WO2021049854A1 - Catalyst for methane chlorination and methane chlorination method using same - Google Patents

Catalyst for methane chlorination and methane chlorination method using same Download PDF

Info

Publication number
WO2021049854A1
WO2021049854A1 PCT/KR2020/012129 KR2020012129W WO2021049854A1 WO 2021049854 A1 WO2021049854 A1 WO 2021049854A1 KR 2020012129 W KR2020012129 W KR 2020012129W WO 2021049854 A1 WO2021049854 A1 WO 2021049854A1
Authority
WO
WIPO (PCT)
Prior art keywords
methane
catalyst
chlorine
chlorination
chlorination reaction
Prior art date
Application number
PCT/KR2020/012129
Other languages
French (fr)
Korean (ko)
Inventor
채호정
김영민
김집
김태완
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2021049854A1 publication Critical patent/WO2021049854A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/007Preparation of halogenated hydrocarbons from carbon or from carbides and halogens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/01Acyclic saturated compounds containing halogen atoms containing chlorine
    • C07C19/03Chloromethanes
    • C07C19/041Carbon tetrachloride

Definitions

  • the present invention relates to a catalyst for a methane-chlorination reaction and a method for chlorination of methane using the same.
  • the oxychlorination process in which the chlorination reaction proceeds in the presence of oxygen is usually performed, but the oxychlorination reaction is generally the result of mass production of carbon oxides or dimers. As a result, the selectivity of methane becomes low.
  • the oxychlorination of methane generally involves the generation of unexpected chlorinated methane by-products, and there is a problem that the manufacturing process is excessively complicated due to the application of reaction conditions including air.
  • Chlorine gas produced through the chlor-alkali process is widely used in construction materials, electrical and electronic materials, biotechnology and pharmaceuticals, and aviation materials through various chlorination processes, but is generated in excess than necessary.
  • chlorinated or unreacted chlorine treatment problems arise.
  • Chlorine gas is highly toxic and easily corrodes metals or other substances when it comes into contact with moisture. Chlorine gas itself does not catch fire, but it is a strong oxidizing gas that violently causes combustion reactions in case of fire.
  • Conventional Korean Patent Registration No. 10-0105571 (announced on April 25, 1996) relates to a supported catalyst for the conversion reaction of methane or purified natural gas, and in more detail, platinum, ruthenium and rhodium in carriers such as alumina, zeolite and silicate. Disclosed is a method of converting methane in a gas using a catalyst carrying a transition metal compound such as a catalyst.
  • the supported catalyst for the methane conversion reaction has a problem that the cost of mass production is enormous because an expensive noble metal compound is used to prepare it.
  • U.S. Patent Publication No. 10329226 (published on September 13, 2018) relates to the production process of chlorinated methane, and in more detail, a support including alumina, silica, and activated carbon as a catalyst for mediating methane chlorination, and a metal on the support.
  • a support including alumina, silica, and activated carbon as a catalyst for mediating methane chlorination, and a metal on the support.
  • Metal oxides and metal halides are disclosed to be used.
  • the metal used to prepare the chlorinated methane production catalyst not only increases the cost of producing the catalyst, but also remains in the wastewater that is inevitably generated during the catalyst manufacturing process. There is a problem that a process is required.
  • the present invention is to provide a catalyst capable of chlorinating methane at a high rate and a method for forming the same.
  • the present invention provides a process that can mainly produce methane chlorine which is economically useful due to a high conversion rate of chlorine gas and low selectivity of carbon tetrachloride, thereby converting chlorine, a by-product generated during a chemical process, into a useful compound. Provides.
  • the present invention is a methane-chlorination reaction catalyst for chlorination reaction of a reactant including methane (CH 4 ) with chlorine gas (Cl 2 ) under oxygen-free conditions, and the I D / I G ratio is in the range of 0.05 to 0.13 It provides a methane-chlorination reaction catalyst comprising a phosphorus carbon-based material.
  • the present invention is a methane-chlorination reaction catalyst for chlorination reaction of a reactant containing methane (CH 4 ) with chlorine gas (Cl 2 ) under oxygen-free conditions, characterized in that graphite having a surface area of 10 m 2 /g or more It provides a methane-chlorination reaction catalyst.
  • the methane-chlorination catalyst may be surface-treated with a functional group or a transition metal known to be active in the methane-chlorination reaction may be supported and used.
  • the present invention may be characterized in that in the method for molding the catalyst, the molding pressure during molding is controlled to be less than 3 MPa.
  • the present invention is characterized in that the chlorination reaction of a reactant containing methane (CH 4 ) containing methane (CH 4) with chlorine gas (Cl 2 ) using any one of the above catalysts to produce methane chlorine It provides a method for producing chlorine of methane.
  • the chlorination reaction temperature of methane is 100 to 600 °C
  • the reaction pressure is 0 to 30 barg
  • the molar ratio of methane to chlorine gas (Cl 2 ) is carried out at 1/20 to 20/1
  • the gas of the reactants The temporal space velocity (GHSV) may be characterized in that it is 100 cc/g/h or more.
  • the reactant of the methane chlorination reaction may be diluted and used by further including a diluent.
  • the gas temporal space velocity may be 6000cc/g/h or more.
  • the methane chlorination catalyst according to the present invention is inexpensive compared to conventional catalysts and has high activity against methane chlorination, and has an advantage of having a relatively high conversion rate of chlorine and low selectivity of carbon tetrachloride.
  • Figure 1 (a) is a Raman spectrum graph of activated carbon, vulcan carbon, Ketjen black, graphene, and carbon nanotubes used in the comparative examples of the present invention, and (b) is used in the comparative examples and examples of the present invention. This is a graph of Raman spectrum for each graphite type.
  • the present invention provides a catalyst for chlorination reaction of methane and a method of chlorinating a reactant containing methane with chlorine gas under oxygen-free conditions using the catalyst.
  • the methane-chlorination reaction catalyst according to the present invention is characterized in that the I D / I G ratio of the carbon material is 0.05 to 0.13, preferably 0.05 to 0.125. When the I D / I G ratio exceeds 0.13 or less than 0.05, the activity for the methane chlorination reaction may be lowered.
  • the methane-chlorination catalyst according to the present invention may have a specific surface area of 10 m 2 /g or more among graphite.
  • the carbon material may be divided into amorphous carbon and crystalline carbon according to the degree of crystallization, and among them, graphite is a representative material as crystalline carbon.
  • Graphite is three types of naturally occurring carbon: diamond with a diamond lattice crystal structure, graphite with a honeycomb lattice structure, and amorphous carbon without a crystal structure (such as coal or soot). It is one of the homogeneous elements.
  • the difference between the three naturally occurring isotopes is the structure and bonding of atoms within the isotopes.
  • graphite The chemical bonds of graphite are actually stronger than what makes up diamond.
  • diamond contains three-dimensional lattice bonds, and graphite is composed of two-dimensional lattice bonds (carbon sheet layers).
  • carbon sheet layers In each layer of graphite, the carbon atoms contain very strong bonds, but the layers can slide together to make graphite a softer and more malleable material.
  • Graphite has a flat layered structure, each of which consists of carbon atoms covalently bonded in a hexagonal lattice. These covalent bonds are very strong and the carbon atoms in each sheet are about 0.142 nm apart. Chemically, carbon atoms are bonded two-dimensionally to each other by very rigid sp2-hybridized bonds in a single layer of atoms. Each individual, two-dimensional, one atom thick layer of sp2-bonded carbon atoms in graphite is 0.335 nm apart. Essentially, as mentioned above, the crystalline flake form of graphite is simply hundreds of thousands of individual layers of connected carbon atoms.
  • Crystallinity of the crystalline carbon materials such as graphite may vary depending on the type or method of producing the same, and performance as a catalyst may vary due to the difference in the crystallinity.
  • the I D / I G Ratio Raman peak intensity ratio (I D / I G Ratio) that can determine the degree of crystallization, and the I D / I G ratio is between 0.05 and 0.13, preferably between 0.05 and 0.125. It was confirmed that it shows a particularly high performance for the methane-chlorination reaction.
  • the carbon-based catalyst according to the present invention may be used as a carbon-based catalyst itself, but may be used by treating the surface with a functional group or supporting a transition metal having activity in the methane chlorination reaction.
  • the functional group is optionally arene group, ter-butyl group, cyclohexyl group, hydroxyl group, lactone group, lactam group, ester group, amide group, imine group, amino group, imide group, azide group, nitrile group, nitroxy group, Nitro group, nitroso group, pyridine group, phosphine group, phosphoric acid group, phosphonic acid group, sulfone group, sulfonic acid group, sulfoxide group, thiol group, sulfate group, sulfide group, carbonyl group, aldehyde group, carboxyl group, carboxylic acid base, haloformyl group , An ether group, a peroxy group, a hydroperoxy group, an acyl halide group, a fluoro group, a chloro group, a bromo group and an iodine group.
  • a peroxy group a hydroperoxy group, an
  • the metals may be those known to have activity in the methane chlorination reaction, preferably ruthenium (Ru), platinum (Pt), rhodium (Rh), cobalt (Co), nickel (Ni) and palladium (Pd). It includes at least one or more selected from the group consisting of, but is not limited thereto.
  • the metal content is preferably 20% by weight or less, and more preferably 0.5 to 10% by weight based on the total weight of the supported material.
  • the content of the metal exceeds 20% by weight, it is not preferable because there is a problem that sufficient chlorination reaction efficiency cannot be obtained compared to the supported content.
  • the catalyst may be used in the form of a powder, but in many cases it is molded and used in a form required under actual reaction conditions. This is because when the catalyst is filled in the reactor in the form of powder, it is difficult to control the reaction, a large pressure loss appears, and contamination of the reactor and other devices due to the catalyst powder may be caused.
  • the catalyst is usually formed into a spherical shape or a pellet shape. As a machine for molding in this way, a tablet press and an extruder are mainly used.
  • a tablet press In the case of a tablet press, it is used when making pellets, and is widely used when it is a catalyst that requires strong mechanical strength.
  • a tablet press is a catalytic molding machine that uses a high pressure to inject catalyst powder into a molding mold and then continuously molds the catalyst using strong pressure. This machine has the advantage of being able to perform continuous catalyst shaping operation, and because catalyst powder can be used directly, pretreatment is relatively easy, and the molded catalyst does not require a binder or foreign matter removal operation.
  • the disadvantages of the tablet press are that the machine and accessories are expensive, and the processing of the molding mold is difficult.
  • the catalytic molding type must be selected well.
  • screw-type and batch-type extruders for extruders, and screw-type extruders capable of continuous operation are mainly used.
  • the screw extruder can perform extrusion molding while kneading the catalyst powder, so a separate kneading process is not required.
  • a binder since a binder must be used to mold the catalyst in the screw extruder, the binder must be removed after molding, and the mechanical strength is lower than that of the tableted catalyst.
  • the shape of the molded molding catalyst is generally used after molding into a spherical shape, a column shape, a cylinder shape, a star shape, and the like.
  • the catalyst according to the present invention is a carbon material, and it is not recommended to use too high a pressure during molding, since its physical properties may be deformed according to the pressure during molding.
  • the present invention uses any one of the above catalysts, by using a reaction product containing methane (CH 4 ) and chlorine gas (Cl 2 ) and chlorination (Chlorination) under oxygen-free conditions to produce methane chlorine of methane Provides a method of chlorination.
  • the reaction temperature and pressure, the molar ratio of the reactant including methane to the chlorine gas, and the gas hourly space velocity (GHSV) of the reactants may be a process variable of the reaction.
  • the reaction temperature may be 100 to 600°C, preferably 200 to 500°C, more preferably 250 to 350°C, and most preferably 300 to 350°C.
  • reaction temperature is less than 100°C, the conversion rate of methane is insignificant, and if it exceeds 600°C, a catalyst deactivation problem may occur due to the progress of the reaction, which is not preferable.
  • the molar ratio of the reactant including methane to the chlorine gas (Cl 2 ) may be 1/20 to 20/1.
  • the molar ratio may be 1/10 to 15/1, more preferably 1/5 to 10/1, and most preferably 1/1 to 5/1.
  • the gas temporal space velocity (GHSV) of the reactants is 100 cc/g/h or more, preferably 1000 cc/g/h or more, more preferably 2,000 cc/g/h or more, and the most Preferably it may be 6,000 cc/g/h or more.
  • the upper limit of the gas temporal space velocity can be determined and used by a person skilled in the art depending on the reactor design and the shape of the catalyst. Without limitation, the upper limit may be 500,000 cc/g/h.
  • the gas temporal space velocity (GHSV) of the reactants is less than 100 cc/g/h, the size of the reactor is too large compared to the throughput of the reactor, which may cause a problem of inferior efficiency, which is not preferable.
  • the reaction pressure may be varied in the range of 0 to 30 barg.
  • the reaction pressure may be 0 to 20 barg, more preferably 0 to 10 barg, and most preferably 1 to 5 barg.
  • reaction pressure is less than 0 barg, additional equipment is required to maintain the vacuum and the reaction degree is deteriorated. Even if the reaction pressure exceeds 30 barg, the equipment for maintaining the pressure is expensive and the operation cost is excessively increased. have.
  • a reactant including methane and chlorine gas (Cl 2 ) may be diluted with a diluent to perform a chlorination reaction.
  • the diluent may preferably be at least one selected from the group consisting of helium, argon, and nitrogen, but is not limited thereto.
  • the diluent may be used in a molar ratio of 2: 1 or more, that is, a molar ratio of 2 or more times that of the chlorine gas, with respect to the chlorine gas (Cl 2 ), but is not limited thereto.
  • the intensity of the D band and the G band of the carbon-based material used in Examples and Comparative Examples was measured using a Raman spectroscopy (FRA 106/S, Bruker company, USA), and the D of the analysis result obtained through this , I D / I G ratio was calculated using the intensity of the G peak.
  • I D refers to the peak of the amorphous part (D-peak, 1314 cm -1 )
  • I G refers to the peak of the crystalline part (G-peak, 1573 cm -1 ).
  • the larger the I D /I G value the lower the degree of crystallization.
  • the measured Raman spectrum is shown in FIGS. 1 (a) and (b).
  • the specific surface area and pore size of the carbon-based materials used in Examples and Comparative Examples were measured using a BET measuring device (TriStar II 3020, Micromeritics, USA). Degassing was performed at 300°C for 5 hours, and nitrogen physical adsorption was performed at -196°C. The surface area was calculated using the BET model, and the pore size was calculated using the BJH model.
  • each prepared catalyst was measured in a powder state without molding, and filled in a fixed-bed reactor (fixed-bed, inconel tube reactor, length 450 mm, inner diameter 11 mm), while flowing reactants including methane and chlorine. The performance for the methane-chlorination reaction was measured.
  • GC-FID GC using a HP PLOT-Q capillary column and a flame ionization detector, gas chromatography-flame ionization detector.
  • the reaction time for analyzing the conversion rate of chlorine gas and the selectivity of the product (chlorine of methane) by the chlorination reaction is 1 hour in common, the molar ratio of the reactants of CH 4 /Cl 2 is 1:1, and the GHSV of the reactants is 2,000 cc/g/h, reaction temperature is 350 °C, reaction pressure is 3 barg.
  • the measured conversion and selectivity are shown in [Table 2].
  • examples 1 to 3 in which the I D / I G ratio is between 0.05 and 0.125 were more than twice as high as those of other carbon materials, but were relatively low in usefulness among the chlorine compounds of methane. It can be seen that it is a methane chlorination catalyst, which mainly produces economically useful products because it rarely occurs.
  • the molding pressure was varied in the range of 1 MPa to 5 MPa, and the molded catalyst was pulverized again using a mortar, and then particles of 0.15 to 0.25 mm were sifted through a sieve and 0.5 g was filled into the reactor.
  • the methane-chlorination reaction was carried out under oxygen-free conditions, and methane and chlorine were diluted with helium gas, and the GHSV of the reactant was 2,000 cc/g/h, the reaction temperature was 350°C, and the reaction pressure was 3 barg.
  • the molding pressure for each sample and the molar ratio of methane and chlorine were varied according to the conditions of Table 3 and tested. After the reaction, the product was analyzed in the same manner as in Example 1 and shown in Table 3.
  • the chlorination reaction of methane can lower the reaction temperature by increasing the reaction pressure, and by using a method of increasing the flow rate of the reactant, it is possible to increase the selectivity of monochloromethane while increasing the conversion rate of chlorine. can confirm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention provides a carbon-based material as a catalyst used in methane chlorination in anoxic conditions, the carbon-based material having a Raman peak intensity ratio of ID/IG of 0.05-0.13. The catalyst according to the present invention has high conversion rates of methane and chlorine, and particularly, has a very high conversion rate of chlorine and a low rate of conversion into carbon tetrachloride, as compared to existing catalysts.

Description

메탄-염소화 반응용 촉매 및 이를 이용한 메탄의 염소화 방법Methane-chlorination catalyst and method for chlorination of methane using the same
본 발명은 메탄-염소화 반응용 촉매 및 이를 이용한 메탄의 염소화 방법에 대한 것이다.The present invention relates to a catalyst for a methane-chlorination reaction and a method for chlorination of methane using the same.
세계적으로 매장량이 풍부한 천연가스 활용 방안에 관한 연구는 그 중요성이 더욱 증대되고 있으며, 주로 천연가스 중의 메탄의 산소를 이용하는 열분해 반응 및 촉매를 이용하는 커플링 반응에 관한 시도가 있어 왔으며, 특히, 천연가스의 주성분인 메탄의 활용을 위하여 염소와 메탄을 서로 반응시켜 염화메틸 등을 제조하고, 이 염화메틸을 CMTO(chloromethane to Olefin) 반응 등에 의하여 상업적으로 유용한 화합물인 에틸렌 및/또는 프로필렌 등의 경질올레핀으로 제조하는 방법에 대하여 연구가 활발히 진행되고 있다. The importance of research on the use of natural gas with abundant reserves around the world is increasing in importance, and there have been attempts mainly on pyrolysis reactions using oxygen of methane in natural gas and coupling reactions using catalysts. In particular, natural gas In order to utilize methane, which is the main component of, chlorine and methane are reacted with each other to produce methyl chloride, and the methyl chloride is converted into light olefins such as ethylene and/or propylene, which are commercially useful compounds through a chloromethane to olefin (CMTO) reaction. Research is being actively conducted on the method of manufacturing.
메탄의 염소화 방법으로는 산소가 있는 상태에서 염소화 반응을 진행하는 옥시염소화(oxychlorination) 공정이 통상적으로 행하여지나, 옥시염소화 반응은 일반적으로 탄소 산화물과 또는 이량체(二量體)의 대량 생산의 결과로서 메탄의 선택률(selectivity)이 낮게 된다. 또한, 메탄의 옥시염소화는 일반적으로 기대하지 않았던 염소화 메탄 부산물의 생성을 수반하게 되며, 또한 공기가 포함되는 반응 조건의 적용으로 그 제조공정이 지나치게 복잡한 문제점이 있다.As the chlorination method of methane, the oxychlorination process in which the chlorination reaction proceeds in the presence of oxygen is usually performed, but the oxychlorination reaction is generally the result of mass production of carbon oxides or dimers. As a result, the selectivity of methane becomes low. In addition, the oxychlorination of methane generally involves the generation of unexpected chlorinated methane by-products, and there is a problem that the manufacturing process is excessively complicated due to the application of reaction conditions including air.
한편, 클로르-알칼리(Chlor-Alkali) 공정 등을 통해 제조되는 염소 가스는 다양한 염소화 공정 등을 거쳐 건축자재, 전기전자재료, 생명공학 및 의약품, 항공재료 등에 광범위하게 사용되나 필요 이상으로 과다하게 생성된 염소 또는 미반응 염소의 경우 그 처리 문제가 발생하게 된다. 염소 가스는 독성이 매우 강하고 수분과 접촉 시 금속이나 다른 물질을 쉽게 부식시키는 성질이 있으며 염소가스 자체로는 불이 붙지 않지만 화재 시 연소반응을 격렬하게 일으키게 하는 강한 산화성 가스이다. 특히 누출 시 공기 중 수분과 결합하여 염산이 생성되고 설비 및 배관 표면에 강한 부식을 일으키는 누출원이 되며 염소가스 접촉 또는 흡입 시 화상, 폐부종 등 인체를 손상시킬 수 있으므로 공정에서 발생하는 염소를 처리하는 것이 공정 운영상에 하나의 큰 과제가 되고 있다. 따라서, 염소를 최대한 소비할 수 있는 염소화 공정을 병행 개발하여 공정 내 미반응 염소 생성을 억제하는 것이 바람직하다. 따라서 상기 메탄의 염소화 하여 메탄 염소화물을 제조하는 공정은 메탄의 활용 측면뿐만 아니라, 염소의 소비의 측면에서도 큰 장점을 가진다. Meanwhile, chlorine gas produced through the chlor-alkali process is widely used in construction materials, electrical and electronic materials, biotechnology and pharmaceuticals, and aviation materials through various chlorination processes, but is generated in excess than necessary. In the case of chlorinated or unreacted chlorine, treatment problems arise. Chlorine gas is highly toxic and easily corrodes metals or other substances when it comes into contact with moisture. Chlorine gas itself does not catch fire, but it is a strong oxidizing gas that violently causes combustion reactions in case of fire. In particular, when a leak occurs, hydrochloric acid is produced by combining with moisture in the air, it becomes a source of leakage that causes strong corrosion on the surface of facilities and piping, and when contacting or inhaling chlorine gas, it may damage the human body, such as burns and lung edema. This is becoming a major challenge to the operation of the process. Therefore, it is desirable to simultaneously develop a chlorination process capable of maximizing consumption of chlorine to suppress the generation of unreacted chlorine in the process. Therefore, the process of chlorinating methane to produce methane chlorine has a great advantage not only in the aspect of utilization of methane, but also in the aspect of consumption of chlorine.
종래 한국 등록특허 제10-0105571호(1996.04.25.공고일)는 메탄 또는 정제된 천연가스의 전환반응용 담지촉매에 관한 것으로, 보다 자세하게는 알루미나, 제올라이트 및 실리케이트 등의 담체내 백금, 루테늄 및 로듐 등의 전이금속 화합물이 담지된 촉매를 이용하여 가스내 메탄을 전환시키는 방법에 관해 개시되어 있다. 그러나, 상기 메탄 전환반응용 담지촉매는 이를 제조하는데 고가의 귀금속 화합물이 사용되므로 대량으로 생산하는데 소모되는 비용이 막대하다는 문제점이 있다.Conventional Korean Patent Registration No. 10-0105571 (announced on April 25, 1996) relates to a supported catalyst for the conversion reaction of methane or purified natural gas, and in more detail, platinum, ruthenium and rhodium in carriers such as alumina, zeolite and silicate. Disclosed is a method of converting methane in a gas using a catalyst carrying a transition metal compound such as a catalyst. However, the supported catalyst for the methane conversion reaction has a problem that the cost of mass production is enormous because an expensive noble metal compound is used to prepare it.
미국 등록특허공보 10329226호(2018.09.13.공개일)는 염화 메탄의 생산 과정에 관한 것으로, 보다 자세하게는 메탄 염소화를 매개하는 촉매로서 알루미나, 실리카 및 활성탄소를 포함하는 지지체 자체와 상기 지지체에 금속, 산화금속류 및 금속 할로겐화물이 담지된 것이 사용된다고 개시되어 있다. 그러나 상기 염화메탄 생산 촉매를 제조하기 위해 사용되는 금속은 촉매제조 비용을 증가시키는 요인일 뿐만 아니라, 촉매 제조과정 시 필연적으로 발생하는 폐수 내에 잔존하게되므로 상기 폐수의 COD를 증가하여 이를 처리하는 별도의 공정이 요구된다는 문제점이 있다.U.S. Patent Publication No. 10329226 (published on September 13, 2018) relates to the production process of chlorinated methane, and in more detail, a support including alumina, silica, and activated carbon as a catalyst for mediating methane chlorination, and a metal on the support. , Metal oxides and metal halides are disclosed to be used. However, the metal used to prepare the chlorinated methane production catalyst not only increases the cost of producing the catalyst, but also remains in the wastewater that is inevitably generated during the catalyst manufacturing process. There is a problem that a process is required.
이러한 관점에서, 상기한 문제들을 해결하면서도 메탄의 염소화 공정에서 메탄을 유용한 물질로 전환할 수 있을 뿐만 아니라 염소의 전환율을 극대화 할 수 있는 촉매의 개발이 필요한 실정이다.From this point of view, there is a need to develop a catalyst capable of maximizing the conversion rate of chlorine as well as converting methane into useful substances in the chlorination process of methane while solving the above problems.
상기 문제를 해결하기 위하여 본 발명은 메탄을 높은 비율로 염소화 시킬 수 있는 촉매 및 이의 성형방법을 제공하고자 한다.In order to solve the above problem, the present invention is to provide a catalyst capable of chlorinating methane at a high rate and a method for forming the same.
또한, 본 발명에서는 염소 기체의 전환율이 높으면서도 사염화탄소의 선택도는 낮아 경제적으로 유용한 메탄 염소화물을 주로 제조할 수 있는 공정을 제공함으로써, 화학공정 중에 발생하는 부산물인 염소를 유용한 화합물로 전환하는 방법을 제공한다.In addition, the present invention provides a process that can mainly produce methane chlorine which is economically useful due to a high conversion rate of chlorine gas and low selectivity of carbon tetrachloride, thereby converting chlorine, a by-product generated during a chemical process, into a useful compound. Provides.
본 발명은 메탄(CH4)을 포함하는 반응물을 염소가스(Cl2)와 무산소 조건에서 염소화(Chlorination) 반응시키는 메탄-염소화 반응 촉매로서, ID/IG 비(ratio)가 0.05 ~ 0.13 범위인 탄소계 물질을 포함하는 것을 특징으로 하는 메탄-염소화 반응 촉매를 제공한다. The present invention is a methane-chlorination reaction catalyst for chlorination reaction of a reactant including methane (CH 4 ) with chlorine gas (Cl 2 ) under oxygen-free conditions, and the I D / I G ratio is in the range of 0.05 to 0.13 It provides a methane-chlorination reaction catalyst comprising a phosphorus carbon-based material.
또한, 본 발명은 메탄(CH4)을 포함하는 반응물을 염소가스(Cl2)와 무산소 조건에서 염소화(Chlorination) 반응시키는 메탄-염소화 반응 촉매로서 표면적이 10㎡/g 이상인 흑연인 것을 특징으로하는 메탄-염소화 반응 촉매를 제공한다.In addition, the present invention is a methane-chlorination reaction catalyst for chlorination reaction of a reactant containing methane (CH 4 ) with chlorine gas (Cl 2 ) under oxygen-free conditions, characterized in that graphite having a surface area of 10 m 2 /g or more It provides a methane-chlorination reaction catalyst.
또한, 본 발명의 일 실시예에 있어서, 상기 메탄-염소화 반응 촉매는 관능기로 표면 처리되거나 메탄-염소화 반응에 활성이 있는 것으로 알려진 전이금속을 담지하여 사용할 수 있다.In addition, in an embodiment of the present invention, the methane-chlorination catalyst may be surface-treated with a functional group or a transition metal known to be active in the methane-chlorination reaction may be supported and used.
또한, 본 발명은 상기한 촉매를 성형하는 방법에 있어서, 성형시의 성형압력은 3MPa 미만으로 조절하는 것을 특징으로 할 수 있다.In addition, the present invention may be characterized in that in the method for molding the catalyst, the molding pressure during molding is controlled to be less than 3 MPa.
또한, 본 발명은 상기한 촉매 중 어느 하나를 사용하여 메탄(CH4)을 포함하는 반응물을 염소가스(Cl2)와 무산소 조건에서 염소화(Chlorination) 반응시켜 메탄 염소화물을 생성하는 것을 특징으로 하는 메탄의 염소화물의 제조 방법을 제공한다.In addition, the present invention is characterized in that the chlorination reaction of a reactant containing methane (CH 4 ) containing methane (CH 4) with chlorine gas (Cl 2 ) using any one of the above catalysts to produce methane chlorine It provides a method for producing chlorine of methane.
상기 방법에 있어서, 메탄의 염소화 반응온도는 100 내지 600 ℃이고, 반응압력은 0~30barg이며, 메탄 대 염소가스(Cl2)의 몰비는 1/20 내지 20/1에서 수행되며, 반응물들의 기체 시간 공간 속도(GHSV)는 100cc/g/h 이상인 것을 특징으로 할 수 있다.In the above method, the chlorination reaction temperature of methane is 100 to 600 °C, the reaction pressure is 0 to 30 barg, the molar ratio of methane to chlorine gas (Cl 2 ) is carried out at 1/20 to 20/1, and the gas of the reactants The temporal space velocity (GHSV) may be characterized in that it is 100 cc/g/h or more.
상기 메탄 염소화 반응의 반응물은 희석제가 더 포함되어 희석되어 사용될 수 있다.The reactant of the methane chlorination reaction may be diluted and used by further including a diluent.
또한, 본 발명의 메탄 염소화물의 제조방법에 있어서, 상기 기체 시간 공간 속도는 6000cc/g/h 이상일 수 있다.In addition, in the method for producing methane chlorine of the present invention, the gas temporal space velocity may be 6000cc/g/h or more.
본 발명에 따른 메탄 염소화 반응 촉매는 기존의 촉매에 대비하여 가격이 저렴하면서도 메탄 염소화 반응에 대하여 높은 활성을 가지며, 특히 염소의 전환율이 상대적으로 높으면서도 사염화탄소의 선택도는 낮다는 장점을 갖는다.The methane chlorination catalyst according to the present invention is inexpensive compared to conventional catalysts and has high activity against methane chlorination, and has an advantage of having a relatively high conversion rate of chlorine and low selectivity of carbon tetrachloride.
또한, 본 발명의 촉매를 이용하면, 화학공정 중에서 부산물로 발생하는 염소를 경제적으로 처리할 수 있다.In addition, if the catalyst of the present invention is used, chlorine generated as a by-product during a chemical process can be economically treated.
도 1의 (a)는 본 발명의 비교예에서 사용된 활성탄, 불칸카본, 켓젠블랙, 그래핀, 탄소나노튜브의 라만 스펙트럼 그래프이고, (b)는 본 발명의 비교예 및 실시예에서 사용된 흑연 종류별 라만 스펙트럼 그래프이다.Figure 1 (a) is a Raman spectrum graph of activated carbon, vulcan carbon, Ketjen black, graphene, and carbon nanotubes used in the comparative examples of the present invention, and (b) is used in the comparative examples and examples of the present invention. This is a graph of Raman spectrum for each graphite type.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
다른 식으로 정의하지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by an expert skilled in the art to which the present invention belongs. In general, the nomenclature used in this specification is well known and commonly used in the art.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In the entire specification of the present application, when a certain part “includes” a certain constituent element, it means that other constituent elements may be further included, rather than excluding other constituent elements, unless specifically stated to the contrary.
본 발명은 메탄의 염소화 반응용 촉매 및 상기 촉매를 사용하여 무산소 조건하에서 메탄을 포함하는 반응물을 염소가스로 염소화 반응시키는 방법을 제공한다.The present invention provides a catalyst for chlorination reaction of methane and a method of chlorinating a reactant containing methane with chlorine gas under oxygen-free conditions using the catalyst.
본 발명에 따른 메탄-염소화 반응 촉매는 탄소로 이루어진 물질 중 ID/IG 비(Ratio)가 0.05 ~ 0.13인 것, 바람직하게는 0.05 ~ 0.125인 것을 특징으로 한다. 상기 ID/IG 비가 0.13을 초과하거나 0.05미만인 경우에는 메탄 염소화 반응에 대한 활성이 낮아질 수 있다.The methane-chlorination reaction catalyst according to the present invention is characterized in that the I D / I G ratio of the carbon material is 0.05 to 0.13, preferably 0.05 to 0.125. When the I D / I G ratio exceeds 0.13 or less than 0.05, the activity for the methane chlorination reaction may be lowered.
또한, 본 발명에 따른 메탄-염소화 반응 촉매는 흑연 중에서 특히 비표면적이 10 ㎡/g 이상인 것일 수 있다.In addition, the methane-chlorination catalyst according to the present invention may have a specific surface area of 10 m 2 /g or more among graphite.
상기 탄소물질은 결정화 정도에 따라 무정형 탄소와 결정형 탄소로 나누어질 수 있으며, 이 중 결정형 탄소로서 대표적인 물질이 흑연이다. The carbon material may be divided into amorphous carbon and crystalline carbon according to the degree of crystallization, and among them, graphite is a representative material as crystalline carbon.
흑연은 다이아몬드 격자 결정 구조를 갖는 다이아몬드, 허니콤 격자 구조(honeycomb lattice structure)를 갖는 흑연 및 결정 구조를 갖지 않는 비정질 탄소(석탄 또는 철매(soot)와 같은) 등의 자연적으로 발생하는 탄소의 세 가지 동질 원소 중 하나이다. 상기 세 가지 자연 발생하는 동질 원소들 간의 차이는 동질원소들 내에서 원자의 구조와 결합이다. Graphite is three types of naturally occurring carbon: diamond with a diamond lattice crystal structure, graphite with a honeycomb lattice structure, and amorphous carbon without a crystal structure (such as coal or soot). It is one of the homogeneous elements. The difference between the three naturally occurring isotopes is the structure and bonding of atoms within the isotopes.
흑연의 화학적 결합은 실제로 다이아몬드를 구성하는 것보다 강하다. 그러나 다이아몬드는 3 차원 격자 결합을 포함하고 흑연은 2차원 격자 결합(탄소 시트 층)으로 구성된다. 흑연의 각 층 내에서 탄소 원자는 매우 강한 결합을 포함하지만, 층들은 서로 슬라이딩하여 흑연을 보다 부드럽고 가단성 있는 물질로 만들 수 있다. The chemical bonds of graphite are actually stronger than what makes up diamond. However, diamond contains three-dimensional lattice bonds, and graphite is composed of two-dimensional lattice bonds (carbon sheet layers). In each layer of graphite, the carbon atoms contain very strong bonds, but the layers can slide together to make graphite a softer and more malleable material.
흑연은 평평한 층 구조를 가지고 있으며, 각 층은 육각형 격자 내에 공유 결합된 탄소 원자로 이루어진다. 이러한 공유 결합은 매우 강하며 각 시트 내의 탄소 원자는 약 0.142 nm만큼 떨어져 있다. 화학적으로, 탄소 원자는 2차원 적으로 원자의 단일 층에서 매우 견고한 sp2-혼성결합(sp2-hybridized bond)에 의해 서로 결합된다. 흑연에서 sp2-결합된 탄소 원자의 각 개별적이며 2차원인 단원자 두께의 층(one atom thick layer)은 0.335 nm만큼 떨어져있다. 본질적으로, 위에서 언급 한 바와 같이, 흑연의 결정질 플레이크 형태는 연결된 탄소 원자의 개별 층이 단순히 수십만 개이다. Graphite has a flat layered structure, each of which consists of carbon atoms covalently bonded in a hexagonal lattice. These covalent bonds are very strong and the carbon atoms in each sheet are about 0.142 nm apart. Chemically, carbon atoms are bonded two-dimensionally to each other by very rigid sp2-hybridized bonds in a single layer of atoms. Each individual, two-dimensional, one atom thick layer of sp2-bonded carbon atoms in graphite is 0.335 nm apart. Essentially, as mentioned above, the crystalline flake form of graphite is simply hundreds of thousands of individual layers of connected carbon atoms.
상기 흑연 등 결정성 탄소물질들은 종류나 그 생성 방법에 따라 결정화도가 달라질 수 있으며, 상기 결정화도의 차이로 인하여 촉매로서의 성능이 달라질 수 있다. Crystallinity of the crystalline carbon materials such as graphite may vary depending on the type or method of producing the same, and performance as a catalyst may vary due to the difference in the crystallinity.
본 발명에서는 이점에 착안하여 결정화의 정도를 알 수 있는 라만 피크 강도비(ID/IG Ratio)로서 측정하였으며, 상기 ID/IG 비가 0.05~0.13, 바람직하기는 0.05~0.125 사이에 있는 것이 메탄-염소화 반응에 특별히 높은 성능을 나타냄을 확인하였다.In the present invention, focusing on this point, it was measured as a Raman peak intensity ratio (I D / I G Ratio) that can determine the degree of crystallization, and the I D / I G ratio is between 0.05 and 0.13, preferably between 0.05 and 0.125. It was confirmed that it shows a particularly high performance for the methane-chlorination reaction.
또한, 촉매의 비표면적은 반응물질과의 접촉을 원활하게 하기 위하여 넓을수록 유리하나, 본원 발명에서는 비표면적이 크다고 활성이 나아지는 것이 아니며, 특정 결정형 탄소 중 흑연이면서 비표면적이 10m2/g 이상일 경우에 메탄 염소화 반응에서 염소의 전환율이 높게 나타난다.In addition, the larger the specific surface area of the catalyst is, the more advantageous it is in order to facilitate contact with the reactant, but in the present invention, a large specific surface area does not improve the activity, and it is graphite among specific crystalline carbons and has a specific surface area of 10 m 2 /g or more. In some cases, the conversion of chlorine is high in the methane chlorination reaction.
본 발명에 따른 상기 탄소계 촉매는 탄소계 촉매 그 자체로서 사용될 수 있으나, 관능기로 표면을 처리하여 사용되거나 메탄 염소화 반응에 활성을 가지는 전이 금속을 담지하여 사용될 수도 있다.The carbon-based catalyst according to the present invention may be used as a carbon-based catalyst itself, but may be used by treating the surface with a functional group or supporting a transition metal having activity in the methane chlorination reaction.
상기 관능기는 임의로 아렌기, 테르-부틸기, 사이클로헥실기, 하이드록실기, 락톤기, 락탐기, 에스터기, 아마이드기, 이민기, 아미노기, 이미드기, 아지드기, 니트릴기, 나이트록시기, 니트로기, 니트로소기, 피리딘기, 포스핀기, 인산기, 포스포닉산기, 술폰기, 술폰산기, 설폭사이드기, 싸이올기, 설페이트기, 설파이드기, 카보닐기, 알데히드기, 카르복실기, 카복실산염기, 할로포르밀기, 에테르기, 페록시기, 하이드로페록시기, 아실 할라이드기, 플루오로기, 클로로기, 브로모기 및 아이오드기로 이루어진 군으로부터 선택된 적어도 하나 이상의 관능기로 기능화될 수도 있다. 탄소계 물질을 상기 관응기로 기능화시키는 방법에 대하여는, 본 발명의 목적 달성 범위 내라면 별도의 제한은 없다.The functional group is optionally arene group, ter-butyl group, cyclohexyl group, hydroxyl group, lactone group, lactam group, ester group, amide group, imine group, amino group, imide group, azide group, nitrile group, nitroxy group, Nitro group, nitroso group, pyridine group, phosphine group, phosphoric acid group, phosphonic acid group, sulfone group, sulfonic acid group, sulfoxide group, thiol group, sulfate group, sulfide group, carbonyl group, aldehyde group, carboxyl group, carboxylic acid base, haloformyl group , An ether group, a peroxy group, a hydroperoxy group, an acyl halide group, a fluoro group, a chloro group, a bromo group and an iodine group. With respect to the method of functionalizing the carbon-based material into the tube condenser, there is no particular limitation as long as it is within the scope of achieving the object of the present invention.
상기 금속은 메탄 염소화 반응에 활성을 가진 것으로 알려진 것들이 사용될 수 있으며, 바람직하게는 루테늄(Ru), 백금(Pt), 로듐(Rh), 코발트(Co), 니켈(Ni) 및 팔라듐(Pd)으로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함하나, 이에 한정되지는 않는다.The metals may be those known to have activity in the methane chlorination reaction, preferably ruthenium (Ru), platinum (Pt), rhodium (Rh), cobalt (Co), nickel (Ni) and palladium (Pd). It includes at least one or more selected from the group consisting of, but is not limited thereto.
상기 금속 함량은 담지 물질의 총 중량을 기준으로 20 중량% 이하임이 바람직하고, 0.5 내지 10 중량%임이 보다 바람직하다. 금속의 함량이 20 중량%를 초과하는 경우에는, 오히려 담지된 함량 대비 충분한 염소화 반응 효율을 얻을 수 없다는 문제점이 있어서 바람직하지 않다.The metal content is preferably 20% by weight or less, and more preferably 0.5 to 10% by weight based on the total weight of the supported material. When the content of the metal exceeds 20% by weight, it is not preferable because there is a problem that sufficient chlorination reaction efficiency cannot be obtained compared to the supported content.
상기 촉매는 파우더 형태로 사용될 수도 있으나, 실제 쓰이는 반응 조건에서 요구되는 형태로 성형을 하여 사용하는 경우가 많다. 이는 파우더 형태로 반응기에 촉매가 충진 되면, 반응 조절이 어렵고 압력 손실이 크게 나타나며 촉매 파우더로 인한 반응기 및 다른 장치들의 오염을 야기시킬 수 있기 때문이다. 촉매는 보통 구형이나 펠렛(pellet) 형태로 성형하는 경우가 많다. 이와 같이 성형하는 기계로서 타정기와 압출기가 주로 사용된다. The catalyst may be used in the form of a powder, but in many cases it is molded and used in a form required under actual reaction conditions. This is because when the catalyst is filled in the reactor in the form of powder, it is difficult to control the reaction, a large pressure loss appears, and contamination of the reactor and other devices due to the catalyst powder may be caused. The catalyst is usually formed into a spherical shape or a pellet shape. As a machine for molding in this way, a tablet press and an extruder are mainly used.
타정기의 경우에는 펠렛 형태로 만드는 경우에 사용되는 것으로, 강한 기계적 강도를 요구하는 촉매일 때 많이 사용된다. 타정기는 높은 압력을 이용한 촉매성형기로 촉매 파우더를 성형 틀에 주입한 다음 강한 압력을 이용하여 연속적으로 촉매를 성형하는 기계이다. 이 기계는 연속적인 촉매 성형 작업을 할 수 있고, 촉매 파우더를 직접 사용할 수 있어서 전처리가 비교적 쉽고 성형된 촉매는 바인더나 이물질 제거 작업이 필요 없다는 장점이 있다. 반면에, 타정기의 단점은 기계 및 부속품의 값이 고가이고, 성형 틀의 가공이 어렵다는 것이다. 또한, 한번 제조된 성형 틀을 다른 형상으로 재가공 하는 것이 어렵기 때문에 촉매성형 형태를 잘 선택하여야 한다. In the case of a tablet press, it is used when making pellets, and is widely used when it is a catalyst that requires strong mechanical strength. A tablet press is a catalytic molding machine that uses a high pressure to inject catalyst powder into a molding mold and then continuously molds the catalyst using strong pressure. This machine has the advantage of being able to perform continuous catalyst shaping operation, and because catalyst powder can be used directly, pretreatment is relatively easy, and the molded catalyst does not require a binder or foreign matter removal operation. On the other hand, the disadvantages of the tablet press are that the machine and accessories are expensive, and the processing of the molding mold is difficult. In addition, since it is difficult to reprocess the mold once manufactured into a different shape, the catalytic molding type must be selected well.
압출기는 스크류(screw) 타입 및 배치(batch) 타입의 압출기가 있는데, 연속 작업이 가능한 스크류 타입의 압출기가 주로 사용된다. 스크류압출기는 촉매 파우더를 반죽함과 동시에 압출 성형을 할 수 있어서 별도의 반죽 공정이 필요하지 않다. 그러나, 스크류압출기에서 촉매를 성형하기 위해서는 바인더를 필히 사용해야 하므로, 성형 후 바인더 제거 작업을 거쳐야 하고 타정된 촉매보다 기계적 강도는 떨어지는 단점이 있다. There are screw-type and batch-type extruders for extruders, and screw-type extruders capable of continuous operation are mainly used. The screw extruder can perform extrusion molding while kneading the catalyst powder, so a separate kneading process is not required. However, since a binder must be used to mold the catalyst in the screw extruder, the binder must be removed after molding, and the mechanical strength is lower than that of the tableted catalyst.
이외에도 전동조립기(tumbling granulator) 등의 공지의 성형장치들을 사용하여 성형할 수 있음은 물론이다. In addition, it goes without saying that it can be molded using known molding devices such as a tumbling granulator.
상기 성형된 성형촉매의 형상에는 특별한 제한은 없으나, 통상적으로 구상, 원주상, 원통상, 별모양 등으로 성형하여 사용한다.Although there is no particular limitation on the shape of the molded molding catalyst, it is generally used after molding into a spherical shape, a column shape, a cylinder shape, a star shape, and the like.
본 발명에 따른 촉매는 탄소 물질로서 성형시의 압력에 따라 그 물리적 특성에 변형이 있을 수 있으므로 성형시에 너무 높은 압력을 사용하는 것을 좋지 않다. The catalyst according to the present invention is a carbon material, and it is not recommended to use too high a pressure during molding, since its physical properties may be deformed according to the pressure during molding.
또한 본 발명은 상기 촉매 중 어느 하나의 촉매를 사용하여, 메탄(CH4)을 포함하는 반응물을 염소가스(Cl2)와 무산소 조건에서 염소화(Chlorination) 반응을 통하여 메탄 염소화물을 생성시키는 메탄의 염소화 방법을 제공한다.In addition, the present invention uses any one of the above catalysts, by using a reaction product containing methane (CH 4 ) and chlorine gas (Cl 2 ) and chlorination (Chlorination) under oxygen-free conditions to produce methane chlorine of methane Provides a method of chlorination.
상기 메탄의 염소화 방법에 있어서, 반응온도와 압력, 메탄을 포함하는 반응물 대 염소가스의 몰비 및 반응물들의 기체 시간 공간 속도(GHSV, Gas hourly space velocity) 등이 반응의 공정 변수로 될 수 있다.In the chlorination method of methane, the reaction temperature and pressure, the molar ratio of the reactant including methane to the chlorine gas, and the gas hourly space velocity (GHSV) of the reactants may be a process variable of the reaction.
상기 메탄의 염소화 방법에 있어서, 반응온도는 100 내지 600℃, 바람직하게는 200 내지 500℃, 더욱 바람직하게는 250 내지 350℃, 가장 바람직하게는 300 내지 350℃ 일 수 있다.In the chlorination method of methane, the reaction temperature may be 100 to 600°C, preferably 200 to 500°C, more preferably 250 to 350°C, and most preferably 300 to 350°C.
상기 반응 온도가 100℃ 미만이면 메탄의 전환율이 미미하며, 600℃ 초과이면 반응의 진행에 따른 촉매 비활성화 문제가 발생할 수 있으므로 바람직하지 않다. If the reaction temperature is less than 100°C, the conversion rate of methane is insignificant, and if it exceeds 600°C, a catalyst deactivation problem may occur due to the progress of the reaction, which is not preferable.
또한, 상기 염소화 반응에 있어서, 메탄을 포함하는 반응물 대 염소가스(Cl2)의 몰비가 1/20 내지 20/1 일 수 있다. 바람직하게는 상기 몰비는 1/10 내지 15/1, 더욱 바람직하게는 1/5 내지 10/1, 가장 바람직하게는 1/1 내지 5/1일 수 있다. In addition, in the chlorination reaction, the molar ratio of the reactant including methane to the chlorine gas (Cl 2 ) may be 1/20 to 20/1. Preferably, the molar ratio may be 1/10 to 15/1, more preferably 1/5 to 10/1, and most preferably 1/1 to 5/1.
상기 염소화 반응에 있어서, 메탄을 포함하는 반응물 대 염소가스(Cl2)의 몰비가 1/20 미만이거나 20/1을 초과하면, 반응 효율이 떨어지고 미반응물로 인한 별도의 분리공정의 부담이 크게 증가할 수 있으므로 바람직하지 않다.In the chlorination reaction, when the molar ratio of the reactant including methane to the chlorine gas (Cl 2 ) is less than 1/20 or exceeds 20/1, the reaction efficiency decreases and the burden of the separate separation process due to the unreacted product is greatly increased. It is not desirable because it can be done
상기 메탄의 염소화 방법에 있어서, 반응물들의 기체 시간 공간 속도(GHSV)는 100 cc/g/h 이상, 바람직하게는 1000 cc/g/h 이상, 더욱 바람직하게는 2,000 cc/g/h 이상, 가장 바람직하게는 6,000 cc/g/h 이상일 수 있다.In the method of chlorination of methane, the gas temporal space velocity (GHSV) of the reactants is 100 cc/g/h or more, preferably 1000 cc/g/h or more, more preferably 2,000 cc/g/h or more, and the most Preferably it may be 6,000 cc/g/h or more.
상기 기체 시간 공간 속도(GHSV)의 상한은 반응기 설계 및 촉매의 형상에 따라 통상의 당업자가 결정하여 사용할 수 있다. 비제한적으로 상기 상한은 500,000 cc/g/h 일 수 있다.The upper limit of the gas temporal space velocity (GHSV) can be determined and used by a person skilled in the art depending on the reactor design and the shape of the catalyst. Without limitation, the upper limit may be 500,000 cc/g/h.
상기 반응물들의 기체 시간 공간 속도(GHSV)가 100 cc/g/h 미만이면 반응기의 처리량과 비교하여 반응기의 크기가 지나치게 커서 효율이 떨어지는 문제가 발생할 수 있어 바람직하지 않다.If the gas temporal space velocity (GHSV) of the reactants is less than 100 cc/g/h, the size of the reactor is too large compared to the throughput of the reactor, which may cause a problem of inferior efficiency, which is not preferable.
상기 메탄의 염소화 방법에 있어서, 반응 압력은 0 내지 30barg의 범위에서 변동시킬 수 있다. 바람직하게 상기 반응 압력은 0 내지 20barg, 더욱 바람직하게는 0 내지 10barg, 가장 바람직하게는 1 내지 5barg일 수 있다.In the chlorination method of methane, the reaction pressure may be varied in the range of 0 to 30 barg. Preferably, the reaction pressure may be 0 to 20 barg, more preferably 0 to 10 barg, and most preferably 1 to 5 barg.
상기 반응압력이 0 barg 이하의 경우에는 진공을 유지하기 위한 설비가 추가로 소요되며 반응정도가 떨어지며, 30barg를 초과하는 경우에도 압력을 유지하기 위한 설비의 고가화와 운전 비용이 지나치게 증가하게 되는 단점이 있다.If the reaction pressure is less than 0 barg, additional equipment is required to maintain the vacuum and the reaction degree is deteriorated. Even if the reaction pressure exceeds 30 barg, the equipment for maintaining the pressure is expensive and the operation cost is excessively increased. have.
상기 메탄의 염소화 방법에 있어서, 메탄을 포함하는 반응물과 염소가스(Cl2)는 희석제로 희석되어 염소화 반응이 수행될 수도 있다. 상기 희석제로는 바람직하게 헬륨, 아르곤 및 질소로 이루어진 군으로부터 선택된 적어도 하나 이상일 수 있으나, 이에 한정되지는 않는다. 또한 상기 희석제는 염소가스(Cl2)에 대하여 바람직하게 2 : 1 이상의 몰비, 즉, 희석제가 염소가스 대비 2 배 이상의 몰 비로 사용될 수 있으나, 이에 한정되지는 않는다.In the chlorination method of methane, a reactant including methane and chlorine gas (Cl 2 ) may be diluted with a diluent to perform a chlorination reaction. The diluent may preferably be at least one selected from the group consisting of helium, argon, and nitrogen, but is not limited thereto. In addition, the diluent may be used in a molar ratio of 2: 1 or more, that is, a molar ratio of 2 or more times that of the chlorine gas, with respect to the chlorine gas (Cl 2 ), but is not limited thereto.
이하, 본 발명의 실시예 및 비교예를 통하여 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail through Examples and Comparative Examples of the present invention.
[촉매의 준비][Preparation of catalyst]
각각의 실시예 및 비교예에 사용된 탄소계 물질은 시중에서 구입하여 사용하였으며, 각각의 물성을 하기의 방법으로 측정하여 하기 표 1에 기재하였다. The carbon-based materials used in each of the Examples and Comparative Examples were purchased and used on the market, and the physical properties of each were measured by the following method and are shown in Table 1 below.
<ID/IG 측정><I D /I G measurement>
라만 분광분석법에 따라 실시예 및 비교예에서 사용된 탄소계 물질의 D 밴드 및 G 밴드의 세기를 라만 분광분석기(FRA 106/S, Bruker社, 미국)를 통해 측정하여 이를 통해 얻어진 분석결과의 D, G 피크의 세기를 이용하여 ID/IG 비를 계산하였다. 이 때 상기 라만 피크 강도비에서 ID는 비정질 부분의 피크(D-peak, 1314 cm-1)를 의미하고 IG는 결정질 부분의 피크(G-peak, 1573 cm-1)를 의미하며 이 때 ID/IG 값이 클수록 결정화 정도가 낮다. According to the Raman spectroscopy method, the intensity of the D band and the G band of the carbon-based material used in Examples and Comparative Examples was measured using a Raman spectroscopy (FRA 106/S, Bruker company, USA), and the D of the analysis result obtained through this , I D / I G ratio was calculated using the intensity of the G peak. At this time, in the Raman peak intensity ratio, I D refers to the peak of the amorphous part (D-peak, 1314 cm -1 ), and I G refers to the peak of the crystalline part (G-peak, 1573 cm -1 ). The larger the I D /I G value, the lower the degree of crystallization.
상기 측정된 라만 스펙트럼을 도 1(a) 및 (b)에 나타내었다.The measured Raman spectrum is shown in FIGS. 1 (a) and (b).
BET 측정 & 기공크기 측정BET measurement & pore size measurement
BET 측정 기기(TriStar II 3020, Micromeritics社, 미국)를 이용하여 실시예 및 비교예에서 사용된 탄소계 물질의 비표면적 및 기공크기를 측정하였다. Degassing은 300도에서 5시간 동안 수행하였으며, 질소 물리 흡착은 -196℃에서 수행하였다. BET 모델을 이용하여 표면적을 구하였으며, BJH 모델을 이용하여 기공크기를 구하였다. The specific surface area and pore size of the carbon-based materials used in Examples and Comparative Examples were measured using a BET measuring device (TriStar II 3020, Micromeritics, USA). Degassing was performed at 300°C for 5 hours, and nitrogen physical adsorption was performed at -196°C. The surface area was calculated using the BET model, and the pore size was calculated using the BJH model.
구 분division 제조사/제품모델명Manufacturer/Product Model Name ID/IGI D /I G ratio 비표면적 (m2/g)Specific surface area (m 2 /g)
활성탄Activated carbon Sigma-Aldrich/ 242276Sigma-Aldrich/ 242276 1.201.20 1,0351,035
불칸카본Vulcan Carbon CABOT/ Vulcan XC-72CABOT/ Vulcan XC-72 1.011.01 244244
켓젠블랙Ketjen Black Lion Specialty Chem./EC-600JDLion Specialty Chem./EC-600JD 1.211.21 1,3481,348
그래핀Graphene 카본나노텍/ GNP_UCCarbon Nanotech/ GNP_UC 0.930.93 2525
탄소나노튜브Carbon nanotube LG Chem.LG Chem. 1.171.17 188188
흑연 AGraphite A 삼정 C&G/ MGF6995Samjung C&G/ MGF6995 0.0260.026 99
흑연 BGraphite B 삼정 C&G/ Q811Samjung C&G/ Q811 0.1460.146 8.78.7
흑연 CGraphite C 삼정 C&G/ SG17Samjung C&G/ SG17 0.1310.131 4.74.7
흑연 DGraphite D 삼정 C&G/ DN8Samjung C&G/ DN8 0.1240.124 19.919.9
흑연 EGraphite E 삼정 C&G/ Cond8Samjung C&G/ Cond8 0.0590.059 20.620.6
흑연 FGraphite F 삼정 C&G/ SC80Samjung C&G/ SC80 0.1160.116 12.0812.08
[비교예1-9 및 실시예1-3] [Comparative Example 1-9 and Example 1-3]
<촉매종류 별 메탄-염소화반응><Methane-chlorination reaction by catalyst type>
상기 각각 준비된 촉매를 성형을 하지 않은 파우더 상태로 0.5g을 측량하여, 고정층 반응기(Fixed-bed, Inconel tube reactor, 길이 450 mm, 내경 11 mm)에 충진하여 메탄과 염소를 포함하는 반응물질을 흘리면서 메탄-염소화 반응에 대한 성능을 측정하였다.0.5 g of each prepared catalyst was measured in a powder state without molding, and filled in a fixed-bed reactor (fixed-bed, inconel tube reactor, length 450 mm, inner diameter 11 mm), while flowing reactants including methane and chlorine. The performance for the methane-chlorination reaction was measured.
무산소 조건으로 메탄-염소화 반응 분위기를 조성하였으며, 메탄 및 염소가스를 희석제인 헬륨으로 희석한 상태로 반응기에 주입하면서 (주입된 몰비: CH4/Cl2/He=1/1/2) 반응을 실시하였다. A methane-chlorination reaction atmosphere was created under oxygen-free conditions, and methane and chlorine gas were diluted with helium as a diluent and injected into the reactor (injected molar ratio: CH 4 /Cl 2 /He=1/1/2). Implemented.
반응기 내에서 염소가스의 경로는 차광되었으며, GC-FID(GC using a HP PLOT-Q capillary column and a flame ionization detector, 가스 크로마토그래피 - 불꽃 이온화 검출기)를 사용하여 염소화 반응의 제조물을 분석하였다. The path of chlorine gas in the reactor was shielded, and the product of the chlorination reaction was analyzed using GC-FID (GC using a HP PLOT-Q capillary column and  a flame ionization detector, gas chromatography-flame   ionization detector).
염소화 반응에 의한 염소 기체의 전환율과 생성물(메탄의 염소화물)의 선택도를 분석하기 위한 반응시간은 공통적으로 1시간이고, CH4/Cl2의 반응물 몰비는 1:1이며, 반응물의 GHSV는 2,000 cc/g/h, 반응온도는 350 ℃, 반응압력은 3 barg이다. 측정된 전환율과 선택도를 [표 2]에 기재하였다.The reaction time for analyzing the conversion rate of chlorine gas and the selectivity of the product (chlorine of methane) by the chlorination reaction is 1 hour in common, the molar ratio of the reactants of CH 4 /Cl 2 is 1:1, and the GHSV of the reactants is 2,000 cc/g/h, reaction temperature is 350 ℃, reaction pressure is 3 barg. The measured conversion and selectivity are shown in [Table 2].
구 분division 염소화 반응 촉매Chlorination reaction catalyst CH4전환율(%)CH 4 conversion (%) Cl2전환율(%)Cl 2 conversion (%) 생성물 선택도 (%)Product selectivity (%)
CH3Cl CH 3 Cl CH2Cl2 CH 2 Cl 2 CHCl3 CHCl 3 CCl4 CCl 4
비교예 1Comparative Example 1 BlankBlank 31.231.2 44.944.9 63.563.5 29.329.3 7.27.2 00
비교예 2Comparative Example 2 활성탄Activated carbon 28.928.9 68.568.5 43.943.9 11.311.3 8.78.7 36.136.1
비교예 3Comparative Example 3 불칸카본Vulcan Carbon 30.030.0 72.572.5 43.643.6 11.511.5 4.64.6 40.340.3
비교예 4Comparative Example 4 켓젠블랙Ketjen Black 20.720.7 52.252.2 39.739.7 9.89.8 8.88.8 41.741.7
비교예 5Comparative Example 5 그래핀Graphene 30.330.3 45.145.1 60.460.4 30.530.5 9.19.1 00
비교예 6Comparative Example 6 탄소나노튜브Carbon nanotube 39.139.1 76.676.6 39.439.4 30.330.3 25.125.1 5.35.3
비교예 7Comparative Example 7 흑연 AGraphite A 38.238.2 62.562.5 51.451.4 33.633.6 15.015.0 00
비교예 8Comparative Example 8 흑연 BGraphite B 35.635.6 56.356.3 54.854.8 32.232.2 13.013.0 00
비교예 9Comparative Example 9 흑연 CGraphite C 25.525.5 35.135.1 68.168.1 25.925.9 6.06.0 00
실시예 1Example 1 흑연 DGraphite D 50.850.8 98.298.2 35.135.1 36.336.3 28.628.6 00
실시예 2Example 2 흑연 EGraphite E 52.552.5 99.199.1 37.637.6 36.236.2 26.226.2 00
실시예 3Example 3 흑연 FGraphite F 46.546.5 85.885.8 40.040.0 35.535.5 24.524.5 00
상기 표 2에서 나타나듯이 무정형 탄소를 촉매로 사용한 비교예 2 내지 비교예 4에서는 염소의 치환율이 높은 사염화탄소가 다량 생성되나 결정형 탄소인 경우에는 사염화탄소가 본 실험 조건에서 생성되지 않거나 아주 약간 생성되는 것으로 나타나 결정형 탄소와 무정형 탄소간에 메탄-염소화 반응에 대한 활성이 서로 차이가 남을 확인할 수 있다.As shown in Table 2 above, in Comparative Examples 2 to 4 using amorphous carbon as a catalyst, a large amount of carbon tetrachloride with a high substitution rate of chlorine was produced, but in the case of crystalline carbon, carbon tetrachloride was not produced under the conditions of this experiment, or very little was produced. It can be seen that the activity of the methane-chlorination reaction between the crystalline carbon and the amorphous carbon is different from each other.
특히 염소의 전환율에 있어서는 ID/IG 비율이 0.05 내지 0.125 사이에 있는 실시예 1 내지 3의 경우가 다른 탄소 물질에 비하여 많게는 두배 이상 높게 나타나면서도 메탄의 염소화물 중 상대적으로 유용성이 낮은 사염화탄소로의 전환은 거의 일어나지 않아 경제적으로 유용한 산물을 주로 생성하는 메탄 염소화 촉매임을 알 수 있다. In particular, in terms of the conversion rate of chlorine, examples 1 to 3 in which the I D / I G ratio is between 0.05 and 0.125 were more than twice as high as those of other carbon materials, but were relatively low in usefulness among the chlorine compounds of methane. It can be seen that it is a methane chlorination catalyst, which mainly produces economically useful products because it rarely occurs.
ID/IG 비가 너무 낮은 경우(비교예 7)에도 메탄 및 염소의 전환율은 낮게 나타나 메탄-염소화 반응의 촉진에는 적절한 범위의 결정화도가 존재함이 확인되었다.Even when the I D / I G ratio was too low (Comparative Example 7), the conversion rates of methane and chlorine were low, and it was confirmed that a crystallinity in an appropriate range for accelerating the methane-chlorination reaction was present.
실험예 1 : 촉매 성형 압력에 따른 효과 측정Experimental Example 1: Measurement of the effect according to the catalyst molding pressure
현장에서는 촉매는 주로 성형하여 사용되므로, 상기 촉매들의 성형 압력에 따른 활성차이를 실험하였다.In the field, since the catalyst is mainly used by molding, the difference in activity according to the molding pressure of the catalysts was tested.
촉매는 실시예1의 흑연 D를 선택하여 사용하였고 바인더 물질을 사용하지 않고, 성형 압력을 변화시키면서 촉매를 성형하였다. As the catalyst, graphite D of Example 1 was selected and used, and the catalyst was molded while changing the molding pressure without using a binder material.
성형 압력은 1 MPa ~ 5 MPa의 범위에서 변동하였으며, 성형된 촉매는 다시 막자사발을 이용하여 분쇄한 뒤, 0.15~0.25 mm의 입자를 체로 선별하여 반응기에 0.5g 충진하였다.The molding pressure was varied in the range of 1 MPa to 5 MPa, and the molded catalyst was pulverized again using a mortar, and then particles of 0.15 to 0.25 mm were sifted through a sieve and 0.5 g was filled into the reactor.
메탄-염소화 반응은 무산소 조건에서 실시되었으며, 메탄과 염소는 헬륨기체로 희석하여 사용하였고, 반응물의 GHSV는 2,000 cc/g/h, 반응온도는 350℃, 반응압력은 3barg이다. 각 샘플별 성형압력 및 메탄과 염소의 몰 비는 표 3의 조건대로 변동하여 실험하였다. 반응후 생성물은 상기 실시예1에서와 동일한 방법으로 분석하여 표 3에 나타내었다.The methane-chlorination reaction was carried out under oxygen-free conditions, and methane and chlorine were diluted with helium gas, and the GHSV of the reactant was 2,000 cc/g/h, the reaction temperature was 350°C, and the reaction pressure was 3 barg. The molding pressure for each sample and the molar ratio of methane and chlorine were varied according to the conditions of Table 3 and tested. After the reaction, the product was analyzed in the same manner as in Example 1 and shown in Table 3.
CH4: Cl2 :He몰비CH 4 : Cl 2 : He molar ratio 성형 압력Molding pressure CH4전환율(%)CH 4 conversion (%) Cl2전환율(%)Cl 2 conversion (%) 생성물 선택도 (%)Product selectivity (%)
CH3Cl CH 3 Cl CH2Cl2 CH 2 Cl 2 CHCl3 CHCl 3 CCl4 CCl 4
1:1:21:1:2 1 Mpa1 Mpa 46.146.1 82.382.3 43.243.2 35.135.1 21.721.7 00
2 Mpa2 Mpa 45.145.1 77.677.6 45.945.9 35.935.9 18.218.2 00
3 Mpa3 Mpa 31.731.7 48.948.9 57.857.8 30.430.4 11.911.9 00
4 Mpa4 Mpa 30.130.1 45.445.4 59.859.8 29.029.0 10.210.2 00
5 Mpa5 Mpa 29.829.8 44.544.5 60.760.7 29.629.6 10.810.8 00
2:1:32:1:3 1 Mpa1 Mpa 29.8 29.8 91.8 91.8 57.7 57.7 30.8 30.8 11.5 11.5 00
2 Mpa2 Mpa 30.2 30.2 90.8 90.8 59.7 59.7 30.3 30.3 10.1 10.1 00
3 Mpa3 Mpa 23.2 23.2 64.9 64.9 67.0 67.0 25.9 25.9 7.0 7.0 00
4 Mpa4 Mpa 19.8 19.8 53.2 53.2 71.1 71.1 23.4 23.4 5.5 5.5 00
5 Mpa5 Mpa 19.4 19.4 51.7 51.7 72.0 72.0 23.0 23.0 5.0 5.0 00
3:1:43:1:4 1 Mpa1 Mpa 22.322.3 94.094.0 66.466.4 26.426.4 7.27.2 00
2 Mpa2 Mpa 22.822.8 94.894.8 67.667.6 26.026.0 6.46.4 00
3 Mpa3 Mpa 17.517.5 68.768.7 73.473.4 22.022.0 4.54.5 00
4 Mpa4 Mpa 15.3 15.3 58.3 58.3 76.7 76.7 19.8 19.8 3.5 3.5 00
5 Mpa5 Mpa 15.1 15.1 57.1 57.1 77.1 77.1 19.5 19.5 3.4 3.4 00
4:1:54:1:5 1 Mpa1 Mpa 17.6 17.6 93.6 93.6 72.1 72.1 23.0 23.0 4.9 4.9 00
2 Mpa2 Mpa 17.9 17.9 94.2 94.2 73.1 73.1 22.5 22.5 4.4 4.4 00
3 Mpa3 Mpa 13.9 13.9 69.7 69.7 78.1 78.1 18.9 18.9 3.1 3.1 00
4 Mpa4 Mpa 12.5 12.5 61.3 61.3 80.2 80.2 17.4 17.4 2.4 2.4 00
5 Mpa5 Mpa 11.9 11.9 57.5 57.5 81.2 81.2 16.6 16.6 2.2 2.2 00
5:1:65:1:6 1 Mpa1 Mpa 14.614.6 92.992.9 76.2 76.2 20.4 20.4 3.5 3.5 00
2 Mpa2 Mpa 14.8 14.8 93.3 93.3 77.3 77.3 19.5 19.5 3.3 3.3 00
3 Mpa3 Mpa 11.6 11.6 70.2 70.2 81.2 81.2 16.5 16.5 2.3 2.3 00
4 Mpa4 Mpa 10.6 10.6 63.6 63.6 82.4 82.4 15.6 15.6 2.0 2.0 00
5 Mpa5 Mpa 10.2 10.2 59.9 59.9 83.8 83.8 14.6 14.6 1.6 1.6 00
표 3에서 보면, 촉매 성형시의 압력이 높아지면 메탄과 염소의 전환율은 떨어지고, 모노클로로메탄의 선택도는 높아지는 경향을 보이는데, 특히 3 MPa 이상의 성형압력을 사용할 경우, 메탄 및 염소의 전환율 감소폭이 두드러진다. 따라서, 촉매의 성형압력을 3MPa 미만으로 실시하는 것이 염소의 전환율 측면에서 유리하다.As shown in Table 3, when the pressure during catalyst molding increases, the conversion rate of methane and chlorine decreases, and the selectivity of monochloromethane tends to increase.In particular, when a molding pressure of 3 MPa or more is used, the reduction in the conversion rate of methane and chlorine is reduced. Stands out. Therefore, it is advantageous in terms of the conversion rate of chlorine to perform the molding pressure of the catalyst to less than 3 MPa.
실험예 2: 반응 온도, 반응압력 및 유량에 따른 효과 측정Experimental Example 2: Measurement of effects depending on reaction temperature, reaction pressure and flow rate
흑연 D를 사용하고, 성형 압력을 2MPa로 하여 성형한 촉매를 상기 실험예 1에서와 동일하게 분쇄 후 선별된 입자를 대상으로 반응온도 및 압력, 유량을 하기 표 4에 기재된 바와 같이 변화하며, 메탄-염소화 반응을 실시하였다. After pulverizing the catalyst formed using graphite D and having a molding pressure of 2 MPa in the same manner as in Experimental Example 1, the reaction temperature, pressure, and flow rate for the selected particles were changed as shown in Table 4 below, and methane -The chlorination reaction was carried out.
No.No. 반응온도℃Reaction temperature℃ 반응압력bargReaction pressure barg 메탄:염소:헬륨몰비Methane: chlorine: helium molar ratio GHSVcc·g-1h-1 GHSVcc·g -1 h -1 CH4전환율(%)CH 4 conversion (%) Cl2전환율(%)Cl 2 conversion (%) 생성물 선택도 (%)Product selectivity (%)
CH3Cl CH 3 Cl CH2Cl2 CH 2 Cl 2 CHCl3 CHCl 3 CCl4 CCl 4
2-12-1 350350 00 1:1:21:1:2 20002000 45.0645.06 77.6277.62 45.9145.91 35.9335.93 18.1618.16 00
2-22-2 325325 33 1:1:21:1:2 20002000 62.23 62.23 100100 28.07 28.07 36.00 36.00 30.69 30.69 5.23 5.23
2-32-3 350350 00 5:1:65:1:6 20002000 14.8114.81 93.3093.30 77.2677.26 19.4719.47 3.273.27 00
2-42-4 325325 33 5:1:65:1:6 20002000 23.523.5 100100 61.1461.14 28.628.6 10.2610.26 00
2-52-5 325325 33 5:1:65:1:6 40004000 22.55 22.55 100100 64.98 64.98 26.78 26.78 8.23 8.23 00
2-62-6 325325 33 5:1:65:1:6 60006000 22.78 22.78 100100 66.16 66.16 26.23 26.23 7.61 7.61 00
2-72-7 300300 33 1:1:21:1:2 20002000 41.57 41.57 70.38 70.38 47.25 47.25 36.18 36.18 16.57 16.57 0.00 0.00
2-82-8 250250 33 1:1:21:1:2 20002000 3.66 3.66 3.95 3.95 92.19 92.19 7.81 7.81 0.00 0.00 0.00 0.00
표 4에서 확인되듯이 반응온도 및 반응압력이 증가할수록 메탄과 염소의 전환율을 증가하며, 모노클로로메탄의 선택도는 감소하는 경향을 보인다. As shown in Table 4, as the reaction temperature and reaction pressure increase, the conversion rate of methane and chlorine increases, and the selectivity of monochloromethane tends to decrease.
또한 동일 온도와 압력에서 메탄/염소의 몰비를 증가시키면 염소의 전환율과 모노클로로메탄의 선택도는 증가되며, 동일압력 및 온도에서 반응물의 GHSV를 2,000에서 6,000으로 3배 증가되어도 메탄 및 염소의 전환율은 크게 변화가 없으나, 모노클로로 메탄의 선택도는 증가하는 경향을 보임으로서, 염소가 다치환되는 것은 일단 모노클로로메탄이 생성되고 여기에 다시 염소가 부가되는 연쇄반응으로 디클로로메탄, 트리클로로메탄으로 생성되는 것임을 예측할 수 있다.In addition, increasing the methane/chlorine molar ratio at the same temperature and pressure increases the conversion rate of chlorine and the selectivity of monochloromethane, and even if the GHSV of the reactant is increased three times from 2,000 to 6,000 at the same pressure and temperature, the conversion rate of methane and chlorine Is not significantly changed, but the selectivity of monochloromethane tends to increase, so that the polysubstituted of chlorine is a chain reaction in which monochloromethane is produced and chlorine is added thereto again. It can be predicted that it will be created.
따라서, 메탄의 염소화 반응은 반응 압력을 높임으로서 반응온도를 낮게 가져갈 수 있으며, 또한, 반응물의 유속을 높이는 방식을 사용하여, 염소의 전환율을 높게 가져가면서도 모노클로로 메탄의 선택도도 높일 수 있음을 확인할 수 있다. Therefore, the chlorination reaction of methane can lower the reaction temperature by increasing the reaction pressure, and by using a method of increasing the flow rate of the reactant, it is possible to increase the selectivity of monochloromethane while increasing the conversion rate of chlorine. can confirm.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적은 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above, a specific part of the present invention has been described in detail, and it will be apparent to those of ordinary skill in the art that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. will be. Accordingly, it will be said that the substantial scope of the present invention is defined by the appended claims and their equivalents.

Claims (9)

  1. 메탄(CH4)을 포함하는 반응물을 염소가스(Cl2)와 무산소 조건에서 염소화(Chlorination) 반응시키는 메탄-염소화 반응 촉매에 있어서,In the methane-chlorination reaction catalyst for chlorination reaction of a reactant including methane (CH 4 ) with chlorine gas (Cl 2) under oxygen-free conditions,
    상기 메탄-염소화 반응 촉매는 ID/IG 비(ratio)가 0.05 ~ 0.13 범위인 탄소계 물질을 포함하는 것을 특징으로 하는 메탄-염소화 반응 촉매.The methane-chlorination catalyst is a methane-chlorination reaction catalyst, characterized in that it comprises a carbon-based material having an I D / I G ratio in the range of 0.05 to 0.13.
  2. 메탄(CH4)을 포함하는 반응물을 염소가스(Cl2)와 무산소 조건에서 염소화(Chlorination) 반응시키는 메탄-염소화 반응 촉매에 있어서,In the methane-chlorination reaction catalyst for chlorination reaction of a reactant including methane (CH 4 ) with chlorine gas (Cl 2) under oxygen-free conditions,
    상기 메탄-염소화 반응 촉매는 표면적이 10㎡/g 이상인 흑연인 것을 특징으로 하는 메탄-염소화 반응 촉매.The methane-chlorination catalyst is a methane-chlorination reaction catalyst, characterized in that graphite having a surface area of 10 m 2 /g or more.
  3. 제1항에 있어서,The method of claim 1,
    상기 메탄-염소화 반응 촉매는 관능기로 표면 처리되거나 전이금속이 더 담지된 것을 특징으로 하는 메탄-염소화 반응 촉매.The methane-chlorination reaction catalyst is a methane-chlorination reaction catalyst, characterized in that the surface treatment with a functional group or a transition metal is further supported.
  4. 제2항에 있어서,The method of claim 2,
    상기 메탄-염소화 반응 촉매는 관능기로 표면 처리되거나 전이금속이 더 담지된 것을 특징으로 하는 메탄-염소화 반응 촉매.The methane-chlorination reaction catalyst is a methane-chlorination reaction catalyst, characterized in that the surface treatment with a functional group or a transition metal is further supported.
  5. 제1항 내지 제4항 중 어느 한 항의 촉매를 성형하는 방법에 있어서, In the method for molding the catalyst according to any one of claims 1 to 4,
    성형시의 성형압력은 3MPa 미만으로 조절하는 것을 특징으로 하는 메탄-염소화 반응 촉매의 성형 방법.The molding method of the methane-chlorination reaction catalyst, characterized in that the molding pressure during molding is controlled to less than 3 MPa.
  6. 제1항 내지 제4항 중 어느 한 항의 촉매를 사용하여,Using the catalyst of any one of claims 1 to 4,
    메탄(CH4)을 포함하는 반응물을 염소가스(Cl2)와 무산소 조건에서 염소화(Chlorination) 반응시켜 메탄 염소화물을 생성하는 것을 특징으로 하는 메탄 염소화물의 제조 방법.A method for producing methane chlorine, characterized in that the reactant including methane (CH 4 ) is chlorinated with chlorine gas (Cl 2 ) under oxygen-free conditions to produce methane chlorine.
  7. 제6항에 있어서, The method of claim 6,
    메탄의 염소화 반응온도는 100 내지 600 ℃이고, 반응압력은 0~30barg이며, 메탄 대 염소가스(Cl2)의 몰비는 1/20 내지 20/1에서 수행되며, 반응물들의 기체 시간 공간 속도(GHSV)는 100 cc/g/h 이상인 것을 특징으로 하는 메탄 염소화물의 제조 방법.The chlorination reaction temperature of methane is 100 to 600 °C, the reaction pressure is 0 to 30 barg, the molar ratio of methane to chlorine gas (Cl 2 ) is carried out at 1/20 to 20/1, and the gas temporal space velocity of the reactants (GHSV ) Is 100 cc/g/h or more.
  8. 제6항에 있어서, The method of claim 6,
    상기 반응물은 희석제가 더 포함되어 희석된 것임을 특징으로 하는 메탄 염소화물의 제조 방법.The reactant is a method for producing methane chlorine, characterized in that the diluent further contains a diluent.
  9. 제7항에 있어서, The method of claim 7,
    기체 시간 공간 속도는 6,000 cc/g/h 이상인 것을 특징으로 하는 메탄 염소화물의 제조 방법.The gas temporal space velocity is 6,000 cc/g/h or more.
PCT/KR2020/012129 2019-09-11 2020-09-09 Catalyst for methane chlorination and methane chlorination method using same WO2021049854A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0112721 2019-09-11
KR1020190112721A KR102223601B1 (en) 2019-09-11 2019-09-11 A catalyst for methane chlorination reaction and method for methane chlorination using the same

Publications (1)

Publication Number Publication Date
WO2021049854A1 true WO2021049854A1 (en) 2021-03-18

Family

ID=74867240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012129 WO2021049854A1 (en) 2019-09-11 2020-09-09 Catalyst for methane chlorination and methane chlorination method using same

Country Status (2)

Country Link
KR (1) KR102223601B1 (en)
WO (1) WO2021049854A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102616015B1 (en) * 2021-12-28 2023-12-20 한국화학연구원 Catalyst for Methane Chlorination Reaction in Which a Graphtic Carbon Based Material is Highly Dispersed in an Inorganic Matrix

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028092A (en) * 2004-07-16 2006-02-02 Tokuyama Corp Method for producing methyl chloride and method for producing highly chlorinated methanes
WO2015045852A1 (en) * 2013-09-30 2015-04-02 日産自動車株式会社 Carbon powder for catalyst, catalyst using said carbon powder for catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell
KR101618507B1 (en) * 2015-02-16 2016-05-04 군산대학교산학협력단 Catalyst for Direct Synthesis of Hydrogen Peroxide, Manufacturing Method for The Same, and Method for Synthesizing Hydrogen Peroxide
KR20190024122A (en) * 2017-08-31 2019-03-08 한국화학연구원 A process of preparing methyl chloride using multistage reaction and separation
KR101994849B1 (en) * 2018-01-23 2019-07-01 한국화학연구원 Catalysts for Oxygen-free Direct Conversion of Methane and Conversion Method of Methane Using the Same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10329226B2 (en) 2015-09-22 2019-06-25 Blue Cube Ip Llc Process for the production of chlorinated methanes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028092A (en) * 2004-07-16 2006-02-02 Tokuyama Corp Method for producing methyl chloride and method for producing highly chlorinated methanes
WO2015045852A1 (en) * 2013-09-30 2015-04-02 日産自動車株式会社 Carbon powder for catalyst, catalyst using said carbon powder for catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell
KR101618507B1 (en) * 2015-02-16 2016-05-04 군산대학교산학협력단 Catalyst for Direct Synthesis of Hydrogen Peroxide, Manufacturing Method for The Same, and Method for Synthesizing Hydrogen Peroxide
KR20190024122A (en) * 2017-08-31 2019-03-08 한국화학연구원 A process of preparing methyl chloride using multistage reaction and separation
KR101994849B1 (en) * 2018-01-23 2019-07-01 한국화학연구원 Catalysts for Oxygen-free Direct Conversion of Methane and Conversion Method of Methane Using the Same

Also Published As

Publication number Publication date
KR102223601B1 (en) 2021-03-05

Similar Documents

Publication Publication Date Title
WO2020096338A1 (en) Method for preparing single-atom catalyst supported on carbon support
WO2021049854A1 (en) Catalyst for methane chlorination and methane chlorination method using same
KR101233420B1 (en) A novel reducing agent for graphene oxide and process for reduced graphene oxide using the same
WO2017039132A1 (en) Method for purification of carbon nanotubes
Zhu et al. Defects induced efficient overall water splitting on a carbon-based metal-free photocatalyst
WO2015190774A1 (en) Method for manufacturing carbon nanotube agglomerate having controlled bulk density
Lan et al. Direct synthesis of mesoporous nitrogen doped Ru-carbon catalysts with semi-embedded Ru nanoparticles for acetylene hydrochlorination
EP3239130B1 (en) Clean process for preparing chloroformyl substituted benzene
US20130131402A1 (en) Process for the synthesis of trifluoroethylene
WO2008126534A1 (en) Method for purifying carbon material containing carbon nanotube, carbon material obtained by the purification method, and resin molded body, fiber, heat sink, sliding member, field emission source material, conductive assistant for electrode, catalyst supporting member and conductive film, each using the carbon material
WO2017018667A1 (en) Carbon nanotubes having improved thermal stability
CN107835711B (en) Apparatus for manufacturing carbon nanotube particles
JP2016520510A5 (en)
CN107098790A (en) A kind of method for preparing high-purity octafluoropropane
WO2017048053A1 (en) Carbon nanotube having improved crystallizability
WO2023128541A1 (en) Catalyst for methane chlorination reaction in which crystalline graphitic carbon-based material is highly dispersed in inorganic matrix
Zhao et al. Pd nanoparticles decorated N-doped holey graphene assembled on aluminum silicate fibers agglomerate for catalytic continuous-flow reduction of nitroarenes
Ye et al. Novel synthesis and characterization of Pt-graphene/TiO 2 composite designed for high photonic effect and photocatalytic activity under visible light
KR20140090015A (en) post-treatment method of carbon materials using dehydrocyclization and post-treated carbon materials using the same and polymer composite materials comprising thereof
JPH03140369A (en) Electrically conductive resin composition
Liu et al. Industrially scalable process to separate catalyst substrate materials from MWNTs synthesised by fluidised-bed CVD on iron/alumina catalysts
CN108046239A (en) A kind of high length-diameter ratio carbon nanotubes and preparation method thereof
KR20130053020A (en) Graphene dispersion, method for producing dispersion, and graphene film using the same
WO2015047050A1 (en) Catalyst for producing carbon nanotubes and carbon nanotubes produced using same
KR102190466B1 (en) Reduced carbon nanotube oxide and their fabrication methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863833

Country of ref document: EP

Kind code of ref document: A1