WO2021049627A1 - Polymer production method and polymerization catalyst - Google Patents

Polymer production method and polymerization catalyst Download PDF

Info

Publication number
WO2021049627A1
WO2021049627A1 PCT/JP2020/034491 JP2020034491W WO2021049627A1 WO 2021049627 A1 WO2021049627 A1 WO 2021049627A1 JP 2020034491 W JP2020034491 W JP 2020034491W WO 2021049627 A1 WO2021049627 A1 WO 2021049627A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
polymerization catalyst
producing
iodine
polymerization
Prior art date
Application number
PCT/JP2020/034491
Other languages
French (fr)
Japanese (ja)
Inventor
洋 新納
俊介 茶谷
書堯 許
後藤 淳
ジュン ジエ チャン
Original Assignee
三菱ケミカル株式会社
ナンヤン テクノロジカル ユニヴァーシティー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社, ナンヤン テクノロジカル ユニヴァーシティー filed Critical 三菱ケミカル株式会社
Priority to JP2021545622A priority Critical patent/JPWO2021049627A1/ja
Publication of WO2021049627A1 publication Critical patent/WO2021049627A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/40Redox systems

Definitions

  • the present invention relates to a method for producing a polymer and a polymerization catalyst.
  • the present application claims priority based on Japanese Patent Application No. 2019-16772 filed on September 13, 2019, and Japanese Patent Application No. 2019-167783 filed on September 13, 2019. The contents are used here.
  • a radical polymerization method is well known as a method for obtaining a polymer by polymerizing a vinyl monomer.
  • the radical polymerization method has a problem that it is difficult to control the molecular weight of the obtained polymer.
  • the polymer obtained by the radical polymerization method is a mixture of polymers having various molecular weights, and has a problem that it is difficult to form a polymer having a narrow molecular weight distribution.
  • the living radical polymerization method is known as a method for solving the above-mentioned problems.
  • a living radical polymerization method called reversible complex formation-mediated polymerization (RCMP) has been developed (see, for example, Patent Document 1).
  • the RCMP method is an organic catalyst type living radical polymerization method in which an iodine atom is used as a protecting group for growth radicals in living radical polymerization and an amine is used as a polymerization catalyst.
  • a low molecular weight amine such as triethylamine (TEA) can be used as a polymerization catalyst. Therefore, as compared with other living radical polymerization methods using a transition metal complex as a polymerization catalyst, the polymerization catalyst has features such as low cost and high environmental safety.
  • a low molecular weight amine such as TEA
  • a purification step for removing the catalyst from the polymer which is a reaction product is required. Therefore, the RCMP method using a low molecular weight amine has a problem that the operation becomes complicated industrially.
  • a heterogeneous catalyst in which the catalyst is supported on a solid is generally used in order to easily remove the catalyst from the reaction product.
  • a polymerization system for example, an example of using a non-uniform copper catalyst in which a copper catalyst is supported on a polymer is known (Non-Patent Document 1).
  • Non-Patent Document 1 an example of using a non-uniform copper catalyst in which a copper catalyst is supported on a polymer is known (Non-Patent Document 1).
  • Non-Patent Document 1 an example of using a non-uniform copper catalyst in which a copper catalyst is supported on a polymer.
  • the activity and selectivity of the catalyst that was expressed in the catalyst before the support is changed, so that it has sufficient performance in the living radical polymerization of vinyl monomers so far. No heterogeneous catalyst was found.
  • a method of adding iodine to generate an amine-I 2 complex acting as an inactive agent is widely used.
  • iodine remains in the reaction product and causes coloring. Therefore, when iodine is added in the RCMP method, a purification step for removing iodine from the polymer which is a reaction product is required, and there is a problem that the operation becomes complicated industrially.
  • the present invention has been made in view of such circumstances, and provides a polymerization catalyst having high activity in living radical polymerization without using a transition metal-based catalyst and which can be removed by a simple method.
  • the purpose is to do.
  • Another object of the present invention is to provide a method for producing a polymer using the polymerization catalyst, in which the molecular weight and the molecular weight distribution can be sufficiently controlled, and the residual iodine amount and the catalyst amount can be reduced.
  • a method for producing a polymer which comprises a step of polymerizing a vinyl monomer to obtain a polymer in the presence of a polymerization catalyst composed of a polymer having a nitrogen-containing functional group and an organic iodine compound.
  • [6] The method for producing a polymer according to [5], wherein the polymer has a polystyrene skeleton or a polyacrylamide skeleton.
  • [7] The weight according to any one of [1] to [6], wherein the nitrogen-containing functional group is at least one selected from the group consisting of a secondary amino group, a tertiary amino group and a quaternary ammonium group. Manufacturing method of coalescence.
  • [8] The method for producing a polymer according to [7], wherein the nitrogen-containing functional group is a quaternary ammonium group.
  • the present invention it is possible to provide a polymerization catalyst that is highly environmentally safe and can be removed by a simple method. Further, in the method for producing a polymer using the polymerization catalyst, the molecular weight and the molecular weight distribution can be sufficiently controlled, and the residual iodine amount and the catalyst amount can be further reduced.
  • FIG. 1 is an XPS chart of the reaction product obtained in the production example of the example.
  • Vinyl monomer means a compound containing at least one vinyl group (carbon-carbon unsaturated double bond).
  • (Meta) acrylate means “acrylate” or “methacrylate”.
  • the "organoiodine compound” means a compound having a carbon-iodine bond in one molecule.
  • the method for producing a polymer of the present embodiment includes a step of polymerizing a vinyl monomer in the presence of a polymerization catalyst composed of a polymer having a nitrogen-containing functional group and an organic iodine compound to obtain a polymer. ..
  • a polymerization catalyst composed of a polymer having a nitrogen-containing functional group and an organic iodine compound to obtain a polymer. ..
  • a polymerizable composition containing a polymerization catalyst composed of a polymer having a nitrogen-containing functional group and a vinyl monomer is prepared, and the polymer is polymerized by polymerizing the vinyl monomer. obtain.
  • a polymerizable composition containing a polymerization catalyst composed of a polymer having a nitrogen-containing functional group and a vinyl monomer is prepared, and the polymer is polymerized by polymerizing the vinyl monomer. obtain.
  • the components contained in the polymerizable composition will be described.
  • the polymerization catalyst contains a polymer having a nitrogen-containing functional group.
  • the polymerization catalyst preferably contains a polymer having a nitrogen-containing functional group as a main component.
  • the polymerization catalyst may contain other components as long as the effects of the present invention are not significantly impaired.
  • the “main component” means that the ratio of the polymer to the entire polymerization catalyst exceeds 50% by mass. From the viewpoint of removing the polymerization catalyst from the reaction product, the polymer preferably contains 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more, based on the entire polymerization catalyst. ..
  • the polymers constituting the polymerization catalyst are synthetic polymers such as polystyrene, polyacrylamide, poly (meth) acrylic acid, and poly (meth) acrylic acid ester in the molecular skeleton, and naturally produced polysaccharides such as cellulose.
  • the polymer is preferably a polymer having a repeating unit of a vinyl monomer, and more preferably a polymer having a polystyrene skeleton or a polyacrylamide skeleton.
  • polystyrene skeleton means a molecular chain having a repeating unit derived from styrene or a repeating unit derived from a styrene derivative.
  • polyacrylamide skeleton means a molecular chain having a repeating unit derived from acrylamide or a repeating unit derived from an acrylamide derivative.
  • the polymer constituting the polymerization catalyst preferably contains 80 mol% or more of vinyl monomer, more preferably 90 mol% or more, and further preferably 95 mol% or more, based on all the repeating units of the polymer. preferable.
  • the polymer constituting the polymerization catalyst is a polymer having a polystyrene skeleton or a polyacrylamide skeleton. That is, "mainly" means that the ratio of the polystyrene skeleton or the polyacrylamide skeleton to all the repeating units of the polymer exceeds 50 mol%, preferably 80 mol% or more, and 90 mol% or more. Is more preferable, and 95 mol% or more is further preferable.
  • the polymer constituting the polymerization catalyst of the present embodiment may have a property of being difficult to dissolve in the solvent used in the radical polymerization, the dispersion medium, and the monomer used in the radical polymerization. As a result, the polymerization catalyst can be easily separated from the reaction solution after radical polymerization. “Difficult to dissolve” means that the solubility at 25 ° C. is 0 g / 100 mL to 0.3 g / 100 mL.
  • the upper limit of the solubility of the polymer constituting the polymerization catalyst in the solvent used for radical polymerization, the dispersion medium, and the monomer used for radical polymerization is preferably 0.2 g / 100 mL or less, and preferably 0.1 g / 100 mL or less. Is more preferable.
  • a number average molecular weight of 3000 or more is preferable because the polymer is difficult to dissolve in the reaction system of radical polymerization.
  • a polymer is a "crosslinked body", that is, a structure in which chemical bonds are formed between molecules of a chain polymer and are connected so as to bridge between the molecular chains of a chain polymer, that is, a crosslinked structure. It means that it is a polymer having.
  • the number average molecular weight of the polymer is 10,000 or more.
  • the upper limit of the number average molecular weight of the polymer is not particularly limited, but from a practical point of view, it is preferably 10,000,000 or less.
  • the polymer constituting the polymerization catalyst is preferably a crosslinked product, more preferably a crosslinked product having a repeating unit of a vinyl monomer, and a crosslinked product of a polymer having a polystyrene skeleton or a crosslinked polymer having a polyacrylamide skeleton.
  • the body is more preferred.
  • a crosslinked polymer may be referred to as a “crosslinked polymer”. In this sense, for example, a crosslinked polystyrene is sometimes referred to as “crosslinked polystyrene”.
  • the degree of cross-linking of the polymer is not particularly limited. Further, the molecular weight distribution of the polymer is not particularly limited.
  • the fact that the polymer is crosslinked can be confirmed by the fact that the sample remains undissolved when the sample of the polymer to be verified is immersed in a good solvent of the sample. At this time, it is preferable that the sample does not dissolve or only swells.
  • the "good solvent for the sample” can be selected by analyzing the sample by a commonly known method such as infrared spectroscopy or NMR, and inferring the molecular structure of the repeating unit of the sample from the obtained results.
  • the polymer according to this embodiment is not particularly limited in shape, form, size, etc., such as granular, fibrous, and film-like.
  • the granular polymer can be obtained by appropriately cutting or pulverizing the massive polymer.
  • the polymer constituting the polymerization catalyst has at least one nitrogen-containing functional group.
  • the nitrogen-containing functional group acts as a polymerization catalyst, and the nitrogen-containing functional group is covalently bonded to the polymer.
  • the nitrogen-containing functional group of the polymer is not particularly limited. Further, the nitrogen-containing functional group contained in the polymer may be contained in either the main chain or the side chain of the polymer, or may be contained in both the main chain and the side chain.
  • the polymerization catalyst may contain a low molecular weight compound having a nitrogen-containing functional group.
  • a low molecular weight compound having a nitrogen-containing functional group also functions as a part of the polymerization catalyst, but purification for removing the low molecular weight compound from the polymer which is a reaction product is required.
  • the ratio of the nitrogen-containing functional group covalently bonded to the polymer is more preferably 99.9 mol%.
  • the nitrogen-containing functional group examples include an amino group, a quaternary ammonium group, an amide group, an imide group, a nitrile group, and a pyridyl group.
  • the nitrogen-containing functional group is preferably an amino group or a quaternary ammonium group from the viewpoint of catalytic activity, and more preferably a secondary amino group, a tertiary amino group or a quaternary ammonium group from the viewpoint of ease of reaction. ..
  • the counter ion of the quaternary ammonium group is not particularly limited, and a halogen ion or a hydroxide ion can be adopted.
  • the counter ion is preferably a halogen ion, more preferably an iodine ion.
  • the quaternary ammonium group may be possessed by the polymerization catalyst before the polymerization reaction using the polymerization catalyst, and is generated by the reaction of the nitrogen-containing functional group of the polymerization catalyst in the reaction system of the polymerization reaction using the polymerization catalyst. You may. Nitrogen-containing functional groups can be identified by known analytical methods such as IR spectrum, NMR spectrum, UV spectrum, and mass spectrum.
  • the polymer constituting the polymerization catalyst has the repeating units shown in (1'-1) to (1'-6).
  • the polymer constituting the polymerization catalyst is preferably a crosslinked product.
  • R1 is an alkyl group having 1 to 4 carbon atoms
  • R2 to R4 are independently hydrogen atoms, an alkyl group having 1 to 20 carbon atoms, or the following formula. (1'-7) is shown.
  • R5 represents an alkyl group having 1 to 10 carbon atoms
  • n represents an integer of 1 to 10.
  • R1 to R5 when R1 to R5 are alkyl groups, R1 to R5 may have a substituent.
  • the substituent is at least one selected from the group consisting of a hydroxyl group, a carboxyl group, and an alkali metal salt of a carboxyl group.
  • polymers constituting the polymerization catalyst include polymers having repeating units as shown in the following formulas (1-1) to (1-10).
  • n represents an integer of 1 to 4. Further, in the equation (1-4), n represents an integer of 1 to 10.
  • Polymerization catalysts having the structures of the above formulas (1-1) to (1-10) are also available as commercially available ion exchange resins and chelate resins having completely different uses from the polymerization catalysts.
  • Examples of commercially available ion exchange resins include SA series, PA series, and HPA series of strongly basic anion exchange resins manufactured by Mitsubishi Chemical Co., Ltd., and WA series of weakly basic anion exchange resins. Examples thereof include SAF series and PAF series of low odor and low elution anion exchange resins.
  • Dow Chemical Company's Dowex Marathon (registered trademark) MSA Chloride, Amberlist (registered trademark) A21, and Amberlite (registered trademark) IRA-96 can be mentioned.
  • Examples of commercially available chelate resins include Mitsubishi Chemical's Diaion (registered trademark) iminodiacetic acid type and polyamine type CR series, and glucamine type CRB series.
  • polymer having a nitrogen-containing functional group can be obtained by, for example, the following method.
  • crosslinked polystyrene is obtained by copolymerization of styrene and divinylbenzene.
  • the above polymer may be used alone or in combination of two or more.
  • the polymerization catalyst preferably contains iodine (I 2 ) in addition to the above polymer.
  • Iodine functions as an inactive agent that suppresses the concentration of active species, which will be described later, and suppresses the termination reaction due to the binding and disproportionation of radical species.
  • Iodine can exist in a state of being physically adsorbed on the surface of the polymer. Iodine can be physically adsorbed on the surface of the polymer by a method such as mixing iodine in the polymerizable composition containing the polymer.
  • the polymerization catalyst may contain iodine atom-containing ions.
  • the "iodine atom-containing ion" is an iodide ion (I ⁇ ), a triiodide ion (I 3 ⁇ ), or a pentaiodide ion (I 5 ⁇ ).
  • the iodine atom-containing ion has a function of enhancing the catalytic performance of the above-mentioned polymer.
  • the iodine atom-containing ion can exist in a state of being ionically bonded to the polymer as a counter ion of a quaternary ammonium group possessed by the polymer.
  • vinyl monomer examples include, for example.
  • the vinyl monomer at least one selected from the group consisting of a styrene-based monomer, a (meth) acrylate-based monomer, and (meth) acrylonitrile is preferable from the viewpoint of polymerization control.
  • the vinyl monomer may be used alone or in combination of two or more.
  • an organic iodine compound (dormant species) having a carbon-iodine bond is present in the polymerizable composition, and iodine given to the growth chain from this organic iodine compound is used as a growth radical. Used as a protective radical for iodine.
  • the organic iodine compound is not particularly limited as long as it has at least one carbon-iodine bond in the molecule and acts as a dormant species.
  • a compound containing one or two iodine atoms in one molecule is preferable.
  • the organic iodine compound may be added as an organic iodine compound in the polymerizable composition, or may be produced by reacting a compound added as another compound in a reaction system.
  • an organic iodine compound is produced by reacting at least a part of each of the radical polymerization initiator described later with iodine in the process of polymerization.
  • organic iodine compound examples include iodotrichloromethane, dichlorodiiodomethane, iodotribromomethane, dibromodiiodomethane, bromotriiodomethane, iodoform, diiodomethane, methyl iodide, triiodoethane, ethyl iodide, and diiodopropane.
  • One type of organic iodine compound may be used alone, or two or more types may be used in combination.
  • At least one selected from the group consisting of -I, MAA-I, HEMA-I, AAm-I, EMA-II, EA-II, EMA-III, and IHE is preferred.
  • a radical polymerization initiator may be added to the polymerizable composition.
  • the radical polymerization initiator polymerizes a polymerizable composition containing a polymerization catalyst, a vinyl monomer, an organic iodine compound, and iodine
  • the radical polymerization initiator increases the radical concentration in the polymerizable composition and increases the polymerization rate. Used for the purpose of raising.
  • radical polymerization initiator known compounds such as an azo-based radical polymerization initiator and a peroxide-based radical polymerization initiator can be used.
  • the polymerization reaction can be carried out by using the above-mentioned polymerization catalyst, and a radical polymerization initiator may not be substantially used.
  • a radical polymerization initiator is used in the method for producing a polymer of the present embodiment, the polymerization rate can be improved and the polymerization time can be shortened as compared with the case where the radical polymerization initiator is not used.
  • azo radical polymerization initiator examples include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), and 2,2'-azobis (2,4-dimethyl). Valeronitrile) and 2,2'-azobis (2,4-dimethyl-4-methoxyvaleronitrile).
  • peroxide-based radical polymerization initiator examples include 2,4-dichlorobenzoyl peroxide, t-butyl peroxypivalate, o-methylbenzoyl peroxide, and bis-3,5,5-trimethylhexanoyl peroxide.
  • Octanoyl peroxide Octanoyl peroxide, t-butylperoxy-2-ethylhexanoate, cyclohexanone peroxide, benzoyl peroxide, methyl ethyl ketone peroxide, dicumyl peroxide, lauroyl peroxide, diisopropylbenzene hydroperoxide, t-butyl hydro Examples include peroxides and di-t-butyl peroxides.
  • benzoyl peroxide 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis (2,) 4-Dimethylvaleronitrile), 1,1'-azobis (cyclohexane-1-carbonitrile) and 2,2'-azobis (2,4-dimethyl-4-methoxyvaleronitrile) are preferred in terms of availability. ..
  • the radical polymerization initiator may be used alone or in combination of two or more.
  • iodine In the method for producing a polymer of the present embodiment, iodine may be contained in the polymerization catalyst as described above, or may be added separately to the polymerizable composition. Iodine suppresses the concentration of active species, which will be described later, as an inactivating agent for the polymerization reaction, and suppresses the termination reaction due to the binding and disproportionation of radical species. Further, by using iodine and the above-mentioned radical initiator in combination, an organic iodine compound can be produced in the reaction system.
  • additives In the method for producing a polymer of the present embodiment, other additives can be added as needed. Examples of other additives include chain transfer agents.
  • Examples of the chain transfer agent include mercaptan.
  • an organic solvent can be used at the time of polymerization.
  • the organic solvent include hydrocarbon solvents such as toluene; ether solvents such as diethyl ether and tetrahydrofuran; halogenated hydrocarbon solvents such as dichloromethane and chloroform; ketone solvents such as acetone; alcohol solvents such as methanol; acetonitrile. And other nitrile solvents; vinyl ester solvents such as ethyl acetate; carbonate solvents such as ethylene carbonate; and supercritical carbon dioxide can be exemplified.
  • the organic solvent one type may be used alone, or two or more types may be used in combination.
  • the content of the solvent is preferably more than 0% by mass and 700% by mass or less when the total amount of the polymerizable composition excluding the solvent is 100% by mass.
  • composition of polymerizable composition An example of the polymerizable composition is a polymerizable composition containing the above-mentioned polymerization catalyst, vinyl monomer, organic iodine compound, and iodine.
  • a polymerizable catalyst containing a polymer having a nitrogen-containing functional group and iodine, a vinyl monomer, an organic iodine compound, and a radical polymerization initiator is mentioned.
  • the polymerizable composition there is a polymerizable composition containing a polymerization catalyst containing a polymer having a nitrogen-containing functional group and iodine, a vinyl monomer, and a radical polymerization initiator. ..
  • a polymerizable composition does not contain an organic iodine compound, but as described above, at least a part of each of the radical polymerization initiator and iodine reacts in the process of polymerization to form an organic iodine compound in the polymerizable composition. Generates and functions as a dormant species.
  • the content of the polymerization catalyst in the polymerizable composition is preferably 0.01% by mass or more and 50% by mass or less with respect to the total amount of the vinyl monomer and the polymerization catalyst.
  • the lower limit of the content of the catalyst with respect to the total amount of the vinyl monomer and the polymerization catalyst is more preferably 0.1% by mass or more, and further preferably 1% by mass or more.
  • the upper limit is more preferably 30% by mass or less, and further preferably 20% by mass or less.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • the molar equivalent ratio of nitrogen atoms contained in the polymerization catalyst is preferably 0.0001 or more and 0.5 or less, and more preferably 0.0005 or more and 0.1 or less with respect to the vinyl monomer.
  • the molar equivalent ratio of nitrogen atoms contained in the polymerization catalyst is preferably 0.001 or more and 1000 or less, and more preferably 0.01 or more and 180 or less with respect to the added organic iodine compound.
  • the above-mentioned upper limit value and lower limit value of the molar equivalent ratio can be arbitrarily combined.
  • the molar equivalent ratio of the nitrogen-containing functional group contained in the polymerization catalyst is preferably 0.001 or more and 200 or less with respect to the total of the added organic iodine compound and the radical polymerization initiator.
  • the lower limit of the molar equivalent ratio of the nitrogen-containing functional group is more preferably 0.005 or more, and further preferably 0.01 or more. Further, the upper limit is more preferably 100 or less. The above-mentioned upper limit value and lower limit value of the molar equivalent ratio can be arbitrarily combined.
  • the polymerization rate is sufficiently promoted, and the polymerization solution maintains an appropriate viscosity and is easy to handle.
  • the molar equivalent ratio of nitrogen atoms contained in the polymerization catalyst can be determined by an elemental analysis method.
  • the molar equivalent ratio of nitrogen atoms in the polymer contained in the polymerization catalyst can also be determined by the following method. First, the excess amount of the organic iodine compound having a known molecular weight is completely reacted with the polymer in the polymerization catalyst. Next, the amount of substance (mol) of the organic iodine compound that has reacted with the nitrogen-containing functional group is determined from the reaction rate of the organic iodine compound, and the amount of substance (mol) of the nitrogen-containing functional group is determined from the amount of substance of the reacted organic iodine compound. From the amount of substance of the obtained nitrogen-containing functional group, the molar equivalent ratio of nitrogen atoms is calculated.
  • the molar equivalent ratio of the nitrogen-containing functional groups contained in the polymerization catalyst can be calculated by, for example, the following method. 2.0 g of the polymerization catalyst and 1.21 g (5.61 mmol) of 1-iodohexane are mixed and uniformly dispersed in 8 ml of tetrahydrofuran. The dispersion solution is reacted in a reflux state for 24 hours with heating and stirring. An internal standard having a known concentration is added to the obtained reaction solution, 1 H-NMR is measured, and the amount of decrease in 1-iodohexane is determined from the amount of remaining 1-iodohexane. The molar equivalent ratio of 1-iodohexane decreased at this time is equal to the molar equivalent ratio of the nitrogen-containing functional groups contained in the polymerization catalyst.
  • the molar equivalent ratio of iodine contained in the polymerization catalyst is arbitrary.
  • the amount of the vinyl monomer is preferably 0.0001 or more and 0.5 or less, and more preferably 0.0005 or more and 0.1 or less.
  • the polymerization rate can be sufficiently promoted.
  • the molar equivalent ratio of iodine contained in the polymerization catalyst is a value obtained by elemental analysis of the polymerization catalyst or a value obtained from the amount charged when synthesizing the polymerization catalyst.
  • the content of the organic iodine compound in the polymerizable composition is arbitrary.
  • the content of the organic iodine compound in the polymerizable composition is preferably 0.001 mol or more and 0.5 mol or less per 1 mol of the vinyl monomer, and the amount is 0.002 mol or more and 0.1 mol or less. More preferred.
  • the content of the organic iodine compound in the polymerizable composition is within the above range, it is sufficient to provide the iodine atom as a protecting group from the organic iodine compound to the growth chain of the polymerization reaction, and the polymerization rate is extremely high. Do not lower.
  • the content of the radical polymerization initiator in the polymerizable composition is arbitrary.
  • the content of the radical polymerization initiator in the polymerizable composition is preferably 0.0001 mol or more and 0.05 mol or less, and 0.0002 mol or more and 0.02 mol or less per mol of the vinyl monomer. Is more preferable.
  • an appropriate polymerization rate can be obtained.
  • the nitrogen-containing functional group of the polymerization catalyst has an action of promoting a redox reaction in the living radical polymerization of a vinyl monomer having a carbon-iodine bond as a dormant species. Therefore, in the method for producing a polymer of the present embodiment, the polymerization catalyst extracts iodine atoms from the organic iodine compound to generate radicals derived from the organic iodine compound.
  • the method for producing the polymer of the present embodiment is not particularly bound by theory, but the presumed mechanism will be described below.
  • Scheme 1 shows the reaction formula of the RCMP method, which is generally known.
  • A is a polymerization catalyst having a redox ability
  • I is an iodine atom.
  • the polymerization catalyst A is in a reduced state on the left side of the reaction formula and in an oxidized state on the right side.
  • radicals of the polymer which is an active species are generated, and when the polymerization catalyst A is in the reducing state, the ends of the polymer are protected by iodine atoms.
  • Polymer-I on the left side is a dormant species in the reaction system, and "Polymer.” On the right side is an active species in the reaction system.
  • the polymerization catalyst A reversibly undergoes a redox reaction between the reduced state (left side) and the oxidized state (right side). Further, as shown in Scheme 1, Scheme 1 is an equilibrium reaction, and the equilibrium is biased to the left side. That is, active species are present in low concentrations in the reaction system.
  • the dormant species (Polymer-I) shown on the left side is protected at the end by an iodine atom and the reaction is stopped.
  • the active species (radicals of the polymer) shown on the right side radically polymerize with the vinyl monomer to generate a polymer.
  • the polymer terminal always keeps its activity (living room), and the molecular weight distribution can be made uniform.
  • the polymerization catalyst for example, when a crosslinked polymer having a tertiary amino group which is a nitrogen-containing functional group in the side chain of crosslinked polystyrene is used as the polymerization catalyst, the polymerization catalyst
  • the reaction formula for the reaction is considered to be as shown in Scheme 2 below. On the right side of the equation below, it can be in the state of a salt in which one electron is transferred between the tertiary amino group and the iodine atom, or in the state of a complex in which the partial charge is transferred between the tertiary amino group and iodine.
  • the polymerization catalyst is in an oxidized state because electrons are supplied from the nitrogen atom of the tertiary amino group to the radical of iodine on the right side of the following formula. In relative terms, the polymerization catalyst is in a reduced state on the left side.
  • the above formula is the above-mentioned "state of a salt in which one electron is transferred between a tertiary amino group and an iodine atom"
  • the lower formula after dimerization is the above-mentioned “class 3”.
  • a complex in which a partial charge is transferred between an amino group and iodine is shown.
  • the dimerization shown on the right side may occur between different nitrogen-containing functional groups existing in continuous molecular chains, or may occur between different nitrogen-containing functional groups existing in different molecular chains.
  • the polymerization catalyst reversibly undergoes a redox reaction between the reduced state (left side) and the oxidized state (right side), so that the radical of the polymer shown on the right side is a single amount of vinyl. It is considered that the polymer is polymerized with the body to obtain the desired polymer.
  • the polymerization method in the method for producing the polymer of the present embodiment is not particularly limited, and examples thereof include a massive polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method.
  • the polymerization reaction may be carried out in the presence of air, but from the viewpoint of the efficiency of radical polymerization, it is preferably carried out in an atmosphere of an inert gas such as nitrogen or argon.
  • the polymerization temperature is preferably 0 ° C. or higher and 150 ° C. or lower because an appropriate polymerization rate can be easily obtained. Further, since polymerization control is easy, 20 ° C. or higher and 120 ° C. or lower is more preferable. Further, when the polymerization temperature is 120 ° C. or lower, the activity of the polymerization catalyst can be easily maintained, which is preferable.
  • the polymerization time is not particularly limited, and can be, for example, 0.5 hours or more and 24 hours or less.
  • the polymer produced by the method for producing a polymer of the present embodiment has an iodine atom at the end of the main chain.
  • I of "Polymer-I" shown in the above scheme 1 corresponds.
  • the iodine atom at the terminal can be removed by treating at a high temperature.
  • a functional group derived from the nucleophile can be introduced by reacting the iodine atom at the terminal with the nucleophile.
  • the molecular weight distribution (Mw / Mn) of the polymer obtained by a known typical controlled polymerization is generally less than 1.5.
  • Mw is a weight average molecular weight
  • Mn is a number average molecular weight.
  • the Mw / Mn of the obtained polymer can be less than 1.5.
  • the molecular weight may be larger than the target Mw / Mn depending on the dispersed state of the polymerization catalyst.
  • Mw / Mn can be reduced by satisfactorily dispersing the polymerization catalyst in the reaction system.
  • Examples of a method for satisfactorily dispersing the polymerization catalyst in the reaction system include a method of adding a solvent to reduce the viscosity, an increase in the stirring speed, and a method of reducing the particle size of the polymer constituting the polymerization catalyst.
  • the method for producing the polymer of the present embodiment causes a redox reaction similar to the case where the organic compound catalyst used in the generally known RCMP method is used.
  • the method for producing a polymer of the present embodiment can control the molecular weight and obtain a polymer having a narrow molecular weight distribution.
  • the polymerization catalyst used in the method for producing a polymer of the present embodiment does not contain a transition metal, is inexpensive, and has high environmental safety. On the other hand, there is a concern that the residual polymerization catalyst may cause coloring or deterioration of durability due to remaining in the polymer. Therefore, it is preferable to remove the polymerization catalyst from the reaction product.
  • the conventional organic compound catalyst can be dissolved during the reaction not only as a solvent-soluble organic compound catalyst but also as an organic compound catalyst supported on a carrier. Therefore, it was difficult to remove the organic compound catalyst from the reaction product.
  • the polymerization catalyst used in the method for producing a polymer of the present embodiment contains a polymer having a nitrogen-containing functional group. Since such a polymer is difficult to dissolve in the reaction system in which the polymerization reaction is carried out, it is difficult to remain in the reaction product.
  • the polymerization catalyst used can be easily removed from the reaction product after the polymerization reaction by a simple method. That is, in the method for producing a polymer of the present embodiment, it is preferable to have a step of removing the polymerization catalyst after the polymerization reaction of the vinyl monomer is carried out. Examples of the removal method include centrifugation and filtration.
  • the polymerization catalyst removed from the reaction product by the above method can be reused as a polymerization catalyst by appropriately washing with an organic solvent and drying.
  • the organic solvent used for cleaning includes a hydrocarbon solvent such as toluene; an ether solvent such as diethyl ether and tetrahydrofuran; a halogenated hydrocarbon solvent such as dichloromethane and chloroform; a ketone solvent such as acetone; an alcohol solvent such as methanol.
  • a hydrocarbon solvent such as toluene
  • an ether solvent such as diethyl ether and tetrahydrofuran
  • a halogenated hydrocarbon solvent such as dichloromethane and chloroform
  • a ketone solvent such as acetone
  • an alcohol solvent such as methanol.
  • examples thereof include a solvent; a nitrile solvent such as acetonitrile; a vinyl ester solvent such as ethyl acetate; a carbonate solvent such as ethylene carbonate; and supercritical carbon dioxide.
  • organic solvent used for cleaning one type may be used alone, or two or more types may be used in combination.
  • polymerization catalyst it is possible to provide a polymerization catalyst having high activity in living radical polymerization without using a transition metal-based catalyst and which can be removed by a simple method.
  • the polymer produced by the method for producing a polymer of the present embodiment is not particularly limited in use because the polymerization catalyst that causes coloring and deterioration of durability can be removed by a simple method as described above. Specific examples thereof include dispersants, resin additives, coating compositions, and lithographic polymers.
  • the molecular weight distribution (Mw / Mn) was calculated using Mn and Mw obtained by the above method.
  • the monomer conversion rate (%) of Examples and Comparative Examples is a measured value of 1 H-NMR measurement using a nuclear magnetic resonance apparatus (Bruker, "BBF0400", 400 MHz) and CDCl 3 as a measurement solvent. I asked for it. Specifically, using the integrated value of the peak derived from the residual monomer and the integrated value of the peak derived from the produced polymer, the amount of the produced polymer relative to the total amount of the residual monomer amount and the produced polymer amount. Calculated as a ratio.
  • Iodine or iodine atom-containing ions contained in the polymerization catalyst were detected by XPS (X-ray photoelectron spectroscopy, SPECS, "Phoibos 100", monochromatic X-ray light source) measurement.
  • XPS X-ray photoelectron spectroscopy, SPECS, "Phoibos 100", monochromatic X-ray light source
  • HP-20 is a polymer having a repeating unit represented by the following formula (2-1) and does not have a nitrogen-containing functional group.
  • MMA Methyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • EHMA 2-ethylhexyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • LMA Lauryl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • ⁇ Radical polymerization initiator (D)> AIBN: 2,2'-azobis (isobutyronitrile) (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • V-65 2,2'-azobis (2,4-dimethylvaleronitrile) (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • Iodine manufactured by Tokyo Chemical Industry Co., Ltd.
  • Benzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was precisely added to the obtained reaction solution as an internal standard, and the amount of 1-iodohexane in tetrahydrofuran was compared before and after the reaction to determine the reaction rate.
  • the reaction rate of iodine was 83% (4.74 mmol).
  • the molar equivalent of nitrogen atom can be calculated from the amount of 1-iodohexane reacted per 1 g of WA-30.
  • FIG. 1 is an XPS chart of the obtained reaction product.
  • the chart on the left shown in FIG. 1 shows the result of wide scan analysis, and the chart on the right shows the result of narrow scan analysis.
  • reaction product was recovered by filtration, washed repeatedly with tetrahydrofuran, and then dried under reduced pressure.
  • the obtained product will be referred to as "quaternized WA-30".
  • the obtained quaternized WA-30 has a number average molecular weight of 10,000 or more.
  • Example 1 A quaternized WA-30 as the polymerization catalyst (A), MMA as the vinyl monomer (B), and CP-I as the organic iodine compound (C) were weighed with the compositions shown in Table 1 to prepare a polymerizable composition. ..
  • composition unit (eq / mass%) of the polymerization catalyst (A) shown in Table 1 is the mass of the polymerization catalyst with respect to the equivalent number of nitrogen atoms contained in the polymerization catalyst and the total mass of the polymerization catalyst and the vinyl monomer (B). Means ratio. The same applies to Tables 2 and 3 described later.
  • the obtained polymerizable composition was transferred to a glass reaction vessel, the gas phase was replaced with nitrogen, and then the polymerization reaction was carried out at 70 ° C. for the time shown in Table 1 with stirring, and then the polymer was filtered.
  • the amounts of the polymerization catalyst (A), the organic iodine compound (C), and the radical polymerization initiator (D) shown in Table 1 mean the molar equivalents used with respect to 8000 molar equivalents of the vinyl monomer (B). .. Further, the molar equivalent ratio of the nitrogen-containing functional group contained in the polymerization catalyst means the molar equivalent ratio to the total of the added organic iodine compound and the radical polymerization initiator. The same applies to Table 2 described later.
  • Example 2 A polymer was obtained in the same manner as in Example 1 except that the composition of the polymerizable composition was set to the composition shown in Table 1 and a polymerization catalyst containing a polymer having a nitrogen-containing functional group and iodine was used.
  • Examples 3 to 4 A polymer was obtained in the same manner as in Example 2 except that the composition of the polymerizable composition was the composition shown in Table 1 and V-65 was used as the radical polymerization initiator (D).
  • Example 5 A polymer was obtained in the same manner as in Example 3 except that the composition of the polymerizable composition was the composition shown in Table 1 and AIBN was used as the radical polymerization initiator (D).
  • Example 7 to 8 A polymer was obtained in the same manner as in Example 5 except that the composition of the polymerizable composition was the composition shown in Table 1 and toluene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added as a solvent.
  • composition unit (mass%) of the solvent shown in Table 1 means the ratio of the solvent when the total amount including the solvent is 100% by mass. The same applies to Tables 2 and 3 described later.
  • Example 9 A polymer was obtained in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 1 and EHMA was used as the vinyl monomer (B).
  • Example 11 to 12 A polymer was obtained in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 1 and LMA was used as the vinyl monomer (B).
  • Examples 13 to 15 A polymer was obtained in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 2 and WA-30 was used as the polymerization catalyst (A).
  • Example 16 to 17 A polymer was obtained in the same manner as in Example 11 except that the composition of the polymerizable composition was the composition shown in Table 2 and EPh-I was used as the organic iodine compound (C).
  • Example 18 A polymer was obtained in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 2.
  • Example 19 The quaternized WA-30 used in Example 18 was recovered by centrifugation. The solid content was washed three times, with the recovery of the recovered solid content in 10 ml of tetrahydrofuran and then recovery by centrifugation as one wash. Then, the recovered solid content was dried under reduced pressure to obtain quaternized WA-30 (first reuse).
  • the polymer was prepared in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 2 and the quaternized WA-30 (first reuse) was used as the polymerization catalyst (A). Obtained.
  • Example 20 The quaternized WA-30 used in Example 19 was recovered by centrifugation, washed three times in the same manner as in Example 19, and then dried under reduced pressure to obtain the quaternized WA-30 (second reuse). Obtained.
  • the polymer was prepared in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 2 and the quaternized WA-30 (second reuse) was used as the polymerization catalyst (A). Obtained.
  • Example 21 The quaternized WA-30 used in Example 20 was recovered by centrifugation, washed three times in the same manner as in Example 19, and then dried under reduced pressure to obtain the quaternized WA-30 (third reuse). Obtained.
  • the polymer was prepared in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 2 and the quaternized WA-30 (third reuse) was used as the polymerization catalyst (A). Obtained.
  • Example 22 The quaternized WA-30 used in Example 21 was recovered by centrifugation, washed three times in the same manner as in Example 19, and then dried under reduced pressure to obtain the quaternized WA-30 (fourth reuse). Obtained.
  • the polymer was prepared in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 2 and the quaternized WA-30 (fourth reuse) was used as the polymerization catalyst (A). Obtained.
  • Example 23 A polymer was obtained in the same manner as in Example 11 except that the composition of the polymerizable composition was the composition shown in Table 2 and PMMA-I was used as the organic iodine compound (C). The obtained polymer was a block copolymer composed of PMMA and PLMA (polylauryl methacrylate).
  • Example 24 A polymer was obtained in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 3 and a mixture of MSA Chloride and iodine was used as the polymerization catalyst (A).
  • Example 25 A polymer was obtained in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 3 and a mixture of A21 and iodine was used as the polymerization catalyst (A).
  • Example 26 A polymer was obtained in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 3 and a mixture of IRA-96 and iodine was used as the polymerization catalyst (A).
  • Example 27 Examples except that the composition of the polymerizable composition was the composition shown in Table 3, the polymerization catalyst (A) was changed to a mixture of WA-21J and iodine, and the amount of iodine was the amount shown in Table 3. A polymer was obtained in the same manner as in 1.
  • composition of the polymerizable composition was set to the composition shown in Table 2, and the same procedure as in Example 7 was carried out except that the quaternized WA-30 was not used.
  • composition of the polymerizable composition was the composition shown in Table 2, and the same procedure as in Example 7 was carried out except that HP-20 was used as the polymerization catalyst (A).
  • composition of the polymerizable composition was the composition shown in Table 3, and the same procedure as in Example 1 was carried out except that BNI was used as the polymerization catalyst (A) and toluene was used as the solvent.
  • Tables 1 to 3 show the measurement results of the composition, polymerization conditions, Mn, Mw / Mn, monomer conversion rate and YI of the polymerizable compositions of each Example and Comparative Example.
  • Examples 1 to 3 obtained by polymerizing a vinyl monomer (B) in the presence of an organic iodine compound using a polymer having a nitrogen-containing functional group as a polymerization catalyst (A). For 18 and 23 to 26, a constant monomer conversion rate could be obtained within a predetermined polymerization time. Further, in the obtained polymer, the molecular weight and the molecular weight distribution were controlled, and Mw / Mn became a small value.
  • Examples 1 to 18 and 23 to 26 are heterogeneous catalysts that can be easily removed.
  • a polymer having a molecular weight and a molecular weight distribution controlled in the same manner as when a low molecular weight catalyst is used is obtained.
  • Example 17 a polymer having a lower YI and a lower coloration was obtained as compared with Comparative Example 3.
  • Example 23 Further, from the results of Example 23, it was shown that a polymerization catalyst composed of a polymer having a nitrogen-containing functional group is also useful for the production of block copolymers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided are: a polymerization catalyst formed from a polymer having nitrogen-containing functional groups; and a polymer production method having a step for obtaining a polymer by polymerizing vinyl monomers in the presence of an organic iodine compound.

Description

重合体の製造方法および重合触媒Polymer production method and polymerization catalyst
 本発明は、重合体の製造方法および重合触媒に関する。
 本願は、2019年9月13日に出願された日本国特願2019-167782号、及び2019年9月13日に出願された日本国特願2019-167783号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing a polymer and a polymerization catalyst.
The present application claims priority based on Japanese Patent Application No. 2019-16772 filed on September 13, 2019, and Japanese Patent Application No. 2019-167783 filed on September 13, 2019. The contents are used here.
 従来、ビニル単量体を重合して重合体を得る方法として、ラジカル重合法が周知である。一般に、ラジカル重合法は、得られる重合体の分子量を制御することが困難という課題がある。また、ラジカル重合法で得られる重合体は、様々な分子量を有する重合体の混合物であり、分子量分布の狭い重合体になりにくいという課題がある。 Conventionally, a radical polymerization method is well known as a method for obtaining a polymer by polymerizing a vinyl monomer. In general, the radical polymerization method has a problem that it is difficult to control the molecular weight of the obtained polymer. Further, the polymer obtained by the radical polymerization method is a mixture of polymers having various molecular weights, and has a problem that it is difficult to form a polymer having a narrow molecular weight distribution.
 上述の課題を解消する方法として、リビングラジカル重合法が知られている。近年では、可逆的錯体形成媒介重合(RCMP)と称するリビングラジカル重合法が開発されている(例えば、特許文献1参照)。RCMP法は、リビングラジカル重合の成長ラジカルの保護基にヨウ素原子を用い、重合触媒にアミンを用いた有機触媒型のリビングラジカル重合法である。 The living radical polymerization method is known as a method for solving the above-mentioned problems. In recent years, a living radical polymerization method called reversible complex formation-mediated polymerization (RCMP) has been developed (see, for example, Patent Document 1). The RCMP method is an organic catalyst type living radical polymerization method in which an iodine atom is used as a protecting group for growth radicals in living radical polymerization and an amine is used as a polymerization catalyst.
 RCMP法では、重合触媒としてトリエチルアミン(TEA)等の低分子量のアミンを利用できる。そのため、重合触媒に遷移金属錯体を用いる他のリビングラジカル重合法と比べ、重合触媒が安価であり、かつ環境安全性が高い等の特長を有する。しかしながら、RCMP法においてTEA等の低分子量のアミンを利用する場合、反応生成物である重合体から触媒を除去するための精製工程が必要となる。そのため、低分子量のアミンを利用したRCMP法は、工業的に操作が煩雑となるという課題がある。 In the RCMP method, a low molecular weight amine such as triethylamine (TEA) can be used as a polymerization catalyst. Therefore, as compared with other living radical polymerization methods using a transition metal complex as a polymerization catalyst, the polymerization catalyst has features such as low cost and high environmental safety. However, when a low molecular weight amine such as TEA is used in the RCMP method, a purification step for removing the catalyst from the polymer which is a reaction product is required. Therefore, the RCMP method using a low molecular weight amine has a problem that the operation becomes complicated industrially.
 また、触媒を用いた重合系においては、反応生成物から容易に触媒を除去するため、一般的に、触媒を固体に担持した不均一系触媒が用いられる。このような重合系として、例えば、高分子に銅触媒を担持させた不均一系の銅触媒を用いる例が知られている(非特許文献1)。しかし、触媒を高分子に担持することによって、担持前の触媒では発現していた触媒の活性や選択性が変化してしまうため、これまでビニル単量体のリビングラジカル重合において十分な性能を有する不均一系触媒は見出されていなかった。 Further, in a polymerization system using a catalyst, a heterogeneous catalyst in which the catalyst is supported on a solid is generally used in order to easily remove the catalyst from the reaction product. As such a polymerization system, for example, an example of using a non-uniform copper catalyst in which a copper catalyst is supported on a polymer is known (Non-Patent Document 1). However, by supporting the catalyst on a polymer, the activity and selectivity of the catalyst that was expressed in the catalyst before the support is changed, so that it has sufficient performance in the living radical polymerization of vinyl monomers so far. No heterogeneous catalyst was found.
 またRCMP法においては、ヨウ素を添加して、不活性剤として働くアミン-Iコンプレックスを発生させる方法が広く用いられている。しかしこの方法ではヨウ素が反応生成物に残存して着色の要因となる。そのため、RCMP法においてヨウ素を添加すると、反応生成物である重合体からヨウ素を除去するための精製工程が必要となり、工業的に操作が煩雑となるという課題がある。 Further, in the RCMP method, a method of adding iodine to generate an amine-I 2 complex acting as an inactive agent is widely used. However, in this method, iodine remains in the reaction product and causes coloring. Therefore, when iodine is added in the RCMP method, a purification step for removing iodine from the polymer which is a reaction product is required, and there is a problem that the operation becomes complicated industrially.
国際公開第2011/016166号International Publication No. 2011/016166
 本発明はこのような事情に鑑みてなされたものであって、遷移金属系の触媒を使用することなくリビングラジカル重合において高い活性を有し、なおかつ簡便な方法で除去が可能な重合触媒を提供することを目的とする。また本発明は該重合触媒を用いた、分子量および分子量分布が充分に制御でき、さらに残存ヨウ素量および触媒量の低減が可能な重合体の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a polymerization catalyst having high activity in living radical polymerization without using a transition metal-based catalyst and which can be removed by a simple method. The purpose is to do. Another object of the present invention is to provide a method for producing a polymer using the polymerization catalyst, in which the molecular weight and the molecular weight distribution can be sufficiently controlled, and the residual iodine amount and the catalyst amount can be reduced.
 上記の課題を解決するため、本発明は、以下の態様を包含する。 In order to solve the above problems, the present invention includes the following aspects.
[1]含窒素官能基を有する高分子から構成される重合触媒、および有機ヨウ素化合物の存在下で、ビニル単量体を重合させて重合体を得る工程を有する重合体の製造方法。 [1] A method for producing a polymer, which comprises a step of polymerizing a vinyl monomer to obtain a polymer in the presence of a polymerization catalyst composed of a polymer having a nitrogen-containing functional group and an organic iodine compound.
[2]前記重合触媒がさらに、ヨウ素またはヨウ素原子含有イオンを含む、[1]に記載の重合体の製造方法。
 [3]前記高分子が架橋高分子である、[1]または[2]に記載の重合体の製造方法。
 [4]前記高分子がヨウ素を吸着しうる高分子である、[1]から[3]のいずれかに記載の重合体の製造方法。
 [5]前記高分子が主としてビニル単量体の繰り返し単位を持つ、[1]から[4]のいずれかに記載の重合体の製造方法。
 [6]前記高分子がポリスチレン骨格またはポリアクリルアミド骨格を有する、[5]に記載の重合体の製造方法。
 [7]前記含窒素官能基が、2級アミノ基、3級アミノ基および4級アンモニウム基からなる群から選ばれる少なくとも1種である、[1]から[6]のいずれかに記載の重合体の製造方法。
 [8]前記含窒素官能基が4級アンモニウム基である、[7]に記載の重合体の製造方法。
 [9]前記4級アンモニウム基のカウンターイオンがハロゲンイオンである、[7]または[8]に記載の重合体の製造方法。
 [10]前記カウンターイオンがヨウ素イオンである、[9]に記載の重合体の製造方法。
[2] The method for producing a polymer according to [1], wherein the polymerization catalyst further contains iodine or an iodine atom-containing ion.
[3] The method for producing a polymer according to [1] or [2], wherein the polymer is a crosslinked polymer.
[4] The method for producing a polymer according to any one of [1] to [3], wherein the polymer is a polymer capable of adsorbing iodine.
[5] The method for producing a polymer according to any one of [1] to [4], wherein the polymer mainly has a repeating unit of a vinyl monomer.
[6] The method for producing a polymer according to [5], wherein the polymer has a polystyrene skeleton or a polyacrylamide skeleton.
[7] The weight according to any one of [1] to [6], wherein the nitrogen-containing functional group is at least one selected from the group consisting of a secondary amino group, a tertiary amino group and a quaternary ammonium group. Manufacturing method of coalescence.
[8] The method for producing a polymer according to [7], wherein the nitrogen-containing functional group is a quaternary ammonium group.
[9] The method for producing a polymer according to [7] or [8], wherein the counter ion of the quaternary ammonium group is a halogen ion.
[10] The method for producing a polymer according to [9], wherein the counter ion is an iodine ion.
 [11]前記重合体を得る工程において、反応系にさらにラジカル重合開始剤を存在させる、[1]から[10]のいずれかに記載の重合体の製造方法。 [11] The method for producing a polymer according to any one of [1] to [10], wherein a radical polymerization initiator is further present in the reaction system in the step of obtaining the polymer.
 [12]前記重合体を得る工程において、反応系にさらにヨウ素を存在させる、[11]に記載の重合体の製造方法。
 [13]前記重合触媒に含まれる含窒素官能基のモル当量比が、前記有機ヨウ素化合物および前記ラジカル重合開始剤との合計に対して0.001~200である、[11]又は[12]に記載の重合体の製造方法。
[12] The method for producing a polymer according to [11], wherein iodine is further present in the reaction system in the step of obtaining the polymer.
[13] [11] or [12], the molar equivalent ratio of the nitrogen-containing functional group contained in the polymerization catalyst is 0.001 to 200 with respect to the total of the organic iodine compound and the radical polymerization initiator. The method for producing a polymer according to.
[14]前記ビニル単量体が、スチレン系単量体及び(メタ)アクリレート系単量体からなる群から選ばれる少なくとも1種である、[1]から[13]のいずれかに記載の重合体の製造方法。 [14] The weight according to any one of [1] to [13], wherein the vinyl monomer is at least one selected from the group consisting of a styrene-based monomer and a (meth) acrylate-based monomer. Manufacturing method of coalescence.
[15]前記重合体を得る工程の重合温度が120℃以下である、[1]から[14]のいずれかに記載の重合体の製造方法。 [15] The method for producing a polymer according to any one of [1] to [14], wherein the polymerization temperature in the step of obtaining the polymer is 120 ° C. or lower.
 [16][1]から[15]のいずれかに記載の重合体の製造方法において用いられる、含窒素官能基を有する高分子から構成される重合触媒。 [16] A polymerization catalyst composed of a polymer having a nitrogen-containing functional group, which is used in the method for producing a polymer according to any one of [1] to [15].
 本発明によれば、環境安全性が高く、簡便な方法で除去が可能な重合触媒を提供することができる。また該重合触媒を用いた重合体の製造方法は、分子量および分子量分布が充分に制御でき、さらに残存ヨウ素量および触媒量の低減が可能である。 According to the present invention, it is possible to provide a polymerization catalyst that is highly environmentally safe and can be removed by a simple method. Further, in the method for producing a polymer using the polymerization catalyst, the molecular weight and the molecular weight distribution can be sufficiently controlled, and the residual iodine amount and the catalyst amount can be further reduced.
図1は、実施例の製造例で得られた反応生成物のXPSチャートである。FIG. 1 is an XPS chart of the reaction product obtained in the production example of the example.
(用語の説明)
 本明細書においては、以下の用語の定義を採用する。
 「ビニル単量体」とは、少なくとも1つのビニル基(炭素-炭素不飽和二重結合)を含む化合物を意味する。
 「(メタ)アクリレート」とは、「アクリレート」または「メタクリレート」を示す。
 「有機ヨウ素化合物」とは、1分子中に炭素-ヨウ素結合を有する化合物を意味する。
(Explanation of terms)
The following definitions of terms are adopted herein.
"Vinyl monomer" means a compound containing at least one vinyl group (carbon-carbon unsaturated double bond).
"(Meta) acrylate" means "acrylate" or "methacrylate".
The "organoiodine compound" means a compound having a carbon-iodine bond in one molecule.
[重合体の製造方法]
 本実施形態の重合体の製造方法は、含窒素官能基を有する高分子から構成される重合触媒、および有機ヨウ素化合物の存在下で、ビニル単量体を重合させて重合体を得る工程を有する。
 以下、順に説明する。
[Method for producing polymer]
The method for producing a polymer of the present embodiment includes a step of polymerizing a vinyl monomer in the presence of a polymerization catalyst composed of a polymer having a nitrogen-containing functional group and an organic iodine compound to obtain a polymer. ..
Hereinafter, they will be described in order.
(重合性組成物の調製)
 重合体を得る工程では、含窒素官能基を有する高分子から構成される重合触媒と、ビニル単量体とを含む重合性組成物を調製し、ビニル単量体を重合させることにより重合体を得る。
 以下、重合性組成物に含まれる成分について説明する。
(Preparation of polymerizable composition)
In the step of obtaining a polymer, a polymerizable composition containing a polymerization catalyst composed of a polymer having a nitrogen-containing functional group and a vinyl monomer is prepared, and the polymer is polymerized by polymerizing the vinyl monomer. obtain.
Hereinafter, the components contained in the polymerizable composition will be described.
 (重合触媒)
 重合触媒は、含窒素官能基を有する高分子を含む。重合触媒は、有機ヨウ素化合物の存在下で、ビニル単量体のラジカル重合に適用することにより、該ラジカル重合の反応進行を促進するとともに、重合反応を制御することができる。
(Polymerization catalyst)
The polymerization catalyst contains a polymer having a nitrogen-containing functional group. By applying the polymerization catalyst to radical polymerization of a vinyl monomer in the presence of an organic iodine compound, the reaction progress of the radical polymerization can be promoted and the polymerization reaction can be controlled.
 重合触媒は、含窒素官能基を有する高分子を主成分とすることが好ましい。また、重合触媒は、後述するヨウ素(I)またはヨウ素原子含有イオンのほか、本発明の効果を大きく損なわない限り他の成分を含んでいてもよい。 The polymerization catalyst preferably contains a polymer having a nitrogen-containing functional group as a main component. In addition to iodine (I 2 ) or iodine atom-containing ions, which will be described later, the polymerization catalyst may contain other components as long as the effects of the present invention are not significantly impaired.
 なお、「主成分」とは、重合触媒全体に対する、上記高分子の割合が、50質量%を超えていることを意味する。反応生成物からの重合触媒除去の観点から、上記高分子は、重合触媒全体に対し80質量%以上含むことが好ましく、90質量%以上含むことがより好ましく、95質量%以上含むことがさらに好ましい。 The "main component" means that the ratio of the polymer to the entire polymerization catalyst exceeds 50% by mass. From the viewpoint of removing the polymerization catalyst from the reaction product, the polymer preferably contains 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more, based on the entire polymerization catalyst. ..
 <高分子>
 重合触媒を構成する高分子は、分子骨格内に、例えばポリスチレン、ポリアクリルアミド、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸エステルなどの合成高分子や、セルロースなど天然に生産される多糖類を有する。高分子は、ビニル単量体の繰り返し単位を持つ高分子であることが好ましく、ポリスチレン骨格またはポリアクリルアミド骨格を主として有する高分子がより好ましい。
<Polymer>
The polymers constituting the polymerization catalyst are synthetic polymers such as polystyrene, polyacrylamide, poly (meth) acrylic acid, and poly (meth) acrylic acid ester in the molecular skeleton, and naturally produced polysaccharides such as cellulose. Has. The polymer is preferably a polymer having a repeating unit of a vinyl monomer, and more preferably a polymer having a polystyrene skeleton or a polyacrylamide skeleton.
 本明細書において「ポリスチレン骨格」とは、スチレンに由来する繰り返し単位、またはスチレン誘導体に由来する繰り返し単位を有する分子鎖を意味する。
 また、本明細書において「ポリアクリルアミド骨格」とは、アクリルアミドに由来する繰り返し単位、またはアクリルアミド誘導体に由来する繰り返し単位を有する分子鎖を意味する。
As used herein, the term "polystyrene skeleton" means a molecular chain having a repeating unit derived from styrene or a repeating unit derived from a styrene derivative.
Further, as used herein, the term "polyacrylamide skeleton" means a molecular chain having a repeating unit derived from acrylamide or a repeating unit derived from an acrylamide derivative.
 なお、「主として」とは、高分子の全繰り返し単位に対する、ビニル単量体に由来する繰り返し単位の割合が、50モル%を超えていることを意味する。重合触媒を構成する高分子は、高分子の全繰り返し単位に対し、ビニル単量体を80モル%以上含むことが好ましく、90モル%以上含むことがより好ましく、95モル%以上含むことがさらに好ましい。 Note that "mainly" means that the ratio of the repeating unit derived from the vinyl monomer to all the repeating units of the polymer exceeds 50 mol%. The polymer constituting the polymerization catalyst preferably contains 80 mol% or more of vinyl monomer, more preferably 90 mol% or more, and further preferably 95 mol% or more, based on all the repeating units of the polymer. preferable.
 また、重合触媒を構成する高分子がポリスチレン骨格またはポリアクリルアミド骨格を有する高分子である場合も同様に考えることができる。すなわち、「主として」とは、高分子の全繰り返し単位に対する、上記ポリスチレン骨格またはポリアクリルアミド骨格の割合が、50モル%を超えていることを意味し、80モル%以上が好ましく、90モル%以上がより好ましく、95モル%以上がさらに好ましい。 The same can be considered when the polymer constituting the polymerization catalyst is a polymer having a polystyrene skeleton or a polyacrylamide skeleton. That is, "mainly" means that the ratio of the polystyrene skeleton or the polyacrylamide skeleton to all the repeating units of the polymer exceeds 50 mol%, preferably 80 mol% or more, and 90 mol% or more. Is more preferable, and 95 mol% or more is further preferable.
 本実施形態の重合触媒を構成する高分子は、ラジカル重合で用いる溶媒、分散媒、ラジカル重合に用いるモノマーに対して、溶解しにくい性質を有していればよい。これにより、ラジカル重合後の反応液から容易に重合触媒を分離することができる。なお「溶解しにくい」とは、25℃における溶解度が0g/100mL~0.3g/100mLであることを示す。 The polymer constituting the polymerization catalyst of the present embodiment may have a property of being difficult to dissolve in the solvent used in the radical polymerization, the dispersion medium, and the monomer used in the radical polymerization. As a result, the polymerization catalyst can be easily separated from the reaction solution after radical polymerization. “Difficult to dissolve” means that the solubility at 25 ° C. is 0 g / 100 mL to 0.3 g / 100 mL.
 重合触媒を構成する高分子の、ラジカル重合で用いる溶媒、分散媒、ラジカル重合に用いるモノマーに対する溶解度の上限は、0.2g/100mL以下であることが好ましく、0.1g/100mL以下であることがより好ましい。
 具体的には、高分子が架橋体、又は架橋構造を有さない場合には数平均分子量3000以上であると、高分子がラジカル重合の反応系に溶解しにくいため好ましい。
The upper limit of the solubility of the polymer constituting the polymerization catalyst in the solvent used for radical polymerization, the dispersion medium, and the monomer used for radical polymerization is preferably 0.2 g / 100 mL or less, and preferably 0.1 g / 100 mL or less. Is more preferable.
Specifically, when the polymer does not have a crosslinked body or a crosslinked structure, a number average molecular weight of 3000 or more is preferable because the polymer is difficult to dissolve in the reaction system of radical polymerization.
 なお、高分子が「架橋体」であるとは、鎖式高分子の分子間で化学結合が形成され、鎖状高分子の分子鎖間で橋を架けるようにつながっている構造、即ち架橋構造を有する高分子であることを指す。 In addition, a polymer is a "crosslinked body", that is, a structure in which chemical bonds are formed between molecules of a chain polymer and are connected so as to bridge between the molecular chains of a chain polymer, that is, a crosslinked structure. It means that it is a polymer having.
 高分子の数平均分子量は10000以上であることがより好ましい。高分子の数平均分子量の上限に特に制限はないが、実用的な観点から、10000000以下が好ましい。 It is more preferable that the number average molecular weight of the polymer is 10,000 or more. The upper limit of the number average molecular weight of the polymer is not particularly limited, but from a practical point of view, it is preferably 10,000,000 or less.
 また、重合触媒を構成する高分子は、架橋体が好ましく、ビニル単量体の繰り返し単位を持つ架橋体がより好ましく、ポリスチレン骨格を有する高分子の架橋体やポリアクリルアミド骨格を有する高分子の架橋体がさらに好ましい。以下の説明では、高分子の架橋体のことを「架橋高分子」と称することがある。この意味において、例えばポリスチレンの架橋体のことを「架橋ポリスチレン」と称することがある。 Further, the polymer constituting the polymerization catalyst is preferably a crosslinked product, more preferably a crosslinked product having a repeating unit of a vinyl monomer, and a crosslinked product of a polymer having a polystyrene skeleton or a crosslinked polymer having a polyacrylamide skeleton. The body is more preferred. In the following description, a crosslinked polymer may be referred to as a “crosslinked polymer”. In this sense, for example, a crosslinked polystyrene is sometimes referred to as “crosslinked polystyrene”.
 高分子の架橋度は、特に制限されない。また、高分子の分子量分布も、特に制限されない。 The degree of cross-linking of the polymer is not particularly limited. Further, the molecular weight distribution of the polymer is not particularly limited.
 高分子が架橋していることは、検証対象である高分子の試料を試料の良溶媒に浸漬させた際、試料が溶け残ることにより確認することができる。このとき、試料が溶解しないか膨潤するのみであることが好ましい。
 「試料の良溶媒」は、試料について赤外分光法やNMRなど通常知られた方法で分析し、得られた結果から試料の繰り返し単位の分子構造を類推することで選択することができる。
The fact that the polymer is crosslinked can be confirmed by the fact that the sample remains undissolved when the sample of the polymer to be verified is immersed in a good solvent of the sample. At this time, it is preferable that the sample does not dissolve or only swells.
The "good solvent for the sample" can be selected by analyzing the sample by a commonly known method such as infrared spectroscopy or NMR, and inferring the molecular structure of the repeating unit of the sample from the obtained results.
 本実施形態にかかる高分子は、粒状、繊維状、膜状等、形状、形態、大きさに特に制限はない。粒状の高分子は、塊状の高分子を、適宜、裁断または粉砕して得ることができる。 The polymer according to this embodiment is not particularly limited in shape, form, size, etc., such as granular, fibrous, and film-like. The granular polymer can be obtained by appropriately cutting or pulverizing the massive polymer.
 重合触媒を構成する高分子は、少なくとも1つの含窒素官能基を有する。本発明において、含窒素官能基が重合触媒として作用し、該含窒素官能基は高分子と共有結合している。高分子が有する含窒素官能基は、特に制限されない。また、高分子が有する含窒素官能基は、高分子の主鎖と側鎖のいずれに含まれてもよく、主鎖と側鎖の両方に含まれてもよい。 The polymer constituting the polymerization catalyst has at least one nitrogen-containing functional group. In the present invention, the nitrogen-containing functional group acts as a polymerization catalyst, and the nitrogen-containing functional group is covalently bonded to the polymer. The nitrogen-containing functional group of the polymer is not particularly limited. Further, the nitrogen-containing functional group contained in the polymer may be contained in either the main chain or the side chain of the polymer, or may be contained in both the main chain and the side chain.
 また重合触媒は、含窒素官能基を有する低分子化合物を含んでもよい。含窒素官能基を有する低分子化合物も重合触媒の一部として機能するが、反応生成物である重合体から低分子化合物を除去するための精製が必要となる。触媒除去を容易とするため、重合触媒に含まれる含窒素官能基の99mol%以上は、高分子と共有結合していることが好ましい。高分子と共有結合している含窒素官能基の割合は、99.9mol%がより好ましい。 Further, the polymerization catalyst may contain a low molecular weight compound having a nitrogen-containing functional group. A low molecular weight compound having a nitrogen-containing functional group also functions as a part of the polymerization catalyst, but purification for removing the low molecular weight compound from the polymer which is a reaction product is required. In order to facilitate catalyst removal, it is preferable that 99 mol% or more of the nitrogen-containing functional groups contained in the polymerization catalyst are covalently bonded to the polymer. The ratio of the nitrogen-containing functional group covalently bonded to the polymer is more preferably 99.9 mol%.
 含窒素官能基として、例えばアミノ基、4級アンモニウム基、アミド基、イミド基、ニトリル基、ピリジル基などが挙げられる。これらの中では、含窒素官能基は、触媒活性の点からアミノ基や4級アンモニウム基が好ましく、反応しやすさの点から2級アミノ基、3級アミノ基や4級アンモニウム基がより好ましい。4級アンモニウム基のカウンターイオンは特に限定されず、ハロゲンイオンや水酸化物イオンを採用することができる。カウンターイオンは、ハロゲンイオンであることが好ましく、ヨウ素イオンであることがより好ましい。 Examples of the nitrogen-containing functional group include an amino group, a quaternary ammonium group, an amide group, an imide group, a nitrile group, and a pyridyl group. Among these, the nitrogen-containing functional group is preferably an amino group or a quaternary ammonium group from the viewpoint of catalytic activity, and more preferably a secondary amino group, a tertiary amino group or a quaternary ammonium group from the viewpoint of ease of reaction. .. The counter ion of the quaternary ammonium group is not particularly limited, and a halogen ion or a hydroxide ion can be adopted. The counter ion is preferably a halogen ion, more preferably an iodine ion.
 4級アンモニウム基は、重合触媒を用いた重合反応の前から重合触媒が有していてもよく、重合触媒を用いた重合反応の反応系中で重合触媒の含窒素官能基が反応し、生じてもよい。
 含窒素官能基は、IRスペクトル、NMRスペクトル、UVスペクトル、及び質量スペクトルなど既知の分析方法により特定できる。
The quaternary ammonium group may be possessed by the polymerization catalyst before the polymerization reaction using the polymerization catalyst, and is generated by the reaction of the nitrogen-containing functional group of the polymerization catalyst in the reaction system of the polymerization reaction using the polymerization catalyst. You may.
Nitrogen-containing functional groups can be identified by known analytical methods such as IR spectrum, NMR spectrum, UV spectrum, and mass spectrum.
 重合触媒を構成する高分子は、(1’-1)~(1’-6)で示す繰り返し単位を有する。重合触媒を構成する高分子は、架橋体であることが好ましい。 The polymer constituting the polymerization catalyst has the repeating units shown in (1'-1) to (1'-6). The polymer constituting the polymerization catalyst is preferably a crosslinked product.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1’-1)~(1’-6)において、R1は炭素数1~4のアルキル基、R2~R4はそれぞれ独立して水素原子、炭素数1~20のアルキル基、または下記式(1’-7)を示す。 In the formulas (1'-1) to (1'-6), R1 is an alkyl group having 1 to 4 carbon atoms, R2 to R4 are independently hydrogen atoms, an alkyl group having 1 to 20 carbon atoms, or the following formula. (1'-7) is shown.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(1’-7)において、R5は炭素数1~10のアルキル基、nは1~10の整数を示す。 In the formula (1'-7), R5 represents an alkyl group having 1 to 10 carbon atoms, and n represents an integer of 1 to 10.
 式(1’-1)~(1’-7)において、R1~R5がアルキル基であった場合、R1~R5は置換基を有していてもよい。置換基は、水酸基、カルボキシル基、カルボキシル基のアルカリ金属塩からなる群から選ばれる少なくとも1種である。 In the formulas (1'-1) to (1'-7), when R1 to R5 are alkyl groups, R1 to R5 may have a substituent. The substituent is at least one selected from the group consisting of a hydroxyl group, a carboxyl group, and an alkali metal salt of a carboxyl group.
 重合触媒を構成する高分子は、具体的には下記式(1-1)~(1-10)のような繰り返し単位を有する高分子を例示することができる。 Specific examples of the polymer constituting the polymerization catalyst include polymers having repeating units as shown in the following formulas (1-1) to (1-10).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1-3)において、nは1~4の整数を示す。また式(1-4)において、nは1~10の整数を示す。 In equation (1-3), n represents an integer of 1 to 4. Further, in the equation (1-4), n represents an integer of 1 to 10.
 上記式(1-1)~(1-10)のような構造を有する重合触媒は、重合触媒とは全く用途が異なる市販品のイオン交換樹脂およびキレート樹脂などとしても入手可能である。 Polymerization catalysts having the structures of the above formulas (1-1) to (1-10) are also available as commercially available ion exchange resins and chelate resins having completely different uses from the polymerization catalysts.
 イオン交換樹脂の市販品の例としては、三菱ケミカル社製ダイヤイオン(登録商標)の強塩基性陰イオン交換樹脂のSAシリーズ、PAシリーズ、HPAシリーズ、弱塩基性陰イオン交換樹脂のWAシリーズ、低臭・低溶出陰イオン交換樹脂のSAFシリーズ、PAFシリーズが挙げられる。また、ダウ・ケミカル・カンパニー社製ダウエックス・マラソン(登録商標)MSA Chloride、アンバーリスト(登録商標)A21、アンバーライト(登録商標)IRA-96が挙げられる。 Examples of commercially available ion exchange resins include SA series, PA series, and HPA series of strongly basic anion exchange resins manufactured by Mitsubishi Chemical Co., Ltd., and WA series of weakly basic anion exchange resins. Examples thereof include SAF series and PAF series of low odor and low elution anion exchange resins. In addition, Dow Chemical Company's Dowex Marathon (registered trademark) MSA Chloride, Amberlist (registered trademark) A21, and Amberlite (registered trademark) IRA-96 can be mentioned.
 キレート樹脂の市販品の例としては、三菱ケミカル社製ダイヤイオン(登録商標)のイミノジ酢酸型とポリアミン型のCRシリーズ、グルカミン型のCRBシリーズが挙げられる。 Examples of commercially available chelate resins include Mitsubishi Chemical's Diaion (registered trademark) iminodiacetic acid type and polyamine type CR series, and glucamine type CRB series.
 上記の市販品は、いずれも架橋高分子である。 All of the above commercial products are crosslinked polymers.
 また、含窒素官能基を有する高分子は、例えば以下の方法で得ることができる。
 まず、スチレンおよびジビニルベンゼンの共重合により、架橋ポリスチレンを得る。
Further, the polymer having a nitrogen-containing functional group can be obtained by, for example, the following method.
First, crosslinked polystyrene is obtained by copolymerization of styrene and divinylbenzene.
 次いで、得られた架橋ポリスチレンのクロロメチル化反応により、スチレン単位の芳香環の一部にクロロメチル基を導入し、クロロメチル化架橋ポリスチレンを得る。 Next, by the chloromethylation reaction of the obtained crosslinked polystyrene, a chloromethyl group is introduced into a part of the aromatic ring of the styrene unit to obtain chloromethylated crosslinked polystyrene.
 次いで、得られたクロロメチル化架橋ポリスチレンと、ジメチルアミンとを反応させ、クロロメチル基のクロロ基をジメチルアミノ基で置換する。
 これにより上記式(1-5)の繰り返し単位を有する重合触媒を得ることができる。
Then, the obtained chloromethylated crosslinked polystyrene is reacted with dimethylamine to replace the chloro group of the chloromethyl group with a dimethylamino group.
As a result, a polymerization catalyst having the repeating unit of the above formula (1-5) can be obtained.
 また、例えば上述のクロロメチル化架橋ポリスチレンと、3級アミンとを反応させることで、上記式(1-1)や(1-2)の繰り返し単位を有する重合触媒を得ることができる。 Further, for example, by reacting the above-mentioned chloromethylated crosslinked polystyrene with a tertiary amine, a polymerization catalyst having the repeating units of the above formulas (1-1) and (1-2) can be obtained.
 上記高分子は、1種を単独で用いてもよく、2種以上を併用してもよい。 The above polymer may be used alone or in combination of two or more.
 <ヨウ素>
 重合触媒は、上記高分子の他にヨウ素(I)を含むことが好ましい。ヨウ素は、後述するアクティブ種の濃度を低く抑え、ラジカル種同士の結合や不均化による停止反応を抑制する不活性剤として機能する。ヨウ素は、高分子の表面に物理吸着した状態で存在することができる。上記高分子を含む重合性組成物中にヨウ素を混合する等の方法により、ヨウ素を高分子の表面に物理吸着することができる。
<Iodine>
The polymerization catalyst preferably contains iodine (I 2 ) in addition to the above polymer. Iodine functions as an inactive agent that suppresses the concentration of active species, which will be described later, and suppresses the termination reaction due to the binding and disproportionation of radical species. Iodine can exist in a state of being physically adsorbed on the surface of the polymer. Iodine can be physically adsorbed on the surface of the polymer by a method such as mixing iodine in the polymerizable composition containing the polymer.
 また、重合触媒にはヨウ素原子含有イオンが含まれていてもよい。ここで、「ヨウ素原子含有イオン」とは、ヨウ化物イオン(I)、三ヨウ化物イオン(I )または五ヨウ化物イオン(I )である。ヨウ素原子含有イオンは、上述の高分子の触媒性能を高める機能を有する。ヨウ素原子含有イオンは、高分子が有する4級アンモニウム基のカウンターイオンとして高分子にイオン結合した状態で存在することができる。 Further, the polymerization catalyst may contain iodine atom-containing ions. Here, the "iodine atom-containing ion" is an iodide ion (I ), a triiodide ion (I 3 ), or a pentaiodide ion (I 5 ). The iodine atom-containing ion has a function of enhancing the catalytic performance of the above-mentioned polymer. The iodine atom-containing ion can exist in a state of being ionically bonded to the polymer as a counter ion of a quaternary ammonium group possessed by the polymer.
 (ビニル単量体)
 本実施形態の重合体の製造方法において重合させるビニル単量体としては、例えば、
 (メタ)アクリル酸;
 炭素原子数1~30のアルキル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレートおよびそのアルキルエーテル、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、3-(トリエトキシシリル)プロピル(メタ)アクリレート、2-(ジメチルアミノ)エチル(メタ)アクリレートおよびその4級アルキルアンモニウム塩などに代表される(メタ)アクリレート系単量体;
 α-メチルスチレン、ビニルトルエン、スチレンなどに代表されるスチレン系単量体;
 メチルビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテルなどに代表されるビニルエーテル系単量体;
 フマル酸、フマル酸のモノアルキルエステル、フマル酸のジアルキルエステル;
 マレイン酸、マレイン酸のモノアルキルエステル、マレイン酸のジアルキルエステル;
 イタコン酸、イタコン酸のモノアルキルエステル、イタコン酸のジアルキルエステル;
 (メタ)アクリロニトリル、(メタ)アクリルアミド、ブタジエン、イソプレン、塩化ビニル、塩化ビニリデン、酢酸ビニル、ビニルケトン、ビニルピリジン、ビニルカルバゾール;
等を例示できる。
(Vinyl monomer)
Examples of the vinyl monomer to be polymerized in the method for producing the polymer of the present embodiment include, for example.
(Meta) acrylic acid;
Alkyl (meth) acrylate with 1 to 30 carbon atoms, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, glycidyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, ethoxyethoxyethyl (Meta) acrylate, polyethylene glycol (meth) acrylate and its alkyl ether, benzyl (meth) acrylate, phenyl (meth) acrylate, 3- (triethoxysilyl) propyl (meth) acrylate, 2- (dimethylamino) ethyl (meth) ) (Meta) acrylate-based monomer represented by acrylate and its quaternary alkylammonium salt;
Styrene-based monomers such as α-methylstyrene, vinyltoluene, and styrene;
Vinyl ether-based monomers such as methyl vinyl ether, ethyl vinyl ether, and isobutyl vinyl ether;
Fumaric acid, monoalkyl ester of fumaric acid, dialkyl ester of fumaric acid;
Maleic acid, monoalkyl ester of maleic acid, dialkyl ester of maleic acid;
Itaconic acid, monoalkyl ester of itaconic acid, dialkyl ester of itaconic acid;
(Meta) acrylonitrile, (meth) acrylamide, butadiene, isoprene, vinyl chloride, vinylidene chloride, vinyl acetate, vinyl ketone, vinyl pyridine, vinyl carbazole;
Etc. can be exemplified.
 ビニル単量体としては、重合制御の点から、スチレン系単量体、(メタ)アクリレート系単量体および(メタ)アクリロニトリルからなる群から選ばれる少なくとも1種が好ましい。 As the vinyl monomer, at least one selected from the group consisting of a styrene-based monomer, a (meth) acrylate-based monomer, and (meth) acrylonitrile is preferable from the viewpoint of polymerization control.
 上記ビニル単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。 The vinyl monomer may be used alone or in combination of two or more.
 (有機ヨウ素化合物)
 本実施形態の重合体の製造方法においては、重合性組成物中に、炭素-ヨウ素結合を有する有機ヨウ素化合物(ドーマント種)を存在させ、この有機ヨウ素化合物から成長鎖に与えられるヨウ素を成長ラジカルの保護基として用いる。有機ヨウ素化合物としては、分子中に少なくとも1個の炭素-ヨウ素結合を有しており、ドーマント種として作用するものであればよく、特に限定されるものではない。有機ヨウ素化合物としては、1分子中にヨウ素原子が1個又は2個含まれている化合物が好ましい。
(Organoiodine compound)
In the method for producing a polymer of the present embodiment, an organic iodine compound (dormant species) having a carbon-iodine bond is present in the polymerizable composition, and iodine given to the growth chain from this organic iodine compound is used as a growth radical. Used as a protective radical for iodine. The organic iodine compound is not particularly limited as long as it has at least one carbon-iodine bond in the molecule and acts as a dormant species. As the organic iodine compound, a compound containing one or two iodine atoms in one molecule is preferable.
 有機ヨウ素化合物は、重合性組成物中に有機ヨウ素化合物として添加してもよいし、他の化合物として添加したものが反応系中で反応して生成してもよい。他の化合物として添加する場合は、例えば、重合の過程で後述するラジカル重合開始剤とヨウ素のそれぞれ少なくとも一部が反応することで、有機ヨウ素化合物が生成する。 The organic iodine compound may be added as an organic iodine compound in the polymerizable composition, or may be produced by reacting a compound added as another compound in a reaction system. When added as another compound, for example, an organic iodine compound is produced by reacting at least a part of each of the radical polymerization initiator described later with iodine in the process of polymerization.
 有機ヨウ素化合物としては、ヨードトリクロロメタン、ジクロロジヨードメタン、ヨードトリブロモメタン、ジブロモジヨードメタン、ブロモトリヨードメタン、ヨードホルム、ジヨードメタン、ヨウ化メチル、トリヨードエタン、ヨウ化エチル、ジヨードプロパン、ヨウ化イソプロピル、ヨウ化t-ブチル、ヨードジクロロエタン、クロロジヨードエタン、ジヨードプロパン、クロロヨードプロパン、ヨードジブロモエタン、ブロモヨードプロパン、2-ヨード-2-ポリエチレングリコシルプロパン、2-ヨード-2-アミジノプロパン、2-ヨード-2-シアノブタン、2-ヨード-2-シアノ-4-メチルペンタン、2-ヨード-2-シアノ-4-メチル-4-メトキシペンタン、4-ヨード-4-シアノペンタン酸、メチル-2-ヨードイソブチレート、2-ヨード-2-メチルプロパンアミド、2-ヨード-2,4-ジメチルペンタン、2-ヨード-2-シアノブタノール、2-ヨード-2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド4-メチルペンタン、2-ヨード-2-メチル-N-(1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル)プロピオンアミド-4-メチルペンタン、2-ヨード-2-(2-イミダゾリン-2-イル)プロパン、2-ヨード-2-(2-(5-メチル-2-イミダゾリン-2-イル)プロパン、ヨードベンジルシアニド(PhCN-I)、エチル-2-ヨードフェニルアセテート(EPh-I)、ジエチル-2-ヨード-2-メチルマロネート(EEMA-I)、2-ヨード-2-シアノプロパン(CP-I)、1-ヨード-1-シアノエタン(CE-I)、1-ヨード-1-フェニルエタン(PE-I)、エチル-2-ヨードイソブチレート(EMA-I)、エチル-2-ヨードヴァレレート(EPA-I)、エチル-2-ヨードプロピオネート(EA-I)、エチル-2-ヨードアセテート(E-I)、2-ヨードイソ酪酸(MAA-I)、ヒドロキシエチル-2-ヨードイソブチレート(HEMA-I)、2-ヨードプロピオン酸アミド(AAm-I)、エチレングリコールビス(2-ヨードイソブチレート)(EMA-II)、ジエチル-2,5-ジヨードアジペート(EA-II)、グリセロール-トリス(2-ヨードイソブチレート)(EMA-III)、6-(2-ヨード-2-イソブチロキシ)ヘキシルトリエトキシシラン(IHE)を例示できる。 Examples of the organic iodine compound include iodotrichloromethane, dichlorodiiodomethane, iodotribromomethane, dibromodiiodomethane, bromotriiodomethane, iodoform, diiodomethane, methyl iodide, triiodoethane, ethyl iodide, and diiodopropane. Isopropyl iodide, t-butyl iodide, iododichloroethane, chlorodiiodoethane, diiodopropane, chloroiodopropane, iododibromoethane, bromoiodopropane, 2-iodo-2-polyethylene glycosylpropane, 2-iodo-2- Amidinopropane, 2-iodo-2-cyanobutane, 2-iodo-2-cyano-4-methylpentane, 2-iodo-2-cyano-4-methyl-4-methoxypentane, 4-iodo-4-cyanopentanoic acid , Methyl-2-iodoisobutyrate, 2-iodo-2-methylpropanoamide, 2-iodo-2,4-dimethylpentane, 2-iodo-2-cyanobutanol, 2-iodo-2-methyl-N- (2-Hydroxyethyl) Propionamide 4-methylpentane, 2-iodo-2-methyl-N- (1,1-bis (hydroxymethyl) -2-hydroxyethyl) Propionamide-4-methylpentane, 2-iodine -2- (2-Imidazoline-2-yl) propane, 2-iodo-2- (2- (5-methyl-2-imidazolin-2-yl) propane, iodobenzylcyanide (PhCN-I), ethyl- 2-Iodine phenylacetate (EPh-I), diethyl-2-iodo-2-methylmalonate (EEMA-I), 2-iodo-2-cyanopropane (CP-I), 1-iodo-1-cyanoethane ( CE-I), 1-iodo-1-phenylethane (PE-I), ethyl-2-iodoisobutyrate (EMA-I), ethyl-2-iodovalerate (EPA-I), ethyl-2- Iodine propionate (EA-I), ethyl-2-iodoacetate (EI), 2-iodoisobutyric acid (MAA-I), hydroxyethyl-2-iodoisobutyrate (HEMA-I), 2-iodine Propionic acid amide (AAm-I), ethylene glycol bis (2-iodoisobutyrate) (EMA-II), diethyl-2,5-diiodoadipate (EA-II), glycerol-tris (2-iodoisobutyrate) Rate) (EMA-III), 6- (2-iodo-2-isobutyroxy) hexyltriethoxysilane (IH) E) can be exemplified.
 有機ヨウ素化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。 One type of organic iodine compound may be used alone, or two or more types may be used in combination.
 有機ヨウ素化合物の中で、重合制御の点から、PhCN-I、EPh-I、EEMA-I、CP-I、CE-I、PE-I、EMA-I、EPA-I、EA-I、E-I、MAA-I、HEMA-I、AAm-I、EMA-II、EA-II、EMA-III、及びIHEからなる群から選ばれる少なくとも1種が好ましい。 Among the organic iodine compounds, PhCN-I, EPh-I, EEMA-I, CP-I, CE-I, PE-I, EMA-I, EPA-I, EA-I, E from the viewpoint of polymerization control. At least one selected from the group consisting of -I, MAA-I, HEMA-I, AAm-I, EMA-II, EA-II, EMA-III, and IHE is preferred.
 (ラジカル重合開始剤)
 本実施形態の重合体の製造方法においては、重合性組成物中に、ラジカル重合開始剤を添加してもよい。ラジカル重合開始剤は、重合触媒と、ビニル単量体と、有機ヨウ素化合物と、ヨウ素とを含む重合性組成物を重合する際に、重合性組成物中のラジカル濃度を上昇させ、重合速度を上げる目的で用いられる。
(Radical polymerization initiator)
In the method for producing a polymer of the present embodiment, a radical polymerization initiator may be added to the polymerizable composition. When the radical polymerization initiator polymerizes a polymerizable composition containing a polymerization catalyst, a vinyl monomer, an organic iodine compound, and iodine, the radical polymerization initiator increases the radical concentration in the polymerizable composition and increases the polymerization rate. Used for the purpose of raising.
 ラジカル重合開始剤としては、アゾ系のラジカル重合開始剤や過酸化物系のラジカル重合開始剤など、公知の化合物を使用することができる。なお、本実施形態の重合体の製造方法においては、上述の重合触媒を用いることにより重合反応を行うことができ、ラジカル重合開始剤は実質的に使用しなくてもよい。本実施形態の重合体の製造方法においてラジカル重合開始剤を使用すると、ラジカル重合開始剤を使用しない場合と比べて重合速度が向上し、重合時間を短縮することができる。 As the radical polymerization initiator, known compounds such as an azo-based radical polymerization initiator and a peroxide-based radical polymerization initiator can be used. In the method for producing a polymer of the present embodiment, the polymerization reaction can be carried out by using the above-mentioned polymerization catalyst, and a radical polymerization initiator may not be substantially used. When a radical polymerization initiator is used in the method for producing a polymer of the present embodiment, the polymerization rate can be improved and the polymerization time can be shortened as compared with the case where the radical polymerization initiator is not used.
 アゾ系ラジカル重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)および2,2’-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)が挙げられる。 Examples of the azo radical polymerization initiator include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), and 2,2'-azobis (2,4-dimethyl). Valeronitrile) and 2,2'-azobis (2,4-dimethyl-4-methoxyvaleronitrile).
 過酸化物系ラジカル重合開始剤としては、例えば、2,4-ジクロロベンゾイルパーオキサイド、t-ブチルパーオキシピバレート、o-メチルベンゾイルパーオキサイド、ビス-3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、シクロヘキサノンパーオキサイド、ベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド、ジクミルパーオキサイド、ラウロイルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、t-ブチルハイドロパーオキサイドおよびジ-t-ブチルパーオキサイドが挙げられる。 Examples of the peroxide-based radical polymerization initiator include 2,4-dichlorobenzoyl peroxide, t-butyl peroxypivalate, o-methylbenzoyl peroxide, and bis-3,5,5-trimethylhexanoyl peroxide. , Octanoyl peroxide, t-butylperoxy-2-ethylhexanoate, cyclohexanone peroxide, benzoyl peroxide, methyl ethyl ketone peroxide, dicumyl peroxide, lauroyl peroxide, diisopropylbenzene hydroperoxide, t-butyl hydro Examples include peroxides and di-t-butyl peroxides.
 上記のラジカル重合開始剤の中で、ベンゾイルパーオキサイド、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)及び2,2’-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)が入手しやすさの点で好ましい。 Among the above radical polymerization initiators, benzoyl peroxide, 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis (2,) 4-Dimethylvaleronitrile), 1,1'-azobis (cyclohexane-1-carbonitrile) and 2,2'-azobis (2,4-dimethyl-4-methoxyvaleronitrile) are preferred in terms of availability. ..
 ラジカル重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 The radical polymerization initiator may be used alone or in combination of two or more.
 (ヨウ素)
 本実施形態の重合体の製造方法において、ヨウ素は上述の通り重合触媒に含まれていてもよく、重合性組成物中に別途添加してもよい。ヨウ素は重合反応の不活性剤として後述するアクティブ種の濃度を低く抑え、ラジカル種同士の結合や不均化による停止反応を抑制する。また、ヨウ素と前述したラジカル開始剤を併用することで、反応系中で有機ヨウ素化合物を生成させることができる。
(Iodine)
In the method for producing a polymer of the present embodiment, iodine may be contained in the polymerization catalyst as described above, or may be added separately to the polymerizable composition. Iodine suppresses the concentration of active species, which will be described later, as an inactivating agent for the polymerization reaction, and suppresses the termination reaction due to the binding and disproportionation of radical species. Further, by using iodine and the above-mentioned radical initiator in combination, an organic iodine compound can be produced in the reaction system.
 (その他添加剤)
 本実施形態の重合体の製造方法においては、必要に応じてその他の添加剤を加えることができる。その他の添加剤としては、連鎖移動剤を例示できる。
(Other additives)
In the method for producing a polymer of the present embodiment, other additives can be added as needed. Examples of other additives include chain transfer agents.
 連鎖移動剤としては、メルカプタンを挙げることができる。
 (溶媒)
 本実施形態の重合体の製造方法では、重合時に有機溶媒を用いることができる。有機溶媒としては、トルエン等の炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒;ジクロロメタン、クロロホルム等のハロゲン化炭化水素系溶媒;アセトン等のケトン系溶媒;メタノール等のアルコール系溶媒;アセトニトリル等のニトリル系溶媒;酢酸エチル等のビニルエステル系溶媒;エチレンカーボネート等のカーボネート系溶媒;及び超臨界二酸化炭素を例示できる。
 有機溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
 溶媒を用いる場合、溶媒の含有量は、溶媒を除く重合性組成物全体の量を100質量%としたときに、0質量%を超えて700質量%以下が好ましい。
Examples of the chain transfer agent include mercaptan.
(solvent)
In the method for producing a polymer of the present embodiment, an organic solvent can be used at the time of polymerization. Examples of the organic solvent include hydrocarbon solvents such as toluene; ether solvents such as diethyl ether and tetrahydrofuran; halogenated hydrocarbon solvents such as dichloromethane and chloroform; ketone solvents such as acetone; alcohol solvents such as methanol; acetonitrile. And other nitrile solvents; vinyl ester solvents such as ethyl acetate; carbonate solvents such as ethylene carbonate; and supercritical carbon dioxide can be exemplified.
As the organic solvent, one type may be used alone, or two or more types may be used in combination.
When a solvent is used, the content of the solvent is preferably more than 0% by mass and 700% by mass or less when the total amount of the polymerizable composition excluding the solvent is 100% by mass.
 (重合性組成物の組成)
 重合性組成物の一例として、上述の重合触媒と、ビニル単量体と、有機ヨウ素化合物と、ヨウ素とを含む重合性組成物が挙げられる。
(Composition of polymerizable composition)
An example of the polymerizable composition is a polymerizable composition containing the above-mentioned polymerization catalyst, vinyl monomer, organic iodine compound, and iodine.
 また、重合性組成物の他の例としては、含窒素官能基を有する高分子とヨウ素とを含む重合触媒と、ビニル単量体と、有機ヨウ素化合物と、ラジカル重合開始剤とを含む重合性組成物が挙げられる。 Further, as another example of the polymerizable composition, a polymerizable catalyst containing a polymer having a nitrogen-containing functional group and iodine, a vinyl monomer, an organic iodine compound, and a radical polymerization initiator. The composition is mentioned.
 また、重合性組成物の他の例としては、含窒素官能基を有する高分子とヨウ素とを含む重合触媒と、ビニル単量体と、ラジカル重合開始剤とを含む重合性組成物が挙げられる。このような重合性組成物には有機ヨウ素化合物を含まないが、上述の通り、重合の過程でラジカル重合開始剤とヨウ素のそれぞれ少なくとも一部が反応して重合性組成物中に有機ヨウ素化合物が生成し、ドーマント種として機能する。 Further, as another example of the polymerizable composition, there is a polymerizable composition containing a polymerization catalyst containing a polymer having a nitrogen-containing functional group and iodine, a vinyl monomer, and a radical polymerization initiator. .. Such a polymerizable composition does not contain an organic iodine compound, but as described above, at least a part of each of the radical polymerization initiator and iodine reacts in the process of polymerization to form an organic iodine compound in the polymerizable composition. Generates and functions as a dormant species.
<重合性組成物における各成分の含有量>
 次に、上述の重合性組成物における各成分の含有量について説明する。以下の説明において「含有量」とは、重合性組成物の調製時の仕込み量を示す。
<Contents of each component in the polymerizable composition>
Next, the content of each component in the above-mentioned polymerizable composition will be described. In the following description, the "content" indicates the amount charged at the time of preparation of the polymerizable composition.
 <重合触媒>
 重合性組成物における重合触媒の含有量は、ビニル単量体と重合触媒との総量に対して、0.01質量%以上50質量%以下となる量が好ましい。ビニル単量体と重合触媒との総量に対する触媒の含有量の下限は、0.1質量%以上であることがより好ましく、1質量%以上であることがさらに好ましい。また上限は、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。上述したビニル単量体と重合触媒との総量に対する重合触媒の含有量は、上限値と下限値とを任意に組み合わせることができる。
<Polymerization catalyst>
The content of the polymerization catalyst in the polymerizable composition is preferably 0.01% by mass or more and 50% by mass or less with respect to the total amount of the vinyl monomer and the polymerization catalyst. The lower limit of the content of the catalyst with respect to the total amount of the vinyl monomer and the polymerization catalyst is more preferably 0.1% by mass or more, and further preferably 1% by mass or more. The upper limit is more preferably 30% by mass or less, and further preferably 20% by mass or less. As for the content of the polymerization catalyst with respect to the total amount of the vinyl monomer and the polymerization catalyst described above, the upper limit value and the lower limit value can be arbitrarily combined.
 重合触媒に含まれる窒素原子のモル当量比は、ビニル単量体に対して0.0001以上0.5以下であることが好ましく、0.0005以上0.1以下がより好ましい。 The molar equivalent ratio of nitrogen atoms contained in the polymerization catalyst is preferably 0.0001 or more and 0.5 or less, and more preferably 0.0005 or more and 0.1 or less with respect to the vinyl monomer.
 また重合触媒に含まれる窒素原子のモル当量比は、添加した有機ヨウ素化合物に対して、0.001以上1000以下であることが好ましく、0.01以上180以下であることがより好ましい。上述したモル当量比の上限値、下限値は任意に組み合わせることができる。 The molar equivalent ratio of nitrogen atoms contained in the polymerization catalyst is preferably 0.001 or more and 1000 or less, and more preferably 0.01 or more and 180 or less with respect to the added organic iodine compound. The above-mentioned upper limit value and lower limit value of the molar equivalent ratio can be arbitrarily combined.
 また重合触媒に含まれる含窒素官能基のモル当量比は、添加した有機ヨウ素化合物およびラジカル重合開始剤との合計に対して、0.001以上200以下であることが好ましい。含窒素官能基のモル当量比の下限は、0.005以上であることがより好ましく、0.01以上であることがさらに好ましい。また上限は、100以下であることがより好ましい。上述したモル当量比の上限値、下限値は任意に組み合わせることができる。 The molar equivalent ratio of the nitrogen-containing functional group contained in the polymerization catalyst is preferably 0.001 or more and 200 or less with respect to the total of the added organic iodine compound and the radical polymerization initiator. The lower limit of the molar equivalent ratio of the nitrogen-containing functional group is more preferably 0.005 or more, and further preferably 0.01 or more. Further, the upper limit is more preferably 100 or less. The above-mentioned upper limit value and lower limit value of the molar equivalent ratio can be arbitrarily combined.
 重合触媒に含まれる窒素原子および含窒素官能基のモル当量比が前記範囲であれば、重合速度が充分に促進され、かつ重合溶液が適度な粘度を保って取り扱いが容易となる。 When the molar equivalent ratio of the nitrogen atom and the nitrogen-containing functional group contained in the polymerization catalyst is within the above range, the polymerization rate is sufficiently promoted, and the polymerization solution maintains an appropriate viscosity and is easy to handle.
 なお、重合触媒に含まれる窒素原子のモル当量比は、元素分析法によって求めることができる。 The molar equivalent ratio of nitrogen atoms contained in the polymerization catalyst can be determined by an elemental analysis method.
 また、重合触媒に含まれる高分子中の窒素原子のモル当量比は、以下の方法で求めることもできる。
 まず、分子量が既知である過剰量の有機ヨウ素化合物と、重合触媒中の高分子と、を完全に反応させる。次いで、有機ヨウ素化合物の反応率から含窒素官能基と反応した有機ヨウ素化合物の物質量(モル)を求め、反応した有機ヨウ素化合物の物質量から含窒素官能基の物質量(モル)を求める。得られた含窒素官能基の物質量から、窒素原子のモル当量比を算出する。
The molar equivalent ratio of nitrogen atoms in the polymer contained in the polymerization catalyst can also be determined by the following method.
First, the excess amount of the organic iodine compound having a known molecular weight is completely reacted with the polymer in the polymerization catalyst. Next, the amount of substance (mol) of the organic iodine compound that has reacted with the nitrogen-containing functional group is determined from the reaction rate of the organic iodine compound, and the amount of substance (mol) of the nitrogen-containing functional group is determined from the amount of substance of the reacted organic iodine compound. From the amount of substance of the obtained nitrogen-containing functional group, the molar equivalent ratio of nitrogen atoms is calculated.
 より具体的には、重合触媒に含まれる含窒素官能基のモル当量比は、例えば下記の方法により算出することができる。
 重合触媒2.0gと、1-ヨードヘキサンを1.21g(5.61mmol)とを混合し、テトラヒドロフラン8ml中に均一に分散させる。この分散溶液を還流状態で加熱撹拌しながら24時間反応させる。得られた反応溶液に濃度既知の内部標準を加えてH-NMRを測定し、残っている1-ヨードヘキサンの量から、1-ヨードヘキサンの減少量を求める。このとき減少した1-ヨードヘキサンのモル当量比が、重合触媒に含まれる含窒素官能基のモル当量比と等しい。
More specifically, the molar equivalent ratio of the nitrogen-containing functional groups contained in the polymerization catalyst can be calculated by, for example, the following method.
2.0 g of the polymerization catalyst and 1.21 g (5.61 mmol) of 1-iodohexane are mixed and uniformly dispersed in 8 ml of tetrahydrofuran. The dispersion solution is reacted in a reflux state for 24 hours with heating and stirring. An internal standard having a known concentration is added to the obtained reaction solution, 1 H-NMR is measured, and the amount of decrease in 1-iodohexane is determined from the amount of remaining 1-iodohexane. The molar equivalent ratio of 1-iodohexane decreased at this time is equal to the molar equivalent ratio of the nitrogen-containing functional groups contained in the polymerization catalyst.
 重合触媒がヨウ素を含む場合、重合触媒に含まれるヨウ素のモル当量比は任意である。が、ビニル単量体に対して0.0001以上0.5以下となる量が好ましく、0.0005以上0.1以下となる量がより好ましい。ヨウ素のモル当量比が前記範囲であれば、重合速度が充分に促進されることができる。 When the polymerization catalyst contains iodine, the molar equivalent ratio of iodine contained in the polymerization catalyst is arbitrary. However, the amount of the vinyl monomer is preferably 0.0001 or more and 0.5 or less, and more preferably 0.0005 or more and 0.1 or less. When the molar equivalent ratio of iodine is in the above range, the polymerization rate can be sufficiently promoted.
 なお本明細書においては、重合触媒に含まれるヨウ素のモル当量比は、重合触媒の元素分析によって求めた値、または重合触媒を合成する際の仕込み量から求めた値とする。 In the present specification, the molar equivalent ratio of iodine contained in the polymerization catalyst is a value obtained by elemental analysis of the polymerization catalyst or a value obtained from the amount charged when synthesizing the polymerization catalyst.
 <有機ヨウ素化合物>
 重合性組成物が有機ヨウ素化合物を含む場合、重合性組成物における有機ヨウ素化合物の含有量は任意である。重合性組成物における有機ヨウ素化合物の含有量は、ビニル単量体1モルあたり0.001モル以上0.5モル以下となる量が好ましく、0.002モル以上0.1モル以下となる量がより好ましい。重合性組成物における有機ヨウ素化合物の含有量が前記範囲であれば、有機ヨウ素化合物から重合反応の成長鎖にヨウ素原子を保護基として提供するのに充分であり、尚且つ、重合速度を極端に低下させない。
<Organoiodine compound>
When the polymerizable composition contains an organic iodine compound, the content of the organic iodine compound in the polymerizable composition is arbitrary. The content of the organic iodine compound in the polymerizable composition is preferably 0.001 mol or more and 0.5 mol or less per 1 mol of the vinyl monomer, and the amount is 0.002 mol or more and 0.1 mol or less. More preferred. When the content of the organic iodine compound in the polymerizable composition is within the above range, it is sufficient to provide the iodine atom as a protecting group from the organic iodine compound to the growth chain of the polymerization reaction, and the polymerization rate is extremely high. Do not lower.
 <ラジカル重合開始剤>
 有機ヨウ素化合物を添加せず、重合性組成物中にラジカル重合開始剤を添加することで有機ヨウ素化合物を生成する場合、重合性組成物におけるラジカル重合開始剤の含有量は任意である。重合性組成物におけるラジカル重合開始剤の含有量は、ビニル単量体1モルあたり0.0001モル以上0.05モル以下となる量が好ましく、0.0002モル以上0.02モル以下となる量がより好ましい。重合性組成物におけるラジカル重合開始剤の含有量が前記範囲であれば、適度な重合速度を得ることができる。
<Radical polymerization initiator>
When the organic iodine compound is produced by adding the radical polymerization initiator to the polymerizable composition without adding the organic iodine compound, the content of the radical polymerization initiator in the polymerizable composition is arbitrary. The content of the radical polymerization initiator in the polymerizable composition is preferably 0.0001 mol or more and 0.05 mol or less, and 0.0002 mol or more and 0.02 mol or less per mol of the vinyl monomer. Is more preferable. When the content of the radical polymerization initiator in the polymerizable composition is within the above range, an appropriate polymerization rate can be obtained.
(反応メカニズム)
 重合触媒が有する含窒素官能基は、炭素-ヨウ素結合をドーマント種とするビニル単量体のリビングラジカル重合において、酸化還元反応を促進する作用を有する。そのため、本実施形態の重合体の製造方法において、重合触媒は有機ヨウ素化合物からヨウ素原子を引き抜いて、有機ヨウ素化合物に由来するラジカルを生成させる。
(Reaction mechanism)
The nitrogen-containing functional group of the polymerization catalyst has an action of promoting a redox reaction in the living radical polymerization of a vinyl monomer having a carbon-iodine bond as a dormant species. Therefore, in the method for producing a polymer of the present embodiment, the polymerization catalyst extracts iodine atoms from the organic iodine compound to generate radicals derived from the organic iodine compound.
 本実施形態の重合体の製造方法は、特に理論に束縛されないが、以下に推定されるメカニズムを説明する。 The method for producing the polymer of the present embodiment is not particularly bound by theory, but the presumed mechanism will be described below.
 以下のスキーム1に、一般的に公知とされているRCMP法の反応式を示す。 Scheme 1 below shows the reaction formula of the RCMP method, which is generally known.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 スキーム1において、Aは酸化還元能力を有する重合触媒であり、Iはヨウ素原子である。重合触媒Aは反応式の左辺において還元状態であり、右辺において酸化状態である。重合触媒Aが酸化状態であるときには、活性種であるポリマーのラジカルが生じ、重合触媒Aが還元状態であるときには、ポリマーの末端はヨウ素原子で保護される。左辺の「Polymer-I」は、反応系におけるドーマント種であり、右辺の「Polymer・」は、反応系におけるアクティブ種である。 In Scheme 1, A is a polymerization catalyst having a redox ability, and I is an iodine atom. The polymerization catalyst A is in a reduced state on the left side of the reaction formula and in an oxidized state on the right side. When the polymerization catalyst A is in the oxidizing state, radicals of the polymer which is an active species are generated, and when the polymerization catalyst A is in the reducing state, the ends of the polymer are protected by iodine atoms. "Polymer-I" on the left side is a dormant species in the reaction system, and "Polymer." On the right side is an active species in the reaction system.
 そして、重合触媒Aは、還元状態(左辺)と酸化状態(右辺)との間で可逆的に酸化還元反応する。また、スキーム1に示すように、スキーム1は平衡反応であり、平衡は左辺に偏っている。すなわち、アクティブ種は反応系中において低濃度で存在する。 Then, the polymerization catalyst A reversibly undergoes a redox reaction between the reduced state (left side) and the oxidized state (right side). Further, as shown in Scheme 1, Scheme 1 is an equilibrium reaction, and the equilibrium is biased to the left side. That is, active species are present in low concentrations in the reaction system.
 そのため、まず、重合触媒Aが還元状態にあるとき、左辺に示すドーマント種(Polymer-I)は、ヨウ素原子で末端が保護され反応を停止している。 Therefore, first, when the polymerization catalyst A is in the reduced state, the dormant species (Polymer-I) shown on the left side is protected at the end by an iodine atom and the reaction is stopped.
 また、重合触媒Aが酸化状態にあるとき、右辺に示すアクティブ種(ポリマーのラジカル)がビニル単量体とラジカル重合し、重合体が生じる。 Further, when the polymerization catalyst A is in an oxidized state, the active species (radicals of the polymer) shown on the right side radically polymerize with the vinyl monomer to generate a polymer.
 さらに、スキーム1の平衡が左辺に偏っていることから、アクティブ種の濃度が低く抑えられ、ラジカル種同士の結合や不均化による停止反応を抑制することができる。そのため、スキーム1の平衡反応が長時間持続し、反応系中には長時間に亘ってアクティブ種が存在することになる。さらに、生じる重合体の分子量分布を均一化しやすい。 Furthermore, since the equilibrium of Scheme 1 is biased to the left side, the concentration of active species can be suppressed to a low level, and the termination reaction due to the binding and disproportionation of radical species can be suppressed. Therefore, the equilibrium reaction of Scheme 1 lasts for a long time, and the active species will be present in the reaction system for a long time. Furthermore, it is easy to make the molecular weight distribution of the resulting polymer uniform.
 これらの結果、ポリマー末端が常に活性を保ち続け(リビング)、分子量分布を均一化することができる。 As a result, the polymer terminal always keeps its activity (living room), and the molecular weight distribution can be made uniform.
 上記メカニズムを踏まえると、本実施形態の重合体の製造方法においては、例えば重合触媒として架橋ポリスチレンの側鎖に含窒素官能基である3級アミノ基を有する架橋重合体を用いる場合、重合触媒の反応に係る反応式は、以下のスキーム2のとおりであると考えられる。下記式の右辺においては、3級アミノ基とヨウ素原子の間で一電子が移動した塩の状態、または3級アミノ基とヨウ素の間で部分電荷が移動した錯体の状態を取りうる。重合触媒は、下記式の右辺において3級アミノ基の窒素原子からヨウ素のラジカルに対して電子を供給しているため酸化状態となっている。相対的に、重合触媒は、左辺において還元状態である。 Based on the above mechanism, in the method for producing a polymer of the present embodiment, for example, when a crosslinked polymer having a tertiary amino group which is a nitrogen-containing functional group in the side chain of crosslinked polystyrene is used as the polymerization catalyst, the polymerization catalyst The reaction formula for the reaction is considered to be as shown in Scheme 2 below. On the right side of the equation below, it can be in the state of a salt in which one electron is transferred between the tertiary amino group and the iodine atom, or in the state of a complex in which the partial charge is transferred between the tertiary amino group and iodine. The polymerization catalyst is in an oxidized state because electrons are supplied from the nitrogen atom of the tertiary amino group to the radical of iodine on the right side of the following formula. In relative terms, the polymerization catalyst is in a reduced state on the left side.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 なお、上記スキーム2の右辺において、上式が、上述した「3級アミノ基とヨウ素原子の間で一電子が移動した塩の状態」、二量化した後の下式が、上述した「3級アミノ基とヨウ素の間で部分電荷が移動した錯体」を示す。なお、右辺に示す二量化は、連続した分子鎖に存在する異なる含窒素官能基間で生じてもよく、異なる分子鎖に存在する異なる含窒素官能基環で生じてもよい。 On the right side of the above scheme 2, the above formula is the above-mentioned "state of a salt in which one electron is transferred between a tertiary amino group and an iodine atom", and the lower formula after dimerization is the above-mentioned "class 3". "A complex in which a partial charge is transferred between an amino group and iodine" is shown. The dimerization shown on the right side may occur between different nitrogen-containing functional groups existing in continuous molecular chains, or may occur between different nitrogen-containing functional groups existing in different molecular chains.
 本実施形態の重合体の製造方法においても、重合触媒が還元状態(左辺)と酸化状態(右辺)との間で可逆的に酸化還元反応することにより、右辺に示すポリマーのラジカルがビニル単量体と重合し、目的物である重合体が得られると考えられる。 Also in the method for producing a polymer of the present embodiment, the polymerization catalyst reversibly undergoes a redox reaction between the reduced state (left side) and the oxidized state (right side), so that the radical of the polymer shown on the right side is a single amount of vinyl. It is considered that the polymer is polymerized with the body to obtain the desired polymer.
 また、多くのポリマーはスキーム2の左辺に示すようにヨウ素原子で末端が保護された状態で反応系中に存在する。そのため、本実施形態の重合体の製造方法においては、反応系中のラジカル濃度が低く抑えられ、ラジカル種同士の結合や不均化による停止反応を抑制することができる。 In addition, many polymers exist in the reaction system in a state where the ends are protected by iodine atoms as shown on the left side of Scheme 2. Therefore, in the method for producing a polymer of the present embodiment, the radical concentration in the reaction system can be suppressed to a low level, and the termination reaction due to the binding or disproportionation of radical species can be suppressed.
(重合条件)
 本実施形態の重合体の製造方法における重合方法としては、特に限定されず、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等を例示できる。
(Polymerization conditions)
The polymerization method in the method for producing the polymer of the present embodiment is not particularly limited, and examples thereof include a massive polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method.
 重合反応は、空気存在下で行ってもよいが、ラジカル重合の効率の点から、窒素やアルゴン等の不活性ガス雰囲気下で行うことが好ましい。 The polymerization reaction may be carried out in the presence of air, but from the viewpoint of the efficiency of radical polymerization, it is preferably carried out in an atmosphere of an inert gas such as nitrogen or argon.
 重合温度は、適切な重合速度が得られやすいため、0℃以上150℃以下が好ましい。また、重合制御が容易であるため、20℃以上120℃以下がより好ましい。さらに、重合温度が120℃以下であると、重合触媒の活性を維持しやすく好ましい。 The polymerization temperature is preferably 0 ° C. or higher and 150 ° C. or lower because an appropriate polymerization rate can be easily obtained. Further, since polymerization control is easy, 20 ° C. or higher and 120 ° C. or lower is more preferable. Further, when the polymerization temperature is 120 ° C. or lower, the activity of the polymerization catalyst can be easily maintained, which is preferable.
 重合時間は、特に限定されず、例えば0.5時間以上24時間以下とすることができる。 The polymerization time is not particularly limited, and can be, for example, 0.5 hours or more and 24 hours or less.
(重合体)
 本実施形態の重合体の製造方法により製造された重合体は、主鎖の末端にヨウ素原子を有する。上記スキーム1に示す「Polymer-I」のIが該当する。この末端のヨウ素原子は、高温で処理することにより除去することができる。また、上記末端のヨウ素原子に対し、求核性試薬を反応させることにより、求核性試薬に由来した官能基を導入することができる。
(Polymer)
The polymer produced by the method for producing a polymer of the present embodiment has an iodine atom at the end of the main chain. I of "Polymer-I" shown in the above scheme 1 corresponds. The iodine atom at the terminal can be removed by treating at a high temperature. In addition, a functional group derived from the nucleophile can be introduced by reacting the iodine atom at the terminal with the nucleophile.
 公知の典型的な制御重合で得られる重合体の分子量分布(Mw/Mn)は、一般に1.5未満である。ここで、Mwは重量平均分子量であり、Mnは数平均分子量である。 The molecular weight distribution (Mw / Mn) of the polymer obtained by a known typical controlled polymerization is generally less than 1.5. Here, Mw is a weight average molecular weight and Mn is a number average molecular weight.
 本実施形態の重合体の製造方法によれば、得られる重合体のMw/Mnを1.5未満とすることができる。なお、本実施形態の重合体の製造方法においては、重合触媒の分散状態に応じて、目的とするMw/Mnより大きくなることがある。その場合、反応系中において重合触媒を良好に分散させることにより、Mw/Mnを小さくすることができる。反応系中で重合触媒を良好に分散させる方法としては、溶媒を添加して粘度を低下させる、撹拌速度を上げる、重合触媒を構成する高分子の粒子径を小さくするという方法が挙げられる。 According to the method for producing a polymer of the present embodiment, the Mw / Mn of the obtained polymer can be less than 1.5. In the method for producing a polymer of the present embodiment, the molecular weight may be larger than the target Mw / Mn depending on the dispersed state of the polymerization catalyst. In that case, Mw / Mn can be reduced by satisfactorily dispersing the polymerization catalyst in the reaction system. Examples of a method for satisfactorily dispersing the polymerization catalyst in the reaction system include a method of adding a solvent to reduce the viscosity, an increase in the stirring speed, and a method of reducing the particle size of the polymer constituting the polymerization catalyst.
 これらにより、本実施形態の重合体の製造方法では、一般的に公知とされているRCMP法に使用される有機化合物触媒を用いた場合と同様な酸化還元反応を生じると考えられる。その結果、本実施形態の重合体の製造方法では、分子量を制御することが可能であり、かつ分子量分布の狭い重合体を得ることが可能であると考えられる。 From these, it is considered that the method for producing the polymer of the present embodiment causes a redox reaction similar to the case where the organic compound catalyst used in the generally known RCMP method is used. As a result, it is considered that the method for producing a polymer of the present embodiment can control the molecular weight and obtain a polymer having a narrow molecular weight distribution.
(重合触媒の除去)
 本実施形態の重合体の製造方法で用いる重合触媒は、遷移金属を含まず安価で環境安全性が高い。一方で、重合触媒が重合体に残存することによって着色や耐久性低下の要因となることが懸念される。そのため、重合触媒は反応生成物から除去することが好ましい。
(Removal of polymerization catalyst)
The polymerization catalyst used in the method for producing a polymer of the present embodiment does not contain a transition metal, is inexpensive, and has high environmental safety. On the other hand, there is a concern that the residual polymerization catalyst may cause coloring or deterioration of durability due to remaining in the polymer. Therefore, it is preferable to remove the polymerization catalyst from the reaction product.
 従来の有機化合物触媒は、溶媒溶解性の有機化合物触媒は勿論、担体に担持させた有機化合物触媒であっても、反応中に溶解しうる。そのため、反応生成物から有機化合物触媒を除去することが困難であった。これに対し、本実施形態の重合体の製造方法で用いる重合触媒は、含窒素官能基を有する高分子を含む。このような高分子は、重合反応を行う反応系内に溶解し難いため、反応生成物に残留し難い。 The conventional organic compound catalyst can be dissolved during the reaction not only as a solvent-soluble organic compound catalyst but also as an organic compound catalyst supported on a carrier. Therefore, it was difficult to remove the organic compound catalyst from the reaction product. On the other hand, the polymerization catalyst used in the method for producing a polymer of the present embodiment contains a polymer having a nitrogen-containing functional group. Since such a polymer is difficult to dissolve in the reaction system in which the polymerization reaction is carried out, it is difficult to remain in the reaction product.
 このような本実施形態の重合体の製造方法においては、簡便な方法により、重合反応後の反応生成物から用いた重合触媒を容易に除去できる。すなわち、本実施形態の重合体の製造方法においては、ビニル単量体の重合反応をさせた後に、重合触媒を除去する工程を有することが好ましい。除去の方法としては、遠心分離や濾過等が挙げられる。 In such a method for producing a polymer of the present embodiment, the polymerization catalyst used can be easily removed from the reaction product after the polymerization reaction by a simple method. That is, in the method for producing a polymer of the present embodiment, it is preferable to have a step of removing the polymerization catalyst after the polymerization reaction of the vinyl monomer is carried out. Examples of the removal method include centrifugation and filtration.
 上述の方法により反応生成物から除去した重合触媒は、適宜有機溶媒で洗浄し乾燥させることで、重合触媒として再利用することができる。 The polymerization catalyst removed from the reaction product by the above method can be reused as a polymerization catalyst by appropriately washing with an organic solvent and drying.
 洗浄に用いる有機溶媒としては、トルエン等の炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒;ジクロロメタン、クロロホルム等のハロゲン化炭化水素系溶媒;アセトン等のケトン系溶媒;メタノール等のアルコール系溶媒;アセトニトリル等のニトリル系溶媒;酢酸エチル等のビニルエステル系溶媒;エチレンカーボネート等のカーボネート系溶媒;および超臨界二酸化炭素を例示できる。 The organic solvent used for cleaning includes a hydrocarbon solvent such as toluene; an ether solvent such as diethyl ether and tetrahydrofuran; a halogenated hydrocarbon solvent such as dichloromethane and chloroform; a ketone solvent such as acetone; an alcohol solvent such as methanol. Examples thereof include a solvent; a nitrile solvent such as acetonitrile; a vinyl ester solvent such as ethyl acetate; a carbonate solvent such as ethylene carbonate; and supercritical carbon dioxide.
 洗浄に用いる有機溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。 As the organic solvent used for cleaning, one type may be used alone, or two or more types may be used in combination.
 以上のような重合触媒によれば、遷移金属系の触媒を使用することなくリビングラジカル重合において高い活性を有し、なおかつ簡便な方法で除去が可能な重合触媒を提供することができる。 According to the above-mentioned polymerization catalyst, it is possible to provide a polymerization catalyst having high activity in living radical polymerization without using a transition metal-based catalyst and which can be removed by a simple method.
 本実施形態の重合体の製造方法で製造された重合体は、上述の通り着色や耐久性低下の要因となる重合触媒を簡便な方法で除去できるため、用途について特に限定されない。具体的な用途としては、分散剤、樹脂添加剤、塗料用組成物、リソグラフィー用重合体を例示できる。 The polymer produced by the method for producing a polymer of the present embodiment is not particularly limited in use because the polymerization catalyst that causes coloring and deterioration of durability can be removed by a simple method as described above. Specific examples thereof include dispersants, resin additives, coating compositions, and lithographic polymers.
 以上、本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されない。上述した例において示した各構成の組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to such an example. The combination of each configuration shown in the above-mentioned example is an example, and can be variously changed based on the design requirements and the like without departing from the gist of the present invention.
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the following description.
 以下の説明において、「eq」は「モル当量」を示す。 In the following explanation, "eq" indicates "molar equivalent".
[数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)]
 重合により得られた重合体の数平均分子量(Mn)および重量平均分子量(Mw)は、GPC(東ソー社製、「HLC-8220」)による測定結果から、PMMA(ポリメチルメタクリレート)の検量線を用いて求めた。
 測定条件は、以下のとおりとした。
(測定条件)
 カラム:TSK GUARD COLUMN SUPER HZ-L(東ソー株式会社製、4.6mm×35mm)
とTSK-GEL SUPER HZM-N(東ソー株式会社製、6.0mm×150mm)の直列接続
 溶離液:テトラヒドロフラン
 測定温度:40℃
 流速:0.6mL/分
[Number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn)]
The number average molecular weight (Mn) and weight average molecular weight (Mw) of the polymer obtained by the polymerization are measured by GPC (manufactured by Tosoh Corporation, "HLC-8220"), and the calibration curve of PMMA (polymethylmethacrylate) is used. Obtained using.
The measurement conditions were as follows.
(Measurement condition)
Column: TSK GUARD COLUMN SUPER HZ-L (manufactured by Tosoh Corporation, 4.6 mm x 35 mm)
And TSK-GEL SUPER HZM-N (manufactured by Tosoh Corporation, 6.0 mm x 150 mm) in series Eluent: tetrahydrofuran Measurement temperature: 40 ° C
Flow velocity: 0.6 mL / min
 分子量分布(Mw/Mn)は、上述の方法で求めたMnおよびMwを用いて算出した。 The molecular weight distribution (Mw / Mn) was calculated using Mn and Mw obtained by the above method.
[単量体転化率]
 実施例および比較例の単量体転化率(%)は、核磁気共鳴装置(Bruker社製、「BBF0400」、400MHz)を用い、測定溶媒にCDClを用いたH-NMR測定の測定値から求めた。具体的には、残存単量体に由来するピークの積算値と、生成重合体に由来するピークの積算値とを用い、残存単量体量と生成重合体量の総和に対する生成重合体量の比率として算出した。
[Polymer conversion rate]
The monomer conversion rate (%) of Examples and Comparative Examples is a measured value of 1 H-NMR measurement using a nuclear magnetic resonance apparatus (Bruker, "BBF0400", 400 MHz) and CDCl 3 as a measurement solvent. I asked for it. Specifically, using the integrated value of the peak derived from the residual monomer and the integrated value of the peak derived from the produced polymer, the amount of the produced polymer relative to the total amount of the residual monomer amount and the produced polymer amount. Calculated as a ratio.
[ヨウ素原子の検出]
 重合触媒に含まれるヨウ素またはヨウ素原子含有イオンの検出は、XPS(X線光電子分光法、SPECS社製、「Phoibos100」、単色化X線光源)測定により行った。
[Detection of iodine atom]
Iodine or iodine atom-containing ions contained in the polymerization catalyst were detected by XPS (X-ray photoelectron spectroscopy, SPECS, "Phoibos 100", monochromatic X-ray light source) measurement.
[重合体のYI]
 実施例および比較例において得られた重合体1.0gをクロロホルム10mLに溶解した溶液の、380nm-780nmにおける分光光線透過率を(株)日立ハイテクフィールディング製U-3300(商品名)を用いて測定し、イエローインデックス(YI)を算出した。
[Polymer YI]
The spectral light transmittance of a solution obtained by dissolving 1.0 g of the polymer obtained in Examples and Comparative Examples in 10 mL of chloroform at 380 nm to 780 nm was measured using U-3300 (trade name) manufactured by Hitachi High-Tech Fielding Co., Ltd. Then, the yellow index (YI) was calculated.
 YIは、三刺激値X、Y、Zにもとづいて、JIS K7105記載の下式によって算出した。なお、YIの数値が大きいほど、黄色みが強く、着色度合いが高いことを表している。
 イエローインデックス(YI)=100(1.28X-1.06Z)/Y
YI was calculated by the following formula described in JIS K7105 based on the tristimulus values X, Y, and Z. The larger the value of YI, the stronger the yellowness and the higher the degree of coloring.
Yellow index (YI) = 100 (1.28X-1.06Z) / Y
 本実施例における略称は、以下のとおりである。 The abbreviations in this example are as follows.
<重合触媒(A)>
 WA-30:ポリスチレン系イオン交換樹脂(三菱ケミカル社製、ダイヤイオン(登録商標)WA-30)
 WA-21J:ポリスチレン系イオン交換樹脂(三菱ケミカル社製、ダイヤイオン(登録商標)WA-21J)
 HP-20:ポリスチレン系合成吸着剤(三菱ケミカル社製、ダイヤイオン(登録商標)HP-20)
 MSA Chloride:ポリスチレン系イオン交換樹脂(ダウ・ケミカル・カンパニー社製、ダウエックス・マラソン(登録商標))
 A21:ポリスチレン系イオン交換樹脂(ダウ・ケミカル・カンパニー社製、アンバーリスト(登録商標))
 IRA-96:ポリスチレン系イオン交換樹脂(ダウ・ケミカル・カンパニー社製、アンバーライト(登録商標))
 BNI:テトラブチルアンモニウムヨージド(東京化成工業社製)
<Polymerization catalyst (A)>
WA-30: Polystyrene ion exchange resin (manufactured by Mitsubishi Chemical Corporation, Diaion (registered trademark) WA-30)
WA-21J: Polystyrene ion exchange resin (manufactured by Mitsubishi Chemical Corporation, Diaion (registered trademark) WA-21J)
HP-20: Polystyrene-based synthetic adsorbent (manufactured by Mitsubishi Chemical Corporation, Diaion (registered trademark) HP-20)
MSA Chloride: Polystyrene ion exchange resin (Dow Chemical Company, Dowex Marathon (registered trademark))
A21: Polystyrene ion exchange resin (Amberlist (registered trademark) manufactured by Dow Chemical Company, Ltd.)
IRA-96: Polystyrene ion exchange resin (Amberlite (registered trademark) manufactured by Dow Chemical Company, Ltd.)
BNI: Tetrabutylammonium iodide (manufactured by Tokyo Chemical Industry Co., Ltd.)
 HP-20は、下記式(2-1)に示す繰り返し単位を有する高分子であり、含窒素官能基を有していない。 HP-20 is a polymer having a repeating unit represented by the following formula (2-1) and does not have a nitrogen-containing functional group.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 重合触媒として用いられる高分子が架橋していることは、以下の方法で確認した。
 高分子2gをテトラヒドロフラン8mlに加えて浸漬し、70℃で還流させながら24時間加熱した後、高分子が溶け残る場合、高分子が架橋していると判断した。
It was confirmed by the following method that the polymer used as the polymerization catalyst was crosslinked.
When 2 g of the polymer was added to 8 ml of tetrahydrofuran, immersed, and heated for 24 hours while refluxing at 70 ° C., if the polymer remained undissolved, it was determined that the polymer was crosslinked.
<ビニル単量体(B)>
 MMA:メタクリル酸メチル(東京化成工業社製)
 EHMA:メタクリル酸2-エチルヘキシル(東京化成工業社製)
 LMA:メタクリル酸ラウリル(東京化成工業社製)
<Vinyl monomer (B)>
MMA: Methyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
EHMA: 2-ethylhexyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
LMA: Lauryl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
<有機ヨウ素化合物(C)>
 CP-I:2-ヨード-2-シアノプロパン(東京化成工業社製)
 EPh-I:エチル-2-ヨードフェニルアセテート(東京化成工業社製)
 PMMA-I:ヨウ素化末端ポリメチルメタクリレート
 なお、PMMA-Iは定法に従い合成して用いた。
<Organoiodine compound (C)>
CP-I: 2-iodine-2-cyanopropane (manufactured by Tokyo Chemical Industry Co., Ltd.)
EPh-I: Ethyl-2-iodophenyl acetate (manufactured by Tokyo Chemical Industry Co., Ltd.)
PMMA-I: Iodinated terminal polymethylmethacrylate PMMA-I was synthesized and used according to a conventional method.
<ラジカル重合開始剤(D)>
 AIBN:2,2’-アゾビス(イソブチロニトリル)(東京化成工業社製)
 V-65:2,2’-アゾビス(2,4-ジメチルバレロニトリル)(東京化成工業社製)
<Radical polymerization initiator (D)>
AIBN: 2,2'-azobis (isobutyronitrile) (manufactured by Tokyo Chemical Industry Co., Ltd.)
V-65: 2,2'-azobis (2,4-dimethylvaleronitrile) (manufactured by Tokyo Chemical Industry Co., Ltd.)
<ヨウ素>
 I:ヨウ素(東京化成工業社製)
<Iodine>
I 2 : Iodine (manufactured by Tokyo Chemical Industry Co., Ltd.)
[製造例:4級化WA-30の合成]
 WA-30を2.0gと、1-ヨードヘキサン(東京化成工業社製)を1.21g(5.61mmol)とを混合し、テトラヒドロフラン(東京化成工業社製)8ml中に均一に分散させた。この分散溶液をガラス製反応容器に移し、還流状態で加熱撹拌しながら24時間反応させて、反応溶液を得た。
[Manufacturing example: Synthesis of quaternized WA-30]
2.0 g of WA-30 and 1.21 g (5.61 mmol) of 1-iodohexane (manufactured by Tokyo Chemical Industry Co., Ltd.) were mixed and uniformly dispersed in 8 ml of tetrahydrofuran (manufactured by Tokyo Chemical Industry Co., Ltd.). .. This dispersion solution was transferred to a glass reaction vessel and reacted for 24 hours with heating and stirring in a reflux state to obtain a reaction solution.
 得られた反応溶液に内部標準としてベンゼン(東京化成工業社製)を精秤して加え、テトラヒドロフラン中の1-ヨードヘキサンの量を反応前後で比較し反応率を求めたところ、1-ヨードヘキサンの反応率は83%(4.74mmol)であった。 Benzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was precisely added to the obtained reaction solution as an internal standard, and the amount of 1-iodohexane in tetrahydrofuran was compared before and after the reaction to determine the reaction rate. The reaction rate of iodine was 83% (4.74 mmol).
 WA-30が有する含窒素官能基が過剰の1-ヨードヘキサンと反応すると、未反応の1-ヨードヘキサンが反応液中に残ることになる。その反応液中に濃度既知の内部標準(ベンゼン、東京化成工業社製)を加え、反応液のH-NMRを測定して残っている1-ヨードヘキサンの量を求めた。 When the nitrogen-containing functional group of WA-30 reacts with excess 1-iodohexane, unreacted 1-iodohexane remains in the reaction solution. An internal standard having a known concentration (benzene, manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the reaction solution, and 1 H-NMR of the reaction solution was measured to determine the amount of 1-iodohexane remaining.
 続いて、最初に加えた1-ヨードヘキサンの量から残存量を差し引いてWA-30と反応した1-ヨードヘキサンの量を求めた。 Subsequently, the residual amount was subtracted from the amount of 1-iodohexane added first to determine the amount of 1-iodohexane that reacted with WA-30.
 WA-30は、含窒素官能基としてジメチルアミノ基を有するため、WA-30が1gあたりに反応した1-ヨードヘキサンの量から窒素原子のモル当量を算出することができる。 Since WA-30 has a dimethylamino group as a nitrogen-containing functional group, the molar equivalent of nitrogen atom can be calculated from the amount of 1-iodohexane reacted per 1 g of WA-30.
 図1は、得られた反応生成物のXPSチャートである。図1に示す左のチャートはワイドスキャン分析の結果、右のチャートはナロースキャン分析の結果を示す。 FIG. 1 is an XPS chart of the obtained reaction product. The chart on the left shown in FIG. 1 shows the result of wide scan analysis, and the chart on the right shows the result of narrow scan analysis.
 図1に示すように、反応生成物は、WA-30では検出されなかった629eVと617eVにヨウ素原子の3d電子に由来したピークが検出されることと、窒素原子由来のピークが399eVから402eVにシフトしたことを確認した。以上の結果から、上記反応による生成物は、WA-30の含窒素官能基に1-ヨードヘキサンが反応し4級化するとともに、カウンターイオンとしてヨウ素イオンが結合した化合物であることと判断した。 As shown in FIG. 1, in the reaction products, peaks derived from the 3d electron of the iodine atom were detected at 629 eV and 617 eV, which were not detected by WA-30, and the peak derived from the nitrogen atom changed from 399 eV to 402 eV. I confirmed that it had shifted. From the above results, it was determined that the product obtained by the above reaction was a compound in which 1-iodohexane was reacted with the nitrogen-containing functional group of WA-30 to quaternize it, and iodine ion was bound as a counter ion.
 反応生成物は、濾過により回収し、テトラヒドロフランで繰り返し洗浄した後、減圧下で乾燥させた。 The reaction product was recovered by filtration, washed repeatedly with tetrahydrofuran, and then dried under reduced pressure.
 以下の説明では、得られた生成物を「4級化WA-30」と称する。得られた4級化WA-30は、数平均分子量10000以上である。 In the following description, the obtained product will be referred to as "quaternized WA-30". The obtained quaternized WA-30 has a number average molecular weight of 10,000 or more.
[実施例1]
 重合触媒(A)として4級化WA-30、ビニル単量体(B)としてMMA、有機ヨウ素化合物(C)としてCP-Iを表1に示される組成で秤量し重合性組成物を調製した。
[Example 1]
A quaternized WA-30 as the polymerization catalyst (A), MMA as the vinyl monomer (B), and CP-I as the organic iodine compound (C) were weighed with the compositions shown in Table 1 to prepare a polymerizable composition. ..
 表1に示される重合触媒(A)の組成単位(eq/質量%)は、重合触媒に含まれる窒素原子の当量数および重合触媒とビニル単量体(B)の合計質量に対する重合触媒の質量比を意味する。なお、後述する表2および表3も同様である。 The composition unit (eq / mass%) of the polymerization catalyst (A) shown in Table 1 is the mass of the polymerization catalyst with respect to the equivalent number of nitrogen atoms contained in the polymerization catalyst and the total mass of the polymerization catalyst and the vinyl monomer (B). Means ratio. The same applies to Tables 2 and 3 described later.
 得られた重合性組成物をガラス製反応容器に移し、気相を窒素で置換した後、撹拌させながら70℃で表1に記載した時間だけ重合反応させた後、これを濾過して重合体を得た。 The obtained polymerizable composition was transferred to a glass reaction vessel, the gas phase was replaced with nitrogen, and then the polymerization reaction was carried out at 70 ° C. for the time shown in Table 1 with stirring, and then the polymer was filtered. Got
 表1に示される重合触媒(A)、有機ヨウ素化合物(C)、ラジカル重合開始剤(D)の量は、ビニル単量体(B)8000モル当量に対して、使用したモル当量を意味する。また、重合触媒に含まれる含窒素官能基のモル当量比は、添加した有機ヨウ素化合物およびラジカル重合開始剤との合計に対するモル当量比を意味する。なお、後述する表2も同様である。 The amounts of the polymerization catalyst (A), the organic iodine compound (C), and the radical polymerization initiator (D) shown in Table 1 mean the molar equivalents used with respect to 8000 molar equivalents of the vinyl monomer (B). .. Further, the molar equivalent ratio of the nitrogen-containing functional group contained in the polymerization catalyst means the molar equivalent ratio to the total of the added organic iodine compound and the radical polymerization initiator. The same applies to Table 2 described later.
[実施例2]
 重合性組成物の組成を表1に示される組成とし、含窒素官能基を有する高分子とヨウ素とを含む重合触媒を用いたこと以外は、実施例1と同様にして重合体を得た。
[Example 2]
A polymer was obtained in the same manner as in Example 1 except that the composition of the polymerizable composition was set to the composition shown in Table 1 and a polymerization catalyst containing a polymer having a nitrogen-containing functional group and iodine was used.
[実施例3~4]
 重合性組成物の組成を表1に示される組成とし、ラジカル重合開始剤(D)としてV-65を用いたこと以外は、実施例2と同様にして重合体を得た。
[Examples 3 to 4]
A polymer was obtained in the same manner as in Example 2 except that the composition of the polymerizable composition was the composition shown in Table 1 and V-65 was used as the radical polymerization initiator (D).
[実施例5~6]
 重合性組成物の組成を表1に示される組成とし、ラジカル重合開始剤(D)としてAIBNを用いたこと以外は、実施例3と同様にして重合体を得た。
[Examples 5 to 6]
A polymer was obtained in the same manner as in Example 3 except that the composition of the polymerizable composition was the composition shown in Table 1 and AIBN was used as the radical polymerization initiator (D).
[実施例7~8]
 重合性組成物の組成を表1に示される組成とし、溶媒としてトルエン(東京化成工業社製)を加えたこと以外は、実施例5と同様にして重合体を得た。
[Examples 7 to 8]
A polymer was obtained in the same manner as in Example 5 except that the composition of the polymerizable composition was the composition shown in Table 1 and toluene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added as a solvent.
 表1に示される溶媒の組成単位(質量%)は、溶媒を含む全体の量を100質量%とした場合の溶剤の割合を意味する。なお、後述する表2および表3も同様である。 The composition unit (mass%) of the solvent shown in Table 1 means the ratio of the solvent when the total amount including the solvent is 100% by mass. The same applies to Tables 2 and 3 described later.
[実施例9~10]
 重合性組成物の組成を表1に示される組成とし、ビニル単量体(B)としてEHMAを用いたこと以外は、実施例7と同様にして重合体を得た。
[Examples 9 to 10]
A polymer was obtained in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 1 and EHMA was used as the vinyl monomer (B).
[実施例11~12]
 重合性組成物の組成を表1に示される組成とし、ビニル単量体(B)としてLMAを用いたこと以外は、実施例7と同様にして重合体を得た。
[Examples 11 to 12]
A polymer was obtained in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 1 and LMA was used as the vinyl monomer (B).
[実施例13~15]
 重合性組成物の組成を表2に示される組成とし、重合触媒(A)としてWA-30を用いたこと以外は、実施例7と同様にして重合体を得た。
[Examples 13 to 15]
A polymer was obtained in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 2 and WA-30 was used as the polymerization catalyst (A).
[実施例16~17]
 重合性組成物の組成を表2に示される組成とし、有機ヨウ素化合物(C)としてEPh-Iを用いたこと以外は、実施例11と同様にして重合体を得た。
[Examples 16 to 17]
A polymer was obtained in the same manner as in Example 11 except that the composition of the polymerizable composition was the composition shown in Table 2 and EPh-I was used as the organic iodine compound (C).
[実施例18]
 重合性組成物の組成を表2に示される組成としたこと以外は、実施例7と同様にして重合体を得た。
[Example 18]
A polymer was obtained in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 2.
[実施例19]
 実施例18で用いた4級化WA-30を遠心分離により回収した。回収した固形分をテトラヒドロフラン10mlに分散させた後に遠心分離で回収することを1回の洗浄として、固形分を3回洗浄した。その後、回収した固形分を減圧下で乾燥させて4級化WA-30(再利用1回目)を得た。
[Example 19]
The quaternized WA-30 used in Example 18 was recovered by centrifugation. The solid content was washed three times, with the recovery of the recovered solid content in 10 ml of tetrahydrofuran and then recovery by centrifugation as one wash. Then, the recovered solid content was dried under reduced pressure to obtain quaternized WA-30 (first reuse).
 重合性組成物の組成を表2に示される組成とし、重合触媒(A)として4級化WA-30(再利用1回目)を用いたこと以外は、実施例7と同様にして重合体を得た。 The polymer was prepared in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 2 and the quaternized WA-30 (first reuse) was used as the polymerization catalyst (A). Obtained.
[実施例20]
 実施例19で用いた4級化WA-30を遠心分離により回収し、実施例19と同じ方法で3回洗浄した後減圧下で乾燥させて4級化WA-30(再利用2回目)を得た。
 重合性組成物の組成を表2に示される組成とし、重合触媒(A)として4級化WA-30(再利用2回目)を用いたこと以外は、実施例7と同様にして重合体を得た。
[Example 20]
The quaternized WA-30 used in Example 19 was recovered by centrifugation, washed three times in the same manner as in Example 19, and then dried under reduced pressure to obtain the quaternized WA-30 (second reuse). Obtained.
The polymer was prepared in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 2 and the quaternized WA-30 (second reuse) was used as the polymerization catalyst (A). Obtained.
[実施例21]
 実施例20で用いた4級化WA-30を遠心分離により回収し、実施例19と同じ方法で3回洗浄した後減圧下で乾燥させて4級化WA-30(再利用3回目)を得た。
[Example 21]
The quaternized WA-30 used in Example 20 was recovered by centrifugation, washed three times in the same manner as in Example 19, and then dried under reduced pressure to obtain the quaternized WA-30 (third reuse). Obtained.
 重合性組成物の組成を表2に示される組成とし、重合触媒(A)として4級化WA-30(再利用3回目)を用いたこと以外は、実施例7と同様にして重合体を得た。 The polymer was prepared in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 2 and the quaternized WA-30 (third reuse) was used as the polymerization catalyst (A). Obtained.
[実施例22]
 実施例21で用いた4級化WA-30を遠心分離により回収し、実施例19と同じ方法で3回洗浄した後減圧下で乾燥させて4級化WA-30(再利用4回目)を得た。
[Example 22]
The quaternized WA-30 used in Example 21 was recovered by centrifugation, washed three times in the same manner as in Example 19, and then dried under reduced pressure to obtain the quaternized WA-30 (fourth reuse). Obtained.
 重合性組成物の組成を表2に示される組成とし、重合触媒(A)として4級化WA-30(再利用4回目)を用いたこと以外は、実施例7と同様にして重合体を得た。 The polymer was prepared in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 2 and the quaternized WA-30 (fourth reuse) was used as the polymerization catalyst (A). Obtained.
[実施例23]
 重合性組成物の組成を表2に示される組成とし、有機ヨウ素化物(C)としてPMMA-Iを用いたこと以外は、実施例11と同様にして重合体を得た。得られた重合体は、PMMAとPLMA(ポリラウリルメタクリレート)から構成されるブロック共重合体であった。
[実施例24]
 重合性組成物の組成を表3に示される組成とし、重合触媒(A)としてMSA Chlorideとヨウ素との混合物を用いたこと以外は、実施例7と同様にして重合体を得た。
[実施例25]
 重合性組成物の組成を表3に示される組成とし、重合触媒(A)としてA21とヨウ素との混合物を用いたこと以外は、実施例7と同様にして重合体を得た。
[実施例26]
 重合性組成物の組成を表3に示される組成とし、重合触媒(A)としてIRA-96とヨウ素との混合物を用いたこと以外は、実施例7と同様にして重合体を得た。
[実施例27]
 重合性組成物の組成を表3に示される組成とし、重合触媒(A)としてWA-21Jとヨウ素との混合物に変更し、ヨウ素量を表3に示した量としたこと以外は、実施例1と同様にして重合体を得た。
[Example 23]
A polymer was obtained in the same manner as in Example 11 except that the composition of the polymerizable composition was the composition shown in Table 2 and PMMA-I was used as the organic iodine compound (C). The obtained polymer was a block copolymer composed of PMMA and PLMA (polylauryl methacrylate).
[Example 24]
A polymer was obtained in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 3 and a mixture of MSA Chloride and iodine was used as the polymerization catalyst (A).
[Example 25]
A polymer was obtained in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 3 and a mixture of A21 and iodine was used as the polymerization catalyst (A).
[Example 26]
A polymer was obtained in the same manner as in Example 7 except that the composition of the polymerizable composition was the composition shown in Table 3 and a mixture of IRA-96 and iodine was used as the polymerization catalyst (A).
[Example 27]
Examples except that the composition of the polymerizable composition was the composition shown in Table 3, the polymerization catalyst (A) was changed to a mixture of WA-21J and iodine, and the amount of iodine was the amount shown in Table 3. A polymer was obtained in the same manner as in 1.
[比較例1]
 重合性組成物の組成を表2に示される組成とし、4級化WA-30を用いなかったこと以外は、実施例7と同様にして実施した。
[Comparative Example 1]
The composition of the polymerizable composition was set to the composition shown in Table 2, and the same procedure as in Example 7 was carried out except that the quaternized WA-30 was not used.
[比較例2]
 重合性組成物の組成を表2に示される組成とし、重合触媒(A)としてHP-20を用いたこと以外は、実施例7と同様にして実施した。
[比較例3]
 重合性組成物の組成を表3に示される組成とし、重合触媒(A)としてBNI、溶媒としてトルエンを用いたこと以外は、実施例1と同様にして実施した。
[Comparative Example 2]
The composition of the polymerizable composition was the composition shown in Table 2, and the same procedure as in Example 7 was carried out except that HP-20 was used as the polymerization catalyst (A).
[Comparative Example 3]
The composition of the polymerizable composition was the composition shown in Table 3, and the same procedure as in Example 1 was carried out except that BNI was used as the polymerization catalyst (A) and toluene was used as the solvent.
 各実施例、比較例の重合性組成物の組成、重合条件、Mn、Mw/Mn、単量体転化率およびYIの測定結果を表1~3に示す。 Tables 1 to 3 show the measurement results of the composition, polymerization conditions, Mn, Mw / Mn, monomer conversion rate and YI of the polymerizable compositions of each Example and Comparative Example.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1~3に示すように、重合触媒(A)として含窒素官能基を有する高分子を用い、有機ヨウ素化合物の存在下でビニル単量体(B)を重合させて得た実施例1~18および23~26は、所定の重合時間以内で一定の単量体転化率を得ることができた。また得られた重合体は、分子量や分子量分布が制御され、Mw/Mnが小さい値となった。 As shown in Tables 1 to 3, Examples 1 to 3 obtained by polymerizing a vinyl monomer (B) in the presence of an organic iodine compound using a polymer having a nitrogen-containing functional group as a polymerization catalyst (A). For 18 and 23 to 26, a constant monomer conversion rate could be obtained within a predetermined polymerization time. Further, in the obtained polymer, the molecular weight and the molecular weight distribution were controlled, and Mw / Mn became a small value.
 これらの結果を、重合触媒(A)として含窒素官能基を有する低分子であるBNIを用いた比較例3と比較すると、実施例1~18および23~26は除去が容易な不均一系触媒を用いているにも関わらず、低分子触媒を用いた場合と同程度の単量体転化率で、同様に分子量や分子量分布が制御された重合体が得られている。更に、実施例17は、比較例3と比較してYIが低く、着色の低い重合体が得られていれることが示された。 Comparing these results with Comparative Example 3 using BNI, which is a small molecule having a nitrogen-containing functional group as the polymerization catalyst (A), Examples 1 to 18 and 23 to 26 are heterogeneous catalysts that can be easily removed. Although the above is used, a polymer having a molecular weight and a molecular weight distribution controlled in the same manner as when a low molecular weight catalyst is used is obtained. Furthermore, it was shown that in Example 17, a polymer having a lower YI and a lower coloration was obtained as compared with Comparative Example 3.
 さらに、実施例19~22の結果から、含窒素官能基を有する高分子を再利用した場合でも、再利用前である実施例18と同等の触媒能を有することが示された。 Furthermore, from the results of Examples 19 to 22, it was shown that even when the polymer having a nitrogen-containing functional group is reused, it has the same catalytic ability as that of Example 18 before the reuse.
 また、実施例23の結果から、含窒素官能基を有する高分子から構成される重合触媒がブロック共重合体の製造にも有用であることが示された。 Further, from the results of Example 23, it was shown that a polymerization catalyst composed of a polymer having a nitrogen-containing functional group is also useful for the production of block copolymers.
 一方、重合触媒(A)を用いない比較例1においては、単量体転化率が0%であり、重合が全く進行していなかった。 On the other hand, in Comparative Example 1 in which the polymerization catalyst (A) was not used, the monomer conversion rate was 0%, and the polymerization did not proceed at all.
 また、重合触媒(A)として含窒素官能基を有しない高分子であるHP-20を用いた比較例2においては、単量体転化率が0%であり、重合が全く進行していなかった。 Further, in Comparative Example 2 in which HP-20, which is a polymer having no nitrogen-containing functional group, was used as the polymerization catalyst (A), the monomer conversion rate was 0%, and the polymerization did not proceed at all. ..
 以上の結果より、本発明が有用であることが分かった。 From the above results, it was found that the present invention is useful.

Claims (16)

  1.  含窒素官能基を有する高分子から構成される重合触媒、および有機ヨウ素化合物の存在下で、ビニル単量体を重合させて重合体を得る工程を有する重合体の製造方法。 A method for producing a polymer, which comprises a step of polymerizing a vinyl monomer in the presence of a polymerization catalyst composed of a polymer having a nitrogen-containing functional group and an organic iodine compound to obtain a polymer.
  2.  前記重合触媒がさらに、ヨウ素またはヨウ素原子含有イオンを含む、請求項1に記載の重合体の製造方法。 The method for producing a polymer according to claim 1, wherein the polymerization catalyst further contains iodine or an iodine atom-containing ion.
  3.  前記高分子が架橋高分子である、請求項1または2に記載の重合体の製造方法。 The method for producing a polymer according to claim 1 or 2, wherein the polymer is a crosslinked polymer.
  4.  前記高分子がヨウ素を吸着しうる高分子である、請求項1から3のいずれか1項に記載の重合体の製造方法。 The method for producing a polymer according to any one of claims 1 to 3, wherein the polymer is a polymer capable of adsorbing iodine.
  5.  前記高分子が主としてビニル単量体の繰り返し単位を持つ、請求項1から4のいずれか1項に記載の重合体の製造方法。 The method for producing a polymer according to any one of claims 1 to 4, wherein the polymer mainly has a repeating unit of a vinyl monomer.
  6.  前記高分子がポリスチレン骨格またはポリアクリルアミド骨格を有する、請求項5に記載の重合体の製造方法。 The method for producing a polymer according to claim 5, wherein the polymer has a polystyrene skeleton or a polyacrylamide skeleton.
  7.  前記含窒素官能基が、2級アミノ基、3級アミノ基および4級アンモニウム基からなる群から選ばれる少なくとも1種である、請求項1から6のいずれか1項に記載の重合体の製造方法。 The production of the polymer according to any one of claims 1 to 6, wherein the nitrogen-containing functional group is at least one selected from the group consisting of a secondary amino group, a tertiary amino group and a quaternary ammonium group. Method.
  8.  前記含窒素官能基が4級アンモニウム基である、請求項7に記載の重合体の製造方法。 The method for producing a polymer according to claim 7, wherein the nitrogen-containing functional group is a quaternary ammonium group.
  9.  前記4級アンモニウム基のカウンターイオンがハロゲンイオンである、請求項7または8に記載の重合体の製造方法。 The method for producing a polymer according to claim 7 or 8, wherein the counter ion of the quaternary ammonium group is a halogen ion.
  10.  前記カウンターイオンがヨウ素イオンである、請求項9に記載の重合体の製造方法。 The method for producing a polymer according to claim 9, wherein the counter ion is an iodine ion.
  11.  前記重合体を得る工程において、反応系にさらにラジカル重合開始剤を存在させる、請求項1から10のいずれか1項に記載の重合体の製造方法。 The method for producing a polymer according to any one of claims 1 to 10, wherein a radical polymerization initiator is further present in the reaction system in the step of obtaining the polymer.
  12.  前記重合体を得る工程において、反応系にさらにヨウ素を存在させる、請求項11に記載の重合体の製造方法。 The method for producing a polymer according to claim 11, wherein iodine is further present in the reaction system in the step of obtaining the polymer.
  13.  前記重合触媒に含まれる含窒素官能基のモル当量比が、前記有機ヨウ素化合物および前記ラジカル重合開始剤との合計に対して、0.001~200である、請求項11又は12に記載の重合体の製造方法。 The weight according to claim 11 or 12, wherein the molar equivalent ratio of the nitrogen-containing functional group contained in the polymerization catalyst is 0.001 to 200 with respect to the total of the organic iodine compound and the radical polymerization initiator. Method of manufacturing coalescence.
  14.  前記ビニル単量体が、スチレン系単量体及び(メタ)アクリレート系単量体からなる群から選ばれる少なくとも1種である、請求項1から13のいずれか1項に記載の重合体の製造方法。 The production of the polymer according to any one of claims 1 to 13, wherein the vinyl monomer is at least one selected from the group consisting of a styrene-based monomer and a (meth) acrylate-based monomer. Method.
  15.  前記重合体を得る工程の重合温度が120℃以下である、請求項1から14のいずれか1項に記載の重合体の製造方法。 The method for producing a polymer according to any one of claims 1 to 14, wherein the polymerization temperature in the step of obtaining the polymer is 120 ° C. or lower.
  16.  請求項1から15のいずれか1項に記載の重合体の製造方法において用いられる、含窒素官能基を有する高分子から構成される重合触媒。 A polymerization catalyst composed of a polymer having a nitrogen-containing functional group, which is used in the method for producing a polymer according to any one of claims 1 to 15.
PCT/JP2020/034491 2019-09-13 2020-09-11 Polymer production method and polymerization catalyst WO2021049627A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021545622A JPWO2021049627A1 (en) 2019-09-13 2020-09-11

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019167782 2019-09-13
JP2019167783 2019-09-13
JP2019-167783 2019-09-13
JP2019-167782 2019-09-13

Publications (1)

Publication Number Publication Date
WO2021049627A1 true WO2021049627A1 (en) 2021-03-18

Family

ID=74865988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034491 WO2021049627A1 (en) 2019-09-13 2020-09-11 Polymer production method and polymerization catalyst

Country Status (2)

Country Link
JP (1) JPWO2021049627A1 (en)
WO (1) WO2021049627A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016166A1 (en) * 2009-08-06 2011-02-10 国立大学法人京都大学 Catalyst for living radical polymerization and polymerization method
JP2019094453A (en) * 2017-11-24 2019-06-20 三菱ケミカル株式会社 Polymer and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016166A1 (en) * 2009-08-06 2011-02-10 国立大学法人京都大学 Catalyst for living radical polymerization and polymerization method
JP2019094453A (en) * 2017-11-24 2019-06-20 三菱ケミカル株式会社 Polymer and manufacturing method therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI BIN, SHI YAN, FU ZHIFENG: "Schiff Base as a Novel Kind of Catalyst for Reversible Complexation-Mediated Radical Polymerization of Methyl Methacrylate", JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY, vol. 57, 29 June 2019 (2019-06-29), pages 1653 - 1663, XP055805650 *
WANG CHEN-GANG, CHANG JUN JIE, FOO ELLENDEA YONG JING, NIINO HIROSHI, CHATANI SHUNSUKE, HSU SHU YAO, GOTO ATSUSHI: "Recyclable Solid-Supported Catalysts for Quaternary Ammonium Iodide-Catalyzed Living Radical Polymerization", MACROMOLECULES, vol. 53, 19 December 2019 (2019-12-19), pages 51 - 58, XP055805652 *

Also Published As

Publication number Publication date
JPWO2021049627A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP6800827B2 (en) Improved control of controlled radical polymerization processes
KR101943539B1 (en) Catalyst for Living Radical Polymerization and Polymerization Method
US8378044B2 (en) Living radical polymerization method using alcohol as catalyst
Shen et al. Atom Transfer Radical Polymerization of Methyl Methacrylate Mediated by Copper Bromide− Tetraethyldiethylenetriamine Grafted on Soluble and Recoverable Poly (ethylene-b-ethylene glycol) Supports
EP2147936B1 (en) Novel living radical polymerization method using phosphorus compound or nitrogen compound as catalyst
US8742045B2 (en) Polymerization initiator for living radical polymerization
WO2000056795A1 (en) Catalytic processes for the controlled polymerization of free radically (co)polymerizable monomers and functional polymeric systems prepared thereby
US8575285B2 (en) Catalyst for living radical polymerization
JP2008530306A (en) Modified carbon particles
US8642711B2 (en) Living radical polymerization method
EP2768900A2 (en) Highly functionalized resin blends
WO2015122404A1 (en) Living radical polymerization catalyst, and polymer production method using same
Liu et al. Visible light‐induced controlled radical polymerization of methacrylates with perfluoroalkyl iodide as the initiator in conjugation with a photoredox catalyst fac‐[Ir (ppy)] 3
JP2002532579A (en) Oligomerization, polymerization and copolymerization of substituted and unsubstituted α-methylene-γ-butyrolactone and their products
JP2010059231A (en) Production method of block copolymer
Zhen et al. Atom transfer radical polymerization of solketal acrylate using cyclohexanone as the solvent
Zhao et al. Synthesis of Poly (methyl acrylate) Grafted onto Silica Particles by Z‐supported RAFT Polymerization
CN101128491B (en) Polymerization catalyst composition and process for production of polymer
WO2021049627A1 (en) Polymer production method and polymerization catalyst
EP1637550B1 (en) Catalytic processes for the controlled polymerization of free radically (co) polymerizable monomers and functional polymeric systems prepared thereby
Pan et al. Iron-mediated (dual) concurrent ATRP–RAFT polymerization of water-soluble poly (ethylene glycol) monomethyl ether methacrylate
Temel et al. Synthesis of H‐shaped complex macromolecular structures by combination of atom transfer radical polymerization, photoinduced radical coupling, ring‐opening polymerization, and iniferter processes
Zhou et al. Zero‐valent bimetallic iron/copper catalyzed SET‐LRP: A dual activation by zero‐valent iron
JP5094578B2 (en) Method for producing graft polymer
Lin et al. Grafting well-defined polymers onto unsaturated PVDF using thiol-ene reactions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863195

Country of ref document: EP

Kind code of ref document: A1