WO2021050029A1 - Ovsyankin desalination wave station - Google Patents

Ovsyankin desalination wave station Download PDF

Info

Publication number
WO2021050029A1
WO2021050029A1 PCT/UA2019/000116 UA2019000116W WO2021050029A1 WO 2021050029 A1 WO2021050029 A1 WO 2021050029A1 UA 2019000116 W UA2019000116 W UA 2019000116W WO 2021050029 A1 WO2021050029 A1 WO 2021050029A1
Authority
WO
WIPO (PCT)
Prior art keywords
desalination
energy
wave
water
receiver
Prior art date
Application number
PCT/UA2019/000116
Other languages
French (fr)
Russian (ru)
Inventor
Вячеслав Викторович ОВСЯНКИН
Алексей Вячеславович ОВСЯНКИН
Original Assignee
Вячеслав Викторович ОВСЯНКИН
Алексей Вячеславович ОВСЯНКИН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Вячеслав Викторович ОВСЯНКИН, Алексей Вячеславович ОВСЯНКИН filed Critical Вячеслав Викторович ОВСЯНКИН
Publication of WO2021050029A1 publication Critical patent/WO2021050029A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/20Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" wherein both members, i.e. wom and rem are movable relative to the sea bed or shore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention relates to the fields of hydropower and water purification and can be used for desalination of sea water due to the renewable energy of sea waves and currents in the open sea.
  • the objective of the invention is to impart properties to the station, allowing to expand the area of its applied use, namely, effectively work as a wave desalination station, using the energy of sea waves and currents.
  • the wave station which contains energy-absorbing elements made in the form of a flexible longitudinal body, guides, a working shaft of sufficient buoyancy, umbrella-shaped dampers, an immersion system and a hydraulic transmission, where the rotational energy of the energy absorbing elements is converted using hydraulic cylinders into energy movement of seawater under pressure
  • the high-pressure receiver of the hydraulic transmission along its entire length has several outlet points with locking devices, to which desalination sections with reverse osmosis membrane holders are connected with high-pressure hoses, which are connected (disconnected) in series as the flow rate of the water flow in the receiver changes or wave situation in the water area, while the pressure in the receiver is maintained in a given interval by a system of valves.
  • the wave station contains an intake receiver connected to the hydraulic cylinders by flexible hydraulic hoses, into which water is sucked through a pre-filter by a vacuum created by the pistons of the hydraulic cylinders, and the water intake plane is below the area of distribution of harmful algal blooms.
  • Figure 1 shows a wave desalination station.
  • Wave power plant 1 contains a working shaft 2, energy-absorbing elements 3, guides, power brackets 5, hydraulic cylinders 6, a high-pressure receiver 7, an intake receiver 8, desalination sections 9, dampers 10 and a fresh water pipeline 11
  • Wave desalination station works as follows.
  • the hydrodynamic head of sea waves and currents that run into the wave station 1 acts on the energy-absorbing elements 3 and creates a torque relative to the axis of attachment of the guides 4 when the wave rises in one direction, and when it descends, in the opposite direction.
  • the guides 4 are connected by pivot bearings with power brackets 5 mounted on the working shaft 2 and double-acting hydraulic cylinders 6.
  • the pumping cavities of the hydraulic cylinders 6 are connected by flexible high-pressure hydraulic hoses with a high-pressure receiver 7.
  • the suction cavities of the hydraulic cylinders 6 are connected by flexible hoses to the intake receiver 8 , into which water is sucked through a pre-filter by a vacuum created by the pistons of the hydraulic cylinders, and the plane of the water intake is below the area of distribution of harmful algae blooms.
  • the high-pressure receiver 7 of the hydraulic transmission along the entire length has several outlet points with locking devices, to which desalination sections 9 with holders of reverse osmosis membranes are connected with high-pressure hoses, which are sequentially connected (disconnected) as the flow rate of the water flow in the receiver or the wave situation in the water area changes ...
  • Desalination sections 9 operate efficiently when the pressure and flow rate of the water flow are within the required range.
  • the pressure in the high-pressure receiver is maintained at a predetermined interval by a valve system.
  • the change in the flow rate of the water flow is compensated by the change in the number of connected desalination sections 9, while the sections operate at maximum productivity.
  • Fresh water from the desalination sections 9 is supplied with flexible hoses to the fresh water pipeline 11, through which it is supplied to the shore due to excess pressure.
  • the wave desalination station operates in the wavelength range of 0.4 - 3.0 meters. With an increase in waves, the station is submerged in the zone of action of waves of the design parameters and continues to operate. This makes it possible to obtain an annual coefficient of utilization of the installed capacity for desalination of seawater 0.8
  • the energy consumption at the existing seawater desalination plants reaches 10 kW per 1 m 3 of fresh water, and the cost price is more than 0.6 € per m 3 .
  • the proposed wave desalination station will reduce the cost of fresh water to 0.3 € and use only renewable, environmentally friendly energy of sea waves and currents for desalination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The desalination wave station designed by Ovsyankin is intended for desalination of sea water by a reverse osmosis system based on renewable energy of sea waves and of currents in the open sea and relates to the fields of hydropower and water purification. The essence of the proposed invention is creating a reliable desalination wave station having a stably high output in a wide range of wave parameters. In the desalination wave station which comprises an energy-absorbing element in the form of a flexible longitudinal body, hydraulic transmission where the rotational energy of the energy-absorbing elements is converted into the energy of pressurised sea water movement by means of hydraulic cylinders, the problem of interest is solved by the inclusion of desalination units comprising holders for reverse osmosis membranes which cut in (cut out) sequentially in response to a change in the wave behaviour in the sea area.

Description

ВОЛНОВАЯ ОПРЕСНИТЕЛЬНАЯ СТАНЦИЯ ОВСЯНКИНА OVSYANKIN WAVE DESALINATION STATION
Изобретение относится к областям гидроэнергетики и очистке воды и может быть использовано для опреснения морской воды за счет возобновляемой энергии морских волн и течений в открытом море. The invention relates to the fields of hydropower and water purification and can be used for desalination of sea water due to the renewable energy of sea waves and currents in the open sea.
Известна волновая электростанция с гидравлической трансмиссией, которая содержит энергопоглощающие элементы, выполненные в виде гибкого продольного тела, направляющие,, рабочий вал достаточной плавучести, зонтиковидные успокоители, систему погружения и гидравлическую трансмиссию, где энергия вращения энергопоглощающих элементов преобразуется с помощью гидроцилиндров в энергию движения морской воды под давлением ( Овсянкин В. В. и др. Патент Украины Ns 107856). Known wave power plant with a hydraulic transmission, which contains energy-absorbing elements made in the form of a flexible longitudinal body, guides ,, working shaft of sufficient buoyancy, umbrella-shaped dampers, immersion system and hydraulic transmission, where the energy of rotation of the energy absorbing elements is converted with the help of hydraulic cylinders into the energy of movement of sea water under pressure (Ovsyankin V.V. et al. Patent of Ukraine Ns 107856).
Недостатками этой станции являются: The disadvantages of this station are:
- ограниченная область применения в качестве энергетической установки, подающей морскую воду под давлением, из-за нестабильности параметров водного потока в гидравлической трансмиссии, что, в частности, при опреснения морской воды системой обратного осмоса приводит к низкой производительности; - limited area of application as a power plant supplying seawater under pressure, due to the instability of the parameters of the water flow in the hydraulic transmission, which, in particular, when seawater is desalinated by the reverse osmosis system, leads to low productivity;
- отсутствие в конструкции технических решений, исключающих воздействие вредоносного цветения водорослей на фильтрующие элементы. - the lack of technical solutions in the design that exclude the impact of harmful algae bloom on the filter elements.
Задачей изобретения является придание станции свойств, позволяющих расширить область ее прикладного использования, а именно, эффективно работать, как волновая опреснительная станция, на энергии морских волн и течений. The objective of the invention is to impart properties to the station, allowing to expand the area of its applied use, namely, effectively work as a wave desalination station, using the energy of sea waves and currents.
Поставленная задача достигается тем, что в известной конструкции волновой станции, содержащей энергопоглощающие элементы, выполненные в виде гибкого продольного тела, направляющие, рабочий вал достаточной плавучести, зонтиковидные успокоители, систему погружения и гидравлическую трансмиссию, где энергия вращения энергопоглощающих элементов преобразуется с помощью гидроцилиндров в энергию движения морской воды под давлением, ресивер высокого давления гидравлической трансмиссии по всей длине имеет несколько точек выхода с запорными устройствами, к которым рукавами высокого давления подсоединяются опреснительные секции с держателями мембран обратного осмоса, последовательно подключающиеся (отключающиеся) по мере изменения расхода водного потока в ресивере или волновой обстановки в акватории, при этом, давление в ресивере поддерживается в заданном интервале системой клапанов. The task is achieved by the fact that in the known design of the wave station, which contains energy-absorbing elements made in the form of a flexible longitudinal body, guides, a working shaft of sufficient buoyancy, umbrella-shaped dampers, an immersion system and a hydraulic transmission, where the rotational energy of the energy absorbing elements is converted using hydraulic cylinders into energy movement of seawater under pressure, the high-pressure receiver of the hydraulic transmission along its entire length has several outlet points with locking devices, to which desalination sections with reverse osmosis membrane holders are connected with high-pressure hoses, which are connected (disconnected) in series as the flow rate of the water flow in the receiver changes or wave situation in the water area, while the pressure in the receiver is maintained in a given interval by a system of valves.
Поставленная задача достигается так же тем, что волновая станция содержит заборный ресивер, соединенный с гидроцилиндрами гибкими гидравлическими рукавами, в который вода всасывается через фильтр предварительной очистки разряжением, создаваемым поршнями гидроцилиндров, а плоскость забора воды находится ниже области распространения вредоносного цветения водорослей.The task is also achieved by the fact that the wave station contains an intake receiver connected to the hydraulic cylinders by flexible hydraulic hoses, into which water is sucked through a pre-filter by a vacuum created by the pistons of the hydraulic cylinders, and the water intake plane is below the area of distribution of harmful algal blooms.
Особенности и преимущества данного изобретения станут понятными из последующего подробного описания применения изобретения со ссылкой на рисунки, приведенные ниже. Features and advantages of this invention will become apparent from the following detailed description of the application of the invention with reference to the drawings below.
На Фиг.1 изображена волновая опреснительная станция. Figure 1 shows a wave desalination station.
На Фиг.2 изображен фронтальный вид волновой опреснительной станции. Волновая электростанция 1 содержит рабочий вал 2, энергопоглощающие элементы 3, направляющие, силовые кронштейны 5, гидроцилиндры 6, ресивер высокого давления 7, ресивер заборный 8, опреснительные секции 9, успокоители 10 и трубопровод пресной воды 11 Figure 2 shows a frontal view of a wave desalination station. Wave power plant 1 contains a working shaft 2, energy-absorbing elements 3, guides, power brackets 5, hydraulic cylinders 6, a high-pressure receiver 7, an intake receiver 8, desalination sections 9, dampers 10 and a fresh water pipeline 11
Волновая опреснительная станция работает следующим образом. Гидродинамический напор морских волн и течений, которые набегают на волновую станцию 1, воздействует на энергопоглощающие элементы 3 и создает крутящий момент относительно оси крепления направляющих 4 при подъеме волны в одном направлении, при опускании - в противоположном. Wave desalination station works as follows. The hydrodynamic head of sea waves and currents that run into the wave station 1 acts on the energy-absorbing elements 3 and creates a torque relative to the axis of attachment of the guides 4 when the wave rises in one direction, and when it descends, in the opposite direction.
Направляющие 4 соединяются шарнирными опорами с силовыми кронштейнами 5, установленными на рабочем валу 2, и гидравлическими цилиндрами двустороннего действия 6. Нагнетающие полости гидроцилиндров 6 соединены гибкими гидравлическими рукавами высокого давления с ресивером высокого давления 7. Всасывающие полости гидроцилиндров 6 соединены гибкими рукавами с заборным ресивером 8, в который вода всасывается через фильтр предварительной очистки разряжением, создаваемым поршнями гидроцилиндров, а плоскость забора воды находится ниже области распространения вредоносного цветения водорослей. The guides 4 are connected by pivot bearings with power brackets 5 mounted on the working shaft 2 and double-acting hydraulic cylinders 6. The pumping cavities of the hydraulic cylinders 6 are connected by flexible high-pressure hydraulic hoses with a high-pressure receiver 7. The suction cavities of the hydraulic cylinders 6 are connected by flexible hoses to the intake receiver 8 , into which water is sucked through a pre-filter by a vacuum created by the pistons of the hydraulic cylinders, and the plane of the water intake is below the area of distribution of harmful algae blooms.
Ресивер высокого давления 7 гидравлической трансмиссии по всей длине имеет несколько точек выхода с запорными устройствами, к которым рукавами высокого давления подсоединяются опреснительные секции 9 с держателями мембран обратного осмоса, последовательно подключающиеся (отключающиеся) по мере изменения расхода водного потока в ресивере или волновой обстановки в акватории. Опреснительные секции 9 работают эффективно, когда параметры давления и расхода водного потока лежат в требуемом диапазоне. При изменении волновой обстановки в акватории эти параметры меняются, при увеличении волн - возрастают, при уменьшении волн - падают. Давление в ресивере высокого давления поддерживается в заданном интервале системой клапанов. Изменение расхода водного потока компенсируется изменением количества подключённых опреснительных секций 9, при этом, секции работают с максимальной производительностью. The high-pressure receiver 7 of the hydraulic transmission along the entire length has several outlet points with locking devices, to which desalination sections 9 with holders of reverse osmosis membranes are connected with high-pressure hoses, which are sequentially connected (disconnected) as the flow rate of the water flow in the receiver or the wave situation in the water area changes ... Desalination sections 9 operate efficiently when the pressure and flow rate of the water flow are within the required range. When the wave situation in the water area changes, these parameters change, with an increase in waves - increase, with decreasing waves - fall. The pressure in the high-pressure receiver is maintained at a predetermined interval by a valve system. The change in the flow rate of the water flow is compensated by the change in the number of connected desalination sections 9, while the sections operate at maximum productivity.
Пресная вода от опреснительных секций 9 гибкими рукавами подается в трубопровод пресной воды 11, по которому подается на берег за счет избыточного давления. Fresh water from the desalination sections 9 is supplied with flexible hoses to the fresh water pipeline 11, through which it is supplied to the shore due to excess pressure.
Технический регламент требует обслуживания опреснительных секций на берегу 2-3 раза в год, для этого конструкция волновой станции позволяет выполнять быструю замену секций в условиях спокойного моря . The technical regulations require maintenance of the desalination sections onshore 2-3 times a year; for this, the design of the wave station allows quick replacement of sections in calm sea conditions.
Волновая опреснительная станция работает в диапазоне волн 0,4 - 3,0 метра. При увеличении волнения станция погружается под воду в зону действия волн расчетных параметров и продолжает работать. Это позволяет получить годовой коэффициент использования установленной мощности при опреснении морской воды 0,8 The wave desalination station operates in the wavelength range of 0.4 - 3.0 meters. With an increase in waves, the station is submerged in the zone of action of waves of the design parameters and continues to operate. This makes it possible to obtain an annual coefficient of utilization of the installed capacity for desalination of seawater 0.8
Энергозатраты на существующих заводах по опреснению морской воды достигают 10 кВт на один м3 пресной воды, а себестоимость более 0,6€ за м3. Заявляемая волновая опреснительная станция позволит снизить себестоимость пресной воды до 0,3€ и использовать для опреснения только возобновляемую, экологически чистую энергию морских волн и течений. The energy consumption at the existing seawater desalination plants reaches 10 kW per 1 m 3 of fresh water, and the cost price is more than 0.6 € per m 3 . The proposed wave desalination station will reduce the cost of fresh water to 0.3 € and use only renewable, environmentally friendly energy of sea waves and currents for desalination.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ CLAIM
1. Волновая опреснительная станция, содержащая энергопоглощающие элементы, выполненные в виде гибкого продольного тела, направляющие, рабочий вал достаточной плавучести, зонтиковидные успокоители, систему погружения и гидравлическую трансмиссию, где энергия вращения энергопоглощающих элементов преобразуется с помощью гидроцилиндров в энергию движения морской воды под давлением отличающаяся тем, что ресивер высокого давления гидравлической трансмиссии по всей длине имеет несколько точек выхода с запорными устройствами, к которым рукавами высокого давления подсоединяются опреснительные секции с держателями мембран обратного осмоса, последовательно подключающиеся (отключающиеся) по мере изменения расхода водного потока в ресивере или волновой обстановки в акватории, при этом, давление в ресивере поддерживается в заданном интервале системой клапанов. 1. A wave desalination station containing energy-absorbing elements made in the form of a flexible longitudinal body, guides, a working shaft of sufficient buoyancy, umbrella-shaped dampers, a diving system and a hydraulic transmission, where the energy of rotation of energy-absorbing elements is converted by means of hydraulic cylinders into the energy of movement of seawater under pressure, which is different the fact that the high-pressure receiver of the hydraulic transmission along the entire length has several outlet points with locking devices, to which desalination sections with reverse osmosis membrane holders are connected with high-pressure hoses, which are sequentially connected (disconnected) as the flow rate of the water flow in the receiver or the wave situation in water area, while the pressure in the receiver is maintained in a predetermined interval by a system of valves.
2. Конструкция опреснительной станции по п.1 отличающаяся тем , что она содержит заборный ресивер , соединенный с гидроцилиндрами гибкими гидравлическими рукавами, в который вода всасывается через фильтр предварительной очистки разряжением, создаваемым поршнями гидроцилиндров, а плоскость забора воды находится ниже области распространения вредоносного цветения водорослей. 2. The design of the desalination station according to claim 1, characterized in that it contains an intake receiver connected to the hydraulic cylinders by flexible hydraulic hoses, into which water is sucked through a preliminary filter by a vacuum created by the pistons of the hydraulic cylinders, and the plane of the water intake is below the area of distribution of harmful algae blooms ...
PCT/UA2019/000116 2019-09-10 2019-09-16 Ovsyankin desalination wave station WO2021050029A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UAA201909733 2019-09-10
UAA201909733 2019-09-10

Publications (1)

Publication Number Publication Date
WO2021050029A1 true WO2021050029A1 (en) 2021-03-18

Family

ID=74866392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/UA2019/000116 WO2021050029A1 (en) 2019-09-10 2019-09-16 Ovsyankin desalination wave station

Country Status (1)

Country Link
WO (1) WO2021050029A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140158624A1 (en) * 2012-07-05 2014-06-12 Murtech, Inc. Modular sand filtration - anchor system and wave energy water desalination system incorporating the same
UA107856C2 (en) * 2013-04-04 2015-02-25 Viacheslav Viktorovych Ovsiankin Wave power plant with hydraulic transmission by ovsiankin
RU2677318C2 (en) * 2017-03-29 2019-01-16 Александр Васильевич Ноздричев Sea wave power station (options), magnetohydrodynamic generator, magnetohydrodynamic channel, hydrogen-oxygen turbogenerator, pump installation and application of electrochemical generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140158624A1 (en) * 2012-07-05 2014-06-12 Murtech, Inc. Modular sand filtration - anchor system and wave energy water desalination system incorporating the same
UA107856C2 (en) * 2013-04-04 2015-02-25 Viacheslav Viktorovych Ovsiankin Wave power plant with hydraulic transmission by ovsiankin
RU2677318C2 (en) * 2017-03-29 2019-01-16 Александр Васильевич Ноздричев Sea wave power station (options), magnetohydrodynamic generator, magnetohydrodynamic channel, hydrogen-oxygen turbogenerator, pump installation and application of electrochemical generator

Similar Documents

Publication Publication Date Title
US7023104B2 (en) Wave energy conversion device for desalination, ETC
US7731847B2 (en) Submersible reverse osmosis desalination apparatus and method
CN101952583B (en) Wave energy for water desalination and electric power
US8650869B1 (en) Automatic hydraulic/pneumatic flow rectifier for bi-directional pumps
CA2943324C (en) Hydrokinetic energy conversion system with helical blade
JP7335480B2 (en) Thermal energy conversion underwater reverse osmosis desalination system
WO2008137677A1 (en) Waterwheel apparatus and methods
US20220074431A1 (en) Submerged reverse osmosis system
WO2011067124A3 (en) Wave powered buoyancy control system for floating wave power plants
WO2010025532A2 (en) Plant for electricity generation and/or desalination by water current turbines
WO2021050029A1 (en) Ovsyankin desalination wave station
CN209481242U (en) A kind of protective device waterborne having both disappear wave and seawater desalination functions
US11685679B2 (en) 100 % renewably -powered desalination /water purification station
RU2770360C1 (en) Sea water desalination method
CN101559992A (en) Fresh water fountain in ocean
AU2007231797A1 (en) Desalination and power generation plant
WO2015167333A1 (en) Water desalination system
EP2134654A1 (en) Desalination system
EP3907399B1 (en) Water power plant
Bouzid-Lagha et al. Optimization of Energy Cost Seawater Desalinization by Reverse Osmosis: Case of Bousmail Station in Algeria
RU2813520C1 (en) Method for purifying water from salt and contaminants
US20230286845A1 (en) Fully renewably -powered desalination /water purification station
US20240059586A1 (en) Seawater RO desalination by pneumatic power tapped from offshore ocean wave energy
Babu et al. Effective Utilisation of Wave Energy for Desalination Plants–A Review
ES2265738B1 (en) WIND ENERGY TRANSFORMATION SYSTEM IN HYDRAULIC ENERGY.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022105810

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 19945047

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19945047

Country of ref document: EP

Kind code of ref document: A1