WO2021051266A1 - 用于led装置的驱动器,led系统及led装置的适配方法 - Google Patents

用于led装置的驱动器,led系统及led装置的适配方法 Download PDF

Info

Publication number
WO2021051266A1
WO2021051266A1 PCT/CN2019/106175 CN2019106175W WO2021051266A1 WO 2021051266 A1 WO2021051266 A1 WO 2021051266A1 CN 2019106175 W CN2019106175 W CN 2019106175W WO 2021051266 A1 WO2021051266 A1 WO 2021051266A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
emitting diode
rectifier
ballast
light
Prior art date
Application number
PCT/CN2019/106175
Other languages
English (en)
French (fr)
Inventor
邹强
刘智超
晏琦
Original Assignee
卡任特照明解决方案有限公司
邹强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卡任特照明解决方案有限公司, 邹强 filed Critical 卡任特照明解决方案有限公司
Priority to US17/761,258 priority Critical patent/US20220369439A1/en
Priority to PCT/CN2019/106175 priority patent/WO2021051266A1/zh
Publication of WO2021051266A1 publication Critical patent/WO2021051266A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/305Frequency-control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current

Definitions

  • the embodiment of the present invention relates to a driver for an LED device, an LED system, and an adaptation method of the LED device.
  • the modified LED lamp can be used to replace the original fluorescent lamp to increase the luminous efficiency and improve the lighting effect.
  • a driver for a light-emitting diode device is coupled between a ballast and the light-emitting diode device, and is used for adapting the light-emitting diode device and the ballast.
  • the driver includes a rectifier, a current regulator and a detection module.
  • the rectifier is used for coupling with the ballast and used for converting the alternating current from the ballast into direct current.
  • the current regulator is coupled between the rectifier and the light emitting diode device, and is used for receiving the direct current from the rectifier and outputting a driving current to the light emitting diode device.
  • the detection module is used to detect a signal that characterizes the output characteristic of the ballast during the startup phase of the light-emitting diode device.
  • the current regulator when the signal satisfies a preset condition, the current regulator is used to convert the direct current from the rectifier into the drive current, and the value of the drive current is less than or equal to a preset current threshold.
  • the current threshold is set to be less than the maximum current that the light emitting diode device can withstand without damage.
  • a light-emitting diode system includes a light-emitting diode device and a driver for the light-emitting diode device.
  • the driver is used for coupling between a ballast and the light-emitting diode device and used for making the light-emitting diode device and the The said ballast is compatible.
  • the driver includes a rectifier, a current regulator and a detection module.
  • the rectifier is used to couple with the ballast and it is used to convert the alternating current from the ballast into a direct current.
  • the current regulator is coupled between the rectifier and the light emitting diode device, and is used for receiving the direct current from the rectifier and outputting a driving current to the light emitting diode device.
  • the detection module is used to detect a signal that characterizes the output characteristic of the ballast during the startup phase of the light-emitting diode device.
  • the current regulator is used to convert the direct current from the rectifier into the drive current, and the value of the drive current is less than or equal to a preset current threshold.
  • the current threshold is set to be less than the maximum current that the light emitting diode device can withstand without damage.
  • a method for adapting a light-emitting diode device and a ballast includes: converting an alternating current from the ballast into a direct current through a rectifier; receiving the direct current from the rectifier through a current regulator and sending the light to the light
  • the diode device outputs a driving current; the signal that characterizes the output characteristics of the ballast is detected during the startup phase of the light-emitting diode device; and when the signal meets a preset condition, the direct current from the rectifier is converted
  • the value of the drive current is less than or equal to a preset current threshold, and the preset current threshold is less than the maximum current that the light emitting diode device can withstand without damage.
  • Fig. 1 is a schematic diagram of an LED system according to a specific embodiment of the present invention.
  • Fig. 2 is a schematic diagram of an LED system according to another embodiment of the present invention.
  • Fig. 3 is a schematic diagram of an LED system according to another embodiment of the present invention.
  • Fig. 4 is a schematic diagram of an LED system according to another embodiment of the present invention.
  • Fig. 5 is a schematic diagram of an LED system according to another embodiment of the present invention.
  • Fig. 6 is a schematic flowchart of a method for adapting an LED device and a ballast according to a specific embodiment of the present invention.
  • the embodiment of the present invention relates to an LED driver and an LED system including the LED driver.
  • the LED driver can adapt the LED device to multiple types of ballasts, so that the LED system including the LED driver can be applied to multiple types of ballasts.
  • FIG. 1 is a schematic diagram of an LED system 100 according to a specific embodiment of the present invention.
  • the LED system 100 includes an LED device 120 and a driver 110 for the LED device.
  • the driver 110 is used for coupling between the ballast 910 and the LED device 120, and for making the LED device 120 and the ballast 910 It is compatible, that is, the LED system 100 including the driver 110 can work normally after being coupled to the ballast 910.
  • the driver 110 includes a rectifier 111, a current regulator 113 and a detection module 115.
  • the rectifier 111 is used for coupling with the ballast 910 and used for converting the alternating current from the ballast 910 into direct current.
  • the current regulator 113 is coupled between the rectifier 111 and the LED device 120, and is used to receive the direct current from the rectifier 111 and output a driving current to the LED device 120.
  • the detection module 115 is used to detect a signal that characterizes the output characteristics of the ballast 910 during the startup phase of the LED device 120; wherein, the startup phase refers to the time period from when the ballast 910 is energized to when the LED device lights up, usually It is within 0.1 to 2 seconds after the ballast is energized. Since different types of ballasts have different output characteristics, the signal that characterizes the output characteristics of the ballast 910 can be detected, and the output current can be processed according to its output characteristics, so that the final output to the LED device 120 is driven. The current meets the working requirements of the LED device.
  • the current regulator 113 converts the direct current from the rectifier 111 into a driving current .
  • the value of the driving current is less than or equal to a preset current threshold, and the preset current threshold is less than the maximum current that the LED device 120 can withstand without damage; this can ensure that the LED device 120 is driven by the driving current normal work.
  • the preset current threshold is set to 40%-80% of the maximum current.
  • the current regulator 113 When the signal does not meet the preset condition, that is, when the output characteristic of the ballast represented by the signal can be adapted or compatible with the LED device, the current regulator 113 is used to transfer the direct current from the rectifier 111 It is output to the LED device 120 as a driving current.
  • the DC current output by the rectifier 111 is less than the preset current threshold, so the current regulator 113 can directly transmit the DC current to the LED device 120 by short-circuiting or other means to make the LED device work normally.
  • the detection module 115 is coupled between the output terminal of the ballast 910 and the current regulator 113 for detecting the AC output of the ballast 910 during the startup phase of the LED device 120 Current or AC voltage, and output the detected signal to the current regulator 113.
  • a corresponding preset value range is set for the above detection index, namely: the AC current output by the ballast or the AC voltage output by the ballast, when the AC current or AC voltage output by the ballast
  • the DC current output by the ballast 910 after being rectified by the rectifier 111 can directly meet the operating requirements of the LED device, that is, the DC current output by the rectifier 111 is less than or equal to the preset current Therefore, it is not necessary to process the DC current, and the current regulator 113 directly outputs the DC current from the rectifier 111 as a driving current to the LED device.
  • the current regulator 113 When the AC current or AC voltage output by the ballast exceeds its corresponding preset value range, it means that the DC current output by the rectifier 111 cannot meet the working requirements of the LED device 120. Therefore, the current regulator 113 is required to treat the DC After the current is converted, it is provided to the LED device 120. Therefore, the preset condition is set as: the value of the AC current output by the ballast and the AC voltage output by the ballast exceeds the corresponding preset value range, and when the preset condition is met, the current regulator 113 converts or regulates direct current.
  • the output frequency of the ballast can be obtained by analyzing the AC current or AC voltage output by the ballast 910, and the output frequency can be used to determine whether to process the DC current output by the rectifier. Specifically, when the frequency of the AC current or AC voltage output by the ballast 910 is lower than the preset frequency threshold, the current regulator 113 is used to convert the DC current from the rectifier 111 into the driving current. The value of is less than or equal to the preset current threshold. Therefore, in this case, the preset condition is that the frequency of the AC current or AC voltage output by the ballast 910 is lower than the preset frequency threshold. In some embodiments, the preset frequency threshold is in the range of about 10 Hz to about 99 Hz.
  • the current regulator 130 When the frequency of the alternating current or alternating voltage output by the ballast 910 is higher than the preset frequency threshold, the current regulator 130 is used to output the direct current from the rectifier 110 as a driving current to the LED device.
  • the LED device 120 includes a plurality of LED chips 121 which are connected in series with each other.
  • the maximum current that the LED device 120 can withstand without damage is approximately equal to the rated current of the LED chip 121.
  • the current regulator 113 includes a comparing and judging unit (not shown) for comparing the signal detected by the detecting module 115 with a preset value range or threshold, and then judging whether to compare the signal from the rectifier 111 DC current is processed and converted.
  • the comparison and judgment unit may be integrated in the detection module.
  • the detection module may include a sampling circuit and a judgment circuit, the sampling circuit is used to sample the signal, the judgment circuit is used to judge whether the sampled signal meets a preset condition, and output the judgment result signal to The current regulator.
  • the current regulator 113 includes a current scaler, which is used to reduce the direct current output by the rectifier to a value less than or equal to the preset current threshold when the signal meets the preset condition.
  • the current scaler may include a switch circuit, and the reduction ratio of the direct current can be set by setting the duty cycle of the switch.
  • the current regulator 113 includes a constant current control module (not shown), which is used to adjust the driving current when the signal satisfies the preset condition so that it is approximately constant at less than or equal to the predetermined condition.
  • the value of the preset current threshold includes a feedback unit and an adjustment unit.
  • the feedback unit is used to detect the drive current output by the current regulator 113 to the LED device, and feed back the real-time value of the drive current to the adjustment unit.
  • the difference between the real-time value of the drive current and the expected value of the drive current is used to adjust the drive current so that the value of the drive current stabilizes around the expected value.
  • the expected value of the drive current can be preset, It can be set to be less than or equal to the preset current threshold.
  • FIG. 2 is a schematic diagram of an LED system 200 according to another specific embodiment of the present invention.
  • the LED system 200 includes an LED device 220 and a driver 210 for driving the LED device.
  • the driver 210 includes a rectifier 211, a current regulator 213, and a detection module 215.
  • the rectifier 211 is used for coupling to the ballast 910, and the current regulator 213 is coupled between the rectifier 211 and the LED device 220.
  • the detection module 215 is coupled between the output terminal of the rectifier 211 and the current regulator 213, and is used to detect the DC current or DC voltage output by the rectifier 211 during the startup phase of the LED device, and provide the detected signal to the current regulator 213.
  • the above detection index namely: the DC current or DC voltage output by the rectifier 211 has a corresponding preset value range, when the DC current or DC voltage output by the rectifier 211 is within its corresponding preset value range, the current regulator 213 It is used to output the direct current from the rectifier 211 as a driving current to the LED device.
  • the current regulator 213 converts the DC current from the rectifier 211 into a driving current, and the value of the driving current is less than or equal to a preset current threshold. . Therefore, the preset condition is that the DC current or DC voltage output by the rectifier 211 exceeds the corresponding preset value range.
  • the LED device includes N groups of LED chips, and the N groups of LED chips are connected in parallel.
  • Each group of LED chips includes a plurality of LED chips connected in series.
  • the maximum current that the LED device can withstand without damage Roughly equal to N times the rated current of each LED chip, where N is a natural number greater than or equal to 2.
  • the LED device 220 includes 3 groups of LED chips connected in parallel, wherein each group of LED chips includes a plurality of LED chips connected in series, and the maximum current that the LED device 220 can withstand is approximately equal to each Three times the rated current of each LED chip.
  • the other functions and structures of the rectifier 211, the current regulator 213, and the detection module 215 are similar to those of the rectifier 111, the current regulator 113, and the detection module 115 in the embodiment shown in FIG. 1, and will not be repeated here.
  • FIG. 3 is a schematic diagram of an LED system 300 according to another specific embodiment of the present invention.
  • the LED system 300 includes an LED device 320 and a driver 310.
  • the driver 310 includes a rectifier 311, a current regulator 313, and a detection module 315.
  • the rectifier 311 is used for coupling to the ballast 910, and the current regulator 313 is coupled between the rectifier 311 and the LED device 320.
  • the detection module 315 is coupled between the LED device 320 and the current regulator 313, and is used to detect the current flowing in the LED device 320 during the startup phase of the LED device, and provide the detected signal to the current regulator 313.
  • the above detection index namely: the current flowing on the LED device has a corresponding preset value range
  • the current regulator 313 is used to transfer the current from the rectifier 311
  • the DC current is output to the LED device 320 as a driving current.
  • the current regulator 313 converts the direct current from the rectifier 311 into a driving current, and the value of the driving current is less than or equal to a preset current threshold, where ,
  • the preset current threshold is less than the maximum current that the LED device can withstand without damage. Therefore, the preset condition is that the current flowing through the LED device 320 exceeds the corresponding preset value range.
  • the other functions and structures of the rectifier 311, the current regulator 313, and the detection module 315 are similar to those of the rectifier 111, the current regulator 113, and the detection module 115 in the embodiment shown in FIG. 1, and will not be repeated here.
  • FIG. 4 is a schematic diagram of an LED system 400 according to another embodiment of the present invention.
  • the LED system 400 includes an LED device 420 and a driver 410 coupled to the LED device 420.
  • the driver 410 includes an input module, a rectifier, a current regulator 413, and a detection module 415.
  • the input module includes a first input unit 417 and a second input unit 418, and the rectifier includes a first rectification unit 411 and a second rectification unit 412.
  • the first and second input units 417, 418 are used for coupling with a ballast (not shown), and receive AC current from the ballast.
  • the first input unit 417 includes two input terminals, which are coupled via a capacitor C4; similarly, the second input unit 418 includes two input terminals, which are coupled via a capacitor C8.
  • the first and second rectifying units 411 and 412 are used to convert the alternating current from the ballast into direct current.
  • the first rectifying unit 411 includes a diode D1 and a diode D2 connected in series, and the output terminal of the first input unit 417 is coupled to a node between the diodes D1 and D2.
  • the second rectifying unit 412 includes a diode D3 and a diode D4 connected in series with each other, and the output terminal of the second input unit 418 is coupled to a node between the diodes D3 and D4.
  • the alternating current of the ballast is input to the rectifier via the first and second input units 417 and 418, and the first and second rectifying units 411 and 412 operate simultaneously to convert the alternating current into a direct current.
  • the detection module 415 is coupled between the output terminal of the first input unit 417 and the current regulator 413, and is used to detect the AC current or AC voltage output by the ballast, and determine whether the frequency of the AC current or AC voltage output by the ballast is low
  • the frequency threshold is preset, and the judgment result signal is sent to the current regulator 413.
  • the detection module 415 includes a sampling circuit 416 and a judgment circuit 419.
  • the sampling circuit 416 includes two capacitors C3, C5, three diodes D9, D11, D14, and two resistors R3, R6;
  • the judgment circuit 419 includes a switch tube M2 and a voltage regulator tube D10.
  • the diode D11, the diode D9, the resistor R3, and the diode D14 are connected in series in sequence.
  • the first end of the capacitor C3 is coupled to the output end of the first input unit 417, and the second end of the capacitor C3 is coupled to the node between D9 and D11.
  • the first terminal of the capacitor C5 is coupled to the junction between R3 and D14, and the second terminal is coupled to the anode of D11.
  • the negative pole of D14 is coupled to the negative pole of D10
  • the positive pole of D10 is coupled to the gate of the switch M2
  • the drain of M2 is coupled to the current regulator 413
  • the source of M2 is coupled to the second terminal of C5.
  • the first end of R6 is coupled to the gate of M2, and the second end of R6 is coupled to the second end of C5.
  • the switching tube M2 When the frequency of the AC current or AC voltage output by the ballast is lower than the preset frequency threshold, the switching tube M2 is turned off, and an enable signal (Enable) is output to the current regulator 413; when the AC current output by the ballast or When the frequency of the AC voltage is higher than the preset frequency threshold, the switch M2 is turned on and outputs a disable signal (Disable) to the current regulator 413.
  • the current regulator 413 includes a first switch M1 and a switch controller 414 coupled to the control terminal of the first switch M1. Specifically, the output terminal of the switch controller 414 is coupled to the control terminal of the first switch M1; the input terminal of the switch controller 414 is coupled to the output terminal of the detection module 415, that is, the drain of M2.
  • the switch controller 414 is used to send a control signal to the first switch M1 according to the judgment result signal (ie, enable signal or disable signal) from the detection module 415 to control the on-off or duty cycle of the first switch M1, thereby controlling The magnitude of the driving current it provides to the LED device 420.
  • the switch controller 414 After the switch controller 414 receives the enable signal from the detection module 415, it outputs a pulse signal with a certain duty cycle to the first switch M1 as a control signal for the first switch M1.
  • the value of the driving current provided by the current regulator 413 to the LED device 420 can be adjusted by adjusting the duty cycle so as to be less than or equal to the preset current threshold.
  • the switch controller 414 When the switch controller 414 receives the disable signal from the detection module 415, it outputs a continuous high-level signal to the first switch M1 to short-circuit the first switch M1. In this way, the current regulator will be from the rectifiers 411 and 412. The direct current is output to the LED device 420 as a current.
  • FIG. 5 is a schematic diagram of an LED system 500 according to another embodiment of the present invention.
  • the LED system 500 includes an LED device 520 and a driver 510 coupled to the LED device 520.
  • the driver 510 includes an input module, a rectifier, a current regulator 513 and a detection module 515.
  • the input module includes a first input unit 517 and a second input unit 518, and the current rectifier includes a first rectification unit 511 and a second rectification unit 512.
  • first and second input units 517 and 518, and the first and second rectification units 511 and 512 are respectively the same as those of the first and second input units 417 and 418 in the embodiment shown in FIG.
  • the two rectifying units 411 and 412 are similar, and will not be repeated here.
  • the detection module 515 is coupled between the LED device 520 and the current regulator 513 to detect the current flowing through the LED device 520, determine whether the current value exceeds a preset value range, and output a determination result signal to the current regulator 513. When the current value on the LED device is within the preset value range, the detection module 515 outputs a disable signal to the current regulator 514. When the current value on the LED device exceeds the preset value range, the detection module 515 sends the current The regulator 514 outputs an enable signal.
  • the detection module 515 includes a sampling circuit 516 and a judgment circuit 519.
  • the sampling circuit 516 includes resistors R1, R3, and a capacitor C3;
  • the judgment circuit 519 includes a comparator.
  • R1 is connected in series with the LED device 520, which is coupled between the negative electrode of the LED device 520 and the ground point; the first end of R3 is coupled to the junction between R1 and the LED device 520, and the second end is coupled to the comparator
  • the input terminal of 519; the first terminal of C3 is coupled to the input terminal of the comparator 519, and the second terminal thereof is grounded; the output terminal of the comparator 519 is coupled to the current regulator 513.
  • the current regulator 513 includes a first switch M1 and a switch controller 514 coupled to the control terminal of the first switch M1. Specifically, the output terminal of the switch controller 514 is coupled to the control terminal of the first switch M1; the input terminal of the switch controller 514 is coupled to the output terminal of the detection module 515, that is, the output terminal of the comparator 519.
  • the switch controller 514 is used to send a control signal to the first switch M1 according to the judgment result signal (ie, enable signal or disable signal) from the detection module 515 to control the on-off or duty cycle of the first switch M1, thereby controlling The magnitude of the driving current provided to the LED device 520.
  • the switch controller 514 When the switch controller 514 receives the enable signal from the detection module 515, it outputs a pulse signal with a certain duty cycle to the first switch M1 as a control signal for the first switch M1.
  • the value of the driving current provided by the current regulator 513 to the LED device 520 can be adjusted by adjusting the duty cycle so as to be less than or equal to the preset current threshold.
  • the switch controller 514 When the switch controller 514 receives the disable level signal from the detection module 515, it outputs a continuous high level signal to the first switch M1 to short-circuit the first switch M1. In this way, the current regulator will come from the rectifier 511, The direct current of 512 is output to the LED device 520 as a current.
  • the embodiment of the present invention also relates to a method for adapting an LED device and a ballast, which can adapt the same LED device to multiple ballasts of different models.
  • FIG. 6 is a schematic flowchart of an adaptation method 600 according to a specific embodiment of the present invention.
  • step 610 the AC current from the ballast is converted into a DC current by a rectifier.
  • step 620 the DC current from the rectifier is received through the current regulator and the driving current is output to the LED device.
  • a signal characterizing the output characteristics of the ballast is detected during the startup phase of the LED device; wherein the signal includes the AC current output by the ballast, the AC voltage output by the ballast, the DC current output by the rectifier, The DC voltage output by the rectifier, the current flowing through the LED device, or a combination thereof.
  • step 640 it is determined whether the signal satisfies a preset condition.
  • the preset condition is: the frequency of the AC current or the AC voltage output by the ballast is lower than a preset frequency threshold.
  • the preset condition is: the value of the AC current output by the ballast, the AC voltage output by the ballast, the DC current output by the rectifier, the DC voltage output by the rectifier or the current flowing through the LED device Out of the corresponding preset value range.
  • step 660 is executed, that is, the direct current from the rectifier is output to the LED device as the driving current.
  • step 650 is executed, that is, the direct current from the rectifier is converted into the drive current, and the value of the drive current is less than or equal to a preset current threshold, and the preset current threshold is less than the LED The maximum current that the device can withstand without damage.
  • the step of converting the direct current includes: reducing the direct current output by the rectifier to a value less than or equal to the preset current threshold. In other embodiments, step 650 includes: adjusting the driving current to be substantially constant at a value less than or equal to the preset current threshold.

Abstract

用于发光二极管装置(120,220,320)的驱动器(110,210,310)耦合在镇流器(910)和发光二极管装置(120,220,320)之间,其包括整流器(111,211,311)、电流调节器(113,213,313)和检测模块(115,215,315)。整流器(111,211,311)用于与镇流器(910)相耦合,且用于将来自镇流器(910)的交流电流转换成直流电流。电流调节器(113,213,313)耦合在整流器(111,211,311)和发光二极管装置(120,220,320)之间,其用于接收来自整流器(111,211,311)的直流电流且向发光二极管装置(120,220,320)输出驱动电流。检测模块(115,215,315)用于在发光二极管装置(120,220,320)的启动阶段内检测表征镇流器(910)输出特性的信号。其中,当信号满足预设条件时,电流调节器(113,213,313)用于将来自整流器(111,211,311)的直流电流转换成驱动电流,驱动电流的值小于等于预设电流阈值,预设电流阈值小于发光二极管装置(120,220,320)在不损坏的情况下能承受的最大电流。

Description

用于LED装置的驱动器,LED系统及LED装置的适配方法 技术领域
本发明的实施例涉及用于LED装置的驱动器、LED系统及LED装置的适配方法。
背景技术
近年来,改型照明市场大幅增长。可使用改型LED灯来替换原有的荧光灯,以提高发光效率,改善照明效果。
然而,LED灯与原有荧光灯的镇流器之间存在适配的问题。由于不同型号的镇流器输出的电流值差异较大,现有技术中,通常需要为不同型号的镇流器设计不同的LED负载,这会大大增加设计和生产成本。
因此,有必要提供一种新的用于LED装置的驱动器、LED系统及LED装置的适配方法来解决上述问题。
发明内容
一种用于发光二极管装置的驱动器耦合在镇流器和所述发光二极管装置之间,其用于使所述发光二极管装置与所述镇流器相适配。所述驱动器包括整流器、电流调节器和检测模块。该整流器用于与所述镇流器相耦合,且用于将来自所述镇流器的交流电流转换成直流电流。该电流调节器耦合在所述整流器和所述发光二极管装置之间,其用于 接收来自所述整流器的直流电流且向所述发光二极管装置输出驱动电流。该检测模块用于在所述发光二极管装置的启动阶段内检测表征所述镇流器输出特性的信号。其中,当所述信号满足预设条件时,所述电流调节器用于将来自所述整流器的所述直流电流转换成所述驱动电流,所述驱动电流的值小于等于预设电流阈值,该预设电流阈值小于所述发光二极管装置在不损坏的情况下能承受的最大电流。
一种发光二极管系统包括发光二极管装置及用于所述发光二极管装置的驱动器,所述驱动器用于耦合在镇流器和所述发光二极管装置之间,且用于使所述发光二极管装置与所述镇流器相适配。所述驱动器包括整流器、电流调节器及检测模块。该整流器用于与所述镇流器相耦合且其用于将来自所述镇流器的交流电流转换成直流电流。该电流调节器耦合在所述整流器和所述发光二极管装置之间,其用于接收来自所述整流器的直流电流且向所述发光二极管装置输出驱动电流。该检测模块用于在所述发光二极管装置的启动阶段内检测表征所述镇流器输出特性的信号。其中,当所述信号满足预设条件时,所述电流调节器用于将来自所述整流器的所述直流电流转换成所述驱动电流,所述驱动电流的值小于等于预设电流阈值,该预设电流阈值小于所述发光二极管装置在不损坏的情况下能承受的最大电流。
一种发光二极管装置和镇流器的适配方法,包括:通过整流器将来自所述镇流器的交流电流转换成直流电流;通过电流调节器接收来自所述整流器的直流电流且向所述发光二极管装置输出驱动电流;在所述发光二极管装置的启动阶段内检测表征所述镇流器输出特性的信号;及当所述信号满足预设条件时,将来自所述整流器的所述直流电流转换成所述驱动电流,所述驱动电流的值小于等于预设电流阈值, 该预设电流阈值小于所述发光二极管装置在不损坏的情况下能承受的最大电流。
附图说明
当参照附图阅读以下详细描述时,本发明的这些和其它特征、方面及优点将变得更好理解,在附图中,相同的元件标号在全部附图中用于表示相同的部件,其中:
图1为根据本发明一具体实施例的LED系统的示意图;
图2为根据本发明另一具体实施例的LED系统的示意图;
图3为根据本发明另一具体实施例的LED系统的示意图;
图4为根据本发明另一具体实施例的LED系统的示意图;
图5为根据本发明另一具体实施例的LED系统的示意图;及
图6为根据本发明一具体实施例的LED装置和镇流器的适配方法的流程示意图。
具体实施方式
为帮助本领域的技术人员能够确切地理解本发明所要求保护的主题,下面结合附图详细描述本发明的具体实施方式。在以下对这些具体实施方式的详细描述中,本说明书对一些公知的功能或构造不做详细描述以避免不必要的细节而影响到本发明的披露。
除非另作定义,本权利要求书和说明书中所使用的技术术语或者科学术语应当为本发明所属技术领域内具有一般技能的人士所理解的通常意义。本说明书以及权利要求书中所使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区 分不同的组成部分。“一个”或者“一”等类似词语并不表示数量限制,而是表示存在至少一个。“包括”或者“具有”等类似的词语意指出现在“包括”或者“具有”前面的元件或者物件涵盖出现在“包括”或者“具有”后面列举的元件或者物件及其等同元件,并不排除其他元件或者物件。
本发明的实施例涉及一种LED驱动器,及包括该LED驱动器的LED系统。该LED驱动器能够使LED装置与多种型号的镇流器适配,从而使得包括该LED驱动器的LED系统能够适用于多种不同型号的镇流器。
图1为根据本发明一具体实施例的LED系统100的示意图。参见图1,LED系统100包括LED装置120和用于该LED装置的驱动器110,驱动器110用于耦合在镇流器910和LED装置120之间,且用于使LED装置120与镇流器910相适配,即:包括驱动器110的LED系统100耦合于镇流器910后能够正常工作。
驱动器110包括整流器111、电流调节器113和检测模块115。整流器111用于与镇流器910相耦合,且用于将来自镇流器910的交流电流转换成直流电流。
电流调节器113耦合在整流器111和LED装置120之间,其用于接收来自整流器111的直流电流且向LED装置120输出驱动电流。
检测模块115用于在LED装置120的启动阶段内检测表征镇流器910输出特性的信号;其中,该启动阶段是指从镇流器910通电起到LED装置点亮之间的时间段,通常为从镇流器通电的时刻到通电后的0.1~2秒内。由于不同型号的镇流器具有不同的输出特性,所以检测出表征镇流器910输出特性的信号,就可以根据其输出特性来对其输出的电流进行处理,使最终输出给LED装置120的驱动电流符合LED装 置的工作需求。
当所述信号满足一预设条件时,也即:当信号所表征的镇流器的输出特性与LED装置无法适配或兼容时,电流调节器113将来自整流器111的直流电流转换成驱动电流,所述驱动电流的值小于等于一预设电流阈值,该预设电流阈值小于LED装置120的在不损坏的情况下能承受的最大电流;这样能够保证LED装置120在该驱动电流的驱动下正常工作。例如,在一些实施例中,该预设电流阈值被设置成所述最大电流的40%-80%。
当所述信号不满足所述预设条件时,也即:当信号所表征的镇流器的输出特性与LED装置能够适配或兼容时,电流调节器113用于将来自整流器111的直流电流作为驱动电流输出给LED装置120。在这种情况下,整流器111输出的直流电流小于该预设电流阈值,所以电流调节器113可通过短接等方式,直接将该直流电流传输给LED装置120,使LED装置正常工作。
如图1所示,在一些实施例中,检测模块115耦合在镇流器910的输出端和电流调节器113之间,用于在LED装置120的启动阶段内检测镇流器910输出的交流电流或交流电压,并将检测到的信号输出给电流调节器113。
在一些实施例中,为上述检测指标,即:镇流器输出的交流电流或镇流器输出的交流电压设定一个相应的预设取值范围,当镇流器输出的交流电流或交流电压处于其相应的预设取值范围内时,镇流器910经由整流器111整流后输出的直流电流就能够直接满足LED装置的工作需求,也即:整流器111输出的该直流电流小于等于预设电流阈值,因而不需要对该直流电流进行处理,电流调节器113直接将来自整流 器111的直流电流作为驱动电流输出给LED装置。
当镇流器输出的交流电流或交流电压超出其相应的预设取值范围时,说明整流器111输出的直流电流还不能满足LED装置120的工作需求,因而,就需要电流调节器113对该直流电流进行转换处理后,再提供给LED装置120。因此,所述预设条件被设定为:镇流器输出的交流电流、镇流器输出的交流电压的值超出相应的预设取值范围,当该预设条件被满足时,电流调节器113对直流电流进行转换或调节。
在一些实施例中,通过分析镇流器910输出的交流电流或交流电压,可得到镇流器的输出频率,可根据该输出频率来确定是否要对整流器输出的直流电流进行处理。具体的,当镇流器910输出的交流电流或交流电压的频率低于预设的频率阈值时,电流调节器113用于将来自整流器111的直流电流转换成所述驱动电流,所述驱动电流的值小于等于预设电流阈值。因此,在这种情况下,该预设条件为:镇流器910输出的交流电流或交流电压的频率低于预设的频率阈值。在一些实施例中,该预设的频率阈值在大约10赫兹到大约99赫兹的范围内。
当镇流器910输出的交流电流或交流电压的频率高于预设的频率阈值时,电流调节器130用于将来自整流器110的直流电流作为驱动电流输出给LED装置。
继续参见图1,LED装置120包括多个LED芯片121,该多个LED芯片121互相串联。在这种情况下,LED装置120在不损坏的情况下能承受的最大电流大致等于LED芯片121的额定电流。
在一些实施例中,电流调节器113包括比较判断单元(未示出), 用于将检测模块115所检测到的信号与预设取值范围或阈值进行比较,然后判断是否对来自整流器111的直流电流进行处理和转换。
或者,在其他一些实施例中,比较判断单元可被整合在检测模块中。具体地,检测模块可包括采样电路和判断电路,该采样电路用于对所述信号进行采样,该判断电路用于判断采样到的所述信号是否满足预设条件,并将判断结果信号输出给所述电流调节器。
在一些实施例中,电流调节器113包括电流缩放器,其用于在信号满足所述预设条件时,将整流器输出的直流电流缩小到小于或等于所述预设电流阈值的一个值。该电流缩放器可能包括开关电路,可以通过设定开关的占空比,来设定直流电流的缩小比例。
在一些实施例中,电流调节器113包括恒流控制模块(未示出),其用于在所述信号满足所述预设条件时,调节所述驱动电流,使之大致恒定在小于等于所述预设电流阈值的值。具体地,恒流控制模块包括反馈单元和调节单元,该反馈单元用于检测电流调节器113输出给LED装置的驱动电流,并将该驱动电流的实时值反馈给该调节单元,该调节单元根据该驱动电流的实时值和驱动电流的期望值之间的差值,来对该驱动电流进行调节,以使该驱动电流的值稳定在该期望值左右,其中,该驱动电流的期望值可预先设定,可设定为小于或等于所述预设电流阈值。
图2为根据本发明另一具体实施例的LED系统200的示意图。参见图2,LED系统200包括LED装置220和用于驱动LED装置的驱动器210。驱动器210包括整流器211、电流调节器213和检测模块215。整流器211用于耦合于镇流器910,电流调节器213耦合在整流器211和LED装置220之间。检测模块215耦合在整流器211的输出端和电 流调节器213之间,其用于在LED装置的启动阶段内检测整流器211输出的直流电流或直流电压,并将检测到的信号提供给电流调节器213。
上述检测指标,即:整流器211输出的直流电流或直流电压具有相应的预设取值范围,当整流器211输出的直流电流或直流电压处于其相应的预设取值范围内时,电流调节器213用于将来自整流器211的直流电流作为驱动电流输出给LED装置。
当整流器211输出的直流电流或直流电压超出其相应的预设取值范围时,电流调节器213将来自整流器211的直流电流转换成驱动电流,所述驱动电流的值小于等于一预设电流阈值。因此,该预设条件为整流器211输出的直流电流或直流电压超出相应的预设取值范围。
在一些实施例中,LED装置包括N组LED芯片,该N组LED芯片互相并联,其中,每组LED芯片包括多个互相串联的LED芯片,LED装置在不损坏的情况下能承受的最大电流大致等于每个LED芯片的额定电流的N倍,其中,N为大于等于2的自然数。
如图2所示,在一些实施例中,LED装置220包括3组互相并联的LED芯片,其中,每组LED芯片包括多个互相串联的LED芯片,LED装置220能承受的最大电流大致等于每个LED芯片的额定电流的3倍。
整流器211、电流调节器213和检测模块215的其他功能和结构分别与图1所示实施例中的整流器111、电流调节器113和检测模块115相类似,此处不再赘述。
图3为根据本发明另一具体实施例的LED系统300的示意图。参见图3,LED系统300包括LED装置320和驱动器310。驱动器310包括整流器311、电流调节器313和检测模块315。整流器311用于耦 合于镇流器910,电流调节器313耦合在整流器311和LED装置320之间。
检测模块315耦合在LED装置320和电流调节器313之间,其用于在LED装置的启动阶段内检测LED装置320上流过的电流,并将检测到的信号提供给电流调节器313。
上述检测指标,即:LED装置上流过的电流具有相应的预设取值范围,当LED装置上流过的电流处于其相应的预设取值范围内时,电流调节器313用于将来自整流器311的直流电流作为驱动电流输出给LED装置320。
当LED装置320上流过的电流超出其相应的预设取值范围时,电流调节器313将来自整流器311的直流电流转换成驱动电流,所述驱动电流的值小于等于一预设电流阈值,其中,该预设电流阈值小于LED装置在不损坏的情况下能承受的最大电流。因此,该预设条件为LED装置320上流过的电流超出相应的预设取值范围。
整流器311、电流调节器313和检测模块315的其他功能和结构分别与图1所示实施例中的整流器111、电流调节器113和检测模块115相类似,此处不再赘述。
图4为根据本发明另一具体实施例的LED系统400的示意图。参见图4,LED系统400包括LED装置420和耦合于LED装置420的驱动器410。驱动器410包括输入模块、整流器、电流调节器413和检测模块415,其中,输入模块包括第一输入单元417和第二输入单元418,整流器包括第一整流单元411和第二整流单元412。
第一、第二输入单元417、418用于与镇流器(未示出)耦合,接收来自镇流器的交流电流。第一输入单元417包括两个输入端,该两 个输入端经由电容C4耦合;类似的,第二输入单元418包括两个输入端,该两个输入端经由电容C8耦合。
第一、第二整流单元411、412用于将来自镇流器的交流电流转换成直流电流。第一整流单元411包括互相串联的二极管D1和二极管D2,第一输入单元417的输出端耦合于位于二极管D1、D2之间的节点。类似地,第二整流单元412包括互相串联的二极管D3和二极管D4,第二输入单元418的输出端耦合于位于二极管D3、D4之间的节点。
在一些实施例中,镇流器的交流电流经由第一、第二输入单元417、418输入给整流器,第一、第二整流单元411、412同时工作,以将交流电流转换成直流电流。
检测模块415耦合在第一输入单元417的输出端和电流调节器413之间,用于检测镇流器输出的交流电流或交流电压,判断镇流器输出的交流电流或交流电压的频率是否低于预设的频率阈值,并将判断结果信号发送给电流调节器413。
具体地,检测模块415包括采样电路416和判断电路419。其中,采样电路416包括两个电容C3、C5,三个二极管D9、D11、D14,两个电阻R3、R6;判断电路419包括开关管M2和稳压管D10。二极管D11、二极管D9、电阻R3和二极管D14依次串联。电容C3的第一端耦合于第一输入单元417的输出端,电容C3的第二端耦合于D9和D11之间的结点。电容C5的第一端耦合于R3和D14之间的结点,其第二端耦合于D11的正极。D14的负极与D10的负极耦合,D10的正极耦合于开关管M2的门极,M2的漏极耦合于电流调节器413,M2的源极耦合于C5的第二端。R6的第一端耦合于M2的门极,其第二端耦 合于C5的第二端。
当镇流器输出的交流电流或交流电压的频率低于预设的频率阈值时,开关管M2断开,向电流调节器413输出使能信号(Enable);当镇流器输出的交流电流或交流电压的频率高于预设的频率阈值时,开关管M2导通,向电流调节器413输出禁用信号(Disable)。
电流调节器413包括第一开关M1及耦合于第一开关M1的控制端的开关控制器414。具体地,开关控制器414的输出端耦合于第一开关M1的控制端;开关控制器414的输入端耦合于检测模块415的输出端,即:M2的漏极。开关控制器414用于根据来自检测模块415的判断结果信号(即:使能信号或禁用信号)向第一开关M1发送控制信号,以控制第一开关M1的通断或者占空比,从而控制其提供给LED装置420的驱动电流的大小。
当开关控制器414收到来自检测模块415的使能信号后,其向第一开关M1输出具有一定占空比的脉冲信号作为第一开关M1的控制信号。可通过调节该占空比来调节电流调节器413向LED装置420提供的驱动电流的值,以使其小于等于预设电流阈值。
当开关控制器414收到来自检测模块415的禁用信号后,其向第一开关M1输出持续的高电平信号,以使第一开关M1短路,这样,电流调节器将来自整流器411、412的直流电流作为电流输出给LED装置420。
图5为根据本发明另一具体实施例的LED系统500的示意图。参见图5,LED系统500包括LED装置520和耦合于LED装置520的驱动器510。驱动器510包括输入模块、整流器、电流调节器513和检测模块515,其中,输入模块包括第一输入单元517和第二输入单元518, 电流,整流器包括第一整流单元511和第二整流单元512。
第一、第二输入单元517、518,第一、第二整流单元511、512的结构与功能分别与图4所示实施例中的第一、第二输入单元417、418,第一、第二整流单元411、412类似,此处不再赘述。
检测模块515耦合在LED装置520和电流调节器513之间用于检测LED装置520上流过的电流,判断该电流值是否超出预设的取值范围,并向电流调节器513输出判断结果信号。当LED装置上的电流值在预设的取值范围内时,检测模块515向电流调节器514输出禁用信号,当LED装置上的电流值超出预设的取值范围时,检测模块515向电流调节器514输出使能信号。
具体地,检测模块515包括采样电路516和判断电路519。采样电路516包括电阻R1、R3和电容C3;判断电路519包括比较器。其中,R1与LED装置520相串联,其耦合在LED装置520的负极和接地点之间;R3的第一端耦合在R1与LED装置520之间的结点,其第二端耦合于比较器519的输入端;C3的第一端耦合于比较器519的输入端,其第二端接地;比较器519的输出端耦合于电流调节器513。
电流调节器513包括第一开关M1及耦合于第一开关M1的控制端的开关控制器514。具体地,开关控制器514的输出端耦合于第一开关M1的控制端;开关控制器514的输入端耦合于检测模块515的输出端,即:比较器519的输出端。开关控制器514用于根据来自检测模块515的判断结果信号(即:使能信号或禁用信号)向第一开关M1发送控制信号,以控制第一开关M1的通断或者占空比,从而控制其提供给LED装置520的驱动电流的大小。
当开关控制器514收到来自检测模块515的使能信号后,其向第 一开关M1输出具有一定占空比的脉冲信号作为第一开关M1的控制信号。可通过调节该占空比来调节电流调节器513向LED装置520提供的驱动电流的值,以使其小于等于预设电流阈值。
当开关控制器514收到来自检测模块515的禁用电平信号后,其向第一开关M1输出持续的高电平信号,以使第一开关M1短路,这样,电流调节器将来自整流器511、512的直流电流作为电流输出给LED装置520。
本发明的实施例还涉及一种LED装置和镇流器的适配方法,该方法能使同一LED装置与多种不同型号的镇流器进行适配。
图6为根据本发明一具体实施例的适配方法600的流程示意图。
在步骤610中,通过整流器将来自所述镇流器的交流电流转换成直流电流。
在步骤620中,通过电流调节器接收来自所述整流器的直流电流且向LED装置输出驱动电流。
在步骤630中,在LED装置的启动阶段内检测表征镇流器输出特性的信号;其中,所述信号包括镇流器输出的交流电流、镇流器输出的交流电压、整流器输出的直流电流、整流器输出的直流电压、流过LED装置的电流或其组合。
在步骤640中,判断该信号是否满足一预设条件。在一些实施例中,所述预设条件为:镇流器输出的所述交流电流或所述交流电压的频率低于预设的频率阈值。在另一些实施例中,所述预设条件为:镇流器输出的交流电流、镇流器输出的交流电压、整流器输出的直流电流、整流器输出的直流电压或流过LED装置的电流的值超出相应的预设取值范围。
如果该信号不满足该预设条件,执行步骤660,即:将来自整流器的直流电流作为驱动电流输出给LED装置。
如果该信号满足该预设条件,执行步骤650,即:将来自整流器的所述直流电流转换成所述驱动电流,所述驱动电流的值小于等于预设电流阈值,该预设电流阈值小于LED装置在不损坏的情况下所能承受的最大电流。
在一些实施例中,所述转换直流电流的步骤,即:步骤650,包括:将整流器输出的直流电流缩小至小于等于所述预设电流阈值的值。在另一些实施例中,步骤650包括:调节所述驱动电流,使之大致恒定在小于等于所述预设电流阈值的值。
虽然结合特定的具体实施方式对本发明进行了详细说明,但本领域的技术人员可以理解,对本发明可以作出许多修改和变型。因此,要认识到,权利要求书的意图在于覆盖在本发明真正构思和范围内的所有这些修改和变型。

Claims (17)

  1. 一种用于发光二极管装置的驱动器,其用于耦合在镇流器和所述发光二极管装置之间,且用于使所述发光二极管装置与所述镇流器相适配,所述驱动器包括:
    整流器,其用于与所述镇流器相耦合,且用于将来自所述镇流器的交流电流转换成直流电流;
    电流调节器,其耦合在所述整流器和所述发光二极管装置之间,其用于接收来自所述整流器的直流电流且向所述发光二极管装置输出驱动电流;及
    检测模块,其用于在所述发光二极管装置的启动阶段内检测表征所述镇流器输出特性的信号;
    其中,当所述信号满足预设条件时,所述电流调节器用于将来自所述整流器的所述直流电流转换成所述驱动电流,所述驱动电流的值小于等于预设电流阈值,该预设电流阈值小于所述发光二极管装置在不损坏的情况下能承受的最大电流。
  2. 根据权利要求1所述的驱动器,其中,所述发光二极管装置包括多个互相串联的发光二极管芯片,所述最大电流大致等于所述发光二极管芯片的额定电流。
  3. 根据权利要求1所述的驱动器,其中,所述发光二极管装置包括N组发光二极管芯片,该N组发光二极管芯片互相并联,其中,每组发光二极管芯片包括多个互相串联的发光二极管芯片,所述最大电流大致等于每个发光二极管芯片的额定电流的N倍,其中,N为大于等于2的自然数。
  4. 根据权利要求1所述的驱动器,其中,当所述信号不满足所述预设条件时,所述电流调节器用于将来自所述整流器的所述直流电流作为所述驱动电流输出给所述发光二极管装置。
  5. 根据权利要求1所述的驱动器,其中,所述信号包括所述镇流器输出的交流电流、所述镇流器输出的交流电压、所述整流器输出的直流电流、所述整流器输出的直流电压、流过所述发光二极管装置的电流或其组合。
  6. 根据权利要求5所述的驱动器,其中,所述镇流器输出的交流电流、所述镇流器输出的交流电压、所述整流器输出的直流电流、所述整流器输出的直流电压或流过所述发光二极管装置的电流中具有相应的预设取值范围,所述预设条件为:所述镇流器输出的交流电流、所述镇流器输出的交流电压、所述整流器输出的直流电流、所述整流器输出的直流电压或流过所述发光二极管装置的电流的值超出所述相应的预设取值范围。
  7. 根据权利要求5所述的驱动器,其中,所述预设条件为:所述镇流器输出的所述交流电流或所述交流电压的频率低于预设的频率阈值。
  8. 根据权利要求1所述的驱动器,其中,所述电流调节器包括电流缩放器,其用于在所述信号满足所述预设条件时,将所述整流器输出的所述直流电流缩小至小于等于所述预设电流阈值的值。
  9. 根据权利要求1所述的驱动器,其中,所述电流调节器包括恒流控制模块,其用于在所述信号满足所述预设条件时,调节所述驱动电流使之大致恒定在小于等于所述预设电流阈值的值。
  10. 根据权利要求1所述的驱动器,其中,所述检测模块包括:
    采样电路,其用于采样所述信号;及
    判断电路,其用于判断采样到的所述信号是否满足预设条件,并将判断结果信号输出给所述电流调节器。
  11. 一种发光二极管系统,包括:
    发光二极管装置;及
    用于所述发光二极管装置的驱动器,其用于耦合在镇流器和所述发光二极管装置之间,且用于使所述发光二极管装置与所述镇流器相适配,所述驱动器包括:
    整流器,其用于与所述镇流器相耦合且其用于将来自所述镇流器的交流电流转换成直流电流,
    电流调节器,其耦合在所述整流器和所述发光二极管装置之间,其用于接收来自所述整流器的直流电流且向所述发光二极管装置输出驱动电流,及
    检测模块,其用于在所述发光二极管装置的启动阶段内检测表征所述镇流器输出特性的信号,
    其中,当所述信号满足预设条件时,所述电流调节器用于将来自所述整流器的所述直流电流转换成所述驱动电流,所述驱动电流的值小于等于预设电流阈值,该预设电流阈值小于所述发光二极管装置在不损坏的情况下能承受的最大电流。
  12. 一种发光二极管装置和镇流器的适配方法,包括:
    通过整流器将来自所述镇流器的交流电流转换成直流电流;
    通过电流调节器接收来自所述整流器的直流电流且向所述发光二极管装置输出驱动电流;
    在所述发光二极管装置的启动阶段内检测表征所述镇流器输出特 性的信号;及
    当所述信号满足预设条件时,将来自所述整流器的所述直流电流转换成所述驱动电流,所述驱动电流的值小于等于预设电流阈值,该预设电流阈值小于所述发光二极管装置在不损坏的情况下能承受的最大电流。
  13. 根据权利要求12所述的方法,包括:当所述信号不满足所述预设条件时,将来自所述整流器的所述直流电流作为所述驱动电流输出给所述发光二极管装置。
  14. 根据权利要求12所述的方法,其中,所述信号包括所述镇流器输出的交流电流、所述镇流器输出的交流电压、所述整流器输出的直流电流、所述整流器输出的直流电压、流过所述发光二极管装置的电流或其组合。
  15. 根据权利要求14所述的方法,其中,所述预设条件为:所述镇流器输出的所述交流电流或所述交流电压的频率低于预设的频率阈值。
  16. 根据权利要求12所述的方法,其中,所述转换直流电流的步骤包括:将所述直流电流缩小至小于等于所述预设电流阈值的值。
  17. 根据权利要求12所述的方法,其中,所述转换直流电流的步骤包括:调节所述驱动电流,使之大致恒定在小于等于所述预设电流阈值的值。
PCT/CN2019/106175 2019-09-17 2019-09-17 用于led装置的驱动器,led系统及led装置的适配方法 WO2021051266A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/761,258 US20220369439A1 (en) 2019-09-17 2019-09-17 Driver for led device, led system, and adaptation method for led device
PCT/CN2019/106175 WO2021051266A1 (zh) 2019-09-17 2019-09-17 用于led装置的驱动器,led系统及led装置的适配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/106175 WO2021051266A1 (zh) 2019-09-17 2019-09-17 用于led装置的驱动器,led系统及led装置的适配方法

Publications (1)

Publication Number Publication Date
WO2021051266A1 true WO2021051266A1 (zh) 2021-03-25

Family

ID=74883312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106175 WO2021051266A1 (zh) 2019-09-17 2019-09-17 用于led装置的驱动器,led系统及led装置的适配方法

Country Status (2)

Country Link
US (1) US20220369439A1 (zh)
WO (1) WO2021051266A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104219835A (zh) * 2014-08-25 2014-12-17 浙江生辉照明有限公司 一种led照明装置的驱动装置及驱动方法
CN105848375A (zh) * 2015-01-13 2016-08-10 欧司朗有限公司 驱动装置、照明装置、照明系统和控制该照明系统的方法
JP2017199644A (ja) * 2016-04-25 2017-11-02 株式会社リコー Ledランプ、照明装置及びledランプの点灯方法
CN107682953A (zh) * 2017-09-14 2018-02-09 昂宝电子(上海)有限公司 Led照明系统及其控制方法
CN108347805A (zh) * 2018-03-01 2018-07-31 佛山市长晶电子科技有限公司 兼容镇流器的驱动电路及led装置
CN108990199A (zh) * 2018-05-25 2018-12-11 矽力杰半导体技术(杭州)有限公司 可控硅调光器的检测电路及方法
CN109246891A (zh) * 2018-09-30 2019-01-18 杰华特微电子(杭州)有限公司 一种调光器检测方法、检测电路及照明电路
CN110572896A (zh) * 2018-06-06 2019-12-13 通用电气照明解决方案有限公司 用于led装置的驱动器,led系统及led装置的适配方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7380961B2 (en) * 2002-04-24 2008-06-03 Moriyama Sangyo Kabushiki Kaisha Light source coupler, illuminant device, patterned conductor, and method for manufacturing light source coupler
SG11201406314TA (en) * 2012-04-09 2014-11-27 M system co ltd Led lamp and illumination device including the led lamp
US9844123B2 (en) * 2012-06-15 2017-12-12 Lightel Technologies, Inc. Solid-state lighting operable with ballasts and line voltages without ambiguity
US9756698B2 (en) * 2014-09-28 2017-09-05 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp with two operating modes compatible with electrical ballasts
CN106804080B (zh) * 2015-11-26 2019-11-26 欧普照明股份有限公司 一种led驱动电路及led灯
US9918361B1 (en) * 2016-10-06 2018-03-13 Power Integrations, Inc. Ballast compatibility buffer circuit for LED lamps

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104219835A (zh) * 2014-08-25 2014-12-17 浙江生辉照明有限公司 一种led照明装置的驱动装置及驱动方法
CN105848375A (zh) * 2015-01-13 2016-08-10 欧司朗有限公司 驱动装置、照明装置、照明系统和控制该照明系统的方法
JP2017199644A (ja) * 2016-04-25 2017-11-02 株式会社リコー Ledランプ、照明装置及びledランプの点灯方法
CN107682953A (zh) * 2017-09-14 2018-02-09 昂宝电子(上海)有限公司 Led照明系统及其控制方法
CN108347805A (zh) * 2018-03-01 2018-07-31 佛山市长晶电子科技有限公司 兼容镇流器的驱动电路及led装置
CN108990199A (zh) * 2018-05-25 2018-12-11 矽力杰半导体技术(杭州)有限公司 可控硅调光器的检测电路及方法
CN110572896A (zh) * 2018-06-06 2019-12-13 通用电气照明解决方案有限公司 用于led装置的驱动器,led系统及led装置的适配方法
CN109246891A (zh) * 2018-09-30 2019-01-18 杰华特微电子(杭州)有限公司 一种调光器检测方法、检测电路及照明电路

Also Published As

Publication number Publication date
US20220369439A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
US8598802B2 (en) Triac dimmer compatible WLED driving circuit and method thereof
TWI423732B (zh) 照明裝置、發光二極體的驅動電路及其驅動方法
US8044600B2 (en) Brightness-adjustable LED driving circuit
US8941328B2 (en) Variable power dimming control circuit
US9215770B2 (en) Systems and methods for low-power lamp compatibility with a trailing-edge dimmer and an electronic transformer
TWI405502B (zh) 發光二極體的調光電路及其隔離型電壓產生器與調光方法
CN104868703B (zh) 无辅助绕组的高压转换器
EP2432298A2 (en) Switching power supply device and adjustable power supply system including the same
US9385621B2 (en) Stabilization circuit for low-voltage lighting
KR20120044902A (ko) 조명용 전원 장치 및 유지 전류의 제어 방법
US10172199B1 (en) Light-actuated wide voltage range LED lamp driver circuit
US11324090B2 (en) Detection circuit and detection method for a triac dimmer
WO2017107146A1 (zh) 一种 led 驱动电路
TW201320823A (zh) 照明用電源及照明裝置
US9288855B2 (en) Driving circuit for driving LED load
TW201419940A (zh) 發光二極體點燈裝置
KR100869115B1 (ko) Led 신호등용 전원장치
WO2021051266A1 (zh) 用于led装置的驱动器,led系统及led装置的适配方法
CN104470049A (zh) 电源装置、照明装置及照明系统
US10542595B2 (en) LED lamp power supply
CN110572896A (zh) 用于led装置的驱动器,led系统及led装置的适配方法
EP3300458B1 (en) Led device
CN111885782A (zh) 一种线性恒流控制电路及两种线性恒流led灯电路
JP2012160284A (ja) Led点灯装置、照明装置および照明制御システム
CN211267189U (zh) 一种led驱动电源电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946198

Country of ref document: EP

Kind code of ref document: A1