对应关系表包含音频参数与弯折参数、震动参数的对应关系;
    或者,
    根据所述环境音参数、所述音频参数和第十对应关系表,调整所述柔性屏幕的弯折参数和震动参数;所述第十对应关系表包含环境音参数、音频参数与柔性屏幕弯折参数、震动参数的对应关系。
  7. 根据权利要求1至5任一项所述的方法,其中,所述终端具有第一声音传感器和存储器;所述 采集环境声音和/或待播放音频数据,包括:
    获取音频播放软件的开启信号,根据所述开启信号,利用所述终端的第一声音传感器采集环境声音;
    获取音频播放软件的音频播放触发信号,根据所述音频播放触发信号,利用存储器采集待播放音频数据。
  8. 根据权利要求7所述的方法,其中,所述终端具有第二声音传感器,所述扬声器设置在终端的一端,所述第二声音传感器设置在终端的另一端,所述方法还包括:
    利用所述第二声音传感器接收所述扬声器发出的声音信号,根据所述声音信号确定柔性屏幕的弯折状态。
  9. 根据权利要求1所述的方法,还包括:
    监测所述环境音参数和/或音频参数是否发生变化;
    当所述环境音参数和/或音频参数发生变化时,对应根据所述环境音参数和/或所述音频参数,调整所述柔性屏幕的弯折参数和/或震动参数。
  10. 根据权利要求1、2、3、4、5、8或9所述的方法,其中,所述终端具有至少两个相对设置的柔性屏幕,所述柔性屏幕下方设置有音腔。
  11. 终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现:
    如权利要求1至10中任一项所述的音频播放方法。
  12. 计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于:
    执行权利要求1至10中任一项所述的音频播放方法。
PCT/CN2020/098519 2019-09-18 2020-06-28 音频播放方法、终端及存储介质 WO2021051926A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910881459.X 2019-09-18
CN201910881459.XA CN112532788B (zh) 2019-09-18 2019-09-18 音频播放方法、终端及存储介质

Publications (1)

Publication Number Publication Date
WO2021051926A1 true WO2021051926A1 (zh) 2021-03-25

Family

ID=74883950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098519 WO2021051926A1 (zh) 2019-09-18 2020-06-28 音频播放方法、终端及存储介质

Country Status (2)

Country Link
CN (1) CN112532788B (zh)
WO (1) WO2021051926A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11871194B2 (en) * 2021-09-21 2024-01-09 International Business Machines Corporation Learned rollable flexible device sound creation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140179380A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Method and apparatus for controlling audio signal in portable terminal
CN104469632A (zh) * 2014-11-28 2015-03-25 上海华勤通讯技术有限公司 一种发声方法及发声装置
CN108196777A (zh) * 2017-12-29 2018-06-22 努比亚技术有限公司 一种柔性屏应用方法、设备及计算机可读存储介质
CN109257504A (zh) * 2018-10-26 2019-01-22 维沃移动通信有限公司 一种音频处理方法及终端设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106020646A (zh) * 2016-05-23 2016-10-12 青岛海信移动通信技术股份有限公司 媒体音量调整方法、装置和终端设备
CN108089809A (zh) * 2017-11-29 2018-05-29 努比亚技术有限公司 一种音乐播放控制方法、终端及计算机可读存储介质
CN108319445B (zh) * 2018-02-02 2020-05-22 维沃移动通信有限公司 一种音频播放方法及移动终端
CN108647005A (zh) * 2018-05-15 2018-10-12 努比亚技术有限公司 音频播放方法、移动终端及计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140179380A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Method and apparatus for controlling audio signal in portable terminal
CN104469632A (zh) * 2014-11-28 2015-03-25 上海华勤通讯技术有限公司 一种发声方法及发声装置
CN108196777A (zh) * 2017-12-29 2018-06-22 努比亚技术有限公司 一种柔性屏应用方法、设备及计算机可读存储介质
CN109257504A (zh) * 2018-10-26 2019-01-22 维沃移动通信有限公司 一种音频处理方法及终端设备

Also Published As

Publication number Publication date
CN112532788B (zh) 2023-08-11
CN112532788A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
US10469971B2 (en) Augmented performance synchronization
US11251763B2 (en) Audio signal adjustment method, storage medium, and terminal
CN109256146B (zh) 音频检测方法、装置及存储介质
CN107509153B (zh) 声音播放器件的检测方法、装置、存储介质及终端
CN105632508B (zh) 音频处理方法及音频处理装置
CN109257682B (zh) 拾音调节方法、控制终端及计算机可读存储介质
US11096005B2 (en) Sound reproduction
CN107666638B (zh) 一种估计录音延迟的方法及终端设备
WO2019127112A1 (zh) 一种语音交互方法、装置和智能终端
WO2019033987A1 (zh) 提示方法、装置、存储介质及终端
CN103440862A (zh) 一种语音与音乐合成的方法、装置以及设备
EP3484183B1 (en) Location classification for intelligent personal assistant
CN113949955B (zh) 降噪处理方法、装置、电子设备、耳机及存储介质
TW201705122A (zh) 音訊處理系統及其音訊處理方法
WO2021051926A1 (zh) 音频播放方法、终端及存储介质
WO2022111381A1 (zh) 音频处理方法、电子设备和可读存储介质
WO2021082963A1 (zh) 一种电子设备及其播放控制方法
US11146870B2 (en) Method and apparatus for outputting audio data in flexible electronic device including plurality of speakers
CN116055982B (zh) 音频输出方法、设备及存储介质
WO2023040820A1 (zh) 音频播放方法、装置、计算机可读存储介质及电子设备
CN114095825A (zh) 模式切换方法、装置、音频播放设备及计算机可读介质
WO2021103262A1 (zh) 耳机的控制方法、耳机及可读存储介质
CN108882083B (zh) 信号处理方法及相关产品
TWI602442B (zh) 產生混合泛音之揚聲器及應用其之電子裝置
JP7223876B2 (ja) 受音ユニットの選択方法及び装置、端末、電子設備、コンピュータ読み取り可能な記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866443

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.08.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20866443

Country of ref document: EP

Kind code of ref document: A1