WO2021049443A1 - Ultraviolet curable resin composition, cured product and optical lens - Google Patents

Ultraviolet curable resin composition, cured product and optical lens Download PDF

Info

Publication number
WO2021049443A1
WO2021049443A1 PCT/JP2020/033711 JP2020033711W WO2021049443A1 WO 2021049443 A1 WO2021049443 A1 WO 2021049443A1 JP 2020033711 W JP2020033711 W JP 2020033711W WO 2021049443 A1 WO2021049443 A1 WO 2021049443A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
curable resin
ultraviolet curable
ultraviolet
cured product
Prior art date
Application number
PCT/JP2020/033711
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 淳
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2021545512A priority Critical patent/JPWO2021049443A1/ja
Publication of WO2021049443A1 publication Critical patent/WO2021049443A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/18Oxetanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present invention relates to an ultraviolet curable resin composition, a cured product, and an optical lens.
  • An ultraviolet curable resin composition containing an epoxy resin having a small curing shrinkage is widely used for an optical lens used in a mobile phone, a digital camera, or the like.
  • a wafer level lens is manufactured by molding a plurality of lenses on a substrate using an ultraviolet curable resin composition, and the substrate is cut to separate the plurality of lenses to manufacture a lens module.
  • a mold having a plurality of recesses having a shape corresponding to the lens shape is used, and the UV curable resin composition is sandwiched between each recess of the mold and the substrate.
  • a method of forming a lens by curing a lens is known (Patent Document 1).
  • a mold provided with a shielding portion that blocks ultraviolet rays is used, and only the portion to be a lens in the ultraviolet curable resin composition at the time of curing is partially irradiated with ultraviolet rays to be cured.
  • the excess portion of the lens of the ultraviolet curable resin composition is not irradiated with ultraviolet rays, and is removed by cleaning after the curing step.
  • the ultraviolet curable resin composition using the conventional epoxy resin when the ultraviolet curable resin composition is cured in the exposed portion of ultraviolet rays, the curing of the ultraviolet curable resin composition is likely to proceed even in the unexposed portion. Therefore, the outer diameter dimensional stability of the formed lens tends to be inferior.
  • An object of the present invention is to provide an ultraviolet curable resin composition having excellent outer diameter dimensional stability of a cured product such as a lens, a cured product using the same, and an optical lens.
  • An ultraviolet curable resin composition containing a polyfunctional epoxy resin, an oxetane compound, and a delayed curing agent, which is irradiated with ultraviolet rays at a wavelength of 365 nm and an illuminance of 7 mW / cm 2 for 5 seconds.
  • UV curable resin composition in which 2 is less than 2 minutes.
  • [5] A cured product obtained by curing the ultraviolet curable resin composition according to any one of [1] to [4].
  • the cured product according to [5] which has an Abbe number of 50 or more.
  • an ultraviolet curable resin composition having excellent outer diameter dimensional stability of a cured product such as a lens, a cured product using the same, and an optical lens.
  • FIG. 1 is a cross-sectional view illustrating one step of a method for manufacturing a wafer level lens.
  • FIG. 2 is a cross-sectional view illustrating one step of a method for manufacturing a wafer level lens.
  • FIG. 3 is a cross-sectional view illustrating one step of a method for manufacturing a wafer level lens.
  • FIG. 4 is a cross-sectional view illustrating one step of a method for manufacturing a wafer level lens.
  • FIG. 5 is a cross-sectional view illustrating one step of a method for manufacturing a wafer level lens.
  • the meanings and definitions of the terms in the present specification are as follows.
  • the numerical range represented by "-" means a numerical range including the numerical values before and after ... as the lower limit value and the upper limit value.
  • the “delayed curing agent” means a compound that traps a cation component in a cation polymerization process initiated by irradiating an ultraviolet curable resin composition with ultraviolet rays.
  • the “Abbe number” refers to the inverse dispersibility of a so-called optical lens, and is based on JIS Z 8120: 2001, and is based on the refractive index measured at 25 ⁇ 10 ° C. by an Abbe refractive index meter. It is a value calculated by.
  • ⁇ d (n d -1) / (n F ⁇ n C ) ⁇ ⁇ ⁇ Equation 1
  • ⁇ d is an Abbe number.
  • n d is the refractive index for the d-line (wavelength 587.56 nm).
  • n F is the refractive index for light having a wavelength of 486 nm.
  • n C is the refractive index for light having a wavelength of 656 nm.
  • the ultraviolet curable resin composition of the present invention contains a polyfunctional epoxy resin, an oxetane compound, and a delayed curing agent. Further, the ultraviolet curable resin composition of the present invention satisfies the following conditions.
  • the ultraviolet curable resin composition of the present invention is irradiated with ultraviolet rays having a wavelength of 365 nm and an illuminance of 7 mW / cm 2 for 5 seconds
  • the storage elastic modulus of the ultraviolet curable resin composition is stored before the ultraviolet irradiation from the start of the ultraviolet irradiation. Let t 1 be the time until the time point when the elastic modulus becomes 100 times.
  • the ultraviolet curable resin composition of the present invention when the ultraviolet curable resin composition of the present invention is irradiated with ultraviolet rays having a wavelength of 365 nm and an illuminance of 7 mW / cm 2 for 20 seconds, the storage elastic modulus of the ultraviolet curable resin composition is before the ultraviolet irradiation from the start of the ultraviolet irradiation.
  • Let t 2 be the time until the time when it becomes 100 times the storage elastic modulus of. At this time, in the ultraviolet curable resin composition of the present invention, t 1 is more than 2 minutes and t 2 is less than 2 minutes.
  • the storage elastic modulus (unit: Pa) of the ultraviolet curable resin composition is a value measured at 25 ° C. and can be measured by a rheometer. Specifically, at 25 ° C., monitoring of the storage elastic modulus of the ultraviolet curable resin composition by a rheometer was started under dark conditions, and ultraviolet rays having a wavelength of 365 nm and an illuminance of 7 mW / cm 2 were applied to the ultraviolet curable resin composition for 5 seconds. After irradiation, the conditions are dark again. Then, from the start of irradiation of the ultraviolet rays and the time until the time when the storage modulus of the ultraviolet curable resin composition is 100 times the storage elastic modulus before the ultraviolet irradiation and t 1. t 2 can be measured by the same method as t 1 except that the irradiation time of ultraviolet rays is 20 seconds.
  • the ultraviolet curable resin composition of the present invention satisfies the above conditions, the contrast between the curing speeds of the exposed portion and the unexposed portion of ultraviolet rays can be increased in the production of the cured product by the imprint method. As a result, while the exposed portion is sufficiently cured, the curing of the unexposed portion can be sufficiently suppressed and removed by cleaning, so that the obtained cured product has excellent outer diameter dimensional stability.
  • t 1 is more than 2 minutes, and it is easy to sufficiently suppress the curing of the unexposed portion of ultraviolet rays. Considering that the unexposed portion is washed in a later step, t 1 is preferably 3 minutes or longer, more preferably 5 minutes or longer. The upper limit of t 1 is not particularly limited, but is substantially about 30 minutes.
  • t 2 is less than 2 minutes, preferably less than 1 minute, more preferably less than 45 seconds, from the viewpoint of curability of the exposed portion of ultraviolet rays.
  • the lower limit of t 2 is not particularly limited, but is substantially about 15 seconds.
  • the difference between t 1 and t 2 (t 1- t 2 ) is 60 seconds or more because the contrast between the curing speeds of the exposed and unexposed areas of ultraviolet rays is large and the obtained cured product has excellent outer diameter dimensional stability. Is preferable, 120 seconds or more is more preferable, and 300 seconds or more is further preferable.
  • the upper limit of the difference (t 1 to t 2 ) is not particularly limited, but is substantially about 600 seconds.
  • the adjustment of t 1 and t 2 of the ultraviolet curable resin composition of the present invention can be performed by adjusting the content of the delayed curing agent.
  • t 1 and t 2 are described above. It can be adjusted to meet the conditions. Delay t 1 and t 2 As the content increases the curing agent is reduced, t 1 and t 2 As the content of the delay curing agent is less tends to increase.
  • the slope k 1 is preferably less than 500, more preferably less than 100.
  • the cured contrast between the cured portion and the uncured portion is high, and the viscosity of the resin in the uncured portion is kept low, which is the object of the present invention. Outer diameter control becomes easier.
  • the inclination k 2 is preferably 1000 or more, and more preferably 10000 or more.
  • the slope k 2 is equal to or greater than the lower limit of the above range, the curing rate is unlikely to be extremely slow as compared with a general UV curing system. That is, the UV curing tact in the fabrication of the wafer level lens is shortened, which is advantageous in terms of productivity.
  • the polyfunctional epoxy resin is an epoxy resin having two or more epoxy groups in one molecule.
  • the polyfunctional epoxy resin include a polyfunctional aliphatic epoxy resin and a polyfunctional aromatic epoxy resin. Of these, a polyfunctional aliphatic epoxy resin is preferable, and a polyfunctional alicyclic epoxy resin is more preferable, from the viewpoint of transparency, heat resistance, and resistance to environmental reliability of the cured product in the visible light region.
  • polyfunctional alicyclic epoxy resin examples include 3,4-epoxycyclohexylethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and hydrogenated bisphenol A.
  • examples thereof include a type epoxy resin and a hydrogenated bisphenol F type epoxy resin.
  • a polyfunctional chain epoxy resin such as a polyglycidyl etherified product of an aliphatic polyhydric alcohol or an alkylene oxide adduct thereof, or a polyglycidyl ester of an aliphatic long-chain polybasic acid may be used.
  • polyfunctional aromatic epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolac type epoxy resin, xylylene type epoxy resin, and biphenyl type epoxy resin.
  • the polyfunctional epoxy resin contained in the ultraviolet curable resin composition may be one kind or two or more kinds.
  • oxetane compound a monofunctional oxetane compound may be used, or a polyfunctional oxetane compound may be used.
  • the monofunctional oxetane compound is an oxetane compound having one oxetanyl group in one molecule and not containing a carbon-carbon double bond.
  • the polyfunctional oxetane compound is a carbon-carbon double bond-free oxetane compound having two or more oxetanyl groups in one molecule.
  • Examples of the monofunctional oxetane compound include 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane (commercially available product name: Aron Oxetane OXT-212 (manufactured by Toa Synthetic Co., Ltd.)), 3-ethyl-3. -Hydroxymethyloxetane (commercially available product name Aron Oxetane OXT-101, (manufactured by Toa Synthetic Co., Ltd.), etc.) can be exemplified.
  • polyfunctional oxetane compound examples include bis (3-ethyl-3-oxetanylmethyl) ether and 1,6-bis [(3-ethyloxetane-3-yl) methoxy] -2,2,3,3,4.
  • bis (3-ethyl-3-oxetanylmethyl) ether is preferable from the viewpoint of imparting a practical curing rate and reliability of the cured product as a lens.
  • the oxetane compound contained in the ultraviolet curable resin composition may be one kind or two or more kinds.
  • the ultraviolet curable resin composition of the present invention may contain a resin other than the polyfunctional epoxy resin and the oxetane compound.
  • resins include monofunctional epoxy resins and epoxy-modified silicone resins.
  • the total content of the polyfunctional epoxy resin and the oxetane compound in the ultraviolet curable resin composition is preferably 40% by mass to 100% by mass, preferably 60% by mass, based on the total mass of the resin components in the ultraviolet curable resin composition. By mass% or more is more preferable, and 80% by mass or more is further preferable. When the ratio is not more than the lower limit of the above range, the mechanical strength of the cured product is high while ensuring rapid ultraviolet curability, which is preferable as the physical characteristics of the lens material.
  • the ratio of the polyfunctional epoxy resin to the total mass of the polyfunctional epoxy resin and the oxetane compound in the ultraviolet curable resin composition is preferably 20% by mass to 95% by mass, more preferably 30% by mass to 90% by mass, and 40% by mass. % -80% by mass is more preferable.
  • the proportion of the polyfunctional epoxy resin is at least the lower limit of the above range, the transparency of the cured product and the crack resistance in environmental tests such as a cold heat test are excellent.
  • the proportion of the polyfunctional epoxy resin is not more than the upper limit of the above range, the ultraviolet curability is excellent.
  • the delayed curing agent examples include amine compounds, polyalkylene glycols, and crown ethers.
  • the amine compound is preferable because the contrast of the curing speed between the exposed portion and the unexposed portion of the ultraviolet rays is large and the cured product is excellent in the outer diameter dimensional stability.
  • the delayed curing agent contained in the ultraviolet curable resin composition may be one kind or two or more kinds.
  • the amine compound examples include aliphatic amine compounds such as isopropylamine, dimethylamine, triethylamine, tetramethylethylenediamine and N-ethyldiisopropylamine, and aromatic amines such as aniline.
  • the tertiary aliphatic amine compound is preferable because the contrast of the curing speed between the exposed portion and the unexposed portion of the ultraviolet ray is large, and the compatibility with the ultraviolet curable resin composition and the ability to trap the cation component are excellent.
  • Triethylamine and tetramethylethylenediamine are more preferable in consideration of availability.
  • polyalkylene glycol examples include ethylene glycol, polytrimethylene ether glycol, and polytetramethylene ether glycol.
  • crown ether examples include 15-crown-5-ether, 18-crown-6-ether, and cis-dicyclohexano18-crown-6-ether.
  • the content of the delayed curing agent in the ultraviolet curable resin composition is t 1 and t depending on the content of the polyfunctional epoxy resin and the oxetane compound, the type of the delayed curing agent, and the type and content of the photopolymerization initiator. 2 may be appropriately adjusted so as to satisfy the above-mentioned conditions.
  • the content of the amine compound in the ultraviolet curable resin composition is 0.01 part by mass to 1.0 part by mass with respect to 100 parts by mass of the total mass of the polyfunctional epoxy resin and the oxetane compound. It is preferably parts by mass, more preferably 0.02 parts by mass to 0.50 parts by mass, and even more preferably 0.05 parts by mass to 0.2 parts by mass.
  • the ultraviolet curable resin composition of the present invention may further contain a photopolymerization initiator.
  • the photopolymerization initiator include various photocationic polymerization initiators that generate an acid that can be cationically polymerized by irradiation with ultraviolet rays.
  • the anionic component of the cationic photopolymerization initiator for example, SbF 6 -, PF 6 - , BF 4 -, AsF 6 -, B (C 6 F 5) 4 - can be exemplified.
  • PF 6 as an anion component - or SbF 6 - onium salts such as aromatic sulfonium salts are preferred including.
  • the content of the photopolymerization initiator in the ultraviolet curable resin composition is 0.05 parts by mass to 10 parts by mass with respect to 100 parts by mass of the resin component in the ultraviolet curable resin composition. .0 parts by mass is preferable, and 0.1 parts by mass to 3.0 parts by mass is more preferable.
  • the content of the photopolymerization initiator is at least the lower limit of the above range, the curability is excellent.
  • the content of the photopolymerization initiator is not more than the upper limit of the above range, it is easy to suppress the coloring of the cured product.
  • the ultraviolet curable resin composition of the present invention can be used as a coupling agent (silane-based coupling agent, titanium-based coupling agent, etc.), flexibility-imparting agent (synthetic rubber, polyorganosiloxane, etc.), and oxidation, if necessary.
  • Additives such as inhibitors, defoamers, hydrocarbon waxes, and inorganic fillers may be included.
  • the cured product of the present invention is a cured product obtained by curing the ultraviolet curable resin composition of the present invention.
  • the application of the cured product is not particularly limited, and examples thereof include an optical lens.
  • the shape and outer diameter of the cured product can be appropriately set according to the application.
  • the thickness of the cured product is not particularly limited, and can be, for example, 0.01 mm to 5.0 mm.
  • the Abbe number of the cured product of the present invention is preferably 50 or more, more preferably 53 or more, and even more preferably 55 or more.
  • the Abbe number is not less than the lower limit of the above range, chromatic aberration is less likely to occur when used as an optical lens, and the resolution becomes high.
  • the higher the Abbe number, the better, and the upper limit is not particularly limited, but is practically about 60.
  • an imprint method using a mold can be exemplified.
  • the ultraviolet curable resin composition is cured in a state where the mold having a recess having a shape corresponding to the shape of the desired cured product on the surface and the ultraviolet curable resin composition of the present invention are in contact with each other.
  • An example of a method for producing a cured product having a desired shape can be exemplified.
  • the wafer level lens includes a substrate and a plurality of optical lenses provided on the substrate. It should be noted that the outer diameter dimensions and the like of the figures illustrated in the following description are examples, and the present invention is not necessarily limited thereto, and the present invention can be appropriately modified without changing the gist thereof. Is.
  • the wafer level lens manufacturing method of the present embodiment includes, for example, the following steps (a) to (d).
  • Step (a) As shown in FIG. 1, the ultraviolet curable resin composition 20 is placed in each recess 12 of the mold 10 provided with recesses 12 having a shape corresponding to the shape of the optical lens.
  • a plurality of molding portions 16 are provided on the plate-shaped portion 14, and a recess 12 is formed on the upper surface of the molding portion 16.
  • a shielding portion 18 that blocks the transmission of ultraviolet rays is provided between the recesses 12 of the adjacent molding portions 16 in the surface layer portion on the molding portion 16 side of the plate-shaped portion 14.
  • the shape and outer diameter of the recess 12 correspond to the shape of the optical lens 34.
  • Examples of the material for forming the plate-shaped portion 14 other than the shielding portion 18 and the molding portion 16 in the mold 10 include a translucent material.
  • a material for forming the shielding portion 18 a non-transmissive material can be exemplified.
  • Examples of the translucent material include a cured product of an acrylic UV curable resin, glass such as quartz glass, polydimethylsiloxane, cyclic polyolefin, polycarbonate, polyethylene terephthalate, and transparent fluororesin.
  • Examples of the non-transmissive material include chromium, nickel, copper, titanium, oxides thereof, silicon carbide, and mica.
  • Examples of the method for arranging the ultraviolet curable resin composition 20 in the recess 12 of the mold 10 in the step (a) include an inkjet method, a potting method (dispensing method), a spin coating method, a roll coating method, a casting method, and a dip coating method. Examples include the method, the die coat method, and the Langmüller project method.
  • the press pressure (gauge pressure) when the ultraviolet curable resin composition 20 is sandwiched between the mold 10 and the substrate 32 is preferably more than 0 MPa and 10 MPa or less, more preferably 0.1 MPa to 5 MPa. preferable.
  • the temperature at which the ultraviolet curable resin composition 20 is sandwiched between the mold 10 and the substrate 32 is preferably 0 ° C to 110 ° C, more preferably 10 ° C to 80 ° C.
  • the thickness of the substrate 32 is not particularly limited, and can be, for example, 0.1 mm to 2.0 mm.
  • step (c) ultraviolet rays are irradiated from the side opposite to the shielding portion 18 of the plate-shaped portion 14 in the mold 10.
  • Ultraviolet rays are transmitted from between the shielding portions 18 and partially irradiate each ultraviolet curable resin composition 20.
  • the ultraviolet curable resin composition 20 is cured to form the optical lens 34 in the exposed portion between the shielding portions 18, that is, the recess 12. Since ultraviolet rays are blocked by the shielding portion 18 between the adjacent recesses 12, it becomes an unexposed portion. Since the UV-curable resin composition 20 has a large contrast between the curing speeds of the exposed portion and the unexposed portion, the curing of the UV-curable resin composition 20 is sufficiently suppressed in the unexposed portion between the adjacent recesses 12. ..
  • Examples of the light source of ultraviolet rays include UV-LED, low-pressure mercury lamp, high-pressure mercury lamp, and ultra-high-pressure mercury lamp.
  • the irradiation dose of ultraviolet rays is preferably 100mJ / cm 2 ⁇ 30,000mJ / cm 2, 1,000mJ / cm 2 ⁇ 20,000mJ / cm 2 is more preferable.
  • the mold 10 is separated, and the ultraviolet curable resin composition 20 in the unexposed portion shown in FIG. 4 is washed and removed.
  • a wafer level lens 30 in which a plurality of optical lenses 34 are provided on the substrate 32 can be obtained.
  • the temperature at which the optical lens 34 and the mold 10 are separated is preferably 0 ° C. to 110 ° C., more preferably 10 ° C. to 80 ° C.
  • the cleaning method include spin cleaning, dip cleaning, and ultrasonic cleaning.
  • the ultraviolet curable resin composition contains a delayed curing agent and t 1 and t 2 are controlled under specific conditions, the curing speed in the exposed portion and the unexposed portion is different.
  • the contrast is high. Therefore, when producing a cured product such as an optical lens, the cured product can be formed while sufficiently suppressing the curing of the ultraviolet curable resin composition in the unexposed portion, which is an extra portion of the product. As a result, the ultraviolet curable resin composition in the unexposed portion can be stably removed, so that the obtained cured product is excellent in outer diameter dimensional stability.
  • Examples 2, 3, 5, 6, 8, 9, 11, and 12 are examples, and examples 1, 4, 7, and 10 are comparative examples. [Abbreviation] The abbreviations of the raw materials used in this example are shown below.
  • A-1 jER YX8000 (hydrogenated bisphenol A type epoxy resin monomer, manufactured by Mitsubishi Chemical Corporation)
  • A-2 Celoxide 2021P (3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, manufactured by Daicel Corporation)
  • A-3 CELVENUS LU1701HA (mixture of polyfunctional epoxy resin and oxetane compound, manufactured by Daicel Corporation)
  • A-4 jER YX8040 (hydrogenated bisphenol A type epoxy resin oligomer, manufactured by Mitsubishi Chemical Corporation)
  • A-5 TEPIC-FL (1,3,5-tris (6- (oxylan-2-yl) hexyl) -1,3,5-triazine-2,4,6-trione, manufactured by Nissan Chemical Industries, Ltd.)
  • A-6 OXT-221 (bis (3-ethyl-3-oxetanylmethyl) ether, manufactured by Toagosei Co., Ltd.)
  • B-1 Triethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • B-2 Tetramethylethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • the time until the time when the storage modulus of the ultraviolet curable resin composition is 100 times the storage elastic modulus before the ultraviolet irradiation was t 1.
  • Plotting the storage modulus versus time, in the graph when the irradiation for 5 seconds UV, the rise of the slope of the storage modulus of the cured start was k 1.
  • the time t 2 and the slope k 2 were measured in the same manner as the time t 1 and the slope k 1 except that the irradiation time of ultraviolet rays was 20 seconds.
  • a wafer level lens was manufactured by the following procedure.
  • the ultraviolet curable resin composition shown in Table 2 was used as the ultraviolet curable resin composition 20.
  • a mold 10 having a circular shape in a plan view, a plurality of recesses 12 having a depth of 0.5 mm at the deepest portion and a diameter of 2.0 mm in a plan view, and an opening diameter of a shielding portion of 1.8 mm was prepared. ..
  • the ultraviolet curable resin composition 20 was arranged in each recess 12 of the mold 10 having recesses 12 having a shape corresponding to the shape of the optical lens. As shown in FIG.
  • the substrate 32 was arranged on the concave portion 12 side of the mold 10, and the ultraviolet curable resin composition 20 was sandwiched between the mold 10 and the substrate 32.
  • each ultraviolet curable resin composition 20 was partially irradiated with ultraviolet rays at 2,500 mJ / cm 2 to cure the exposed portion to form an optical lens 34.
  • the mold 10 was separated.
  • the ultraviolet curable resin composition 20 in the unexposed portion was removed by spin cleaning using an organic solvent to obtain a wafer level lens 30.
  • the outer diameter dimensional stability of the optical lens in the wafer level lens obtained in each example was evaluated by the following method. 1000 lenses per wafer surface were imprinted, and the outer diameter defect rate was calculated using the automatic image measurement system NEXIV VMZ-R4540 (manufactured by Nikon Corporation). As a criterion for shape defect, the outer diameter of the lens was set to exceed the diameter of the mold shielding portion by 10% or more. A: Defect rate less than 10% B: Defect rate 10% or more Table 2 shows the evaluation results of each example.
  • Table 2 shows the measurement results of the Abbe number ⁇ d of the cured product constituting the wafer level lenses of Examples 1 to 12.
  • the method of preparing the evaluation sample and the method of measurement are shown below.
  • An ultraviolet curable composition was sandwiched between two glass substrates that had undergone a mold release treatment. At this time, the curable composition was sandwiched so that the thickness of the cured product (distance between the glass substrates) was 500 ⁇ m.
  • the ultraviolet curable composition is irradiated with ultraviolet rays (using a 365 nm LED lamp) through a glass substrate that has undergone a mold release treatment at an exposure amount of 4000 mJ / cm 2 , and then heated on a hot plate at 80 ° C. for 30 minutes. And cured.
  • a film-like cured product was obtained by releasing the cured product from the glass substrate.
  • the obtained cured product was heat-treated in a nitrogen atmosphere at 180 ° C. for 3 hours to obtain a cured product as an evaluation sample. Evaluation samples were prepared for each of the ultraviolet curable compositions X-1 to X-8 and Y-1 to Y-4 by the above method.

Abstract

The present invention relates to an ultraviolet curable resin composition which contains a multifunctional epoxy resin, an oxetane compound and a curing retardant, wherein: if irradiated with ultraviolet light having a wavelength of 365 nm and an illuminance of 7 mW/cm2 for 5 seconds, the time t1 from the start of the irradiation of ultraviolet light to the point at which the storage elastic modulus of the ultraviolet curable resin composition is 100 times the storage elastic modulus thereof before the irradiation of ultraviolet light is more than 2 minutes; and if irradiated with ultraviolet light having a wavelength of 365 nm and an illuminance of 7 mW/cm2 for 20 seconds, the time t2 from the start of the irradiation of ultraviolet light to the point at which the storage elastic modulus of the ultraviolet curable resin composition is 100 times the storage elastic modulus thereof before the irradiation of ultraviolet light is less than 2 minutes.

Description

紫外線硬化性樹脂組成物、硬化物及び光学レンズUV curable resin composition, cured product and optical lens
 本発明は、紫外線硬化性樹脂組成物、硬化物及び光学レンズに関する。 The present invention relates to an ultraviolet curable resin composition, a cured product, and an optical lens.
 携帯電話、デジタルカメラ等で用いられる光学レンズには、硬化収縮が小さいエポキシ樹脂を含む紫外線硬化性樹脂組成物が広く用いられている。紫外線硬化性樹脂組成物を用いて基板上に複数のレンズを成形してウエハレベルレンズを製造し、基板を切断して複数のレンズをそれぞれ分離させてレンズモジュールが製造される。 An ultraviolet curable resin composition containing an epoxy resin having a small curing shrinkage is widely used for an optical lens used in a mobile phone, a digital camera, or the like. A wafer level lens is manufactured by molding a plurality of lenses on a substrate using an ultraviolet curable resin composition, and the substrate is cut to separate the plurality of lenses to manufacture a lens module.
 ウエハレベルレンズの製造方法としては、レンズ形状に対応した形状の複数の凹部を有するモールドを用い、モールドの各凹部と基板で紫外線硬化性樹脂組成物を挟持した状態で、紫外線硬化性樹脂組成物を硬化させてレンズを形成する方法(インプリント法)が知られている(特許文献1)。インプリント法によるウエハレベルレンズの製造では、紫外線を遮る遮蔽部を備えるモールドを用い、硬化時の紫外線硬化性樹脂組成物におけるレンズとする部分だけに紫外線を部分的に照射して硬化させる。紫外線硬化性樹脂組成物のレンズとして余分な部分には紫外線を照射せず、硬化工程の後に洗浄によって除去する。 As a method for manufacturing a wafer level lens, a mold having a plurality of recesses having a shape corresponding to the lens shape is used, and the UV curable resin composition is sandwiched between each recess of the mold and the substrate. A method of forming a lens by curing a lens (imprint method) is known (Patent Document 1). In the production of a wafer level lens by the imprint method, a mold provided with a shielding portion that blocks ultraviolet rays is used, and only the portion to be a lens in the ultraviolet curable resin composition at the time of curing is partially irradiated with ultraviolet rays to be cured. The excess portion of the lens of the ultraviolet curable resin composition is not irradiated with ultraviolet rays, and is removed by cleaning after the curing step.
国際公開第2007/107025号International Publication No. 2007/1007025
 しかし、従来のエポキシ樹脂を用いる紫外線硬化性樹脂組成物では、紫外線の露光部で紫外線硬化性樹脂組成物が硬化する際、未露光部においても紫外線硬化性樹脂組成物の硬化が進みやすい。そのため、形成されるレンズの外径寸法安定性が劣る傾向がある。 However, in the ultraviolet curable resin composition using the conventional epoxy resin, when the ultraviolet curable resin composition is cured in the exposed portion of ultraviolet rays, the curing of the ultraviolet curable resin composition is likely to proceed even in the unexposed portion. Therefore, the outer diameter dimensional stability of the formed lens tends to be inferior.
 本発明は、レンズ等の硬化物の外径寸法安定性に優れる紫外線硬化性樹脂組成物、それを用いた硬化物及び光学レンズを提供することを目的とする。 An object of the present invention is to provide an ultraviolet curable resin composition having excellent outer diameter dimensional stability of a cured product such as a lens, a cured product using the same, and an optical lens.
 本発明は、以下の態様を有する。
[1]多官能エポキシ樹脂と、オキセタン化合物と、遅延硬化剤と、を含む紫外線硬化性樹脂組成物であって、波長365nm、照度7mW/cmの紫外線を5秒間照射したとき、紫外線の照射開始時点から、前記紫外線硬化性樹脂組成物の貯蔵弾性率が紫外線照射前の貯蔵弾性率に対して100倍となる時点までの時間tが2分超であり、かつ、波長365nm、照度7mW/cmの紫外線を20秒間照射したとき、紫外線の照射開始時点から、前記紫外線硬化性樹脂組成物の貯蔵弾性率が紫外線照射前の貯蔵弾性率に対して100倍となる時点までの時間tが2分未満である、紫外線硬化性樹脂組成物。
[2]前記時間tが3分以上である、[1]に記載の紫外線硬化性樹脂組成物。
[3]前記時間tが1分未満である、[1]又は[2]に記載の紫外線硬化性樹脂組成物。
[4]前記遅延硬化剤がアミン化合物である、[1]~[3]のいずれか一項に記載の紫外線硬化性樹脂組成物。
[5][1]~[4]のいずれか一項に記載の紫外線硬化性樹脂組成物が硬化された硬化物。
[6]アッベ数が50以上である、[5]に記載の硬化物。
[7][5]又は[6]に記載の硬化物からなる、光学レンズ。
The present invention has the following aspects.
[1] An ultraviolet curable resin composition containing a polyfunctional epoxy resin, an oxetane compound, and a delayed curing agent, which is irradiated with ultraviolet rays at a wavelength of 365 nm and an illuminance of 7 mW / cm 2 for 5 seconds. The time t 1 from the start time to the time when the storage elastic modulus of the ultraviolet curable resin composition becomes 100 times the storage elastic modulus before ultraviolet irradiation is more than 2 minutes, the wavelength is 365 nm, and the illuminance is 7 mW. When irradiated with ultraviolet rays of / cm 2 for 20 seconds, the time from the start of ultraviolet irradiation to the time when the storage elastic modulus of the ultraviolet curable resin composition becomes 100 times the storage elastic modulus before ultraviolet irradiation is t. UV curable resin composition in which 2 is less than 2 minutes.
[2] The ultraviolet curable resin composition according to [1], wherein the time t 1 is 3 minutes or more.
[3] The ultraviolet curable resin composition according to [1] or [2], wherein the time t 2 is less than 1 minute.
[4] The ultraviolet curable resin composition according to any one of [1] to [3], wherein the delayed curing agent is an amine compound.
[5] A cured product obtained by curing the ultraviolet curable resin composition according to any one of [1] to [4].
[6] The cured product according to [5], which has an Abbe number of 50 or more.
[7] An optical lens made of the cured product according to [5] or [6].
 本発明によれば、レンズ等の硬化物の外径寸法安定性に優れる紫外線硬化性樹脂組成物、それを用いた硬化物及び光学レンズを提供できる。 According to the present invention, it is possible to provide an ultraviolet curable resin composition having excellent outer diameter dimensional stability of a cured product such as a lens, a cured product using the same, and an optical lens.
図1は、ウエハレベルレンズの製造方法の一工程を説明した断面図である。FIG. 1 is a cross-sectional view illustrating one step of a method for manufacturing a wafer level lens. 図2は、ウエハレベルレンズの製造方法の一工程を説明した断面図である。FIG. 2 is a cross-sectional view illustrating one step of a method for manufacturing a wafer level lens. 図3は、ウエハレベルレンズの製造方法の一工程を説明した断面図である。FIG. 3 is a cross-sectional view illustrating one step of a method for manufacturing a wafer level lens. 図4は、ウエハレベルレンズの製造方法の一工程を説明した断面図である。FIG. 4 is a cross-sectional view illustrating one step of a method for manufacturing a wafer level lens. 図5は、ウエハレベルレンズの製造方法の一工程を説明した断面図である。FIG. 5 is a cross-sectional view illustrating one step of a method for manufacturing a wafer level lens.
 本明細書における用語の意味及び定義は以下のとおりである。
 「~」で表される数値範囲は、~の前後の数値を下限値及び上限値として含む数値範囲を意味する。
 「遅延硬化剤」とは、紫外線硬化性樹脂組成物に紫外線を照射することで開始されるカチオン重合過程において、カチオン成分をトラップする化合物を意味する。
 「アッベ数」とは、いわゆる光学レンズにおける逆分散能を指称するものであって、JIS Z 8120:2001に準じ、アッベ屈折率計によって25±10℃にて測定される屈折率から下記式1で算出される値である。
 ν=(n-1)/(n-n) ・・・式1
 ただし、νは、アッベ数である。nは、d線(波長587.56nm)に対する屈折率である。nは、波長486nmの光に対する屈折率である。nは、波長656nmの光に対する屈折率である。
The meanings and definitions of the terms in the present specification are as follows.
The numerical range represented by "-" means a numerical range including the numerical values before and after ... as the lower limit value and the upper limit value.
The "delayed curing agent" means a compound that traps a cation component in a cation polymerization process initiated by irradiating an ultraviolet curable resin composition with ultraviolet rays.
The "Abbe number" refers to the inverse dispersibility of a so-called optical lens, and is based on JIS Z 8120: 2001, and is based on the refractive index measured at 25 ± 10 ° C. by an Abbe refractive index meter. It is a value calculated by.
ν d = (n d -1) / (n F −n C ) ・ ・ ・ Equation 1
However, ν d is an Abbe number. n d is the refractive index for the d-line (wavelength 587.56 nm). n F is the refractive index for light having a wavelength of 486 nm. n C is the refractive index for light having a wavelength of 656 nm.
[紫外線硬化性樹脂組成物]
 本発明の紫外線硬化性樹脂組成物は、多官能エポキシ樹脂と、オキセタン化合物と、遅延硬化剤と、を含む。また、本発明の紫外線硬化性樹脂組成物は、以下の条件を満たす。本発明の紫外線硬化性樹脂組成物に波長365nm、照度7mW/cmの紫外線を5秒間照射したとき、紫外線の照射開始時点から、紫外線硬化性樹脂組成物の貯蔵弾性率が紫外線照射前の貯蔵弾性率に対して100倍となる時点までの時間をtとする。また、本発明の紫外線硬化性樹脂組成物に波長365nm、照度7mW/cmの紫外線を20秒間照射したとき、紫外線の照射開始時点から、紫外線硬化性樹脂組成物の貯蔵弾性率が紫外線照射前の貯蔵弾性率に対して100倍となる時点までの時間をtとする。このとき、本発明の紫外線硬化性樹脂組成物は、tが2分超であり、かつ、tが2分未満である。
[UV curable resin composition]
The ultraviolet curable resin composition of the present invention contains a polyfunctional epoxy resin, an oxetane compound, and a delayed curing agent. Further, the ultraviolet curable resin composition of the present invention satisfies the following conditions. When the ultraviolet curable resin composition of the present invention is irradiated with ultraviolet rays having a wavelength of 365 nm and an illuminance of 7 mW / cm 2 for 5 seconds, the storage elastic modulus of the ultraviolet curable resin composition is stored before the ultraviolet irradiation from the start of the ultraviolet irradiation. Let t 1 be the time until the time point when the elastic modulus becomes 100 times. Further, when the ultraviolet curable resin composition of the present invention is irradiated with ultraviolet rays having a wavelength of 365 nm and an illuminance of 7 mW / cm 2 for 20 seconds, the storage elastic modulus of the ultraviolet curable resin composition is before the ultraviolet irradiation from the start of the ultraviolet irradiation. Let t 2 be the time until the time when it becomes 100 times the storage elastic modulus of. At this time, in the ultraviolet curable resin composition of the present invention, t 1 is more than 2 minutes and t 2 is less than 2 minutes.
 紫外線硬化性樹脂組成物の貯蔵弾性率(単位:Pa)は、25℃で測定される値であって、レオメータによって測定できる。
 具体的には、25℃において、暗条件でレオメータによる紫外線硬化性樹脂組成物の貯蔵弾性率のモニタリングを開始し、紫外線硬化性樹脂組成物に波長365nm、照度7mW/cmの紫外線を5秒間照射した後、再び暗条件下とする。そして、紫外線の照射開始時点から、紫外線硬化性樹脂組成物の貯蔵弾性率が紫外線照射前の貯蔵弾性率に対して100倍となる時点までの時間をtとする。tは、紫外線の照射時間を20秒間とする以外は、tと同様の方法で測定できる。
The storage elastic modulus (unit: Pa) of the ultraviolet curable resin composition is a value measured at 25 ° C. and can be measured by a rheometer.
Specifically, at 25 ° C., monitoring of the storage elastic modulus of the ultraviolet curable resin composition by a rheometer was started under dark conditions, and ultraviolet rays having a wavelength of 365 nm and an illuminance of 7 mW / cm 2 were applied to the ultraviolet curable resin composition for 5 seconds. After irradiation, the conditions are dark again. Then, from the start of irradiation of the ultraviolet rays and the time until the time when the storage modulus of the ultraviolet curable resin composition is 100 times the storage elastic modulus before the ultraviolet irradiation and t 1. t 2 can be measured by the same method as t 1 except that the irradiation time of ultraviolet rays is 20 seconds.
 本発明の紫外線硬化性樹脂組成物が前記条件を満たすことで、インプリント法による硬化物の製造において、紫外線の露光部と未露光部における硬化速度のコントラストを大きくできる。これにより、露光部を充分に硬化させつつ、未露光部の硬化を充分に抑制して洗浄によって除去できるため、得られる硬化物の外径寸法安定性に優れる。 When the ultraviolet curable resin composition of the present invention satisfies the above conditions, the contrast between the curing speeds of the exposed portion and the unexposed portion of ultraviolet rays can be increased in the production of the cured product by the imprint method. As a result, while the exposed portion is sufficiently cured, the curing of the unexposed portion can be sufficiently suppressed and removed by cleaning, so that the obtained cured product has excellent outer diameter dimensional stability.
 tは、2分超であり、紫外線の未露光部の硬化を充分に抑制しやすい。後の工程で未露光部を洗浄する事を考慮すると、tは、3分以上が好ましく、5分以上がより好ましい。tの上限値は、特に限定されないが、実質的には30分程度である。 t 1 is more than 2 minutes, and it is easy to sufficiently suppress the curing of the unexposed portion of ultraviolet rays. Considering that the unexposed portion is washed in a later step, t 1 is preferably 3 minutes or longer, more preferably 5 minutes or longer. The upper limit of t 1 is not particularly limited, but is substantially about 30 minutes.
 tは、2分未満であり、紫外線の露光部の硬化性の点から、1分未満が好ましく、45秒未満がより好ましい。tの下限値は、特に限定されないが、実質的には15秒程度である。 t 2 is less than 2 minutes, preferably less than 1 minute, more preferably less than 45 seconds, from the viewpoint of curability of the exposed portion of ultraviolet rays. The lower limit of t 2 is not particularly limited, but is substantially about 15 seconds.
 tとtの差(t-t)は、紫外線の露光部と未露光部における硬化速度のコントラストが大きく、得られる硬化物の外径寸法安定性に優れる点から、60秒以上が好ましく、120秒以上がより好ましく、300秒以上がさらに好ましい。差(t-t)の上限値は、特に限定されないが、実質的には600秒程度である。 The difference between t 1 and t 2 (t 1- t 2 ) is 60 seconds or more because the contrast between the curing speeds of the exposed and unexposed areas of ultraviolet rays is large and the obtained cured product has excellent outer diameter dimensional stability. Is preferable, 120 seconds or more is more preferable, and 300 seconds or more is further preferable. The upper limit of the difference (t 1 to t 2 ) is not particularly limited, but is substantially about 600 seconds.
 本発明の紫外線硬化性樹脂組成物のt及びtの調節は、遅延硬化剤の含有量を調節することで行える。多官能エポキシ樹脂、オキセタン化合物の含有量、遅延硬化剤の種類、光重合開始剤の種類及び含有量に応じて、遅延硬化剤の含有量を調節することで、t及びtが前記した条件を満たすように調節できる。遅延硬化剤の含有量が多くなるほどt及びtは小さくなり、遅延硬化剤の含有量が少なくなるほどt及びtは大きくなる傾向がある。 The adjustment of t 1 and t 2 of the ultraviolet curable resin composition of the present invention can be performed by adjusting the content of the delayed curing agent. By adjusting the content of the delayed curing agent according to the content of the polyfunctional epoxy resin and the oxetane compound, the type of the delayed curing agent, and the type and content of the photopolymerization initiator, t 1 and t 2 are described above. It can be adjusted to meet the conditions. Delay t 1 and t 2 As the content increases the curing agent is reduced, t 1 and t 2 As the content of the delay curing agent is less tends to increase.
 紫外線硬化性樹脂組成物に波長365nm、照度7mW/cmの紫外線を5秒間又は20秒間照射したときのレオメータによる紫外線硬化性樹脂組成物の貯蔵弾性率をモニタリングし、時間に対する貯蔵弾性率をプロットする。紫外線を5秒間照射したときのグラフにおける、硬化開始から貯蔵弾性率の立ち上がりの傾きをkとする。紫外線を20秒間照射したときのグラフにおける、硬化開始から貯蔵弾性率の立ち上がりの傾きをkとする。 Monitor the storage elastic modulus of the UV-curable resin composition with a rheometer when the UV-curable resin composition is irradiated with ultraviolet rays having a wavelength of 365 nm and an illuminance of 7 mW / cm 2 for 5 seconds or 20 seconds, and plot the storage elastic modulus with respect to time. To do. In the graph when UV was irradiated for 5 seconds, the rise of the slope of the storage modulus and k 1 from curing initiator. Let k 2 be the slope of the rise of the storage elastic modulus from the start of curing in the graph when ultraviolet rays are irradiated for 20 seconds.
 傾きkは、500未満が好ましく、100未満がより好ましい。傾きkが前記範囲の上限値未満であれば、本発明の趣旨である硬化部と未硬化部の硬化コントラストが高く、未硬化部の樹脂の粘度が低く保たれているため洗浄後のレンズ外径制御が容易となる。 The slope k 1 is preferably less than 500, more preferably less than 100. When the inclination k 1 is less than the upper limit of the above range, the cured contrast between the cured portion and the uncured portion is high, and the viscosity of the resin in the uncured portion is kept low, which is the object of the present invention. Outer diameter control becomes easier.
 傾きkは、1000以上が好ましく、10000以上がより好ましい。傾きkが前記範囲の下限値以上であれば、一般的なUV硬化システムと比較して極端に硬化速度が遅くなりにくい。つまり、ウエハレベルレンズの作製におけるUV硬化タクトが短くなり生産性の面で有利に働く。 The inclination k 2 is preferably 1000 or more, and more preferably 10000 or more. When the slope k 2 is equal to or greater than the lower limit of the above range, the curing rate is unlikely to be extremely slow as compared with a general UV curing system. That is, the UV curing tact in the fabrication of the wafer level lens is shortened, which is advantageous in terms of productivity.
 多官能エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂である。多官能エポキシ樹脂としては、例えば、多官能脂肪族エポキシ樹脂、多官能芳香族エポキシ樹脂を例示できる。なかでも、硬化物の可視光領域における透明性や耐熱性、環境信頼性に対する耐性の点から、多官能脂肪族エポキシ樹脂が好ましく、多官能脂環式エポキシ樹脂がより好ましい。 The polyfunctional epoxy resin is an epoxy resin having two or more epoxy groups in one molecule. Examples of the polyfunctional epoxy resin include a polyfunctional aliphatic epoxy resin and a polyfunctional aromatic epoxy resin. Of these, a polyfunctional aliphatic epoxy resin is preferable, and a polyfunctional alicyclic epoxy resin is more preferable, from the viewpoint of transparency, heat resistance, and resistance to environmental reliability of the cured product in the visible light region.
 多官能脂環式エポキシ樹脂としては、例えば、3,4-エポキシシクロヘキシルエチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂を例示できる。
 多官能脂肪族エポキシ樹脂として、脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテル化物、脂肪族長鎖多塩基酸のポリグリシジルエステル等の多官能鎖式エポキシ樹脂を用いてもよい。
Examples of the polyfunctional alicyclic epoxy resin include 3,4-epoxycyclohexylethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and hydrogenated bisphenol A. Examples thereof include a type epoxy resin and a hydrogenated bisphenol F type epoxy resin.
As the polyfunctional aliphatic epoxy resin, a polyfunctional chain epoxy resin such as a polyglycidyl etherified product of an aliphatic polyhydric alcohol or an alkylene oxide adduct thereof, or a polyglycidyl ester of an aliphatic long-chain polybasic acid may be used.
 多官能芳香族エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニル型エポキシ樹脂を例示できる。
 紫外線硬化性樹脂組成物に含まれる多官能エポキシ樹脂は、1種でもよく、2種以上でもよい。
Examples of the polyfunctional aromatic epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolac type epoxy resin, xylylene type epoxy resin, and biphenyl type epoxy resin.
The polyfunctional epoxy resin contained in the ultraviolet curable resin composition may be one kind or two or more kinds.
 オキセタン化合物としては、単官能オキセタン化合物を用いてもよく、多官能オキセタン化合物を用いてもよい。単官能オキセタン化合物は、1分子中に1個のオキセタニル基を有する炭素-炭素二重結合を含まないオキセタン化合物である。多官能オキセタン化合物は、1分子中に2個以上のオキセタニル基を有する炭素-炭素二重結合を含まないオキセタン化合物である。 As the oxetane compound, a monofunctional oxetane compound may be used, or a polyfunctional oxetane compound may be used. The monofunctional oxetane compound is an oxetane compound having one oxetanyl group in one molecule and not containing a carbon-carbon double bond. The polyfunctional oxetane compound is a carbon-carbon double bond-free oxetane compound having two or more oxetanyl groups in one molecule.
 単官能オキセタン化合物としては、例えば、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン(市販品としては製品名アロンオキセタンOXT-212(東亞合成社製)等)、3-エチル-3-ヒドロキシメチルオキセタン(市販品としては製品名アロンオキセタンOXT-101、(東亞合成社製)等)を例示できる。
 多官能オキセタン化合物としては、例えば、ビス(3-エチル-3-オキセタニルメチル)エーテル、1,6-ビス[(3-エチルオキセタン-3-イル)メトキシ]-2,2,3,3,4,5,5-オクタフルオロヘキサン、3(4),8(9)-ビス[(1-エチル-3-オキセタニル)メトキシメチル]-トリシクロ[5.2.1.02.6]デカン、1,2-ビス[2-〔(1-エチル-3-オキセタニル)メトキシ〕エチルチオ]エタン、2,3-ビス[(3-エチルオキセタン-3-イル)メトキシメチル]ノルボルナン、2-エチル-2-[(3-エチルオキセタン-3-イル)メトキシメチル]-1、3-O-ビス[(1-エチル-3-オキセタニル)メチル]-プロパン-1,3-ジオール、2,2-ジメチル-1,3-O-ビス[(3-エチルオキセタン-3-イル)メチル]-プロパン-1,3-ジオール、2-ブチル-2-エチル-1,3-O-ビス[(3-エチルオキセタン-3-イル)メチル]-プロパン-1,3-ジオール、1,4-O-ビス[(3-エチルオキセタン-3-イル)メチル]-ブタン-1,4-ジオール、2,4,6-O-トリス[(3-エチルオキセタン-3-イル)メチル]シアヌル酸を例示できる。なかでも、実用的な硬化速度を付与し、硬化物のレンズとしての信頼性の点から、ビス(3-エチル-3-オキセタニルメチル)エーテルが好ましい。
 紫外線硬化性樹脂組成物に含まれるオキセタン化合物は、1種でもよく、2種以上でもよい。
Examples of the monofunctional oxetane compound include 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane (commercially available product name: Aron Oxetane OXT-212 (manufactured by Toa Synthetic Co., Ltd.)), 3-ethyl-3. -Hydroxymethyloxetane (commercially available product name Aron Oxetane OXT-101, (manufactured by Toa Synthetic Co., Ltd.), etc.) can be exemplified.
Examples of the polyfunctional oxetane compound include bis (3-ethyl-3-oxetanylmethyl) ether and 1,6-bis [(3-ethyloxetane-3-yl) methoxy] -2,2,3,3,4. , 5,5-Octafluorohexane, 3 (4), 8 (9) -bis [(1-ethyl-3-oxetanyl) methoxymethyl] -tricyclo [5.21.02.6] decane, 1, 2-Bis [2-[(1-ethyl-3-oxetanyl) methoxy] ethylthio] ethane, 2,3-bis [(3-ethyloxetane-3-yl) methoxymethyl] norbornan, 2-ethyl-2-[ (3-Ethyloxetane-3-yl) methoxymethyl] -1,3-O-bis [(1-ethyl-3-oxetanyl) methyl] -propane-1,3-diol, 2,2-dimethyl-1, 3-O-bis [(3-ethyloxetane-3-yl) methyl] -propane-1,3-diol, 2-butyl-2-ethyl-1,3-O-bis [(3-ethyloxetane-3) -Il) methyl] -propane-1,3-diol, 1,4-O-bis [(3-ethyloxetane-3-yl) methyl] -butane-1,4-diol, 2,4,6-O -Tris [(3-ethyloxetane-3-yl) methyl] cyanulic acid can be exemplified. Of these, bis (3-ethyl-3-oxetanylmethyl) ether is preferable from the viewpoint of imparting a practical curing rate and reliability of the cured product as a lens.
The oxetane compound contained in the ultraviolet curable resin composition may be one kind or two or more kinds.
 本発明の紫外線硬化性樹脂組成物は、多官能エポキシ樹脂及びオキセタン化合物以外の他の樹脂を含んでもよい。他の樹脂としては、例えば、単官能エポキシ樹脂、エポキシ変性シリコーン樹脂を例示できる。 The ultraviolet curable resin composition of the present invention may contain a resin other than the polyfunctional epoxy resin and the oxetane compound. Examples of other resins include monofunctional epoxy resins and epoxy-modified silicone resins.
 紫外線硬化性樹脂組成物中の多官能エポキシ樹脂及びオキセタン化合物の合計の含有量は、紫外線硬化性樹脂組成物中の樹脂成分の総質量に対して、40質量%~100質量%が好ましく、60質量%以上がより好ましく、80質量%以上がさらに好ましい。前記割合が前記範囲の下限値以上であれば、迅速な紫外線硬化性を確保しつつ、硬化物の機械的強度が高くレンズ材料の物性として好ましい。 The total content of the polyfunctional epoxy resin and the oxetane compound in the ultraviolet curable resin composition is preferably 40% by mass to 100% by mass, preferably 60% by mass, based on the total mass of the resin components in the ultraviolet curable resin composition. By mass% or more is more preferable, and 80% by mass or more is further preferable. When the ratio is not more than the lower limit of the above range, the mechanical strength of the cured product is high while ensuring rapid ultraviolet curability, which is preferable as the physical characteristics of the lens material.
 紫外線硬化性樹脂組成物中の多官能エポキシ樹脂及びオキセタン化合物の合計質量に対する多官能エポキシ樹脂の割合は、20質量%~95質量%が好ましく、30質量%~90質量%がより好ましく、40質量%~80質量%がさらに好ましい。多官能エポキシ樹脂の割合が前記範囲の下限値以上であれば、硬化物の透明性や冷熱試験等の環境試験における耐クラック性に優れる。多官能エポキシ樹脂の割合が前記範囲の上限値以下であれば、紫外線硬化性に優れる。 The ratio of the polyfunctional epoxy resin to the total mass of the polyfunctional epoxy resin and the oxetane compound in the ultraviolet curable resin composition is preferably 20% by mass to 95% by mass, more preferably 30% by mass to 90% by mass, and 40% by mass. % -80% by mass is more preferable. When the proportion of the polyfunctional epoxy resin is at least the lower limit of the above range, the transparency of the cured product and the crack resistance in environmental tests such as a cold heat test are excellent. When the proportion of the polyfunctional epoxy resin is not more than the upper limit of the above range, the ultraviolet curability is excellent.
 遅延硬化剤としては、例えば、アミン化合物、ポリアルキレングリコール、クラウンエーテルを例示できる。なかでも、紫外線の露光部と未露光部との硬化速度のコントラストが大きく、硬化物の外径寸法安定性に優れる点から、アミン化合物が好ましい。
 紫外線硬化性樹脂組成物に含まれる遅延硬化剤は、1種でもよく、2種以上でもよい。
Examples of the delayed curing agent include amine compounds, polyalkylene glycols, and crown ethers. Among them, the amine compound is preferable because the contrast of the curing speed between the exposed portion and the unexposed portion of the ultraviolet rays is large and the cured product is excellent in the outer diameter dimensional stability.
The delayed curing agent contained in the ultraviolet curable resin composition may be one kind or two or more kinds.
 アミン化合物としては、例えば、イソプロピルアミン、ジメチルアミン、トリエチルアミン、テトラメチルエチレンジアミン、N-エチルジイソプロピルアミン等の脂肪族アミン化合物、アニリン等の芳香族アミンを例示できる。なかでも、紫外線の露光部と未露光部との硬化速度のコントラストが大きく、紫外線硬化性樹脂組成物との相溶性やカチオン成分をトラップする能力に優れる点から、三級脂肪族アミン化合物が好ましく、入手容易性を考慮するとトリエチルアミン、テトラメチルエチレンジアミンがより好ましい。 Examples of the amine compound include aliphatic amine compounds such as isopropylamine, dimethylamine, triethylamine, tetramethylethylenediamine and N-ethyldiisopropylamine, and aromatic amines such as aniline. Among them, the tertiary aliphatic amine compound is preferable because the contrast of the curing speed between the exposed portion and the unexposed portion of the ultraviolet ray is large, and the compatibility with the ultraviolet curable resin composition and the ability to trap the cation component are excellent. , Triethylamine and tetramethylethylenediamine are more preferable in consideration of availability.
 ポリアルキレングリコールとしては、例えば、エチレングリコール、ポリトリメチレンエーテルグリコール、ポリテトラメチレンエーテルグリコールを例示できる。
 クラウンエーテルとしては、例えば、15-クラウン-5-エーテル、18-クラウン-6-エーテル、cis-ジシクロヘキサノ18-クラウン-6-エーテルを例示できる。
Examples of the polyalkylene glycol include ethylene glycol, polytrimethylene ether glycol, and polytetramethylene ether glycol.
Examples of the crown ether include 15-crown-5-ether, 18-crown-6-ether, and cis-dicyclohexano18-crown-6-ether.
 紫外線硬化性樹脂組成物中の遅延硬化剤の含有量は、多官能エポキシ樹脂及びオキセタン化合物の含有量、遅延硬化剤の種類、光重合開始剤の種類及び含有量に応じて、t及びtが前記した条件を満たすように適宜調節すればよい。
 例えば、アミン化合物を使用する場合、紫外線硬化性樹脂組成物中のアミン化合物の含有量は、多官能エポキシ樹脂及びオキセタン化合物の合計質量100質量部に対して、0.01質量部~1.0質量部が好ましく、0.02質量部~0.50質量部がより好ましく、0.05質量部~0.2質量部がさらに好ましい。
The content of the delayed curing agent in the ultraviolet curable resin composition is t 1 and t depending on the content of the polyfunctional epoxy resin and the oxetane compound, the type of the delayed curing agent, and the type and content of the photopolymerization initiator. 2 may be appropriately adjusted so as to satisfy the above-mentioned conditions.
For example, when an amine compound is used, the content of the amine compound in the ultraviolet curable resin composition is 0.01 part by mass to 1.0 part by mass with respect to 100 parts by mass of the total mass of the polyfunctional epoxy resin and the oxetane compound. It is preferably parts by mass, more preferably 0.02 parts by mass to 0.50 parts by mass, and even more preferably 0.05 parts by mass to 0.2 parts by mass.
 本発明の紫外線硬化性樹脂組成物は、さらに光重合開始剤を含んでもよい。
 光重合開始剤としては、紫外線の照射によってカチオン重合可能な酸を発生する各種光カチオン重合開始剤を例示できる。光カチオン重合開始剤のアニオン成分としては、例えば、SbF 、PF 、BF 、AsF 、B(C を例示できる。光重合開始剤としては、硬化性の点から、アニオン成分としてPF 又はSbF を含む芳香族スルホニウム塩等のオニウム塩が好ましい。
The ultraviolet curable resin composition of the present invention may further contain a photopolymerization initiator.
Examples of the photopolymerization initiator include various photocationic polymerization initiators that generate an acid that can be cationically polymerized by irradiation with ultraviolet rays. The anionic component of the cationic photopolymerization initiator, for example, SbF 6 -, PF 6 - , BF 4 -, AsF 6 -, B (C 6 F 5) 4 - can be exemplified. As the photopolymerization initiator, from the viewpoint of curability, PF 6 as an anion component - or SbF 6 - onium salts such as aromatic sulfonium salts are preferred including.
 光重合開始剤を使用する場合、紫外線硬化性樹脂組成物中の光重合開始剤の含有量は、紫外線硬化性樹脂組成物中の樹脂成分100質量部に対して、0.05質量部~10.0質量部が好ましく、0.1質量部~3.0質量部がより好ましい。光重合開始剤の含有量が前記範囲の下限値以上であれば、硬化性に優れる。光重合開始剤の含有量が前記範囲の上限値以下であれば、硬化物の着色を抑制しやすい。 When a photopolymerization initiator is used, the content of the photopolymerization initiator in the ultraviolet curable resin composition is 0.05 parts by mass to 10 parts by mass with respect to 100 parts by mass of the resin component in the ultraviolet curable resin composition. .0 parts by mass is preferable, and 0.1 parts by mass to 3.0 parts by mass is more preferable. When the content of the photopolymerization initiator is at least the lower limit of the above range, the curability is excellent. When the content of the photopolymerization initiator is not more than the upper limit of the above range, it is easy to suppress the coloring of the cured product.
 本発明の紫外線硬化性樹脂組成物は、必要に応じて、カップリング剤(シラン系カップリング剤、チタン系カップリング剤等)、可撓性付与剤(合成ゴム、ポリオルガノシロキサン等)、酸化防止剤、消泡剤、炭化水素系ワックス、無機質充填剤等の添加剤を含んでもよい。 The ultraviolet curable resin composition of the present invention can be used as a coupling agent (silane-based coupling agent, titanium-based coupling agent, etc.), flexibility-imparting agent (synthetic rubber, polyorganosiloxane, etc.), and oxidation, if necessary. Additives such as inhibitors, defoamers, hydrocarbon waxes, and inorganic fillers may be included.
[硬化物]
 本発明の硬化物は、本発明の紫外線硬化性樹脂組成物が硬化された硬化物である。硬化物の用途は、特に限定されず、例えば、光学レンズを例示できる。
 硬化物の形状及び外径寸法は、用途に応じて適宜設定できる。
 硬化物の厚みは、特に限定されず、例えば、0.01mm~5.0mmにできる。
[Cured product]
The cured product of the present invention is a cured product obtained by curing the ultraviolet curable resin composition of the present invention. The application of the cured product is not particularly limited, and examples thereof include an optical lens.
The shape and outer diameter of the cured product can be appropriately set according to the application.
The thickness of the cured product is not particularly limited, and can be, for example, 0.01 mm to 5.0 mm.
 本発明の硬化物のアッベ数は、50以上が好ましく、53以上がより好ましく、55以上がさらに好ましい。アッベ数が前記範囲の下限値以上であれば、光学レンズとして用いた場合に色収差が発生しにくく、解像度が高くなる。アッベ数は高ければ高いほどよく、上限は特に限定されないが、実質的には60程度である。 The Abbe number of the cured product of the present invention is preferably 50 or more, more preferably 53 or more, and even more preferably 55 or more. When the Abbe number is not less than the lower limit of the above range, chromatic aberration is less likely to occur when used as an optical lens, and the resolution becomes high. The higher the Abbe number, the better, and the upper limit is not particularly limited, but is practically about 60.
 硬化物の製造方法としては、例えば、モールドを用いたインプリント法を例示できる。具体的には、所望の硬化物の形状に対応する形状の凹部を表面に有するモールドと本発明の紫外線硬化性樹脂組成物とを接触させた状態で、紫外線硬化性樹脂組成物を硬化させ、所望の形状の硬化物を製造する方法を例示できる。 As a method for producing a cured product, for example, an imprint method using a mold can be exemplified. Specifically, the ultraviolet curable resin composition is cured in a state where the mold having a recess having a shape corresponding to the shape of the desired cured product on the surface and the ultraviolet curable resin composition of the present invention are in contact with each other. An example of a method for producing a cured product having a desired shape can be exemplified.
 以下、硬化物の製造方法の一例として、ウエハレベルレンズの製造方法について図面に基づいて説明する。ウエハレベルレンズは、基板と、基板上に設けられた複数の光学レンズとを備えている。
 なお、以下の説明において例示される図の外径寸法等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
Hereinafter, as an example of a method for producing a cured product, a method for producing a wafer level lens will be described with reference to the drawings. The wafer level lens includes a substrate and a plurality of optical lenses provided on the substrate.
It should be noted that the outer diameter dimensions and the like of the figures illustrated in the following description are examples, and the present invention is not necessarily limited thereto, and the present invention can be appropriately modified without changing the gist thereof. Is.
 本実施形態のウエハレベルレンズの製造方法は、例えば、下記の工程(a)~(d)を有する。
 工程(a):図1に示すように、光学レンズの形状に対応する形状の凹部12が表面に設けられたモールド10の各々の凹部12に紫外線硬化性樹脂組成物20を配置する。
 工程(b):図2に示すように、モールド10の凹部12側に基板32を配置し、モールド10と基板32によって紫外線硬化性樹脂組成物20を挟持する。
 工程(c):図3に示すように、各々の紫外線硬化性樹脂組成物20に部分的に紫外線を照射し、露光部を硬化させて光学レンズ34を形成する。
 工程(d):モールド10を分離し、図4に示す未露光部の紫外線硬化性樹脂組成物20を洗浄して除去し、図5に示すウエハレベルレンズ30を得る。
The wafer level lens manufacturing method of the present embodiment includes, for example, the following steps (a) to (d).
Step (a): As shown in FIG. 1, the ultraviolet curable resin composition 20 is placed in each recess 12 of the mold 10 provided with recesses 12 having a shape corresponding to the shape of the optical lens.
Step (b): As shown in FIG. 2, the substrate 32 is arranged on the recess 12 side of the mold 10, and the ultraviolet curable resin composition 20 is sandwiched between the mold 10 and the substrate 32.
Step (c): As shown in FIG. 3, each ultraviolet curable resin composition 20 is partially irradiated with ultraviolet rays, and the exposed portion is cured to form an optical lens 34.
Step (d): The mold 10 is separated, and the ultraviolet curable resin composition 20 in the unexposed portion shown in FIG. 4 is washed and removed to obtain the wafer level lens 30 shown in FIG.
 図1に示すように、モールド10は、板状部14上に複数の成形部16が設けられ、成形部16の上面に凹部12が形成されている。板状部14における成形部16側の表層部における、隣り合う成形部16の凹部12の間には、紫外線の透過を遮る遮蔽部18が設けられている。凹部12の形状及び外径寸法は、光学レンズ34の形状に対応した形状になっている。 As shown in FIG. 1, in the mold 10, a plurality of molding portions 16 are provided on the plate-shaped portion 14, and a recess 12 is formed on the upper surface of the molding portion 16. A shielding portion 18 that blocks the transmission of ultraviolet rays is provided between the recesses 12 of the adjacent molding portions 16 in the surface layer portion on the molding portion 16 side of the plate-shaped portion 14. The shape and outer diameter of the recess 12 correspond to the shape of the optical lens 34.
 モールド10における板状部14の遮蔽部18以外の部分、及び成形部16を形成する材料としては、透光材料を例示できる。遮蔽部18を形成する材料としては、非透光材料を例示できる。
 透光材料としては、例えば、アクリル系UV硬化樹脂の硬化物、石英ガラス等のガラス、ポリジメチルシロキサン、環状ポリオレフィン、ポリカーボネート、ポリエチレンテレフタレート、透明フッ素樹脂を例示できる。
 非透光材料としては、クロム、ニッケル、銅、チタン、及びこれらの酸化物、炭化ケイ素、マイカを例示できる。
Examples of the material for forming the plate-shaped portion 14 other than the shielding portion 18 and the molding portion 16 in the mold 10 include a translucent material. As a material for forming the shielding portion 18, a non-transmissive material can be exemplified.
Examples of the translucent material include a cured product of an acrylic UV curable resin, glass such as quartz glass, polydimethylsiloxane, cyclic polyolefin, polycarbonate, polyethylene terephthalate, and transparent fluororesin.
Examples of the non-transmissive material include chromium, nickel, copper, titanium, oxides thereof, silicon carbide, and mica.
 工程(a)におけるモールド10の凹部12に紫外線硬化性樹脂組成物20を配置する方法としては、例えば、インクジェット法、ポッティング法(ディスペンス法)、スピンコート法、ロールコート法、キャスト法、ディップコート法、ダイコート法、ラングミュラープロジェット法を例示できる。 Examples of the method for arranging the ultraviolet curable resin composition 20 in the recess 12 of the mold 10 in the step (a) include an inkjet method, a potting method (dispensing method), a spin coating method, a roll coating method, a casting method, and a dip coating method. Examples include the method, the die coat method, and the Langmüller projet method.
 図2に示す工程(b)において、モールド10と基板32によって紫外線硬化性樹脂組成物20を挟持する際のプレス圧力(ゲージ圧)は、0MPa超10MPa以下が好ましく、0.1MPa~5MPaがより好ましい。
 モールド10と基板32によって紫外線硬化性樹脂組成物20を挟持する際の温度は、0℃~110℃が好ましく、10℃~80℃がより好ましい。
 基板32の厚みは、特に限定されず、例えば、0.1mm~2.0mmにできる。
In the step (b) shown in FIG. 2, the press pressure (gauge pressure) when the ultraviolet curable resin composition 20 is sandwiched between the mold 10 and the substrate 32 is preferably more than 0 MPa and 10 MPa or less, more preferably 0.1 MPa to 5 MPa. preferable.
The temperature at which the ultraviolet curable resin composition 20 is sandwiched between the mold 10 and the substrate 32 is preferably 0 ° C to 110 ° C, more preferably 10 ° C to 80 ° C.
The thickness of the substrate 32 is not particularly limited, and can be, for example, 0.1 mm to 2.0 mm.
 工程(c)では、図3に示すように、モールド10における板状部14の遮蔽部18と反対側から紫外線を照射する。紫外線は遮蔽部18の間から透過し、各々の紫外線硬化性樹脂組成物20に部分的に照射される。遮蔽部18の間の露光部、すなわち凹部12では、紫外線硬化性樹脂組成物20が硬化されて光学レンズ34が形成される。隣り合う凹部12の間は遮蔽部18によって紫外線が遮られるため未露光部となる。紫外線硬化性樹脂組成物20は露光部と未露光部の硬化速度のコントラストが大きいため、隣り合う凹部12の間の未露光部では、紫外線硬化性樹脂組成物20の硬化が充分に抑制される。 In step (c), as shown in FIG. 3, ultraviolet rays are irradiated from the side opposite to the shielding portion 18 of the plate-shaped portion 14 in the mold 10. Ultraviolet rays are transmitted from between the shielding portions 18 and partially irradiate each ultraviolet curable resin composition 20. The ultraviolet curable resin composition 20 is cured to form the optical lens 34 in the exposed portion between the shielding portions 18, that is, the recess 12. Since ultraviolet rays are blocked by the shielding portion 18 between the adjacent recesses 12, it becomes an unexposed portion. Since the UV-curable resin composition 20 has a large contrast between the curing speeds of the exposed portion and the unexposed portion, the curing of the UV-curable resin composition 20 is sufficiently suppressed in the unexposed portion between the adjacent recesses 12. ..
 紫外線の光源としては、例えば、UV-LED、低圧水銀灯、高圧水銀灯、超高圧水銀灯を例示できる。
 紫外線の照射量としては、100mJ/cm~30,000mJ/cmが好ましく、1,000mJ/cm~20,000mJ/cmがより好ましい。
Examples of the light source of ultraviolet rays include UV-LED, low-pressure mercury lamp, high-pressure mercury lamp, and ultra-high-pressure mercury lamp.
The irradiation dose of ultraviolet rays is preferably 100mJ / cm 2 ~ 30,000mJ / cm 2, 1,000mJ / cm 2 ~ 20,000mJ / cm 2 is more preferable.
 工程(d)では、モールド10を分離し、図4に示す未露光部の紫外線硬化性樹脂組成物20を洗浄して除去する。これにより、図5に示すように、基板32上に複数の光学レンズ34が設けられたウエハレベルレンズ30が得られる。 In the step (d), the mold 10 is separated, and the ultraviolet curable resin composition 20 in the unexposed portion shown in FIG. 4 is washed and removed. As a result, as shown in FIG. 5, a wafer level lens 30 in which a plurality of optical lenses 34 are provided on the substrate 32 can be obtained.
 光学レンズ34とモールド10とを分離する際の温度は、0℃~110℃が好ましく、10℃~80℃がより好ましい。
 洗浄方法としては、例えば、スピン洗浄、ディップ洗浄、超音波洗浄を例示できる。
The temperature at which the optical lens 34 and the mold 10 are separated is preferably 0 ° C. to 110 ° C., more preferably 10 ° C. to 80 ° C.
Examples of the cleaning method include spin cleaning, dip cleaning, and ultrasonic cleaning.
 以上説明したように、本発明においては、紫外線硬化性樹脂組成物が遅延硬化剤を含み、t及びtが特定の条件に制御されているため、露光部と未露光部における硬化速度のコントラストが大きい。そのため、光学レンズ等の硬化物を製造する際、製品として余分な部分である未露光部の紫外線硬化性樹脂組成物の硬化を充分に抑制しつつ、硬化物を形成できる。その結果、未露光部の紫外線硬化性樹脂組成物を安定して除去できるため、得られる硬化物の外径寸法安定性に優れる。 As described above, in the present invention, since the ultraviolet curable resin composition contains a delayed curing agent and t 1 and t 2 are controlled under specific conditions, the curing speed in the exposed portion and the unexposed portion is different. The contrast is high. Therefore, when producing a cured product such as an optical lens, the cured product can be formed while sufficiently suppressing the curing of the ultraviolet curable resin composition in the unexposed portion, which is an extra portion of the product. As a result, the ultraviolet curable resin composition in the unexposed portion can be stably removed, so that the obtained cured product is excellent in outer diameter dimensional stability.
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。例2、3、5、6、8、9、11、12は実施例であり、例1、4、7、10は比較例である。
[略号]
 本実施例で使用した原料の略号を以下に示す。
 (樹脂)
 A-1:jER YX8000(水添ビスフェノールA型エポキシ樹脂モノマー。三菱ケミカル社製)
 A-2:セロキサイド2021P(3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、ダイセル社製)
 A-3:CELVENUS LU1701HA(多官能エポキシ樹脂とオキセタン化合物との混合物、ダイセル社製)
 A-4:jER YX8040(水添ビスフェノールA型エポキシ樹脂オリゴマー。三菱ケミカル社製)
 A-5:TEPIC-FL(1,3,5-トリス(6-(オキシラン-2-イル)ヘキシル)-1,3,5-トリアジン-2,4,6-トリオン、日産化学社製)
 A-6:OXT-221(ビス(3-エチル-3-オキセタニルメチル)エーテル、東亞合成社製)
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the following description. Examples 2, 3, 5, 6, 8, 9, 11, and 12 are examples, and examples 1, 4, 7, and 10 are comparative examples.
[Abbreviation]
The abbreviations of the raw materials used in this example are shown below.
(resin)
A-1: jER YX8000 (hydrogenated bisphenol A type epoxy resin monomer, manufactured by Mitsubishi Chemical Corporation)
A-2: Celoxide 2021P (3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, manufactured by Daicel Corporation)
A-3: CELVENUS LU1701HA (mixture of polyfunctional epoxy resin and oxetane compound, manufactured by Daicel Corporation)
A-4: jER YX8040 (hydrogenated bisphenol A type epoxy resin oligomer, manufactured by Mitsubishi Chemical Corporation)
A-5: TEPIC-FL (1,3,5-tris (6- (oxylan-2-yl) hexyl) -1,3,5-triazine-2,4,6-trione, manufactured by Nissan Chemical Industries, Ltd.)
A-6: OXT-221 (bis (3-ethyl-3-oxetanylmethyl) ether, manufactured by Toagosei Co., Ltd.)
 (遅延硬化剤)
 B-1:トリエチルアミン(東京化成工業社製)
 B-2:テトラメチルエチレンジアミン(東京化成工業社製)
(Delayed curing agent)
B-1: Triethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
B-2: Tetramethylethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
 (光重合開始剤)
 C-1:Irgacure290(BASFジャパン社製)
(Photopolymerization initiator)
C-1: Irgacure 290 (manufactured by BASF Japan Ltd.)
[貯蔵弾性率の測定]
 レオメータとしてMCR301(Anton Paar社製)を用い、角周波数62.8rad/s一定の条件下で、紫外線硬化性樹脂組成物の貯蔵弾性率(単位:Pa)を測定した。
 25℃において、暗条件でレオメータによる紫外線硬化性樹脂組成物の貯蔵弾性率のモニタリングを開始し、紫外線硬化性樹脂組成物に波長365nm、照度7mW/cmの紫外線を5秒間照射した後、再び暗条件下とした。そして、紫外線の照射開始時点から、紫外線硬化性樹脂組成物の貯蔵弾性率が紫外線照射前の貯蔵弾性率に対して100倍となる時点までの時間をtとした。時間に対する貯蔵弾性率をプロットし、紫外線を5秒間照射したときのグラフにおける、硬化開始から貯蔵弾性率の立ち上がりの傾きをkとした。
 紫外線の照射時間を20秒間とする以外は、時間t及び傾きkと同様の方法で時間t及び傾きkを測定した。
[Measurement of storage elastic modulus]
Using MCR301 (manufactured by Antonio Paar) as a rheometer, the storage elastic modulus (unit: Pa) of the ultraviolet curable resin composition was measured under a constant angular frequency of 62.8 rad / s.
At 25 ° C., monitoring of the storage elastic modulus of the ultraviolet curable resin composition with a rheometer was started under dark conditions, the ultraviolet curable resin composition was irradiated with ultraviolet rays having a wavelength of 365 nm and an illuminance of 7 mW / cm 2 for 5 seconds, and then again. It was set under dark conditions. Then, from the start of irradiation of the ultraviolet light, the time until the time when the storage modulus of the ultraviolet curable resin composition is 100 times the storage elastic modulus before the ultraviolet irradiation was t 1. Plotting the storage modulus versus time, in the graph when the irradiation for 5 seconds UV, the rise of the slope of the storage modulus of the cured start was k 1.
The time t 2 and the slope k 2 were measured in the same manner as the time t 1 and the slope k 1 except that the irradiation time of ultraviolet rays was 20 seconds.
[製造例1~12]
 表1に示すとおりの組成で各成分を混合し、紫外線硬化性樹脂組成物X-1~X-8、Y-1~Y-4を調製した。各々の紫外線硬化性樹脂組成物のt及びtの測定結果を表1に示す。
 なお、表1におけるtの欄の「∞」は、紫外線硬化性樹脂組成物が硬化しなかったことを示す。
[Manufacturing Examples 1 to 12]
Each component was mixed with the composition as shown in Table 1 to prepare ultraviolet curable resin compositions X-1 to X-8 and Y-1 to Y-4. Table 1 shows the measurement results of t 1 and t 2 of each ultraviolet curable resin composition.
Incidentally, "∞" in column t 1 in Table 1 shows that the ultraviolet-curable resin composition was not cured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[例1~12]
 以下の手順でウエハレベルレンズを製造した。各例では、紫外線硬化性樹脂組成物20として表2に示す紫外線硬化性樹脂組成物を用いた。
 平面視形状が円形状で、最深部の深さが0.5mm、平面視での直径が2.0mmの凹部12を複数備え、遮蔽部の開口直径が1.8mmであるモールド10を用意した。図1に示すように、光学レンズの形状に対応する形状の凹部12が表面に設けられたモールド10の各々の凹部12に紫外線硬化性樹脂組成物20を配置した。図2に示すように、モールド10の凹部12側に基板32を配置し、モールド10と基板32によって紫外線硬化性樹脂組成物20を挟持した。図3に示すように、各々の紫外線硬化性樹脂組成物20に部分的に紫外線を2,500mJ/cm照射し、露光部を硬化させて光学レンズ34を形成した。図4に示すように、モールド10を分離した。図5に示すように、未露光部の紫外線硬化性樹脂組成物20を、有機溶剤を用いたスピン洗浄により除去し、ウエハレベルレンズ30を得た。
[Examples 1 to 12]
A wafer level lens was manufactured by the following procedure. In each example, the ultraviolet curable resin composition shown in Table 2 was used as the ultraviolet curable resin composition 20.
A mold 10 having a circular shape in a plan view, a plurality of recesses 12 having a depth of 0.5 mm at the deepest portion and a diameter of 2.0 mm in a plan view, and an opening diameter of a shielding portion of 1.8 mm was prepared. .. As shown in FIG. 1, the ultraviolet curable resin composition 20 was arranged in each recess 12 of the mold 10 having recesses 12 having a shape corresponding to the shape of the optical lens. As shown in FIG. 2, the substrate 32 was arranged on the concave portion 12 side of the mold 10, and the ultraviolet curable resin composition 20 was sandwiched between the mold 10 and the substrate 32. As shown in FIG. 3, each ultraviolet curable resin composition 20 was partially irradiated with ultraviolet rays at 2,500 mJ / cm 2 to cure the exposed portion to form an optical lens 34. As shown in FIG. 4, the mold 10 was separated. As shown in FIG. 5, the ultraviolet curable resin composition 20 in the unexposed portion was removed by spin cleaning using an organic solvent to obtain a wafer level lens 30.
[寸法安定性]
 各例で得たウエハレベルレンズにおける光学レンズの外径寸法安定性を以下の方法で評価した。
 ウエハ1面当たり1000個のレンズをインプリントにより作製し、自動画像測定システムNEXIV VMZ-R4540(ニコン社製)を用いて外径不良率を算出した。形状不良の基準としては、レンズ外径がモールド遮蔽部の直径を10%以上超えるものとした。
 A:不良率10%未満
 B:不良率10%以上
 各例の評価結果を表2に示す。
[Dimensional stability]
The outer diameter dimensional stability of the optical lens in the wafer level lens obtained in each example was evaluated by the following method.
1000 lenses per wafer surface were imprinted, and the outer diameter defect rate was calculated using the automatic image measurement system NEXIV VMZ-R4540 (manufactured by Nikon Corporation). As a criterion for shape defect, the outer diameter of the lens was set to exceed the diameter of the mold shielding portion by 10% or more.
A: Defect rate less than 10% B: Defect rate 10% or more Table 2 shows the evaluation results of each example.
Figure JPOXMLDOC01-appb-T000002
 また、例1~12のウエハレベルレンズを構成する硬化物のアッベ数νの測定結果を表2に示す。評価サンプルの作製方法と測定方法を以下に示す。
[評価サンプルの作製方法]
 離型処理を施した2枚のガラス基板の間に、紫外線硬化性組成物を挟んだ。このとき、硬化物の厚さ(ガラス基板間の距離)が500μmになるように、硬化性組成物を挟んだ。紫外線硬化性組成物に対し、離型処理を施したガラス基板越しに紫外線(365nmのLEDランプを使用)を露光量:4000mJ/cmで照射後、ホットプレート上で80℃、30分加熱して硬化させた。硬化物をガラス基板から離型することで、膜状の硬化物を得た。得られた硬化物を、窒素雰囲気下で180℃、3時間の条件で熱処理し、評価サンプルである硬化物を得た。紫外線硬化性組成物X-1~X-8、Y-1~Y-4のそれぞれについて、上記の方法で評価サンプルを作製した。
[アッベ数の算出方法]
 メトリコン社製プリズムカプラ(モデル2010)を用い、451nm、532nm、633nm、932nmレーザーで、30℃における各波長の屈折率を測定した。それらの実測値をコーシーの分散公式に代入することによって近似式を導出し、上述した[式1]に従ってアッベ数を算出した。得られた結果を表2に示す。
 表2の結果から、遅延硬化剤を含有しても、硬化物の光学特性を損ねることなく、外径寸法安定性に優れた、紫外線を利用したインプリント法による硬化物を得られることがわかった。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows the measurement results of the Abbe number ν d of the cured product constituting the wafer level lenses of Examples 1 to 12. The method of preparing the evaluation sample and the method of measurement are shown below.
[Method of preparing evaluation sample]
An ultraviolet curable composition was sandwiched between two glass substrates that had undergone a mold release treatment. At this time, the curable composition was sandwiched so that the thickness of the cured product (distance between the glass substrates) was 500 μm. The ultraviolet curable composition is irradiated with ultraviolet rays (using a 365 nm LED lamp) through a glass substrate that has undergone a mold release treatment at an exposure amount of 4000 mJ / cm 2 , and then heated on a hot plate at 80 ° C. for 30 minutes. And cured. A film-like cured product was obtained by releasing the cured product from the glass substrate. The obtained cured product was heat-treated in a nitrogen atmosphere at 180 ° C. for 3 hours to obtain a cured product as an evaluation sample. Evaluation samples were prepared for each of the ultraviolet curable compositions X-1 to X-8 and Y-1 to Y-4 by the above method.
[Calculation method of Abbe number]
The refractive index of each wavelength at 30 ° C. was measured with a 451 nm, 532 nm, 633 nm, and 932 nm laser using a prism coupler (model 2010) manufactured by Metricon. An approximate expression was derived by substituting those measured values into Cauchy's dispersion formula, and the Abbe number was calculated according to the above-mentioned [Equation 1]. The results obtained are shown in Table 2.
From the results in Table 2, it was found that even if a delayed curing agent is contained, a cured product obtained by an imprint method using ultraviolet rays, which has excellent outer diameter dimensional stability, can be obtained without impairing the optical characteristics of the cured product. It was.
 以上、本発明の好ましい実施の形態について説明したが、本発明は、上述した実施の形態に制限されるものではなく、本発明の範囲を逸脱しない範囲において、上述した実施の形態に種々の変形及び置換を加えることができる。
 本出願は、2019年9月12日出願の日本特許出願2019-166513に基づくものであり、その内容はここに参照として取り込まれる。
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications to the above-described embodiments are made without departing from the scope of the present invention. And substitutions can be made.
This application is based on Japanese Patent Application 2019-166513 filed on September 12, 2019, the contents of which are incorporated herein by reference.
 10…モールド
 12…凹部
 20…紫外線硬化性樹脂組成物
 30…ウエハレベルレンズ
 32…基板
 34…光学レンズ
10 ... Mold 12 ... Recessed 20 ... UV curable resin composition 30 ... Wafer level lens 32 ... Substrate 34 ... Optical lens

Claims (7)

  1.  多官能エポキシ樹脂と、オキセタン化合物と、遅延硬化剤と、を含む紫外線硬化性樹脂組成物であって、
     波長365nm、照度7mW/cmの紫外線を5秒間照射したとき、紫外線の照射開始時点から、前記紫外線硬化性樹脂組成物の貯蔵弾性率が紫外線照射前の貯蔵弾性率に対して100倍となる時点までの時間tが2分超であり、
     かつ、波長365nm、照度7mW/cmの紫外線を20秒間照射したとき、紫外線の照射開始時点から、前記紫外線硬化性樹脂組成物の貯蔵弾性率が紫外線照射前の貯蔵弾性率に対して100倍となる時点までの時間tが2分未満である、紫外線硬化性樹脂組成物。
    An ultraviolet curable resin composition containing a polyfunctional epoxy resin, an oxetane compound, and a delayed curing agent.
    When ultraviolet rays having a wavelength of 365 nm and an illuminance of 7 mW / cm 2 are irradiated for 5 seconds, the storage elastic modulus of the ultraviolet curable resin composition becomes 100 times the storage elastic modulus before the ultraviolet irradiation from the start of the irradiation of the ultraviolet rays. The time t 1 to the time point is more than 2 minutes,
    Moreover, when ultraviolet rays having a wavelength of 365 nm and an illuminance of 7 mW / cm 2 are irradiated for 20 seconds, the storage elastic modulus of the ultraviolet curable resin composition is 100 times higher than the storage elastic modulus before the ultraviolet irradiation from the start of the irradiation of the ultraviolet rays. An ultraviolet curable resin composition in which the time t 2 up to the time point is less than 2 minutes.
  2.  前記時間tが3分以上である、請求項1に記載の紫外線硬化性樹脂組成物。 The ultraviolet curable resin composition according to claim 1, wherein the time t 1 is 3 minutes or more.
  3.  前記時間tが1分未満である、請求項1又は2に記載の紫外線硬化性樹脂組成物。 The ultraviolet curable resin composition according to claim 1 or 2, wherein the time t 2 is less than 1 minute.
  4.  前記遅延硬化剤がアミン化合物である、請求項1~3のいずれか一項に記載の紫外線硬化性樹脂組成物。 The ultraviolet curable resin composition according to any one of claims 1 to 3, wherein the delayed curing agent is an amine compound.
  5.  請求項1~4のいずれか一項に記載の紫外線硬化性樹脂組成物が硬化された硬化物。 A cured product obtained by curing the ultraviolet curable resin composition according to any one of claims 1 to 4.
  6.  アッベ数が50以上である、請求項5に記載の硬化物。 The cured product according to claim 5, wherein the Abbe number is 50 or more.
  7.  請求項5又は6に記載の硬化物からなる、光学レンズ。 An optical lens made of the cured product according to claim 5 or 6.
PCT/JP2020/033711 2019-09-12 2020-09-07 Ultraviolet curable resin composition, cured product and optical lens WO2021049443A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021545512A JPWO2021049443A1 (en) 2019-09-12 2020-09-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019166513 2019-09-12
JP2019-166513 2019-09-12

Publications (1)

Publication Number Publication Date
WO2021049443A1 true WO2021049443A1 (en) 2021-03-18

Family

ID=74866613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033711 WO2021049443A1 (en) 2019-09-12 2020-09-07 Ultraviolet curable resin composition, cured product and optical lens

Country Status (2)

Country Link
JP (1) JPWO2021049443A1 (en)
WO (1) WO2021049443A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194379A (en) * 2004-01-07 2005-07-21 Konica Minolta Medical & Graphic Inc Active energy radiation curing composition, active energy radiation curing ink and image formation method and ink jet recording device using the same
JP2008189821A (en) * 2007-02-05 2008-08-21 Fujifilm Corp Photocurable composition
JP2010195932A (en) * 2009-02-25 2010-09-09 Sekisui Chem Co Ltd Optical resin composition for molding and optical member
JP2012136571A (en) * 2010-12-24 2012-07-19 Nippon Shokubai Co Ltd Cationic curing resin composition for optical lens
JP2013043983A (en) * 2011-08-26 2013-03-04 Fujifilm Corp Photocurable resin composition, wafer-level lens, and method for producing the lens
JP2013091676A (en) * 2011-10-24 2013-05-16 Panasonic Corp Novel uv-curable resin composition
WO2018174177A1 (en) * 2017-03-22 2018-09-27 パナソニックIpマネジメント株式会社 Photocurable resin composition, adhesive, laminated body, method for producing laminated body, and display device
JP2019143006A (en) * 2018-02-19 2019-08-29 四国化成工業株式会社 Optical member and optical device using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194379A (en) * 2004-01-07 2005-07-21 Konica Minolta Medical & Graphic Inc Active energy radiation curing composition, active energy radiation curing ink and image formation method and ink jet recording device using the same
JP2008189821A (en) * 2007-02-05 2008-08-21 Fujifilm Corp Photocurable composition
JP2010195932A (en) * 2009-02-25 2010-09-09 Sekisui Chem Co Ltd Optical resin composition for molding and optical member
JP2012136571A (en) * 2010-12-24 2012-07-19 Nippon Shokubai Co Ltd Cationic curing resin composition for optical lens
JP2013043983A (en) * 2011-08-26 2013-03-04 Fujifilm Corp Photocurable resin composition, wafer-level lens, and method for producing the lens
JP2013091676A (en) * 2011-10-24 2013-05-16 Panasonic Corp Novel uv-curable resin composition
WO2018174177A1 (en) * 2017-03-22 2018-09-27 パナソニックIpマネジメント株式会社 Photocurable resin composition, adhesive, laminated body, method for producing laminated body, and display device
JP2019143006A (en) * 2018-02-19 2019-08-29 四国化成工業株式会社 Optical member and optical device using the same

Also Published As

Publication number Publication date
JPWO2021049443A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US11029497B2 (en) Curable composition, cured product thereof, optical member and optical device
TWI680155B (en) Lens curable composition and use thereof, lens and manufacturing method thereof, and optical device
EP2128183B1 (en) Resin composition for optical components, optical component using the same and production method of optical lens
WO2014185180A1 (en) Photo-curable resin composition for optical components, optical component using same, and optical component production method
JP5329299B2 (en) Optical lens
JP7169052B2 (en) Fresnel lens and manufacturing method thereof
JP5070131B2 (en) Resin composition for optical parts and optical part using the same
JP5415371B2 (en) Photocurable resin composition for optical lens and optical lens using the same
WO2021049443A1 (en) Ultraviolet curable resin composition, cured product and optical lens
JP6418672B2 (en) Resin composition for optical parts and optical part using the same
JP5415370B2 (en) Photo-curable resin composition and optical component using the same
WO2022131069A1 (en) Curable resin composition, cured object, lens, and substrate-supported lens
WO2012169120A1 (en) Composite body production method and composite body
JP5184336B2 (en) Ultraviolet curable resin composition and optical lens obtained using the same
JP6938187B2 (en) Silicone mold
JP2009288598A (en) Manufacturing method of optical lens and optical lens obtained thereby
TW201833166A (en) Photopolymerizable composition for imprint molding containing alicyclic epoxy compound
TWI516517B (en) Photocurable resin composition and optical component using the same
WO2015151688A1 (en) Resin composition for use in optical component and optical component using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862641

Country of ref document: EP

Kind code of ref document: A1