WO2021049376A1 - Battery, electronic device, and electric tool - Google Patents

Battery, electronic device, and electric tool Download PDF

Info

Publication number
WO2021049376A1
WO2021049376A1 PCT/JP2020/033109 JP2020033109W WO2021049376A1 WO 2021049376 A1 WO2021049376 A1 WO 2021049376A1 JP 2020033109 W JP2020033109 W JP 2020033109W WO 2021049376 A1 WO2021049376 A1 WO 2021049376A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
positive electrode
negative electrode
current collector
lead
Prior art date
Application number
PCT/JP2020/033109
Other languages
French (fr)
Japanese (ja)
Inventor
原田 治
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202090000797.4U priority Critical patent/CN217468483U/en
Publication of WO2021049376A1 publication Critical patent/WO2021049376A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery, an electronic device including the battery, and a power tool.
  • Cylindrical winding type non-aqueous electrolyte secondary battery is used as a power supply source for various devices such as power tools and electric vehicles.
  • a strong impact may be applied to such equipment from the outside, which may cause damage or deformation of the battery.
  • the vicinity of the central portion in the cylindrical axial direction of the battery is more likely to be deformed by an external force than other portions. Therefore, regarding the performance of the battery, it is desired to improve the impact resistance near the central portion of the battery.
  • the cylindrical battery has a structure in which a wound electrode body obtained by winding an electrode laminate in which a pair of electrodes are laminated via a separator is housed in an outer body.
  • the wound electrode body is formed with a structural portion in which a part of the reed is overlapped and joined on the surface of the current collector at the center of the electrode in the longitudinal direction of the electrode, and this structural portion affects the performance of the battery.
  • the longitudinal direction of the electrode means the direction that is the longitudinal direction of the electrode in the state of the electrode laminate in the non-wound state.
  • Patent Document 1 describes a battery in which a positive electrode lead is welded to a portion where an active material of a positive electrode is partially removed, and the area to be removed is smaller than the total width of the opposing negative electrode. Is disclosed.
  • Patent Document 2 describes that in an electrode structure having an uncoated portion on the electrode on the winding start side, the thickness of the uncoated portion is 0.3 to 1.0 times the thickness of the electrode tab at a place where there is no electrode tab (lead).
  • a battery characterized in that an insulating film is attached is disclosed.
  • Patent Document 3 is characterized in that, in an electrode structure having an uncoated portion as a part of the electrode, a lead bonded to the uncoated portion and a current collector foil are partially interposed by a protective layer such as a film.
  • the battery is disclosed.
  • Patent Document 4 an uncoated portion is provided on the winding end side of the positive electrode, a positive electrode lead and a negative electrode lead are arranged on the winding end side, and the length of the portion of the positive electrode lead facing the negative electrode is the negative electrode.
  • a battery having a width of 1/2 or less is disclosed.
  • a current collector exposed in which an active material layer is not provided at the non-end portion of one of the pair of electrodes in the longitudinal direction A structure is adopted in which a portion is formed and a lead is joined to the exposed portion of the current collector.
  • deformation near the central portion on the peripheral surface of the battery causes an internal short circuit (short circuit) of the battery due to destruction of the current collector near the contact portion with the lead in the current collector. May cause.
  • the structural distortion of the wound electrode body when winding the pair of electrodes laminated via the separator It is also important to be able to suppress the unwinding. For these reasons, in a cylindrical battery, it is required to further improve the impact resistance of the battery in the vicinity of the central portion on the peripheral surface of the battery and to suppress the unwinding more effectively. ..
  • the impact resistance of the battery in the present specification means that the occurrence of an internal short circuit (short circuit) of the battery when an impact is applied to the battery is suppressed.
  • the battery having a structure in which the current collector exposed portion is formed at the non-end portion of the electrode is improved in impact resistance and wound. There was room for further improvement in terms of achieving both suppression of unwinding of the electrode body.
  • an object of the present invention is to provide a battery capable of improving impact resistance and suppressing unwinding of the wound electrode body, an electronic device having the battery, and a power tool.
  • the present invention Winding electrode body and Equipped with an outer can for storing the wound electrode body,
  • the wound electrode body is provided between the band-shaped first electrode having the first reed and the first adhesive film material, the band-shaped second electrode, and the first electrode and the second electrode. It has a structure in which the strip-shaped separator is wound in the longitudinal direction.
  • the first electrode has a first current collector exposed portion to which the first active material layer is not provided between both ends in the longitudinal direction of the first electrode.
  • the first lead is provided on the exposed portion of the first current collector so that one end side protrudes from the long side side of the first electrode.
  • the length of the portion of the first lead facing either or both of the separator and the second electrode is shorter than 50% of the width of the second electrode.
  • the first adhesive film material is a battery provided in a region of the first exposed part of the current collector where the first reed is not provided.
  • the present invention may be an electronic device or a power tool having the above-mentioned battery.
  • the present invention it is possible to improve the impact resistance of the battery and suppress the unwinding of the wound electrode body of the battery.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the electrode laminate.
  • FIG. 3A is a schematic plan view showing one of the examples of the configuration of the positive electrode forming the battery according to the embodiment of the present invention.
  • FIG. 3B is a schematic cross-sectional view showing a schematic state of the vertical cross section of the line IIIB-IIIB of FIG. 3A and an enlarged view of a portion of the region X1 surrounded by the alternate long and short dash line.
  • 3C and 3D are schematic plan views showing one of the other examples of the configuration of the positive electrode forming the battery according to the embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the electrode laminate.
  • FIG. 3A is a schematic plan
  • FIG. 4A is a schematic plan view showing one of the examples of the configuration of the negative electrode forming the battery according to the embodiment of the present invention.
  • FIG. 4B is a schematic cross-sectional view showing an outline of the state of the vertical cross section of the IVB-IVB line of FIG. 4A.
  • FIG. 4C is a schematic plan view showing one of the other examples of the configuration of the negative electrode forming the battery according to the embodiment of the present invention.
  • FIG. 4D is a schematic cross-sectional view showing an outline of the state of the vertical cross section of the IVD-IVD line of FIG. 4C.
  • FIG. 5A is a schematic plan view for explaining a laminated state of the positive electrode and the negative electrode.
  • FIG. 5B is a schematic cross-sectional view for explaining an enlarged state of a part of the cross section of the wound electrode body.
  • FIG. 6 is a diagram for explaining an application example.
  • FIG. 7 is a diagram for explaining another application example.
  • FIG. 8 is a diagram for explaining another application example.
  • Embodiments of the present invention will be described in the following order. ⁇ One Embodiment> ⁇ Example> ⁇ Application example> ⁇ Modification example>
  • the embodiments and the like described below are suitable specific examples of the present invention, and the contents of the present invention are not limited to these embodiments and the like.
  • FIG. 1 An example of the configuration of the cylindrical secondary battery (hereinafter, simply referred to as “battery”) according to the embodiment of the present invention will be described with reference to FIG.
  • This battery is, for example, a lithium ion secondary battery in which the capacity of the negative electrode is represented by a capacity component due to occlusion and release of lithium (Li), which is an electrode reactant.
  • the cylindrical battery is wound by winding an electrode laminate in which a pair of strip-shaped positive electrodes 21 and strip-shaped negative electrodes 22 are laminated via a separator 23 inside a substantially hollow cylindrical battery can 11 which is an outer can.
  • a rotating electrode body 20 (hereinafter, simply referred to as “electrode body 20”) is provided.
  • the battery can 11 is made of nickel (Ni) plated iron (Fe), one end of which is closed and the other end of which is open.
  • An electrolytic solution as a liquid electrolyte is injected into the inside of the battery can 11, and the first electrode, the second electrode (positive electrode 21, negative electrode 22) and the separator 23 are impregnated.
  • a pair of insulating plates 12 and 13 are arranged perpendicular to the winding peripheral surface so as to sandwich the electrode body 20.
  • a battery lid 14 At the open end of the battery can 11, a battery lid 14, a safety valve mechanism 15 provided inside the battery lid 14, and a heat-sensitive resistance element (Positive Temperature Cofficient; PTC element) 16 are interposed via a sealing gasket 17. It is attached by being crimped. As a result, the inside of the battery can 11 is sealed.
  • the battery lid 14 is made of the same material as the battery can 11.
  • the safety valve mechanism 15 is electrically connected to the battery lid 14, and when the internal pressure of the battery exceeds a certain level due to an internal short circuit or heating from the outside, the disk plate 15A is inverted and the battery lid 14 and the electrode It is designed to disconnect the electrical connection with the body 20.
  • the sealing gasket 17 is made of an insulating material, and the surface is coated with asphalt.
  • the electrode body 20 has a substantially columnar shape.
  • the electrode body 20 has a center hole 20A penetrating from the center of the first end face toward the center of the second end face.
  • the central hole 20A functions as a flow path that guides the gas from the can bottom side of the battery can 11 to the battery lid 14 side opposite to the gas when gas is generated in the battery can 11.
  • the first lead is the positive electrode lead 25, and the second lead corresponds to the negative electrode lead 26 and the negative electrode lead 27.
  • the positive electrode lead 25 connected to the positive electrode 21 is formed of aluminum (Al) or the like, and the negative electrode leads 26 and 27 connected to the negative electrode 22 are formed of nickel or the like.
  • the first lead is bonded to the first electrode, and the second lead is bonded to the second electrode.
  • the first electrode is a positive electrode, as shown in FIG. 1, the positive electrode lead 25 as the first lead is electrically connected to the battery lid 14 by being welded to the safety valve mechanism 15.
  • the negative electrode leads 26 and 27 as the second leads are welded to the battery can 11 and electrically connected.
  • the first electrode is the negative electrode, the first reed is welded to the battery can 11 and electrically connected, and the second reed joined to the second electrode is welded to the safety valve mechanism 15. ..
  • either the first electrode or the second electrode may correspond to the positive electrode 21, but in the following, as shown in the examples of FIGS. 1 to 5, the first electrode is the positive electrode 21 and the second electrode. It is explained that the electrode 2 corresponds to the negative electrode 22. Then, referring to FIGS. 1, 2, 3A, 3B, 3C, 3D, 4A, 4B, 4C, 4D, 5A, and 5B, the positive electrode 21, the negative electrode 22, and the separator 23 , And the electrolytic solution will be described in sequence.
  • FIG. 5A is a diagram for explaining a state in which the positive electrode 21 shown in FIG. 3A and the negative electrode 22 shown in FIG. 4A are laminated, and the description of the separator 23 is omitted for convenience of explanation.
  • FIG. 5B is a diagram for explaining the state of the cross section of the portion where the positive electrode lead is arranged in a part of the electrode body 20 formed by winding the electrode laminate having the laminated structure shown in FIG. 5A.
  • the positive electrode 21 is, for example, a positive electrode current collector 21A as a first current collector and a positive electrode active material layer as a first active material layer provided on both main surfaces 21S and 21S of the positive electrode current collector 21A. It is equipped with 21B.
  • the positive electrode current collector 21A is made of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil.
  • the positive electrode active material layer 21B contains one or more positive electrode active materials capable of occluding and releasing lithium.
  • the positive electrode active material layer 21B may further contain at least one of a binder and a conductive agent, if necessary.
  • the positive electrode active material layer 21B was not provided at the predetermined positions of both main surfaces 21S and 21S of the positive electrode 21, and the positive electrode current collector 21A was exposed.
  • a positive electrode current collector exposed portion 21C is provided as a portion.
  • the positive electrode current collector exposed portion 21C is formed over the entire width in the width direction of the positive electrode 21.
  • the positive electrode current collector exposed portion 21C includes a non-end portion of the positive electrode 21 in the longitudinal direction of the positive electrode 21 (in the direction of the double-headed arrow X in FIGS. 3 and 5), more specifically, an end portion on the winding center side.
  • the positive electrode current collector exposed portion 21C is provided near the central portion of the positive electrode 21 in the longitudinal direction of the positive electrode 21.
  • a positive electrode lead 25 is provided on the positive electrode current collector exposed portion 21C formed on a part of one main surface 21S of the positive electrode 21.
  • the longitudinal directions of the positive electrode 21 and the negative electrode 22 are indicated by double-headed arrows X, and the width directions of the positive electrode 21 and the negative electrode 22 are indicated by double-headed arrows Y.
  • the number of the positive electrode current collector exposed portions 21C was one, but as shown in FIGS. 3C and 3D, there are a plurality of positive electrode current collector exposed portions 21C.
  • a positive electrode lead 25 may be provided on each of the positive electrode current collector exposed portions 21C that are formed.
  • all the positive electrode current collector exposed portions 21C may be formed at the non-end portions of the positive electrode 21 in the longitudinal direction of the positive electrode 21 as shown in FIG. 3D.
  • the positive electrode current collector exposed portion 21C may be formed at the end of the positive electrode 21 in the longitudinal direction of the positive electrode 21.
  • positive electrode leads may be provided on the plurality of positive electrode current collector exposed portions 21C as shown in FIG. 3D. Further, in the examples of FIGS. 3A and 3B, the positive electrode current collector exposed portion 21C is formed on both main surfaces at one non-end portion of the positive electrode 21, but even if it is formed on one main surface. Good.
  • the positive electrode lead 25 is joined to the positive electrode current collector exposed portion 21C in a state where a part thereof overlaps with the positive electrode current collector exposed portion 21C, and a part of the positive electrode lead 25 is formed by the electrode body 20. When formed, it faces the negative electrode 22 via the separator 23.
  • One end of the positive electrode lead 25 projects from the long side of the positive electrode 21, and the other end (appropriately referred to as an inner end) is arranged in a direction toward the inside of the positive electrode 21. The same applies to the negative electrode lead described later.
  • the length of the portion of the positive electrode lead 25 facing either one or both of the separator 23 and the negative electrode 22 (that is, the end of the portion facing the negative electrode 22 or the separator 23 from the inner end portion 25A of the positive electrode lead).
  • the length to the outer end portion 25B (indicated by the reference numeral Wh2 in FIG. 5B) is smaller than 50% of the width of the negative electrode 22 (indicated by the reference numeral W2 in FIG. 5A).
  • the battery can 11 it becomes easy to arrange the battery can 11 in a position avoiding the vicinity of the center of the battery can 11. Therefore, even if an impact is applied toward the center of the battery near the center of the outer peripheral surface of the battery and the battery is deformed, the positive electrode current collector is near the contact portion between the positive electrode lead 25 and the positive electrode current collector 21A. It is possible to suppress the possibility that the 21A is destroyed, which in turn induces the destruction of the separator 23 and causes an internal short circuit of the battery, and the impact resistance of the battery can be improved.
  • the length Wh2 of the positive electrode leads 25 is 45% or less of the width W2 of the negative electrode 22.
  • the length Wh2 of the positive electrode leads 25 is too short, the length of the portion of the positive electrode leads 25 that overlaps the exposed portion 21C of the positive electrode current collector (indicated by the reference numeral Wh1 in FIG. 5A) becomes too short, and the positive electrode leads There is a risk that the 25 cannot be reliably joined by the positive electrode current collector exposed portion 21C.
  • the length Wh1 of the portion of the positive electrode lead 25 that overlaps the positive electrode current collector exposed portion 21C is the width of the positive electrode 21 (reference numeral in FIG. 5A). It is preferably 10% or more of the length (shown by W1).
  • the length Wh1 of the portion of the positive electrode lead 25 that overlaps the exposed portion 21C of the positive electrode current collector is preferably smaller than 50% of the width W1 of the positive electrode 21 because the effect of preventing the positive electrode from being lost is diminished.
  • a positive electrode bonding film material 28 as a first film material is provided at a position facing the arrow R) (a position facing the inner end portion 25A).
  • the separation distance between the positive electrode bonding film material 28 and the positive electrode lead 25 is not particularly limited, but the positive electrode bonding film material 28 is such that the positive electrode bonding film material 28 exists inside the exposed portion 21C of the positive electrode current collector. It is preferable that the separation distance between the positive electrode lead 25 and the positive electrode lead 25 is determined.
  • the positive electrode bonding film material 28 is composed of a film material provided with a base material and an adhesive layer, and is adhered to the positive electrode current collector exposed portion 21C via the adhesive layer.
  • an insulating tape having a rectangular shape is used as the film material.
  • the material of the base material constituting the film material include polyethylene terephthalate (PET), polyimide (PI), polyethylene (PE), polypropylene (PP) and the like.
  • the adhesive layer examples include a layer containing at least one of an acrylic adhesive, a silicone adhesive, and a urethane adhesive.
  • the thickness of the positive electrode adhesive film material 28 (indicated by reference numeral HF1 in FIG. 3B) can be appropriately selected, but from the viewpoint of more effectively obtaining the effect of suppressing the occurrence of winding misalignment, the positive electrode lead 25 It is preferably 20% or more of the thickness (indicated by reference numeral HL1 in FIG. 3B). If the thickness of the positive electrode bonding film material 28 becomes too thick, the electrode body 20 may locally bulge and the performance of the battery may deteriorate. Therefore, the thickness HF1 of the positive electrode bonding film material 28 is the positive electrode lead. It is preferably within the range of 120% or less of the thickness HL1.
  • the positive electrode current collector 21A is made of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil.
  • the positive electrode active material layer 21B contains a positive electrode active material capable of occluding and releasing lithium as a first active material.
  • the positive electrode active material layer 21B may further contain at least one of a binder and a conductive agent, if necessary.
  • a lithium-containing compound such as a lithium oxide, a lithium phosphorus oxide, a lithium sulfide, or an interlayer compound containing lithium is suitable, and these two types are suitable. The above may be mixed and used.
  • a lithium-containing compound containing lithium, a transition metal element, and oxygen (O) is preferable.
  • examples of such a lithium-containing compound include a lithium composite oxide having a layered rock salt type structure, a lithium composite phosphate having an olivine type structure, and the like.
  • the lithium-containing compound is more preferably one containing at least one of the group consisting of cobalt (Co), nickel (Ni), manganese (Mn) and iron (Fe) as a transition metal element.
  • the lithium-containing compound include a lithium composite oxide having a layered rock salt type structure, a lithium composite oxide having a spinel type structure, and a lithium composite phosphate having an olivine type structure.
  • lithium composite oxide containing nickel examples include a lithium composite oxide containing lithium, nickel, cobalt, manganese and oxygen (NCM), and a lithium composite oxide containing lithium, nickel, cobalt, aluminum and oxygen (NCA). May be used.
  • NCM lithium composite oxide containing lithium, nickel, cobalt, manganese and oxygen
  • NCA lithium composite oxide containing lithium, nickel, cobalt, aluminum and oxygen
  • the positive electrode active material capable of occluding and releasing lithium may be other than the above.
  • two or more kinds of positive electrode active materials exemplified above may be mixed in any combination.
  • binder for example, polyvinylidene fluoride, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber, carboxymethyl cellulose, and at least one of these resin materials can be used.
  • the conductive agent for example, at least one carbon material selected from the group consisting of graphite, carbon fiber, carbon black, acetylene black, ketjen black, carbon nanotubes, graphene and the like can be used.
  • a metal material, a conductive polymer material, or the like may be used as the conductive agent.
  • the shape of the conductive agent includes, for example, granular, scaly, hollow, needle-shaped, tubular, and the like, but is not particularly limited to these shapes.
  • the negative electrode 22 is a negative electrode current collector 22A and a negative electrode active material layer as a second active material layer provided on both main surfaces 22S and 22S. It is equipped with 22B.
  • the width of the negative electrode 22 is not particularly limited, but is generally longer than the width of the positive electrode 21 as shown in FIG. 5 and the like.
  • the negative electrode current collector 22A was exposed without providing the negative electrode active material layer 22B on a part of both main surfaces 22S and 22S at the central end of the negative electrode 22.
  • An electric body exposed portion 22C is provided.
  • the negative electrode current collector exposed portion 22C is formed over the entire width in the width direction of the negative electrode 22.
  • a negative electrode lead 26 is provided on the negative electrode current collector exposed portion 22C provided on a part of the main surface 22S.
  • Negative electrode collection as a second current collector exposed portion in which the negative electrode active material layer 22B is not provided on both main surfaces 22S and 22S of the winding outer peripheral end of the negative electrode 22 and the negative electrode current collector 22A is exposed.
  • An electric body exposed portion 22D is provided.
  • a negative electrode lead 27 is provided on the negative electrode current collector exposed portion 22D provided on a part of the main surface 22S.
  • the negative electrode current collector exposed portion 22D is formed over the entire width in the width direction of the negative electrode 22.
  • the negative electrode leads 26 and 27 are joined to the negative electrode current collector exposed portions 22C and 22D, respectively, in a state where a part of the negative electrode leads 26 and 27 overlap the negative electrode current collector exposed portions 22C and 22D.
  • the number of exposed negative electrode current collectors was multiple, but one exposed negative electrode current collector was formed, and negative electrode leads were provided in the exposed negative electrode current collectors. You may be. Further, in FIG. 4, the negative electrode current collector exposed portions 22C and 22D are formed on both main surfaces of both end portions (two locations) of the negative electrode 22, but may be formed on only one main surface.
  • the lengths Wz1 and Wz2 of the portions of the negative electrode leads 26 and 27 that overlap the exposed negative electrode current collectors 22C and 22D are preferably shorter than 50% or less of the width of the negative electrode.
  • the lengths Wz1 and Wz2 of the negative electrode leads 26 and 27 overlapping the exposed negative electrode current collectors 22C and 22D are 45% or less of the width W2 of the negative electrode 22. It is preferably a length.
  • the length of the portion of the negative electrode leads 26 and 27 that overlaps the negative electrode may not be reliably joined by the negative electrode current collector exposed portions 22C and 22D.
  • the length of the portion of the negative electrode leads 26 and 27 that overlaps the negative electrode current collector exposed portions 22C and 22D It is preferable that Wz1 and Wz2 have a length of 10% or more of the width W2 of the negative electrode 22.
  • the negative electrode current collector exposed portion 22C is wound with a wound electrode body around a region where the negative electrode lead 26 is not provided, specifically, the inner end portion 26A of the negative electrode lead 26.
  • the negative electrode bonding film material 29 as the second film material may be provided at a position facing the rotational axis direction (double arrow R in FIG. 4C) (position facing the inner end portion 26A).
  • the negative electrode current collector exposed portion 22D is also a wound electrode body with respect to the region where the negative electrode lead 27 is not provided, specifically, the inner end portion 27A of the negative electrode lead 27.
  • the negative electrode bonding film material 30 as the second film material may be provided at a position facing the winding axis direction (double arrow R in FIG. 4C) (position facing the inner end portion 27A).
  • the inner end portions 26A and 27A of the negative electrode leads 26 and 27 indicate the end portion of the negative electrode leads 26 and 27 that overlaps the negative electrode current collector exposed portions 22C and 22D.
  • the separation distance between the negative electrode bonding film materials 29 and 30 and the negative electrode leads 26 and 27 is not particularly limited, but the negative electrode bonding film materials 29 and 30 are present inside the exposed negative electrode current collectors 22C and 22D, respectively. Therefore, it is preferable that the distance between the negative electrode bonding film materials 29 and 30 and the negative electrode leads 26 and 27 is determined.
  • the negative electrode bonding film materials 29 and 30 are composed of a film material provided with a base material and an adhesive layer, and are adhered to the negative electrode current collector exposed portions 22C and 22D via the adhesive layer.
  • a film material forming the positive electrode bonding film material 28 can be used, but a film material of a different material may be used.
  • the electrode laminate is wound to form the electrode body 20.
  • the negative electrode bonding film material 30 is provided on the negative electrode current collector exposed portion 22D at the outer peripheral end of the negative electrode 22, unevenness due to the negative electrode lead 27 occurs on the outer peripheral surface of the electrode body 20. It becomes difficult and the occurrence of distortion on the outer shape can be reduced.
  • the thickness of the negative electrode bondable film material 29 (reference numeral HF2 in FIG. 4D) can be appropriately selected, but from the viewpoint of more effectively obtaining the effect of suppressing the occurrence of winding misalignment, the thickness of the negative electrode lead 26 (FIG. 4D). In 4D, it is preferably 20% or more of the symbol HL2). If the thickness of the negative electrode bonding film material 29 becomes too thick, the electrode body 20 may locally bulge and the performance of the battery may deteriorate. Therefore, the thickness HF2 of the negative electrode bonding film material 29 is the negative electrode lead 26. It is preferable that the thickness is within the range of 120% or less of the thickness HL2.
  • the negative electrode bonding film material 29 bonded to the negative electrode current collector exposed portion 22C has been described here, the same applies to the thickness of the negative electrode bonding film material 30 bonded to the negative electrode current collector exposed portion 22D. Yes, it is preferably 20% or more and 120% or less of the thickness of the negative electrode lead 27.
  • the negative electrode current collector 22A is made of, for example, a metal foil such as a copper foil, a nickel foil, or a stainless steel foil.
  • the negative electrode active material layer 22B contains a negative electrode active material capable of storing and releasing lithium.
  • the negative electrode active material layer 22B may further contain at least one of a binder and a conductive agent, if necessary.
  • the electrochemical equivalent of the negative electrode 22 or the negative electrode active material is larger than the electrolytic equivalent of the positive electrode 21, and theoretically, lithium metal does not precipitate on the negative electrode 22 during charging. It is preferable that
  • Negative electrode active material examples include carbon materials such as non-graphitizable carbon, easily graphitizable carbon, graphite, pyrolytic carbon, coke, glassy carbon, calcined organic polymer compound, carbon fiber or activated carbon. Can be mentioned.
  • the alloy includes an alloy containing two or more kinds of metal elements and one or more kinds of metal elements and one or more kinds of metalloid elements. It may also contain non-metallic elements. Some of the structures include solid solutions, eutectic (eutectic mixtures), intermetallic compounds, or two or more of them coexist.
  • Examples of such a negative electrode active material include a metal element or a metalloid element capable of forming an alloy with lithium. Specific examples thereof include Mg, B, Al, Ti, Ga, In, Si, Ge, Sn, Pb, Bi, Cd, Ag, Zn, Hf, Zr, Y, Pd or Pt. These may be crystalline or amorphous. Among them, Si and Sn are preferable because they have a large ability to occlude and release lithium and can obtain a high energy density. Examples of such a negative electrode active material include a simple substance of Si, an alloy or a compound, a simple substance of Sn, an alloy or a compound, and a material having at least one or more of them.
  • Si alloys include Sn, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb, Nb, Mo, Al, as second constituent elements other than Si.
  • Examples include those containing at least one selected from the group consisting of P, Ga and Cr.
  • Sn alloys include Si, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb, Nb, Mo, Al, as second constituent elements other than Sn.
  • Examples include those containing at least one selected from the group consisting of P, Ga and Cr.
  • Si compound examples include those containing O or C as a constituent element. These compounds may contain the second constituent element described above.
  • Examples of other negative electrode active materials include metal oxides such as lithium titanate.
  • binder As the binder, the same binder as that of the positive electrode active material layer 21B can be used.
  • Conducting agent As the conductive agent, the same one as that of the positive electrode active material layer 21B can be used.
  • the separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes.
  • the separator 23 is porous, for example, made of polytetrafluoroethylene, polyolefin resin (polypropylene (PP), polyethylene (PE), etc.), acrylic resin, styrene resin, polyester resin or nylon resin, or a resin blended with these resins. It is composed of a quality film, and may have a structure in which two or more of these porous films are laminated.
  • polyethylene is preferable as a material constituting the separator 23 because it can obtain a shutdown effect in the range of 100 ° C. or higher and 160 ° C. or lower and is also excellent in electrochemical stability.
  • the porous membrane may have a structure of three or more layers in which a polypropylene layer, a polyethylene layer, and a polypropylene layer are sequentially laminated.
  • it is desirable to have a three-layer structure of PP / PE / PP and have a mass ratio [wt%] of PP to PE of PP: PE 60: 40 to 75:25.
  • the method for producing the separator may be wet or dry.
  • a non-woven fabric may be used.
  • fibers constituting the non-woven fabric aramid fibers, glass fibers, polyolefin fibers, polyethylene terephthalate (PET) fibers, nylon fibers and the like can be used. Further, these two or more kinds of fibers may be mixed to form a non-woven fabric.
  • the separator 23 may have a structure including a base material and a surface layer provided on one side or both sides of the base material.
  • the surface layer contains inorganic particles having an electrically insulating property, and a resin material that binds the inorganic particles to the surface of the base material and also binds the inorganic particles to each other.
  • This resin material may have, for example, a three-dimensional network structure in which fibrils are formed and a plurality of fibrils are connected. Inorganic particles are supported on a resin material having this three-dimensional network structure. Further, the resin material may bind the surface of the base material or the inorganic particles to each other without becoming fibril. In this case, higher binding properties can be obtained.
  • the base material is a porous membrane composed of an insulating membrane that allows lithium ions to permeate and has a predetermined mechanical strength. Since the electrolytic solution is held in the pores of the base material, it is resistant to the electrolytic solution. It is preferable that the properties are high, the reactivity is low, and the swelling is difficult.
  • the resin material or non-woven fabric constituting the above-mentioned separator can be used as the material constituting the base material.
  • Inorganic particles include at least one such as metal oxides, metal nitrides, metal carbides and metal sulfides.
  • metal oxides include aluminum oxide (alumina, Al 2 O 3 ), boehmite (alumina monohydrate), magnesium oxide (MgO), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), and silicon oxide (silica). , SiO 2 ) or yttrium oxide (Y 2 O 3 ) or the like can be preferably used.
  • As the metal nitride silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), boron nitride (BN), titanium nitride (TiN) and the like can be preferably used.
  • metal carbide silicon carbide (SiC), boron carbide (B 4 C) or the like can be preferably used.
  • metal sulfide barium sulfate (BaSO 4 ) or the like can be preferably used.
  • porous aluminosilicates such as zeolite (M 2 / n O, Al 2 O 3 , xSiO 2 , yH 2 O, M is a metal element, x ⁇ 2, y ⁇ 0), layered silicate, and barium titanate.
  • Minerals such as barium (BaTIO 3 ) or strontium titanate (SrTiO 3 ) may be used.
  • the inorganic particles have oxidation resistance and heat resistance, and the surface layer on the side surface facing the positive electrode containing the inorganic particles has strong resistance to the oxidizing environment in the vicinity of the positive electrode during charging.
  • the shape of the inorganic particles is not particularly limited, and any of spherical, plate-like, fibrous, cubic, random and the like can be used.
  • the particle size of the inorganic particles is preferably in the range of 1 nm or more and 10 ⁇ m or less. If the particle size is less than 1 nm, it is difficult to obtain inorganic particles. On the other hand, if the particle size exceeds 10 ⁇ m, the distance between the electrodes becomes large, the amount of active material filled cannot be sufficiently obtained in a limited space, and the battery capacity decreases.
  • the resin material constituting the surface layer examples include fluororesins such as polyvinylidene fluoride and polytetrafluoroethylene, fluororubber containing vinylidene fluoride-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer and the like, and styrene.
  • fluororesins such as polyvinylidene fluoride and polytetrafluoroethylene
  • styrene -Containant copolymers or hydrides thereof, polyamides such as total aromatic polyamide (aramid), acrylic acid resins or polyesters and the like, and resins having high heat resistance at least one of the melting point and the glass transition temperature of 180 ° C. or higher can be mentioned. ..
  • These resin materials may be used alone or
  • a slurry composed of a matrix resin, a solvent and an inorganic substance is applied onto a base material (porous film), and the matrix resin is passed through a poor solvent and a parent solvent bath of the above solvent to form a phase.
  • a method of separating and then drying can be used.
  • the above-mentioned inorganic particles may be contained in a porous membrane as a base material. Further, the surface layer may be composed of only a resin material without containing inorganic particles.
  • the electrolytic solution contains an organic solvent (non-aqueous solvent) and an electrolyte salt dissolved in the organic solvent.
  • an organic solvent non-aqueous solvent
  • an electrolyte salt dissolved in the organic solvent.
  • a gel-like electrolyte layer containing the electrolytic solution and a polymer compound serving as a retainer for holding the electrolytic solution may be used.
  • a cyclic carbonate ester such as ethylene carbonate or propylene carbonate can be used, and it is preferable to use one of ethylene carbonate and propylene carbonate, particularly both. This is because the cycle characteristics can be further improved. Further, in addition to these carbonic acid esters, it is preferable to use a mixed chain carbonate ester such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate or methyl propyl carbonate. This is because high ionic conductivity can be obtained.
  • the organic solvent preferably further contains vinylene carbonate. This is because the cycle characteristics can be further improved.
  • a nitrile-based electrolytic solution acetonitrile, succinonitrile, adiponitrile, etc.
  • acetonitrile, succinonitrile, adiponitrile, etc. can also be used.
  • electrolyte salt examples include lithium salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiCl, lithium difluoro [oxorat-O, O ⁇ ] borate, and lithium bisoxalate volate.
  • a positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and this positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) to form a paste-like positive electrode.
  • NMP N-methyl-2-pyrrolidone
  • prepare a mixture slurry Next, this positive electrode mixture slurry is applied to both sides of the positive electrode current collector 21A, the solvent is dried, and the positive electrode active material is applied to the positive electrode current collector 21A by compression molding with a roll press machine to activate the positive electrode.
  • the material layer 21B is formed, and the positive electrode 21 is formed. At this time, by adjusting the coating position of the positive electrode mixture slurry, the positive electrode current collector exposed portion 21C is also formed on the positive electrode 21.
  • the negative electrode 22 can be manufactured in the same manner as the positive electrode 21. At this time, by adjusting the coating position of the negative electrode mixture slurry, the negative electrode current collector exposed portion 22C and the negative electrode current collector exposed portion 22D are formed on the negative electrode 22.
  • the positive electrode lead 25 is attached to the positive electrode current collector exposed portion 21C by welding, and the negative electrode leads 26 and 27 are attached to the negative electrode current collector exposed portions 22C and 22D by welding. Further, the positive electrode bonding film material 28 is adhered in the plane of the positive electrode current collector exposed portion 21C to which the positive electrode lead 25 is attached.
  • the positive electrode 21 and the negative electrode 22 are laminated via the separator 23 to form an electrode laminate, and the electrode laminate is wound with one end in the longitudinal direction of the electrode laminate as the winding start end (the electrode laminate is wound. In the example of FIG. 5A, the negative electrode current collector exposed portion 22C side is used as the winding start end for winding).
  • the center position in the width direction of the positive electrode 21 (in the direction of the double arrow Y in FIG. 5A) is overlapped with the center position in the width direction of the negative electrode 22 (in the direction of the double arrow Y in FIG. 5).
  • the electrode body 20 is formed by winding the electrode laminate. In the electrode body 20, one end side portion of the positive electrode lead 25 and one end side portion of the negative electrode leads 26 and 27 extend outward.
  • the tip of the positive electrode lead 25 is welded to the safety valve mechanism 15, and the tips of the negative electrode lead 26 and the negative electrode lead 27 are welded to the battery can 11, and the wound electrode body having the positive electrode 21 and the negative electrode 22 wound.
  • the electrolytic solution is injected into the battery can 11 to impregnate the separator 23.
  • the battery lid 14, the safety valve mechanism 15, and the heat-sensitive resistance element 16 are fixed to the open end of the battery can 11 by being crimped via the sealing gasket 17. As a result, the battery shown in FIG. 1 is obtained.
  • the negative electrode bonding film materials 29 and 30 are provided at predetermined positions on the same surface as the surface on which the negative electrode leads 26 and 27 are attached to the negative electrode current collector exposed portion 22C and the negative electrode current collector exposed portion 22D.
  • the negative electrode bonding film materials 29 and 30 are the negative electrode current collector exposed portions 22C and the negative electrode current collector exposed portions 22D. Is glued to.
  • the positive electrode lead 25 is bonded to the positive electrode current collector exposed portion 21C of the electrode body 20 with a predetermined length.
  • the positive electrode lead 25 becomes the positive electrode current collector 21A. It is possible to suppress the possibility that a large pressure is applied. Therefore, in the battery according to one embodiment, it is possible to prevent the electrode body 20 from being damaged by the positive electrode current collector 21A, the separator 23, and the like, and it is possible to prevent the positive electrode 21 and the negative electrode 22 from being short-circuited. Therefore, the impact resistance of the battery can be improved.
  • the exposed portion of the positive electrode current collector is bonded to the exposed portion of the positive electrode body, and the portion overlapping the positive electrode lead in the winding axis direction of the wound electrode body is larger than the other parts.
  • the maximum thickness increases by the amount of the positive electrode lead provided, and a difference in thickness occurs in the electrode laminate in the winding axis direction of the wound electrode body. Then, depending on such a thickness difference, there is a possibility that winding misalignment may occur during the formation of the wound electrode body.
  • the positive electrode bonding film material 28 is provided at a position facing the inner end portion 25A of the positive electrode lead 25, so that the electrode laminate is provided in the winding axis direction of the wound electrode body. Since the thickness difference is set within a predetermined range, it is possible to suppress the possibility of winding misalignment during the formation of the electrode body 20.
  • the first electrode may be the negative electrode and the second electrode may be the positive electrode.
  • an exposed portion of the negative electrode current collector in which a part of the negative electrode current collector is not coated with the negative electrode active material is formed at the non-end portion of the negative electrode in the longitudinal direction of the first electrode.
  • the negative electrode lead is joined to the exposed portion of the negative electrode current collector.
  • the length of the portion of the negative electrode lead facing either one or both of the separator and the positive electrode is shorter than the length of 50% of the width of the positive electrode.
  • the negative electrode bonding film material is provided in the region of the exposed portion of the negative electrode current collector where the negative electrode lead is not provided.
  • the length of the portion of the positive electrode lead that overlaps the exposed portion of the positive electrode current collector is preferably shorter than the length of 50% of the width of the positive electrode.
  • Example 1 The positive electrode and the negative electrode were manufactured as follows, and the battery was assembled.
  • a positive electrode mixture was obtained by mixing 91 parts by mass of lithium nickel composite oxide (NCA) as a positive electrode active material, 6 parts by mass of graphite as a conductive agent, and 3 parts by mass of polyvinylidene fluoride as a binder, and then N-. By dispersing in methyl-2-pyrrolidone, a paste-like positive electrode mixture slurry was obtained. Next, a positive electrode mixture slurry was applied to both sides of a positive electrode current collector made of a strip-shaped aluminum foil (thickness of 15 ⁇ m), dried, and then compression-molded with a roll press to form a positive electrode active material layer. ..
  • NCA lithium nickel composite oxide
  • graphite as a conductive agent
  • polyvinylidene fluoride as a binder
  • the positive electrode mixture slurry is formed so that the positive electrode current collector exposed portion is formed from one end to the other end in the width direction of the positive electrode on both sides of the central portion in the longitudinal direction of the positive electrode.
  • the coating position and coating area were adjusted.
  • both ends in the longitudinal direction of the positive electrode were cut so that the positive electrode active material layer and the tips of the positive electrode current collector were aligned at both ends in the longitudinal direction of the positive electrode.
  • an aluminum positive electrode lead was attached to the exposed portion of the positive electrode current collector, which was planned to be located on the inner side surface side after winding, by ultrasonic welding.
  • the positive electrode bonding film material was attached to the exposed portion of the positive electrode current collector so as to face the end surface of the inner end portion of the positive electrode lead.
  • Negative electrode manufacturing process 97 parts by mass of artificial graphite powder as a negative electrode active material and 3 parts by mass of polyvinylidene fluoride as a binder are mixed to obtain a negative electrode mixture, which is then dispersed in N-methyl-2-pyrrolidone to form a paste-like negative electrode. A mixture slurry was obtained. Next, a negative electrode mixture slurry was applied to both sides of a negative electrode current collector made of a strip-shaped copper foil (15 ⁇ m thick), dried, and then compression-molded with a roll press to form a negative electrode active material layer. ..
  • the negative electrode mixture slurry is formed so that the negative electrode current collector exposed portion is formed from one end to the other end in the width direction of the negative electrode on both both ends in the longitudinal direction of the negative electrode.
  • the coating position and coating area were adjusted.
  • a nickel negative electrode lead was ultrasonically welded onto the exposed negative electrode current collector, which was planned to be located on the inner surface of the central end after winding.
  • a nickel negative electrode lead was also attached to the exposed negative electrode current collector exposed portion, which was planned to be located on the inner surface of the outer peripheral end after winding, by ultrasonic welding.
  • the positive electrode and the negative electrode obtained through the above-mentioned positive electrode manufacturing step and the negative electrode manufacturing step are laminated in the order of the negative electrode, the separator, the positive electrode, and the separator via a separator made of a microporous polyethylene biaxially stretched film having a thickness of 10 ⁇ m. Obtained an electrode laminate.
  • a wound electrode body was obtained as a power generation element by starting winding from one end side of the negative electrode to which the negative electrode lead of the electrode laminate was attached and winding the electrode stack many times.
  • a non-aqueous electrolyte solution was prepared by dissolving LiPF 6 as an electrolyte salt at a concentration of 1 mol / dm 3 in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 1.
  • Table 1 shows Wh1, the lengths Wz1 and Wz2 of the portion where the negative electrode lead and the exposed portion of the negative electrode current collector overlap.
  • the length Wz1 is the length of the portion where the exposed negative electrode current collector and the negative electrode lead at the central end of the wound electrode body overlap
  • the length Wz1 is the negative electrode at the outer peripheral end of the wound electrode body. This is the length of the portion where the exposed part of the current collector and the negative electrode lead overlap.
  • Example 2 Comparative Example 1
  • the width W1 of the positive electrode, the width W2 of the negative electrode, the length Wh2 of the portion of the positive electrode lead facing the negative electrode via the separator, and the overlapping portion of the positive electrode lead and the exposed portion of the positive electrode current collector were obtained in the same manner as in Example 1 except that the lengths Wh1 and the lengths Wz1 and Wz2 of the portion overlapping the negative electrode lead and the exposed portion of the negative electrode current collector are as shown in Table 1.
  • Example 3 The width W1 of the positive electrode, the width W2 of the negative electrode, the length Wh2 of the portion of the positive electrode lead facing the negative electrode via the separator, the length Wh1 of the overlapping portion of the positive electrode lead and the exposed portion of the positive electrode current collector, the negative electrode lead and the negative electrode collection.
  • the lengths Wz1 and Wz2 of the portion overlapping with the exposed portion of the electric body are as shown in Table 1, and in the process of manufacturing the negative electrode, with respect to the exposed portion of the negative electrode current collector that is on the central end side of the negative electrode.
  • a battery was obtained in the same manner as in Example 1 except that the negative electrode bonding film material was attached to the exposed portion of the negative electrode current collector so as to face the end surface of the inner end portion of the negative electrode lead.
  • Example 4 and 5 batteries were prepared by the same steps as in Example 2. However, in Examples 4 and 5, the thickness ( ⁇ m) of the positive electrode lead and the thickness ( ⁇ m) of the positive electrode bonding film material were values as shown in Table 2.
  • Example 2 A battery was prepared in the same manner as in Example 4 except that the positive electrode bonding film material was not provided.
  • the thickness of the positive electrode lead was a value as shown in Table 2.
  • the amount of electrode meandering of the wound electrode body incorporated in the battery was measured.
  • the measurement of the electrode meandering amount was carried out as shown below.
  • FIG. 6 is a block diagram showing a circuit configuration example when the secondary battery according to the embodiment or embodiment of the present invention is applied to the battery pack 300.
  • the battery pack 300 includes a switch unit 304 including an assembled battery 301, a charge control switch 302a, and a discharge control switch 303a, a current detection resistor 307, a temperature detection element 308, and a control unit 310.
  • the control unit 310 can control each device, perform charge / discharge control when abnormal heat generation occurs, and calculate and correct the remaining capacity of the battery pack 300.
  • the positive electrode terminal 321 and the negative electrode terminal 322 are connected to the positive electrode terminal and the negative electrode terminal of the charger, respectively, and charging is performed. Further, when the electronic device connected to the battery pack 300 is used, the positive electrode terminal 321 and the negative electrode terminal 322 are connected to the positive electrode terminal and the negative electrode terminal of the electronic device, respectively, and discharge is performed.
  • the assembled battery 301 is formed by connecting a plurality of secondary batteries 301a in series and / or in parallel.
  • FIG. 6 the case where the six secondary batteries 301a are connected in two parallels and three series (2P3S) is shown as an example, but any connection method may be used.
  • the temperature detection unit 318 is connected to a temperature detection element 308 (for example, a thermistor), measures the temperature of the assembled battery 301 or the battery pack 300, and supplies the measured temperature to the control unit 310.
  • the voltage detection unit 311 measures the voltage of the assembled battery 301 and each of the secondary batteries 301a constituting the assembled battery 301, A / D converts the measured voltage, and supplies the measured voltage to the control unit 310.
  • the current measuring unit 313 measures the current using the current detection resistor 307, and supplies the measured current to the control unit 310.
  • the switch control unit 314 controls the charge control switch 302a and the discharge control switch 303a of the switch unit 304 based on the voltage and current input from the voltage detection unit 311 and the current measurement unit 313.
  • the switch control unit 314 controls the switch unit 304 to be OFF when any voltage of the secondary battery 301a becomes equal to or lower than the overcharge detection voltage or the overdischarge detection voltage, or when a large current suddenly flows. By sending a signal, overcharging, overdischarging, and overcurrent charging / discharging are prevented.
  • the overcharge detection voltage is determined to be, for example, 4.20 V ⁇ 0.05 V
  • the over discharge detection voltage is determined to be, for example, 2.4 V ⁇ 0.1 V.
  • the charge control switch 302a or the discharge control switch 303a After the charge control switch 302a or the discharge control switch 303a is turned off, charging or discharging is possible only through the diode 302b or the diode 303b.
  • semiconductor switches such as MOSFETs can be used.
  • the parasitic diodes of the MOSFET function as diodes 302b and 303b.
  • the switch portion 304 is provided on the + side in FIG. 6, it may be provided on the ⁇ side.
  • the memory 317 is composed of a RAM or a ROM, and includes, for example, an EPROM (Erasable Programmable Read Only Memory) which is a non-volatile memory.
  • the memory 317 stores in advance the numerical values calculated by the control unit 310, the battery characteristics in the initial state of each secondary battery 301a measured at the stage of the manufacturing process, and the like, and can be rewritten as appropriate. Further, by storing the fully charged capacity of the secondary battery 301a, the remaining capacity can be calculated in cooperation with the control unit 310.
  • the secondary battery according to the embodiment or embodiment of the present invention described above can be mounted on a device such as an electronic device, an electric transport device, or a power storage device and used to supply electric power.
  • Electronic devices include, for example, laptop computers, smartphones, tablet terminals, PDAs (personal digital assistants), mobile phones, wearable terminals, video movies, digital still cameras, electronic books, music players, headphones, game machines, pacemakers, hearing aids, etc. Examples include power tools, televisions, lighting equipment, toys, medical equipment, and robots. In a broad sense, electronic devices may also include electric transport devices, power storage devices, power tools, and electric unmanned aerial vehicles, which will be described later.
  • Examples of electric transportation equipment include electric vehicles (including hybrid vehicles), electric motorcycles, electrically assisted bicycles, electric buses, electric carts, unmanned transport vehicles (AGV), railway vehicles, and the like. It also includes electric passenger aircraft and electric unmanned aerial vehicles for transportation.
  • the secondary battery according to the present invention is used not only as a power source for driving these, but also as an auxiliary power source, a power source for energy regeneration, and the like.
  • Examples of the power storage device include a power storage module for commercial or household use, a power storage power source for a building such as a house, a building, an office, or a power generation facility.
  • the electric screwdriver 431 is provided with a motor 433 that transmits rotational power to the shaft 434 and a trigger switch 432 that is operated by the user. By operating the trigger switch 432, a screw or the like is driven into the object by the shaft 434.
  • the battery pack 430 and the motor control unit 435 are housed in the lower housing of the handle of the electric screwdriver 431.
  • the battery pack 430 the battery pack 300 described above can be used.
  • the battery pack 430 is built into the electric screwdriver 431 or is detachable.
  • the battery pack 430 can be attached to the charging device in a state of being built in or removed from the electric driver 431.
  • Each of the battery pack 430 and the motor control unit 435 is equipped with a microcomputer. Power is supplied from the battery pack 430 to the motor control unit 435, and charge / discharge information of the battery pack 430 is communicated between both microcomputers.
  • the motor control unit 435 can control the rotation / stop and the rotation direction of the motor 433, and can cut off the power supply to the load (motor 433 and the like) at the time of over-discharging.
  • FIG. 8 schematically shows a configuration example of a hybrid vehicle (HV) adopting a series hybrid system.
  • the series hybrid system is a vehicle that runs on a power driving force converter using the electric power generated by an engine-powered generator or the electric power temporarily stored in a battery.
  • the hybrid vehicle 600 includes an engine 601, a generator 602, a power driving force converter 603 (DC motor or AC motor; hereinafter simply referred to as "motor 603"), drive wheels 604a, drive wheels 604b, wheels 605a, and wheels 605b. , Battery 608, vehicle control device 609, various sensors 610, and charging port 611 are mounted.
  • the battery pack 300 of the present invention described above or a power storage module equipped with a plurality of secondary batteries of the present invention can be applied to the battery 608.
  • the shape of the secondary battery is cylindrical, square or laminated.
  • the motor 603 is operated by the electric power of the battery 608, and the rotational force of the motor 603 is transmitted to the drive wheels 604a and 604b.
  • the rotational force of the engine 601 is transmitted to the generator 602, and the electric power generated by the generator 602 by the rotational force can be stored in the battery 608.
  • the various sensors 610 control the engine speed and the opening degree of a throttle valve (not shown) via the vehicle control device 609.
  • the various sensors 610 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the hybrid vehicle 600 When the hybrid vehicle 600 is decelerated by a braking mechanism (not shown), the resistance force at the time of deceleration is applied to the motor 603 as a rotational force, and the regenerative power generated by this rotational force is stored in the battery 608. Further, although not shown, an information processing device (for example, a battery remaining amount display device) that performs information processing related to vehicle control based on information on the secondary battery may be provided.
  • the battery 608 can receive electric power and store electricity by being connected to an external power source via the charging port 611 of the hybrid vehicle 600.
  • Such an HV vehicle is called a plug-in hybrid vehicle (PHV or PHEV).
  • the series hybrid vehicle has been described as an example, but the present invention can also be applied to a parallel system in which an engine and a motor are used together, or a hybrid vehicle in which a series system and a parallel system are combined. Furthermore, the present invention is also applicable to an electric vehicle (EV or BEV) or a fuel cell vehicle (FCV) that travels only with a drive motor that does not use an engine.
  • EV or BEV electric vehicle
  • FCV fuel cell vehicle
  • the configurations, methods, processes, shapes, materials, numerical values, etc. given in the above-described embodiments and examples are merely examples, and if necessary, different configurations, methods, processes, shapes, materials, numerical values, etc. May be used.
  • the configurations, methods, processes, shapes, materials, numerical values, and the like of the above-described embodiments and examples can be combined with each other as long as they do not deviate from the gist of the present invention.

Abstract

A battery that comprises a wound electrode body (20) and an outer case (11) housing the wound electrode body. The wound electrode body has a configuration having, wound in the longitudinal direction: a band-shaped first electrode (21) that has a first lead (25) and a first bondable film material (28); a band-shaped second electrode (22); and a band-shaped separator (23) provided between the first electrode and the second electrode. The first electrode (21) has a first collector exposed section (21C) in which a first active substance layer (21B) is not provided, positioned between both ends of the first electrode in the longitudinal direction. The first lead (25) is provided in the first collector exposed section (21C) such that one end side thereof protrudes from a long side of the first electrode. In the first lead, the length (Wh2) of a section facing one or both the separator (23) and/or the second electrode (22) is shorter than 50% of the width (W2) of the second electrode. The first bondable film material (28) is provided in a region of the first collector exposed section that does not have the first lead provided therein.

Description

電池、電子機器および電動工具Batteries, electronics and power tools
 本発明は、電池およびそれを備えた電子機器および電動工具に関する。 The present invention relates to a battery, an electronic device including the battery, and a power tool.
 円筒形状の巻回型の非水電解質二次電池が電動工具、電気自動車などさまざまな機器類の電力供給源として利用されている。こうした機器類には、外部から強い衝撃が加わることがあり、その際、電池の破損や変形をきたすことがある。円筒形状の電池のなかでも電池の筒軸方向における中央部付近は、他の部分よりも外力によって大きな変形を生じやすい。そこで電池の性能について電池の中央部付近の耐衝撃性を向上させることが望まれる。 Cylindrical winding type non-aqueous electrolyte secondary battery is used as a power supply source for various devices such as power tools and electric vehicles. A strong impact may be applied to such equipment from the outside, which may cause damage or deformation of the battery. Among the cylindrical batteries, the vicinity of the central portion in the cylindrical axial direction of the battery is more likely to be deformed by an external force than other portions. Therefore, regarding the performance of the battery, it is desired to improve the impact resistance near the central portion of the battery.
 ところで、円筒形状の電池は、セパレータを介して一対の電極を積層した電極積層体を巻回した巻回電極体を外装体に収容させた構造を備える。巻回電極体には、電極の長手方向におけるその電極の中央で集電体面上にリードの一部を重ねて接合させた構造部が形成されており、この構造部が電池の性能に影響を与える可能性を考慮し、様々な研究開発が行われている。なお、本明細書において、正極、負極を問わず、電極の長手方向とは、非巻回状態である電極積層体の状態で電極の長手方向となる方向を示すものとする。 By the way, the cylindrical battery has a structure in which a wound electrode body obtained by winding an electrode laminate in which a pair of electrodes are laminated via a separator is housed in an outer body. The wound electrode body is formed with a structural portion in which a part of the reed is overlapped and joined on the surface of the current collector at the center of the electrode in the longitudinal direction of the electrode, and this structural portion affects the performance of the battery. Various research and development are being carried out in consideration of the possibility of giving. In the present specification, regardless of whether the positive electrode or the negative electrode is used, the longitudinal direction of the electrode means the direction that is the longitudinal direction of the electrode in the state of the electrode laminate in the non-wound state.
 例えば、特許文献1には、正極電極の活物質を一部除去した箇所に、正極リードを溶接するものであり、除去する面積は対抗する負極電極幅の全幅よりも少ないことを特徴とする電池が開示されている。 For example, Patent Document 1 describes a battery in which a positive electrode lead is welded to a portion where an active material of a positive electrode is partially removed, and the area to be removed is smaller than the total width of the opposing negative electrode. Is disclosed.
 特許文献2には、巻き始め側の電極に未塗布部を有する電極構造において、未塗布部の電極タブ(リード)がない箇所に、電極タブ厚みの0.3倍~1.0倍の厚みである絶縁フィルムを貼ることを特徴とする電池が開示されている。 Patent Document 2 describes that in an electrode structure having an uncoated portion on the electrode on the winding start side, the thickness of the uncoated portion is 0.3 to 1.0 times the thickness of the electrode tab at a place where there is no electrode tab (lead). A battery characterized in that an insulating film is attached is disclosed.
 特許文献3には、電極の一部に未塗布部を有する電極構造において、未塗布部に接合されたリードと集電箔とが、部分的にフィルムなどの保護層で介在されることを特徴とする電池が開示されている。 Patent Document 3 is characterized in that, in an electrode structure having an uncoated portion as a part of the electrode, a lead bonded to the uncoated portion and a current collector foil are partially interposed by a protective layer such as a film. The battery is disclosed.
 特許文献4には、正極電極の巻き終わり側に未塗布部を有し、巻き終わり側に正極リード、負極リードが配置されており、正極リードのうち負極に相対する部分の長さが負極の幅の1/2以下とされた電池が開示されている。 In Patent Document 4, an uncoated portion is provided on the winding end side of the positive electrode, a positive electrode lead and a negative electrode lead are arranged on the winding end side, and the length of the portion of the positive electrode lead facing the negative electrode is the negative electrode. A battery having a width of 1/2 or less is disclosed.
実開平4-15156号公報Jikkenhei 4-15156 特開2010-108608号公報JP-A-2010-108608 特開2014-89856号公報Japanese Unexamined Patent Publication No. 2014-89856 特開平11-26023号公報Japanese Unexamined Patent Publication No. 11-26023
 近年の円筒形状の電池では、より高出力なものを得る観点から、一対の電極のうちの一方の電極の長手方向における電極の非端部に、活物質層が設けられていない集電体露出部を形成し、その集電体露出部にリードを接合した構造が採用されている。かかる構造が形成された電池では、電池の周面における中央部付近の変形が、集電体におけるリードとの接触部分の近くでの集電体の破壊に伴う電池の内部短絡(ショート)を引き起こす原因となることがある。また、電極の非端部に形成された集電体露出部にリードを接合した構造では、セパレータを介して積層された一対の電極を巻回する際における巻回電極体の構造上の歪みとなる巻ずれを抑制できることも重要である。こうしたことから、円筒形状の電池においては、電池の性能のうち電池の周面における中央部付近の耐衝撃性をより一層向上させ、且つ、巻ずれをより効果的に抑制させることが要請される。なお、本明細書における電池の耐衝撃性とは、電池に衝撃を付与された場合における電池の内部短絡(ショート)の発生が抑制されることを意味するものとする。 In recent cylindrical batteries, from the viewpoint of obtaining a higher output, a current collector exposed in which an active material layer is not provided at the non-end portion of one of the pair of electrodes in the longitudinal direction. A structure is adopted in which a portion is formed and a lead is joined to the exposed portion of the current collector. In a battery having such a structure, deformation near the central portion on the peripheral surface of the battery causes an internal short circuit (short circuit) of the battery due to destruction of the current collector near the contact portion with the lead in the current collector. May cause. Further, in the structure in which the lead is joined to the exposed portion of the current collector formed at the non-end portion of the electrode, the structural distortion of the wound electrode body when winding the pair of electrodes laminated via the separator It is also important to be able to suppress the unwinding. For these reasons, in a cylindrical battery, it is required to further improve the impact resistance of the battery in the vicinity of the central portion on the peripheral surface of the battery and to suppress the unwinding more effectively. .. The impact resistance of the battery in the present specification means that the occurrence of an internal short circuit (short circuit) of the battery when an impact is applied to the battery is suppressed.
 このような要請に対し、特許文献1から4に記載されたいずれの電池についても、電極の非端部に集電体露出部を形成した構造を有する電池について、耐衝撃性の向上と巻回電極体の巻きずれの抑制とを両立させる点では、さらなる改善の余地があった。 In response to such a request, for all the batteries described in Patent Documents 1 to 4, the battery having a structure in which the current collector exposed portion is formed at the non-end portion of the electrode is improved in impact resistance and wound. There was room for further improvement in terms of achieving both suppression of unwinding of the electrode body.
 そこで、本発明の目的は、耐衝撃性を向上し、且つ、巻回電極体の巻きずれを抑制することができる電池、当該電池を有する電子機器および電動工具を提供することにある。 Therefore, an object of the present invention is to provide a battery capable of improving impact resistance and suppressing unwinding of the wound electrode body, an electronic device having the battery, and a power tool.
 本発明は、
 巻回電極体と、
 巻回電極体を収納する外装缶と
 を備え、
 巻回電極体は、第1のリードおよび第1の接合性フィルム材を有する帯状の第1の電極と、帯状の第2の電極と、第1の電極と第2の電極との間に設けられた帯状のセパレータが長手方向に巻回された構成を有し、
 第1の電極は、第1の活物質層が設けられていない第1の集電体露出部を第1の電極の長手方向の両端部の間に有し、
 第1のリードは、第1の電極の長辺側から一方の端部側が突出するように、第1の集電体露出部に設けられ、
 第1のリードのうち、セパレータおよび第2の電極のいずれか一方および両方に対向する部分の長さは、第2の電極の幅の50%の長さよりも短く、
 第1の接合性フィルム材は、第1の集電体露出部のうち、第1のリードが設けられていない領域に設けられている電池である。
The present invention
Winding electrode body and
Equipped with an outer can for storing the wound electrode body,
The wound electrode body is provided between the band-shaped first electrode having the first reed and the first adhesive film material, the band-shaped second electrode, and the first electrode and the second electrode. It has a structure in which the strip-shaped separator is wound in the longitudinal direction.
The first electrode has a first current collector exposed portion to which the first active material layer is not provided between both ends in the longitudinal direction of the first electrode.
The first lead is provided on the exposed portion of the first current collector so that one end side protrudes from the long side side of the first electrode.
The length of the portion of the first lead facing either or both of the separator and the second electrode is shorter than 50% of the width of the second electrode.
The first adhesive film material is a battery provided in a region of the first exposed part of the current collector where the first reed is not provided.
 また、本発明は、上述した電池を有する電子機器または電動工具であっても良い。 Further, the present invention may be an electronic device or a power tool having the above-mentioned battery.
 本発明によれば、電池の耐衝撃性を向上し、且つ、当該電池が有する巻回電極体の巻きずれを抑制することができる。 According to the present invention, it is possible to improve the impact resistance of the battery and suppress the unwinding of the wound electrode body of the battery.
図1は、本発明の一実施形態に係る二次電池の構成の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a secondary battery according to an embodiment of the present invention. 図2は、電極積層体の概略断面図である。FIG. 2 is a schematic cross-sectional view of the electrode laminate. 図3Aは、本発明の一実施形態に係る電池を形成する正極の構成の実施例の一つを示す概略平面図である。図3Bは、図3AのIIIB-IIIB線縦断面の状態の概略及び一点鎖線で囲まれた領域X1の部分を拡大した図を示す概略断面図である。図3Cおよび図3Dは、本発明の一実施形態に係る電池を形成する正極の構成の他の実施例の一つを示す概略平面図である。FIG. 3A is a schematic plan view showing one of the examples of the configuration of the positive electrode forming the battery according to the embodiment of the present invention. FIG. 3B is a schematic cross-sectional view showing a schematic state of the vertical cross section of the line IIIB-IIIB of FIG. 3A and an enlarged view of a portion of the region X1 surrounded by the alternate long and short dash line. 3C and 3D are schematic plan views showing one of the other examples of the configuration of the positive electrode forming the battery according to the embodiment of the present invention. 図4Aは、本発明の一実施形態に係る電池を形成する負極の構成の実施例の一つを示す概略平面図である。図4Bは、図4AのIVB-IVB線縦断面の状態の概略を示す概略断面図である。図4Cは、本発明の一実施形態に係る電池を形成する負極の構成の他の実施例の一つを示す概略平面図である。図4Dは、図4CのIVD-IVD線縦断面の状態の概略を示す概略断面図である。FIG. 4A is a schematic plan view showing one of the examples of the configuration of the negative electrode forming the battery according to the embodiment of the present invention. FIG. 4B is a schematic cross-sectional view showing an outline of the state of the vertical cross section of the IVB-IVB line of FIG. 4A. FIG. 4C is a schematic plan view showing one of the other examples of the configuration of the negative electrode forming the battery according to the embodiment of the present invention. FIG. 4D is a schematic cross-sectional view showing an outline of the state of the vertical cross section of the IVD-IVD line of FIG. 4C. 図5Aは、正極と負極の積層状態を説明するための概略平面図である。図5Bは、巻回電極体の一部の断面の状態を拡大した状態を説明するための概略断面図である。FIG. 5A is a schematic plan view for explaining a laminated state of the positive electrode and the negative electrode. FIG. 5B is a schematic cross-sectional view for explaining an enlarged state of a part of the cross section of the wound electrode body. 図6は、応用例を説明するための図である。FIG. 6 is a diagram for explaining an application example. 図7は、他の応用例を説明するための図である。FIG. 7 is a diagram for explaining another application example. 図8は、他の応用例を説明するための図である。FIG. 8 is a diagram for explaining another application example.
 本発明の実施形態について以下の順序で説明する。
<一実施形態>
<実施例>
<応用例>
<変形例>
 なお、以下に説明する実施形態等は本発明の好適な具体例であり、本発明の内容がこれらの実施形態等に限定されるものではない。
Embodiments of the present invention will be described in the following order.
<One Embodiment>
<Example>
<Application example>
<Modification example>
The embodiments and the like described below are suitable specific examples of the present invention, and the contents of the present invention are not limited to these embodiments and the like.
<一実施形態>
[電池の構成]
 以下、図1を参照しながら、本発明の一実施形態に係る円筒型二次電池(以下、単に「電池」という。)の構成の一例について説明する。この電池は、例えば、負極の容量が、電極反応物質であるリチウム(Li)の吸蔵および放出による容量成分により表されるリチウムイオン二次電池である。円筒型電池は、外装缶である略中空円柱状の電池缶11の内部に、一対の帯状の正極21と帯状の負極22とがセパレータ23を介して積層した電極積層体を巻回してなる巻回電極体20(以下、単に「電極体20」という。)を備える。電池缶11は、ニッケル(Ni)のめっきがされた鉄(Fe)により構成され、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、液状の電解質としての電解液が注入され、第1の電極、第2の電極(正極21、負極22)およびセパレータ23に含浸されている。また、電極体20を挟むように巻回周面に対して垂直に一対の絶縁板12、13がそれぞれ配置されている。
<One Embodiment>
[Battery configuration]
Hereinafter, an example of the configuration of the cylindrical secondary battery (hereinafter, simply referred to as “battery”) according to the embodiment of the present invention will be described with reference to FIG. This battery is, for example, a lithium ion secondary battery in which the capacity of the negative electrode is represented by a capacity component due to occlusion and release of lithium (Li), which is an electrode reactant. The cylindrical battery is wound by winding an electrode laminate in which a pair of strip-shaped positive electrodes 21 and strip-shaped negative electrodes 22 are laminated via a separator 23 inside a substantially hollow cylindrical battery can 11 which is an outer can. A rotating electrode body 20 (hereinafter, simply referred to as “electrode body 20”) is provided. The battery can 11 is made of nickel (Ni) plated iron (Fe), one end of which is closed and the other end of which is open. An electrolytic solution as a liquid electrolyte is injected into the inside of the battery can 11, and the first electrode, the second electrode (positive electrode 21, negative electrode 22) and the separator 23 are impregnated. Further, a pair of insulating plates 12 and 13 are arranged perpendicular to the winding peripheral surface so as to sandwich the electrode body 20.
 電池缶11の開放端部には、電池蓋14と、この電池蓋14の内側に設けられた安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient;PTC素子)16とが、封口ガスケット17を介してかしめられることにより取り付けられている。これにより、電池缶11の内部は密閉されている。電池蓋14は、電池缶11と同様の材料により構成されている。安全弁機構15は、電池蓋14と電気的に接続されており、内部短絡あるいは外部からの加熱等により電池の内圧が一定以上となった場合に、ディスク板15Aが反転して電池蓋14と電極体20との電気的接続を切断するようになっている。封口ガスケット17は、絶縁材料により構成されており、表面にはアスファルトが塗布されている。 At the open end of the battery can 11, a battery lid 14, a safety valve mechanism 15 provided inside the battery lid 14, and a heat-sensitive resistance element (Positive Temperature Cofficient; PTC element) 16 are interposed via a sealing gasket 17. It is attached by being crimped. As a result, the inside of the battery can 11 is sealed. The battery lid 14 is made of the same material as the battery can 11. The safety valve mechanism 15 is electrically connected to the battery lid 14, and when the internal pressure of the battery exceeds a certain level due to an internal short circuit or heating from the outside, the disk plate 15A is inverted and the battery lid 14 and the electrode It is designed to disconnect the electrical connection with the body 20. The sealing gasket 17 is made of an insulating material, and the surface is coated with asphalt.
 電極体20は、ほぼ円柱状を有している。電極体20は、その第1の端面の中心から第2の端面の中心に向けて貫通する中心孔20Aを有している。この中心孔20Aは、電池缶11内でガスが発生した場合に、ガスを電池缶11の缶底側からそれとは反対の電池蓋14側に誘導する流路として機能する。 The electrode body 20 has a substantially columnar shape. The electrode body 20 has a center hole 20A penetrating from the center of the first end face toward the center of the second end face. The central hole 20A functions as a flow path that guides the gas from the can bottom side of the battery can 11 to the battery lid 14 side opposite to the gas when gas is generated in the battery can 11.
 第1の電極が正極、第2の電極が負極である場合には、第1のリードが正極リード25であり、第2のリードが負極リード26および負極リード27に対応している。正極21に接続される正極リード25は、アルミニウム(Al)等より形成され、負極22に接続される負極リード26、27は、ニッケル等より形成される。 When the first electrode is the positive electrode and the second electrode is the negative electrode, the first lead is the positive electrode lead 25, and the second lead corresponds to the negative electrode lead 26 and the negative electrode lead 27. The positive electrode lead 25 connected to the positive electrode 21 is formed of aluminum (Al) or the like, and the negative electrode leads 26 and 27 connected to the negative electrode 22 are formed of nickel or the like.
 第1の電極には、第1のリードが接合され、第2の電極には第2のリードが接合される。第1の電極が正極である場合には、図1に示すように、第1のリードとしての正極リード25が安全弁機構15に溶接されることにより電池蓋14と電気的に接続されており、第2のリードとしての負極リード26、27が、電池缶11に溶接され電気的に接続される。第1の電極が負極である場合には、第1のリードが電池缶11に溶接され電気的に接続され、第2の電極に接合された第2のリードが、安全弁機構15に溶接される。 The first lead is bonded to the first electrode, and the second lead is bonded to the second electrode. When the first electrode is a positive electrode, as shown in FIG. 1, the positive electrode lead 25 as the first lead is electrically connected to the battery lid 14 by being welded to the safety valve mechanism 15. The negative electrode leads 26 and 27 as the second leads are welded to the battery can 11 and electrically connected. When the first electrode is the negative electrode, the first reed is welded to the battery can 11 and electrically connected, and the second reed joined to the second electrode is welded to the safety valve mechanism 15. ..
 電池においては、第1の電極、第2の電極のいずれが正極21に対応してもよいが、以下では、図1から図5の例に示すように、第1の電極が正極21、第2の電極が負極22に対応するものとした説明がなされる。そして、図1、図2、図3A、図3B、図3C、図3D、図4A、図4B、図4C、図4D、図5A、図5Bを参照しながら、正極21、負極22、セパレータ23、および電解液についての説明が順次、なされる。なお、図5Aは、図3Aに示す正極21と、図4Aに示す負極22とを積層した状態を説明するための図であり、説明の便宜上、セパレータ23の記載を省略している。また、図5Bは、図5Aに示す積層構造を有する電極積層体を巻回して形成された電極体20の一部において正極リードを配置した部分の断面の状態を説明するための図である。 In the battery, either the first electrode or the second electrode may correspond to the positive electrode 21, but in the following, as shown in the examples of FIGS. 1 to 5, the first electrode is the positive electrode 21 and the second electrode. It is explained that the electrode 2 corresponds to the negative electrode 22. Then, referring to FIGS. 1, 2, 3A, 3B, 3C, 3D, 4A, 4B, 4C, 4D, 5A, and 5B, the positive electrode 21, the negative electrode 22, and the separator 23 , And the electrolytic solution will be described in sequence. Note that FIG. 5A is a diagram for explaining a state in which the positive electrode 21 shown in FIG. 3A and the negative electrode 22 shown in FIG. 4A are laminated, and the description of the separator 23 is omitted for convenience of explanation. Further, FIG. 5B is a diagram for explaining the state of the cross section of the portion where the positive electrode lead is arranged in a part of the electrode body 20 formed by winding the electrode laminate having the laminated structure shown in FIG. 5A.
(正極)
 正極21は、例えば、第1の集電体としての正極集電体21Aと、正極集電体21Aの両主面21S、21Sに設けられた、第1の活物質層としての正極活物質層21Bとを備える。正極集電体21Aは、例えば、アルミニウム箔、ニッケル箔またはステンレス箔等の金属箔により構成されている。正極活物質層21Bは、リチウムを吸蔵および放出することが可能な1種または2種以上の正極活物質を含む。正極活物質層21Bは、必要に応じてバインダーおよび導電剤のうちの少なくとも1種をさらに含んでいてもよい。
(Positive electrode)
The positive electrode 21 is, for example, a positive electrode current collector 21A as a first current collector and a positive electrode active material layer as a first active material layer provided on both main surfaces 21S and 21S of the positive electrode current collector 21A. It is equipped with 21B. The positive electrode current collector 21A is made of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil. The positive electrode active material layer 21B contains one or more positive electrode active materials capable of occluding and releasing lithium. The positive electrode active material layer 21B may further contain at least one of a binder and a conductive agent, if necessary.
(正極集電体露出部)
 正極21の両主面21S、21Sの所定位置には、図3A、図3Bに示すように、正極活物質層21Bが設けられず正極集電体21Aが露出した、第1の集電体露出部としての正極集電体露出部21Cが設けられている。図3A、図3Bの例では、正極21の幅方向において全幅にわたって正極集電体露出部21Cが形成されている。具体的には、正極集電体露出部21Cは、正極21の長手方向(図3、図5において両矢印X方向)における正極21の非端部、より詳しくは巻回中心側の端部と巻回外周側の端部の間の部分に形成されている。図3A、図3Bに示す例では、正極21の長手方向における正極21の中央部付近に正極集電体露出部21Cが設けられている。正極21の一主面21Sの一部に形成された正極集電体露出部21Cには、正極リード25が設けられている。なお、図3から図5において、正極21、負極22の長手方向は、両矢印Xで示されており、正極21、負極22の幅方向は、両矢印Yで示されている。
(Exposed part of positive electrode current collector)
As shown in FIGS. 3A and 3B, the positive electrode active material layer 21B was not provided at the predetermined positions of both main surfaces 21S and 21S of the positive electrode 21, and the positive electrode current collector 21A was exposed. A positive electrode current collector exposed portion 21C is provided as a portion. In the examples of FIGS. 3A and 3B, the positive electrode current collector exposed portion 21C is formed over the entire width in the width direction of the positive electrode 21. Specifically, the positive electrode current collector exposed portion 21C includes a non-end portion of the positive electrode 21 in the longitudinal direction of the positive electrode 21 (in the direction of the double-headed arrow X in FIGS. 3 and 5), more specifically, an end portion on the winding center side. It is formed in the portion between the ends on the outer peripheral side of the winding. In the example shown in FIGS. 3A and 3B, the positive electrode current collector exposed portion 21C is provided near the central portion of the positive electrode 21 in the longitudinal direction of the positive electrode 21. A positive electrode lead 25 is provided on the positive electrode current collector exposed portion 21C formed on a part of one main surface 21S of the positive electrode 21. In FIGS. 3 to 5, the longitudinal directions of the positive electrode 21 and the negative electrode 22 are indicated by double-headed arrows X, and the width directions of the positive electrode 21 and the negative electrode 22 are indicated by double-headed arrows Y.
 図3A、図3Bに示す例では、正極集電体露出部21Cの形成箇所数が1か所であったが、図3C、図3Dに示すように、正極集電体露出部21Cが複数個所形成され、それぞれの正極集電体露出部21Cに正極リード25が設けられてもよい。正極集電体露出部21Cが複数個所形成される場合、図3Dに示すように全ての正極集電体露出部21Cが正極21の長手方向における正極21の非端部に形成されてもよいし、図3Cに示すように正極21の長手方向における正極21の端部に正極集電体露出部21Cが形成されてもよい。なお、正極集電体露出部21Cが複数個所形成される場合、図3Dに示すように複数の正極集電体露出部21Cに正極リードが設けられてもよい。また、正極集電体露出部21Cは、図3A、図3Bの例では、正極21の非端部1か所の両主面に形成されているが、一方の主面に形成されていてもよい。 In the example shown in FIGS. 3A and 3B, the number of the positive electrode current collector exposed portions 21C was one, but as shown in FIGS. 3C and 3D, there are a plurality of positive electrode current collector exposed portions 21C. A positive electrode lead 25 may be provided on each of the positive electrode current collector exposed portions 21C that are formed. When a plurality of positive electrode current collector exposed portions 21C are formed, all the positive electrode current collector exposed portions 21C may be formed at the non-end portions of the positive electrode 21 in the longitudinal direction of the positive electrode 21 as shown in FIG. 3D. As shown in FIG. 3C, the positive electrode current collector exposed portion 21C may be formed at the end of the positive electrode 21 in the longitudinal direction of the positive electrode 21. When a plurality of positive electrode current collector exposed portions 21C are formed, positive electrode leads may be provided on the plurality of positive electrode current collector exposed portions 21C as shown in FIG. 3D. Further, in the examples of FIGS. 3A and 3B, the positive electrode current collector exposed portion 21C is formed on both main surfaces at one non-end portion of the positive electrode 21, but even if it is formed on one main surface. Good.
(正極リードの配置)
 正極リード25は、その一部を正極集電体露出部21Cに対してオーバーラップさせた状態で正極集電体露出部21Cに接合されており、正極リード25の一部は、電極体20が形成される際にはセパレータ23を介して負極22に向かい合う。正極リード25の一方の端部が正極21の長辺側から突出しており、他方の端部(適宜、内端部と称される)が正極21の内側に向く方向に配置されている。後述する負極リードについても同様である。
(Arrangement of positive electrode leads)
The positive electrode lead 25 is joined to the positive electrode current collector exposed portion 21C in a state where a part thereof overlaps with the positive electrode current collector exposed portion 21C, and a part of the positive electrode lead 25 is formed by the electrode body 20. When formed, it faces the negative electrode 22 via the separator 23. One end of the positive electrode lead 25 projects from the long side of the positive electrode 21, and the other end (appropriately referred to as an inner end) is arranged in a direction toward the inside of the positive electrode 21. The same applies to the negative electrode lead described later.
 正極リード25のうち、セパレータ23および負極22のいずれか一方および両方に対向する部分の長さ(すなわち、正極のリードの内端部25Aから、負極22またはセパレータ23に対向する部分の端である外端部25Bまでの長さをいう。図5Bにおいて符号Wh2で示す。)は、負極22の幅(図5Aにおいて符号W2で示す。)の50%よりも小さい。このように正極リード25が配置されていることで、電極体20を電池缶11内に収容した場合に、正極リード25が電池缶11の筒軸方向(図1において両矢印Shで示す。)における電池缶11の中央付近を避けた位置に配置することが容易となる。このため、電池の外周面の中央付近に電池の中心に向けて衝撃が加えられて電池に変形をきたした場合でも、正極リード25と正極集電体21Aとの接触部分近傍で正極集電体21Aに破壊が生じ、これに伴いセパレータ23の破壊を誘発して電池の内部短絡を生じる虞を抑制することができ、電池の耐衝撃性を向上させることができる。 The length of the portion of the positive electrode lead 25 facing either one or both of the separator 23 and the negative electrode 22 (that is, the end of the portion facing the negative electrode 22 or the separator 23 from the inner end portion 25A of the positive electrode lead). The length to the outer end portion 25B (indicated by the reference numeral Wh2 in FIG. 5B) is smaller than 50% of the width of the negative electrode 22 (indicated by the reference numeral W2 in FIG. 5A). By arranging the positive electrode leads 25 in this way, when the electrode body 20 is housed in the battery can 11, the positive electrode leads 25 are in the tubular axial direction of the battery can 11 (indicated by double-headed arrows Sh in FIG. 1). It becomes easy to arrange the battery can 11 in a position avoiding the vicinity of the center of the battery can 11. Therefore, even if an impact is applied toward the center of the battery near the center of the outer peripheral surface of the battery and the battery is deformed, the positive electrode current collector is near the contact portion between the positive electrode lead 25 and the positive electrode current collector 21A. It is possible to suppress the possibility that the 21A is destroyed, which in turn induces the destruction of the separator 23 and causes an internal short circuit of the battery, and the impact resistance of the battery can be improved.
 電池の耐衝撃性をより向上させる観点からは、正極リード25のうち長さWh2は、負極22の幅W2の45%以下の長さであることがより好ましい。 From the viewpoint of further improving the impact resistance of the battery, it is more preferable that the length Wh2 of the positive electrode leads 25 is 45% or less of the width W2 of the negative electrode 22.
 ただし、正極リード25のうち長さWh2があまりに短いと、正極リード25のうち正極集電体露出部21Cに重なり合う部分の長さ(図5Aにおいて符号Wh1で示す。)が短くなりすぎて正極リード25を正極集電体露出部21Cにより確実に接合できなくなる虞がある。正極リード25と正極集電体露出部21Cとの接合性向上の観点から、正極リード25のうち正極集電体露出部21Cに重なり合う部分の長さWh1が、正極21の幅(図5Aにおいて符号W1で示す。)の10%以上の長さであることが好ましい。ただし、正極リード25のうち正極集電体露出部21Cに重なり合う部分の長さWh1が長すぎると、正極リード25と正極集電体21Aとの接触部分近傍で正極集電体21Aに破壊が生じてしまうことを防止する効果が薄れることから、正極リード25のうち正極集電体露出部21Cに重なり合う部分の長さWh1は、正極21の幅W1の50%よりも小さいことが好ましい。 However, if the length Wh2 of the positive electrode leads 25 is too short, the length of the portion of the positive electrode leads 25 that overlaps the exposed portion 21C of the positive electrode current collector (indicated by the reference numeral Wh1 in FIG. 5A) becomes too short, and the positive electrode leads There is a risk that the 25 cannot be reliably joined by the positive electrode current collector exposed portion 21C. From the viewpoint of improving the bondability between the positive electrode lead 25 and the positive electrode current collector exposed portion 21C, the length Wh1 of the portion of the positive electrode lead 25 that overlaps the positive electrode current collector exposed portion 21C is the width of the positive electrode 21 (reference numeral in FIG. 5A). It is preferably 10% or more of the length (shown by W1). However, if the length Wh1 of the portion of the positive electrode lead 25 that overlaps the exposed portion 21C of the positive electrode current collector is too long, the positive electrode current collector 21A is destroyed near the contact portion between the positive electrode lead 25 and the positive electrode current collector 21A. The length Wh1 of the portion of the positive electrode lead 25 that overlaps the exposed portion 21C of the positive electrode current collector is preferably smaller than 50% of the width W1 of the positive electrode 21 because the effect of preventing the positive electrode from being lost is diminished.
(正極接合性フィルム材)
 正極集電体露出部21Cには、正極リード25が設けられていない領域、具体的には、正極リード25の内端部25Aに対して、電極体20の巻回軸方向(図5Aにおいて両矢印R)に向かい合う位置(内端部25Aと対向する位置)に、第1のフィルム材としての正極接合性フィルム材28が設けられている。正極接合性フィルム材28と正極リード25の離間距離は特に限定されるものではないが、正極集電体露出部21C内側に正極接合性フィルム材28が存在するように、正極接合性フィルム材28と正極リード25との離間距離が定められることが好ましい。
(Positive electrode bonding film material)
In the positive electrode current collector exposed portion 21C, the winding axis direction of the electrode body 20 with respect to the region where the positive electrode lead 25 is not provided, specifically, the inner end portion 25A of the positive electrode lead 25 (both in FIG. 5A). A positive electrode bonding film material 28 as a first film material is provided at a position facing the arrow R) (a position facing the inner end portion 25A). The separation distance between the positive electrode bonding film material 28 and the positive electrode lead 25 is not particularly limited, but the positive electrode bonding film material 28 is such that the positive electrode bonding film material 28 exists inside the exposed portion 21C of the positive electrode current collector. It is preferable that the separation distance between the positive electrode lead 25 and the positive electrode lead 25 is determined.
 正極接合性フィルム材28は、基材と接着層を備えたフィルム材で構成されており、接着層を介して正極集電体露出部21Cに接着されている。 The positive electrode bonding film material 28 is composed of a film material provided with a base material and an adhesive layer, and is adhered to the positive electrode current collector exposed portion 21C via the adhesive layer.
 本実施形態では、フィルム材は矩形状を有する絶縁テープが用いられる。フィルム材を構成する基材の材料としては、ポリエチレンテレフタレート(PET)、ポリイミド(PI)、ポリエチレン(PE)またはポリプロピレン(PP)等が挙げられる。 In this embodiment, an insulating tape having a rectangular shape is used as the film material. Examples of the material of the base material constituting the film material include polyethylene terephthalate (PET), polyimide (PI), polyethylene (PE), polypropylene (PP) and the like.
 接着層は、アクリル系接着剤、シリコーン系接着剤およびウレタン系接着剤のうちの少なくとも1種の接着剤を含む層を挙げることができる。 Examples of the adhesive layer include a layer containing at least one of an acrylic adhesive, a silicone adhesive, and a urethane adhesive.
 正極集電体露出部21Cに正極リード25だけでなく正極接合性フィルム材28が設けられていることで、正極リード25の有無による厚みの不均一を是正できるので、電極積層体を巻回して電極体20を形成する際に、巻ずれの発生を抑制することが容易となる。 By providing not only the positive electrode lead 25 but also the positive electrode bonding film material 28 in the positive electrode current collector exposed portion 21C, it is possible to correct the unevenness in thickness due to the presence or absence of the positive electrode lead 25. When forming the electrode body 20, it becomes easy to suppress the occurrence of winding misalignment.
(正極接合性フィルム材の厚み)
 正極接合性フィルム材28の厚み(図3Bにおいて符号HF1で示す。)は、適宜選択可能であるが、巻ずれの発生を抑制する効果をより一層効果的に得る観点からは、正極リード25の厚み(図3Bにおいて符号HL1で示す。)の20%以上であることが好ましい。正極接合性フィルム材28の厚みが厚くなりすぎると、電極体20に局所的に膨らみが生じて電池の性能が低下する虞が生じる観点から、正極接合性フィルム材28の厚みHF1は正極リードの厚みHL1の120%以下の範囲内であることが好ましい。
(Thickness of positive electrode bonding film material)
The thickness of the positive electrode adhesive film material 28 (indicated by reference numeral HF1 in FIG. 3B) can be appropriately selected, but from the viewpoint of more effectively obtaining the effect of suppressing the occurrence of winding misalignment, the positive electrode lead 25 It is preferably 20% or more of the thickness (indicated by reference numeral HL1 in FIG. 3B). If the thickness of the positive electrode bonding film material 28 becomes too thick, the electrode body 20 may locally bulge and the performance of the battery may deteriorate. Therefore, the thickness HF1 of the positive electrode bonding film material 28 is the positive electrode lead. It is preferably within the range of 120% or less of the thickness HL1.
(正極集電体)
 正極集電体21Aは、例えば、アルミニウム箔、ニッケル箔あるいはステンレス箔等の金属箔により構成されている。
(Positive current collector)
The positive electrode current collector 21A is made of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil.
(正極活物質層)
 正極活物質層21Bは、第1の活物質としてリチウムを吸蔵および放出することが可能な正極活物質を含む。正極活物質層21Bは、必要に応じてバインダーおよび導電剤のうちの少なくとも1種をさらに含んでいてもよい。
(Positive electrode active material layer)
The positive electrode active material layer 21B contains a positive electrode active material capable of occluding and releasing lithium as a first active material. The positive electrode active material layer 21B may further contain at least one of a binder and a conductive agent, if necessary.
(正極活物質)
 リチウムを吸蔵および放出することが可能な正極活物質としては、例えば、リチウム酸化物、リチウムリン酸化物、リチウム硫化物またはリチウムを含む層間化合物等のリチウム含有化合物が適当であり、これらの2種以上を混合して用いてもよい。エネルギー密度を高くするには、リチウムと遷移金属元素と酸素(O)とを含むリチウム含有化合物が好ましい。このようなリチウム含有化合物としては、層状岩塩型の構造を有するリチウム複合酸化物、オリビン型の構造を有するリチウム複合リン酸塩等が挙げられる。リチウム含有化合物としては、遷移金属元素として、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)および鉄(Fe)からなる群のうちの少なくとも1種を含むものであればより好ましい。リチウム含有化合物としては、層状岩塩型の構造を有するリチウム複合酸化物、スピネル型の構造を有するリチウム複合酸化物、またはオリビン型の構造を有するリチウム複合リン酸塩等が挙げられる。
(Positive electrode active material)
As the positive electrode active material capable of occluding and releasing lithium, for example, a lithium-containing compound such as a lithium oxide, a lithium phosphorus oxide, a lithium sulfide, or an interlayer compound containing lithium is suitable, and these two types are suitable. The above may be mixed and used. In order to increase the energy density, a lithium-containing compound containing lithium, a transition metal element, and oxygen (O) is preferable. Examples of such a lithium-containing compound include a lithium composite oxide having a layered rock salt type structure, a lithium composite phosphate having an olivine type structure, and the like. The lithium-containing compound is more preferably one containing at least one of the group consisting of cobalt (Co), nickel (Ni), manganese (Mn) and iron (Fe) as a transition metal element. Examples of the lithium-containing compound include a lithium composite oxide having a layered rock salt type structure, a lithium composite oxide having a spinel type structure, and a lithium composite phosphate having an olivine type structure.
 ニッケルを含むリチウム複合酸化物としては、リチウムとニッケルとコバルトとマンガンと酸素とを含むリチウム複合酸化物(NCM)、リチウムとニッケルとコバルトとアルミニウムと酸素とを含むリチウム複合酸化物(NCA)等を用いてもよい。 Examples of the lithium composite oxide containing nickel include a lithium composite oxide containing lithium, nickel, cobalt, manganese and oxygen (NCM), and a lithium composite oxide containing lithium, nickel, cobalt, aluminum and oxygen (NCA). May be used.
 リチウムを吸蔵および放出することが可能な正極活物質は、上記以外のものであってもよい。また、上記で例示した正極活物質は、任意の組み合わせで2種以上混合されてもよい。 The positive electrode active material capable of occluding and releasing lithium may be other than the above. In addition, two or more kinds of positive electrode active materials exemplified above may be mixed in any combination.
(バインダー)
 バインダーとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアクリロニトリル、スチレンブタジエンゴム、カルボキシメチルセルロース、およびこれら樹脂材料のうちの少なくとも1種を用いることができる。
(binder)
As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber, carboxymethyl cellulose, and at least one of these resin materials can be used.
(導電剤)
 導電剤としては、例えば、黒鉛、炭素繊維、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブおよびグラフェン等からなる群より選ばれる少なくとも1種の炭素材料を用いることができる。なお、導電剤として金属材料または導電性高分子材料等を用いるようにしてもよい。また、導電剤の形状としては、例えば、粒状、鱗片状、中空状、針状または筒状等が挙げられるが、特にこれらの形状に限定されるものではない。
(Conducting agent)
As the conductive agent, for example, at least one carbon material selected from the group consisting of graphite, carbon fiber, carbon black, acetylene black, ketjen black, carbon nanotubes, graphene and the like can be used. A metal material, a conductive polymer material, or the like may be used as the conductive agent. The shape of the conductive agent includes, for example, granular, scaly, hollow, needle-shaped, tubular, and the like, but is not particularly limited to these shapes.
(負極)
 負極22は、図2、図4Aから図4D、図5に示すように、負極集電体22Aと、両主面22S、22Sに設けられた、第2の活物質層としての負極活物質層22Bとを備える。負極22の幅は、特に限定されるものではないが、図5等に示すように、一般的に正極21の幅以上の長さとなっている。
(Negative electrode)
As shown in FIGS. 2, 4A to 4D, and FIG. 5, the negative electrode 22 is a negative electrode current collector 22A and a negative electrode active material layer as a second active material layer provided on both main surfaces 22S and 22S. It is equipped with 22B. The width of the negative electrode 22 is not particularly limited, but is generally longer than the width of the positive electrode 21 as shown in FIG. 5 and the like.
 負極22の中心側端部の両主面22S、22Sの一部には、負極活物質層22Bが設けられず負極集電体22Aが露出した、第2の集電体露出部として、負極集電体露出部22Cが設けられている。図4Aから図4Dの例では、負極22の幅方向において全幅にわたって負極集電体露出部22Cが形成されている。 The negative electrode current collector 22A was exposed without providing the negative electrode active material layer 22B on a part of both main surfaces 22S and 22S at the central end of the negative electrode 22. An electric body exposed portion 22C is provided. In the example of FIGS. 4A to 4D, the negative electrode current collector exposed portion 22C is formed over the entire width in the width direction of the negative electrode 22.
 一主面22Sの一部に設けられた負極集電体露出部22Cには負極リード26が設けられている。 A negative electrode lead 26 is provided on the negative electrode current collector exposed portion 22C provided on a part of the main surface 22S.
 負極22の巻回外周側の端部の両主面22S、22Sには、負極活物質層22Bが設けられず負極集電体22Aが露出した、第2の集電体露出部としての負極集電体露出部22Dが設けられている。一主面22Sの一部に設けられた負極集電体露出部22Dには、負極リード27が設けられている。図4Aから図4Dの例では、負極22の幅方向において全幅にわたって負極集電体露出部22Dが形成されている。 Negative electrode collection as a second current collector exposed portion, in which the negative electrode active material layer 22B is not provided on both main surfaces 22S and 22S of the winding outer peripheral end of the negative electrode 22 and the negative electrode current collector 22A is exposed. An electric body exposed portion 22D is provided. A negative electrode lead 27 is provided on the negative electrode current collector exposed portion 22D provided on a part of the main surface 22S. In the example of FIGS. 4A to 4D, the negative electrode current collector exposed portion 22D is formed over the entire width in the width direction of the negative electrode 22.
(負極リードの配置)
 負極リード26、27は、その一部を負極集電体露出部22C、22Dに対してオーバーラップさせた状態でそれぞれ負極集電体露出部22C、22Dに接合されている。
(Arrangement of negative electrode leads)
The negative electrode leads 26 and 27 are joined to the negative electrode current collector exposed portions 22C and 22D, respectively, in a state where a part of the negative electrode leads 26 and 27 overlap the negative electrode current collector exposed portions 22C and 22D.
 図4Aから図4Dの例では、負極集電体露出部の形成数が複数であったが、負極集電体露出部が1個所形成され、当該負極集電体露出部に負極リードが設けられていてもよい。また、図4では、負極集電体露出部22C、22Dは、負極22の両端部(2箇所)の両主面に形成されているが、一方の主面のみに形成されてもよい。 In the examples of FIGS. 4A to 4D, the number of exposed negative electrode current collectors was multiple, but one exposed negative electrode current collector was formed, and negative electrode leads were provided in the exposed negative electrode current collectors. You may be. Further, in FIG. 4, the negative electrode current collector exposed portions 22C and 22D are formed on both main surfaces of both end portions (two locations) of the negative electrode 22, but may be formed on only one main surface.
 図4Cに示すように、負極リード26、27のうち負極集電体露出部22C、22Dに重なり合う部分の長さWz1、Wz2は、負極の幅の50%以下より短いことが好ましい。このように負極リード26、27が配置されていることで、電極体20を電池缶11内に収容した場合に、負極リード26、27が電池缶11の筒軸方向Shにおける電池缶11の中央付近を避けた位置に配置することが容易となる。このため、電池の外周面の中央位置に衝撃が加えられて電池に変形をきたした場合にも、負極リード26、27と負極集電体22Aとの接触部分近傍で負極集電体22Aなどに破壊が生じ、それにより電池に内部短絡が生じてしまう虞を抑制することができるとともに、電池の耐衝撃性を向上させることができる。 As shown in FIG. 4C, the lengths Wz1 and Wz2 of the portions of the negative electrode leads 26 and 27 that overlap the exposed negative electrode current collectors 22C and 22D are preferably shorter than 50% or less of the width of the negative electrode. By arranging the negative electrode leads 26 and 27 in this way, when the electrode body 20 is housed in the battery can 11, the negative electrode leads 26 and 27 are located at the center of the battery can 11 in the tubular axial direction Sh of the battery can 11. It becomes easy to arrange it in a position avoiding the vicinity. Therefore, even when an impact is applied to the central position of the outer peripheral surface of the battery and the battery is deformed, the negative electrode current collector 22A or the like is formed near the contact portion between the negative electrode leads 26 and 27 and the negative electrode current collector 22A. It is possible to suppress the possibility that the battery will be broken and thereby cause an internal short circuit, and it is possible to improve the impact resistance of the battery.
 電池の耐衝撃性をより向上させる観点からは、負極リード26、27のうち負極集電体露出部22C、22Dに重なり合う部分の長さWz1、Wz2は、負極22の幅W2の45%以下の長さであることが好ましい。 From the viewpoint of further improving the impact resistance of the battery, the lengths Wz1 and Wz2 of the negative electrode leads 26 and 27 overlapping the exposed negative electrode current collectors 22C and 22D are 45% or less of the width W2 of the negative electrode 22. It is preferably a length.
 ただし、負極リード26、27のうち負極に重なりあう部分の長さがあまりに短いと、負極リード26、27を負極集電体露出部22C、22Dにより確実に接合できなくなる虞がある。負極リード26、27を負極集電体露出部22C、22Dにより確実に接合させた状態を形成する観点から、負極リード26、27のうち負極集電体露出部22C、22Dに重なり合う部分の長さWz1、Wz2が、負極22の幅W2の10%以上の長さであることが好ましい。 However, if the length of the portion of the negative electrode leads 26 and 27 that overlaps the negative electrode is too short, the negative electrode leads 26 and 27 may not be reliably joined by the negative electrode current collector exposed portions 22C and 22D. From the viewpoint of forming a state in which the negative electrode leads 26 and 27 are securely joined by the negative electrode current collector exposed portions 22C and 22D, the length of the portion of the negative electrode leads 26 and 27 that overlaps the negative electrode current collector exposed portions 22C and 22D. It is preferable that Wz1 and Wz2 have a length of 10% or more of the width W2 of the negative electrode 22.
(負極接合性フィルム材)
 負極集電体露出部22Cには、図4Cに示すように、負極リード26が設けられていない領域、具体的には、負極リード26の内端部26Aに対して、巻回電極体の巻回軸方向(図4Cにおいて両矢印R)に向かい合う位置(内端部26Aと対向する位置)に、第2のフィルム材としての負極接合性フィルム材29が設けられていてもよい。また、負極集電体露出部22Dについても、図4Cに示すように、負極リード27が設けられていない領域、具体的には、負極リード27の内端部27Aに対して、巻回電極体の巻回軸方向(図4Cにおいて両矢印R)に向かい合う位置(内端部27Aと対向する位置)に、第2のフィルム材としての負極接合性フィルム材30が設けられていてもよい。負極リード26、27の内端部26A、27Aとは、負極リード26、27の端部のうち負極集電体露出部22C、22Dに重なり合うほうの端部を示すものとする。負極接合性フィルム材29、30と負極リード26、27の離間距離は特に限定されるものではないが、負極集電体露出部22C,22Dそれぞれの内側に負極接合性フィルム材29、30が存在するように、負極接合性フィルム材29、30と負極リード26、27の離間距離が定められることが好ましい。
(Negative electrode bonding film material)
As shown in FIG. 4C, the negative electrode current collector exposed portion 22C is wound with a wound electrode body around a region where the negative electrode lead 26 is not provided, specifically, the inner end portion 26A of the negative electrode lead 26. The negative electrode bonding film material 29 as the second film material may be provided at a position facing the rotational axis direction (double arrow R in FIG. 4C) (position facing the inner end portion 26A). Further, as shown in FIG. 4C, the negative electrode current collector exposed portion 22D is also a wound electrode body with respect to the region where the negative electrode lead 27 is not provided, specifically, the inner end portion 27A of the negative electrode lead 27. The negative electrode bonding film material 30 as the second film material may be provided at a position facing the winding axis direction (double arrow R in FIG. 4C) (position facing the inner end portion 27A). The inner end portions 26A and 27A of the negative electrode leads 26 and 27 indicate the end portion of the negative electrode leads 26 and 27 that overlaps the negative electrode current collector exposed portions 22C and 22D. The separation distance between the negative electrode bonding film materials 29 and 30 and the negative electrode leads 26 and 27 is not particularly limited, but the negative electrode bonding film materials 29 and 30 are present inside the exposed negative electrode current collectors 22C and 22D, respectively. Therefore, it is preferable that the distance between the negative electrode bonding film materials 29 and 30 and the negative electrode leads 26 and 27 is determined.
 負極接合性フィルム材29、30は、基材と接着層を備えたフィルム材で構成されており、接着層を介して負極集電体露出部22C、22Dに接着されている。フィルム材については、正極接合性フィルム材28を形成するフィルム材が使用可能であるが、異なる材質のフィルム材を用いてもよい。 The negative electrode bonding film materials 29 and 30 are composed of a film material provided with a base material and an adhesive layer, and are adhered to the negative electrode current collector exposed portions 22C and 22D via the adhesive layer. As the film material, a film material forming the positive electrode bonding film material 28 can be used, but a film material of a different material may be used.
 負極22の中心側端部の負極集電体露出部22Cに負極リード26だけでなく負極接合性フィルム材29が設けられていることで、電極積層体を巻回して電極体20を形成する際に、負極リード26の設置された部分が局所的に立体的な外側に膨らみをきたして巻ずれを生じさせる虞を抑制することが容易となる。負極22の外周側端部の負極集電体露出部22Dに負極リード27だけでなく負極接合性フィルム材30が設けられていることで、電極体20の外周面に負極リード27による凹凸が生じにくくなり、外形上の歪みの発生を減じることができる。 When not only the negative electrode lead 26 but also the negative electrode bonding film material 29 is provided on the negative electrode current collector exposed portion 22C at the central end of the negative electrode 22, the electrode laminate is wound to form the electrode body 20. In addition, it becomes easy to suppress the possibility that the portion where the negative electrode lead 26 is installed locally bulges to the outside three-dimensionally and causes winding misalignment. Since not only the negative electrode lead 27 but also the negative electrode bonding film material 30 is provided on the negative electrode current collector exposed portion 22D at the outer peripheral end of the negative electrode 22, unevenness due to the negative electrode lead 27 occurs on the outer peripheral surface of the electrode body 20. It becomes difficult and the occurrence of distortion on the outer shape can be reduced.
(負極接合性フィルム材の厚み)
 負極接合性フィルム材29の厚み(図4Dにおいて符号HF2)は、適宜選択可能であるが、巻ずれの発生を抑制する効果をより一層効果的に得る観点からは、負極リード26の厚み(図4Dにおいて符号HL2)の20%以上であることが好ましい。負極接合性フィルム材29の厚みが厚くなりすぎると、電極体20に局所的に膨らみが生じて電池の性能が低下する虞が生じる観点から、負極接合性フィルム材29の厚みHF2は負極リード26の厚みHL2の120%以下の範囲内であることが好ましい。なお、ここでは、負極集電体露出部22Cに接合された負極接合性フィルム材29について述べたが、負極集電体露出部22Dに接合された負極接合性フィルム材30の厚みについても同様であり、負極リード27の厚みの20%以上120%以下であることが好ましい。
(Thickness of negative electrode bondable film material)
The thickness of the negative electrode bondable film material 29 (reference numeral HF2 in FIG. 4D) can be appropriately selected, but from the viewpoint of more effectively obtaining the effect of suppressing the occurrence of winding misalignment, the thickness of the negative electrode lead 26 (FIG. 4D). In 4D, it is preferably 20% or more of the symbol HL2). If the thickness of the negative electrode bonding film material 29 becomes too thick, the electrode body 20 may locally bulge and the performance of the battery may deteriorate. Therefore, the thickness HF2 of the negative electrode bonding film material 29 is the negative electrode lead 26. It is preferable that the thickness is within the range of 120% or less of the thickness HL2. Although the negative electrode bonding film material 29 bonded to the negative electrode current collector exposed portion 22C has been described here, the same applies to the thickness of the negative electrode bonding film material 30 bonded to the negative electrode current collector exposed portion 22D. Yes, it is preferably 20% or more and 120% or less of the thickness of the negative electrode lead 27.
 負極集電体22Aは、例えば、銅箔、ニッケル箔あるいはステンレス箔等の金属箔により構成されている。 The negative electrode current collector 22A is made of, for example, a metal foil such as a copper foil, a nickel foil, or a stainless steel foil.
 負極活物質層22Bは、リチウムを吸蔵および放出することが可能な負極活物質を含む。負極活物質層22Bは、必要に応じてバインダーおよび導電剤のうちの少なくとも1種をさらに含んでいてもよい。 The negative electrode active material layer 22B contains a negative electrode active material capable of storing and releasing lithium. The negative electrode active material layer 22B may further contain at least one of a binder and a conductive agent, if necessary.
 なお、本実施形態にかかる電池では、負極22または負極活物質の電気化学当量が、正極21の電気化学当量よりも大きくなっており、理論上、充電の途中において負極22にリチウム金属が析出しないようになっていることが好ましい。 In the battery according to the present embodiment, the electrochemical equivalent of the negative electrode 22 or the negative electrode active material is larger than the electrolytic equivalent of the positive electrode 21, and theoretically, lithium metal does not precipitate on the negative electrode 22 during charging. It is preferable that
(負極活物質)
 負極活物質としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維または活性炭等の炭素材料が挙げられる。
(Negative electrode active material)
Examples of the negative electrode active material include carbon materials such as non-graphitizable carbon, easily graphitizable carbon, graphite, pyrolytic carbon, coke, glassy carbon, calcined organic polymer compound, carbon fiber or activated carbon. Can be mentioned.
 また、高容量化が可能な他の負極活物質としては、金属元素および半金属元素のうちの少なくとも1種を構成元素(例えば、合金、化合物または混合物)として含む材料も挙げられる。このような材料を用いれば、高いエネルギー密度を得ることができる。特に、炭素材料と共に用いるようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるのでより好ましい。なお、本発明において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体、共晶(共融混合物)、金属間化合物またはそれらのうちの2種以上が共存するものがある。 Further, as another negative electrode active material capable of increasing the capacity, a material containing at least one of a metal element and a metalloid element as a constituent element (for example, an alloy, a compound or a mixture) can be mentioned. By using such a material, a high energy density can be obtained. In particular, when used together with a carbon material, a high energy density can be obtained and excellent cycle characteristics can be obtained, which is more preferable. In the present invention, the alloy includes an alloy containing two or more kinds of metal elements and one or more kinds of metal elements and one or more kinds of metalloid elements. It may also contain non-metallic elements. Some of the structures include solid solutions, eutectic (eutectic mixtures), intermetallic compounds, or two or more of them coexist.
 このような負極活物質としては、例えば、リチウムと合金を形成することが可能な金属元素または半金属元素が挙げられる。具体的には、Mg、B、Al、Ti、Ga、In、Si、Ge、Sn、Pb、Bi、Cd、Ag、Zn、Hf、Zr、Y、PdまたはPtが挙げられる。これらは結晶質のものでもアモルファスのものでもよい。中でもSiおよびSnは、リチウムを吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができるため好ましい。このような負極活物質としては、Siの単体、合金または化合物や、Snの単体、合金または化合物や、それらの1種または2種以上を少なくとも一部に有する材料が挙げられる。 Examples of such a negative electrode active material include a metal element or a metalloid element capable of forming an alloy with lithium. Specific examples thereof include Mg, B, Al, Ti, Ga, In, Si, Ge, Sn, Pb, Bi, Cd, Ag, Zn, Hf, Zr, Y, Pd or Pt. These may be crystalline or amorphous. Among them, Si and Sn are preferable because they have a large ability to occlude and release lithium and can obtain a high energy density. Examples of such a negative electrode active material include a simple substance of Si, an alloy or a compound, a simple substance of Sn, an alloy or a compound, and a material having at least one or more of them.
 Siの合金としては、例えば、Si以外の第2の構成元素として、Sn、Ni、Cu、Fe、Co、Mn、Zn、In、Ag、Ti、Ge、Bi、Sb、Nb、Mo、Al、P、GaおよびCrからなる群より選ばれる少なくとも1種を含むものが挙げられる。Snの合金としては、例えば、Sn以外の第2の構成元素として、Si、Ni、Cu、Fe、Co、Mn、Zn、In、Ag、Ti、Ge、Bi、Sb、Nb、Mo、Al、P、GaおよびCrからなる群より選ばれる少なくとも1種を含むものが挙げられる。 Examples of Si alloys include Sn, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb, Nb, Mo, Al, as second constituent elements other than Si. Examples include those containing at least one selected from the group consisting of P, Ga and Cr. Examples of Sn alloys include Si, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb, Nb, Mo, Al, as second constituent elements other than Sn. Examples include those containing at least one selected from the group consisting of P, Ga and Cr.
 Siの化合物としては、例えば、OまたはCを構成元素として含むものが挙げられる。これらの化合物は、上述した第2の構成元素を含んでいてもよい。 Examples of the Si compound include those containing O or C as a constituent element. These compounds may contain the second constituent element described above.
 その他の負極活物質としては、チタン酸リチウム等の金属酸化物が挙げられる。 Examples of other negative electrode active materials include metal oxides such as lithium titanate.
(バインダー)
 バインダーとしては、正極活物質層21Bと同様のものを用いることができる。
(binder)
As the binder, the same binder as that of the positive electrode active material layer 21B can be used.
(導電剤)
 導電剤としては、正極活物質層21Bと同様のものを用いることができる。
(Conducting agent)
As the conductive agent, the same one as that of the positive electrode active material layer 21B can be used.
(セパレータ)
 セパレータ23は、正極21と負極22とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータ23は、例えば、ポリテトラフルオロエチレン、ポリオレフィン樹脂(ポリプロピレン(PP)あるいはポリエチレン(PE)等)、アクリル樹脂、スチレン樹脂、ポリエステル樹脂またはナイロン樹脂、または、これらの樹脂をブレンドした樹脂からなる多孔質膜によって構成されており、これらの2種以上の多孔質膜を積層した構造とされていてもよい。
(Separator)
The separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes. The separator 23 is porous, for example, made of polytetrafluoroethylene, polyolefin resin (polypropylene (PP), polyethylene (PE), etc.), acrylic resin, styrene resin, polyester resin or nylon resin, or a resin blended with these resins. It is composed of a quality film, and may have a structure in which two or more of these porous films are laminated.
 特にポリエチレンは、100℃以上160℃以下の範囲内においてシャットダウン効果を得ることができ、かつ電気化学的安定性にも優れているので、セパレータ23を構成する材料として好ましい。多孔質膜は、ポリプロピレン層と、ポリエチレン層と、ポリプロピレン層を順次に積層した3層以上の構造を有していてもよい。例えば、PP/PE/PPの三層構造とし、PPとPEの質量比[wt%]が、PP:PE=60:40~75:25とすることが望ましい。セパレータの作製方法としては、湿式、乾式を問わない。 In particular, polyethylene is preferable as a material constituting the separator 23 because it can obtain a shutdown effect in the range of 100 ° C. or higher and 160 ° C. or lower and is also excellent in electrochemical stability. The porous membrane may have a structure of three or more layers in which a polypropylene layer, a polyethylene layer, and a polypropylene layer are sequentially laminated. For example, it is desirable to have a three-layer structure of PP / PE / PP and have a mass ratio [wt%] of PP to PE of PP: PE = 60: 40 to 75:25. The method for producing the separator may be wet or dry.
 セパレータ23としては、不織布を用いてもよい。不織布を構成する繊維としては、アラミド繊維、ガラス繊維、ポリオレフィン繊維、ポリエチレンテレフタレート(PET)繊維、またはナイロン繊維等を用いることができる。また、これら2種以上の繊維を混合して不織布としてもよい。 As the separator 23, a non-woven fabric may be used. As the fibers constituting the non-woven fabric, aramid fibers, glass fibers, polyolefin fibers, polyethylene terephthalate (PET) fibers, nylon fibers and the like can be used. Further, these two or more kinds of fibers may be mixed to form a non-woven fabric.
 セパレータ23は、基材と、基材の片面または両面に設けられた表面層を備える構成を有していてもよい。表面層は、電気的な絶縁性を有する無機粒子と、無機粒子を基材の表面に結着すると共に、無機粒子同士を結着する樹脂材料とを含む。この樹脂材料は、例えば、フィブリル化し、複数のフィブリルが繋がった三次元的なネットワーク構造を有していてもよい。無機粒子は、この三次元的なネットワーク構造を有する樹脂材料に担持されている。また、樹脂材料はフィブリル化せずに基材の表面や無機粒子同士を結着してもよい。この場合、より高い結着性を得ることができる。上述のように基材の片面または両面に表面層を設けることで、セパレータ23の耐酸化性、耐熱性および機械強度を高めることができる。 The separator 23 may have a structure including a base material and a surface layer provided on one side or both sides of the base material. The surface layer contains inorganic particles having an electrically insulating property, and a resin material that binds the inorganic particles to the surface of the base material and also binds the inorganic particles to each other. This resin material may have, for example, a three-dimensional network structure in which fibrils are formed and a plurality of fibrils are connected. Inorganic particles are supported on a resin material having this three-dimensional network structure. Further, the resin material may bind the surface of the base material or the inorganic particles to each other without becoming fibril. In this case, higher binding properties can be obtained. By providing the surface layer on one side or both sides of the base material as described above, the oxidation resistance, heat resistance and mechanical strength of the separator 23 can be improved.
 基材は、リチウムイオンを透過し、所定の機械的強度を有する絶縁性の膜から構成される多孔質膜であり、基材の空孔には電解液が保持されるため、電解液に対する耐性が高く、反応性が低く、膨張しにくいという特性を要することが好ましい。 The base material is a porous membrane composed of an insulating membrane that allows lithium ions to permeate and has a predetermined mechanical strength. Since the electrolytic solution is held in the pores of the base material, it is resistant to the electrolytic solution. It is preferable that the properties are high, the reactivity is low, and the swelling is difficult.
 基材を構成する材料としては、上述したセパレータを構成する樹脂材料や不織布を用いることができる。 As the material constituting the base material, the resin material or non-woven fabric constituting the above-mentioned separator can be used.
 無機粒子は、金属酸化物、金属窒化物、金属炭化物および金属硫化物等の少なくとも1種を含む。金属酸化物としては、酸化アルミニウム(アルミナ、Al23)、ベーマイト(アルミナ1水和物)、酸化マグネシウム(MgO)、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)、酸化ケイ素(シリカ、SiO2)または酸化イットリウム(Y23)等を好適に用いることができる。金属窒化物としては、窒化ケイ素(Si34)、窒化アルミニウム(AlN)、窒化硼素(BN)または窒化チタン(TiN)等を好適に用いることができる。金属炭化物としては、炭化ケイ素(SiC)または炭化ホウ素(B4C)等を好適に用いることができる。金属硫化物としては、硫酸バリウム(BaSO4)等を好適に用いることができる。また、ゼオライト(M2/nO・Al23・xSiO2・yH2O、Mは金属元素、x≧2、y≧0)等の多孔質アルミノケイ酸塩、層状ケイ酸塩、チタン酸バリウム(BaTiO3)またはチタン酸ストロンチウム(SrTiO3)等の鉱物を用いてもよい。無機粒子は耐酸化性および耐熱性を備えており、無機粒子を含有する正極対向側面の表面層は、充電時の正極近傍における酸化環境に対しても強い耐性を有する。無機粒子の形状は特に限定されるものではなく、球状、板状、繊維状、キュービック状およびランダム形状等のいずれも用いることができる。 Inorganic particles include at least one such as metal oxides, metal nitrides, metal carbides and metal sulfides. Examples of metal oxides include aluminum oxide (alumina, Al 2 O 3 ), boehmite (alumina monohydrate), magnesium oxide (MgO), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), and silicon oxide (silica). , SiO 2 ) or yttrium oxide (Y 2 O 3 ) or the like can be preferably used. As the metal nitride, silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), boron nitride (BN), titanium nitride (TiN) and the like can be preferably used. As the metal carbide, silicon carbide (SiC), boron carbide (B 4 C) or the like can be preferably used. As the metal sulfide, barium sulfate (BaSO 4 ) or the like can be preferably used. In addition, porous aluminosilicates such as zeolite (M 2 / n O, Al 2 O 3 , xSiO 2 , yH 2 O, M is a metal element, x ≧ 2, y ≧ 0), layered silicate, and barium titanate. Minerals such as barium (BaTIO 3 ) or strontium titanate (SrTiO 3 ) may be used. The inorganic particles have oxidation resistance and heat resistance, and the surface layer on the side surface facing the positive electrode containing the inorganic particles has strong resistance to the oxidizing environment in the vicinity of the positive electrode during charging. The shape of the inorganic particles is not particularly limited, and any of spherical, plate-like, fibrous, cubic, random and the like can be used.
 無機粒子の粒径は、1nm以上10μm以下の範囲内であることが好ましい。粒径が1nm未満であると、無機粒子の入手が困難である。一方、粒径が10μmを超えると、電極間距離が大きくなり、限られたスペースで活物質充填量が十分得られず、電池容量が低下する。 The particle size of the inorganic particles is preferably in the range of 1 nm or more and 10 μm or less. If the particle size is less than 1 nm, it is difficult to obtain inorganic particles. On the other hand, if the particle size exceeds 10 μm, the distance between the electrodes becomes large, the amount of active material filled cannot be sufficiently obtained in a limited space, and the battery capacity decreases.
 表面層を構成する樹脂材料としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等の含フッ素樹脂、フッ化ビニリデン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体等の含フッ素ゴム、スチレン-ブタジエン共重合体またはその水素化物、全芳香族ポリアミド(アラミド)等のポリアミド、アクリル酸樹脂またはポリエステル等の融点およびガラス転移温度の少なくとも一方が180℃以上の高い耐熱性を有する樹脂が挙げられる。これら樹脂材料は、単独で用いてもよいし、2種以上を混合して用いてもよい。中でも、耐酸化性および柔軟性の観点からは、ポリフッ化ビニリデン等のフッ素系樹脂が好ましく、耐熱性の観点からは、アラミドまたはポリアミドイミドを含むことが好ましい。 Examples of the resin material constituting the surface layer include fluororesins such as polyvinylidene fluoride and polytetrafluoroethylene, fluororubber containing vinylidene fluoride-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer and the like, and styrene. -Containant copolymers or hydrides thereof, polyamides such as total aromatic polyamide (aramid), acrylic acid resins or polyesters and the like, and resins having high heat resistance at least one of the melting point and the glass transition temperature of 180 ° C. or higher can be mentioned. .. These resin materials may be used alone or in combination of two or more. Among them, a fluorine-based resin such as polyvinylidene fluoride is preferable from the viewpoint of oxidation resistance and flexibility, and aramid or polyamide-imide is preferably contained from the viewpoint of heat resistance.
 表面層の形成方法としては、例えば、マトリックス樹脂、溶媒および無機物からなるスラリーを基材(多孔質膜)上に塗布し、マトリックス樹脂の貧溶媒且つ上記溶媒の親溶媒浴中を通過させて相分離させ、その後、乾燥させる方法を用いることができる。 As a method for forming the surface layer, for example, a slurry composed of a matrix resin, a solvent and an inorganic substance is applied onto a base material (porous film), and the matrix resin is passed through a poor solvent and a parent solvent bath of the above solvent to form a phase. A method of separating and then drying can be used.
 なお、上述した無機粒子は、基材としての多孔質膜に含有されていてもよい。また、表面層が無機粒子を含まず、樹脂材料のみにより構成されていてもよい。 The above-mentioned inorganic particles may be contained in a porous membrane as a base material. Further, the surface layer may be composed of only a resin material without containing inorganic particles.
(電解液)
 電解液は、有機溶媒(非水溶媒)と、この有機溶媒に溶解された電解質塩とを含む。なお、電解液に代えて、電解液と、この電解液を保持する保持体となる高分子化合物とを含むゲル状電解質層を用いてもよい。
(Electrolytic solution)
The electrolytic solution contains an organic solvent (non-aqueous solvent) and an electrolyte salt dissolved in the organic solvent. Instead of the electrolytic solution, a gel-like electrolyte layer containing the electrolytic solution and a polymer compound serving as a retainer for holding the electrolytic solution may be used.
 有機溶媒としては、炭酸エチレンまたは炭酸プロピレン等の環状の炭酸エステルを用いることができ、炭酸エチレンおよび炭酸プロピレンのうちの一方、特に両方を混合して用いることが好ましい。サイクル特性をさらに向上させることができるからである。また、これらの炭酸エステルに加えて、炭酸ジエチル、炭酸ジメチル、炭酸エチルメチルまたは炭酸メチルプロピル等の鎖状の炭酸エステルを混合して用いることが好ましい。高いイオン伝導性を得ることができるからである。 As the organic solvent, a cyclic carbonate ester such as ethylene carbonate or propylene carbonate can be used, and it is preferable to use one of ethylene carbonate and propylene carbonate, particularly both. This is because the cycle characteristics can be further improved. Further, in addition to these carbonic acid esters, it is preferable to use a mixed chain carbonate ester such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate or methyl propyl carbonate. This is because high ionic conductivity can be obtained.
 有機溶媒としては、さらに炭酸ビニレンを含むことが好ましい。サイクル特性をさらに向上させることができるからである。他にもニトリル系の電解液(アセトニトリル、スクシノニトリル、アジポニトリル等)を用いることもできる。 The organic solvent preferably further contains vinylene carbonate. This is because the cycle characteristics can be further improved. In addition, a nitrile-based electrolytic solution (acetonitrile, succinonitrile, adiponitrile, etc.) can also be used.
 電解質塩としては、LiPF6、LiBF4、LiAsF6、LiClO4、LiCl、ジフルオロ[オキソラト-O,O≡]ホウ酸リチウム、またはリチウムビスオキサレートボレート等のリチウム塩が挙げられる。 Examples of the electrolyte salt include lithium salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiCl, lithium difluoro [oxorat-O, O≡] borate, and lithium bisoxalate volate.
[電池の動作]
 上述の構成を有する電池では、充電を行うと、例えば、正極活物質層21Bからリチウムイオンが放出され、電解液を介して負極活物質層22Bに吸蔵される。また、放電を行うと、例えば、負極活物質層22Bからリチウムイオンが放出され、電解液を介して正極活物質層21Bに吸蔵される。
[Battery operation]
In the battery having the above-described configuration, when charging is performed, for example, lithium ions are released from the positive electrode active material layer 21B and are occluded in the negative electrode active material layer 22B via the electrolytic solution. Further, when the electric discharge is performed, for example, lithium ions are released from the negative electrode active material layer 22B and are occluded in the positive electrode active material layer 21B via the electrolytic solution.
[電池の製造方法]
 次に、本発明の一実施形態に係る電池の製造方法の一例について説明する。
 まず、正極活物質と、導電剤と、バインダーとを混合して正極合剤を調製し、この正極合剤をN-メチル-2-ピロリドン(NMP)等の溶剤に分散させてペースト状の正極合剤スラリーを作製する。次に、この正極合剤スラリーを正極集電体21Aの両面に塗布し溶剤を乾燥させ、ロールプレス機により圧縮成型することにより正極活物質を正極集電体21Aに塗着することで正極活物質層21Bを形成し、正極21を形成する。この際、正極合剤スラリーの塗布位置を調整することで、正極21には正極集電体露出部21Cも形成されている。
[Battery manufacturing method]
Next, an example of a method for manufacturing a battery according to an embodiment of the present invention will be described.
First, a positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and this positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) to form a paste-like positive electrode. Prepare a mixture slurry. Next, this positive electrode mixture slurry is applied to both sides of the positive electrode current collector 21A, the solvent is dried, and the positive electrode active material is applied to the positive electrode current collector 21A by compression molding with a roll press machine to activate the positive electrode. The material layer 21B is formed, and the positive electrode 21 is formed. At this time, by adjusting the coating position of the positive electrode mixture slurry, the positive electrode current collector exposed portion 21C is also formed on the positive electrode 21.
 負極22も正極21と同様に作製することができる。この際、負極合剤スラリーの塗布位置を調整することで、負極22に負極集電体露出部22Cおよび負極集電体露出部22Dが形成されている。 The negative electrode 22 can be manufactured in the same manner as the positive electrode 21. At this time, by adjusting the coating position of the negative electrode mixture slurry, the negative electrode current collector exposed portion 22C and the negative electrode current collector exposed portion 22D are formed on the negative electrode 22.
 次に、正極集電体露出部21Cに正極リード25を溶接により取り付けると共に、負極集電体露出部22C、22Dに負極リード26、27を溶接により取り付ける。さらに正極リード25を取り付けられた正極集電体露出部21Cの面内に正極接合性フィルム材28を接着させる。次に、正極21と負極22とをセパレータ23を介して積層して電極積層体を形成し、その電極積層体の長手方向の一方端を巻回開始端として、電極積層体を巻回する(図5Aの例では、負極集電体露出部22C側を巻回開始端として巻回する)。このとき、電極積層体において、正極21の幅方向(図5Aにおいて両矢印Y方向)における中央位置を負極22の幅方向(図5において両矢印Y方向)における中央位置を重ね合わされていることが好ましい。電極積層体の巻回により、電極体20が形成される。電極体20では、正極リード25の一方端側の部分と負極リード26、27の一方端側の部分が外方向に延び出ている。 Next, the positive electrode lead 25 is attached to the positive electrode current collector exposed portion 21C by welding, and the negative electrode leads 26 and 27 are attached to the negative electrode current collector exposed portions 22C and 22D by welding. Further, the positive electrode bonding film material 28 is adhered in the plane of the positive electrode current collector exposed portion 21C to which the positive electrode lead 25 is attached. Next, the positive electrode 21 and the negative electrode 22 are laminated via the separator 23 to form an electrode laminate, and the electrode laminate is wound with one end in the longitudinal direction of the electrode laminate as the winding start end (the electrode laminate is wound. In the example of FIG. 5A, the negative electrode current collector exposed portion 22C side is used as the winding start end for winding). At this time, in the electrode laminate, the center position in the width direction of the positive electrode 21 (in the direction of the double arrow Y in FIG. 5A) is overlapped with the center position in the width direction of the negative electrode 22 (in the direction of the double arrow Y in FIG. 5). preferable. The electrode body 20 is formed by winding the electrode laminate. In the electrode body 20, one end side portion of the positive electrode lead 25 and one end side portion of the negative electrode leads 26 and 27 extend outward.
 次に正極リード25の先端部を安全弁機構15に溶接すると共に、負極リード26および負極リード27の先端部を電池缶11に溶接して、巻回した正極21および負極22を有する巻回電極体を一対の絶縁板12、13で挟んだ状態で電池缶11の内部に収納する。次に、電解液を電池缶11の内部に注入し、セパレータ23に含浸させる。次に、電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16が封口ガスケット17を介してかしめられることにより固定される。これにより、図1に示した電池が得られる。なお、負極集電体露出部22Cおよび負極集電体露出部22Dについて、負極リード26、27を取り付けられたほうの面と同面内の所定位置に負極接合性フィルム材29、30を設ける場合には、負極集電体露出部22C、22Dに負極リード26、27を溶接等により取り付けた際、負極接合性フィルム材29、30が負極集電体露出部22Cおよび負極集電体露出部22Dに接着される。 Next, the tip of the positive electrode lead 25 is welded to the safety valve mechanism 15, and the tips of the negative electrode lead 26 and the negative electrode lead 27 are welded to the battery can 11, and the wound electrode body having the positive electrode 21 and the negative electrode 22 wound. Is stored inside the battery can 11 in a state of being sandwiched between the pair of insulating plates 12 and 13. Next, the electrolytic solution is injected into the battery can 11 to impregnate the separator 23. Next, the battery lid 14, the safety valve mechanism 15, and the heat-sensitive resistance element 16 are fixed to the open end of the battery can 11 by being crimped via the sealing gasket 17. As a result, the battery shown in FIG. 1 is obtained. When the negative electrode bonding film materials 29 and 30 are provided at predetermined positions on the same surface as the surface on which the negative electrode leads 26 and 27 are attached to the negative electrode current collector exposed portion 22C and the negative electrode current collector exposed portion 22D. When the negative electrode leads 26 and 27 are attached to the negative electrode current collectors exposed portions 22C and 22D by welding or the like, the negative electrode bonding film materials 29 and 30 are the negative electrode current collector exposed portions 22C and the negative electrode current collector exposed portions 22D. Is glued to.
[効果]
 上述したように、一実施形態に係る電池では、電極体20の正極集電体露出部21Cに所定の長さで正極リード25が接合している。これにより、電池缶11の筒軸方向Shにおける中央付近に電池の外周面から中央に向けて力が加えられて電極体20に変形を生じた場合において、正極リード25から正極集電体21Aに大きな圧力が負荷されてしまう虞を抑制することができる。したがって、一実施形態に係る電池では、電極体20に正極集電体21Aやセパレータ23等の破損が発生することが抑制され、正極21と負極22とがショートすることを抑制することができ、よって、電池の耐衝撃性を向上させることができる。
[effect]
As described above, in the battery according to the embodiment, the positive electrode lead 25 is bonded to the positive electrode current collector exposed portion 21C of the electrode body 20 with a predetermined length. As a result, when a force is applied from the outer peripheral surface of the battery toward the center near the center of the battery can 11 in the tubular axial direction to cause deformation of the electrode body 20, the positive electrode lead 25 becomes the positive electrode current collector 21A. It is possible to suppress the possibility that a large pressure is applied. Therefore, in the battery according to one embodiment, it is possible to prevent the electrode body 20 from being damaged by the positive electrode current collector 21A, the separator 23, and the like, and it is possible to prevent the positive electrode 21 and the negative electrode 22 from being short-circuited. Therefore, the impact resistance of the battery can be improved.
 電極体の正極集電体露出部に正極リードが接合された場合、正極では、正極集電体露出部を、巻回電極体の巻回軸方向において正極リードと重なり合う部分ではそのほかの部分よりも正極リードを設けた分だけ最大厚みが増え、巻回電極体の巻回軸方向において電極積層体に厚み差が生じる。そしてこのような厚み差に応じて、巻回電極体の形成時に巻ずれが生じる可能性がある。この点、一実施形態に係る電池では、正極リード25の内端部25Aに向かい合う位置に正極接合性フィルム材28が設けられていることで、巻回電極体の巻回軸方向において電極積層体に厚み差が所定範囲内に設定されるので、電極体20の形成時に巻ずれが生じる可能性を抑制することができる。 When the positive electrode lead is joined to the exposed portion of the positive electrode current collector of the electrode body, the exposed portion of the positive electrode current collector is bonded to the exposed portion of the positive electrode body, and the portion overlapping the positive electrode lead in the winding axis direction of the wound electrode body is larger than the other parts. The maximum thickness increases by the amount of the positive electrode lead provided, and a difference in thickness occurs in the electrode laminate in the winding axis direction of the wound electrode body. Then, depending on such a thickness difference, there is a possibility that winding misalignment may occur during the formation of the wound electrode body. In this respect, in the battery according to one embodiment, the positive electrode bonding film material 28 is provided at a position facing the inner end portion 25A of the positive electrode lead 25, so that the electrode laminate is provided in the winding axis direction of the wound electrode body. Since the thickness difference is set within a predetermined range, it is possible to suppress the possibility of winding misalignment during the formation of the electrode body 20.
 なお、上記では、第1の電極が正極であり、第2の電極が負極である場合について説明したが、第1の電極が負極であり、第2の電極が正極であってもよい。その場合、負極には、負極集電体の一部に負極活物質を塗着されていない負極集電体露出部が前記第1の電極の長手方向における負極の非端部に形成され、その負極集電体露出部に負極リードが接合されることとなる。さらに、負極リードのうち、セパレータおよび正極のいずれか一方および両方に対向する部分の長さが、正極の幅の50%の長さよりも短いこととなる。そして、負極集電体露出部のうち、負極リードが設けられていない領域に、負極接合性フィルム材が設けられることとなる。また、この場合、正極リードのうち正極集電体露出部に対して重なり合う部分の長さは、正極の幅の50%の長さよりも短いことが好ましい。 Although the case where the first electrode is the positive electrode and the second electrode is the negative electrode has been described above, the first electrode may be the negative electrode and the second electrode may be the positive electrode. In that case, on the negative electrode, an exposed portion of the negative electrode current collector in which a part of the negative electrode current collector is not coated with the negative electrode active material is formed at the non-end portion of the negative electrode in the longitudinal direction of the first electrode. The negative electrode lead is joined to the exposed portion of the negative electrode current collector. Further, the length of the portion of the negative electrode lead facing either one or both of the separator and the positive electrode is shorter than the length of 50% of the width of the positive electrode. Then, the negative electrode bonding film material is provided in the region of the exposed portion of the negative electrode current collector where the negative electrode lead is not provided. Further, in this case, the length of the portion of the positive electrode lead that overlaps the exposed portion of the positive electrode current collector is preferably shorter than the length of 50% of the width of the positive electrode.
[実施例1]
 正極、負極が次のようにして作製され、電池の組み立てがなされた。
[Example 1]
The positive electrode and the negative electrode were manufactured as follows, and the battery was assembled.
(正極の作製工程)
 正極活物質としてリチウムニッケル複合酸化物(NCA)91質量部と、導電剤としてグラファイト6質量部と、バインダーとしてポリフッ化ビニリデン3質量部とを混合することにより正極合剤を得たのち、N-メチル-2-ピロリドンに分散させることにより、ペースト状の正極合剤スラリーを得た。次に、帯状のアルミニウム箔(15μm厚)からなる正極集電体の両面に正極合剤スラリーを塗布して乾燥させたのち、ロールプレス機で圧縮成型することにより、正極活物質層を形成した。この際、正極の長手方向における中央部の両面に、正極の幅方向における一方端から他方端まで正極集電体が露出した正極集電体露出部が形成されるように、正極合剤スラリーの塗布位置及び塗布領域が調整された。次に、正極の長手方向の両端において、正極活物質層と正極集電体の先端が揃うように、正極の長手方向の両端をカットした。次に、巻回後に内側面側に位置することを予定された正極集電体露出部に、アルミニウム製の正極リードを超音波溶接により取り付けた。次に、正極リードの内端部の端面に対して向かい合うように正極接合性フィルム材を正極集電体露出部に貼り合わせた。
(Cathode manufacturing process)
A positive electrode mixture was obtained by mixing 91 parts by mass of lithium nickel composite oxide (NCA) as a positive electrode active material, 6 parts by mass of graphite as a conductive agent, and 3 parts by mass of polyvinylidene fluoride as a binder, and then N-. By dispersing in methyl-2-pyrrolidone, a paste-like positive electrode mixture slurry was obtained. Next, a positive electrode mixture slurry was applied to both sides of a positive electrode current collector made of a strip-shaped aluminum foil (thickness of 15 μm), dried, and then compression-molded with a roll press to form a positive electrode active material layer. .. At this time, the positive electrode mixture slurry is formed so that the positive electrode current collector exposed portion is formed from one end to the other end in the width direction of the positive electrode on both sides of the central portion in the longitudinal direction of the positive electrode. The coating position and coating area were adjusted. Next, both ends in the longitudinal direction of the positive electrode were cut so that the positive electrode active material layer and the tips of the positive electrode current collector were aligned at both ends in the longitudinal direction of the positive electrode. Next, an aluminum positive electrode lead was attached to the exposed portion of the positive electrode current collector, which was planned to be located on the inner side surface side after winding, by ultrasonic welding. Next, the positive electrode bonding film material was attached to the exposed portion of the positive electrode current collector so as to face the end surface of the inner end portion of the positive electrode lead.
(負極の作製工程)
 負極活物質として人造黒鉛粉末97質量部と、バインダーとしてポリフッ化ビニリデン3質量部とを混合して負極合剤を得たのち、N-メチル-2-ピロリドンに分散させることにより、ペースト状の負極合剤スラリーを得た。次に、帯状の銅箔(15μm厚)からなる負極集電体の両面に負極合剤スラリーを塗布して乾燥させたのち、ロールプレス機で圧縮成型することにより、負極活物質層を形成した。この際、負極の長手方向の両端部の両面に、負極の幅方向における一方端から他方端まで負極集電体が露出した負極集電体露出部が形成されるように、負極合剤スラリーの塗布位置及び塗布領域が調整された。次に、巻回後に中心側端部の内側面に位置することを予定された負極集電体露出部上に、ニッケル製の負極リードを超音波溶接により取り付けた。また、巻回後に外周側端部の内側面に位置することを予定された負極集電体露出部についても、ニッケル製の負極リードを超音波溶接により取り付けた。
(Negative electrode manufacturing process)
97 parts by mass of artificial graphite powder as a negative electrode active material and 3 parts by mass of polyvinylidene fluoride as a binder are mixed to obtain a negative electrode mixture, which is then dispersed in N-methyl-2-pyrrolidone to form a paste-like negative electrode. A mixture slurry was obtained. Next, a negative electrode mixture slurry was applied to both sides of a negative electrode current collector made of a strip-shaped copper foil (15 μm thick), dried, and then compression-molded with a roll press to form a negative electrode active material layer. .. At this time, the negative electrode mixture slurry is formed so that the negative electrode current collector exposed portion is formed from one end to the other end in the width direction of the negative electrode on both both ends in the longitudinal direction of the negative electrode. The coating position and coating area were adjusted. Next, a nickel negative electrode lead was ultrasonically welded onto the exposed negative electrode current collector, which was planned to be located on the inner surface of the central end after winding. A nickel negative electrode lead was also attached to the exposed negative electrode current collector exposed portion, which was planned to be located on the inner surface of the outer peripheral end after winding, by ultrasonic welding.
(電池の組み立て工程)
 上述の正極の製作工程、負極の製作工程を通じて得られた正極と負極とを厚さ10μmの微多孔性ポリエチレン二軸延伸フィルムよりなるセパレータを介して、負極、セパレータ、正極、セパレータの順に積層して電極積層体を得た。次に、この電極積層体の負極リードが取り付けられた負極の一端側から巻き始め、多数回巻回することにより、発電素子として巻回電極体を得た。
(Battery assembly process)
The positive electrode and the negative electrode obtained through the above-mentioned positive electrode manufacturing step and the negative electrode manufacturing step are laminated in the order of the negative electrode, the separator, the positive electrode, and the separator via a separator made of a microporous polyethylene biaxially stretched film having a thickness of 10 μm. Obtained an electrode laminate. Next, a wound electrode body was obtained as a power generation element by starting winding from one end side of the negative electrode to which the negative electrode lead of the electrode laminate was attached and winding the electrode stack many times.
 次に、巻回電極体を一対の絶縁板で挟み、2つの負極リードの延び出し先端部を電池缶に溶接すると共に、正極リードの延び出し先端部を安全弁機構に溶接して、電極体を電池缶の内部に収納した。次に、エチレンカーボネートとメチルエチルカーボネートとを1:1の体積比で混合した溶媒に、電解質塩としてLiPF6を1mol/dm3の濃度になるように溶解して非水電解液を調製した。 Next, the wound electrode body is sandwiched between a pair of insulating plates, the extending tips of the two negative electrode leads are welded to the battery can, and the extending tips of the positive electrode leads are welded to the safety valve mechanism to form the electrode body. It was stored inside the battery can. Next, a non-aqueous electrolyte solution was prepared by dissolving LiPF 6 as an electrolyte salt at a concentration of 1 mol / dm 3 in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 1.
 最後に、上述の電極体が収容された電池缶内に、電解液を注入したのち、絶縁封口ガスケットを介して電池缶をかしめることにより、安全弁、PTC素子および電池蓋を固定し、外径(直径)18mm、高さ65mmの円筒型の電池を得た。 Finally, after injecting the electrolytic solution into the battery can containing the above-mentioned electrode body, the safety valve, the PTC element and the battery lid are fixed by crimping the battery can through the insulating sealing gasket to fix the outer diameter. A cylindrical battery having a diameter of 18 mm and a height of 65 mm was obtained.
 実施例1の電池において、正極の幅W1、負極の幅W2、正極リードのうちセパレータを介して負極に向き合う部分の長さWh2、正極リードと正極集電体露出部との重なり合う部分の長さWh1、負極リードと負極集電体露出部と重なり合う部分の長さWz1、Wz2は、表1に示すとおりである。長さWz1が、巻回電極体の中心側端部の負極集電体露出部と負極リードとが重なり合う部分の長さであり、長さWz1が、巻回電極体の外周側端部の負極集電体露出部と負極リードとが重なり合う部分の長さである。 In the battery of Example 1, the width W1 of the positive electrode, the width W2 of the negative electrode, the length Wh2 of the portion of the positive electrode lead facing the negative electrode via the separator, and the length of the overlapping portion of the positive electrode lead and the exposed portion of the positive electrode current collector. Table 1 shows Wh1, the lengths Wz1 and Wz2 of the portion where the negative electrode lead and the exposed portion of the negative electrode current collector overlap. The length Wz1 is the length of the portion where the exposed negative electrode current collector and the negative electrode lead at the central end of the wound electrode body overlap, and the length Wz1 is the negative electrode at the outer peripheral end of the wound electrode body. This is the length of the portion where the exposed part of the current collector and the negative electrode lead overlap.
[評価]
 実施例1の電池に関しては、衝突試験が行われた。
[Evaluation]
A collision test was performed on the battery of Example 1.
(衝突試験)
 リチウムイオン電池への安全性試験に関するUL1642に規定された衝突試験に準じた試験が実施され、発火しない限界高さ(cm)が測定された。結果を表1に示す。
(Crash test)
A test according to the collision test specified in UL1642 regarding the safety test for lithium ion batteries was carried out, and the limit height (cm) at which ignition did not occur was measured. The results are shown in Table 1.
[実施例2、比較例1]
 実施例2、比較例1については、正極の幅W1、負極の幅W2、正極リードのうちセパレータを介して負極に向き合う部分の長さWh2、正極リードと正極集電体露出部との重なり合う部分の長さWh1、負極リードと負極集電体露出部と重なり合う部分の長さWz1、Wz2を表1に示すとおりとする他は、実施例1と同様にして電池が得られた。
[Example 2, Comparative Example 1]
In Example 2 and Comparative Example 1, the width W1 of the positive electrode, the width W2 of the negative electrode, the length Wh2 of the portion of the positive electrode lead facing the negative electrode via the separator, and the overlapping portion of the positive electrode lead and the exposed portion of the positive electrode current collector. A battery was obtained in the same manner as in Example 1 except that the lengths Wh1 and the lengths Wz1 and Wz2 of the portion overlapping the negative electrode lead and the exposed portion of the negative electrode current collector are as shown in Table 1.
[実施例3]
 正極の幅W1、負極の幅W2、正極リードのうちセパレータを介して負極に向き合う部分の長さWh2、正極リードと正極集電体露出部との重なり合う部分の長さWh1、負極リードと負極集電体露出部と重なり合う部分の長さWz1、Wz2を、表1に示すとおりとし、且つ、負極の作製工程において、負極の中心側端部側となるほうの負極集電体露出部に対して、負極リードの内端部の端面に対して向かい合うように負極接合性フィルム材を負極集電体露出部に貼り合わせた他は、実施例1と同様にして電池が得られた。
[Example 3]
The width W1 of the positive electrode, the width W2 of the negative electrode, the length Wh2 of the portion of the positive electrode lead facing the negative electrode via the separator, the length Wh1 of the overlapping portion of the positive electrode lead and the exposed portion of the positive electrode current collector, the negative electrode lead and the negative electrode collection. The lengths Wz1 and Wz2 of the portion overlapping with the exposed portion of the electric body are as shown in Table 1, and in the process of manufacturing the negative electrode, with respect to the exposed portion of the negative electrode current collector that is on the central end side of the negative electrode. A battery was obtained in the same manner as in Example 1 except that the negative electrode bonding film material was attached to the exposed portion of the negative electrode current collector so as to face the end surface of the inner end portion of the negative electrode lead.
 実施例2,3、比較例1について、実施例1と同様に衝突試験が実施された。結果を表1に示す。 For Examples 2 and 3 and Comparative Example 1, a collision test was carried out in the same manner as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例4、5]
 実施例4、5では、実施例2と同様の工程により電池を作成した。ただし、実施例4、5では、正極リードの厚み(μm)、正極接合性フィルム材の厚み(μm)は、表2に示すような値であった。
[Examples 4 and 5]
In Examples 4 and 5, batteries were prepared by the same steps as in Example 2. However, in Examples 4 and 5, the thickness (μm) of the positive electrode lead and the thickness (μm) of the positive electrode bonding film material were values as shown in Table 2.
[比較例2]
 正極接合性フィルム材を設けなかった他は実施例4と同様に電池を作成した。正極リードの厚みは、表2に示すような値であった。
[Comparative Example 2]
A battery was prepared in the same manner as in Example 4 except that the positive electrode bonding film material was not provided. The thickness of the positive electrode lead was a value as shown in Table 2.
 実施例4と5の電池、及び比較例2の電池については、電池に組み込まれる巻回電極体の電極蛇行量の測定が実施された。電極蛇行量の測定は、次に示すように実施された。 For the batteries of Examples 4 and 5 and the battery of Comparative Example 2, the amount of electrode meandering of the wound electrode body incorporated in the battery was measured. The measurement of the electrode meandering amount was carried out as shown below.
[評価]
(電極蛇行量の測定)
 巻回電極体を形成するために電極積層体を巻き方向(図5Aの例においては巻き方向P)に巻回を進めた際、電極積層体の巻き始めとなる端位置を基準位置として、巻き終わりまでに巻回軸方向において基準位置からどれだけズレ(図5Aの例では巻回軸方向Rにおける移動距離)を生じるかを示すズレの大きさの最大値を電極蛇行量(cm)として測定した。例えば、巻きはじめから巻き回数が11回を超えてから斜めに巻回されてズレを生じはじめ巻き回数が14回でズレが最大になり、そのあと巻き終わりまでズレが大きくならなかった場合には、巻き回数が14回のときのズレの大きさが電極蛇行量となる。結果を表2に示す。
[Evaluation]
(Measurement of electrode meandering amount)
When the electrode laminate is wound in the winding direction (winding direction P in the example of FIG. 5A) in order to form the wound electrode body, the electrode laminate is wound with the end position at which the winding start is started as a reference position. The maximum value of the amount of deviation indicating how much deviation (movement distance in the winding axis direction R in the example of FIG. 5A) occurs from the reference position in the winding axis direction by the end is measured as the electrode meandering amount (cm). did. For example, if the number of windings exceeds 11 from the beginning of winding and then the winding starts diagonally to cause a deviation, the deviation becomes maximum when the number of windings is 14 and then the deviation does not increase until the end of winding. The amount of deviation when the number of windings is 14 is the amount of electrode meandering. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記した衝突試験の結果に基づき、実施例1から3、比較例1を比較すると、実施例1から3のほうが、比較例1に比べて電池の耐衝撃性を向上させることができることが確認された。 Comparing Examples 1 to 3 and Comparative Example 1 based on the results of the above-mentioned collision test, it was confirmed that Examples 1 to 3 can improve the impact resistance of the battery as compared with Comparative Example 1. It was.
 上記した蛇行量測定の結果に基づき、実施例4、5、比較例2を比較すると、実施例4、5のほうが、比較例2に比べて巻きずれを抑制できることが確認された。 Comparing Examples 4, 5 and Comparative Example 2 based on the results of the above-mentioned meandering amount measurement, it was confirmed that Examples 4 and 5 can suppress unwinding as compared with Comparative Example 2.
<応用例>
(1)電池パック
 図6は、本発明の実施形態又は実施例にかかる二次電池を電池パック300に適用した場合の回路構成例を示すブロック図である。電池パック300は、組電池301、充電制御スイッチ302aと、放電制御スイッチ303a、を備えるスイッチ部304、電流検出抵抗307、温度検出素子308、制御部310を備えている。制御部310は各デバイスの制御を行い、さらに異常発熱時に充放電制御を行ったり、電池パック300の残容量の算出や補正を行ったりすることが可能である。
<Application example>
(1) Battery Pack FIG. 6 is a block diagram showing a circuit configuration example when the secondary battery according to the embodiment or embodiment of the present invention is applied to the battery pack 300. The battery pack 300 includes a switch unit 304 including an assembled battery 301, a charge control switch 302a, and a discharge control switch 303a, a current detection resistor 307, a temperature detection element 308, and a control unit 310. The control unit 310 can control each device, perform charge / discharge control when abnormal heat generation occurs, and calculate and correct the remaining capacity of the battery pack 300.
 電池パック300の充電時には正極端子321及び負極端子322がそれぞれ充電器の正極端子、負極端子に接続され、充電が行われる。また、電池パック300に接続された電子機器の使用時には、正極端子321及び負極端子322がそれぞれ電子機器の正極端子、負極端子に接続され、放電が行われる。 When charging the battery pack 300, the positive electrode terminal 321 and the negative electrode terminal 322 are connected to the positive electrode terminal and the negative electrode terminal of the charger, respectively, and charging is performed. Further, when the electronic device connected to the battery pack 300 is used, the positive electrode terminal 321 and the negative electrode terminal 322 are connected to the positive electrode terminal and the negative electrode terminal of the electronic device, respectively, and discharge is performed.
 組電池301は、複数の二次電池301aを直列及び/又は並列に接続してなる。図6では、6つの二次電池301aが、2並列3直列(2P3S)に接続された場合が例として示されているが、どのような接続方法でもよい。 The assembled battery 301 is formed by connecting a plurality of secondary batteries 301a in series and / or in parallel. In FIG. 6, the case where the six secondary batteries 301a are connected in two parallels and three series (2P3S) is shown as an example, but any connection method may be used.
 温度検出部318は、温度検出素子308(例えばサーミスタ)と接続されており、組電池301又は電池パック300の温度を測定して、測定温度を制御部310に供給する。電圧検出部311は、組電池301及びそれを構成する各二次電池301aの電圧を測定し、この測定電圧をA/D変換して、制御部310に供給する。電流測定部313は、電流検出抵抗307を用いて電流を測定し、この測定電流を制御部310に供給する。 The temperature detection unit 318 is connected to a temperature detection element 308 (for example, a thermistor), measures the temperature of the assembled battery 301 or the battery pack 300, and supplies the measured temperature to the control unit 310. The voltage detection unit 311 measures the voltage of the assembled battery 301 and each of the secondary batteries 301a constituting the assembled battery 301, A / D converts the measured voltage, and supplies the measured voltage to the control unit 310. The current measuring unit 313 measures the current using the current detection resistor 307, and supplies the measured current to the control unit 310.
 スイッチ制御部314は、電圧検出部311及び電流測定部313から入力された電圧及び電流をもとに、スイッチ部304の充電制御スイッチ302a及び放電制御スイッチ303aを制御する。スイッチ制御部314は、二次電池301aのいずれかの電圧が過充電検出電圧若しくは過放電検出電圧以下になったとき、また、大電流が急激に流れたときに、スイッチ部304にOFFの制御信号を送ることにより、過充電及び過放電、過電流充放電を防止する。ここで、二次電池がリチウムイオン二次電池の場合、過充電検出電圧は例えば4.20V±0.05Vと定められ、過放電検出電圧は例えば2.4V±0.1Vと定められる。 The switch control unit 314 controls the charge control switch 302a and the discharge control switch 303a of the switch unit 304 based on the voltage and current input from the voltage detection unit 311 and the current measurement unit 313. The switch control unit 314 controls the switch unit 304 to be OFF when any voltage of the secondary battery 301a becomes equal to or lower than the overcharge detection voltage or the overdischarge detection voltage, or when a large current suddenly flows. By sending a signal, overcharging, overdischarging, and overcurrent charging / discharging are prevented. Here, when the secondary battery is a lithium ion secondary battery, the overcharge detection voltage is determined to be, for example, 4.20 V ± 0.05 V, and the over discharge detection voltage is determined to be, for example, 2.4 V ± 0.1 V.
 充電制御スイッチ302a又は放電制御スイッチ303aがOFFした後は、ダイオード302b又はダイオード303bを介することによってのみ、充電又は放電が可能となる。これらの充放電スイッチは、MOSFETなどの半導体スイッチを使用することができる。この場合、MOSFETの寄生ダイオードがダイオード302b及び303bとして機能する。なお、図6では+側にスイッチ部304を設けているが、-側に設けても良い。 After the charge control switch 302a or the discharge control switch 303a is turned off, charging or discharging is possible only through the diode 302b or the diode 303b. As these charge / discharge switches, semiconductor switches such as MOSFETs can be used. In this case, the parasitic diodes of the MOSFET function as diodes 302b and 303b. Although the switch portion 304 is provided on the + side in FIG. 6, it may be provided on the − side.
 メモリ317は、RAMやROMからなり、例えば不揮発性メモリであるEPROM(Erasable Programmable Read Only Memory)などを含む。メモリ317には、制御部310で演算された数値や、製造工程の段階で測定された各二次電池301aの初期状態における電池特性やなどが予め記憶され、また適宜、書き換えも可能である。また、二次電池301aの満充電容量を記憶させておくことで、制御部310と協働して残容量を算出することができる。 The memory 317 is composed of a RAM or a ROM, and includes, for example, an EPROM (Erasable Programmable Read Only Memory) which is a non-volatile memory. The memory 317 stores in advance the numerical values calculated by the control unit 310, the battery characteristics in the initial state of each secondary battery 301a measured at the stage of the manufacturing process, and the like, and can be rewritten as appropriate. Further, by storing the fully charged capacity of the secondary battery 301a, the remaining capacity can be calculated in cooperation with the control unit 310.
(2)電子機器
 上述した本発明の実施形態又は実施例に係る二次電池は、電子機器や電動輸送機器、蓄電装置などの機器に搭載され、電力を供給するために使用することができる。
(2) Electronic device The secondary battery according to the embodiment or embodiment of the present invention described above can be mounted on a device such as an electronic device, an electric transport device, or a power storage device and used to supply electric power.
 電子機器としては、例えばノート型パソコン、スマートフォン、タブレット端末、PDA(携帯情報端末)、携帯電話、ウェアラブル端末、ビデオムービー、デジタルスチルカメラ、電子書籍、音楽プレイヤー、ヘッドホン、ゲーム機、ペースメーカー、補聴器、電動工具、テレビ、照明機器、玩具、医療機器、ロボットが挙げられる。また、後述する電動輸送機器、蓄電装置、電動工具、電動式無人航空機も、広義では電子機器に含まれ得る。 Electronic devices include, for example, laptop computers, smartphones, tablet terminals, PDAs (personal digital assistants), mobile phones, wearable terminals, video movies, digital still cameras, electronic books, music players, headphones, game machines, pacemakers, hearing aids, etc. Examples include power tools, televisions, lighting equipment, toys, medical equipment, and robots. In a broad sense, electronic devices may also include electric transport devices, power storage devices, power tools, and electric unmanned aerial vehicles, which will be described later.
 電動輸送機器としては電気自動車(ハイブリッド自動車を含む。)、電動バイク、電動アシスト自転車、電動バス、電動カート、無人搬送車(AGV)、鉄道車両などが挙げられる。また、電動旅客航空機や輸送用の電動式無人航空機も含まれる。本発明に係る二次電池は、これらの駆動用電源のみならず、補助用電源、エネルギー回生用電源などとしても用いられる。 Examples of electric transportation equipment include electric vehicles (including hybrid vehicles), electric motorcycles, electrically assisted bicycles, electric buses, electric carts, unmanned transport vehicles (AGV), railway vehicles, and the like. It also includes electric passenger aircraft and electric unmanned aerial vehicles for transportation. The secondary battery according to the present invention is used not only as a power source for driving these, but also as an auxiliary power source, a power source for energy regeneration, and the like.
 蓄電装置としては、商業用又は家庭用の蓄電モジュールや、住宅、ビル、オフィスなどの建築物用又は発電設備用の電力貯蔵用電源などが挙げられる。 Examples of the power storage device include a power storage module for commercial or household use, a power storage power source for a building such as a house, a building, an office, or a power generation facility.
(3)電動工具
 図7を参照して、本発明が適用可能な電動工具として電動ドライバの例について概略的に説明する。電動ドライバ431には、シャフト434に回転動力を伝達するモータ433と、ユーザが操作するトリガースイッチ432が設けられている。トリガースイッチ432の操作により、シャフト434によって被対象物にねじなどが打ち込まれる。
(3) Power Tool With reference to FIG. 7, an example of an electric screwdriver as an electric tool to which the present invention can be applied will be schematically described. The electric screwdriver 431 is provided with a motor 433 that transmits rotational power to the shaft 434 and a trigger switch 432 that is operated by the user. By operating the trigger switch 432, a screw or the like is driven into the object by the shaft 434.
 電動ドライバ431の把手の下部筐体内に、電池パック430及びモータ制御部435が収納されている。電池パック430としては、上述した電池パック300を使用することができる。電池パック430は、電動ドライバ431に対して内蔵されているか、又は着脱自在とされている。電池パック430は、電動ドライバ431に内蔵された状態、又は外された状態で、充電装置に装着可能である。 The battery pack 430 and the motor control unit 435 are housed in the lower housing of the handle of the electric screwdriver 431. As the battery pack 430, the battery pack 300 described above can be used. The battery pack 430 is built into the electric screwdriver 431 or is detachable. The battery pack 430 can be attached to the charging device in a state of being built in or removed from the electric driver 431.
 電池パック430及びモータ制御部435のそれぞれには、マイクロコンピュータが備えられている。電池パック430からモータ制御部435に対して電源が供給されると共に、両者のマイクロコンピュータ間で電池パック430の充放電情報が通信される。モータ制御部435は、モータ433の回転/停止、並びに回転方向を制御し、さらに、過放電時に負荷(モータ433など)への電源供給を遮断することができる。 Each of the battery pack 430 and the motor control unit 435 is equipped with a microcomputer. Power is supplied from the battery pack 430 to the motor control unit 435, and charge / discharge information of the battery pack 430 is communicated between both microcomputers. The motor control unit 435 can control the rotation / stop and the rotation direction of the motor 433, and can cut off the power supply to the load (motor 433 and the like) at the time of over-discharging.
(4)電動車両用蓄電システム
 本発明を電動車両用の蓄電システムに適用した例として、図8に、シリーズハイブリッドシステムを採用したハイブリッド車両(HV)の構成例を概略的に示す。シリーズハイブリッドシステムはエンジンを動力とする発電機で発電された電力、あるいはそれをバッテリに一旦貯めておいた電力を用いて、電力駆動力変換装置で走行する車である。
(4) Power Storage System for Electric Vehicles As an example of applying the present invention to a power storage system for electric vehicles, FIG. 8 schematically shows a configuration example of a hybrid vehicle (HV) adopting a series hybrid system. The series hybrid system is a vehicle that runs on a power driving force converter using the electric power generated by an engine-powered generator or the electric power temporarily stored in a battery.
 このハイブリッド車両600には、エンジン601、発電機602、電力駆動力変換装置603(直流モータ又は交流モータ。以下単に「モータ603」という。)、駆動輪604a、駆動輪604b、車輪605a、車輪605b、バッテリ608、車両制御装置609、各種センサ610、充電口611が搭載されている。バッテリ608に対して、上述した本発明の電池パック300、又は本発明の二次電池を複数搭載した蓄電モジュールが適用され得る。二次電池の形状としては、円筒型、角型又はラミネート型である。 The hybrid vehicle 600 includes an engine 601, a generator 602, a power driving force converter 603 (DC motor or AC motor; hereinafter simply referred to as "motor 603"), drive wheels 604a, drive wheels 604b, wheels 605a, and wheels 605b. , Battery 608, vehicle control device 609, various sensors 610, and charging port 611 are mounted. The battery pack 300 of the present invention described above or a power storage module equipped with a plurality of secondary batteries of the present invention can be applied to the battery 608. The shape of the secondary battery is cylindrical, square or laminated.
 バッテリ608の電力によってモータ603が作動し、モータ603の回転力が駆動輪604a、604bに伝達される。エンジン601の回転力は発電機602に伝えられ、その回転力によって発電機602により生成された電力をバッテリ608に蓄積することが可能である。各種センサ610は、車両制御装置609を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度を制御したりする。各種センサ610には、速度センサ、加速度センサ、エンジン回転数センサなどが含まれる。 The motor 603 is operated by the electric power of the battery 608, and the rotational force of the motor 603 is transmitted to the drive wheels 604a and 604b. The rotational force of the engine 601 is transmitted to the generator 602, and the electric power generated by the generator 602 by the rotational force can be stored in the battery 608. The various sensors 610 control the engine speed and the opening degree of a throttle valve (not shown) via the vehicle control device 609. The various sensors 610 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
 図示しない制動機構によりハイブリッド車両600が減速すると、その減速時の抵抗力がモータ603に回転力として加わり、この回転力によって生成された回生電力がバッテリ608に蓄積される。また、図示しないが、二次電池に関する情報に基づいて車両制御に関する情報処理を行なう情報処理装置(例えば、電池の残量表示装置)を備えていても良い。バッテリ608は、ハイブリッド車両600の充電口611を介して外部の電源に接続されることで電力供給を受け、蓄電することが可能である。このようなHV車両を、プラグインハイブリッド車(PHV又はPHEV)という。 When the hybrid vehicle 600 is decelerated by a braking mechanism (not shown), the resistance force at the time of deceleration is applied to the motor 603 as a rotational force, and the regenerative power generated by this rotational force is stored in the battery 608. Further, although not shown, an information processing device (for example, a battery remaining amount display device) that performs information processing related to vehicle control based on information on the secondary battery may be provided. The battery 608 can receive electric power and store electricity by being connected to an external power source via the charging port 611 of the hybrid vehicle 600. Such an HV vehicle is called a plug-in hybrid vehicle (PHV or PHEV).
 以上では、シリーズハイブリッド車を例として説明したが、エンジンとモータを併用するパラレル方式、又は、シリーズ方式とパラレル方式を組み合わせたハイブリッド車に対しても本発明は適用可能である。さらに、エンジンを用いない駆動モータのみで走行する電気自動車(EV又はBEV)や、燃料電池車(FCV)に対しても本発明は適用可能である。 In the above, the series hybrid vehicle has been described as an example, but the present invention can also be applied to a parallel system in which an engine and a motor are used together, or a hybrid vehicle in which a series system and a parallel system are combined. Furthermore, the present invention is also applicable to an electric vehicle (EV or BEV) or a fuel cell vehicle (FCV) that travels only with a drive motor that does not use an engine.
<変形例>
 以上、本発明の実施形態および実施例について具体的に説明したが、本発明は、上述の実施形態および実施例に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。
<Modification example>
Although the embodiments and examples of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments and examples, and various modifications based on the technical idea of the present invention are possible. Is.
 例えば、上述の実施形態および実施例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。また、上述の実施形態および実施例の構成、方法、工程、形状、材料および数値等は、本発明の主旨を逸脱しない限り、互いに組み合わせることが可能である。 For example, the configurations, methods, processes, shapes, materials, numerical values, etc. given in the above-described embodiments and examples are merely examples, and if necessary, different configurations, methods, processes, shapes, materials, numerical values, etc. May be used. In addition, the configurations, methods, processes, shapes, materials, numerical values, and the like of the above-described embodiments and examples can be combined with each other as long as they do not deviate from the gist of the present invention.
 上述の実施形態にて例示した化合物等の化学式は代表的なものであって、同じ化合物の一般名称であれば、記載された価数等に限定されない。上述の実施形態で段階的に記載された数値範囲において、ある段階の数値範囲の上限値または下限値は、他の段階の数値範囲の上限値または下限値に置き換えてもよい。上述の実施形態に例示した材料は、特に断らない限り、1種を単独でまたは2種以上を組み合わせて用いることができる。 The chemical formulas of the compounds exemplified in the above-described embodiments are typical, and the general names of the same compounds are not limited to the stated valences and the like. In the numerical range described stepwise in the above embodiment, the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step. Unless otherwise specified, the materials exemplified in the above-described embodiments may be used alone or in combination of two or more.
 11・・・電池缶
 12、13・・・絶縁板
 14・・・電池蓋
 15・・・安全弁機構
 15A・・・ディスク板
 16・・・熱感抵抗素子
 17・・・ガスケット
 20・・・巻回型電極体
 21・・・正極
 21A・・・正極集電体
 21B・・・正極活物質層
 21C・・・正極集電体露出部
 21S・・・主面
 22・・・負極
 22A・・・負極集電体
 22B・・・負極活物質層
 22C、22D・・・負極集電体露出部
 22S・・・主面
 23・・・セパレータ
 25・・・正極リード
 25A・・・正極リードの内端部
 25B・・・正極リードのうち負極に向かい合う部分の外端部
 26、27・・・負極リード
 26A、27A・・・ 負極リードの内端部
 28・・・正極接合性フィルム材
 29、30・・・負極接合性フィルム材
11 ... Battery cans 12, 13 ... Insulation plate 14 ... Battery lid 15 ... Safety valve mechanism 15A ... Disc plate 16 ... Heat-sensitive resistance element 17 ... Gasket 20 ... Winding Circular electrode body 21 ... Positive electrode 21A ... Positive electrode current collector 21B ... Positive electrode active material layer 21C ... Positive electrode current collector Exposed part 21S ... Main surface 22 ... Negative electrode 22A ... Negative electrode current collector 22B ... Negative electrode active material layer 22C, 22D ... Negative electrode current collector exposed part 22S ... Main surface 23 ... Separator 25 ... Positive electrode lead 25A ... Inner end of positive electrode lead Part 25B ... Outer end of the positive electrode lead facing the negative electrode 26, 27 ... Negative electrode lead 26A, 27A ... Inner end of the negative electrode lead 28 ... Positive electrode bonding film material 29, 30.・ ・ Negative electrode bonding film material

Claims (11)

  1.  巻回電極体と、
     前記巻回電極体を収納する外装缶と
     を備え、
     前記巻回電極体は、第1のリードおよび第1の接合性フィルム材を有する帯状の第1の電極と、帯状の第2の電極と、前記第1の電極と前記第2の電極との間に設けられた帯状のセパレータが長手方向に巻回された構成を有し、
     前記第1の電極は、第1の活物質層が設けられていない第1の集電体露出部を前記第1の電極の長手方向の両端部の間に有し、
     前記第1のリードは、前記第1の電極の長辺側から一方の端部側が突出するように、前記第1の集電体露出部に設けられ、
     前記第1のリードのうち、前記セパレータおよび前記第2の電極のいずれか一方および両方に対向する部分の長さは、前記第2の電極の幅の50%の長さよりも短く、
     前記第1の接合性フィルム材は、前記第1の集電体露出部のうち、前記第1のリードが設けられていない領域に設けられている電池。
    Winding electrode body and
    It is equipped with an outer can for accommodating the wound electrode body.
    The wound electrode body includes a band-shaped first electrode having a first lead and a first adhesive film material, a band-shaped second electrode, and the first electrode and the second electrode. It has a structure in which a strip-shaped separator provided between them is wound in the longitudinal direction.
    The first electrode has a first current collector exposed portion to which the first active material layer is not provided between both ends in the longitudinal direction of the first electrode.
    The first lead is provided on the exposed portion of the first current collector so that one end side projects from the long side side of the first electrode.
    The length of the portion of the first lead facing either one or both of the separator and the second electrode is shorter than 50% of the width of the second electrode.
    The first adhesive film material is a battery provided in a region of the first exposed part of the current collector where the first lead is not provided.
  2.  前記第2の電極は、第2のリードおよび第2の接合性フィルム材を有し、
     前記第2の電極は、第2の活物質層が設けられていない第2の集電体露出部を前記第2の電極の長手方向の両端部または一端部に有し、
     前記第2のリードは、前記第2の電極の長辺側から一方の端部側が突出するように、前記第2の集電体露出部に設けられ、
     前記第2のリードのうち、前記第2の集電体露出部に重なり合う部分の長さは、前記第2の電極の幅の50%の長さよりも短く、
     前記第2の接合性フィルム材は、前記第2の集電体露出部のうち、前記第2のリードが設けられていない領域に設けられている
     請求項1に記載の電池。
    The second electrode has a second reed and a second adhesive film material.
    The second electrode has a second current collector exposed portion on which the second active material layer is not provided at both ends or one end in the longitudinal direction of the second electrode.
    The second lead is provided on the exposed portion of the second current collector so that one end side projects from the long side side of the second electrode.
    The length of the portion of the second lead that overlaps the exposed portion of the second current collector is shorter than the length of 50% of the width of the second electrode.
    The battery according to claim 1, wherein the second adhesive film material is provided in a region of the exposed portion of the second current collector where the second lead is not provided.
  3.  前記第1の電極、前記第1のリード、前記第1の接合性フィルム材、前記第1の活物質層、および、前記第1の集電体露出部は、それぞれ、正極、正極リード、正極接合性フィルム材、正極活物質層、および、正極集電体露出部に対応し、
     前記第2の電極、前記第2のリード、前記第2の接合性フィルム材、前記第2の活物質層、および、前記第2の集電体露出部は、それぞれ、負極、負極リード、負極接合性フィルム材、負極活物質層、および、負極集電体露出部に対応する
     請求項2に記載の電池。
    The first electrode, the first lead, the first adhesive film material, the first active material layer, and the first current collector exposed portion are a positive electrode, a positive electrode lead, and a positive electrode, respectively. Corresponds to the adhesive film material, the positive electrode active material layer, and the exposed part of the positive electrode current collector,
    The second electrode, the second lead, the second adhesive film material, the second active material layer, and the second current collector exposed portion are a negative electrode, a negative electrode lead, and a negative electrode, respectively. The battery according to claim 2, which corresponds to the adhesive film material, the negative electrode active material layer, and the exposed portion of the negative electrode current collector.
  4.  前記正極リードのうち前記正極集電体露出部に重なり合う部分の長さは、前記正極の幅の10%以上の長さである
     請求項3に記載の電池。
    The battery according to claim 3, wherein the length of the portion of the positive electrode lead that overlaps the exposed portion of the positive electrode current collector is 10% or more of the width of the positive electrode.
  5.  前記正極リードのうち、前記セパレータおよび前記負極のいずれか一方および両方に対向する部分の長さは、前記負極の幅の45%以下の長さである
     請求項3または4に記載の電池。
    The battery according to claim 3 or 4, wherein the length of the portion of the positive electrode lead facing either one or both of the separator and the negative electrode is 45% or less of the width of the negative electrode.
  6.  前記正極接合性フィルム材の厚みは、前記正極リードの厚みの20%以上120%以下の範囲内である
     請求項3から5までのいずれかに記載の電池。
    The battery according to any one of claims 3 to 5, wherein the thickness of the positive electrode bonding film material is within the range of 20% or more and 120% or less of the thickness of the positive electrode lead.
  7.  前記負極リードのうち負極集電体に重なり合う部分の長さは、前記負極の幅の10%以上45%以下の長さである
     請求項3から6までのいずれかに記載の電池。
    The battery according to any one of claims 3 to 6, wherein the length of the portion of the negative electrode lead that overlaps the negative electrode current collector is 10% or more and 45% or less of the width of the negative electrode.
  8.  前記負極接合性フィルム材の厚みは、前記負極リードの厚みの20%以上120%以下の範囲内である
     請求項3から7までのいずれかに記載の電池。
    The battery according to any one of claims 3 to 7, wherein the thickness of the negative electrode adhesive film material is within the range of 20% or more and 120% or less of the thickness of the negative electrode lead.
  9. 前記正極接合性フィルム材または前記負極接合性フィルム材の少なくとも一方は、基材と接着層を備えたフィルム材で構成されている
    請求項3から8までのいずれかに記載の電池。
    The battery according to any one of claims 3 to 8, wherein at least one of the positive electrode bonding film material and the negative electrode bonding film material is composed of a film material having a base material and an adhesive layer.
  10.  請求項1から9のいずれかに記載の電池を有する電子機器。 An electronic device having the battery according to any one of claims 1 to 9.
  11.  請求項1から9のいずれかに記載の電池を有する電動工具。 A power tool having a battery according to any one of claims 1 to 9.
PCT/JP2020/033109 2019-09-13 2020-09-01 Battery, electronic device, and electric tool WO2021049376A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202090000797.4U CN217468483U (en) 2019-09-13 2020-09-01 Battery, electronic device, and electric power tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019167258 2019-09-13
JP2019-167258 2019-09-13

Publications (1)

Publication Number Publication Date
WO2021049376A1 true WO2021049376A1 (en) 2021-03-18

Family

ID=74866940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033109 WO2021049376A1 (en) 2019-09-13 2020-09-01 Battery, electronic device, and electric tool

Country Status (2)

Country Link
CN (1) CN217468483U (en)
WO (1) WO2021049376A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134729A (en) * 1995-11-09 1997-05-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2010055906A (en) * 2008-08-28 2010-03-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2010108608A (en) * 2008-10-28 2010-05-13 Nec Tokin Corp Nonaqueous electrolyte secondary battery
JP2014089856A (en) * 2012-10-30 2014-05-15 Sony Corp Cell, electrode, cell pack, electronic apparatus, electric vehicle, storage device and power system
WO2017061066A1 (en) * 2015-10-05 2017-04-13 ソニー株式会社 Residual quantity measuring device, battery pack, electric power tool, electric-type aircraft, electric vehicle and power supply
WO2018179885A1 (en) * 2017-03-31 2018-10-04 パナソニックIpマネジメント株式会社 Secondary battery
WO2019111597A1 (en) * 2017-12-05 2019-06-13 パナソニックIpマネジメント株式会社 Secondary battery, insulating member and positive electrode lead

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134729A (en) * 1995-11-09 1997-05-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2010055906A (en) * 2008-08-28 2010-03-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2010108608A (en) * 2008-10-28 2010-05-13 Nec Tokin Corp Nonaqueous electrolyte secondary battery
JP2014089856A (en) * 2012-10-30 2014-05-15 Sony Corp Cell, electrode, cell pack, electronic apparatus, electric vehicle, storage device and power system
WO2017061066A1 (en) * 2015-10-05 2017-04-13 ソニー株式会社 Residual quantity measuring device, battery pack, electric power tool, electric-type aircraft, electric vehicle and power supply
WO2018179885A1 (en) * 2017-03-31 2018-10-04 パナソニックIpマネジメント株式会社 Secondary battery
WO2019111597A1 (en) * 2017-12-05 2019-06-13 パナソニックIpマネジメント株式会社 Secondary battery, insulating member and positive electrode lead

Also Published As

Publication number Publication date
CN217468483U (en) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2021020237A1 (en) Secondary battery, battery pack, electronic device, electric tool, electric airplane and electric vehicle
JP7251686B2 (en) Secondary batteries, electronic devices and power tools
US20220367920A1 (en) Secondary battery, electronic device, and power tool
WO2021020117A1 (en) Secondary battery, battery pack, electronic apparatus, power tool, electric aircraft, and electric vehicle
US20220149490A1 (en) Secondary battery, battery pack, electronic device, electric tool, and electric vehicle
WO2021020139A1 (en) Secondary battery, battery pack, electronic device, electric tool, electric aircraft and electric vehicle
WO2021024942A1 (en) Secondary battery, battery pack, electronic device, power tool, electrically powered aircraft, and electric vehicle
US20230102083A1 (en) Secondary battery, electronic device, and electric tool
US20220149445A1 (en) Secondary battery, battery pack, electronic equipment, electric tool, and electric vehicle
US20220344724A1 (en) Secondary battery, electronic device, and power tool
US20220367917A1 (en) Secondary battery, electronic device, and power tool
WO2021049376A1 (en) Battery, electronic device, and electric tool
JP7405239B2 (en) Secondary batteries, electronic equipment and power tools
JP2021136233A (en) Secondary battery, electronic apparatus, and electric power tool
JP7290173B2 (en) Secondary battery, manufacturing method of secondary battery, electronic device, power tool
JP7409398B2 (en) Secondary batteries, electronic equipment and power tools
WO2022070824A1 (en) Secondary battery, electronic device, and electric tool
WO2021193044A1 (en) Secondary battery, electronic device, and electric tool
JP7416095B2 (en) Secondary batteries, electronic equipment and power tools
WO2021177069A1 (en) Secondary battery, electronic device, and electric tool
WO2021149555A1 (en) Secondary battery, electronic device, and electric tool
WO2022054642A1 (en) Secondary battery, electronic apparatus, and electric tool
WO2021106763A1 (en) Secondary battery, electronic device, and electric power tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP