WO2021051305A1 - Methods and apparatus for calibrating new displays - Google Patents

Methods and apparatus for calibrating new displays Download PDF

Info

Publication number
WO2021051305A1
WO2021051305A1 PCT/CN2019/106416 CN2019106416W WO2021051305A1 WO 2021051305 A1 WO2021051305 A1 WO 2021051305A1 CN 2019106416 W CN2019106416 W CN 2019106416W WO 2021051305 A1 WO2021051305 A1 WO 2021051305A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
data
calibration data
database
calibration
Prior art date
Application number
PCT/CN2019/106416
Other languages
French (fr)
Inventor
Nan Zhang
Yongjun XU
Xinchao YANG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/106416 priority Critical patent/WO2021051305A1/en
Publication of WO2021051305A1 publication Critical patent/WO2021051305A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems

Definitions

  • the present disclosure relates generally to processing systems and, more particularly, to one or more techniques for display or graphics processing.
  • GPUs graphics processing unit
  • Such computing devices may include, for example, computer workstations, mobile phones such as so-called smartphones, embedded systems, personal computers, tablet computers, and video game consoles.
  • GPUs execute a graphics processing pipeline that includes one or more processing stages that operate together to execute graphics processing commands and output a frame.
  • a central processing unit (CPU) may control the operation of the GPU by issuing one or more graphics processing commands to the GPU.
  • Modern day CPUs are typically capable of concurrently executing multiple applications, each of which may need to utilize the GPU during execution.
  • a device that provides content for visual presentation on a display generally includes a GPU.
  • a GPU of a device is configured to perform the processes in a graphics processing pipeline.
  • graphics processing pipeline For the advent of wireless communication and smaller, handheld devices, there has developed an increased need for improved graphics processing.
  • the apparatus may be a display processor, a display processing unit (DPU) , a central processing unit (CPU) , a graphics processing unit (GPU) , or a digital signal processor (DSP) .
  • the apparatus can identify display data for a new display on a device.
  • the apparatus can also determine whether the display data for the new display corresponds to calibration data for the device.
  • the apparatus can replace the calibration data for the device with calibration data from a database when the display data for the new display does not correspond to the calibration data for the device.
  • the apparatus can also compare the display data for the new display with the calibration data for the device.
  • the apparatus can also identify the calibration data from the database when the calibration data from the database corresponds to the display data for the new display. Further, the apparatus can determine whether the calibration data from the database corresponds to the display data for the new display. The apparatus can also match the calibration data from the database with the display data for the new display. The apparatus can also match the calibration data for the device with the display data for the new display when the display data for the new display corresponds to calibration data for the device. The apparatus can also maintain the calibration data for the device when the display data for the new display corresponds to the calibration data for the device. The apparatus can also generate the calibration data for the device and/or store, at the device, the calibration data for the device. The apparatus can generate the calibration data from the database and/or store, in the database of the device, the calibration data from the database.
  • FIG. 1 is a block diagram that illustrates an example content generation system in accordance with one or more techniques of this disclosure.
  • FIG. 2 illustrates an example GPU in accordance with one or more techniques of this disclosure.
  • FIG. 3 illustrate an example flowchart in accordance with one or more techniques of this disclosure.
  • FIG. 4 illustrate an example flowchart in accordance with one or more techniques of this disclosure.
  • FIG. 5 illustrate an example flowchart in accordance with one or more techniques of this disclosure.
  • FIG. 6 illustrates an example flowchart of an example method in accordance with one or more techniques of this disclosure.
  • the display panel on a smartphone can be easily broken, but expensive to replace. For example, consumers can spend an increasing amount of money to replace a display panel on a smartphone once a panel is broken. Based on this, consumers often expect the same quality of display performance with a new or replacement display panel, as compared to the original device display panel.
  • Aspects of the present disclosure can improve the display calibration process for new or replacement display modules, which are replaced in damaged devices.
  • Aspects of the present disclosure can generate a calibration file or display data for an individual display device.
  • Aspects of the present disclosure can also identify or determine a pre-configured calibration file from a database of pre-figured calibration files, e.g., stored on the device.
  • aspects of the present disclosure can determine which pre-configured calibration file is the most similar to the calibration file for the replacement display panel. By doing so, aspects of the present disclosure can achieve a high visual quality for a replacement display module, which can be equal to the visual quality for the originally calibrated display module on the device. Aspects of the present disclosure can also save the cost of purchasing expensive equipment for display calibration when replacing a display panel.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , general purpose GPUs (GPGPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems-on-chip (SOC) , baseband processors, application specific integrated circuits (ASICs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , general purpose GPUs (GPGPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems-on-chip (SOC) , baseband processors, application specific integrated circuits (ASICs) ,
  • One or more processors in the processing system may execute software.
  • Software can be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the term application may refer to software.
  • one or more techniques may refer to an application, i.e., software, being configured to perform one or more functions.
  • the application may be stored on a memory, e.g., on-chip memory of a processor, system memory, or any other memory.
  • Hardware described herein such as a processor may be configured to execute the application.
  • the application may be described as including code that, when executed by the hardware, causes the hardware to perform one or more techniques described herein.
  • the hardware may access the code from a memory and execute the code accessed from the memory to perform one or more techniques described herein.
  • components are identified in this disclosure.
  • the components may be hardware, software, or a combination thereof.
  • the components may be separate components or sub-components of a single component.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • this disclosure describes techniques for having a graphics processing pipeline in a single device or multiple devices, improving the rendering of graphical content, and/or reducing the load of a processing unit, i.e., any processing unit configured to perform one or more techniques described herein, such as a GPU.
  • a processing unit i.e., any processing unit configured to perform one or more techniques described herein, such as a GPU.
  • this disclosure describes techniques for graphics processing in any device that utilizes graphics processing. Other example benefits are described throughout this disclosure.
  • instances of the term “content” may refer to “graphical content, ” “image, ” and vice versa. This is true regardless of whether the terms are being used as an adjective, noun, or other parts of speech.
  • the term “graphical content” may refer to a content produced by one or more processes of a graphics processing pipeline.
  • the term “graphical content” may refer to a content produced by a processing unit configured to perform graphics processing.
  • the term “graphical content” may refer to a content produced by a graphics processing unit.
  • the term “display content” may refer to content generated by a processing unit configured to perform displaying processing.
  • the term “display content” may refer to content generated by a display processing unit.
  • Graphical content may be processed to become display content.
  • a graphics processing unit may output graphical content, such as a frame, to a buffer (which may be referred to as a framebuffer) .
  • a display processing unit may read the graphical content, such as one or more frames from the buffer, and perform one or more display processing techniques thereon to generate display content.
  • a display processing unit may be configured to perform composition on one or more rendered layers to generate a frame.
  • a display processing unit may be configured to compose, blend, or otherwise combine two or more layers together into a single frame.
  • a display processing unit may be configured to perform scaling, e.g., upscaling or downscaling, on a frame.
  • a frame may refer to a layer.
  • a frame may refer to two or more layers that have already been blended together to form the frame, i.e., the frame includes two or more layers, and the frame that includes two or more layers may subsequently be blended.
  • FIG. 1 is a block diagram that illustrates an example content generation system 100 configured to implement one or more techniques of this disclosure.
  • the content generation system 100 includes a device 104.
  • the device 104 may include one or more components or circuits for performing various functions described herein.
  • one or more components of the device 104 may be components of an SOC.
  • the device 104 may include one or more components configured to perform one or more techniques of this disclosure.
  • the device 104 may include a processing unit 120, a content encoder/decoder 122, and a system memory 124.
  • the device 104 can include a number of optional components, e.g., a communication interface 126, a transceiver 132, a receiver 128, a transmitter 130, a display processor 127, and one or more displays 131.
  • Reference to the display 131 may refer to the one or more displays 131.
  • the display 131 may include a single display or multiple displays.
  • the display 131 may include a first display and a second display.
  • the first display may be a left-eye display and the second display may be a right-eye display.
  • the first and second display may receive different frames for presentment thereon. In other examples, the first and second display may receive the same frames for presentment thereon.
  • the results of the graphics processing may not be displayed on the device, e.g., the first and second display may not receive any frames for presentment thereon. Instead, the frames or graphics processing results may be transferred to another device. In some aspects, this can be referred to as split-rendering.
  • the processing unit 120 may include an internal memory 121.
  • the processing unit 120 may be configured to perform graphics processing, such as in a graphics processing pipeline 107.
  • the content encoder/decoder 122 may include an internal memory 123.
  • the device 104 may include a display processor, such as the display processor 127, to perform one or more display processing techniques on one or more frames generated by the processing unit 120 before presentment by the one or more displays 131.
  • the display processor 127 may be configured to perform display processing.
  • the display processor 127 may be configured to perform one or more display processing techniques on one or more frames generated by the processing unit 120.
  • the one or more displays 131 may be configured to display or otherwise present frames processed by the display processor 127.
  • the one or more displays 131 may include one or more of: a liquid crystal display (LCD) , a plasma display, an organic light emitting diode (OLED) display, a projection display device, an augmented reality display device, a virtual reality display device, a head-mounted display, or any other type of display device.
  • LCD liquid crystal display
  • OLED organic light emitting diode
  • a projection display device an augmented reality display device, a virtual reality display device, a head-mounted display, or any other type of display device.
  • Memory external to the processing unit 120 and the content encoder/decoder 122 may be accessible to the processing unit 120 and the content encoder/decoder 122.
  • the processing unit 120 and the content encoder/decoder 122 may be configured to read from and/or write to external memory, such as the system memory 124.
  • the processing unit 120 and the content encoder/decoder 122 may be communicatively coupled to the system memory 124 over a bus.
  • the processing unit 120 and the content encoder/decoder 122 may be communicatively coupled to each other over the bus or a different connection.
  • the content encoder/decoder 122 may be configured to receive graphical content from any source, such as the system memory 124 and/or the communication interface 126.
  • the system memory 124 may be configured to store received encoded or decoded graphical content.
  • the content encoder/decoder 122 may be configured to receive encoded or decoded graphical content, e.g., from the system memory 124 and/or the communication interface 126, in the form of encoded pixel data.
  • the content encoder/decoder 122 may be configured to encode or decode any graphical content.
  • the internal memory 121 or the system memory 124 may include one or more volatile or non-volatile memories or storage devices.
  • internal memory 121 or the system memory 124 may include RAM, SRAM, DRAM, erasable programmable ROM (EPROM) , electrically erasable programmable ROM (EEPROM) , flash memory, a magnetic data media or an optical storage media, or any other type of memory.
  • the internal memory 121 or the system memory 124 may be a non-transitory storage medium according to some examples.
  • the term “non-transitory” may indicate that the storage medium is not embodied in a carrier wave or a propagated signal. However, the term “non-transitory” should not be interpreted to mean that internal memory 121 or the system memory 124 is non-movable or that its contents are static. As one example, the system memory 124 may be removed from the device 104 and moved to another device. As another example, the system memory 124 may not be removable from the device 104.
  • the processing unit 120 may be a central processing unit (CPU) , a graphics processing unit (GPU) , a general purpose GPU (GPGPU) , or any other processing unit that may be configured to perform graphics processing.
  • the processing unit 120 may be integrated into a motherboard of the device 104.
  • the processing unit 120 may be present on a graphics card that is installed in a port in a motherboard of the device 104, or may be otherwise incorporated within a peripheral device configured to interoperate with the device 104.
  • the processing unit 120 may include one or more processors, such as one or more microprocessors, GPUs, application specific integrated circuits (ASICs) , field programmable gate arrays (FPGAs) , arithmetic logic units (ALUs) , digital signal processors (DSPs) , discrete logic, software, hardware, firmware, other equivalent integrated or discrete logic circuitry, or any combinations thereof. If the techniques are implemented partially in software, the processing unit 120 may store instructions for the software in a suitable, non-transitory computer-readable storage medium, e.g., internal memory 121, and may execute the instructions in hardware using one or more processors to perform the techniques of this disclosure. Any of the foregoing, including hardware, software, a combination of hardware and software, etc., may be considered to be one or more processors.
  • processors such as one or more microprocessors, GPUs, application specific integrated circuits (ASICs) , field programmable gate arrays (FPGAs) , arithmetic logic units (A
  • the content encoder/decoder 122 may be any processing unit configured to perform content decoding. In some examples, the content encoder/decoder 122 may be integrated into a motherboard of the device 104.
  • the content encoder/decoder 122 may include one or more processors, such as one or more microprocessors, application specific integrated circuits (ASICs) , field programmable gate arrays (FPGAs) , arithmetic logic units (ALUs) , digital signal processors (DSPs) , video processors, discrete logic, software, hardware, firmware, other equivalent integrated or discrete logic circuitry, or any combinations thereof.
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • ALUs arithmetic logic units
  • DSPs digital signal processors
  • video processors discrete logic, software, hardware, firmware, other equivalent integrated or discrete logic circuitry, or any combinations thereof.
  • the content encoder/decoder 122 may store instructions for the software in a suitable, non-transitory computer-readable storage medium, e.g., internal memory 123, and may execute the instructions in hardware using one or more processors to perform the techniques of this disclosure. Any of the foregoing, including hardware, software, a combination of hardware and software, etc., may be considered to be one or more processors.
  • the content generation system 100 can include an optional communication interface 126.
  • the communication interface 126 may include a receiver 128 and a transmitter 130.
  • the receiver 128 may be configured to perform any receiving function described herein with respect to the device 104. Additionally, the receiver 128 may be configured to receive information, e.g., eye or head position information, rendering commands, or location information, from another device.
  • the transmitter 130 may be configured to perform any transmitting function described herein with respect to the device 104. For example, the transmitter 130 may be configured to transmit information to another device, which may include a request for content.
  • the receiver 128 and the transmitter 130 may be combined into a transceiver 132. In such examples, the transceiver 132 may be configured to perform any receiving function and/or transmitting function described herein with respect to the device 104.
  • the graphics processing pipeline 107 may include a determination component 198 configured to identify display data for a new display on a device.
  • the determination component 198 can also be configured to determine whether the display data for the new display corresponds to calibration data for the device.
  • the determination component 198 can also be configured to replace the calibration data for the device with calibration data from a database when the display data for the new display does not correspond to the calibration data for the device.
  • the determination component 198 can also be configured to compare the display data for the new display with the calibration data for the device.
  • the determination component 198 can also be configured to identify the calibration data from the database when the calibration data from the database corresponds to the display data for the new display.
  • the determination component 198 can also be configured to determine whether the calibration data from the database corresponds to the display data for the new display.
  • the determination component 198 can also be configured to match the calibration data from the database with the display data for the new display.
  • the determination component 198 can also be configured to match the calibration data for the device with the display data for the new display when the display data for the new display corresponds to calibration data for the device.
  • the determination component 198 can also be configured to maintain the calibration data for the device when the display data for the new display corresponds to the calibration data for the device.
  • the determination component 198 can also be configured to generate the calibration data for the device and/or store, at the device, the calibration data for the device.
  • the determination component 198 can also be configured to generate the calibration data from the database and/or store, in the database of the device, the calibration data from the database.
  • a device such as the device 104, may refer to any device, apparatus, or system configured to perform one or more techniques described herein.
  • a device may be a server, a base station, user equipment, a client device, a station, an access point, a computer, e.g., a personal computer, a desktop computer, a laptop computer, a tablet computer, a computer workstation, or a mainframe computer, an end product, an apparatus, a phone, a smart phone, a server, a video game platform or console, a handheld device, e.g., a portable video game device or a personal digital assistant (PDA) , a wearable computing device, e.g., a smart watch, an augmented reality device, or a virtual reality device, a non-wearable device, a display or display device, a television, a television set-top box, an intermediate network device, a digital media player, a video streaming device, a content streaming device, an in-car
  • PDA personal digital
  • GPUs can process multiple types of data or data packets in a GPU pipeline.
  • a GPU can process two types of data or data packets, e.g., context register packets and draw call data.
  • a context register packet can be a set of global state information, e.g., information regarding a global register, shading program, or constant data, which can regulate how a graphics context will be processed.
  • context register packets can include information regarding a color format.
  • Context states can be utilized to determine how an individual processing unit functions, e.g., a vertex fetcher (VFD) , a vertex shader (VS) , a shader processor, or a geometry processor, and/or in what mode the processing unit functions.
  • GPUs can use context registers and programming data.
  • a GPU can generate a workload, e.g., a vertex or pixel workload, in the pipeline based on the context register definition of a mode or state.
  • Certain processing units, e.g., a VFD can use these states to determine certain functions, e.g., how a vertex is assembled. As these modes or states can change, GPUs may need to change the corresponding context. Additionally, the workload that corresponds to the mode or state may follow the changing mode or state.
  • FIG. 2 illustrates an example GPU 200 in accordance with one or more techniques of this disclosure.
  • GPU 200 includes command processor (CP) 210, draw call packets 212, VFD 220, VS 222, vertex cache (VPC) 224, triangle setup engine (TSE) 226, rasterizer (RAS) 228, Z process engine (ZPE) 230, pixel interpolator (PI) 232, fragment shader (FS) 234, render backend (RB) 236, L2 cache (UCHE) 238, and system memory 240.
  • FIG. 2 displays that GPU 200 includes processing units 220-238, GPU 200 can include a number of additional processing units. Additionally, processing units 220-238 are merely an example and any combination or order of processing units can be used by GPUs according to the present disclosure.
  • GPU 200 also includes command buffer 250, context register packets 260, and context states 261.
  • a GPU can utilize a CP, e.g., CP 210, or hardware accelerator to parse a command buffer into context register packets, e.g., context register packets 260, and/or draw call data packets, e.g., draw call packets 212.
  • the CP 210 can then send the context register packets 260 or draw call data packets 212 through separate paths to the processing units or blocks in the GPU.
  • the command buffer 250 can alternate different states of context registers and draw calls.
  • a command buffer can be structured in the following manner: context register of context N, draw call (s) of context N, context register of context N+1, and draw call (s) of context N+1.
  • display panels are becoming ever more important. Indeed, full or large screen smartphone devices are approaching 100%screen-to-body ratios. As screens get larger, more sensors and electronics, e.g., fingerprint sensors, light sensors, and cameras, are beneath the display screen. Additionally, manufacturers or original equipment manufacturers (OEMs) , as well as end users, desire consistent and manageable display effects, especially for smartphones with large displays. Display panel manufacturers are also attempting to achieve consistent optical specifications, but they are governed by the specifications of device manufacturers.
  • OEMs original equipment manufacturers
  • Display panel calibration tools can measure the optical characteristics of display panels. Additionally, display panel calibration tools can take advantage of hardware blocks, e.g., the display processor unit (DPU) , to fix inconsistent display issues, such as color shifting or different device color temperature.
  • the panel calibration process can be carried out during the device assembly stage. For instance, the calibration data of the panel can be stored in each smartphone or device storage once the calibration process is completed.
  • Some aspects of display calibration tools can help to achieve the desired display effects after the calibration process is performed on the device. However, this may not resolve other issues, such as how to perform a display panel calibration process after the initial installation of a new or replacement display panel on the device.
  • the display panel is one component on a smartphone that is relatively easy to brake. For instance, display panels are often accidently broken by consumers, and when a display is damaged consumers or users will repair the display or replace the device. Further, the display is one of the most expensive components to replace on a smartphone. For example, consumers can spend an increasing amount of money to replace a display panel on a smartphone once a panel is broken. Understandingly, consumers often expect the same quality of display performance with a new or replacement display panel, as compared to the original device display panel. Indeed, consumers are often unsatisfied with a replacement display that includes a different color temperature or other display issues, such as calibration process issues.
  • aspects of the present disclosure can improve the display calibration process for new or replacement display modules, which are replaced in damage devices.
  • the present disclosure can improve the calibration process for a new or replacement display panel, which may otherwise be performed at a post-sales service center.
  • aspects of the present disclosure can setup and perform the entire display panel calibration process.
  • aspects of the present disclosure can improve the calibration process for a new or replacement display panel during the manufacturing process.
  • the present disclosure can prevent the need to send a device back to the factory for display calibration when installing a new or replacement display panel, which can save both time and money.
  • the present disclosure proposes a method to calibrate a new or replacement display panel with a user device or smartphone, e.g., after the original display panel is replaced.
  • one aspect of the present disclosure can utilize a variety of calibration data, e.g., that is generated during mass production of smartphones or devices, in order to achieve the desired and consistent display effects.
  • aspects of the present disclosure can avoid re-calibrating the display panel in either the service center or in a manufacturing facility.
  • Some aspects of the present disclosure can store coding panel calibration tuning files, e.g., in order to calibrate the new or replacement display panels.
  • RGBW RGBW data is the coordinates of red/green/blue/white color in the form of International Commission on Illumination (CIE) 1931 XYZ color space or other color space.
  • CIE International Commission on Illumination
  • OTP time programmable
  • Display panels which have the same or similar optical characteristics may be expected to achieve consistent visual effects with the same or similar display calibration data. Accordingly, it is important for new or replacement display panels to include the same or similar display calibration data as the original display panel on a device.
  • the application processor (AP) or another display processor can read the panel data, e.g., RGBW data, after the device is powered on.
  • a new or replacement display can have its own RGBW data, such that the AP or other display processor can read the RGBW data or the replacement display.
  • the present disclosure can include pre-generated data and/or tuning results for display panels, e.g., in a database on the device. Accordingly, the data and/or tuning results for the replacement displays can be compared to the database data during the calibration of the replacement display. So the present disclosure can compare the new display panel RGBW data with the database of display panel RGBW data that is stored on the device.
  • the present disclosure can also calculate an RGBW data difference between the database RGBW data and the replacement display RGBW data. For instance, when the difference between the display data and a pre-generated database data is less than a threshold, the present disclosure can use the pre-generated or pre-calculated database data to calibrate the display. Moreover, aspects of the present disclosure can read panel RGBW data from OTP memory on the device, as well as store display panel RGBW data and calibration data.
  • FIG. 3 illustrate an example flowchart 300 in accordance with one or more techniques of this disclosure.
  • flowchart 300 includes the calibration steps for a new or replacement display, which includes steps 302-314.
  • steps 302-314 aspects of the present disclosure can start the calibration process.
  • aspects of the present disclosure can calibrate other smartphones or devices.
  • aspects of the present disclosure can connect a smartphone or device with calibration tools.
  • aspects of the present disclosure can measure the display panel optical characters.
  • aspects of the present disclosure can read the display panel RGBW data, e.g., from OTP memory at the panel module. As mentioned herein, each panel module can have its own RTW data.
  • aspects of the present disclosure can generate the calibration data or file, which can contain the display panel RGBW data.
  • aspects of the present disclosure can store the calibration data or file to the smartphone or device.
  • aspects of the present disclosure can store the panel RGBW data and/or the calibration data.
  • FIG. 4 illustrate an example flowchart 400 in accordance with one or more techniques of this disclosure.
  • flowchart 400 includes the steps to generate calibration data or files, i.e., golden module data, which includes steps 402-414.
  • aspects of the present disclosure can start the calibration generation process.
  • aspects of the present disclosure can collect panel RGBW data and calibration data, e.g., calibration data coordinate pairs.
  • aspects of the present disclosure can classify RGBW data by color temperature.
  • aspects of the present disclosure can classify RGBW data by gamut.
  • aspects of the present disclosure can identify a number, e.g., 20 to 200, of pre-calculated or pre-generated RGBW data, i.e., golden module or typical RGBW data.
  • aspects of the present disclosure can determine or identify the calibration data or files that correspond to or are related to the pre-calculated RGBW data.
  • aspects of the present disclosure can build or install the calibration files into the user device or smartphone image.
  • aspects of the present disclosure can install the 20-200 pre-generated RGBW data calibration files, i.e., golden module or typical data files, into the device.
  • devices or smartphones can include this pre-generated or pre-calculated golden module data. So the present disclosure can pre-generate or pre-calculate a plurality of data that corresponds to a plurality of different types of replacement display panels. The replacement display can then be matched to the pre-generated or pre-calculated data, e.g., assuming that the difference between the display data and the pre-calculated data is less than a threshold.
  • Table 1 below displays one example of a table including a number of different pre-calculated or pre-generated RGBW data calibration files.
  • FIG. 5 illustrate an example flowchart 500 in accordance with one or more techniques of this disclosure.
  • flowchart 500 includes example steps for a device or smartphone power-on procedure, i.e., software at the device or smartphone, which includes steps 502-514.
  • aspects of the present disclosure can power on a smartphone or device.
  • aspects of the present disclosure can read the RGBW data for a new or replacement display panel, e.g., data from a newly installed panel.
  • each display panel can have its own RGBW data.
  • this RGBW data can be an index
  • each data from the database or golden module can also be an index.
  • aspects of the present disclosure can compare the new display panel RGBW data with calibration data on the device, e.g., default or pre-generated calibration data.
  • the default or pre-generated calibration data can correspond to the damaged display module.
  • aspects of the present disclosure can determine whether the new display panel RGBW data is similar to the default calibration data on the device. If the new display panel RGBW data is similar to the default calibration data on the device, aspects of the present disclosure can continue with the regular power on procedure. However, if the new display panel RGBW data is not similar to the default calibration data on the device, aspects of the present disclosure can proceed to the steps below.
  • aspects of the present disclosure can match the new display panel RGBW data with similar data from the database or golden module data.
  • this database or golden module data stored on the device can be 20 to 200 data files.
  • aspects of the present disclosure can replace the default calibration data on the device with the matched data from the database or golden module data. As such, unless the default calibration data is similar to the new display panel RGBW data, it can be replaced with data from the database that is similar to the new display data.
  • aspects of the present disclosure can continue with the regular power on procedure of the device.
  • the software at the device may not be aware of this. For example, after a new display module is installed in the device, the software may continue to use the parameters for the previously damaged display module.
  • the present disclosure can determine the new panel RGBW data, and then compare the new panel RGBW data with the calibration data, e.g., pre-generated calibration data. If the new panel RGBW data is not similar to the calibration data at the device, the present disclosure can match the new panel RGBW data with the data from the database stored on the device. Further, the present disclosure can replace the default calibration file with the matched data from the database. Accordingly, aspects of the present disclosure can compare the new panel RGBW data with the device calibration data, and if they are similar, there is no need to look at the database data.
  • aspects of the present disclosure can provide a number of manners in which to compare whether a new display panel is similar to the previous display panel, e.g., using RGBW data. For example, aspects of the present disclosure can calculate the color difference between the display panels using RGBW data. In some aspects, the present disclosure can convert two panels’ red, green, blue, and white color coordinates from CIE XYZ color space to CIE LCH color space. The present disclosure can then calculate these color differences between the two panels, such as by using a formula, e.g., a DE2000 formula. Aspects of the present disclosure can then save the results as white, e.g., DE2000 white, red, e.g., DE2000 red, green, e.g., DE2000 green, or blue, e.g., DE2000 blue.
  • a formula e.g., a DE2000 formula
  • aspects of the present disclosure can then calculate the average color difference between the panels. For instance, the present disclosure can calculate the average color differences of the white, red, green, and blue colors. Further, the present disclosure can then save the average difference as AVE (RGBW) .
  • RGBW RGBW
  • aspects of the present disclosure can compare the average color difference with a threshold or standard. For example, if AVE (RGBW) is less than or equal to a threshold, e.g., 3, then these two panels can be treated as similar panels, as their optical characteristics were matched. In terms of DE2000, if the color difference is large than a certain threshold, e.g., 3, then the color difference can be observed by a visual check. In practice, e.g., based on a real situation, aspects of the present disclosure may not adhere to the threshold or standard based on some color values.
  • aspects of the present disclosure can generate a calibration file or display data for an individual display device. Aspects of the present disclosure can also identify or determine a pre-configured calibration file from a database of pre-figured calibration files, e.g., stored on the device. Further, aspects of the present disclosure can determine which pre-configured calibration file is the most similar to the calibration file for the replacement display panel. In addition, aspects of the present disclosure can replace the calibration file or display data for the device with the display data from the database when the display data for the new display is similar to the display data for the device.
  • aspects of the present disclosure also includes a number of advantages or benefits. For instance, aspects of the present disclosure can achieve a high visual quality for a replacement display module, which can be equal to the visual quality for the originally calibrated display module on the device. Aspects of the present disclosure can also save the cost of purchasing the expensive equipment for display calibration when replacing a display panel. Moreover, aspects of the present disclosure can save time and money by not needing to send a device with a new or replacement panel to a factory for calibration.
  • FIG. 6 illustrates an example flowchart 600 of an example method in accordance with one or more techniques of this disclosure.
  • the method may be performed by an apparatus such as a display processor, a display processing unit (DPU) , a central processing unit (CPU) , a graphics processing unit (GPU) , or a digital signal processor (DSP) .
  • the apparatus may generate calibration data for a device and/or store, at the device, the calibration data for the device, as described in connection with the examples in FIGs. 3, 4, and 5.
  • the apparatus can generate the calibration data from the database and/or store, in the database of the device, the calibration data from the database, as described in connection with the examples in FIGs. 3, 4, and 5.
  • the apparatus can identify display data for a new display on a device, as described in connection with the examples in FIGs. 3, 4, and 5.
  • the apparatus can also determine whether the display data for the new display corresponds to calibration data for the device, as described in connection with the examples in FIGs. 3, 4, and 5.
  • the apparatus can compare the display data for the new display with the calibration data for the device, as described in connection with the examples in FIGs. 3, 4, and 5.
  • the apparatus can also match the calibration data for the device with the display data for the new display when the display data for the new display corresponds to calibration data for the device, as described in connection with the examples in FIGs. 3, 4, and 5.
  • the apparatus can maintain the calibration data for the device when the display data for the new display corresponds to the calibration data for the device, as described in connection with the examples in FIGs. 3, 4, and 5.
  • the apparatus can identify the calibration data from the database when the calibration data from the database corresponds to the display data for the new display, as described in connection with the examples in FIGs. 3, 4, and 5.
  • the apparatus can also determine whether the calibration data from the database corresponds to the display data for the new display, as described in connection with the examples in FIGs. 3, 4, and 5.
  • the apparatus can also match the calibration data from the database with the display data for the new display, as described in connection with the examples in FIGs. 3, 4, and 5.
  • the calibration data from the database can be similar to the display data for the new display, as described in connection with the examples in FIGs. 3, 4, and 5.
  • the calibration data from the database can be identified from a group of calibration data stored in the database of the device, as described in connection with the examples in FIGs. 3, 4, and 5.
  • the apparatus can replace the calibration data for the device with calibration data from a database when the display data for the new display does not correspond to the calibration data for the device, as described in connection with the examples in FIGs. 3, 4, and 5.
  • the calibration data from the database can correspond to the display data for the new display, as described in connection with the examples in FIGs. 3, 4, and 5.
  • the display data for the new display is red (R) , green (G) , blue (B) , white (W) (RGBW) color data, as described in connection with the examples in FIGs. 3, 4, and 5.
  • the determination whether the display data for the new display corresponds to the calibration data for the device can be performed by a central processing unit (CPU) , a graphics processing unit (GPU) , or a digital signal processor (DSP) , as described in connection with the examples in FIGs. 3, 4, and 5.
  • CPU central processing unit
  • GPU graphics processing unit
  • DSP digital signal processor
  • a method or apparatus for display processing may be a display processor, a display processing unit (DPU) , a CPU, a GPU, a DSP, or a video processor or some other processor that can perform display processing.
  • the apparatus may be the processing unit 120 within the device 104, or may be some other hardware within device 104 or another device.
  • the apparatus may include means for identifying display data for a new display on a device.
  • the apparatus may also include means for determining whether the display data for the new display corresponds to calibration data for the device.
  • the apparatus may also include means for replacing the calibration data for the device with calibration data from a database when the display data for the new display does not correspond to the calibration data for the device, where the calibration data from the database can correspond to the display data for the new display.
  • the apparatus may also include means for comparing the display data for the new display with the calibration data for the device.
  • the apparatus may also include means for identifying the calibration data from the database when the calibration data from the database corresponds to the display data for the new display.
  • the apparatus may also include means for determining whether the calibration data from the database corresponds to the display data for the new display.
  • the apparatus may also include means for matching the calibration data from the database with the display data for the new display.
  • the apparatus may also include means for matching the calibration data for the device with the display data for the new display when the display data for the new display corresponds to calibration data for the device.
  • the apparatus may also include means for maintaining the calibration data for the device when the display data for the new display corresponds to the calibration data for the device.
  • the apparatus may also include means for generating the calibration data for the device and/or means for storing, at the device, the calibration data for the device.
  • the apparatus may also include means for generating the calibration data from the database and/or means for storing, in the database of the device, the calibration data from the database.
  • the described display and/or graphics processing techniques can be used by a display processor, a DPU, a GPU, a CPU, a DSP, or a video processor or some other processor that can perform display processing to implement the refresh offset techniques described herein. This can also be accomplished at a low cost compared to other display or graphics processing techniques.
  • the display or graphics processing techniques herein can improve or speed up data processing or execution. Further, the display or graphics processing techniques herein can improve resource or data utilization and/or resource efficiency.
  • aspects of the present disclosure can utilize a display calibration process that can reduce both time spent and money consumed during a display panel replacement.
  • the term “or” may be interrupted as “and/or” where context does not dictate otherwise. Additionally, while phrases such as “one or more” or “at least one” or the like may have been used for some features disclosed herein but not others, the features for which such language was not used may be interpreted to have such a meaning implied where context does not dictate otherwise.
  • the functions described herein may be implemented in hardware, software, firmware, or any combination thereof.
  • processing unit has been used throughout this disclosure, such processing units may be implemented in hardware, software, firmware, or any combination thereof. If any function, processing unit, technique described herein, or other module is implemented in software, the function, processing unit, technique described herein, or other module may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media may include computer data storage media or communication media including any medium that facilitates transfer of a computer program from one place to another. In this manner, computer-readable media generally may correspond to (1) tangible computer-readable storage media, which is non-transitory or (2) a communication medium such as a signal or carrier wave.
  • Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, code and/or data structures for implementation of the techniques described in this disclosure.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, .
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • a computer program product may include a computer-readable medium.
  • the code may be executed by one or more processors, such as one or more digital signal processors (DSPs) , general purpose microprocessors, application specific integrated circuits (ASICs) , arithmetic logic units (ALUs) , field programmable logic arrays (FPGAs) , or other equivalent integrated or discrete logic circuitry.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • ALUs arithmetic logic units
  • FPGAs field programmable logic arrays
  • the techniques of this disclosure may be implemented in a wide variety of devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of ICs, e.g., a chip set.
  • IC integrated circuit
  • Various components, modules or units are described in this disclosure to emphasize functional aspects of devices configured to perform the disclosed techniques, but do not necessarily need realization by different hardware units. Rather, as described above, various units may be combined in any hardware unit or provided by a collection of interoperative hardware units, including one or more processors as described above, in conjunction with suitable software and/or firmware.
  • Display screen becomes more and more important for “full screen” smartphone, we are approaching 100%screen-to-body ratio as more sensors, such as fingerprint, light and camera are hidden under display screen. all OEMs and end users are requesting consistent and managed display effects, especially for mini screen
  • Per display panel calibration (on factory floor) tool has been adopted by more and more OEMs/ODMs those years, this tool measure the display panel optical characters, and take advantage of our hardware blocks -DPU (Display Process Unit) to fix those inconsistent display issues, such as color shift, different color temperature from device to device.
  • -DPU Display Process Unit
  • the panel calibration process is carried out during the device assembly stage on the factory line, the calibration data of the panel is stored into each smartphone storage (not inside the display module) once the calibration is done
  • Display calibration tools can help to achieve desired consistent display effects after calibration on factory line, but they don’t resolve another issue, how is to do display panel calibration out of factory line, such as post-sales service (repairment) center
  • the display panel is easy to be broken accidently by consumers, and it is most expensive consumable on smartphone.
  • the present disclosure proposes one novel method to take advantage of millions of calibration data which is generated during mass production factory floor calibration to achieve desired and consistent display effect, and the new method can avoid the re-calibration either in service center or in factory line.
  • the present disclosure is based on the basic facts (for a certain model of display panel)
  • Each display panel doesn’ t have their own unique ID (User Identifier) , but has its own basic optical characters, such as gamut and color temperature, which is defined by RGBW data (the coordinates of Red/Green/Blue/White color in form of CIE 1931 XYZ or other color space) , and most panels already stored those data into OTP (one time programmable) memory on panel module
  • AP Application Processor

Abstract

The present disclosure relates to methods and apparatus for display processing. Aspects of the present disclosure can identify display data for a new display on a device. Aspects of the present disclosure can also determine whether the display data for the new display corresponds to calibration data for the device. Further, aspects of the present disclosure can replace the calibration data for the device with calibration data from a database when the display data for the new display does not correspond to the calibration data for the device, where the calibration data from the database can correspond to the display data for the new display. Additionally, aspects of the present disclosure can identify the calibration data from the database when the calibration data from the database corresponds to the display data for the new display.

Description

METHODS AND APPARATUS FOR CALIBRATING NEW DISPLAYS TECHNICAL FIELD
The present disclosure relates generally to processing systems and, more particularly, to one or more techniques for display or graphics processing.
INTRODUCTION
Computing devices often utilize a graphics processing unit (GPU) to accelerate the rendering of graphical data for display. Such computing devices may include, for example, computer workstations, mobile phones such as so-called smartphones, embedded systems, personal computers, tablet computers, and video game consoles. GPUs execute a graphics processing pipeline that includes one or more processing stages that operate together to execute graphics processing commands and output a frame. A central processing unit (CPU) may control the operation of the GPU by issuing one or more graphics processing commands to the GPU. Modern day CPUs are typically capable of concurrently executing multiple applications, each of which may need to utilize the GPU during execution. A device that provides content for visual presentation on a display generally includes a GPU.
Typically, a GPU of a device is configured to perform the processes in a graphics processing pipeline. However, with the advent of wireless communication and smaller, handheld devices, there has developed an increased need for improved graphics processing.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a display processor, a display processing unit (DPU) , a central processing unit (CPU) , a graphics processing unit  (GPU) , or a digital signal processor (DSP) . The apparatus can identify display data for a new display on a device. The apparatus can also determine whether the display data for the new display corresponds to calibration data for the device. Additionally, the apparatus can replace the calibration data for the device with calibration data from a database when the display data for the new display does not correspond to the calibration data for the device. The apparatus can also compare the display data for the new display with the calibration data for the device. The apparatus can also identify the calibration data from the database when the calibration data from the database corresponds to the display data for the new display. Further, the apparatus can determine whether the calibration data from the database corresponds to the display data for the new display. The apparatus can also match the calibration data from the database with the display data for the new display. The apparatus can also match the calibration data for the device with the display data for the new display when the display data for the new display corresponds to calibration data for the device. The apparatus can also maintain the calibration data for the device when the display data for the new display corresponds to the calibration data for the device. The apparatus can also generate the calibration data for the device and/or store, at the device, the calibration data for the device. The apparatus can generate the calibration data from the database and/or store, in the database of the device, the calibration data from the database.
The details of one or more examples of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the disclosure will be apparent from the description and drawings, and from the claims.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a block diagram that illustrates an example content generation system in accordance with one or more techniques of this disclosure.
FIG. 2 illustrates an example GPU in accordance with one or more techniques of this disclosure.
FIG. 3 illustrate an example flowchart in accordance with one or more techniques of this disclosure.
FIG. 4 illustrate an example flowchart in accordance with one or more techniques of this disclosure.
FIG. 5 illustrate an example flowchart in accordance with one or more techniques of this disclosure.
FIG. 6 illustrates an example flowchart of an example method in accordance with one or more techniques of this disclosure.
DETAILED DESCRIPTION
The display panel on a smartphone can be easily broken, but expensive to replace. For example, consumers can spend an increasing amount of money to replace a display panel on a smartphone once a panel is broken. Based on this, consumers often expect the same quality of display performance with a new or replacement display panel, as compared to the original device display panel. Aspects of the present disclosure can improve the display calibration process for new or replacement display modules, which are replaced in damaged devices. Aspects of the present disclosure can generate a calibration file or display data for an individual display device. Aspects of the present disclosure can also identify or determine a pre-configured calibration file from a database of pre-figured calibration files, e.g., stored on the device. Further, aspects of the present disclosure can determine which pre-configured calibration file is the most similar to the calibration file for the replacement display panel. By doing so, aspects of the present disclosure can achieve a high visual quality for a replacement display module, which can be equal to the visual quality for the originally calibrated display module on the device. Aspects of the present disclosure can also save the cost of purchasing expensive equipment for display calibration when replacing a display panel.
Various aspects of systems, apparatuses, computer program products, and methods are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of this disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of this disclosure is intended to cover any aspect of the systems, apparatuses, computer program products, and methods disclosed herein, whether implemented independently of, or combined with, other aspects of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of  the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. Any aspect disclosed herein may be embodied by one or more elements of a claim.
Although various aspects are described herein, many variations and permutations of these aspects fall within the scope of this disclosure. Although some potential benefits and advantages of aspects of this disclosure are mentioned, the scope of this disclosure is not intended to be limited to particular benefits, uses, or objectives. Rather, aspects of this disclosure are intended to be broadly applicable to different wireless technologies, system configurations, networks, and transmission protocols, some of which are illustrated by way of example in the figures and in the following description. The detailed description and drawings are merely illustrative of this disclosure rather than limiting, the scope of this disclosure being defined by the appended claims and equivalents thereof.
Several aspects are presented with reference to various apparatus and methods. These apparatus and methods are described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, and the like (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors (which may also be referred to as processing units) . Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , general purpose GPUs (GPGPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems-on-chip (SOC) , baseband processors, application specific integrated circuits (ASICs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the  processing system may execute software. Software can be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. The term application may refer to software. As described herein, one or more techniques may refer to an application, i.e., software, being configured to perform one or more functions. In such examples, the application may be stored on a memory, e.g., on-chip memory of a processor, system memory, or any other memory. Hardware described herein, such as a processor may be configured to execute the application. For example, the application may be described as including code that, when executed by the hardware, causes the hardware to perform one or more techniques described herein. As an example, the hardware may access the code from a memory and execute the code accessed from the memory to perform one or more techniques described herein. In some examples, components are identified in this disclosure. In such examples, the components may be hardware, software, or a combination thereof. The components may be separate components or sub-components of a single component.
Accordingly, in one or more examples described herein, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
In general, this disclosure describes techniques for having a graphics processing pipeline in a single device or multiple devices, improving the rendering of graphical content, and/or reducing the load of a processing unit, i.e., any processing unit configured to perform one or more techniques described herein, such as a GPU. For  example, this disclosure describes techniques for graphics processing in any device that utilizes graphics processing. Other example benefits are described throughout this disclosure.
As used herein, instances of the term “content” may refer to “graphical content, ” “image, ” and vice versa. This is true regardless of whether the terms are being used as an adjective, noun, or other parts of speech. In some examples, as used herein, the term “graphical content” may refer to a content produced by one or more processes of a graphics processing pipeline. In some examples, as used herein, the term “graphical content” may refer to a content produced by a processing unit configured to perform graphics processing. In some examples, as used herein, the term “graphical content” may refer to a content produced by a graphics processing unit.
In some examples, as used herein, the term “display content” may refer to content generated by a processing unit configured to perform displaying processing. In some examples, as used herein, the term “display content” may refer to content generated by a display processing unit. Graphical content may be processed to become display content. For example, a graphics processing unit may output graphical content, such as a frame, to a buffer (which may be referred to as a framebuffer) . A display processing unit may read the graphical content, such as one or more frames from the buffer, and perform one or more display processing techniques thereon to generate display content. For example, a display processing unit may be configured to perform composition on one or more rendered layers to generate a frame. As another example, a display processing unit may be configured to compose, blend, or otherwise combine two or more layers together into a single frame. A display processing unit may be configured to perform scaling, e.g., upscaling or downscaling, on a frame. In some examples, a frame may refer to a layer. In other examples, a frame may refer to two or more layers that have already been blended together to form the frame, i.e., the frame includes two or more layers, and the frame that includes two or more layers may subsequently be blended.
FIG. 1 is a block diagram that illustrates an example content generation system 100 configured to implement one or more techniques of this disclosure. The content generation system 100 includes a device 104. The device 104 may include one or more components or circuits for performing various functions described herein. In some examples, one or more components of the device 104 may be components of an SOC. The device 104 may include one or more components configured to perform  one or more techniques of this disclosure. In the example shown, the device 104 may include a processing unit 120, a content encoder/decoder 122, and a system memory 124. In some aspects, the device 104 can include a number of optional components, e.g., a communication interface 126, a transceiver 132, a receiver 128, a transmitter 130, a display processor 127, and one or more displays 131. Reference to the display 131 may refer to the one or more displays 131. For example, the display 131 may include a single display or multiple displays. The display 131 may include a first display and a second display. The first display may be a left-eye display and the second display may be a right-eye display. In some examples, the first and second display may receive different frames for presentment thereon. In other examples, the first and second display may receive the same frames for presentment thereon. In further examples, the results of the graphics processing may not be displayed on the device, e.g., the first and second display may not receive any frames for presentment thereon. Instead, the frames or graphics processing results may be transferred to another device. In some aspects, this can be referred to as split-rendering.
The processing unit 120 may include an internal memory 121. The processing unit 120 may be configured to perform graphics processing, such as in a graphics processing pipeline 107. The content encoder/decoder 122 may include an internal memory 123. In some examples, the device 104 may include a display processor, such as the display processor 127, to perform one or more display processing techniques on one or more frames generated by the processing unit 120 before presentment by the one or more displays 131. The display processor 127 may be configured to perform display processing. For example, the display processor 127 may be configured to perform one or more display processing techniques on one or more frames generated by the processing unit 120. The one or more displays 131 may be configured to display or otherwise present frames processed by the display processor 127. In some examples, the one or more displays 131 may include one or more of: a liquid crystal display (LCD) , a plasma display, an organic light emitting diode (OLED) display, a projection display device, an augmented reality display device, a virtual reality display device, a head-mounted display, or any other type of display device.
Memory external to the processing unit 120 and the content encoder/decoder 122, such as system memory 124, may be accessible to the processing unit 120 and the content encoder/decoder 122. For example, the processing unit 120 and the content  encoder/decoder 122 may be configured to read from and/or write to external memory, such as the system memory 124. The processing unit 120 and the content encoder/decoder 122 may be communicatively coupled to the system memory 124 over a bus. In some examples, the processing unit 120 and the content encoder/decoder 122 may be communicatively coupled to each other over the bus or a different connection.
The content encoder/decoder 122 may be configured to receive graphical content from any source, such as the system memory 124 and/or the communication interface 126. The system memory 124 may be configured to store received encoded or decoded graphical content. The content encoder/decoder 122 may be configured to receive encoded or decoded graphical content, e.g., from the system memory 124 and/or the communication interface 126, in the form of encoded pixel data. The content encoder/decoder 122 may be configured to encode or decode any graphical content.
The internal memory 121 or the system memory 124 may include one or more volatile or non-volatile memories or storage devices. In some examples, internal memory 121 or the system memory 124 may include RAM, SRAM, DRAM, erasable programmable ROM (EPROM) , electrically erasable programmable ROM (EEPROM) , flash memory, a magnetic data media or an optical storage media, or any other type of memory.
The internal memory 121 or the system memory 124 may be a non-transitory storage medium according to some examples. The term “non-transitory” may indicate that the storage medium is not embodied in a carrier wave or a propagated signal. However, the term “non-transitory” should not be interpreted to mean that internal memory 121 or the system memory 124 is non-movable or that its contents are static. As one example, the system memory 124 may be removed from the device 104 and moved to another device. As another example, the system memory 124 may not be removable from the device 104.
The processing unit 120 may be a central processing unit (CPU) , a graphics processing unit (GPU) , a general purpose GPU (GPGPU) , or any other processing unit that may be configured to perform graphics processing. In some examples, the processing unit 120 may be integrated into a motherboard of the device 104. In some examples, the processing unit 120 may be present on a graphics card that is installed in a port in a motherboard of the device 104, or may be otherwise incorporated within a peripheral device configured to interoperate with the device 104. The processing  unit 120 may include one or more processors, such as one or more microprocessors, GPUs, application specific integrated circuits (ASICs) , field programmable gate arrays (FPGAs) , arithmetic logic units (ALUs) , digital signal processors (DSPs) , discrete logic, software, hardware, firmware, other equivalent integrated or discrete logic circuitry, or any combinations thereof. If the techniques are implemented partially in software, the processing unit 120 may store instructions for the software in a suitable, non-transitory computer-readable storage medium, e.g., internal memory 121, and may execute the instructions in hardware using one or more processors to perform the techniques of this disclosure. Any of the foregoing, including hardware, software, a combination of hardware and software, etc., may be considered to be one or more processors.
The content encoder/decoder 122 may be any processing unit configured to perform content decoding. In some examples, the content encoder/decoder 122 may be integrated into a motherboard of the device 104. The content encoder/decoder 122 may include one or more processors, such as one or more microprocessors, application specific integrated circuits (ASICs) , field programmable gate arrays (FPGAs) , arithmetic logic units (ALUs) , digital signal processors (DSPs) , video processors, discrete logic, software, hardware, firmware, other equivalent integrated or discrete logic circuitry, or any combinations thereof. If the techniques are implemented partially in software, the content encoder/decoder 122 may store instructions for the software in a suitable, non-transitory computer-readable storage medium, e.g., internal memory 123, and may execute the instructions in hardware using one or more processors to perform the techniques of this disclosure. Any of the foregoing, including hardware, software, a combination of hardware and software, etc., may be considered to be one or more processors.
In some aspects, the content generation system 100 can include an optional communication interface 126. The communication interface 126 may include a receiver 128 and a transmitter 130. The receiver 128 may be configured to perform any receiving function described herein with respect to the device 104. Additionally, the receiver 128 may be configured to receive information, e.g., eye or head position information, rendering commands, or location information, from another device. The transmitter 130 may be configured to perform any transmitting function described herein with respect to the device 104. For example, the transmitter 130 may be configured to transmit information to another device, which may include a request for  content. The receiver 128 and the transmitter 130 may be combined into a transceiver 132. In such examples, the transceiver 132 may be configured to perform any receiving function and/or transmitting function described herein with respect to the device 104.
Referring again to FIG. 1, in certain aspects, the graphics processing pipeline 107 may include a determination component 198 configured to identify display data for a new display on a device. The determination component 198 can also be configured to determine whether the display data for the new display corresponds to calibration data for the device. The determination component 198 can also be configured to replace the calibration data for the device with calibration data from a database when the display data for the new display does not correspond to the calibration data for the device. The determination component 198 can also be configured to compare the display data for the new display with the calibration data for the device. The determination component 198 can also be configured to identify the calibration data from the database when the calibration data from the database corresponds to the display data for the new display. The determination component 198 can also be configured to determine whether the calibration data from the database corresponds to the display data for the new display. The determination component 198 can also be configured to match the calibration data from the database with the display data for the new display. The determination component 198 can also be configured to match the calibration data for the device with the display data for the new display when the display data for the new display corresponds to calibration data for the device. The determination component 198 can also be configured to maintain the calibration data for the device when the display data for the new display corresponds to the calibration data for the device. The determination component 198 can also be configured to generate the calibration data for the device and/or store, at the device, the calibration data for the device. The determination component 198 can also be configured to generate the calibration data from the database and/or store, in the database of the device, the calibration data from the database.
As described herein, a device, such as the device 104, may refer to any device, apparatus, or system configured to perform one or more techniques described herein. For example, a device may be a server, a base station, user equipment, a client device, a station, an access point, a computer, e.g., a personal computer, a desktop computer, a laptop computer, a tablet computer, a computer workstation, or a mainframe  computer, an end product, an apparatus, a phone, a smart phone, a server, a video game platform or console, a handheld device, e.g., a portable video game device or a personal digital assistant (PDA) , a wearable computing device, e.g., a smart watch, an augmented reality device, or a virtual reality device, a non-wearable device, a display or display device, a television, a television set-top box, an intermediate network device, a digital media player, a video streaming device, a content streaming device, an in-car computer, any mobile device, any device configured to generate graphical content, or any device configured to perform one or more techniques described herein. Processes herein may be described as performed by a particular component (e.g., a GPU) , but, in further embodiments, can be performed using other components (e.g., a CPU) , consistent with disclosed embodiments.
GPUs can process multiple types of data or data packets in a GPU pipeline. For instance, in some aspects, a GPU can process two types of data or data packets, e.g., context register packets and draw call data. A context register packet can be a set of global state information, e.g., information regarding a global register, shading program, or constant data, which can regulate how a graphics context will be processed. For example, context register packets can include information regarding a color format. In some aspects of context register packets, there can be a bit that indicates which workload belongs to a context register. Also, there can be multiple functions or programming running at the same time and/or in parallel. For example, functions or programming can describe a certain operation, e.g., the color mode or color format. Accordingly, a context register can define multiple states of a GPU.
Context states can be utilized to determine how an individual processing unit functions, e.g., a vertex fetcher (VFD) , a vertex shader (VS) , a shader processor, or a geometry processor, and/or in what mode the processing unit functions. In order to do so, GPUs can use context registers and programming data. In some aspects, a GPU can generate a workload, e.g., a vertex or pixel workload, in the pipeline based on the context register definition of a mode or state. Certain processing units, e.g., a VFD, can use these states to determine certain functions, e.g., how a vertex is assembled. As these modes or states can change, GPUs may need to change the corresponding context. Additionally, the workload that corresponds to the mode or state may follow the changing mode or state.
FIG. 2 illustrates an example GPU 200 in accordance with one or more techniques of this disclosure. As shown in FIG. 2, GPU 200 includes command processor (CP) 210,  draw call packets 212, VFD 220, VS 222, vertex cache (VPC) 224, triangle setup engine (TSE) 226, rasterizer (RAS) 228, Z process engine (ZPE) 230, pixel interpolator (PI) 232, fragment shader (FS) 234, render backend (RB) 236, L2 cache (UCHE) 238, and system memory 240. Although FIG. 2 displays that GPU 200 includes processing units 220-238, GPU 200 can include a number of additional processing units. Additionally, processing units 220-238 are merely an example and any combination or order of processing units can be used by GPUs according to the present disclosure. GPU 200 also includes command buffer 250, context register packets 260, and context states 261.
As shown in FIG. 2, a GPU can utilize a CP, e.g., CP 210, or hardware accelerator to parse a command buffer into context register packets, e.g., context register packets 260, and/or draw call data packets, e.g., draw call packets 212. The CP 210 can then send the context register packets 260 or draw call data packets 212 through separate paths to the processing units or blocks in the GPU. Further, the command buffer 250 can alternate different states of context registers and draw calls. For example, a command buffer can be structured in the following manner: context register of context N, draw call (s) of context N, context register of context N+1, and draw call (s) of context N+1.
As smartphones increasingly utilize larger display screens compared to the size of device bodies, display panels are becoming ever more important. Indeed, full or large screen smartphone devices are approaching 100%screen-to-body ratios. As screens get larger, more sensors and electronics, e.g., fingerprint sensors, light sensors, and cameras, are beneath the display screen. Additionally, manufacturers or original equipment manufacturers (OEMs) , as well as end users, desire consistent and manageable display effects, especially for smartphones with large displays. Display panel manufacturers are also attempting to achieve consistent optical specifications, but they are governed by the specifications of device manufacturers.
Different types of display panel calibration tools are being adopted by more OEMs and original design manufacturers (ODMs) . Some display panel calibration tools can measure the optical characteristics of display panels. Additionally, display panel calibration tools can take advantage of hardware blocks, e.g., the display processor unit (DPU) , to fix inconsistent display issues, such as color shifting or different device color temperature. In some aspects, the panel calibration process can be carried out during the device assembly stage. For instance, the calibration data of the panel can  be stored in each smartphone or device storage once the calibration process is completed.
Some aspects of display calibration tools can help to achieve the desired display effects after the calibration process is performed on the device. However, this may not resolve other issues, such as how to perform a display panel calibration process after the initial installation of a new or replacement display panel on the device.
The display panel is one component on a smartphone that is relatively easy to brake. For instance, display panels are often accidently broken by consumers, and when a display is damaged consumers or users will repair the display or replace the device. Further, the display is one of the most expensive components to replace on a smartphone. For example, consumers can spend an increasing amount of money to replace a display panel on a smartphone once a panel is broken. Understandingly, consumers often expect the same quality of display performance with a new or replacement display panel, as compared to the original device display panel. Indeed, consumers are often unsatisfied with a replacement display that includes a different color temperature or other display issues, such as calibration process issues.
Aspects of the present disclosure can improve the display calibration process for new or replacement display modules, which are replaced in damage devices. In some aspects, the present disclosure can improve the calibration process for a new or replacement display panel, which may otherwise be performed at a post-sales service center. For instance, aspects of the present disclosure can setup and perform the entire display panel calibration process. Further, aspects of the present disclosure can improve the calibration process for a new or replacement display panel during the manufacturing process. For example, the present disclosure can prevent the need to send a device back to the factory for display calibration when installing a new or replacement display panel, which can save both time and money.
The present disclosure proposes a method to calibrate a new or replacement display panel with a user device or smartphone, e.g., after the original display panel is replaced. For instance, one aspect of the present disclosure can utilize a variety of calibration data, e.g., that is generated during mass production of smartphones or devices, in order to achieve the desired and consistent display effects. Aspects of the present disclosure can avoid re-calibrating the display panel in either the service center or in a manufacturing facility. Some aspects of the present disclosure can store  coding panel calibration tuning files, e.g., in order to calibrate the new or replacement display panels.
Additionally, calibration techniques of the present disclosure can be based on the individual specifications for certain models of display panels. For instance, if a display panel does not have its own unique user identifier (ID) , it will have its own basic optical characteristics, such as gamut and color temperature, which can be defined by red (R) , green (G) , blue (B) , white (W) (RGBW) data. For example, RGBW data is the coordinates of red/green/blue/white color in the form of International Commission on Illumination (CIE) 1931 XYZ color space or other color space. Some display panels can store this color or optical data into one time programmable (OTP) memory on the panel module.
Display panels which have the same or similar optical characteristics may be expected to achieve consistent visual effects with the same or similar display calibration data. Accordingly, it is important for new or replacement display panels to include the same or similar display calibration data as the original display panel on a device. In some aspects, the application processor (AP) or another display processor can read the panel data, e.g., RGBW data, after the device is powered on. As indicated above, a new or replacement display can have its own RGBW data, such that the AP or other display processor can read the RGBW data or the replacement display.
The present disclosure can include pre-generated data and/or tuning results for display panels, e.g., in a database on the device. Accordingly, the data and/or tuning results for the replacement displays can be compared to the database data during the calibration of the replacement display. So the present disclosure can compare the new display panel RGBW data with the database of display panel RGBW data that is stored on the device.
In some aspects, the present disclosure can also calculate an RGBW data difference between the database RGBW data and the replacement display RGBW data. For instance, when the difference between the display data and a pre-generated database data is less than a threshold, the present disclosure can use the pre-generated or pre-calculated database data to calibrate the display. Moreover, aspects of the present disclosure can read panel RGBW data from OTP memory on the device, as well as store display panel RGBW data and calibration data.
FIG. 3 illustrate an example flowchart 300 in accordance with one or more techniques of this disclosure. As shown in FIG. 3, flowchart 300 includes the calibration steps  for a new or replacement display, which includes steps 302-314. At step 302, aspects of the present disclosure can start the calibration process. After this step, aspects of the present disclosure can calibrate other smartphones or devices. At step 304, aspects of the present disclosure can connect a smartphone or device with calibration tools. At step 306, aspects of the present disclosure can measure the display panel optical characters.
At step 308, aspects of the present disclosure can read the display panel RGBW data, e.g., from OTP memory at the panel module. As mentioned herein, each panel module can have its own RTW data. At step 310, aspects of the present disclosure can generate the calibration data or file, which can contain the display panel RGBW data. At step 312, aspects of the present disclosure can store the calibration data or file to the smartphone or device. At step 314, aspects of the present disclosure can store the panel RGBW data and/or the calibration data.
FIG. 4 illustrate an example flowchart 400 in accordance with one or more techniques of this disclosure. As shown in FIG. 4, flowchart 400 includes the steps to generate calibration data or files, i.e., golden module data, which includes steps 402-414. At step 402, aspects of the present disclosure can start the calibration generation process. At step 404, aspects of the present disclosure can collect panel RGBW data and calibration data, e.g., calibration data coordinate pairs. At step 406, aspects of the present disclosure can classify RGBW data by color temperature.
At step 408, aspects of the present disclosure can classify RGBW data by gamut. At step 410, aspects of the present disclosure can identify a number, e.g., 20 to 200, of pre-calculated or pre-generated RGBW data, i.e., golden module or typical RGBW data. At step 412, aspects of the present disclosure can determine or identify the calibration data or files that correspond to or are related to the pre-calculated RGBW data. At step 414, aspects of the present disclosure can build or install the calibration files into the user device or smartphone image.
As indicated above, aspects of the present disclosure can install the 20-200 pre-generated RGBW data calibration files, i.e., golden module or typical data files, into the device. As such, in some aspects, devices or smartphones can include this pre-generated or pre-calculated golden module data. So the present disclosure can pre-generate or pre-calculate a plurality of data that corresponds to a plurality of different types of replacement display panels. The replacement display can then be matched to  the pre-generated or pre-calculated data, e.g., assuming that the difference between the display data and the pre-calculated data is less than a threshold.
Table 1 below displays one example of a table including a number of different pre-calculated or pre-generated RGBW data calibration files.
Figure PCTCN2019106416-appb-000001
Table 1
FIG. 5 illustrate an example flowchart 500 in accordance with one or more techniques of this disclosure. As shown in FIG. 5, flowchart 500 includes example steps for a device or smartphone power-on procedure, i.e., software at the device or smartphone, which includes steps 502-514. At step 502, aspects of the present disclosure can power on a smartphone or device. At step 504, aspects of the present disclosure can read the RGBW data for a new or replacement display panel, e.g., data from a newly installed panel. As mentioned above, each display panel can have its own RGBW data. In some aspects, this RGBW data can be an index, and each data from the database or golden module can also be an index. At step 506, aspects of the present disclosure can compare the new display panel RGBW data with calibration data on the device, e.g., default or pre-generated calibration data. The default or pre-generated calibration data can correspond to the damaged display module.
At step 508, aspects of the present disclosure can determine whether the new display panel RGBW data is similar to the default calibration data on the device. If the new display panel RGBW data is similar to the default calibration data on the device, aspects of the present disclosure can continue with the regular power on procedure. However, if the new display panel RGBW data is not similar to the default calibration data on the device, aspects of the present disclosure can proceed to the steps below.
At step 510, aspects of the present disclosure can match the new display panel RGBW data with similar data from the database or golden module data. For example, this database or golden module data stored on the device can be 20 to 200 data files. At step 512, aspects of the present disclosure can replace the default calibration data on the device with the matched data from the database or golden module data. As such,  unless the default calibration data is similar to the new display panel RGBW data, it can be replaced with data from the database that is similar to the new display data. At step 514, aspects of the present disclosure can continue with the regular power on procedure of the device.
In some aspects, if the display module is damaged, then the software at the device may not be aware of this. For example, after a new display module is installed in the device, the software may continue to use the parameters for the previously damaged display module. However, the present disclosure can determine the new panel RGBW data, and then compare the new panel RGBW data with the calibration data, e.g., pre-generated calibration data. If the new panel RGBW data is not similar to the calibration data at the device, the present disclosure can match the new panel RGBW data with the data from the database stored on the device. Further, the present disclosure can replace the default calibration file with the matched data from the database. Accordingly, aspects of the present disclosure can compare the new panel RGBW data with the device calibration data, and if they are similar, there is no need to look at the database data.
Aspects of the present disclosure can provide a number of manners in which to compare whether a new display panel is similar to the previous display panel, e.g., using RGBW data. For example, aspects of the present disclosure can calculate the color difference between the display panels using RGBW data. In some aspects, the present disclosure can convert two panels’ red, green, blue, and white color coordinates from CIE XYZ color space to CIE LCH color space. The present disclosure can then calculate these color differences between the two panels, such as by using a formula, e.g., a DE2000 formula. Aspects of the present disclosure can then save the results as white, e.g., DE2000 white, red, e.g., DE2000 red, green, e.g., DE2000 green, or blue, e.g., DE2000 blue.
Aspects of the present disclosure can then calculate the average color difference between the panels. For instance, the present disclosure can calculate the average color differences of the white, red, green, and blue colors. Further, the present disclosure can then save the average difference as AVE (RGBW) .
Additionally, aspects of the present disclosure can compare the average color difference with a threshold or standard. For example, if AVE (RGBW) is less than or equal to a threshold, e.g., 3, then these two panels can be treated as similar panels, as their optical characteristics were matched. In terms of DE2000, if the color difference  is large than a certain threshold, e.g., 3, then the color difference can be observed by a visual check. In practice, e.g., based on a real situation, aspects of the present disclosure may not adhere to the threshold or standard based on some color values.
As mentioned above, aspects of the present disclosure can generate a calibration file or display data for an individual display device. Aspects of the present disclosure can also identify or determine a pre-configured calibration file from a database of pre-figured calibration files, e.g., stored on the device. Further, aspects of the present disclosure can determine which pre-configured calibration file is the most similar to the calibration file for the replacement display panel. In addition, aspects of the present disclosure can replace the calibration file or display data for the device with the display data from the database when the display data for the new display is similar to the display data for the device.
Aspects of the present disclosure also includes a number of advantages or benefits. For instance, aspects of the present disclosure can achieve a high visual quality for a replacement display module, which can be equal to the visual quality for the originally calibrated display module on the device. Aspects of the present disclosure can also save the cost of purchasing the expensive equipment for display calibration when replacing a display panel. Moreover, aspects of the present disclosure can save time and money by not needing to send a device with a new or replacement panel to a factory for calibration.
FIG. 6 illustrates an example flowchart 600 of an example method in accordance with one or more techniques of this disclosure. The method may be performed by an apparatus such as a display processor, a display processing unit (DPU) , a central processing unit (CPU) , a graphics processing unit (GPU) , or a digital signal processor (DSP) . At 602, the apparatus may generate calibration data for a device and/or store, at the device, the calibration data for the device, as described in connection with the examples in FIGs. 3, 4, and 5. At 604, the apparatus can generate the calibration data from the database and/or store, in the database of the device, the calibration data from the database, as described in connection with the examples in FIGs. 3, 4, and 5.
At 606, the apparatus can identify display data for a new display on a device, as described in connection with the examples in FIGs. 3, 4, and 5. At 608, the apparatus can also determine whether the display data for the new display corresponds to calibration data for the device, as described in connection with the examples in FIGs. 3, 4, and 5. At 610, the apparatus can compare the display data for the new display  with the calibration data for the device, as described in connection with the examples in FIGs. 3, 4, and 5. At 612, the apparatus can also match the calibration data for the device with the display data for the new display when the display data for the new display corresponds to calibration data for the device, as described in connection with the examples in FIGs. 3, 4, and 5.
At 614, the apparatus can maintain the calibration data for the device when the display data for the new display corresponds to the calibration data for the device, as described in connection with the examples in FIGs. 3, 4, and 5. At 616, the apparatus can identify the calibration data from the database when the calibration data from the database corresponds to the display data for the new display, as described in connection with the examples in FIGs. 3, 4, and 5. At 618, the apparatus can also determine whether the calibration data from the database corresponds to the display data for the new display, as described in connection with the examples in FIGs. 3, 4, and 5.
At 620, the apparatus can also match the calibration data from the database with the display data for the new display, as described in connection with the examples in FIGs. 3, 4, and 5. In some aspects, the calibration data from the database can be similar to the display data for the new display, as described in connection with the examples in FIGs. 3, 4, and 5. Further, the calibration data from the database can be identified from a group of calibration data stored in the database of the device, as described in connection with the examples in FIGs. 3, 4, and 5.
At 622, the apparatus can replace the calibration data for the device with calibration data from a database when the display data for the new display does not correspond to the calibration data for the device, as described in connection with the examples in FIGs. 3, 4, and 5. In some aspects, the calibration data from the database can correspond to the display data for the new display, as described in connection with the examples in FIGs. 3, 4, and 5. Additionally, the display data for the new display is red (R) , green (G) , blue (B) , white (W) (RGBW) color data, as described in connection with the examples in FIGs. 3, 4, and 5. Moreover, the determination whether the display data for the new display corresponds to the calibration data for the device can be performed by a central processing unit (CPU) , a graphics processing unit (GPU) , or a digital signal processor (DSP) , as described in connection with the examples in FIGs. 3, 4, and 5.
In one configuration, a method or apparatus for display processing is provided. The apparatus may be a display processor, a display processing unit (DPU) , a CPU, a GPU, a DSP, or a video processor or some other processor that can perform display processing. In one aspect, the apparatus may be the processing unit 120 within the device 104, or may be some other hardware within device 104 or another device. The apparatus may include means for identifying display data for a new display on a device. The apparatus may also include means for determining whether the display data for the new display corresponds to calibration data for the device. The apparatus may also include means for replacing the calibration data for the device with calibration data from a database when the display data for the new display does not correspond to the calibration data for the device, where the calibration data from the database can correspond to the display data for the new display. The apparatus may also include means for comparing the display data for the new display with the calibration data for the device. The apparatus may also include means for identifying the calibration data from the database when the calibration data from the database corresponds to the display data for the new display. The apparatus may also include means for determining whether the calibration data from the database corresponds to the display data for the new display. The apparatus may also include means for matching the calibration data from the database with the display data for the new display. The apparatus may also include means for matching the calibration data for the device with the display data for the new display when the display data for the new display corresponds to calibration data for the device. The apparatus may also include means for maintaining the calibration data for the device when the display data for the new display corresponds to the calibration data for the device. The apparatus may also include means for generating the calibration data for the device and/or means for storing, at the device, the calibration data for the device. The apparatus may also include means for generating the calibration data from the database and/or means for storing, in the database of the device, the calibration data from the database.
The subject matter described herein can be implemented to realize one or more benefits or advantages. For instance, the described display and/or graphics processing techniques can be used by a display processor, a DPU, a GPU, a CPU, a DSP, or a video processor or some other processor that can perform display processing to implement the refresh offset techniques described herein. This can also be accomplished at a low cost compared to other display or graphics processing  techniques. Moreover, the display or graphics processing techniques herein can improve or speed up data processing or execution. Further, the display or graphics processing techniques herein can improve resource or data utilization and/or resource efficiency. Additionally, aspects of the present disclosure can utilize a display calibration process that can reduce both time spent and money consumed during a display panel replacement.
Further disclosure is included in the Appendix.
In accordance with this disclosure, the term “or” may be interrupted as “and/or” where context does not dictate otherwise. Additionally, while phrases such as “one or more” or “at least one” or the like may have been used for some features disclosed herein but not others, the features for which such language was not used may be interpreted to have such a meaning implied where context does not dictate otherwise.
In one or more examples, the functions described herein may be implemented in hardware, software, firmware, or any combination thereof. For example, although the term “processing unit” has been used throughout this disclosure, such processing units may be implemented in hardware, software, firmware, or any combination thereof. If any function, processing unit, technique described herein, or other module is implemented in software, the function, processing unit, technique described herein, or other module may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media may include computer data storage media or communication media including any medium that facilitates transfer of a computer program from one place to another. In this manner, computer-readable media generally may correspond to (1) tangible computer-readable storage media, which is non-transitory or (2) a communication medium such as a signal or carrier wave. Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, code and/or data structures for implementation of the techniques described in this disclosure. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, . Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the  above should also be included within the scope of computer-readable media. A computer program product may include a computer-readable medium.
The code may be executed by one or more processors, such as one or more digital signal processors (DSPs) , general purpose microprocessors, application specific integrated circuits (ASICs) , arithmetic logic units (ALUs) , field programmable logic arrays (FPGAs) , or other equivalent integrated or discrete logic circuitry. Accordingly, the term “processor, ” as used herein may refer to any of the foregoing structure or any other structure suitable for implementation of the techniques described herein. Also, the techniques could be fully implemented in one or more circuits or logic elements.
The techniques of this disclosure may be implemented in a wide variety of devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of ICs, e.g., a chip set. Various components, modules or units are described in this disclosure to emphasize functional aspects of devices configured to perform the disclosed techniques, but do not necessarily need realization by different hardware units. Rather, as described above, various units may be combined in any hardware unit or provided by a collection of interoperative hardware units, including one or more processors as described above, in conjunction with suitable software and/or firmware.
Various examples have been described. These and other examples are within the scope of the following claims.
Appendix
One novel calibration method for new replaced display panel of damaged devices
Display calibration on factory line
Display screen becomes more and more important for “full screen” smartphone, we are approaching 100%screen-to-body ratio as more sensors, such as fingerprint, light and camera are hidden under display screen. all OEMs and end users are requesting consistent and managed display effects, especially for flagship smartphones
Panel manufacturers have already tried their best effort to achieve consistent optical spec on their factory line, but they still are under our OEMs’ expectation
Per display panel calibration (on factory floor) tool has been adopted by more and more OEMs/ODMs those years, this tool measure the display panel optical characters, and take advantage of our hardware blocks -DPU (Display Process Unit) to fix those inconsistent display issues, such as color shift, different color temperature from device to device.
The panel calibration process is carried out during the device assembly stage on the factory line, the calibration data of the panel is stored into each smartphone storage (not inside the display module) once the calibration is done
Display calibration tools can help to achieve desired consistent display effects after calibration on factory line, but they don’t resolve another issue, how is to do display panel calibration out of factory line, such as post-sales service (repairment) center
The display panel is easy to be broken accidently by consumers, and it is most expensive consumable on smartphone. When consumers spend lots of money to replace one new display panel on their phone after panel is broken, they expect the same display effect, they can’ t accept one new panel with different color temperature or other issues
There are some solutions for the panel calibration out of factory line before,
1. Calibrate the new panel in post sales service center: which need to setup the whole display panel calibration fixture and equipment in each center, and it is quite expensive
2. Calibrate the new panel in factory: send the device (along with the display panel) back to the factory for calibration, it costs a lot of time for back-forth delivery
3. Just skip the panel calibration step for replaced panel, which is really bad user experience
Overview
The present disclosure proposes one novel method to take advantage of millions of calibration data which is generated during mass production factory floor calibration to achieve desired and consistent display effect, and the new method can avoid the re-calibration either in service center or in factory line.
The present disclosure is based on the basic facts (for a certain model of display panel) 
1. Each display panel doesn’ t have their own unique ID (User Identifier) , but has its own basic optical characters, such as gamut and color temperature, which is defined by RGBW data (the coordinates of Red/Green/Blue/White color in form of CIE 1931 XYZ or other color space) , and most panels already stored those data into OTP (one time programmable) memory on panel module
2. Those panels which have same or similar optical characters are expected to achieve consistent visual effect with same and similar calibration data
3. AP (Application Processor) can read this panel data (RGBW) after devices power on
The present disclosure –Panel calibration on factory line
[Corrected under Rule 26, 04.11.2019]
Figure WO-DOC-FIGURE-1
The present disclosure –Generate golden module calibration data/files
[Corrected under Rule 26, 04.11.2019]
Figure WO-DOC-FIGURE-2
The present disclosure –Smartphone power on procedure at service center
[Corrected under Rule 26, 04.11.2019]
How to compare the two panels are same/similar or not with RGBW data? 
1. Calculate the color difference of RGBW Convert two panels’ white, red, green and blue colors’ coordinates from CIE XYZ to CIE LCH then calculate these colors’ differences between two panels (by using DelteE2000 formula ) Save the results as DE2000 (white) , DE2000 (red) , DE2000 (green) , DE2000 (blue) .
2. Calculate the average color difference Calculate the average color differences of white, red, green and blue, save the average difference as AVE (RGBW)
3. Compare the average color difference with the standard if AVE (RGBW) <= 3 , then these two panels can be treated as similar panel (optical characteristic matched)
Note:
1. In terms of DE2000, if color difference is large than 3, then it can be observed by visual check
2. In practice, based on the real situation, we can loose the standard to some value large than 3
Advantages
There are several obvious advantages
1. Achieve the best visual quality for a replaced display module (equal to the calibrated display module)
2. Save the cost of purchase the expensive equipment (for display calibration) in service center
3. Save the time and cost for sending the device (with the new panel ) to factory for calibration.
Detection
It is easy to detect the present disclosure with the methods below.
1. Check whether the post sales service center do new display panel calibration and how to the calibration
2. If the service center can do calibration, understand they do calibration with calibration equipment in service center, or send the device back to factory line.
3. Extract the calibration data/files from device, and compare it with previous one

Claims (40)

  1. A method of display processing, comprising:
    identifying display data for a new display on a device;
    determining whether the display data for the new display corresponds to calibration data for the device; and
    replacing the calibration data for the device with calibration data from a database when the display data for the new display does not correspond to the calibration data for the device, wherein the calibration data from the database corresponds to the display data for the new display.
  2. The method of claim 1, further comprising:
    comparing the display data for the new display with the calibration data for the device.
  3. The method of claim 1, further comprising:
    identifying the calibration data from the database when the calibration data from the database corresponds to the display data for the new display.
  4. The method of claim 3, further comprising:
    determining whether the calibration data from the database corresponds to the display data for the new display.
  5. The method of claim 3, further comprising:
    matching the calibration data from the database with the display data for the new display.
  6. The method of claim 3, wherein the calibration data from the database is similar to the display data for the new display.
  7. The method of claim 3, wherein the calibration data from the database is identified from a group of calibration data stored in the database of the device.
  8. The method of claim 1, further comprising:
    matching the calibration data for the device with the display data for the new display when the display data for the new display corresponds to calibration data for the device.
  9. The method of claim 1, further comprising:
    maintaining the calibration data for the device when the display data for the new display corresponds to the calibration data for the device.
  10. The method of claim 1, further comprising:
    generating the calibration data for the device; and
    storing, at the device, the calibration data for the device.
  11. The method of claim 1, further comprising:
    generating the calibration data from the database; and
    storing, in the database of the device, the calibration data from the database.
  12. The method of claim 1, wherein the display data for the new display is red (R) , green (G) , blue (B) , white (W) (RGBW) color data.
  13. The method of claim 1, wherein the determination whether the display data for the new display corresponds to the calibration data for the device is performed by a central processing unit (CPU) , a graphics processing unit (GPU) , or a digital signal processor (DSP) .
  14. An apparatus for display processing, comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    identify display data for a new display on a device;
    determine whether the display data for the new display corresponds to calibration data for the device; and
    replace the calibration data for the device with calibration data from a database when the display data for the new display does not correspond to the calibration  data for the device, wherein the calibration data from the database corresponds to the display data for the new display.
  15. The apparatus of claim 14, wherein the at least one processor is further configured to:
    compare the display data for the new display with the calibration data for the device.
  16. The apparatus of claim 14, wherein the at least one processor is further configured to:
    identify the calibration data from the database when the calibration data from the database corresponds to the display data for the new display.
  17. The apparatus of claim 16, wherein the at least one processor is further configured to:
    determine whether the calibration data from the database corresponds to the display data for the new display.
  18. The apparatus of claim 16, wherein the at least one processor is further configured to:
    match the calibration data from the database with the display data for the new display.
  19. The apparatus of claim 16, wherein the calibration data from the database is similar to the display data for the new display.
  20. The apparatus of claim 16, wherein the calibration data from the database is identified from a group of calibration data stored in the database of the device.
  21. The apparatus of claim 14, wherein the at least one processor is further configured to:
    match the calibration data for the device with the display data for the new display when the display data for the new display corresponds to calibration data for the device.
  22. The apparatus of claim 14, wherein the at least one processor is further configured to:
    maintain the calibration data for the device when the display data for the new display corresponds to the calibration data for the device.
  23. The apparatus of claim 14, wherein the at least one processor is further configured to:
    generate the calibration data for the device; and
    store, at the device, the calibration data for the device.
  24. The apparatus of claim 14, wherein the at least one processor is further configured to:
    generate the calibration data from the database; and
    store, in the database of the device, the calibration data from the database.
  25. The apparatus of claim 14, wherein the display data for the new display is red (R) , green (G) , blue (B) , white (W) (RGBW) color data.
  26. The apparatus of claim 14, wherein the determination whether the display data for the new display corresponds to the calibration data for the device is performed by a central processing unit (CPU) , a graphics processing unit (GPU) , or a digital signal processor (DSP) .
  27. An apparatus for display processing, comprising:
    means for identifying display data for a new display on a device;
    means for determining whether the display data for the new display corresponds to calibration data for the device; and
    means for replacing the calibration data for the device with calibration data from a database when the display data for the new display does not correspond to the calibration data for the device, wherein the calibration data from the database corresponds to the display data for the new display.
  28. The apparatus of claim 27, further comprising:
    means for comparing the display data for the new display with the calibration data for the device.
  29. The apparatus of claim 27, further comprising:
    means for identifying the calibration data from the database when the calibration data from the database corresponds to the display data for the new display.
  30. The apparatus of claim 29, further comprising:
    means for determining whether the calibration data from the database corresponds to the display data for the new display.
  31. The apparatus of claim 29, further comprising:
    means for matching the calibration data from the database with the display data for the new display.
  32. The apparatus of claim 29, wherein the calibration data from the database is similar to the display data for the new display.
  33. The apparatus of claim 29, wherein the calibration data from the database is identified from a group of calibration data stored in the database of the device.
  34. The apparatus of claim 27, further comprising:
    means for matching the calibration data for the device with the display data for the new display when the display data for the new display corresponds to calibration data for the device.
  35. The apparatus of claim 27, further comprising:
    means for maintaining the calibration data for the device when the display data for the new display corresponds to the calibration data for the device.
  36. The apparatus of claim 27, further comprising:
    means for generating the calibration data for the device; and
    means for storing, at the device, the calibration data for the device.
  37. The apparatus of claim 27, further comprising:
    means for generating the calibration data from the database; and
    means for storing, in the database of the device, the calibration data from the database.
  38. The apparatus of claim 27, wherein the display data for the new display is red (R) , green (G) , blue (B) , white (W) (RGBW) color data.
  39. The apparatus of claim 27, wherein the determination whether the display data for the new display corresponds to the calibration data for the device is performed by a central processing unit (CPU) , a graphics processing unit (GPU) , or a digital signal processor (DSP) .
  40. A computer-readable medium storing computer executable code for display processing, comprising code to:
    identify display data for a new display on a device;
    determine whether the display data for the new display corresponds to calibration data for the device; and
    replace the calibration data for the device with calibration data from a database when the display data for the new display does not correspond to the calibration data for the device, wherein the calibration data from the database corresponds to the display data for the new display.
PCT/CN2019/106416 2019-09-18 2019-09-18 Methods and apparatus for calibrating new displays WO2021051305A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/106416 WO2021051305A1 (en) 2019-09-18 2019-09-18 Methods and apparatus for calibrating new displays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/106416 WO2021051305A1 (en) 2019-09-18 2019-09-18 Methods and apparatus for calibrating new displays

Publications (1)

Publication Number Publication Date
WO2021051305A1 true WO2021051305A1 (en) 2021-03-25

Family

ID=74883301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106416 WO2021051305A1 (en) 2019-09-18 2019-09-18 Methods and apparatus for calibrating new displays

Country Status (1)

Country Link
WO (1) WO2021051305A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329842A (en) * 2007-06-22 2008-12-24 深圳创维-Rgb电子有限公司 Liquid crystal display capable of correcting GAMA of display screen and method for making the same
US20160070414A1 (en) * 2014-09-05 2016-03-10 Apple Inc. Electronic Devices With Replaceable Subassemblies
CN105913797A (en) * 2016-06-16 2016-08-31 深圳市艾比森光电股份有限公司 LED display screen module correction data automatic loading method and system
CN108010479A (en) * 2017-12-04 2018-05-08 合肥联宝信息技术有限公司 The control method and device of the display panel of a kind of electronic equipment
CN108845692A (en) * 2018-06-01 2018-11-20 Oppo广东移动通信有限公司 Replacing options and electronic device
CN109857356A (en) * 2019-02-15 2019-06-07 青岛海信移动通信技术股份有限公司 A kind of screen display method, electronic equipment and storage medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329842A (en) * 2007-06-22 2008-12-24 深圳创维-Rgb电子有限公司 Liquid crystal display capable of correcting GAMA of display screen and method for making the same
US20160070414A1 (en) * 2014-09-05 2016-03-10 Apple Inc. Electronic Devices With Replaceable Subassemblies
CN105913797A (en) * 2016-06-16 2016-08-31 深圳市艾比森光电股份有限公司 LED display screen module correction data automatic loading method and system
CN108010479A (en) * 2017-12-04 2018-05-08 合肥联宝信息技术有限公司 The control method and device of the display panel of a kind of electronic equipment
CN108845692A (en) * 2018-06-01 2018-11-20 Oppo广东移动通信有限公司 Replacing options and electronic device
CN109857356A (en) * 2019-02-15 2019-06-07 青岛海信移动通信技术股份有限公司 A kind of screen display method, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
US11481865B2 (en) Methods and apparatus for tensor object support in machine learning workloads
US11769234B2 (en) Methods and apparatus for histogram based tone mapping
US11308868B2 (en) Methods and apparatus for utilizing display correction factors
US11625806B2 (en) Methods and apparatus for standardized APIs for split rendering
WO2021134462A1 (en) Methods and apparatus to facilitate region of interest tracking for in-motion frames
WO2021051305A1 (en) Methods and apparatus for calibrating new displays
WO2022141022A1 (en) Methods and apparatus for adaptive subsampling for demura corrections
US20210111976A1 (en) Methods and apparatus for augmented reality viewer configuration
US11080928B2 (en) Methods and apparatus for visibility stream management
WO2021102772A1 (en) Methods and apparatus to smooth edge portions of an irregularly-shaped display
US20230298123A1 (en) Compatible compression for different types of image views
US11727631B2 (en) Dynamic variable rate shading
US11900840B2 (en) Chrominance optimizations in rendering pipelines
US20220284536A1 (en) Methods and apparatus for incremental resource allocation for jank free composition convergence
WO2023151067A1 (en) Display mask layer generation and runtime adjustment
WO2022204920A1 (en) Heuristic-based variable rate shading for mobile games
WO2024055234A1 (en) Oled anti-aging regional compensation
WO2023225771A1 (en) Concurrent frame buffer composition scheme
US20220172695A1 (en) Methods and apparatus for plane planning for overlay composition
US20210295754A1 (en) Methods and apparatus for compositor learning models
WO2021087826A1 (en) Methods and apparatus to improve image data transfer efficiency for portable devices
US20200279433A1 (en) Methods and apparatus for gpu tile clearance
TW202240526A (en) Saliency based frame color enhancement
CN117980956A (en) Dynamic variable rate coloring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945791

Country of ref document: EP

Kind code of ref document: A1