WO2021049927A1 - Fortificante vegetal a base de micorrizas vesículo arbusculares, extractos y nutrientes vegetales - Google Patents

Fortificante vegetal a base de micorrizas vesículo arbusculares, extractos y nutrientes vegetales Download PDF

Info

Publication number
WO2021049927A1
WO2021049927A1 PCT/MX2020/050014 MX2020050014W WO2021049927A1 WO 2021049927 A1 WO2021049927 A1 WO 2021049927A1 MX 2020050014 W MX2020050014 W MX 2020050014W WO 2021049927 A1 WO2021049927 A1 WO 2021049927A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
biological
formulation
concentration
glomus
Prior art date
Application number
PCT/MX2020/050014
Other languages
English (en)
French (fr)
Inventor
Francisco Javier VICENTE MAGUEYAL
José Luis VELASCO SILVA
Víctor Alfonso SÁENZ ÁLVARO
Original Assignee
Biokrone S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biokrone S.A. De C.V. filed Critical Biokrone S.A. De C.V.
Priority to US17/642,847 priority Critical patent/US20220388925A1/en
Priority to PE2022000413A priority patent/PE20220602A1/es
Priority to ES202290024A priority patent/ES2908131B2/es
Priority to BR112022004686A priority patent/BR112022004686A2/pt
Publication of WO2021049927A1 publication Critical patent/WO2021049927A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • C05F11/08Organic fertilisers containing added bacterial cultures, mycelia or the like
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/10Solid or semi-solid fertilisers, e.g. powders
    • C05G5/12Granules or flakes

Definitions

  • Vegetable fortifier based on arbuscular vesicle mycorrhizae, extracts and plant nutrients.
  • the product improves the efficiency in the assimilation of phosphorus (P), potassium (K), zinc (Zn), copper (Cu) and increases the resistance to plants under conditions of stress due to drought, salinity, frost, excessive rainfall and provides greater tolerance to diseases caused by nematodes and phytopathogenic fungi such as Phytophthora sp., Rizhoctonia sp., Pythium sp., Fusarium sp. among others.
  • the present invention is formulated with elements that allow it to extend its shelf life, effectiveness and easy application alone or in a mixture: oligosaccharides (maltodextrin, maltose, dextrin, dextrose), polysaccharides (starch, glycogen, cellulose, chitin, paramilon, agarose, peptidoglycans, proteoglycans, hyaluronic acid, amylose, fructosan, kerate sulfate, dermatan sulfate, xylan, amylopectin), silicon dioxide, or hydrated aluminum silicate.
  • oligosaccharides maltodextrin, maltose, dextrin, dextrose
  • polysaccharides starch, glycogen, cellulose, chitin, paramilon, agarose, peptidoglycans, proteoglycans, hyaluronic acid, amylose, fructosan, kerate
  • the present invention comprises the formulation of a plant biofortifier as a wettable powder to improve the efficiency in the assimilation of phosphorus (P), potassium (K), zinc (Zn), copper (Cu) and increase the resistance to plants under conditions of stress due to drought, salinity, frost, excessive rainfall and provide a greater tolerance to diseases caused by root pathogens such as nematodes and phytopathogenic fungi.
  • the root volume increases to the absorption of water and nutrients, as well as providing stimulating hormones in plant growth thanks to the arbuscular vesicle mycorrhizae.
  • the inventive protection of the formulation of a plant biofortifier is expected, which comprises a wettable powder specifically designed to improve efficiency in the different fertilization systems (DRENCH, Pivots, drip or band spray) the efficiency in the assimilation of phosphorus (P), potassium (K), zinc (Zn), copper (Cu) and increase resistance to plants under conditions of stress due to drought, salinity, frost, excessive rainfall and provide greater tolerance to diseases caused by pathogens Roots such as nematodes and phytopathogenic fungi (Phytophthora sp., Rizhoctonia sp., Pythium sp., Fusarium sp. among others).
  • DRENCH different fertilization systems
  • Pivots, drip or band spray the efficiency in the assimilation of phosphorus (P), potassium (K), zinc (Zn), copper (Cu) and increase resistance to plants under conditions of stress due to drought, salinity, frost, excessive rainfall and provide greater tolerance to diseases caused by pathogens Roots such as
  • the mycorrhiza (from the Greek myces, fungus and rhiza, root) is a representation of the association of mycorrhizal fungi and the roots of plants.
  • the term mycorrhiza was first described in 1877 by forest pathologist Frank when studying the roots of some forest trees. When the mycorrhizae come into contact with the root exudates of the plants, they respond and by penetrating the roots into the plant cells, forming a beneficial association for the plant and the fungus by supplying it with nutrients that the plant cannot absorb.
  • Mycorrhizae are fundamentally important in some resource-limited ecosystems, without them growth and therefore yield may be reduced.
  • Spanish patent ES 2397298T3 refers to liquid mycorrhiza compositions and methods for colonizing a plant, grass, branch or shrub with one or more mycorrhizae. Specifically, it relates to compositions that enhance the ability of mycorrhizae to colonize plant roots, resulting in superior efficacy of plant treatment formulations containing the mycorrhizae. Spanish patent ES2159258B1 is mentioned as the procedure for preparing a biofertilizer based on arbuscular mycorrhizal symbiosis-forming fungi.
  • the Mexican patent MX / 2014/012524 (W02013 / 158900A1) comprises a combination of a phytate and a variety of microorganisms that include the fungus Tr ⁇ choderma virens, Bacillus amyloliquefaciens and also one or a mixture of mycorrhizal fungi that are placed in the rhizosphere of the plant allowing them to colonize said root vegetable; in addition, a method to increase the yield of the plant comprising: placing a combination of a phytate and a plurality of microorganisms comprising a Tr ⁇ choderma virens fungus, a Bacillus amyloliquefaciens bacterium and one or a mixture of mycorrhizal fungi in the rhizosphere of the plant a way that allows microorganisms to colonize said plant root.
  • the Spanish patent ES2190286T3 comprises a fertilizer for taller plants, existing in granulated form, which contains at least 50 percent by weight of malt germs, which are produced in the malting of cereals for the preparation of beer and separated of the malt grain, where the fertilizer is preferably and essentially constituted by this type of malt germs, characterized in that each ton of grains contains at least 10g of mycorrhizal spores, preferably at least 25g of mycorrhizal spores and / or at least 5 weight percent mycelia, preferably at least 15 weight percent mycelia of at least one species of mycorrhizal fungus.
  • Document C04600641 A1 describes a liquid biological fertilizer made up of fungi of plant origin, non-pathogenic for man of the mycorrhizal genus, capable of absorbing nutrients that are not very mobile from the soil such as phosphorus, sulfur, potassium, zinc, resulting in growth from the roots of plants and by Consequently, improving the productivity and vigor characteristics of all types of plants.
  • Document AR100735 refers to a method to improve the growth, development and productivity of non-legume plants by implementing a composition comprising at least one mycorrhiza and at least one yeast extract, and optionally a substrate;
  • the present application also refers to a composition of this type, and, when it comprises a substrate, to a process for its preparation.
  • Document ES2201661 refers to methods and compositions to improve the quality of the grass of a lawn by using VA mycorrhiza as a growth retarder of Poa annua. More particularly, the invention relates to the control, reduction or elimination of undesirable grasses in a lawn, especially in a high quality lawn consisting mainly of grass grasses, such as Agrostis stolonifera or Festuca species.
  • Document ES2659385 describes the use of a fertilizer that affects the distribution of plant biomass. More specifically, the fertilizer can stimulate root growth, fine root development, increase the number of root tips, and mycorrhiza development. Furthermore, the invention provides a method of using the fertilizer for modulation of the root fraction of the biomass.
  • Figure 1b shows the beneficial effect on wheat root elongation and root density through the use of plant biofortifier 15 days after germination. On the right, the treatments that contain the plant biofortifier are observed and on the left side, the control treatment.
  • Figure 1c shows the beneficial effect on wheat root elongation and root density through the use of plant biofortifier 30 days after germination. On the left, the treatments containing the plant biofortifier are observed and on the right side, the control treatment.
  • Figure 1d shows the spores of the vesicle arbuscular mycorrhiza belonging to the plant biofortifier, the spores were isolated from the mixture for their observation.
  • Figure 1e shows the density of the root biomass mentioned in example 3.
  • mycorrhiza-plant there is some uncertainty of new technologies where the selected mycorrhiza is not adapted to the crops with greater economic activity, pests and different environmental conditions, likewise a mixture of different plant compounds that fortify and enhance the symbiont activity has not been considered. mycorrhiza-plant.
  • the need for good fertilization conditions are the most important and critical factors for optimal performance.
  • the objective of fertilization is to carry elements necessary to nourish the plant, however, there are problems with traditional granular fertilizers added in irrigation, drench and pivoting systems in which there is precipitation if the solubility of the fertilizer or the product is exceeded. , the precipitate is deposited on the walls of the tubes, in the holes of the drippers and in the sprinklers, completely plugging the system.
  • the present invention is located in the area of Agricultural Biotechnology, it refers to a biological fortifier such as wettable powder from vesicle arbuscular mycorrhiza (VAM) and plant nutrients to improve crop yield.
  • VAM vesicle arbuscular mycorrhiza
  • the formulation of the biological fortifier is designed with a consortium of spores belonging to the strains of mycorrhizal fungi vesicle arbuscular (VAM): Glomus geosporum, Gigaespora margarita, Glomus fasciculatum, Glomus constrictum, Glomus tortuosum and Glomus intraradices, in addition the formulation is composed of extracts of humic and fulvic acids, extract of yucca (Yucca schidigera), extract of seaweed (Ascophyllum nodosum) and natural rooting agents (indoleacetic acid).
  • VAM mycorrhizal fungi vesicle arbuscular
  • the product improves the efficiency in the assimilation of phosphorus (P), potassium (K), zinc (Zn), copper (Cu) and increases the resistance to plants under conditions of stress due to drought, salinity, frost, excessive rainfall, It also has a particle size that avoids sedimentation, segregation and deposit in conventional fertilization systems and provides greater tolerance to diseases caused by Phytophthora sp., Rizhoctonia sp., Pythium sp., Fusarium sp. among others.
  • the present invention is located in the area of Agricultural Biotechnology, it refers to a plant fortifier as a wettable powder with a particle size that allows optimal assimilation of crops, protection from the roots and blocking by sedimentation of nozzles and conventional systems of fertilization.
  • An effective composition of a biological fortifier is described as a wettable powder to increase yields thanks to its formulation.
  • the present invention is described from the following 4 perspectives: 1) Biological composition as microbial active ingredient, 2) Active ingredients as nutrients and plant growth enhancers, 3) Inert in the formulation and 4) Final particle size.
  • the formulation of the biological fortifier is designed with a consortium of spores alone or in a mixture belonging to the strains of mycorrhizal fungi vesicle arbuscular (VAM): Glomus geosporum, Gigaespora margarita, Glomus fasciculatum, Glomus constrictum, Glomus tortuosum and Glomus intraradices which is sumistradaes. in the formulation in a percentage of 0.1-50% (w / w) (containing a concentration of 25-110 propagules / g) as a biological active ingredient. 2) Active ingredients as nutrients and plant growth enhancers.
  • VAM mycorrhizal fungi vesicle arbuscular
  • a formulation for the biological composition comprising of extracts of humic and fulvic acids in a concentration of 0.1% to 25%, extract of yucca (Yucca schidigera) in a concentration of 0.01% to 10%, extract of seaweed (Ascophyllum nodosum) in a concentration of 0.01 to 10% and natural rooters (2,4-D-indoleacetic acid) that ensure a concentration of 0.001% to! 1%.
  • oligosaccharides maltodextrin, maltose, dextrin, dextrose
  • poiisaccharides starch, glycogen, cellulose, chitin, paramilon, agarose, peptidoglycans, proteoglycans, hyaluronic acid, amylose, fructosan, keratin sulfate, dermatan sulfate, xylan, amylopectin
  • the final formulation should contain a particle size between 177 microns and 105 microns at a pH of 8-10 for optimal performance.
  • the mixture of the elements that make up the vegetable fortifier motive of the present invention can be mixed according to the following order: a) Weigh each of the nutrients that the biological composition comprises. b) Weigh and add the mycorrhizal spore consortium according to the mesh and add them to the mixer. c) Add the humic and fulvic acids in the mixer. d) Add the extract of seaweed and yucca in the mixer. e) Mix until the composition is homogeneous. f) Weigh and add the inert compounds in the mixer.
  • the following example demonstrates the biological activity of the biofortifier from vesicle arbuscular mycorrhiza (VAM) and plant nutrients to improve crop yield. More specifically, the action of the biological fortifier as an inoculant in the tomato crop (Solanum lycopersicum) belonging to the Solanaceae family is demonstrated.
  • VAM vesicle arbuscular mycorrhiza
  • Phenological state of the plant In vegetative development, flowering and harvest of the tomato crop.
  • Soil type clay.
  • Experimental design Random blocks with four repetitions. The experimental unit with 2 furrows 1.0m wide by 60m long, which gives an experimental area of 1,200m 2 . An analysis of variance and a mean separation test were performed with the Tukey test at 95% reliability. Three doses of the biological fortifier in question were evaluated, a regional control and an absolute control (Table 1).
  • Table 1 Treatments and doses evaluated to know the biological effectiveness of the freeze-fortifying agent in tomato (Solanum lycopersicum). Each treatment was applied 2 times to the soil in drip irrigation, in doses of 1.0, 1.5 and 2.0 kg for the application in transplantation and flowering, for the surface to be treated according to the experimental design. Two applications were made to the soil in drip irrigation, in transplantation and flowering, on the experimental units for each treatment. Variables for estimating biological effectiveness: a) Periodic growth: the height of the plants was estimated at 15, 30, 45 and 60 days after the first application. The measurement was carried out on 10 plants taken at random in each experimental unit (complete rows). b) Stem thickness.
  • Stem thickness at ground level was determined 45 days after transplantation in 10 random plants per experimental unit, in 10 plants per experimental unit. c) Distance from the head to the flowering bouquet. It was evaluated 45 days after transplantation, in 10 plants per experimental unit. d) Distance between the full fruit bunch and the flowering bunch. It was evaluated 60 days after transplantation, in 10 plants per experimental unit. e) Length of sheets. The length of leaves in complete development, in the middle part of the plant at 45 days after transplantation, was evaluated in 10 leaves per experimental unit. f) Radical length. It was evaluated 90 days after transplantation, in 5 plants per experimental unit. g) Number of compound leaves per plant. The number of leaves per plant was counted in 5 plants per experimental unit 45 days after transplantation.
  • Table 4 Treatments and doses evaluated to know the biological effectiveness of the fortifier at 30 days in the tomato crop (Solanum lycopersicum). Third evaluation: 45 days. In the analysis of variance table for plant growth in cm at 45 days, 4 statistical groups can be observed (Table 5). Treatment T3 (2.0 kg / ha) presents the highest average for height with 98.80 cm, while the absolute control T5 (0 kg / ha) presents an average of 87.07 cm.
  • Table 9 Evaluation of the distance between the complete fruit bunch and the flowering bunch in the study of the effect of the biofortificante in the tomato crop (Solanum lycopersicum). E. Length of leaves.
  • G Number of compound leaves per plant. The formation of 4 statistical groups (A, AB, B and C) was observed; Treatment T3 (2.0 kg / ha) presented the highest average of 58.65 for the number of leaves and the absolute control obtained an average of 39.40 leaves (Table 12).
  • group A formed by the high doses T3 (2.0 kg / ha) with the highest average of 203.70 ton / ha
  • group AB formed by the average treatment T2 (1.5Kg / ha)
  • group B formed by the low dose T1 (1.0 Kg / ha)
  • the regional control 1.0 kg / ha
  • group C formed by the absolute control (0 kg / ha) with an average of 139 ton / ha (Table 13).
  • the doses of 1.0, 1.5 and 2.0 kg / ha of the biofortifier were effective to increase the yield of the tomato crop (Solanum lycopersicum) because when using it it is possible to obtain a greater number of fruits per plant and a higher quality of these fruits and consequently an increase of 30%.
  • Phosphorus There is a significant difference between the treatments with application and the absolute control, the highest mean obtained was from the T3 treatment (2.0g / ha) with 0.51%. Potassium. There is a significant difference between the treatments with application and the absolute control, the highest mean obtained was from the T3 treatment (2.0 kg / ha) with 3.35%. Calcium (Ca): There is a significant difference between the treatments with application and the absolute control, the highest mean obtained was from the T3 treatment (2.00 kg / ha) with 0.2%.
  • Zinc (Zn) There is a significant difference between the treatments with application and the absolute control, the highest mean obtained was from the T3 treatment (2.0 kg / ha) with 0.39 ppm.
  • Phosphorus There is a significant difference between the treatments with application and the absolute control, the highest mean obtained was from the T3 treatment (2.0 kg / ha) with 0.91%. Potassium. There is a significant difference between the treatments with application and the absolute control, the highest mean obtained was from the T3 treatment (2.0 kg / ha) with 5.62%. Calcium (Ca): There is a significant difference between the treatments with application and the absolute control, the highest mean obtained was from the T3 treatment (2.0 kg / ha) with 4.35%.
  • Table 17 Evaluation of the nutritional analysis in the plant, in the study of evaluation of the effect of the biofortificante in the tomato crop (Solanum lycopersicum).
  • the experimental unit was made up of 3 beds of 1.3 m wide equal to 3.9 m, by 3.0 m long, equivalent to 11.7 m 2 , giving a total of 46.8 m 2 per treatment. A total area of 280.8 m 2 was used .
  • Application forms Drench.
  • Application equipment Manual backpack sprayer.
  • Biological effectiveness measurement parameter Two applications were made in the indicated stage, considering the following variables: 1. Phytotoxicity. It was evaluated 7 days after each application, using the percentage scale proposed by the European Weed Research Society (Table 2).
  • Stem diameter It was measured with a vernier in 3 random plants in the center of the experimental unit (repetition), at 0 days before the first application and 7 days after the first and 14 days after the second application. . The results were expressed in mm.
  • Number of leaves The number of leaves of 3 plants randomly sampled in the center of the experimental unit (repetition), 14 days after the last application, was counted. The results were expressed as a numerical value.
  • Fresh root weight (g) It was determined in two plants randomly sampled per experimental unit (repetition), the roots were extracted, washed and weighed with the help of a digital scale with a capacity of 500 g., At 14 days after the last application, the results were expressed in g.
  • Root dry weight It was determined in two plants randomly sampled per experimental unit (repetition) at 14 days after the last application, the roots were dried in an oven in the laboratory, they were weighed with the help of a digital scale with a capacity of 500 g. The results were expressed in g.
  • Chlorophyll content in leaves Two leaves were taken in three plants per repetition, which was measured with the SPAD method, which determines the relative amount of chlorophyll present through the measurement of the absorption of the leaves in two wavelength regions; in the red and near infrared regions. Using these two transmissions, the meter calculates the SPAD numerical value that is proportional to the amount of chlorophyll present in the leaf and consequently of nitrogen, 14 days after the second application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Cultivation Of Plants (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Fortificante biológico (biofortificante) vegetal formulado como polvo humectable a partir de mi corrí za s vesículo arbusculares y nutrientes vegetales para mejorar el rendimiento de los cultivos. La formulación del fortificante biológico está diseñada con un consorcio de esporas pertenecientes a las cepas de hongos micorrízicos vesículo arbusculares: Glomus geosporum, Gigaespora margarita, Glomus fasciculatum, Glomus constrictum, Glomus tortuosum y Glomus intraradices.

Description

Fortificante vegetal a base de micorrizas vesículo arbusculares, extractos y nutrientes vegetales.
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se ubica en el área de la Biotecnología Agrícola, se refiere a un fortificante biológico (biofortificante) vegetal formulado como polvo humectable a partir de micorrizas vesículo arbusculares y nutrientes vegetales para mejorar el rendimiento de los cultivos. La formulación del fortificante biológico esta diseñada con un consorcio de esporas pertenecientes a las cepas de hongos micorrízicos vesículo arbusculares ( Glomus geosporum, Gigaespora margarita, Glomus fasciculatum, Glomus constrictum, Glomus tortuosum y Glomus intraradices), además la formulación esta compuesta con extractos de ácidos húmicos y fúlvicos, extracto de yuca (Yucca schidigera), extracto de algas marinas ( Ascophyllum nodosum) y enraizadores naturales (ácido 2,4-D-ácido indolacético). El producto mejora la eficiencia en la asimilación de fósforo (P), potasio (K), zinc (Zn), cobre (Cu) e incrementa la resistencia a las plantas bajo condiciones de estrés por sequía, salinidad, heladas, exceso de lluvias y proporciona una mayor tolerancia a enfermedades causadas por nematodos y hongos fitopatógenos como Phytophthora sp., Rizhoctonia sp., Pythium sp., Fusarium sp. entre otros. Así mismo, la presente invención es formulada con elementos que le permiten prologar su vida de anaquel, efectividad y una fácil aplicación solos o en mezcla: oligosacáridos (maltodextrina, maltosa, dextrina, dextrosa), polisacáridos (almidón, glucógeno, celulosa, quitina, paramilón, agarosa, peptidoglicanos, proteoglicanos, ácido hialurónico, amilosa, fructosano, queratan sulfato, dermatan sulfato, xilano, amilopectina), dióxido de silicio o silicato de aluminio hidratado.
La presente invención comprende la formulación de un biofortificante vegetal como polvo humectable para mejorar la eficiencia en la asimilación de fósforo (P), potasio (K), zinc (Zn), cobre (Cu) e incrementar la resistencia a las plantas bajo condiciones de estrés por sequía, salinidad, heladas, exceso de lluvias y proporcionar una mayor tolerancia a enfermedades causadas por patógenos radiculares como nematodos y hongos fitopatógenos. Así mismo, aumenta el volumen radicular para la absorción de agua y nutrientes, así como proporcionar hormonas estimulantes en el crecimiento de las plantas gracias a las micorrizas vesículo arbusculares.
OBJETIVO DE LA INVENCIÓN
Como objetivo primordial se espera la protección inventiva de la formulación de un biofortificante vegetal que comprende de un polvo humectable diseñado específicamente para mejorar eficacia en los diferentes sistemas de fertilización (DRENCH, Pivotes, goteo o en aspersión por bandas) la eficiencia en la asimilación de fósforo (P), potasio (K), zinc (Zn), cobre (Cu) e incrementar la resistencia a las plantas bajo condiciones de estrés por sequía, salinidad, heladas, exceso de lluvias y proporcionar una mayor tolerancia a enfermedades causadas por patógenos radiculares como nematodos y hongos fitopatógenos ( Phytophthora sp., Rizhoctonia sp., Pythium sp., Fusarium sp. entre otros). Así mismo, aumentar el volumen de la acción radicular para la absorción de agua y nutrientes, así como de proporcionar hormonas estimulantes en el crecimiento de las plantas gracias a las micorrizas vesículo arbusculares. La formulación esta constituida por 1) 6 cepas de hongos micorrízicos vesículo arbusculares (VAM): Glomus geosporum, Gigaespora margarita, Glomus fasciculatum, Glomus constrictum, Glomus tortuosum y Glomus intraradices, 2) extractos de ácidos húmicos y fúlvicos, extracto de yuca (Yucca schidigera), extracto de algas marinas ( Ascophyllum nodosum) y enraizadores naturales (ácido 2,4-D-ácido indoiacético) y 3) elementos de la formulación que le permiten prologar su vida de anaquel, efectividad y una fácil aplicación en la que comprenden de elementos solos o en mezcla: oligosacáridos (maltodextrina, maltosa, dextrina, dextrosa), polisacáridos (almidón, glucógeno, celulosa, quitina, paramilón, agarosa, peptidoglicanos, proteoglicanos, ácido hialurónico, amilosa, fructosano, queratan sulfato, dermatan sulfato, xilano, amilopectina), dióxido de silicio o silicato de aluminio hidratado. ANTECEDENTES DE LA INVENCIÓN
De acuerdo con las proyecciones del Banco Mundial, para el 2020 la problación se estimará en siete mil millones de personas que necesitarán, vestido, vivienda y por supuesto alimentación. La producción y aseguramiento de la calidad en los cultivos es de gran interés económico ya que continuará siendo la principal fuente de alimentación a nivel global. Una de les estrategias mayormente utilizadas desde hace décadas es la fetilización tradicional a base de moléculas químicas (urea, nitratos, fosfatos, etc.) con el objetivo de aumentar la disponibilidad de los elementos escenciales para favorecer el crecimeinto de las plantas y el incremento en la producción, sin embargo, el uso excesivo de los mismos pueden provocar un daño irreparable en los suelos, el agua subterránea, la atmósfera, la salud del ser humano y del ecosistema. Una alternativa amigable con el medio ambiente para asegurar la alimentación es mediante la explotación racional de nuestros recursos a través del uso de sistemas y tecnologías de bajo impacto ambiental. Algunas tecnologías existentes han logrado abrir el camino hacia una responsabilidad en la agricultura, sin embargo, es necesario considerar dentro del desarrollo de productos funcionales: 1) costo, 2) su efectividad y 3) el beneficio para un óptimo desempeño. Entrando en materia, se puede hacer un enfásis en: 1) el costo de los fertilizantes convencionales en las últimas decadas han multiplicado hasta en ocho veces su precio, de ahí que los alimentos en la cadena de los productos y servicios primarios hayan aumentado su precio de producción e impactando en la economía de la población; 2) la eficiencia reportada de los fertilizantes convencionales es de solo el 20 al 30%, es decir mas del 50% del volumen total del fertilizante no es aprovechado por el cultivo, ocasionando acumulación en el suelo, erosión, contaminación de mantos freáticos y como subsecuencia daños en la biota próxima a la zona y al ser humano, el uso de biofertilizantes ayuda de forma preventiva y correctiva; 3) el uso de fertilizantes de base microbiana, extractos vegetales e incorporación de nutrientes vegetales mejoran la calidad de suelo, incrementan la disponibilidad de nutrientes, previenen diferentes tipos de enfermendades, no hay acumulación y por ende toxicidad a la planta o el suelo. La micorriza (del griego myces, hongo y rhiza, raíz) es una representación de la asociación de hongos micorrícicos y las raíces de las plantas. El término micorriza fue descrito por primera vez en 1877 por el patólogo forestal Frank al estudiar las raíces de algunos árboles forestales. Las micorrizas al entrar en contaco con los exudados radiculares de las plantas responden y mediante la penetración de las raíces hasta las células vegetales formando una asociación benéfica para la planta y el hongo al suministrarle de nutrientes que la planta no puede absorber. Las micorrizas son fundamentalmente importantes en algunos ecosistemas de limitación de recursos, sin ellas el crecimiento y por ende el rendimiento puede verse reducido. Actualmente se puede encontrar en la bibliografía una serie de invenciones segregadas en diferentes rubros y utilizando de manera separada géneros y especies de micorrizas, extractos vegetales y nutrientes escenciales, sin embargo, no existe inventiva alguna en donde exista una sinergia entre ellos para la elaboración de una tecnología con un alta efectividad.
La presente invención tiene como objetivo la protección inventiva de un fortificante biológico diseñado para mejorar la eficiencia en la asimilación de fósforo (P), incrementar la resistencia a las plantas bajo condiciones de estrés por sequía, salinidad, heladas, exceso de lluvias y proporcionar una mayor tolerancia a enfermedades causadas por patógenos radiculares como nematodos y hongos fitopatógenos ( Phytophthora sp., Rizhoctonia sp., Pythium sp., Fusarium sp. entre otros).
Algunos esfuerzos se han logrado para el establecimiento dentro del desarrollo de tecnologías biofortificantes, sin embargo, pocas se han llevado al ámbito de la actividad industrial. Se hace mención de aquellas tecnologías relevantes a la presente invención.
La patente española ES 2397298T3 se refiere a composiciones de micorriza líquida y a métodos para colonizar una planta, hierba, ramificación o arbusto con una o más micorrizas. Específicamente, se refiere a composiciones que mejoran la capacidad de las micorrizas para colonizar raíces de planta, dando como resultado eficacia superior de formulaciones de tratamiento vegetal que contienen las micorrizas. La patente española ES2159258B1 se menciona como el procedimiento de preparación de un biofertilizante basado en hongos formadores de simbiosis micorriza arbuscular. La invención consiste en un método de preparación de un biofertilizante obtenido con la mezcla homogénea de un substrato portador de material propagativo fúngico de micorriza arbuscular junto con papel, previamente detoxificado, y su posterior compactación. Así se obtiene un biofertilizante granulado formado por constituyentes de bajo coste aplicable, no sólo a cultivos de invernadero o de vivero, sino a gran escala.
La patente mexicana MX/2014/012524 (W02013/158900A1) comprende de una combinación de un fitato y una variedad de microorganismos que comprenden al hongo Tríchoderma virens, Bacillus amyloliquefaciens y además uno o mezcla de hongos micorriza que se colocan en rizosfera de la planta permitiéndoles colonizar dicha raíz vegetal; ademas, un método para aumentar el rendimiento de la planta que comprende: colocar una combinación de un fitato y una pluralidad de microorganismos que comprenden un hongo Tríchoderma virens, una bacteria Bacillus amyloliquefaciens y uno o una mezcla de hongos micorriza en rizosfera de la planta de manera que permite que los microorganismos colonicen dicha raíz vegetal.
La patente española ES2190286T3 comprende de un fertilizante para plantas más altas, existente en forma granulada, el cual contiene por lo menos un 50 por ciento en peso de gérmenes de malta, que son producidos en el malteado de cereales para la preparación de cerveza y separados del grano de malta, donde el fertilizante se constituye preferible y esencialmente por este tipo de gérmenes de malta, caracterizado por el hecho de que cada tonelada de granos contiene por lo menos 10g de esporas de micorriza, preferiblemente por lo menos 25g de esporas de micorriza y/o por lo menos un 5 por ciento en peso de micelios, preferiblemente por lo menos un 15 por ciento en peso de micelios de al menos una especie de hongo micorrícico.
El documento C04600641 A1 describe a un fertilizante biológico líquido constituido por hongos de origen vegetal, no patógeno para el hombre del genero micorriza, capaces de absorber nutrientes poco móviles del suelo como son fosforo, azufre, potasio, zinc, dando como resultado en el crecimiento de la raíz de las plantas y por consiguiente mejorando las características de productividad y vigor de todo tipo de plantas.
El documento AR100735 se refiere a un método para mejorar el crecimiento, el desarrollo y la productividad de plantas no leguminosas mediante la implementación de una composición que comprende por lo menos una micorriza y por lo menos un extracto de levadura, y opcionalmente un sustrato; la presente solicitud se refiere también a una composición de este tipo, y, cuando comprende un sustrato, a un procedimiento para su preparación.
El documento ES2201661 se refiere a métodos y composiciones para mejorar la calidad de la hierba de un césped mediante el uso de micorriza VA como retardador del crecimiento de Poa annua. Más particularmente, la invención se refiere a la represión, reducción o eliminación de hierbas indeseables en un césped, especialmente en un césped de gran calidad que consiste principalmente en hierbas gramíneas, como las especies Agrostis stolonifera o Festuca.
El documento ES2659385 describe al empleo de un fertilizante que afecta la distribución de biomasa vegetal. Más específicamente, el fertilizante puede estimular el crecimiento de las raíces, el desarrollo de raíces finas, aumentar el número de puntas de las raíces y el desarrollo de la micorriza. Además, la invención proporciona un método para utilizar el fertilizante para la modulación de la fracción de raíz de la biomasa.
Por lo tanto aun existe la necesidad de un fortificante que contenga una mezcla de micorrizas vesiculo arbusculares, nutrientes vegetales y extractos vegetales que tenga la capacidad de estimular el crecimiento de las plantas, incremente el volumen radicular, proporcione una mejor eficiencia en la asimilación de fósforo y otros nutrimentos, además de proporcionar resistencia a las plantas bajo condiciones de estrés por sequía, salinidad, heladas, exceso de lluvias y mayor tolerancia a enfermedades. BREVE DESCRIPCIÓN DE LAS FIGURAS
Para entender mejor la invención, así como sus ventajas, se hace una descripción detallada de la misma, con el apoyo de las figuras incluidas, los cuales solamente Ilustran las modalidades preferentes de la invención, por lo que no deben ser considerados como una limitante.
En la figura 1a se observa la tinción de la raíz de trigo en donde la espora de la micorriza vesículo arbuscular proveniente de la formulación biofortificante se encuentra sinergicamente adherida en la superficie.
En la figura 1b se observa el efecto benéfico en la elongación de la raíz de trigo y la densidad radicular mediante el uso del biofortificante vegetal a 15 días de germinación. A la derecha se observan los tratamientos que contienen al biofortificante vegetal y de lado izquierdo al tratamiento control.
En la figura 1c se observa el efecto benéfico en la elongación de la raíz de trigo y la densidad radicular mediante el uso del biofortificante vegetal a 30 días de germinación. A la izquierda se observan los tratamientos que contienen al biofortificante vegetal y de lado derecho al tratamiento control.
En la figura 1d se observan las esporas de las micorrizas vesículo arbusculares pertenecientes al biofortificante vegetal, las esporas fueron aisladas de la mezcla para su observación.
En la figura 1e se observa la densidad de la biomasa radicular mencionada en el ejemplo 3. BREVE DESCRIPCIÓN DE LA PROBLEMÁTICA
La indiscriminada aplicación de productos químicos sintéticos para incrementar la productividad de los cultivos ha ocasionado un deterioro progresivo del ecosistema actual. La mayoría de los fertilizantes químicos sintéticos son aplicados en grandes cantidades, sin embargo, estos son asimilados en pequeñas concentraciones por las plantas ocasionando lixiviación, fijación y erosión en el subsuelo del material restante. Es necesaria la búsqueda de nuevas tecnologías que permitan un balance entre la rendimiento-costo de producción y a que a su vez sean amigables con el ecosistema circundante. Una alternativa que pretende solucionar este problema es el uso de tecnologías biorracionales en donde los microorganismos endémicos tengan lugar. Las micorrizas proveen a la planta mediante una simbiosis benéfica de nutrientes (agua, macro y microelementos) que la planta es incapaz de asimilar de forma óptima. Sin embargo, existe cierta incertidumbre de nuevas tecnologías en donde la micorriza seleccionada no se adapta a los cultivos de mayor actividad económica, plagas y diferentes condiciones ambientales, así mismo no se ha considerado una mezcla de diferentes compuestos vegetales que fortifiquen y potencialicen la actividad simbionte micorriza-planta.
La necesidad de buenas condiciones de fertilización son los factores mas importantes y críticos para un óptimo desempeño. El objetivo de la fertilización es llevar elementos necesarios para nutrir a la planta, sin embargo, existen problemáticas con los fertilizantes granulares tradicionaes añadidos en los sistemas de irrigación, drench y pivoteo en los cuales existe precipitación si se excede la solubilidad del fertilzante o del producto, el precipitado se deposita en las paredes de los tubos, en los orificios de los goteros y en los aspersores, taponando completamente el sistema. La presente invención se ubica en el área de la Biotecnología Agrícola, se refiere a un fortificante biológico como polvo humectable a partir de micorrizas vesículo arbusculares (VAM) y nutrientes vegetales para mejorar el rendimiento de los cultivos. La formulación del fortificante biológico esta diseñada con un consorcio de esporas pertenecientes a las cepas de hongos micorrízicos vesículo arbusculares (VAM): Glomus geosporum, Gigaespora margarita, Glomus fasciculatum, Glomus constrictum, Glomus tortuosum y Glomus intraradices, además la formulación esta compuesta con extractos de ácidos húmicos y fúlvicos, extracto de yuca (Yucca schidigera), extracto de algas marinas ( Ascophyllum nodosum) y enraizadores naturales (ácido indolacético). El producto mejora la eficiencia en la asimilación de fósforo (P), potasio (K), zinc (Zn), cobre (Cu) e incrementa la resistencia a las plantas bajo condiciones de estrés por sequía, salinidad, heladas, exceso de lluvias, además presenta un tamaño de partícula que evita la sedimentación, segregación y depósito en los sistemas de fertilización convencionales y proporciona una mayor tolerancia a enfermedades causadas por Phytophthora sp., Rizhoctonia sp., Pythium sp., Fusarium sp. entre otros.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención se ubica en el área de la Biotecnología Agrícola, se refiere a un fortificante vegetal como polvo humectable con un tamaño de partícula que permite una óptima asimilación de los cultivos, protección desde la raíz y bloqueo por sedimentación de boquillas y sistemas convencionales de fertilización.
Se describe una composición eficaz de un fortificante biológico como polvo humectable para el incremento de rendimientos gracias a su formulación. La presente invención se describe desde los siguientes 4 panoramas: 1) Composición biológica como ingrediente activo microbiano, 2) Ingredientes activos como nutrientes y potencializadores del crecimiento vegetal, 3) Inertes en la formulación y 4) Tamaño de partícula final.
1) La composición biológica como ingrediente activo microbiano.
La formulación del fortificante biológico esta diseñada con un consorcio de esporas solas o en mezcla pertenecientes a las cepas de hongos micorrízicos vesículo arbusculares (VAM): Glomus geosporum, Gigaespora margarita, Glomus fasciculatum, Glomus constrictum, Glomus tortuosum y Glomus intraradices la cual es sumistrada en la formulación en un porcentaje de 0.1-50% (p/p) (conteniendo una concentración de 25-110 propágulos/g) como ingrediente activo biológico. 2) Ingredientes activos como nutrientes y potencializadores del crecimiento vegetal.
Una formulación para la composición biológica que comprende de extractos de ácidos húmicos y fúlvicos en una concentración de 0.1% al 25%, extracto de yuca (Yucca schidigera) en una concentración de 0.01% al 10%, extracto de algas marinas ( Ascophyllum nodosum) en una concentración del 0.01 al 10% y enraizadores naturales (ácido 2,4-D-ácido indolacético) que aseguren una concentración de 0.001% a! 1%.
3) Inertes en la formulación.
Para que el inoculante otorgue una efectividad y larga vida de anaquel es necesario se aplique en ¡a forma de una única composición mediante la formulación con compuestos que inertes solos o en mezcla de: oligosacáridos (maltodextrina, maltosa, dextrina, dextrosa) asegurando una concentración de al menos 45%%, poiisacáridos (almidón, glucógeno, celulosa, quitina, paramilón, agarosa, peptidoglicanos, proteoglicanos, ácido hialurónico, amilosa, fructosano, queratan sulfato, dermatan sulfato, xilano, amilopectina) asegurando una concentración de al menos 0.1%-3% y una fuente de silicio (Mg3SUOio(OH)2, CaSi, H4SÍO4, AIS13, CaALShOs, 2NaAISi30s, S1O2, 4H4S1O4,) asegurando una concentración de al menos 0.1 % al 0.5%. Todo debe sumar una concentración entre el 40 al 47%.
4) Tamaño de partícula final.
La formulación final deberá contener un tamaño de partícula entre 177 micrones y 105 micrones a un pH de 8-10 para un óptimo desempeño.
La mezcla de 1) Composición biológica de las micorrizas vesículo arbusculares, 2) Ingredientes activos como nutrientes y potencializadores del crecimiento vegetal y 3) Inertes en la formulación, en donde todo debe sumar un 100%. La mezcla de los elementos que conforman al fortificante vegetal motivo de la presente invención puede ser mezclado de acuerdo con el siguiente orden: a) Pesar cada uno de los nutrientes que comprende la composición biológica. b) Pesar y agregar el consorcio de esporas de micorrizas de acuerdo al mallaje y agregarlos a la mezcladora. c) Añadir los ácidos húmicos y fúlvicos en la mezcladora. d) Añadir el extracto de alga y yucca en la mezcladora. e) Mezclar hasta que sea homogénea la composición. f) Pesar y agregar los compuestos inertes en la mezcladora. g) El tiempo oscila de acuerdo al volumen producido, sin embargo de 15-30 min suelen ser adecuados a un mezclado de 80-150 rpm. h) Descargar la producción masiva que corresponde al fortificante vegetal en recipientes. i) Se almacena en contenedores rotulados para su almacenamiento.
EJEMPLOS
Los siguientes ejemplos tienen la finalidad de ilustrar la invención, no de limitarla. Cualquier variación por los expertos de la técnica cae dentro del alcance de la misma.
Ejemplo 1
En el siguiente ejemplo se demuestra la actividad biológica del biofortificante a partir de micorrizas vesículo arbusculares (VAM) y nutrientes vegetales para mejorar el rendimiento de los cultivos. Mas específicamente se demuestra la acción del fortificante biológico como inoculante en el cultivo de jitomate ( Solanum lycopersicum) perteneciente a la familia de la Solanaceae.
Cultivo en el que se probó: Jitomate var. serengueti
Estado fenológico de la planta: En desarrollo vegetativo, floración y cosecha del cultivo de jitomate.
Tipo de suelo: arcilloso. Diseño experimental: Bloques al azar con cuatro repeticiones. La unidad experimental de 2 surcos de 1.0m de ancho por 60m de largo, lo que da un área experimental de 1 ,200m2. Se realizó un análisis de varianza y una prueba de separación de medias con la prueba Tukey al 95% de confiabilidad. Se evaluaron tres dosis de fortificante biológico en cuestión, un testigo regional y un testigo absoluto (Tabla 1).
Tabla 1. Tratamientos y dosis evaluadas para conocer la efectividad biológica del liofortifi cante en jitomate ( Solanum lycopersicum).
Figure imgf000013_0001
Cada tratamiento se aplicó 2 veces al suelo en el riego por goteo, en dosis de 1.0, 1.5 y 2.0 kg para la aplicación en el trasplante y floración, para la superficie a tratar de acuerdo al diseño experimental. Se realizaron dos aplicaciones al suelo en el riego por goteo, en el trasplante y floración, sobre las unidades experimentales destinadas a cada tratamiento. Variables de estimación de la efectividad biológica: a) Crecimiento periódico: Se estimó la altura de las plantas a los 15, 30, 45 y 60 días después de la primera aplicación. La medición se realizó sobre 10 plantas tomadas al azar en cada unidad experimental (surcos completos). b) Grosor de tallo. Se determinó el grosor de tallo al ras del suelo a los 45 días de trasplante en 10 plantas al azar por unidad experimental, en 10 plantas por unidad experimental. c) Distancia de la cabeza al ramillete en floración. Se evaluó a los 45 días del trasplante, en 10 plantas por unidad experimental. d) Distancia entre el racimo cuajado completo y racimo en floración. Se evaluó a los 60 días del trasplante, en 10 plantas por unidad experimental. e) Longitud de hojas. Se evaluó la longitud de hojas en desarrollo completo, en la parte media de la planta a los 45 días de trasplante, en 10 hojas por unidad experimental. f) Longitud radical. Se evaluó a los 90 días del trasplante, en 5 plantas por unidad experimental. g) Número de hojas compuestas por planta. Se realizó en conteo de número de hojas por planta en 5 plantas por unidad experimental a los 45 días del trasplante. h) Rendimiento del peso de frutos/5 plantas. En cada corte semanal se pesaron los frutos de 5 plantas etiquetadas previamente, para en la etapa final de producción del cultivo se determinó en kg/planta, extrapolando a rendimiento por hectárea de acuerdo con la densidad de plantas/ha. i) Fitotoxicidad. Con el fin de evaluar si el producto ejerce algún tipo de efecto fitotóxico sobre el cultivo de maíz, se evaluó cualquier sintomatología anormal de las plantas, flores y frutos con respecto a las observadas en el testigo absoluto, usando los valores de la escala de EWRS (Tabla 2). j) Calibre de frutos. Se realizó el muestreo de 100 frutos por unidad experimental y se separaron en número de frutos de lera, 2da y 3era calidad, para determinar su porcentaje. k) Coloración de frutos. De un muestreo de 100 frutos, se evaluó la uniformidad en color, escogiendo aquellos en madurez comercial. Se separaron aquellos que presentaron un color y aspecto uniforme determinando su porcentaje.
L) Grados Brix. Con el uso del refractómetro se determinaron los grados Brix por fruto en una muestra compuesta de 5 frutos por unidad experimental. Tabla 2. Escala de puntuación EWRS para evaluar el efecto fitotóxico en el cultivo de jitomate ( Solanum lycopersicum).
Figure imgf000015_0001
Análisis estadístico para la verificación de la significancia entre los tratamientos.
A las variables evaluadas se les aplicó un análisis de varianza y una prueba de separación de medias con la prueba de Tukey (alfa de 0.05) mediante el uso del paquete estadístico SAS. Los resultados fueron analizados y discutidos con base a la diferencia estadística y lo observado en campo.
RESULTADOS
A. Crecimiento periódico
Primera evaluación: 15 días. Se pudo observar a los 15 de cultivo 4 agrupaciones estadísticas (A, AB, B y C). El tratamiento T3 (2.0 kg/ha) presenta una mayor media con 44.17 cm, mientras el testigo absoluto presentó una media de 27.72 cm (Tabla 3). Tabla 3. Tratamientos y dosis evaluadas para conocer la efectividad biológica del biofortificante a 15 días en el cultivo de jitomate ( Solanum lycopersicum).
Figure imgf000016_0001
Segunda evaluación: 30 días. En el análisis de varianza para el crecimiento de la planta en cm a los 30 días (Tabla 4), se puede observar que existen efectos significativos en los tratamientos para la diferenciación con el testigo absoluto, se pudieron observar 4 agrupaciones entre los tratamientos (A, AB, BC y C). Se observa que el T3 (2.0 kg/ha) presenta la mayor altura, siendo la media de 78.62 cm y con una diferencia con el T5 (0 kg/ha) que presentó una media de 67.87 cm.
Tabla 4. Tratamientos y dosis evaluadas para conocer la efectividad biológica del fortificante a 30 días en el cultivo de jitomate ( Solanum lycopersicum).
Figure imgf000016_0002
Tercera evaluación: 45 días. En el cuadro de análisis de varianza para el crecimiento de la planta en cm a los 45 días, se puede observar 4 grupos estadísticos (Tabla 5). El tratamiento T3 (2.0 kg/ha) presenta la mayor media para la altura con 98.80 cm, mientras que el testigo absoluto T5 (0 kg/ha) presenta una media de 87.07cm.
Tabla 5. Tratamientos y dosis evaluadas para conocer la efectividad biológica del biofortificante a 45 días en el cultivo de jitomate ( Solanum lycopersicum).
Figure imgf000017_0002
Cuarta evaluación: 60 días. E análisis de la varianza para el crecimiento muestra efectos significativos, formando 5 grupos estadísticos (A, B, BC, C y D), siendo el T3 (2.0 kg/ha) con una media de 140.90 cm y superior al testigo regional (1 kg/ha) y absoluto (0 kg/ha) (Tabla 6).
Tabla 6. Tratamientos y dosis evaluadas para conocer la efectividad biológica del biofortificante a 60 días en el cultivo de jitomate ( Solanum lycopersicum).
Figure imgf000017_0001
B. Grosor del tallo.
Se muestra las medidas del grosor del tallo en cm (Tabla 7), en donde se pueden observar las diferencias significativas entre los tratamientos, se formaron dos grupos estadísticos (A y B). El grupo A formado por la dosis alta T3 (2.0 kg/ha) y media T2 (1.5 kg/ha) y el grupo B formado por la dosis baja T1 (1.0 kg/ha), el testigo regional y el testigo absoluto. La mayor media presentó un grosor de 13.40 cm del T3 (2.0 kg/ha).
Tabla 7. Tratamientos y dosis evaluadas para el grosor del tallo por el efecto del biofortificante en el cultivo de jitomate ( Solanum lycopersicum).
Figure imgf000018_0001
C. Distancia de la cabeza al ramillete en floración.
Se muestra las medidas de la distancia de la cabeza al ramillete en floración, se puede observar 3 grupos estadísticos (Tabla 8), el grupo A formado por los tratamientos bajo T1 (1.0 kg/ha), medio T2 (1.5 kg/ha) y alto T3 (2.0 kg/ha), el grupo B por el testigo regional T4 y el grupo C formado por el testigo absoluto T5. La mayor media de 73.55 cm corresponde al T3 (2.0 kg/ha).
Tabla 8. Evaluación de la distancia de cabeza al ramillete en floración, en el estudio de evaluación del efecto del biofortificante en el cultivo de jitomate ( Solanum lycopersicum).
Figure imgf000019_0001
D. Distancia entre el racimo cuajado completo y el racimo en floración. En el análisis de varianza para la distancia entre el racimo cuajado completo y el racimo en floración se observaron 3 grupos estadísticamente distintos, el grupo A conformado por la dosis media (1.5kg/ha) y alta (2.0 kg/ha), el grupo B conformado por la dosis baja (1.0 kg/ha) y el testigo regional (1.0 kg/ha) y el grupo C conformado por el testigo absoluto (0 kg/ha). La mayor media pertenece al T3 con una magnitud de 37.40 cm (Tabla 9).
Tabla 9. Evaluación de la distancia entre el racimo cuajado completo y el racimo en floración en el estudio del efecto del biofortificante en el cultivo de jitomate ( Solanum lycopersicum).
Figure imgf000019_0002
E. Longitud de hojas.
En la tabla 10 del análisis de varianza para la longitud de hojas en cm, se observa que existen tres grupos estadísticos (A, B y C), la mayor longitud se observó en el T3 (2.0kg/ha) con una media de 29.30 cm, el testigo absoluto (0 kg/ha) presento la media de 20.05 cm.
Tabla 10. Evaluación de la longitud de hojas en el estudio del efecto del biofortificante en el cultivo de jitomate ( Solanum lycopersicum).
Figure imgf000020_0001
F. Longitud radical.
Se puede observar que existen diferencias significativas en los tratamientos evaluados, formándose 4 grupos estadísticos (Tabla 11): el grupo A formado por la dosis alta T3 (2.0 kg/ha) y que presenta la mayor longitud con 27.90 cm; el grupo AB formado por la dosis media T2 (1.5 kg/ha) y la dosis baja T1 (1.0 kg/ha), el grupo B formado por el testigo regional T4 (1.0 kg/ha) y el grupo C formado por el testigo absoluto T5 (0 kg/ha).
Tabla 11. Evaluación de la longitud de radical en el estudio del efecto del biofortificante en el cultivo de jitomate ( Solanum lycopersicum).
Figure imgf000021_0001
G. Número de hojas compuestas por planta. Se observó la formación de 4 grupos estadísticos (A, AB, B y C); el tratamiento T3 (2.0 kg/ha) presentó la mayor media de 58.65 para el numero de hojas y el testigo absoluto obtuvo un promedio de 39.40 hojas (Tabla 12).
Tabla 12. Evaluación del número de hojas compuestas por planta, en el estudio del efecto del biofortificante en el cultivo de jitomate ( Solanum lycopersicum).
Figure imgf000021_0002
H. Rendimiento ton/ha.
Se observó la formación de 4 grupos estadísticos, el grupo A formado por las dosis alta T3 (2.0 kg/ha) con la mayor media de 203.70 ton/ha, el grupo AB formado por el tratamiento medio T2 (1.5Kg/ha), el grupo B formado por la dosis baja T1 (1.0 Kg/ha) y el testigo regional (1.0 kg/ha) y el grupo C formado por el testigo absoluto (0 kg/ha) con una media de 139 ton/ha (Tabla 13).
Tabla 13. Evaluación del rendimiento de frutos/5plantas, en el estudio del efecto del biofortificante en el cultivo de jitomate ( Solanum lycopersicum).
Figure imgf000022_0001
I. Calibre de frutos.
El análisis de varianza correspondiente a la evaluación de calibre de frutos se observó la formación de 4 grupos estadísticos, el grupo A formado por el T3 (2.0 kg/ha), el grupo AB formado por el T2 (1.5 kg/ha) y el testigo regional, el grupo B formado por el T1 (1.0 kg/ha) y el grupo C formado por el testigo absoluto. El T3 presentó la media mas alta con un valor de 95.4 % de frutos de primera calidad (Tabla 14).
Tabla 14. Evaluación del calibre de frutos en el estudio del efecto del biofortificante en el cultivo de jitomate ( Solanum lycopersicum).
Figure imgf000022_0002
J. Grados Brix.
El análisis de varianza correspondiente a la evaluación de los grados brix se observó la formación de 2 grupos estadísticos, el grupo A formado, el T2 (1.5 kg/ha), el testigo regional y el T1 (1.0 kg/ha), el grupo B formado por el testigo absoluto. El T3 presentó la media mas alta con un valor de 5.2 °Bx (Tabla 15) mientras la media del testigo fue de 4.02 °Bx (Tabla 15).
Tabla 15. Evaluación de los grados brix en el estudio del efecto del biofortificante en el cultivo de jitomate ( Solanum lycopersicum).
Figure imgf000023_0001
Conclusiones
1. La dosis de 1.0, 1.5 y 2.0 kg/ha del biofortificante fueron efectivas para incrementar el rendimiento del cultivo de jitomate ( Solanum lycopersicum) debido a que al utilizarlo se logra obtener un mayor número de frutos por planta y mayor calidad de estos frutos y por consecuencia un incremento del 30%.
2. Las mejores variables para diferenciar el efecto del biofortificante a las dosis presentadas fueron: altura de planta, grosor de tallo, rendimiento (ton/ha), calibre de frutos y coloración de frutos.
3. No hubo efectos tóxicos en el cultivo de jitomate por la aplicación de las dosis mencionadas. Ejemplo 2
Se realizó una comparativa nutrimental en jitomate ( Solanum lycopersicum) utilizando la mejor dosis obtenida en el ejemplo 1 (T3, 2.0 kg/ha), el testigo regional (T4, 1.0 kg/ha) y el testigo absoluto (T5, 0 kg/ha). Se realizó en análisis del contenido del nitrógeno total (método Kjendhal AOAC, 1995), fósforo, potasio, calcio, magnesio, manganeso, zinc y azufre en fruto y planta (Karla, 1998; Temminghoff & Houba, 2004) a partir de tejido liofilizado y sin incluir semilla en el caso de los frutos (Tabla 16). AOAC. 1995. 16th ed. Arlington, UA, 684 pp.
Kar!a, Y.P. 1998. Handbook of reference methods for plant analysis. Soil and plant Analysis Council. Inc. CRC Press, USA: 300 pp.
Temminghoff, J. M. & Houba, V. J. G. 2004. Plant analysis procedures. Second edition. Kluwer Academic Publishers, 179.
RESULTADOS
Análisis nutrimental del fruto.
Se pudo observar diferencias significativas y grupos estadísticos para cada uno de los nutrientes evaluados para el parámetro de análisis nutrimental del fruto (Tabla 16). Para el nitrógeno (N): Existieron diferencias significativas entre los tratamientos con aplicación y el testigo absoluto, el tratamiento T3 (2.0 kg/ha) presentó mayor media con 4.07% de concentración de este elemento.
Fósforo: Existe una diferencia significativa entre los tratamientos con aplicación y el testigo absoluto, la mayor media obtenida fue del tratamiento T3 (2.0g/ha) con 0.51%. Potasio. Existe una diferencia significativa entre los tratamientos con aplicación y el testigo absoluto, la mayor media obtenida fue del tratamiento T3 (2.0 kg/ha) con 3.35%. Calcio (Ca): Existe una diferencia significativa entre los tratamientos con aplicación y el testigo absoluto, la mayor media obtenida fue del tratamiento T3 (2.00 kg/ha) con 0.2%.
Magnesio (Mg): Existe una diferencia significativa entre los tratamientos con aplicación y el testigo absoluto, la mayor media obtenida fue del tratamiento T3 (2.0 kg/ha) con 0.3%. Manganeso (Mn): Existe una diferencia significativa entre los tratamientos con aplicación y el testigo absoluto, la mayor media obtenida fue del tratamiento T3 (2. kg/ha) con 60 ppm.
Zinc (Zn): Existe una diferencia significativa entre los tratamientos con aplicación y el testigo absoluto, la mayor media obtenida fue del tratamiento T3 (2.0 kg/ha) con 0.39 ppm.
Azufre (S): Existe una diferencia significativa entre los tratamientos con aplicación y el testigo absoluto, la mayor media obtenida fue del tratamiento T3 (2.0 kg/ha) con 214.7 ppm. En el caso del fruto con mayor concentración de nutrimentos se encontró en el tratamiento T3 (2.0 kg/ha).
Tabla 16. Evaluación del análisis nutrimental de fruto, en el estudio de evaluación del efecto del biofortificante en el cultivo de jitomate ( Solanum lycopersicum).
Figure imgf000025_0001
X: Media G: Grupo (a*) Análisis nutrimental en planta.
Se pudo observar diferencias significativas y grupos estadísticos para cada uno de los nutrientes evaluados para el parámetro de análisis nutrimental de planta (Tabla 17). Para el nitrógeno (N): Existe diferencia significativa entre los tratamientos con aplicación y el testigo absoluto, la mayor media fue la del tratamiento T3 (2.0 kg/ha) con 4.90% de concentración.
Fósforo: Existe una diferencia significativa entre los tratamientos con aplicación y el testigo absoluto, la mayor media obtenida fue del tratamiento T3 (2.0 kg/ha) con 0.91 %. Potasio. Existe una diferencia significativa entre los tratamientos con aplicación y el testigo absoluto, la mayor media obtenida fue del tratamiento T3 (2.0 kg/ha) con 5.62%. Calcio (Ca): Existe una diferencia significativa entre los tratamientos con aplicación y el testigo absoluto, la mayor media obtenida fue del tratamiento T3 (2.0 kg/ha) con 4.35%.
Magnesio (Mg): Existe una diferencia significativa entre los tratamientos con aplicación y el testigo absoluto, la mayor media obtenida fue del tratamiento T3 (200g/ha) con 0.4%.
Manganeso (Mn): Existe una diferencia significativa entre los tratamientos con aplicación y el testigo absoluto, la mayor media obtenida fue del tratamiento T3 (2.0 kg/ha) con 0.92%. Zinc (Zn): Existe una diferencia significativa entre los tratamientos con aplicación y el testigo absoluto, la mayor media obtenida fue del tratamiento T3 (2.0 kg/ha) con 86.5 PPm.
Azufre (S): Existe una diferencia significativa entre los tratamientos con aplicación y el testigo absoluto, la mayor media obtenida fue del tratamiento T3 (2.0 kg/ha) con 898ppm.
En el caso de la planta con mayor concentración de nutrimentos se encontró en el tratamiento T3 (2.0 kg/ha).
Tabla 17. Evaluación del análisis nutrimental en planta, en el estudio de evaluación del efecto del biofortificante en el cultivo de jitomate ( Solanum lycopersicum).
Figure imgf000026_0001
X: Media G: Grupo (a*)
Conclusión: En planta se observó que el T3 (2.0 kg/ha) presentaba los mejores atributos para los nutrimentos. Ejemplo 3
Se realizó una prueba de la efectividad del biofortificante, en donde se comprobó mediante la micorrización en raíz de trigo, una mejor elongación y mayor volumen radicular. Se aplicó una dosis de 1.5 kg/ha para el volumen recomendado de semilla de trigo. La estrategia experimental consistió primeramente en un proceso de desinfección utilizando una solución de hipoclorito de sodio al 5%, la germinación de las semillas fue realizada en cámara húmeda a una temperatura de 30°C y una humedad del 48% al cabo de 4 días, posteriormente las semillas germinadas (95%) fueron trasladadas a maceteros conteniendo sustrato mineral. Transcurridos 15 y 30 días de la germinación se realizó la tinción de raíz de acuerdo con el método planteado por Phillips y Hayman (1970). Se logró observar la cantidad presente de esporas de micorriza en la raíz de la planta, mayor volumen y elongación de la raíz con respecto al testigo sin tratamiento. Existieron 15 replicas por cada tratamiento (Tabla 18). Tabla 18. Evaluación del número de hojas, biomasa radicular y presencia de esporas micorrícicas en trigo ( Triticum sp).
Figure imgf000027_0001
Ejemplo 4
Estudio de evaluación de efectividad biológica del inoculante y mejorador de suelo Glumix Irrigation, en el cultivo de jitomate bajo condiciones de Agricultura Protegida en Aguascalientes, Aguascalientes. Cómo objetivo del estudio se evaluó la efectividad biológica del biofortificante en jitomate ( Solanum Lycopersicum var. Cid) bajo condiciones de agricultura protegida, así como de los posibles efectos fitotóxicos resultantes.
Diseño experimental
1. El experimento se estableció bajo un diseño en bloques completos al azar, con cuatro repeticiones.
2. La unidad experimental quedó constituida por 3 camas de 1.3 m de ancho igual a 3.9 m, por 3.0 m de largo, equivalente a 11.7 m2, dando un total 46.8 m2 por tratamiento. Se utilizó una superficie total de 280.8 m2.
3. Durante el muestreo se eliminó una cama por extremo y 0.5 m de cada extremo, la parcela útil fue de 1 cama (3.5) por 4.0 m de largo, dando un total de 14 m2.
Distribución de los tratamientos
La distribución de los tratamientos en campo después de una aleatorización quedó como se indica a continuación.
Tabla 19. Distribución de los tratamientos en campo.
BLOQUE I BLOQUE II BLOQUE III BLOQUE IV
T6 T2 T1 T3
T1 T6 T4 T2
T4 T1 T2 T5
T3 T4 T5 T6
T2 T5 T3 T1
T5 T3 T6 T4 Dosis, momento y número de aplicaciones.
Los tratamientos que se evaluaron se indican en el cuadro 20.
Tabla 20. Tratamientos del biofortificante en el cultivo de jitomate var. Cid.
TRATAMIENTO PRODUCTO Dosis
Kg.ha 1
T1 Testigo absoluto 0
T2 Biofortificante 1.0
T3 Biofortificante 2.0
T4 Biofortificante 2.5
T5 Biofortificante 3.0
T6 Biofortificante 3.5
Momento y número o de aplicaciones.
Se realizaron dos aplicaciones: la primera a los 5 días después del trasplante. El intervalo de aplicación fue de 7 días entre cada una.
Formas de aplicación: Drench. Equipo de aplicación: Aspersora de mochila manual.
Volumen de agua utilizada: 50 mL por planta. a) Demás insumos utilizados en la evaluación
No se utilizó otro tipo de insumos que interfiera en el desarrollo de este estudio b) Variables de estimación de la efectividad biológica y método de evaluación.
Parámetro de medición de efectividad biológica: Se realizaron dos aplicaciones en la etapa indicada, considerando las variables siguientes: 1. Fitotoxicidad. Se evaluó a los 7 días después de cada aplicación, mediante la escala porcentual propuesta por la European Weed Research Society (Tabla 2).
Etapa fenológica
1. Altura de la planta. Se midió con una cinta métrica en 3 plantas al azar en el centro de la unidad experimental (repetición), a los 0 días antes de primera aplicación y 7 días después de la primera y 14 días después de la segunda aplicación. Los resultados se expresaron como valor numérico.
2. Diámetro del tallo: Se midió con un vernier en 3 plantas al azar en el centro de la unidad experimental (repetición), a los 0 días antes de primera aplicación y 7 días después de la primera y 14 días después de la segunda aplicación. Los resultados se expresaron en mm.
3. Número de hojas: Se contabilizó el número de hojas de 3 plantas muestreadas al azaren el centro de la unidad experimental (repetición), a los 14 días después de la última aplicación. Los resultados se expresaron como valor numérico.
4. Peso fresco de raíz (g): Se determinó en dos plantas muestreadas al azar por unidad experimental (repetición), se extrajeron las raíces, se lavaron y se pesaron con la ayuda de una balanza digital de una capacidad de 500 g., a los 14 días después de la última aplicación, los resultados se expresaron en g.
5. Peso seco de raíz (g): Se determinó en dos plantas muestreadas al azar por unidad experimental (repetición) a los 14 días después de la última aplicación, se procedió a secar las raíces en una estufa en el laboratorio, se pesaron con la ayuda de una balanza digital de una capacidad de 500 g. Los resultados se expresaron en g.
6. Peso fresco de la planta entera (g). Se determinará en 2 plantas muestreadas al azar por unidad experimental (repetición), se pesarán con la ayuda de una balanza digital de una capacidad de 500 g a los 14 días después de la última aplicación. Los resultados se expresarán en gramos.
7. Peso seco de la planta entera (g). Se determinó en 2 plantas muestreadas al azar por unidad experimental (repetición), se pesaron con la ayuda de una balanza digital de una capacidad de 500 g. Los resultados se expresaron en g. 8. Asimilación de Fósforo, Potasio y Zinc: Se realizó un análisis químico del suelo-planta para determinar la asimilación de cada uno de los compuestos.
9. Contenido de clorofila en hojas. Se tomaron dos hojas en tres plantas por repetición, la cual se midió con el método SPAD, el cual determina la cantidad relativa de clorofila presente a través de la medición de la absorción de las hojas en dos regiones de longitud de onda; en las regiones roja y cercana a infraroja. Utilizando estas dos trasmisiones el medidor calcula el valor numérico SPAD que es proporcional a la cantidad de clorofila presente en la hoja y en consecuencia de nitrógeno, a los 14 días después de la segunda aplicación.
10. Conductancia estomática: Se tomaron dos hojas en tres plantas por repetición, las cuales se midieron con un porómetro.
Método de evaluación, el cual debe permitir un análisis estadístico acorde al diseño experimental y escala de evaluación utilizada
ANALISIS DE DATOS. De los datos obtenidos de las variables: altura de la planta, diámetro del tallo, número de hojas, peso fresco de raíz, peso seco de raíz y peso fresco de la planta entera, peso seco de la planta, asimilación de fosforo, potasio, zinc y cobre, contenido de clorofila y conductividad estomática, fueron analizados estadísticamente a través de un análisis de varianza y prueba de comparación de medias de Tukey (a=0.05), mediante el paquete estadístico SAS®9.0.
RESULTADOS Y DISCUSIÓN
Altura de la planta
Se realizó un análisis de varianza con los datos de la variable altura de la planta en el cultivo de jitomate, el cual no presentó significativas entre los tratamientos evaluados con respecto al testigo absoluto. Lo anterior, se corroboró al llevar a cabo una comparación de medias de Tukey (a=0.05) (Tabla 21). Tabla 21. Comparación de medias de la variable altura de la planta
Altura de la planta
TRATAMIENTOS Dosis Significancia
(cm) tϊ - YA A
T2 1.0 kg/ha 7.2 A
T3 2.0 kg/ha 7.2 A
T4 2.5 kg/ha 7.1 A
T5 3.0 kg/ha 6.6 A
T6 3.5 kg/ha 6.7 A
1. Diámetro del tallo
Al realizar un análisis de varianza con los datos de la variable diámetro del tallo en el cultivo de jitomate, se apreciaron diferencias significativas entre los tratamientos evaluados con respecto al testigo absoluto. Lo anterior, se corroboró al llevar a cabo una comparación de medias de Tukey (a=0.05) (Tabla 22).
Tabla 22. Comparación de medias de la variable diámetro del tallo
Diámetro del tallo
TRATAMIENTOS Dosis Significancia
(mm)
TΪ - 6 A
T2 1.0 kg/ha 2.7 A
T3 2.0 kg/ha 2.5 A
T4 2.5 kg/ha 2.4 A
T5 3.0 kg/ha 2.4 A
T6 3.5 kg/ha 2.5 A
• Evaluación 1 (7 dias después de la 1er. aplicación)
1. Altura de la planta
Se realizó un análisis de varianza con los datos de la variable altura de la planta en el cultivo de jitomate, el cual no presentó significativas entre los tratamientos evaluados con respecto al testigo absoluto. Lo anterior, se corroboró al llevar a cabo una comparación de medias de Tukey (a=0.05) (Tabla 23). Sin embargo numéricamente se observó una mayor altura donde se aplicó el biofortificante.
Tabla 23. Comparación de medias de la variable altura de la planta
Altura de la planta
TRATAMIENTOS Dosis Significancia
(cm) tϊ - ΪΊPG A
T2 1.0 kg/ha 18.1 A
T3 2.0 kg/ha 18.3 A
T4 2.5 kg/ha 16.9 A
T5 3.0 kg/ha 18.9 A
T6 3.5 kg/ha 18.7 A
2. Diámetro del tallo
Al realizar un análisis de varianza con los datos de la variable diámetro del tallo en el cultivo de jitomate, no se apreciaron diferencias significativas entre los tratamientos evaluados con respecto al testigo absoluto. Lo anterior, se corroboró al llevar a cabo una comparación de medias de Tukey (a=0.05) (Tabla 24). Sin embargo numéricamente se observó un mayor diámetro del tallo donde se aplicó el biofortificante.
Tabla 24. Comparación de medias de la variable diámetro del tallo
Diámetro del tallo
TRATAMIENTOS Dosis Significancia
(mm)
TΪ - 4~2 A
T2 1.0 kg/ha 4.9 A
T3 2.0 kg/ha 5.0 A
T4 2.5 kg/ha 4.9 A
T5 3.0 kg/ha 4.9 A
T6 3.5 kg/ha 5.0 A Evaluación 2 (14 dias después de la 2da. aplicación)
1. Altura de la planta
El análisis de varianza realizado con los datos de la variable altura de la planta en el cultivo de jitomate, mostró diferencias significativas entre los tratamientos evaluados con respecto al testigo absoluto. Lo anterior, se corroboró al llevar a cabo una comparación de medias de Tukey (a=0.05) (Cuadro 10).
Observándose que la mayor altura de la planta se obtuvo con el tratamiento biofortificante a (2.0, 2.5, 3.0 y 3.5 kg/ha) permitiendo medias de 40.8, 39.4, 41.6 y 38.8 centímetros. Mientras que biofortificante a (1.0 kg/ha) presentó una media de 37.0 centímetros respectivamente (Tabla 25).
Tabla 25. Comparación de medias de la variable altura de la planta
Altura de la planta
TRATAMIENTOS Dosis Significancia
(cm)
TΪ - 319 B
T2 1.0 kg/ha 37.0 AB
T3 2.0 kg/ha 40.8 A
T4 2.5 kg/ha 39.4 A
T5 3.0 kg/ha 41.6 A
T6 3.5 kg/ha 38.8 A
2. Diámetro del tallo Se hizo un análisis de varianza con los datos de la variable diámetro del tallo en el cultivo de jitomate, el cual presentó diferencias significativas entre los tratamientos evaluados con respecto al testigo absoluto. Lo anterior, se corroboró al llevar a cabo una comparación de medias de Tukey (a=0.05) (Cuadro 11 ).
Se detectó que el mayor diámetro del tallo de obtuvo con el tratamiento biofortificante a (2.0, 2.5, 3.0 y 3.5 kg/ha) permitiendo medias de 15.4, 14.8, 15.5 y 15.4 milímetros. Así mismo se observó que el biofortificante a (1.0 kg/ha) presentó una media de 13.7 milímetros respectivamente (Tabla 26). Tabla 26. Comparación de medias de la variable diámetro del tallo
Diámetro del tallo
TRATAMIENTOS Dosis Significancia
(mm)
TΪ - Ϊ2Ό B
T2 1.0 kg/ha 13.7 AB
T3 2.0 kg/ha 15.4 A
T4 2.5 kg/ha 14.8 A
T5 3.0 kg/ha 15.5 A
T6 3.5 kg/ha 15.4 A
3. Número de hojas
Se hizo un análisis de varianza con los datos de la variable número de hojas en el cultivo de jitomate, sin apreciárse diferencias significativas entre los tratamientos evaluados con respecto al testigo absoluto. Lo anterior, se corroboró al llevar a cabo una comparación de medias de Tukey (a=0.05) (Tabla 27).
Tabla 27. Comparación de medias de la variable número de hojas
TRATAMIENTOS Dosis Número de hojas Significancia
T1 - 10.0 A T2 1.0 kg/ha 10.5 A T3 2.0 kg/ha 10.8 A T4 2.5 kg/ha 10.0 A T5 3.0 kg/ha 11.3 A T6 3.5 kg/ha 10.3 A
4. Peso fresco de raíz
El análisis de varianza realizado con los datos de la variable peso fresco de raíz en el cultivo de jitomate, presentó diferencias significativas entre los tratamientos evaluados con respecto al testigo absoluto. Lo anterior, se corroboró al llevar a cabo una comparación de medias de Tukey (a=0.05) (Tabla 28). Se detectó, que el mayor peso fresco de raíz se obtuvo con el tratamiento biofortificante(1.0, 2.0 y 3.5 kg/ha) ya que permitieron medias de 13.2, 13.1 y 13.4 gramos. Dichos tratamientos fueron estadísticamente iguales al biofortificante (2.5 y 3.0 kg/ha) con medias de 12.1 y 12.4 gramos respectivamente (Tabla 28). Tabla 28. Comparación de medias de la variable peso fresco de raíz
TRATAMIENTOS Dosis Peso fresco de significancia raíz (g)
TΪ - 82 B
T2 1.0 kg/ha 13.2 A
T3 2.0 kg/ha 13.1 A
T4 2.5 kg/ha 12.1 AB
T5 3.0 kg/ha 12.4 AB
T6 3.5 kg/ha 13.4 A
5. Peso seco de raíz
Se realizó un análisis de varianza con los datos de la variable peso seco de raíz en el cultivo de jitomate, apreciándose diferencias significativas entre los tratamientos evaluados con respecto al testigo absoluto. Lo anterior, se corroboró al llevar a cabo una comparación de medias de Tukey (a=0.05). Se observó, que el mayor peso seco de raíz se obtuvo con el tratamiento biofortificante (1.0, 2.0, 2.5, 3.0 y 3.5 kg/ha) ya que obtuvieron medias de 6.8, 6.5, 7.0, 7.4 y 7.1 gramos respectivamente (Tabla 29). Taba 29. Comparación de medias de la variable peso seco de raíz
TRATAMIENTOS Dosis Rqd° dq°° de ™ Significancia
(g)
TΪ - 3 B
T2 1.0 kg/ha 6.8 A
T3 2.0 kg/ha 6.5 A
T4 2.5 kg/ha 7.0 A
T5 3.0 kg/ha 7.4 A
T6 3.5 kg/ha 7.1 A Peso fresco de la planta entera
En el análisis de varianza realizado con los datos de la variable peso fresco de la planta entera en el cultivo de jitomate, se obtuvieron diferencias significativas entre los tratamientos evaluados con respecto al testigo absoluto. Lo anterior, se corroboró al llevar a cabo una comparación de medias de Tukey (a=0.05). Asimismo, el mayor peso fresco de la planta entera se obtuvo con el tratamiento biofortificante (3.0 kg/ha) el cual permitió una media de 15.9 gramos. Este tratamiento fue estadísticamente igual a biofortificante (1.0, 2.0, 2.5 y 3.5 kg/ha) con medias de 14.5, 14.8, 15.4 y 15.7 gramos respectivamente (Tabla 30). Tabla 30. Comparación de medias de la variable peso fresco de la planta entera
TRATAMIENTOS Dosis Peso fresco de la significancia planta entera (g)
TΪ - Ϊ3A B
T2 1.0 kg/ha 14.5 AB
T3 2.0 kg/ha 14.8 AB
T4 2.5 kg/ha 15.4 AB
T5 3.0 kg/ha 15.9 A
T6 3.5 kg/ha 15.7 AB
6. Peso seco de la planta entera
Se hizo un análisis de varianza con los datos de la variable peso seco de la planta entera en el cultivo de jitomate, el cual presentó diferencias significativas entre los tratamientos evaluados con respecto al testigo absoluto. Lo anterior, se corroboró al llevar a cabo una comparación de medias de Tukey (a=0.05). El mayor peso seco de la planta entera se obtuvo con el tratamiento biofortificante (2.0, 2.5, 3.0 y 3.5 kg/ha) ya que permitieron medias de 9.5, 11.1, 9.9 y 10.0 gramos. Este tratamiento fue estadísticamente igual a biofortificante (1.0 kg/ha) el cual mostró una media de 9.3 gramos (Tabla 31). Tabla 31. Comparación de medias de la variable peso seco de la planta entera
TRATAMIENTOS Dosis Rqd° dq°° de 13 Significancia planta entera (g)
TΪ - 6^8 B
T2 1.0 kg/ha 9.3 AB
T3 2.0 kg/ha 9.5 A
T4 2.5 kg/ha 11.1 A
T5 3.0 kg/ha 9.9 A
T6 3.5 kg/ha 10.0 A
7. Asimilación de fósforo, potasio y zinc
Se realizó un análisis de varianza con los datos de la variable asimilación de fósforo, potasio y zinc en el cultivo de jitomate, el cual presentó diferencias significativas entre los tratamientos evaluados con respecto al testigo absoluto. Lo anterior, se corroboró al llevar a cabo una comparación de medias de Tukey (a=0.05) (Tabla 32). En el caso de la asimilación de fósforo (P), los tratamientos que mostraron los mejores resultados fueron del biofortificante (1.0, 2.0, 2.5, 3.0 y 3.5 kg/ha) ya que obtuvieron medias de 0.48, 0.52, 0.63, 0.50 y 0.58%. Los tratamientos del biofortificante (2.0, 2.5, 3.0 y 3.5 kg.ha 1) obtuvieron mayor asimilación de potasio (K), ya que obtuvieron medias de 4.7, 5.1 , 5.1 y 5.1 %. De igual manera, los tratamientos antes mencionados obtuvieron mayor asimilación de zinc (Zn) con medias de 45.7, 44.5, 48.2 y 47.2%. Tabla 32. Comparación de medias de la variable asimilación de P, K y Zn.
K
TRATAMIENTOS Dosis P (%) Zn (%)
(%)
TΪ - 0.21 B 3.0 C 24.2 B
T2 1.0 kg/ha 0.48 A 3.8 B 34.5 AB
T3 2.0 kg/ha 0.52 A 4.7 A 45.7 A
T4 2.5 kg/ha 0.63 A 5.1 A 44.5 A
T5 3.0 kg/ha 0.50 A 5.1 A 48.2 A
T6 3.5 kg/ha 0.58 A 5.1 A 47.2 A 8. Contenido de clorofila en hojas
Se efectúo un análisis de varianza con los datos de la variable contenido de clorofila en hojas en el cultivo de jitomate, el cual no presentó diferencias significativas entre los tratamientos evaluados con respecto al testigo absoluto. Lo anterior, se corroboró al llevar a cabo una comparación de medias de Tukey (a=0.05) (Tabla 33).
Tabla 33. Comparación de medias de la variable contenido de clorofila en hojas
Cont. De clorofila
TRATAMIENTOS Dosis Significancia
(SPAD)
TΪ - 400 A
T2 1.0 kg/ha 40.2 A
T3 2.0 kg/ha 40.8 A
T4 2.5 kg/ha 40.5 A
T5 3.0 kg/ha 39.7 A
T6 3.5 kg/ha 40.2 A
9. Conductancia estomática Se hizo un análisis de varianza con los datos de la variable conductancia estomática el cultivo de jitomate, el cual no mostró diferencias significativas entre los tratamientos evaluados con respecto al testigo absoluto. Lo anterior, se corroboró al llevar a cabo una comparación de medias de Tukey (a=0.05) (Tabla 34). Tabla 34. Comparación de medias de la variable conductancia estomática
Conductancia
TRATAMIENTOS Dosis Significancia estomática
TΪ - 06 A
T2 1.0 kg/ha 0.6 A
T3 2.0 kg/ha 0.7 A
T4 2.5 kg/ha 0.8 A
T5 3.0 kg/ha 0.6 A
T6 3.5 kg/ha 0.7 A FITOTOXICIDAD
Durante la realización y aplicación del biofortificante en sus dosis de 1.0, 2.0, 2.5, 3.0 y 3.5 kg/ha no se presentaron síntomas de fitotoxicidad en el cultivo de jitomate. CONCLUSIONES
El biofortificante en sus dosis de 2.0, 2.5, 3.0 y 3.5 kg/ha, mostró un incremento en las variables de (diámetro del tallo, altura de la planta, número de hojas por planta, peso fresco y seco de la raíz, peso fresco y seco de la planta, así como el contenido de clorofila en hojas) en el cultivo de jitomate.

Claims

REIVINDICACIONES “HABIÉNDOSE DESCRITO LA INVENCIÓN COMO ANTECEDE, SE RECLAMACOMO PROPIEDAD LO CONTENIDO EN LAS SIGUIENTES REIVINDICACIONES”.
1. Un fortificante biológico (biofortificante) vegetal formulado como polvo humectable a partir de micorrizas vesículo arbusculares y nutrientes vegetales para mejorar el rendimiento de los cultivos. La formulación del fortificante biológico esta diseñada con un consorcio de esporas pertenecientes a las cepas de hongos micorrízicos vesículo arbusculares que permite una óptima asimilación de los cultivos, protección desde la raíz y bloqueo por sedimentación de boquillas y sistemas convencionales de fertilización. Se describe una composición eficaz de un fortificante biológico corno polvo humectable para el incremento de rendimientos gradas a su formulación desde los siguientes 4 panoramas: 1) Composición biológica como ingrediente activo microbiano, 2) Ingredientes activos como nutrientes y potencializadores del crecimiento vegetal, 3) Inertes en la formulación y 4) Tamaño de partícula final.
2. Una composición del inoculante de acuerdo con la reinvindicación No. 1 en donde 1) La composición biológica como ingrediente activo microbiano. La formulación del fortificante biológico vegetal esta diseñada con un consorcio de esporas solas o en mezcla pertenecientes a las cepas de hongos micorrízicos vesículo arbusculares: Glomus geosporum, Gigaespora margarita, Glomus fasciculatum, Glomus constrictum, Glomus tortuosum y Glomus intraradices la cual es sumistrada en la formulación en un porcentaje de 0.1-50% (p/p) (conteniendo una concentración de 25-110 propágulos/g) como ingrediente activo biológico.
3. Una composición de 2) ingredientes activos como nutrientes y potencializadores del crecimiento vegetal de acuerdo con la reivindicación No. 1. En donde la formulación para la composición biológica que comprende de extractos de ácidos húmicos y fúlvicos en una concentración de 0.1% al 25%, extracto de yuca (Yucca schidigera) en una concentración de 0.01% al 10%, extracto de algas marinas ( Ascophyllum nodosum) en una concentración del 0.01 al 10% y enraizadores naturales (ácido 2,4-D-ácido indolacético) que aseguren una concentración de 0 001% a! 1%.
4. Una composición de 3) Inertes en la formulación de acuerdo con la reivindicación No 1. en donde la composición mediante la formulación con compuestos que inertes solos o en mezcla de: oligosacáridos (maltodextrina, maltosa, dextrina, dextrosa) asegurando una concentración de al menos 45%%, polisacáridos (almidón, glucógeno, celulosa, quitina, paramilón, agarosa, peptidoglicanos, proteoglicanos, ácido hialurónico, amilosa, fructosano, queratan sulfato, dermatan sulfato, xilano, amilopectina) asegurando una concentración de al menos 0.1%-3% y una fuente de silicio (Mg3SUOio(OH)2, CaSi, H4SÍO4, AIS13, CaAhShOs, 2NaAIS¡308, S1O2, 4H4S1O4,) asegurando una concentración de al menos 0.1% al 0.5%. Todo debe sumar una concentración entre el 40 al 47%.
5. Un 4) Tamaño de partícula final de acuerdo con la reivindicación No 1 en donde la formulación final deberá contener un tamaño de partícula entre 177 micrones y 105 micrones.
6. El pH del fortificante vegetal como polvo humectadle de acuerdo con la reivindicación No. 1 deberá situarse en un rango de 8.0 a 10 para garantizar un buen estado del entorno de la rizósfera microbiana.
7. El fortificante vegetal como polvo humectable tendrá la función de mejorar la protección de los cultivos mediante el control biológico que incluye mas no limita a los géneros de los hongos fitopatógenos de Phytophthora sp., Rizhoctonia sp., Pythium sp., Fusarium sp. entre otros.
PCT/MX2020/050014 2019-09-12 2020-07-03 Fortificante vegetal a base de micorrizas vesículo arbusculares, extractos y nutrientes vegetales WO2021049927A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/642,847 US20220388925A1 (en) 2019-09-12 2020-07-03 Plant strengthener based on vesicular-arbuscular mycorrhizae, extracts and plant nutrients
PE2022000413A PE20220602A1 (es) 2019-09-12 2020-07-03 Fortificante vegetal a base de micorrizas vesiculo arbusculares, extractos y nutrientes vegetales
ES202290024A ES2908131B2 (es) 2019-09-12 2020-07-03 Fortificante vegetal a base de micorrizas vesiculo arbusculares, extractos y nutrientes vegetales
BR112022004686A BR112022004686A2 (pt) 2019-09-12 2020-07-03 Fortificante vegetal à base de micorrizas vesicular-arbusculares, extratos e nutrientes vegetais

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2019012107A MX2019012107A (es) 2019-09-12 2019-09-12 Fortificante vegetal a base de micorrizas vesículo arbusculares, extractos y nutrientes vegetales.
MXMX/A/2019/012107 2019-09-12

Publications (1)

Publication Number Publication Date
WO2021049927A1 true WO2021049927A1 (es) 2021-03-18

Family

ID=74866734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2020/050014 WO2021049927A1 (es) 2019-09-12 2020-07-03 Fortificante vegetal a base de micorrizas vesículo arbusculares, extractos y nutrientes vegetales

Country Status (6)

Country Link
US (1) US20220388925A1 (es)
BR (1) BR112022004686A2 (es)
ES (1) ES2908131B2 (es)
MX (1) MX2019012107A (es)
PE (1) PE20220602A1 (es)
WO (1) WO2021049927A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117158282B (zh) * 2023-10-26 2023-12-26 内蒙古工业大学 一种用于沙漠化防治的生物质复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05153864A (ja) * 1991-12-09 1993-06-22 Idemitsu Kosan Co Ltd 水稲の栽培方法
WO2011152700A1 (en) * 2010-06-04 2011-12-08 Biotrack Technology (M) Sdn Bhd A palm growth underground formulation
WO2012121579A1 (es) * 2011-03-10 2012-09-13 Munoz Santiago Antonio Inoculante endomicorricico formador de micorrizas arbusculares aplicado a plántulas de hortalizas y frutales

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05153864A (ja) * 1991-12-09 1993-06-22 Idemitsu Kosan Co Ltd 水稲の栽培方法
WO2011152700A1 (en) * 2010-06-04 2011-12-08 Biotrack Technology (M) Sdn Bhd A palm growth underground formulation
WO2012121579A1 (es) * 2011-03-10 2012-09-13 Munoz Santiago Antonio Inoculante endomicorricico formador de micorrizas arbusculares aplicado a plántulas de hortalizas y frutales

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EDIFARM: "Vademecum agricola 2016", 2016, EDIFARM Y COMPAÑÍA, ISBN: 978-9942-906-33-5, pages: 144 *

Also Published As

Publication number Publication date
PE20220602A1 (es) 2022-04-25
ES2908131B2 (es) 2023-06-19
MX2019012107A (es) 2021-03-15
ES2908131A1 (es) 2022-04-27
BR112022004686A2 (pt) 2022-08-30
US20220388925A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
ES2645083T3 (es) Uso de microorganismos y nutrientes sinérgicos para producir señales que facilitan la germinación y la colonización de raíces vegetales por hongos micorrizales en ambientes ricos en fósforo
CN101360697B (zh) 植物的生长促进及品质改良方法以及该方法中使用的生长促进剂和品质改良剂
AU2013308476B2 (en) Method of increasing abiotic stress resistance of a plant
Yang et al. Management of the arbuscular mycorrhizal symbiosis in sustainable crop production
CN101973812B (zh) 一种西红柿抗病肥料组合物
ES2715037T3 (es) Composición para el enterramiento de raíces de plantas
Öğüt et al. Single and double inoculation with Azospirillum/Trichoderma: the effects on dry bean and wheat
CN103271050A (zh) 一种复配杀菌剂
Pierce et al. Effects of soil calcium and pH on seed germination and subsequent growth of large crabgrass (Digitaria sanguinalis)
CN106472507A (zh) 一种植物生长调节组合物、制剂及其应用
ES2908131B2 (es) Fortificante vegetal a base de micorrizas vesiculo arbusculares, extractos y nutrientes vegetales
Abdel Nabi et al. Impact of mineral, organic and biofertilization on growth, yield and quality of cantaloupe
Abd El-Samad et al. Improving the establishment, growth and yield of tomato seedlings transplanted during summer season by using natural plant growth bio-stimulants
CN101697725A (zh) 一种含有保护性杀菌剂的农药组合物
Thompson Five years of Irish trials on biostimulants: the conversion of a skeptic
Quinn 15 Biological Nitrogen Fixation and Soil Health Improvement
Repáč et al. Ectomycorrhiza-hydrogel additive enhanced growth of Norway spruce seedlings in a nutrient-poor peat substrate.
CN101953347A (zh) 一种农药组合物及其应用
ES2750238T3 (es) Método para reducir el estrés hídrico en plantas
CN116035039A (zh) 组合物及其在农业中的用途
CN105410020B (zh) 含有日灼防护剂和杀菌剂的组合物、制备方法及应用
ES2794127B2 (es) Formulados liquidos a base de nanoparticulas de oxidos de metales como mejoradores de la productividad y para la obtencion de cultivos mas sanos, y uso de los mismos
Lazarević et al. Mycorrhization and use of superabsorbent polymers in targeted production of hardwoods planting material.
Hamaiel et al. Mitigating of salinity stress and amelioration productivity of potato (Solanum Tuberosum L.) using soil conditioners and foliar application of osmoprotectants
CN101755787B (zh) 一种含有稻瘟酰胺的杀菌组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022004686

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112022004686

Country of ref document: BR

Free format text: APRESENTE COMPLEMENTO DO PEDIDO (RELATORIO DESCRITIVO E DESENHOS, SE HOUVER), POIS OS MESMOS NAO FORAM APRESENTADOS.

ENP Entry into the national phase

Ref document number: 112022004686

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220314

122 Ep: pct application non-entry in european phase

Ref document number: 20862923

Country of ref document: EP

Kind code of ref document: A1