WO2021049155A1 - Operation management system, operation management method, and operation management program - Google Patents

Operation management system, operation management method, and operation management program Download PDF

Info

Publication number
WO2021049155A1
WO2021049155A1 PCT/JP2020/027142 JP2020027142W WO2021049155A1 WO 2021049155 A1 WO2021049155 A1 WO 2021049155A1 JP 2020027142 W JP2020027142 W JP 2020027142W WO 2021049155 A1 WO2021049155 A1 WO 2021049155A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
transaction
operation management
specific
reservation
Prior art date
Application number
PCT/JP2020/027142
Other languages
French (fr)
Japanese (ja)
Inventor
古川 潤
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2021049155A1 publication Critical patent/WO2021049155A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/36Other airport installations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/02Reservations, e.g. for tickets, services or events
    • G06Q50/40
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]

Definitions

  • the present invention relates to an operation management system for an air vehicle, an operation management method, and an operation management program.
  • Patent Document 1 Conventionally, an authentication system has been proposed that authenticates the IDs of an air vehicle and a user to provide secure communication between the air vehicle and the user and forces the user to operate the flight of the air vehicle in accordance with flight regulations (for example). , Patent Document 1). Further, a system for managing various transaction data transmitted from an air vehicle by a blockchain has been proposed (see, for example, Patent Document 2).
  • the present invention has been made in view of this background, and is used for an operation management system, an operation management method, and an operation management that can strictly control the number of flying objects flying on a predetermined flight route in the same time zone. The purpose is to provide a program.
  • a reservation transaction is received, which is transmitted from the flight object terminal corresponding to the target flight object and specifies the specific flight route and the specific time zone in which the target flight object is scheduled to fly.
  • the reservation transaction is made by referring to the flight reservation reception unit and the distributed operation management ledger that records the flight record or flight reservation of the flight object for each time zone for the specific flight route in chronological order.
  • the specific flight path and the specific flight route specified by the flight permission determination unit for determining whether or not to permit the flight of the target aircraft in the specific flight path and the specific time zone, and the flight permission determination unit.
  • An operation management system including a transaction addition unit that executes a transaction addition process for adding the reserved transaction as the flight transaction to the operation management ledger when the flight of the target aircraft is permitted in a time zone. Can be mentioned.
  • the operation management ledger is configured by a block chain, and the transaction addition unit performs consensus building processing between a plurality of ledger reference terminals that refer to the operation management ledger as the transaction addition process.
  • a process of adding a new block including the flight transaction corresponding to the reserved transaction to the blockchain may be executed.
  • the flight permission determination unit uses the reservation transaction depending on whether or not the capacity of the specific flight path set based on at least the number of flying objects flying on the specific flight path is exceeded. It may be configured to determine whether or not to permit the flight of the target flight object in the designated specific flight path and the specific time zone.
  • the target flight recorded in the operation management ledger is recorded in the operation management ledger for the takeoff from the first takeoff and landing site and the landing on the second takeoff and landing site when the target aircraft flies on the specific flight route. It may be configured to include a takeoff and landing management unit that manages the body based on the flight transaction.
  • the takeoff / landing management unit receives takeoff / landing request information for requesting takeoff from the first takeoff / landing site or landing at the second takeoff / landing site when the target aircraft flies on the specific flight path.
  • authentication processing is performed using the private key associated with the target aircraft and the public key created using the private key, and the transmitting subject of the takeoff / landing request information is the target aircraft. It may be configured to verify that there is.
  • the flight reservation reception unit when the flight reservation reception unit receives the reservation transaction, it uses a private key associated with the target aircraft and a public key created by using the private key.
  • the authentication process may be performed to verify that the sender of the reserved transaction is the target aircraft.
  • the operation management method executed by the operation management system of the flight object which is transmitted from the flight object terminal corresponding to the target flight object, is the target flight object.
  • the reserved transaction is set as the flight transaction in the operation management ledger.
  • An operation management method including a transaction addition step for executing a transaction addition process for addition can be mentioned.
  • the computer is transmitted from the flight object terminal corresponding to the target flight object to set a specific flight path and a specific time zone in which the target flight object is scheduled to fly.
  • the flight reservation reception unit that receives the specified reservation transaction and the distributed operation management ledger that records the flight record or flight reservation of the flight object for each time zone for the specific flight route in chronological order.
  • the flight permission determination unit for determining whether or not to permit the flight of the target aircraft in the specific flight path and the specific time zone specified by the reservation transaction, and the flight permission determination unit
  • a transaction addition unit that executes a transaction addition process for adding the reserved transaction as the flight transaction to the operation management ledger when the flight of the target aircraft is permitted in the specific flight route and the specific time zone.
  • An operation management program for functioning as.
  • the flight permission determination unit refers to the distributed operation management ledger and refers to the specific route and specific time specified by the reservation transaction. It is determined whether or not to allow the target aircraft to fly in the belt. Then, when the flight of the target aircraft is permitted, the flight transaction of the target aircraft is added to the operation management ledger.
  • the operation management ledger since the operation management ledger is decentralized, it is difficult to falsify the flight transactions recorded in the operation management ledger. Therefore, it is possible to strictly control the number of flying objects flying in the same time zone on the predetermined flight path.
  • FIG. 1 is an explanatory diagram of the configuration of the operation management system.
  • FIG. 2 is an explanatory diagram of the transaction pool.
  • FIG. 3 is an explanatory diagram of an operation management ledger composed of a blockchain.
  • FIG. 4 is an explanatory diagram of a flight route map and a route management table of the flying object.
  • FIG. 5 is a flowchart of flight reservation application and reception processing.
  • FIG. 6 is a flowchart of transaction addition processing according to the reservation application.
  • FIG. 7 is a flowchart of the process of adding a new block to the operation management ledger.
  • FIG. 8 is a flowchart of a takeoff application and processing according to the application.
  • FIG. 9 is a flowchart of a landing application and processing according to the application.
  • the operation management system 1 is a computer system composed of a CPU (Central Processing Unit) 10, a memory 20, a communication unit 40, and the like.
  • the operation management system 1 is a building in which a flight body 50 to 53, a user terminal 70 used by a user U of any of the flight bodies, and an airfield 301 are installed by a communication unit 40 via a communication network 500.
  • a server that communicates with the management device 302 arranged at 300, the management device 302 of the building 310 where the takeoff and landing site 311 is installed, the management device 312 of the building 310 where the takeoff and landing site 321 is installed, and the public key server 510. It is a system.
  • the communication unit (not shown) provided in the flight objects 50 to 53 and the user terminal 70 correspond to the flight object terminals corresponding to the target aircraft objects of the present invention.
  • peer-to-peer Peer to Peer
  • FIG. 1 an eVOL (electric Vertical Takeoff and Landing aircraft, for example, a drone) having four rotor blades is illustrated as the flying objects 50 to 53.
  • the aircraft bodies 50 to 53 fly along the flight path set between the takeoff and landing sites 301, 311 and 321 to carry luggage and the like.
  • the CPU 10 of the operation management system 1 executes the flight reservation reception unit 11, the flight permission determination unit 12, the transaction addition unit 13, and the takeoff and landing management unit. Functions as 14.
  • the operation management system 1 may read the control program 21 from a recording medium (optical disk, flash memory, etc.) on which the control program 21 is recorded, or may download it from an external server.
  • the process executed by the flight reservation reception unit 11 corresponds to the flight reservation reception step in the operation management method of the present invention.
  • the process executed by the flight permission determination unit 12 corresponds to the flight permission determination step in the operation management method of the present invention.
  • the process executed by the transaction addition unit 13 corresponds to the transaction addition step in the operation management method of the present invention.
  • a transaction pool 22 that temporarily stores flight transactions indicating flight records or flight reservations of flight paths and flight time zones of flight objects such as aircraft 50 to 53, and a transaction pool 22
  • the operation management ledger Bc which stores the time-series history of flight transactions so far, is saved.
  • the operation management ledger Bc is composed of a blockchain.
  • the flight reservation reception unit 11 receives a reservation transaction that specifies a specific flight route and a specific time zone transmitted from the flight objects 50 to 53 or the user terminal 70, and accepts the flight reservation application.
  • the flight permission determination unit 12 generates a flight route management table from the flight transaction history of the operation management ledger Bc, and determines whether or not to permit the flight reservation by referring to the flight route management table.
  • the transaction addition unit 13 executes a transaction addition process for adding a flight transaction corresponding to the reserved transaction to the blockchain of the operation management ledger Bc.
  • the takeoff / landing management unit 14 receives the takeoff application or landing application of the aircraft 50 to 53 or the aircraft 50 to 53 transmitted from the user terminal 70, and determines whether to permit takeoff or landing.
  • the operation management ledger Bc is distributed and managed by the operation management system 1 and the management devices 302, 312, 322, and consensus building processing (consensus processing) by the operation management system 1 and the management devices 302, 312, 322. Will add a new block to the blockchain of the operation management ledger Bc.
  • the operation management system 1 and the management devices 302, 312, 322 correspond to the ledger reference terminal of the present invention.
  • the operation management ledger Bc is transmitted from the operation management system 1 to the flight objects 50 to 53 and the user terminal 70, and the flight objects 50 to 53 and the user terminal 70 are the flight transactions recorded in the operation management ledger Bc. From the history of, it is possible to generate a flight route management table for the reservation target date and check the availability of the flight route.
  • the public key server stores the public key associated with the aircraft 50-53.
  • the public key is created using the original private key, and the ciphertext encrypted with the private key can be decrypted with the public key. Therefore, for example, when an encrypted reservation application with an ID of the aircraft 50 is received and the reservation application can be decrypted with the public key of the aircraft 50, the sender of the reservation application is the aircraft 50. It can be verified that there is. In this way, the authentication process using the combination of the private key and the public key as the electronic signature can be performed.
  • the operation management ledger Bc is composed of a blockchain
  • FIG. 3 shows an example including four blocks 31, 32, 33, and 34. Blocks are added every time a predetermined time elapses.
  • the hash value of the data of the previous workbook the history data of the flight transaction stored in the transaction pool 22 during the predetermined time, and the hash value satisfying the predetermined rule. Is included with the nonce determined to be calculated.
  • the hash value 34a of the total data of the hash value 33a recorded in the previous block 33, the flight transaction history data 33b, and the nonce 33c is calculated. Further, the hash value is calculated by changing the nonce 34c so that the hash value 34a, the history data 34b of the current flight transaction transferred from the transaction pool 22, and the hash value of the total data of the nonce 34c satisfy a predetermined rule. The process of doing is repeated. Then, when the nonce 34c from which the hash value satisfying the predetermined rule is obtained is determined, the block 34 recording the determined nonce 34c is added to the operation management ledger Bc.
  • Flight route and flight route management table With reference to FIG. 4, a flight path through which the flight objects 50 to 53 and the like fly, and a flight path management table for managing the capacity of the flight object flying on each flight path will be described.
  • the flight path FIG. 100 of FIG. 4 shows the flight path R12 between P1 and P2, the flight path R13 between P1 and P3, and the flight path R14 between P1 and P4, which are set for the five takeoff and landing sites P1 to P5.
  • the flight path R23 between P2 and P3, the flight path R34 between P3 and P4, and the flight path R45 between P4 and P5 are shown.
  • the numbers in the squares shown in each flight path indicate the relative distances of each flight path, and the larger the number, the longer the distance.
  • the flight route management table 110 shows the availability of each flight route on a specific day generated from the transition data recorded in the operation management ledger Bc every 30 minutes.
  • the remaining capacity indicates the flight space left in each flight path, and the specifications (size, weight) of the flight objects (size, weight) for the flight objects flying in each flight path and all the flight objects scheduled to fly. , Number of rotating wings, etc.), flight status (flight speed, amount of loaded luggage, weather, etc.) are recognized and calculated.
  • the specifications and flight status of each flying object are recognized by communication with each flying object or a flight management device (not shown) that manages the flight of each flying object.
  • Flight reservation reception process The flight reservation acceptance process executed between the flight object 50 and the operation management system 1 will be described with reference to the flowcharts shown in FIGS. 5 to 6. Here, the flying object 50 will be described, but the same processing is executed for other flying objects such as the flying objects 51 to 53.
  • step S1 of FIG. 5 the flight object 50 refers to the operation management ledger Bc and generates a flight route management table for the reservation target date.
  • step S2 the aircraft 50 determines the flight route and time zone for making a flight reservation by checking the remaining capacity of each flight route for each time zone with reference to the flight route management table.
  • step S3 a reservation transaction including the flight route and time zone to be reserved and the aircraft ID of the aircraft 50 is transmitted to the operation management system 1.
  • the flight reservation reception unit 11 of the operation management system 1 receives the reservation transaction from the aircraft 50 in step S10 of FIG. 5, and calculates the hash value of the data of the reservation transaction in the subsequent step SS11. In the next step S12, the flight reservation reception unit 11 transmits the hash value to the flight object 50.
  • the aircraft 50 receives the hash value from the operation management system 1 in step S4, and encrypts the hash value with the private key of the aircraft 50 in the subsequent step S5. Then, in step S5, the aircraft 50 transmits the ciphertext of the hash value to the operation management system 1.
  • the flight reservation reception unit 11 of the operation management system 1 receives the ciphertext from the aircraft 50 in step S13, and attempts to decrypt the ciphertext with the public key of the aircraft 50 in the following step S14. Then, when the flight reservation reception unit 11 was able to decrypt the ciphertext in the next step S15, it was verified that the sender of the reservation transaction was the flight body 50, so the flight reservation reception unit 11 proceeded with the process in step S16 to make a reservation.
  • the application receipt information is transmitted to the aircraft 50, and the process proceeds to step S17 of FIG.
  • the flight reservation reception unit 11 proceeds with the process in S30 and transmits the reservation application rejection information to the flight object 50.
  • step S17 of FIG. 6 the flight permission determination unit 12 of the operation management system 1 creates a flight route management table for the reservation target date from the operation management ledger Bc.
  • step S18 the flight permission determination unit 12 confirms the remaining capacity (vacancy status) of the flight route and the time zone according to the reservation application with reference to the flight route management table.
  • step S19 the flight permission determination unit 12 proceeds to step S20 when there is a vacancy in the flight route and time zone according to the reservation application, and proceeds to step S40 when there is no vacancy.
  • step S40 the flight permission determination unit 12 transmits the non-reservable information notifying that the reservation is not possible to the flight object 50. Further, in step S20, the flight permission determination unit 12 adds and stores the flight transaction corresponding to the reservation application to the transaction pool 22.
  • step S21 the flight permission determination unit 12 determines whether or not it is time to add a new block (for example, it is set at predetermined time intervals). Then, when it is time to add a new block, the process proceeds to step S22.
  • step S22 the transaction addition unit 13 of the operation management system 1 transmits the flight transactions stored in the transaction pool 22 to the management devices 302, 312, 322, which are minors, and requests a consensus process.
  • the flight permission determination unit 12 proceeds to step S50, and in this case, the flight reservation reception process by the flight reservation reception unit 11 is continued.
  • step S100 the miner verifies the hash value of each block constituting the operation management ledger Bc, and confirms whether or not the operation management ledger Bc has been tampered with.
  • step S101 the miner proceeds to step S110 when the operation management ledger Bc has been tampered with, and proceeds to step S102 when the operation management ledger Bc has not been tampered with.
  • step S110 the miner transmits tampering information indicating that the tampering has occurred to the operation management system 1, and in this case, the addition of the new block is suspended.
  • step S102 the minor sets the initial value of nonce.
  • step S103 the miner calculates the hash value of the hash value of the most recent block and the total data of the transaction and the nonce stored in the transaction pool 22 as described above with reference to FIG.
  • step S104 the miner determines whether or not a hash value satisfying a predetermined rule has been calculated in step S103. Then, when the hash value satisfying the predetermined rule is calculated, the miner proceeds to step S105 and adds a new block to the blockchain of the operation management ledger Bc. In the next step S106, the miner transmits the operation management ledger Bc to which the new block is added to the other miners.
  • step S104 determines whether or not the operation management ledger Bc to which the new block is added is received from another miner. To do. Then, when the miner has not received the operation management ledger Bc to which the new block is added, the process proceeds to step S121 to change the nonce, and the hash value is calculated again in step S103.
  • step S120 the miner proceeds from step S120 to step S107 and ends the process of adding the new block.
  • each miner executes the consensus process according to steps S103 to S106, S120, and S121, and the miner who calculates the hash that satisfies the predetermined rule earliest executes the process of adding a new block to the operation management ledger. And other miners follow this. Therefore, a malicious third party cannot independently change the transaction recorded in the operation management ledger or add the flight transaction to the operation management ledger, thereby preventing falsification of the operation management ledger Bc. Can be done.
  • step S130 of FIG. 8 the aircraft 50 has takeoff request information requesting takeoff from the parked takeoff / landing site (corresponding to the first takeoff / landing site of the present invention) (corresponding to the takeoff / landing request information of the present invention). Is transmitted to the operation management system 1.
  • the takeoff / landing management unit 14 receives the takeoff request information from the aircraft 50 in step S140, and calculates the hash value of the takeoff request information in the subsequent step S141. In the following step S142, the takeoff and landing management unit 14 transmits the hash value to the aircraft body 50.
  • the aircraft 50 receives the hash value from the operation management system 1 in step S131, and encrypts the hash value with the private key of the aircraft 50 in the subsequent step S131.
  • the aircraft 50 transmits the ciphertext of the hash value to the operation management system 1.
  • the takeoff and landing management unit 14 receives the ciphertext from the aircraft 50 in step S143, and attempts to decrypt the ciphertext using the public key of the aircraft 50 in the next step S144.
  • step S145 the takeoff and landing management unit 14 determines whether or not the hash value has been decrypted. Then, when the hash value is decoded, the takeoff and landing management unit 14 proceeds with the process in step S146 (verification of the flight object 50 is OK).
  • step S146 the takeoff and landing management unit 14 determines the flight reservation status recognized from the flight route management table created from the operation management ledger Bc for the flight route requested to be used by the flight body 50, and the flight reservation status with each flight body. It is determined whether or not there is a vacancy in the usage request route based on the status of the currently flying aircraft recognized by communication or the like.
  • the takeoff / landing management unit 14 proceeds with the process in step S147, and transmits the takeoff permission information notifying the takeoff permission to the aircraft 50.
  • the aircraft 50 that has received the takeoff clearance information can take off from the takeoff landing site.
  • step S145 the takeoff and landing management unit 14 transmits the takeoff / rejection information notifying that the takeoff is not possible to the aircraft 50.
  • the aircraft 50 waits at the takeoff / landing site, waits for the usage request route to become available, or searches for another flight route.
  • step S160 of FIG. 9 the aircraft body 50 receives landing request information (corresponding to the takeoff / landing request information of the present invention) requesting landing at a specific takeoff / landing site (corresponding to the second takeoff / landing field of the present invention). It is transmitted to the operation management system 1.
  • the takeoff and landing management unit 14 receives the landing request information from the aircraft 50 in step S170, and calculates the hash value of the landing request information in the subsequent step S171. In the following step S172, the takeoff and landing management unit 14 transmits the hash value to the aircraft body 50.
  • the aircraft 50 receives the hash value from the operation management system 1 in step S161, and encrypts the hash value with the private key of the aircraft 50 in the subsequent step S162. In the following step S163, the aircraft 50 transmits the ciphertext of the hash value to the operation management system 1.
  • the takeoff and landing management unit 14 receives the ciphertext from the aircraft 50 in step S173, and attempts to decrypt the ciphertext using the public key of the aircraft 50 in the following step S174.
  • step S175 the takeoff and landing management unit 14 determines whether or not the hash value has been decrypted. Then, when the hash value is decoded, the takeoff and landing management unit 14 proceeds to step S176 (verification of the flight object 50 is OK).
  • step S176 the takeoff and landing management unit 14 receives the desired takeoff and landing site usage information from the desired takeoff and landing site management device (for example, the management device 302 when the desired takeoff and landing site is the takeoff and landing site 301), and receives the desired takeoff and landing site usage information. Determine if there is space in.
  • step S177 transmits the landing permission information notifying the landing permission to the desired landing site to the aircraft 50.
  • the aircraft 50 can land at the desired airfield.
  • step S175 the hash value is not decoded in step S175 (verification of the flying object 50 is NG, there is a possibility of spoofing to the flying object 50), or when it is determined in step S176 that there is no space in the desired airfield.
  • the takeoff and landing management unit 14 proceeds to step S180.
  • step S180 the takeoff and landing management unit 14 transmits the landing rejection information notifying that the landing is not possible to the aircraft 50.
  • the aircraft 50 Upon receiving the landing rejection information, the aircraft 50 takes measures such as waiting near the desired landing site and waiting for the desired landing site to become available, or searching for another landing site.
  • the takeoff and landing management unit 14 is provided, and when landing and taking off of the aircraft, verification is performed to prevent spoofing of the aircraft by using the private key and the public key associated with the aircraft. , The air vehicle may be verified for only one of landing and takeoff. Alternatively, the takeoff and landing management unit 14 may be omitted.
  • the takeoff / landing management unit 14 is provided, and regarding the landing and takeoff of the air vehicle, it is determined whether or not to allow the takeoff and landing by referring to the flight route management table generated from the operation management ledger. For only one of the landing and landing, it may be decided whether or not to permit by referring to the flight route management table.
  • the decentralized operation management ledger is configured by the blockchain, but another configuration in which the operation management ledger is distributed and managed by a plurality of entities may be adopted.
  • the availability of the flight path is determined by using the remaining capacity of the flight path, but at least the number of flying objects flying on the flight path may be used to determine the availability.
  • the operation management system 1, the management device 302, the management device 312, and the management device 322 are set as blockchain miners, but the selection of the miners is not limited to this.
  • the flying objects 50 to 53 and the user terminal 70 may be included in the minor.
  • the flight reservation reception unit 11, the flight permission determination unit 12, the transaction addition unit 13, and the takeoff and landing management unit 14 are configured by one system (operation management system 1 in FIG. 1).
  • the takeoff and landing management unit 14 may be provided in the management device 302 of the takeoff and landing site 301 in a distributed manner in a plurality of systems.
  • the operation management system of the present invention is configured by a plurality of systems or devices having each configuration 11 to 14.
  • the flight transaction is recorded in each block of the blockchain, but the flight transaction and the flight route management table may be recorded. According to this, it is possible to eliminate the process of creating the flight route management table in the flight bodies 50 to 53 or the operation management system 1.
  • FIG. 1 is a schematic view showing the functional configuration of the operation management system 1 divided according to the main processing contents in order to facilitate the understanding of the present invention. It may be configured according to the classification of. Further, the processing of each component may be executed by one hardware unit or may be executed by a plurality of hardware units. Further, the processing of each component shown in FIG. 1 may be executed by one program or may be executed by a plurality of programs.
  • a flight reservation reception unit that receives a reservation transaction that specifies a specific flight route and a specific time zone in which the target aircraft is scheduled to fly, which is transmitted from the flight object terminal corresponding to the target aircraft.
  • the specific flight specified by the reserved transaction with reference to a distributed operation management ledger that records the flight record or flight reservation of the flight object for each time zone for the specific flight route in chronological order.
  • the flight permission determination unit that determines whether or not to permit the flight of the target aircraft in the route and the specific time zone, and the flight permission determination unit determine the target flight in the specific flight route and the specific time zone.
  • An operation management system including a transaction addition unit that executes a transaction addition process for adding the reserved transaction as the flight transaction to the operation management ledger when the flight of a body is permitted.
  • the flight permission judgment unit refers to the decentralized operation management ledger and refers to the specific route specified by the reservation transaction. And whether or not to allow the flight of the target aircraft in a specific time zone is determined. Then, when the flight of the target aircraft is permitted, the flight transaction of the target aircraft is added to the operation management ledger.
  • the operation management ledger since the operation management ledger is decentralized, it is difficult to falsify the flight transactions recorded in the operation management ledger. Therefore, it is possible to strictly control the number of flying objects flying in the same time zone on the predetermined flight path.
  • the operation management ledger is composed of a blockchain, and the transaction addition unit performs the reservation transaction as the transaction addition process by consensus building processing between a plurality of ledger reference terminals that refer to the operation management ledger.
  • the operation management system according to paragraph 1 which executes a process of adding a new block including the flight transaction corresponding to the above to the blockchain. According to the operation management system of the second paragraph, by configuring the operation monitoring ledger by the blockchain, it is possible to manage the operation management ledger without setting a specific management unit.
  • the flight permission determination unit is designated by the reservation transaction depending on whether or not the capacity of the specific flight path set based on at least the number of flying objects flying on the specific flight path is exceeded.
  • the operation management system according to paragraph 1 or 2 which determines whether or not to permit the flight of the target flight object in the specific flight route and the specific time zone. According to the operation management system of the third item, it is possible to determine whether or not to reserve a specific flight route based on the number of flying objects flying on the flight route.
  • (Section 7) An operation management method executed by an operation management system of an air vehicle, which is transmitted from an air vehicle terminal corresponding to the target air vehicle and is specified as a specific flight route to which the target air vehicle is scheduled to fly.
  • a decentralized operation in which a flight reservation reception step for receiving a reservation transaction specifying a time zone and a flight record of a flight record or a flight reservation for each time zone for the specific flight route are recorded in chronological order.
  • a flight permission determination step for determining whether or not to permit the flight of the target aircraft in the specific flight route and the specific time zone specified by the reservation transaction, and the flight permission determination
  • a transaction addition process for adding the reserved transaction as the flight transaction to the operation management ledger is executed.
  • An operation management method that includes a transaction addition step. According to the operation management method of paragraph 7, when the reservation transaction is accepted by the flight reservation acceptance step, the flight permission determination step refers to the decentralized operation management ledger and the specific route specified by the reservation transaction. And whether or not to allow the flight of the target aircraft in a specific time zone is determined.
  • the flight transaction of the target aircraft is added to the operation management ledger.
  • the operation management ledger since the operation management ledger is decentralized, it is difficult to falsify the flight transactions recorded in the operation management ledger. Therefore, it is possible to strictly control the number of flying objects flying in the same time zone on the predetermined flight path.
  • Flight reservation reception that receives a reservation transaction that specifies a specific flight route and a specific time zone that the target aircraft plans to fly, which is transmitted from the flight object terminal corresponding to the target aircraft.
  • the flight permission determination unit that determines whether or not to permit the flight of the target aircraft in the specific flight path and the specific time zone, and the flight permission determination unit determine the specific flight route and the specific time zone.
  • An operation management program for functioning as a transaction addition unit that executes a transaction addition process for adding the reserved transaction as the flight transaction to the operation management ledger when the flight of the target aircraft is permitted. ..
  • the configuration of the operation management system of the first item can be realized.

Abstract

The present invention strictly manages the number of aircraft that fly on a predetermined flight path in the same time slot. An operation management system 1 comprises: a flight permission determination unit 12 that, by referencing a distributed-type operation management ledger Bc in which flight transactions are recorded in time series, determines whether to permit the flight of a subject aircraft on a specific flight path and in a specific time slot designated by a reservation transaction; and a transaction addition unit 13 that, if the flight permission determination unit 12 permits the flight of the subject aircraft using the specific flight path and the specific time slot, executes a transaction addition process for adding the reservation transaction to the operation management ledger Bc as a flight transaction.

Description

運行管理システム、運行管理方法、及び運行管理用プログラムOperation management system, operation management method, and operation management program
 本発明は、飛行体の運行管理システム、運行管理方法、及び運行管理用プログラムに関する。 The present invention relates to an operation management system for an air vehicle, an operation management method, and an operation management program.
 従来、飛行体とユーザのIDを認証して飛行体とユーザ間の安全な通信を提供し、飛行規制に従った飛行体の飛行の操作をユーザに強制する認証システムが提案されている(例えば、特許文献1参照)。また、飛行体から送信される種々のトランザクションデータを、ブロックチェーンにより管理するシステムが提案されている(例えば、特許文献2参照)。 Conventionally, an authentication system has been proposed that authenticates the IDs of an air vehicle and a user to provide secure communication between the air vehicle and the user and forces the user to operate the flight of the air vehicle in accordance with flight regulations (for example). , Patent Document 1). Further, a system for managing various transaction data transmitted from an air vehicle by a blockchain has been proposed (see, for example, Patent Document 2).
米国特許第9412278B1号明細書U.S. Pat. No. 9412278B1 米国特許出願公開第2018/0270244A1号明細書U.S. Patent Application Publication No. 2018/0270244A1
 複数の飛行体が行き来する空域においては、上記従来のシステムの機能の他に、飛行体間の接近等を防止するために、既定の飛行経路を同じ時間帯に飛行する飛行体の数の上限を設定する必要がある。また、このようにして制限した上限を超えて、複数の飛行体が飛行することを防止する必要がある。
 本発明はかかる背景に鑑みてなされたものであり、既定の飛行経路を同じ時間帯に飛行する飛行体の数を、厳格に管理することができる運行管理システム、運行管理方法、及び運行管理用プログラムを提供することを目的とする。
In the airspace where multiple aircraft come and go, in addition to the functions of the conventional system described above, the upper limit of the number of aircraft flying in the same time zone on the predetermined flight path in order to prevent approaching between the aircraft. Need to be set. In addition, it is necessary to prevent a plurality of flying objects from flying beyond the upper limit thus limited.
The present invention has been made in view of this background, and is used for an operation management system, an operation management method, and an operation management that can strictly control the number of flying objects flying on a predetermined flight route in the same time zone. The purpose is to provide a program.
 この明細書には、2019年9月13日に出願された日本国特許出願・特願2019-166992の全ての内容が含まれる。
 上記目的を達成するための第1態様として、対象飛行体に対応した飛行体端末から送信される、前記対象飛行体が飛行を予定する特定飛行経路と特定時間帯とを指定した予約トランザクションを受信する飛行予約受付部と、前記特定飛行経路についての時間帯毎の飛行体の飛行実績又は飛行予約である飛行トランザクションを、時系列に記録した分散型の運行管理台帳を参照して、前記予約トランザクションにより指定された前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行を許可するか否かを判断する飛行許可判断部と、前記飛行許可判断部により、前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行が許可されたときに、前記予約トランザクションを前記飛行トランザクションとして前記運行管理台帳に追加するためのトランザクション追加処理を実行するトランザクション追加部と、を備える運行管理システムが挙げられる。
This specification includes all the contents of the Japanese patent application / Japanese Patent Application No. 2019-166992 filed on September 13, 2019.
As the first aspect for achieving the above object, a reservation transaction is received, which is transmitted from the flight object terminal corresponding to the target flight object and specifies the specific flight route and the specific time zone in which the target flight object is scheduled to fly. The reservation transaction is made by referring to the flight reservation reception unit and the distributed operation management ledger that records the flight record or flight reservation of the flight object for each time zone for the specific flight route in chronological order. The specific flight path and the specific flight route specified by the flight permission determination unit for determining whether or not to permit the flight of the target aircraft in the specific flight path and the specific time zone, and the flight permission determination unit. An operation management system including a transaction addition unit that executes a transaction addition process for adding the reserved transaction as the flight transaction to the operation management ledger when the flight of the target aircraft is permitted in a time zone. Can be mentioned.
 また、上記運行管理システムにおいて、前記運行管理台帳はブロックチェーンにより構成され、前記トランザクション追加部は、前記トランザクション追加処理として、前記運行管理台帳を参照する複数の台帳参照端末間の合意形成処理により、前記予約トランザクションに対応した前記飛行トランザクションを含む新規ブロックを前記ブロックチェーンに追加する処理を実行する構成としてもよい。 Further, in the operation management system, the operation management ledger is configured by a block chain, and the transaction addition unit performs consensus building processing between a plurality of ledger reference terminals that refer to the operation management ledger as the transaction addition process. A process of adding a new block including the flight transaction corresponding to the reserved transaction to the blockchain may be executed.
 また、上記運行管理システムにおいて、前記飛行許可判断部は、前記特定飛行経路を飛行する飛行体の少なくとも数に基づいて設定された前記特定飛行経路の容量を超えるか否かにより、前記予約トランザクションにより指定された前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行を許可するか否かを判断する構成としてもよい。 Further, in the operation management system, the flight permission determination unit uses the reservation transaction depending on whether or not the capacity of the specific flight path set based on at least the number of flying objects flying on the specific flight path is exceeded. It may be configured to determine whether or not to permit the flight of the target flight object in the designated specific flight path and the specific time zone.
 また、上記運行管理システムにおいて、前記対象飛行体が前記特定飛行経路を飛行する際の第1離着陸場からの離陸及び第2離着陸場への着陸を、前記運行管理台帳に記録された前記対象飛行体の前記飛行トランザクションに基づいて管理する離着陸管理部を備える構成としてもよい。 Further, in the operation management system, the target flight recorded in the operation management ledger is recorded in the operation management ledger for the takeoff from the first takeoff and landing site and the landing on the second takeoff and landing site when the target aircraft flies on the specific flight route. It may be configured to include a takeoff and landing management unit that manages the body based on the flight transaction.
 また、上記運行管理システムにおいて、前記離着陸管理部は、前記対象飛行体が前記特定飛行経路を飛行する際の第1離着陸場からの離陸又は第2離着陸場への着陸を要求する離着陸要求情報を受信したときに、前記対象飛行体と関連付けられた秘密鍵と前記秘密鍵を使用した作成された公開鍵とを用いた認証処理を行って、前記離着陸要求情報の送信主体が前記対象飛行体であることを検証する構成としてもよい。 Further, in the operation management system, the takeoff / landing management unit receives takeoff / landing request information for requesting takeoff from the first takeoff / landing site or landing at the second takeoff / landing site when the target aircraft flies on the specific flight path. Upon receipt, authentication processing is performed using the private key associated with the target aircraft and the public key created using the private key, and the transmitting subject of the takeoff / landing request information is the target aircraft. It may be configured to verify that there is.
 また、上記運行管理システムにおいて、前記飛行予約受付部は、前記予約トランザクションを受信したときに、前記対象飛行体と関連付けられた秘密鍵と前記秘密鍵を使用して作成された公開鍵とを用いた認証処理を行って、前記予約トランザクションの送信主体が前記対象飛行体であることを検証する構成としてもよい。 Further, in the operation management system, when the flight reservation reception unit receives the reservation transaction, it uses a private key associated with the target aircraft and a public key created by using the private key. The authentication process may be performed to verify that the sender of the reserved transaction is the target aircraft.
 次に、上記目的を達成するための第2態様として、飛行体の運行管理システムにより実行される運行管理方法であって、対象飛行体に対応した飛行体端末から送信される、前記対象飛行体が飛行を予定する特定飛行経路と特定時間帯とを指定した予約トランザクションを受信する飛行予約受付ステップと、前記特定飛行経路についての時間帯毎の飛行体の飛行実績又は飛行予約である飛行トランザクションを、時系列に記録した分散型の運行管理台帳を参照して、前記予約トランザクションにより指定された前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行を許可するか否かを判断する飛行許可判断ステップと、前記飛行許可判断ステップにより、前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行が許可されたときに、前記予約トランザクションを前記飛行トランザクションとして前記運行管理台帳に追加するためのトランザクション追加処理を実行するトランザクション追加ステップと、を備える運行管理方法が挙げられる。 Next, as a second aspect for achieving the above object, the operation management method executed by the operation management system of the flight object, which is transmitted from the flight object terminal corresponding to the target flight object, is the target flight object. A flight reservation reception step for receiving a reservation transaction that specifies a specific flight route and a specific time zone for which the flight is scheduled, and a flight record or a flight reservation for each time zone for the specific flight route. , With reference to the decentralized operation management ledger recorded in time series, it is determined whether or not to permit the flight of the target aircraft in the specific flight route and the specific time zone specified by the reservation transaction. When the flight permission determination step and the flight permission determination step permit the flight of the target aircraft in the specific flight route and the specific time zone, the reserved transaction is set as the flight transaction in the operation management ledger. An operation management method including a transaction addition step for executing a transaction addition process for addition can be mentioned.
 次に、上記目的を達成するための第3態様として、コンピュータを、対象飛行体に対応した飛行体端末から送信される、前記対象飛行体が飛行を予定する特定飛行経路と特定時間帯とを指定した予約トランザクションを受信する飛行予約受付部と、前記特定飛行経路についての時間帯毎の飛行体の飛行実績又は飛行予約である飛行トランザクションを、時系列に記録した分散型の運行管理台帳を参照して、前記予約トランザクションにより指定された前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行を許可するか否かを判断する飛行許可判断部と、前記飛行許可判断部により、前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行が許可されたときに、前記予約トランザクションを前記飛行トランザクションとして前記運行管理台帳に追加するためのトランザクション追加処理を実行するトランザクション追加部と、として機能させるための運行管理用プログラムが挙げられる。 Next, as a third aspect for achieving the above object, the computer is transmitted from the flight object terminal corresponding to the target flight object to set a specific flight path and a specific time zone in which the target flight object is scheduled to fly. Refer to the flight reservation reception unit that receives the specified reservation transaction and the distributed operation management ledger that records the flight record or flight reservation of the flight object for each time zone for the specific flight route in chronological order. Then, the flight permission determination unit for determining whether or not to permit the flight of the target aircraft in the specific flight path and the specific time zone specified by the reservation transaction, and the flight permission determination unit A transaction addition unit that executes a transaction addition process for adding the reserved transaction as the flight transaction to the operation management ledger when the flight of the target aircraft is permitted in the specific flight route and the specific time zone. , An operation management program for functioning as.
 上記運行管理システムによれば、飛行予約受付部により予約トランザクションが受付けられたときに、飛行許可判断部により、分散型の運行管理台帳を参照して、予約トランザクションにより指定された特定経路及び特定時間帯での対象飛行体の飛行を許可するか否かが判断される。そして、対象飛行体の飛行が許可されたときには、対象飛行体の飛行トランザクションが運行管理台帳に追加される。この場合、運行管理台帳は分散型であるため、運行管理台帳に記録された飛行トランザクションを改ざんすることは困難である。そのため、既定の飛行経路を同じ時間帯に飛行する飛行体の数を厳格に管理することができる。 According to the above operation management system, when a reservation transaction is accepted by the flight reservation reception unit, the flight permission determination unit refers to the distributed operation management ledger and refers to the specific route and specific time specified by the reservation transaction. It is determined whether or not to allow the target aircraft to fly in the belt. Then, when the flight of the target aircraft is permitted, the flight transaction of the target aircraft is added to the operation management ledger. In this case, since the operation management ledger is decentralized, it is difficult to falsify the flight transactions recorded in the operation management ledger. Therefore, it is possible to strictly control the number of flying objects flying in the same time zone on the predetermined flight path.
図1は、運行管理システムの構成の説明図である。FIG. 1 is an explanatory diagram of the configuration of the operation management system. 図2は、トランザクションプールの説明図である。FIG. 2 is an explanatory diagram of the transaction pool. 図3は、ブロックチェーンにより構成された運行管理台帳の説明図である。FIG. 3 is an explanatory diagram of an operation management ledger composed of a blockchain. 図4は、飛行体の飛行経路図及び経路管理表の説明図である。FIG. 4 is an explanatory diagram of a flight route map and a route management table of the flying object. 図5は、飛行の予約申請及び受付処理のフローチャートである。FIG. 5 is a flowchart of flight reservation application and reception processing. 図6は、予約申請に応じたトランザクションの追加処理のフローチャートである。FIG. 6 is a flowchart of transaction addition processing according to the reservation application. 図7は、運行管理台帳への新規ブロックの追加処理のフローチャートである。FIG. 7 is a flowchart of the process of adding a new block to the operation management ledger. 図8は、離陸申請及び申請に応じた処理のフローチャートである。FIG. 8 is a flowchart of a takeoff application and processing according to the application. 図9は、着陸申請及び申請に応じた処理のフローチャートである。FIG. 9 is a flowchart of a landing application and processing according to the application.
 [1.運行管理システムの構成]
 図1を参照して、本実施形態の運行管理システム1の構成、及び運行管理システム1による飛行体の経路の運行管理態様について説明する。運行管理システム1は、CPU(Central Processing Unit)10、メモリ20、通信部40等により構成されたコンピュータシステムである。
[1. Operation management system configuration]
With reference to FIG. 1, the configuration of the operation management system 1 of the present embodiment and the operation management mode of the route of the aircraft by the operation management system 1 will be described. The operation management system 1 is a computer system composed of a CPU (Central Processing Unit) 10, a memory 20, a communication unit 40, and the like.
 運行管理システム1は、通信部40により、通信ネットワーク500を介して、飛行体50~53、いずれかの飛行体の利用者Uにより使用される利用者端末70、離着陸場301が設置された建物300に配置された管理装置302、離着陸場311が設置された建物310の管理装置302、離着陸場321が設置された建物310の管理装置312、及び公開鍵サーバー510との間で通信を行うサーバーシステムである。ここで、飛行体50~53に備えられた通信部(図示しない)、及び利用者端末70は、本発明の対象飛行体に対応した飛行体端末に相当する。 The operation management system 1 is a building in which a flight body 50 to 53, a user terminal 70 used by a user U of any of the flight bodies, and an airfield 301 are installed by a communication unit 40 via a communication network 500. A server that communicates with the management device 302 arranged at 300, the management device 302 of the building 310 where the takeoff and landing site 311 is installed, the management device 312 of the building 310 where the takeoff and landing site 321 is installed, and the public key server 510. It is a system. Here, the communication unit (not shown) provided in the flight objects 50 to 53 and the user terminal 70 correspond to the flight object terminals corresponding to the target aircraft objects of the present invention.
 運行管理システム1、飛行体50~53、利用者端末70、管理装置302,312,322、及び公開鍵サーバー510は、ピア・ツー・ピア(Peer to Peer)により相互に通信を行う。図1では、飛行体50~53として、4つの回転翼を備えたeVOL(electric Vertical Takeoff and Landing aircraft、例えばドローン)が例示されている。飛行体50~53は、離着陸場301、311、321等の間に設定された飛行経路を飛行して、荷物の運送等を行う。 The operation management system 1, the aircraft 50 to 53, the user terminal 70, the management devices 302, 312, 322, and the public key server 510 communicate with each other by peer-to-peer (Peer to Peer). In FIG. 1, an eVOL (electric Vertical Takeoff and Landing aircraft, for example, a drone) having four rotor blades is illustrated as the flying objects 50 to 53. The aircraft bodies 50 to 53 fly along the flight path set between the takeoff and landing sites 301, 311 and 321 to carry luggage and the like.
 運行管理システム1のCPU10は、メモリ20に保存された運行管理システム1の制御用プログラム21を実行することにより、飛行予約受付部11、飛行許可判断部12、トランザクション追加部13、及び離着陸管理部14として機能する。運行管理システム1は、制御用プログラム21を、制御用プログラム21が記録された記録媒体(光ディスク、フラッシュメモリ等)から読み込んでもよく、外部のサーバーからダウンロードしてもよい。 By executing the control program 21 of the operation management system 1 stored in the memory 20, the CPU 10 of the operation management system 1 executes the flight reservation reception unit 11, the flight permission determination unit 12, the transaction addition unit 13, and the takeoff and landing management unit. Functions as 14. The operation management system 1 may read the control program 21 from a recording medium (optical disk, flash memory, etc.) on which the control program 21 is recorded, or may download it from an external server.
 飛行予約受付部11により実行される処理は、本発明の運行管理方法における飛行予約受付ステップに相当する。飛行許可判断部12により実行される処理は、本発明の運行管理方法における飛行許可判断ステップに相当する。トランザクション追加部13により実行される処理は、本発明の運行管理方法におけるトランザクション追加ステップに相当する。 The process executed by the flight reservation reception unit 11 corresponds to the flight reservation reception step in the operation management method of the present invention. The process executed by the flight permission determination unit 12 corresponds to the flight permission determination step in the operation management method of the present invention. The process executed by the transaction addition unit 13 corresponds to the transaction addition step in the operation management method of the present invention.
 メモリ20には、制御用プログラム21の他に、飛行体50~53等の飛行体の飛行経路及び飛行時間帯の飛行実績又は飛行予約を示す飛行トランザクションを一時的に保存するトランザクションプール22、及びこれまでの飛行トランザクションの時系列の履歴が保存された運行管理台帳Bcが保存されている。後述するように運行管理台帳Bcは、ブロックチェーンにより構成されている。 In the memory 20, in addition to the control program 21, a transaction pool 22 that temporarily stores flight transactions indicating flight records or flight reservations of flight paths and flight time zones of flight objects such as aircraft 50 to 53, and a transaction pool 22 The operation management ledger Bc, which stores the time-series history of flight transactions so far, is saved. As will be described later, the operation management ledger Bc is composed of a blockchain.
 飛行予約受付部11は、飛行体50~53或いは利用者端末70から送信される特定飛行経路と特定時間帯を指定した予約トランザクションを受信して、飛行予約の申請を受け付ける。飛行許可判断部12は、運行管理台帳Bcの飛行トランザクション履歴から飛行経路管理表を生成し、飛行経路管理表を参照して、飛行予約を許可するか否かを判断する。 The flight reservation reception unit 11 receives a reservation transaction that specifies a specific flight route and a specific time zone transmitted from the flight objects 50 to 53 or the user terminal 70, and accepts the flight reservation application. The flight permission determination unit 12 generates a flight route management table from the flight transaction history of the operation management ledger Bc, and determines whether or not to permit the flight reservation by referring to the flight route management table.
 トランザクション追加部13は、飛行予約を許可する場合に、予約トランザクションに応じた飛行トランザクションを運行管理台帳Bcのブロックチェーンに追加するためのトランザクション追加処理を実行する。離着陸管理部14は、飛行体50~53或いは利用者端末70から送信される飛行体50~53の離陸申請或いは着陸申請を受信して、離陸或いは着陸を許可するか否かを判断する。 When permitting a flight reservation, the transaction addition unit 13 executes a transaction addition process for adding a flight transaction corresponding to the reserved transaction to the blockchain of the operation management ledger Bc. The takeoff / landing management unit 14 receives the takeoff application or landing application of the aircraft 50 to 53 or the aircraft 50 to 53 transmitted from the user terminal 70, and determines whether to permit takeoff or landing.
 本実施形態において、運行管理台帳Bcは、運行管理システム1、及び管理装置302,312,322によって分散管理され、運行管理システム1、及び管理装置302,312,322による合意形成処理(コンセンサス処理)によって、運行管理台帳Bcのブロックチェーンに新規ブロックが追加される。運行管理システム1、及び管理装置302,312,322は、本発明の台帳参照端末に相当する。 In the present embodiment, the operation management ledger Bc is distributed and managed by the operation management system 1 and the management devices 302, 312, 322, and consensus building processing (consensus processing) by the operation management system 1 and the management devices 302, 312, 322. Will add a new block to the blockchain of the operation management ledger Bc. The operation management system 1 and the management devices 302, 312, 322 correspond to the ledger reference terminal of the present invention.
 また、運行管理台帳Bcは、運行管理システム1から、飛行体50~53及び利用者端末70に送信され、飛行体50~53及び利用者端末70は、運行管理台帳Bcに記録された飛行トランザクションの履歴から、予約対象日の飛行経路管理表を生成して、飛行経路の空き状況を確認することができる。 Further, the operation management ledger Bc is transmitted from the operation management system 1 to the flight objects 50 to 53 and the user terminal 70, and the flight objects 50 to 53 and the user terminal 70 are the flight transactions recorded in the operation management ledger Bc. From the history of, it is possible to generate a flight route management table for the reservation target date and check the availability of the flight route.
 公開鍵サーバーは、飛行体50~53と関連付けられた公開鍵を保存している。公開鍵は、元になる秘密鍵を使用して作成され、秘密鍵で暗号化された暗号文は、公開鍵によって復号することができる。そのため、例えば、飛行体50のIDが付された暗号化された予約申請を受信したときに、予約申請が飛行体50の公開鍵で復号できたときには、予約申請の送信主体が飛行体50であると検証することができる。このように、秘密鍵と公開鍵の組み合わせを、電子署名として使用した認証処理を行うことができる。 The public key server stores the public key associated with the aircraft 50-53. The public key is created using the original private key, and the ciphertext encrypted with the private key can be decrypted with the public key. Therefore, for example, when an encrypted reservation application with an ID of the aircraft 50 is received and the reservation application can be decrypted with the public key of the aircraft 50, the sender of the reservation application is the aircraft 50. It can be verified that there is. In this way, the authentication process using the combination of the private key and the public key as the electronic signature can be performed.
 [2.トランザクションプール及び運行管理台帳の構成]
 図2~図3を参照して、トランザクションプール22、及び運行管理台帳Bcの構成について説明する。図2に示したように、トランザクションプール22には、飛行予約受付部11により申請が許可された飛行トランザクション22a、飛行トランザクション22b、飛行トランザクション22c、…が順次保存される。各飛行トランザクション22a,22b,22c,…には、予約された飛行経路と時間帯、及び飛行体のID(機体ID)に対応した公開鍵が記録されている。
[2. Transaction pool and operation management ledger configuration]
The configuration of the transaction pool 22 and the operation management ledger Bc will be described with reference to FIGS. 2 to 3. As shown in FIG. 2, the flight transaction 22a, the flight transaction 22b, the flight transaction 22c, ..., Which the application is approved by the flight reservation reception unit 11, are sequentially stored in the transaction pool 22. In each flight transaction 22a, 22b, 22c, ..., The reserved flight route and time zone, and the public key corresponding to the ID (airframe ID) of the aircraft are recorded.
 図3に示したように、運行管理台帳Bcは、ブロックチェーンにより構成され、図3では、4つのブロック31,32,33,34を含む例を示している。ブロックは、所定時間が経過する毎に追加される。2番目以降のブロック32,33,34には、一つ前のブックのデータのハッシュ値と、所定時間の間にトランザクションプール22に保存された飛行トランザクションの履歴データと、所定規則を満たすハッシュ値が算出されるように決定されたnonceとが含まれる。 As shown in FIG. 3, the operation management ledger Bc is composed of a blockchain, and FIG. 3 shows an example including four blocks 31, 32, 33, and 34. Blocks are added every time a predetermined time elapses. In the second and subsequent blocks 32, 33, 34, the hash value of the data of the previous workbook, the history data of the flight transaction stored in the transaction pool 22 during the predetermined time, and the hash value satisfying the predetermined rule. Is included with the nonce determined to be calculated.
 例えば、ブロック34を追加する際には、一つ前のブロック33に記録されたハッシュ値33aと飛行トランザクションの履歴データ33bとnonce33cとの合計データのハッシュ値34aが算出される。また、ハッシュ値34aと、トランザクションプール22から転送した今回の飛行トランサクションの履歴データ34bと、nonce34cとの合計データのハッシュ値が、所定規則を満たすように、nonce34cを変更してハッシュ値を算出する処理が繰り返される。そして、所定規則を満たすハッシュ値が得られるnonce34cが決定されたときに、決定されたnonce34cを記録したブロック34が、運行管理台帳Bcに追加される。 For example, when the block 34 is added, the hash value 34a of the total data of the hash value 33a recorded in the previous block 33, the flight transaction history data 33b, and the nonce 33c is calculated. Further, the hash value is calculated by changing the nonce 34c so that the hash value 34a, the history data 34b of the current flight transaction transferred from the transaction pool 22, and the hash value of the total data of the nonce 34c satisfy a predetermined rule. The process of doing is repeated. Then, when the nonce 34c from which the hash value satisfying the predetermined rule is obtained is determined, the block 34 recording the determined nonce 34c is added to the operation management ledger Bc.
 [3.飛行経路及び飛行経路管理表]
 図4を参照して、飛行体50~53等が飛行する飛行経路、及び各飛行経路を飛行する飛行体の容量を管理するための飛行経路管理表について説明する。
[3. Flight route and flight route management table]
With reference to FIG. 4, a flight path through which the flight objects 50 to 53 and the like fly, and a flight path management table for managing the capacity of the flight object flying on each flight path will be described.
 図4の飛行経路図100は、5か所の離着陸場P1~P5について設定された、P1とP2間の飛行経路R12、P1とP3間の飛行経路R13、P1とP4間の飛行経路R14、P2とP3間の飛行経路R23、P3とP4間の飛行経路R34、及びP4とP5間の飛行経路R45を示している。飛行経路図100において、各飛行経路に示された四角囲みの数字は、各飛行経路の相対的な距離を示しており、数字が大きいほど距離が長くなる。 The flight path FIG. 100 of FIG. 4 shows the flight path R12 between P1 and P2, the flight path R13 between P1 and P3, and the flight path R14 between P1 and P4, which are set for the five takeoff and landing sites P1 to P5. The flight path R23 between P2 and P3, the flight path R34 between P3 and P4, and the flight path R45 between P4 and P5 are shown. In the flight path diagram 100, the numbers in the squares shown in each flight path indicate the relative distances of each flight path, and the larger the number, the longer the distance.
 飛行経路管理表110は、運行管理台帳Bcに記録されたトランサクションデータから生成された特定日における各飛行経路の空き具合を、30分の時間帯毎に示したものである。残容量は、各飛行経路に残された飛行スペースを示しており、各飛行経路を飛行している飛行体及び飛行を予定している全ての飛行体について、飛行体の仕様(大きさ、重量、回転翼の数、等)、飛行状況(飛行速度、積載荷物の量、天候、等)を認識して算出される。各飛行体の仕様、飛行状況は、各飛行体或いは各飛行体の飛行を管理する飛行管理装置(図示しない)等との通信によって認識される。 The flight route management table 110 shows the availability of each flight route on a specific day generated from the transition data recorded in the operation management ledger Bc every 30 minutes. The remaining capacity indicates the flight space left in each flight path, and the specifications (size, weight) of the flight objects (size, weight) for the flight objects flying in each flight path and all the flight objects scheduled to fly. , Number of rotating wings, etc.), flight status (flight speed, amount of loaded luggage, weather, etc.) are recognized and calculated. The specifications and flight status of each flying object are recognized by communication with each flying object or a flight management device (not shown) that manages the flight of each flying object.
 残容量が大きいほど飛行経路の飛行スペースに余裕があることを示しており、残容量が「0」になると、飛行予約が不能となる。例えば、図4の飛行経路管理表110では、P1からP2に向かう飛行経路の9:30~10:00の時間帯の残容量が「0」になっているため、この時間帯での飛行予約は不能となる。 The larger the remaining capacity, the more space there is in the flight route, and when the remaining capacity becomes "0", flight reservation becomes impossible. For example, in the flight route management table 110 of FIG. 4, since the remaining capacity of the flight route from P1 to P2 in the time zone from 9:30 to 10:00 is "0", the flight reservation in this time zone is set. Becomes impossible.
 [4.飛行予約の受付処理]
 図5~図6に示したフローチャートに従って、飛行体50と運行管理システム1との間で実行される飛行予約の受付処理について説明する。ここでは、飛行体50について説明するが、飛行体51~53等の他の飛行体についても同様の処理が実行される。
[4. Flight reservation reception process]
The flight reservation acceptance process executed between the flight object 50 and the operation management system 1 will be described with reference to the flowcharts shown in FIGS. 5 to 6. Here, the flying object 50 will be described, but the same processing is executed for other flying objects such as the flying objects 51 to 53.
 図5のステップS1で、飛行体50は、運行管理台帳Bcを参照して、予約対象日の飛行経路管理表を生成する。続くステップS2で、飛行体50は、飛行経路管理表を参照して、各飛行経路の時間帯毎の残容量を確認することにより、飛行予約をする飛行経路と時間帯を決定する。次のステップS3で、予約する飛行経路及び時間帯と、飛行体50の機体IDとが含まれた予約トランザクションを、運行管理システム1に送信する。 In step S1 of FIG. 5, the flight object 50 refers to the operation management ledger Bc and generates a flight route management table for the reservation target date. In the following step S2, the aircraft 50 determines the flight route and time zone for making a flight reservation by checking the remaining capacity of each flight route for each time zone with reference to the flight route management table. In the next step S3, a reservation transaction including the flight route and time zone to be reserved and the aircraft ID of the aircraft 50 is transmitted to the operation management system 1.
 運行管理システム1の飛行予約受付部11は、図5のステップS10で、飛行体50から予約トランザクションを受信し、続くステップSS11で、予約トランザクションのデータのハッシュ値を算出する。次のステップS12で、飛行予約受付部11は、ハッシュ値を飛行体50に送信する。 The flight reservation reception unit 11 of the operation management system 1 receives the reservation transaction from the aircraft 50 in step S10 of FIG. 5, and calculates the hash value of the data of the reservation transaction in the subsequent step SS11. In the next step S12, the flight reservation reception unit 11 transmits the hash value to the flight object 50.
 飛行体50は、ステップS4で運行管理システム1からハッシュ値を受信し、続くステップS5で、ハッシュ値を飛行体50の秘密鍵で暗号化する。そして、飛行体50は、ステップS5で、ハッシュ値の暗号文を運行管理システム1に送信する。 The aircraft 50 receives the hash value from the operation management system 1 in step S4, and encrypts the hash value with the private key of the aircraft 50 in the subsequent step S5. Then, in step S5, the aircraft 50 transmits the ciphertext of the hash value to the operation management system 1.
 運行管理システム1の飛行予約受付部11は、ステップS13で飛行体50から暗号文を受信し、続くステップS14で、飛行体50の公開鍵による暗号文の復号化を試みる。そして、飛行予約受付部11は、次のステップS15で暗号文を復号できたときには、予約トランザクションの送信主体が飛行体50であるとの検証が得られたので、ステップS16に処理を進めて予約申請受領情報を飛行体50に送信し、図6のステップS17に処理を進める。 The flight reservation reception unit 11 of the operation management system 1 receives the ciphertext from the aircraft 50 in step S13, and attempts to decrypt the ciphertext with the public key of the aircraft 50 in the following step S14. Then, when the flight reservation reception unit 11 was able to decrypt the ciphertext in the next step S15, it was verified that the sender of the reservation transaction was the flight body 50, so the flight reservation reception unit 11 proceeded with the process in step S16 to make a reservation. The application receipt information is transmitted to the aircraft 50, and the process proceeds to step S17 of FIG.
 一方、暗号文を復号できなかったときには、飛行体50以外の飛行体が、飛行体50の機体IDを用いて飛行体50になりすまして、予約トランザクションを送信した可能性がある。そのため、飛行予約受付部11は、S30に処理を進めて、飛行体50に予約申請棄却情報を送信する。 On the other hand, when the ciphertext could not be decrypted, it is possible that an aircraft other than the aircraft 50 sent a reservation transaction by impersonating the aircraft 50 using the aircraft ID of the aircraft 50. Therefore, the flight reservation reception unit 11 proceeds with the process in S30 and transmits the reservation application rejection information to the flight object 50.
 図6のステップS17で、運行管理システム1の飛行許可判断部12は、運行管理台帳Bcから、予約対象日の飛行経路管理表を作成する。続くステップS18で、飛行許可判断部12は、飛行経路管理表を参照して、予約申請による飛行経路及び時間帯の残容量(空き状況)を確認する。そして、次のステップS19で、飛行許可判断部12は、予約申請による飛行経路及び時間帯に空きがあるときはステップS20に処理を進め、空きがないときにはステップS40に処理を進める。 In step S17 of FIG. 6, the flight permission determination unit 12 of the operation management system 1 creates a flight route management table for the reservation target date from the operation management ledger Bc. In the following step S18, the flight permission determination unit 12 confirms the remaining capacity (vacancy status) of the flight route and the time zone according to the reservation application with reference to the flight route management table. Then, in the next step S19, the flight permission determination unit 12 proceeds to step S20 when there is a vacancy in the flight route and time zone according to the reservation application, and proceeds to step S40 when there is no vacancy.
 ステップS40で、飛行許可判断部12は、予約が不可であることを通知する予約不可情報を飛行体50に送信する。また、ステップS20で、飛行許可判断部12は、予約申請に応じた飛行トランザクションをトランザクションプール22に追加して保存する。 In step S40, the flight permission determination unit 12 transmits the non-reservable information notifying that the reservation is not possible to the flight object 50. Further, in step S20, the flight permission determination unit 12 adds and stores the flight transaction corresponding to the reservation application to the transaction pool 22.
 続くステップS21で、飛行許可判断部12は、新規ブロックの追加タイミング(例えば、所定時間毎に設定される)になったか否かを判断する。そして、新規ブロックの追加タイミングになったときには、ステップS22に処理を進める。ステップS22で、運行管理システム1のトランザクション追加部13は、トランザクションプール22に保存された飛行トランザクションをマイナーである管理装置302,312,322に送信して、コンセンサス処理を依頼する。一方、新規ブロックの追加タイミングになっていないときには、飛行許可判断部12はステップS50に処理を進め、この場合は飛行予約受付部11による飛行予約の受付処理が継続される。 In the following step S21, the flight permission determination unit 12 determines whether or not it is time to add a new block (for example, it is set at predetermined time intervals). Then, when it is time to add a new block, the process proceeds to step S22. In step S22, the transaction addition unit 13 of the operation management system 1 transmits the flight transactions stored in the transaction pool 22 to the management devices 302, 312, 322, which are minors, and requests a consensus process. On the other hand, when it is not the timing to add a new block, the flight permission determination unit 12 proceeds to step S50, and in this case, the flight reservation reception process by the flight reservation reception unit 11 is continued.
 [5.新規ブロックの追加処理]
 図7に示したフローチャートに従って、ブロックチェーンのマイナーである運行管理システム1、管理装置302、管理装置312、及び管理装置322により実行される新規ブロック追加のコンセンサス処理について説明する。運行管理システム1、管理装置302、管理装置312、及び管理装置322は、それぞれ図7に示したフローチャートによる処理を実行する。
[5. New block addition process]
According to the flowchart shown in FIG. 7, the consensus process of adding a new block executed by the operation management system 1, the management device 302, the management device 312, and the management device 322, which are minors of the blockchain, will be described. The operation management system 1, the management device 302, the management device 312, and the management device 322 each execute the processing according to the flowchart shown in FIG.
 マイナーは、ステップS100で、運行管理台帳Bcを構成する各ブロックのハッシュ値を検証して、運行管理台帳Bcの改ざんの有無を確認する。続くステップS101で、マイナーは、運行管理台帳Bcの改ざんがあったときはステップS110に処理を進め、運行管理台帳Bcの改ざんがなかったときにはステップS102に処理を進める。ステップS110で、マイナーは改ざんがあったことを示す改ざん有情報を運行管理システム1に送信し、この場合は新規ブロックの追加は保留される。 In step S100, the miner verifies the hash value of each block constituting the operation management ledger Bc, and confirms whether or not the operation management ledger Bc has been tampered with. In the following step S101, the miner proceeds to step S110 when the operation management ledger Bc has been tampered with, and proceeds to step S102 when the operation management ledger Bc has not been tampered with. In step S110, the miner transmits tampering information indicating that the tampering has occurred to the operation management system 1, and in this case, the addition of the new block is suspended.
 ステップS102で、マイナーはnonceの初期値を設定する。続くステップS103で、マイナーは、図3を参照して上述したように、直近のブロックのハッシュ値とトランザクションプール22に保存されたトランザクションとnonceとの合計データのハッシュ値を算出する。 In step S102, the minor sets the initial value of nonce. In the following step S103, the miner calculates the hash value of the hash value of the most recent block and the total data of the transaction and the nonce stored in the transaction pool 22 as described above with reference to FIG.
 続くステップS104で、マイナーは、ステップS103により所定規則を満たすハッシュ値が算出されたか否かを判断する。そして、マイナーは、所定規則を満たすハッシュ値が算出されたときはステップS105に処理を進め、新規ブロックを運行管理台帳Bcのブロックチェーンに追加する。次のステップS106で、マイナーは、他のマイナーに対して、新規ブロックを追加した運行管理台帳Bcを送信する。 In the following step S104, the miner determines whether or not a hash value satisfying a predetermined rule has been calculated in step S103. Then, when the hash value satisfying the predetermined rule is calculated, the miner proceeds to step S105 and adds a new block to the blockchain of the operation management ledger Bc. In the next step S106, the miner transmits the operation management ledger Bc to which the new block is added to the other miners.
 一方、所定規則を満たすハッシュ値が算出されなかったときには、マイナーは、ステップS104からステップS120に処理を進め、他のマイナーから新規ブロックが追加された運行管理台帳Bcを受信したか否かを判断する。そして、マイナーは、新規ブロックが追加された運行管理台帳Bcを受信していないときは、ステップS121に処理を進めてnonceを変更し、ステップS103で再びハッシュ値を算出する。 On the other hand, when the hash value satisfying the predetermined rule is not calculated, the miner proceeds from step S104 to step S120 and determines whether or not the operation management ledger Bc to which the new block is added is received from another miner. To do. Then, when the miner has not received the operation management ledger Bc to which the new block is added, the process proceeds to step S121 to change the nonce, and the hash value is calculated again in step S103.
 一方、新規ブロックが追加された運行管理台帳Bcを受信したときには、マイナーは、ステップS120からステップS107に処理を進めて、新規ブロックの追加処理を終了する。このように、各マイナーにより、ステップS103~S106,S120,S121によるコンセンサス処理を実行することにより、最も早く所定規則を満たすハッシュを算出したマイナーによって、運行管理台帳への新規ブロックの追加処理が実行され、他のマイナーはこれに従う。そのため、悪意の第三者が単独で運行管理台帳に記録されたトランザクションの変更或いは運行管理台帳への飛行トランザクションの追加を行うことができず、これにより、運行管理台帳Bcの改ざんを防止することができる。 On the other hand, when the operation management ledger Bc to which the new block is added is received, the miner proceeds from step S120 to step S107 and ends the process of adding the new block. In this way, each miner executes the consensus process according to steps S103 to S106, S120, and S121, and the miner who calculates the hash that satisfies the predetermined rule earliest executes the process of adding a new block to the operation management ledger. And other miners follow this. Therefore, a malicious third party cannot independently change the transaction recorded in the operation management ledger or add the flight transaction to the operation management ledger, thereby preventing falsification of the operation management ledger Bc. Can be done.
 [6.離陸対応処理]
 図8に示したフローチャートに従って、運行管理システム1の離着陸管理部14により実行される飛行体の離陸対応処理について説明する。ここでは、飛行体50が離陸を要求した場合について説明するが、他の飛行体に対しても同様の処理が実行される。
[6. Takeoff response processing]
The takeoff response processing of the aircraft executed by the takeoff / landing management unit 14 of the operation management system 1 will be described with reference to the flowchart shown in FIG. Here, the case where the flying object 50 requests takeoff will be described, but the same processing is executed for other flying objects.
 図8のステップS130で、飛行体50は、駐機中の離着陸場(本発明の第1離着陸場に相当する)からの離陸を要求する離陸要求情報(本発明の離着陸要求情報に相当する)を、運行管理システム1に送信する。離着陸管理部14は、ステップS140で飛行体50から離陸要求情報を受信し、続くステップS141で離陸要求情報のハッシュ値を算出する。続くステップS142で、離着陸管理部14は、ハッシュ値を飛行体50に送信する。 In step S130 of FIG. 8, the aircraft 50 has takeoff request information requesting takeoff from the parked takeoff / landing site (corresponding to the first takeoff / landing site of the present invention) (corresponding to the takeoff / landing request information of the present invention). Is transmitted to the operation management system 1. The takeoff / landing management unit 14 receives the takeoff request information from the aircraft 50 in step S140, and calculates the hash value of the takeoff request information in the subsequent step S141. In the following step S142, the takeoff and landing management unit 14 transmits the hash value to the aircraft body 50.
 飛行体50は、ステップS131で運行管理システム1からハッシュ値を受信し、続くステップS131で、ハッシュ値を飛行体50の秘密鍵によって暗号化する。続くステップS133で、飛行体50は、ハッシュ値の暗号文を運行管理システム1に送信する。離着陸管理部14は、ステップS143で飛行体50から暗号文を受信し、次のステップS144で、飛行体50の公開鍵による暗号文の復号にトライする。 The aircraft 50 receives the hash value from the operation management system 1 in step S131, and encrypts the hash value with the private key of the aircraft 50 in the subsequent step S131. In the following step S133, the aircraft 50 transmits the ciphertext of the hash value to the operation management system 1. The takeoff and landing management unit 14 receives the ciphertext from the aircraft 50 in step S143, and attempts to decrypt the ciphertext using the public key of the aircraft 50 in the next step S144.
 続くステップS145で、離着陸管理部14は、ハッシュ値が復号されたか否かを判断する。そして、離着陸管理部14は、ハッシュ値が復号されたときはステップS146に処理を進める(飛行体50の検証OK)。ステップS146で、離着陸管理部14は、飛行体50が利用を要求している飛行経路について、運行管理台帳Bcから作成した飛行経路管理表から認識される飛行予約の状況、及び各飛行体との通信等により認識される現在飛行中の飛行体の状況に基づいて、利用要求経路に空きがあるか否かを判断する。 In the following step S145, the takeoff and landing management unit 14 determines whether or not the hash value has been decrypted. Then, when the hash value is decoded, the takeoff and landing management unit 14 proceeds with the process in step S146 (verification of the flight object 50 is OK). In step S146, the takeoff and landing management unit 14 determines the flight reservation status recognized from the flight route management table created from the operation management ledger Bc for the flight route requested to be used by the flight body 50, and the flight reservation status with each flight body. It is determined whether or not there is a vacancy in the usage request route based on the status of the currently flying aircraft recognized by communication or the like.
 そして、離着陸管理部14は、利用要求経路に空きがあるときはステップS147に処理を進め、離陸許可を通知する離陸許可情報を飛行体50に送信する。離陸許可情報を受信した飛行体50は、離着陸場からの離陸を行うことができる。 Then, when there is a vacancy in the usage request route, the takeoff / landing management unit 14 proceeds with the process in step S147, and transmits the takeoff permission information notifying the takeoff permission to the aircraft 50. The aircraft 50 that has received the takeoff clearance information can take off from the takeoff landing site.
 一方、ステップS145でハッシュ値が復号されなかった場合(飛行体50の検証NG、飛行体50へのなりすましの可能性あり)、及びステップS146で、利用要求経路に空きがないと判断された場合は、離着陸管理部14は、ステップS150に処理を進める。ステップS150で、離着陸管理部14は、離陸不可を通知する離陸棄却情報を飛行体50に送信する。離陸棄却情報を受信した飛行体50は、離着陸場に待機し、利用要求経路が空くのを待つ、或いは他の飛行経路を探す等の対応をとる。 On the other hand, when the hash value is not decoded in step S145 (verification of the flying object 50 is NG, there is a possibility of spoofing to the flying object 50), and when it is determined in step S146 that there is no space in the usage request route. The takeoff and landing management unit 14 proceeds to step S150. In step S150, the takeoff / landing management unit 14 transmits the takeoff / rejection information notifying that the takeoff is not possible to the aircraft 50. Upon receiving the takeoff / rejection information, the aircraft 50 waits at the takeoff / landing site, waits for the usage request route to become available, or searches for another flight route.
 [7.着陸対応処理]
 図9に示したフローチャートに従って、運行管理システム1の離着陸管理部14により実行される飛行体の着陸対応処理について説明する。ここでは、飛行体50が着陸を要求する場合について説明するが、他の飛行体に対しても同様の処理が実行される。
[7. Landing response processing]
According to the flowchart shown in FIG. 9, the landing response processing of the aircraft executed by the takeoff and landing management unit 14 of the operation management system 1 will be described. Here, the case where the flying object 50 requests landing will be described, but the same processing is executed for other flying objects.
 図9のステップS160で、飛行体50は、特定の離着陸場(本発明の第2離着陸場に相当する)への着陸を要求する着陸要求情報(本発明の離着陸要求情報に相当する)を、運行管理システム1に送信する。離着陸管理部14は、ステップS170で飛行体50から着陸要求情報を受信し、続くステップS171で着陸要求情報のハッシュ値を算出する。続くステップS172で、離着陸管理部14は、ハッシュ値を飛行体50に送信する。 In step S160 of FIG. 9, the aircraft body 50 receives landing request information (corresponding to the takeoff / landing request information of the present invention) requesting landing at a specific takeoff / landing site (corresponding to the second takeoff / landing field of the present invention). It is transmitted to the operation management system 1. The takeoff and landing management unit 14 receives the landing request information from the aircraft 50 in step S170, and calculates the hash value of the landing request information in the subsequent step S171. In the following step S172, the takeoff and landing management unit 14 transmits the hash value to the aircraft body 50.
 飛行体50は、ステップS161で運行管理システム1からハッシュ値を受信し、続くステップS162で、ハッシュ値を飛行体50の秘密鍵により暗号化する。続くステップS163で、飛行体50は、ハッシュ値の暗号文を運行管理システム1に送信する。離着陸管理部14は、ステップS173で飛行体50から暗号文を受信し、続くステップS174で、飛行体50の公開鍵による暗号文の復号にトライする。 The aircraft 50 receives the hash value from the operation management system 1 in step S161, and encrypts the hash value with the private key of the aircraft 50 in the subsequent step S162. In the following step S163, the aircraft 50 transmits the ciphertext of the hash value to the operation management system 1. The takeoff and landing management unit 14 receives the ciphertext from the aircraft 50 in step S173, and attempts to decrypt the ciphertext using the public key of the aircraft 50 in the following step S174.
 続くステップS175で、離着陸管理部14は、ハッシュ値が復号されたか否かを判断する。そして、離着陸管理部14は、ハッシュ値が復号されたときはステップS176に処理を進める(飛行体50の検証OK)。ステップS176で、離着陸管理部14は、希望離着陸場の管理装置(例えば、希望離着陸場が離着陸場301であるときは管理装置302)から、希望離着陸場の利用情報を受信して、希望離着陸場に空きがあるか否かを判断する。 In the following step S175, the takeoff and landing management unit 14 determines whether or not the hash value has been decrypted. Then, when the hash value is decoded, the takeoff and landing management unit 14 proceeds to step S176 (verification of the flight object 50 is OK). In step S176, the takeoff and landing management unit 14 receives the desired takeoff and landing site usage information from the desired takeoff and landing site management device (for example, the management device 302 when the desired takeoff and landing site is the takeoff and landing site 301), and receives the desired takeoff and landing site usage information. Determine if there is space in.
 そして、離着陸管理部14は、希望離着陸場に空きがあるときはステップS177に処理を進め、希望離着陸場への着陸許可を通知する着陸許可情報を飛行体50に送信する。着陸許可情報を受信した飛行体50は、希望離着陸場への着陸を行うことができる。 Then, when the desired landing site is vacant, the takeoff and landing management unit 14 proceeds to step S177 and transmits the landing permission information notifying the landing permission to the desired landing site to the aircraft 50. Upon receiving the landing permission information, the aircraft 50 can land at the desired airfield.
 一方、ステップS175でハッシュ値が復号されなかった場合(飛行体50の検証NG、飛行体50へのなりすましの可能性あり)、及びステップS176で希望離着陸場に空きがないと判断されたときには、離着陸管理部14は、ステップS180に処理を進める。ステップS180で、離着陸管理部14は、着陸不可を通知する着陸棄却情報を飛行体50に送信する。着陸棄却情報を受信した飛行体50は、希望離着陸場の付近に待機して希望離着陸場が空くのを待つ、別の離着陸場を探す等の対応をとる。 On the other hand, when the hash value is not decoded in step S175 (verification of the flying object 50 is NG, there is a possibility of spoofing to the flying object 50), or when it is determined in step S176 that there is no space in the desired airfield. The takeoff and landing management unit 14 proceeds to step S180. In step S180, the takeoff and landing management unit 14 transmits the landing rejection information notifying that the landing is not possible to the aircraft 50. Upon receiving the landing rejection information, the aircraft 50 takes measures such as waiting near the desired landing site and waiting for the desired landing site to become available, or searching for another landing site.
 [8.他の実施形態]
 上記実施形態では、離着陸管理部14を備えて、飛行体の着陸と離陸に際して、飛行体に関連付けられた秘密鍵と公開鍵を用いて、飛行体のなりすましを防止するための検証を行ったが、着陸と離陸の一方のみについて飛行体の検証を行ってもよい。或いは、離着陸管理部14を省略した構成としてもよい。
[8. Other embodiments]
In the above embodiment, the takeoff and landing management unit 14 is provided, and when landing and taking off of the aircraft, verification is performed to prevent spoofing of the aircraft by using the private key and the public key associated with the aircraft. , The air vehicle may be verified for only one of landing and takeoff. Alternatively, the takeoff and landing management unit 14 may be omitted.
 上記実施形態では、離着陸管理部14を備えて、飛行体の着陸と離陸に関して、運行管理台帳から生成した飛行経路管理表を参照して離陸と着陸を許可するか否かを判断したが、離陸と着陸の一方のみについて、飛行経路管理表を参照して許可するか否かを判断するようにしてもよい。 In the above embodiment, the takeoff / landing management unit 14 is provided, and regarding the landing and takeoff of the air vehicle, it is determined whether or not to allow the takeoff and landing by referring to the flight route management table generated from the operation management ledger. For only one of the landing and landing, it may be decided whether or not to permit by referring to the flight route management table.
 上記実施形態では、分散型の運行管理台帳をブロックチェーンにより構成したが、複数の主体により運行管理台帳を分散して管理する他の構成を採用してもよい。 In the above embodiment, the decentralized operation management ledger is configured by the blockchain, but another configuration in which the operation management ledger is distributed and managed by a plurality of entities may be adopted.
 上記実施形態では、飛行経路の残容量を用いて、飛行経路の空き状況を判断したが、少なくとも飛行経路を飛行する飛行体の数を用いて空き状況を判断すればよい。 In the above embodiment, the availability of the flight path is determined by using the remaining capacity of the flight path, but at least the number of flying objects flying on the flight path may be used to determine the availability.
 上記実施形態では、運行管理システム1、管理装置302、管理装置312、及び管理装置322を、ブロックチェーンのマイナーとしたが、マイナーの選択はこれに限られない。例えば、飛行体50~53、利用者端末70もマイナーに含めてもよい。 In the above embodiment, the operation management system 1, the management device 302, the management device 312, and the management device 322 are set as blockchain miners, but the selection of the miners is not limited to this. For example, the flying objects 50 to 53 and the user terminal 70 may be included in the minor.
 上記実施形態では、飛行予約受付部11、飛行許可判断部12、トランザクション追加部13、及び離着陸管理部14を、一つのシステム(図1の運行管理システム1)により構成した。他の構成として、例えば、離着陸管理部14を、離着陸場301の管理装置302に備える等、複数のシステムに分散して備える構成としてもよい。この場合は、各構成11~14を備えた複数のシステム或いは装置全体によって、本発明の運行管理システムが構成される。 In the above embodiment, the flight reservation reception unit 11, the flight permission determination unit 12, the transaction addition unit 13, and the takeoff and landing management unit 14 are configured by one system (operation management system 1 in FIG. 1). As another configuration, for example, the takeoff and landing management unit 14 may be provided in the management device 302 of the takeoff and landing site 301 in a distributed manner in a plurality of systems. In this case, the operation management system of the present invention is configured by a plurality of systems or devices having each configuration 11 to 14.
 上記実施形態では、ブロックチェーンの各ブロックに飛行トランザクションを記録したが、飛行トランザクションと飛行経路管理表とを記録してもよい。これによれば、飛行体50~53或いは運行管理システム1において、飛行経路管理表を作成する処理を不要とすることができる。 In the above embodiment, the flight transaction is recorded in each block of the blockchain, but the flight transaction and the flight route management table may be recorded. According to this, it is possible to eliminate the process of creating the flight route management table in the flight bodies 50 to 53 or the operation management system 1.
 なお、図1は、本願発明の理解を容易にするために運行管理システム1の機能構成を、主な処理内容により区分して示した概略図であり、運行管理システム1の機能構成を、他の区分によって構成してもよい。また、各構成要素の処理は、1つのハードウェアユニットにより実行されてもよいし、複数のハードウェアユニットにより実行されてもよい。また、図1に示した各構成要素の処理は、1つのプログラムにより実行されてもよいし、複数のプログラムにより実行されてもよい。 Note that FIG. 1 is a schematic view showing the functional configuration of the operation management system 1 divided according to the main processing contents in order to facilitate the understanding of the present invention. It may be configured according to the classification of. Further, the processing of each component may be executed by one hardware unit or may be executed by a plurality of hardware units. Further, the processing of each component shown in FIG. 1 may be executed by one program or may be executed by a plurality of programs.
 [9.上記実施形態によりサポートされる構成]
 上記実施形態は、以下の構成の具体例である。
[9. Configuration supported by the above embodiment]
The above embodiment is a specific example of the following configuration.
 (第1項)対象飛行体に対応した飛行体端末から送信される、前記対象飛行体が飛行を予定する特定飛行経路と特定時間帯とを指定した予約トランザクションを受信する飛行予約受付部と、前記特定飛行経路についての時間帯毎の飛行体の飛行実績又は飛行予約である飛行トランザクションを、時系列に記録した分散型の運行管理台帳を参照して、前記予約トランザクションにより指定された前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行を許可するか否かを判断する飛行許可判断部と、前記飛行許可判断部により、前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行が許可されたときに、前記予約トランザクションを前記飛行トランザクションとして前記運行管理台帳に追加するためのトランザクション追加処理を実行するトランザクション追加部と、を備える運行管理システム。
 第1項の運行管理システムによれば、飛行予約受付部により予約トランザクションが受付けられたときに、飛行許可判断部により、分散型の運行管理台帳を参照して、予約トランザクションにより指定された特定経路及び特定時間帯での対象飛行体の飛行を許可するか否かが判断される。そして、対象飛行体の飛行が許可されたときには、対象飛行体の飛行トランザクションが運行管理台帳に追加される。この場合、運行管理台帳は分散型であるため、運行管理台帳に記録された飛行トランザクションを改ざんすることは困難である。そのため、既定の飛行経路を同じ時間帯に飛行する飛行体の数を厳格に管理することができる。
(Section 1) A flight reservation reception unit that receives a reservation transaction that specifies a specific flight route and a specific time zone in which the target aircraft is scheduled to fly, which is transmitted from the flight object terminal corresponding to the target aircraft. The specific flight specified by the reserved transaction with reference to a distributed operation management ledger that records the flight record or flight reservation of the flight object for each time zone for the specific flight route in chronological order. The flight permission determination unit that determines whether or not to permit the flight of the target aircraft in the route and the specific time zone, and the flight permission determination unit determine the target flight in the specific flight route and the specific time zone. An operation management system including a transaction addition unit that executes a transaction addition process for adding the reserved transaction as the flight transaction to the operation management ledger when the flight of a body is permitted.
According to the operation management system of paragraph 1, when a reservation transaction is accepted by the flight reservation reception unit, the flight permission judgment unit refers to the decentralized operation management ledger and refers to the specific route specified by the reservation transaction. And whether or not to allow the flight of the target aircraft in a specific time zone is determined. Then, when the flight of the target aircraft is permitted, the flight transaction of the target aircraft is added to the operation management ledger. In this case, since the operation management ledger is decentralized, it is difficult to falsify the flight transactions recorded in the operation management ledger. Therefore, it is possible to strictly control the number of flying objects flying in the same time zone on the predetermined flight path.
 (第2項)前記運行管理台帳はブロックチェーンにより構成され、前記トランザクション追加部は、前記トランザクション追加処理として、前記運行管理台帳を参照する複数の台帳参照端末間の合意形成処理により、前記予約トランザクションに対応した前記飛行トランザクションを含む新規ブロックを前記ブロックチェーンに追加する処理を実行する第1項に記載の運行管理システム。
 第2項の運行管理システムによれば、運行監視台帳をブロックチェーンにより構成することによって、特定の管理部を設定せずに運行管理台帳を管理することができる。
(Clause 2) The operation management ledger is composed of a blockchain, and the transaction addition unit performs the reservation transaction as the transaction addition process by consensus building processing between a plurality of ledger reference terminals that refer to the operation management ledger. The operation management system according to paragraph 1, which executes a process of adding a new block including the flight transaction corresponding to the above to the blockchain.
According to the operation management system of the second paragraph, by configuring the operation monitoring ledger by the blockchain, it is possible to manage the operation management ledger without setting a specific management unit.
 (第3項)前記飛行許可判断部は、前記特定飛行経路を飛行する飛行体の少なくとも数に基づいて設定された前記特定飛行経路の容量を超えるか否かにより、前記予約トランザクションにより指定された前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行を許可するか否かを判断する第1項又は第2項に記載の運行管理システム。
 第3項の運行管理システムによれば、飛行経路を飛行する飛行体の数に基づいて、特定飛行経路の予約の可否を判断することができる。
(Section 3) The flight permission determination unit is designated by the reservation transaction depending on whether or not the capacity of the specific flight path set based on at least the number of flying objects flying on the specific flight path is exceeded. The operation management system according to paragraph 1 or 2, which determines whether or not to permit the flight of the target flight object in the specific flight route and the specific time zone.
According to the operation management system of the third item, it is possible to determine whether or not to reserve a specific flight route based on the number of flying objects flying on the flight route.
 (第4項)前記対象飛行体が前記特定飛行経路を飛行する際の第1離着陸場からの離陸及び第2離着陸場への着陸を、前記運行管理台帳に記録された前記対象飛行体の前記飛行トランザクションに基づいて管理する離着陸管理部を備える第1項から第3項のうちいずれか1項に記載の運行管理システム。
 第4項の運行管理システムによれば、運行管理台帳に記録された飛行トランザクションに基づいて、特定飛行経路に飛行に伴う離陸及び着陸の可否を判断することができる。
(Clause 4) The takeoff from the first takeoff and landing site and the landing on the second takeoff and landing site when the target aircraft flies on the specific flight path are recorded in the operation management ledger. The operation management system according to any one of paragraphs 1 to 3, further comprising a takeoff and landing management unit that manages based on flight transactions.
According to the operation management system of paragraph 4, based on the flight transaction recorded in the operation management ledger, it is possible to determine whether or not takeoff and landing are possible due to the flight on a specific flight route.
 (第5項)前記離着陸管理部は、前記対象飛行体が前記特定飛行経路を飛行する際の第1離着陸場からの離陸又は第2離着陸場への着陸を要求する離着陸要求情報を受信したときに、前記対象飛行体と関連付けられた秘密鍵と前記秘密鍵を使用した作成された公開鍵とを用いた認証処理を行って、前記離着陸要求情報の送信主体が前記対象飛行体であることを検証する第4項に記載の運行管理システム。
 第5項の運行管理システムによれば、対象飛行体に関連付けられた秘密鍵及び公開鍵を用いて、離着陸要求情報の送信主体が対象飛行体であることを検証した上で、対象飛行体による離陸又は着陸の可否を判断することができる。
(Section 5) When the takeoff / landing management unit receives takeoff / landing request information requesting takeoff from the first takeoff / landing site or landing at the second takeoff / landing site when the target aircraft flies on the specific flight path. In addition, an authentication process is performed using the private key associated with the target aircraft and the public key created by using the private key, and the subject of the takeoff / landing request information is the target aircraft. The operation management system described in Section 4 to be verified.
According to the operation management system in Section 5, the target aircraft uses the private key and public key associated with the target aircraft to verify that the subject of the takeoff / landing request information is the target aircraft. It is possible to judge whether or not takeoff or landing is possible.
 (第6項)前記飛行予約受付部は、前記予約トランザクションを受信したときに、前記対象飛行体と関連付けられた秘密鍵と前記秘密鍵を使用して作成された公開鍵とを用いた認証処理を行って、前記予約トランザクションの送信主体が前記対象飛行体であることを検証する第1項から第4項のうちいずれか1項に記載の運行管理システム。
 第6項の運行管理システムによれば、対象飛行体に関連付けられた秘密鍵及び公開鍵を用いて、離着陸要求情報の送信主体が対象飛行体であることを検証した上で、対象飛行体による特定飛行経路及び特定時間帯での飛行を許可するか否かを判断することができる。
(Section 6) When the flight reservation reception unit receives the reservation transaction, the authentication process using the private key associated with the target aircraft and the public key created by using the private key. The operation management system according to any one of paragraphs 1 to 4, wherein the transmission subject of the reserved transaction is verified to be the target aircraft.
According to the operation management system in Section 6, the target aircraft uses the private key and public key associated with the target aircraft to verify that the subject of the takeoff and landing request information is the target aircraft. It is possible to determine whether or not to allow flight in a specific flight route and a specific time zone.
 (第7項)飛行体の運行管理システムにより実行される運行管理方法であって、対象飛行体に対応した飛行体端末から送信される、前記対象飛行体が飛行を予定する特定飛行経路と特定時間帯とを指定した予約トランザクションを受信する飛行予約受付ステップと、前記特定飛行経路についての時間帯毎の飛行体の飛行実績又は飛行予約である飛行トランザクションを、時系列に記録した分散型の運行管理台帳を参照して、前記予約トランザクションにより指定された前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行を許可するか否かを判断する飛行許可判断ステップと、前記飛行許可判断ステップにより、前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行が許可されたときに、前記予約トランザクションを前記飛行トランザクションとして前記運行管理台帳に追加するためのトランザクション追加処理を実行するトランザクション追加ステップと、を備える運行管理方法。
 第7項の運行管理方法によれば、飛行予約受付ステップにより予約トランザクションが受付けられたときに、飛行許可判断ステップにより、分散型の運行管理台帳を参照して、予約トランザクションにより指定された特定経路及び特定時間帯での対象飛行体の飛行を許可するか否かが判断される。そして、対象飛行体の飛行が許可されたときには、対象飛行体の飛行トランザクションが運行管理台帳に追加される。この場合、運行管理台帳は分散型であるため、運行管理台帳に記録された飛行トランザクションを改ざんすることは困難である。そのため、既定の飛行経路を同じ時間帯に飛行する飛行体の数を厳格に管理することができる。
(Section 7) An operation management method executed by an operation management system of an air vehicle, which is transmitted from an air vehicle terminal corresponding to the target air vehicle and is specified as a specific flight route to which the target air vehicle is scheduled to fly. A decentralized operation in which a flight reservation reception step for receiving a reservation transaction specifying a time zone and a flight record of a flight record or a flight reservation for each time zone for the specific flight route are recorded in chronological order. With reference to the management ledger, a flight permission determination step for determining whether or not to permit the flight of the target aircraft in the specific flight route and the specific time zone specified by the reservation transaction, and the flight permission determination By the step, when the flight of the target aircraft in the specific flight route and the specific time zone is permitted, a transaction addition process for adding the reserved transaction as the flight transaction to the operation management ledger is executed. An operation management method that includes a transaction addition step.
According to the operation management method of paragraph 7, when the reservation transaction is accepted by the flight reservation acceptance step, the flight permission determination step refers to the decentralized operation management ledger and the specific route specified by the reservation transaction. And whether or not to allow the flight of the target aircraft in a specific time zone is determined. Then, when the flight of the target aircraft is permitted, the flight transaction of the target aircraft is added to the operation management ledger. In this case, since the operation management ledger is decentralized, it is difficult to falsify the flight transactions recorded in the operation management ledger. Therefore, it is possible to strictly control the number of flying objects flying in the same time zone on the predetermined flight path.
 (第8項)コンピュータを、対象飛行体に対応した飛行体端末から送信される、前記対象飛行体が飛行を予定する特定飛行経路と特定時間帯とを指定した予約トランザクションを受信する飛行予約受付部と、前記特定飛行経路についての時間帯毎の飛行体の飛行実績又は飛行予約である飛行トランザクションを、時系列に記録した分散型の運行管理台帳を参照して、前記予約トランザクションにより指定された前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行を許可するか否かを判断する飛行許可判断部と、前記飛行許可判断部により、前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行が許可されたときに、前記予約トランザクションを前記飛行トランザクションとして前記運行管理台帳に追加するためのトランザクション追加処理を実行するトランザクション追加部と、として機能させるための運行管理用プログラム。
 第8項の運行管理用プログラムをコンピュータに実行させることにより、第1項の運行管理システムの構成を実現することができる。
(Section 8) Flight reservation reception that receives a reservation transaction that specifies a specific flight route and a specific time zone that the target aircraft plans to fly, which is transmitted from the flight object terminal corresponding to the target aircraft. Designated by the reservation transaction with reference to the decentralized operation management ledger that records the flight record or flight reservation of the flight object for each time zone for the specific flight route in chronological order. The flight permission determination unit that determines whether or not to permit the flight of the target aircraft in the specific flight path and the specific time zone, and the flight permission determination unit determine the specific flight route and the specific time zone. An operation management program for functioning as a transaction addition unit that executes a transaction addition process for adding the reserved transaction as the flight transaction to the operation management ledger when the flight of the target aircraft is permitted. ..
By causing the computer to execute the operation management program of the eighth item, the configuration of the operation management system of the first item can be realized.
 分散型の運行管理台帳によって飛行トランザクションが管理され、運行管理台帳に記録された飛行トランザクションの改ざんが困難であるため、既定の飛行経路を同じ時間帯に飛行する飛行体の数を厳格に管理する用途に適用できる。 Since flight transactions are managed by the decentralized operation management ledger and it is difficult to tamper with the flight transactions recorded in the operation management ledger, the number of aircraft flying on the default flight route at the same time is strictly controlled. Applicable to applications.
 1…運行管理システム、10…CPU、11…飛行予約受付部、12…飛行許可判断部、13…トランザクション追加部、14…離着陸管理部、20…メモリ、21…制御用プログラム、22…トランザクションプール、50~53…飛行体、70…利用者端末、100…飛行経路図、110…飛行経路管理表、301,311,321…離発着場、302,312,322…(離発着場の)管理装置、Bc…運行管理台帳、Rq…予約申請情報、U…利用者。 1 ... Operation management system, 10 ... CPU, 11 ... Flight reservation reception unit, 12 ... Flight permission judgment unit, 13 ... Transaction addition unit, 14 ... Takeoff and landing management department, 20 ... Memory, 21 ... Control program, 22 ... Transaction pool , 50-53 ... flying object, 70 ... user terminal, 100 ... flight route map, 110 ... flight route management table, 301, 311, 321 ... takeoff and landing site, 302, 312, 322 ... (takeoff and landing site) management device, Bc ... Flight management ledger, Rq ... Reservation application information, U ... User.

Claims (8)

  1.  対象飛行体に対応した飛行体端末から送信される、前記対象飛行体が飛行を予定する特定飛行経路と特定時間帯とを指定した予約トランザクションを受信する飛行予約受付部と、
     前記特定飛行経路についての時間帯毎の飛行体の飛行実績又は飛行予約である飛行トランザクションを、時系列に記録した分散型の運行管理台帳を参照して、前記予約トランザクションにより指定された前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行を許可するか否かを判断する飛行許可判断部と、
     前記飛行許可判断部により、前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行が許可されたときに、前記予約トランザクションを前記飛行トランザクションとして前記運行管理台帳に追加するためのトランザクション追加処理を実行するトランザクション追加部と、
     を備える運行管理システム。
    A flight reservation reception unit that receives a reservation transaction that specifies a specific flight route and a specific time zone that the target aircraft plans to fly, which is transmitted from the flight object terminal corresponding to the target aircraft.
    The specific flight specified by the reservation transaction with reference to a distributed operation management ledger that records the flight record or flight reservation of the flight object for each time zone for the specific flight route in chronological order. A flight permission determination unit that determines whether or not to permit the flight of the target aircraft in the route and the specific time zone, and
    Addition of a transaction for adding the reserved transaction as the flight transaction to the operation management ledger when the flight permission determination unit permits the flight of the target aircraft in the specific flight route and the specific time zone. Transaction addition part that executes processing and
    Operation management system equipped with.
  2.  前記運行管理台帳はブロックチェーンにより構成され、前記トランザクション追加部は、前記トランザクション追加処理として、前記運行管理台帳を参照する複数の台帳参照端末間の合意形成処理により、前記予約トランザクションに対応した前記飛行トランザクションを含む新規ブロックを前記ブロックチェーンに追加する処理を実行する
     請求項1に記載の運行管理システム。
    The operation management ledger is composed of a block chain, and the transaction addition unit performs the flight corresponding to the reservation transaction by consensus building processing between a plurality of ledger reference terminals that refer to the operation management ledger as the transaction addition process. The operation management system according to claim 1, wherein a process of adding a new block including a transaction to the blockchain is executed.
  3.  前記飛行許可判断部は、前記特定飛行経路を飛行する飛行体の少なくとも数に基づいて設定された前記特定飛行経路の容量を超えるか否かにより、前記予約トランザクションにより指定された前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行を許可するか否かを判断する
     請求項1又は請求項2に記載の運行管理システム。
    The flight permission determination unit determines the specific flight path and the specific flight path specified by the reservation transaction depending on whether or not the capacity of the specific flight path set based on at least the number of flying objects flying on the specific flight path is exceeded. The operation management system according to claim 1 or 2, which determines whether or not to permit the flight of the target aircraft in the specific time zone.
  4.  前記対象飛行体が前記特定飛行経路を飛行する際の第1離着陸場からの離陸及び第2離着陸場への着陸を、前記運行管理台帳に記録された前記対象飛行体の前記飛行トランザクションに基づいて管理する離着陸管理部を備える
     請求項1から請求項3のうちいずれか1項に記載の運行管理システム。
    The takeoff from the first airfield and the landing at the second airfield when the target aircraft flies over the specific flight path are based on the flight transaction of the target air vehicle recorded in the operation management ledger. The operation management system according to any one of claims 1 to 3, further comprising a takeoff and landing management unit for management.
  5.  前記離着陸管理部は、前記対象飛行体が前記特定飛行経路を飛行する際の第1離着陸場からの離陸又は第2離着陸場への着陸を要求する離着陸要求情報を受信したときに、前記対象飛行体と関連付けられた秘密鍵と前記秘密鍵を使用した作成された公開鍵とを用いた認証処理を行って、前記離着陸要求情報の送信主体が前記対象飛行体であることを検証する
     請求項4に記載の運行管理システム。
    When the target aircraft receives takeoff / landing request information requesting takeoff from the first takeoff / landing site or landing at the second takeoff / landing site when the target aircraft flies on the specific flight path, the takeoff / landing management unit receives the target flight. Claim 4 that performs authentication processing using the private key associated with the body and the public key created by using the private key to verify that the sender of the takeoff / landing request information is the target aircraft. Operation management system described in.
  6.  前記飛行予約受付部は、前記予約トランザクションを受信したときに、前記対象飛行体と関連付けられた秘密鍵と前記秘密鍵を使用して作成された公開鍵とを用いた認証処理を行って、前記予約トランザクションの送信主体が前記対象飛行体であることを検証する
     請求項1から請求項4のうちいずれか1項に記載の運行管理システム。
    When the flight reservation reception unit receives the reservation transaction, the flight reservation reception unit performs an authentication process using the private key associated with the target aircraft and the public key created by using the private key, and performs the authentication process. The operation management system according to any one of claims 1 to 4, which verifies that the transmitting entity of the reserved transaction is the target aircraft.
  7.  飛行体の運行管理システムにより実行される運行管理方法であって、
     対象飛行体に対応した飛行体端末から送信される、前記対象飛行体が飛行を予定する特定飛行経路と特定時間帯とを指定した予約トランザクションを受信する飛行予約受付ステップと、
     前記特定飛行経路についての時間帯毎の飛行体の飛行実績又は飛行予約である飛行トランザクションを、時系列に記録した分散型の運行管理台帳を参照して、前記予約トランザクションにより指定された前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行を許可するか否かを判断する飛行許可判断ステップと、
     前記飛行許可判断ステップにより、前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行が許可されたときに、前記予約トランザクションを前記飛行トランザクションとして前記運行管理台帳に追加するためのトランザクション追加処理を実行するトランザクション追加ステップと、
     を備える運行管理方法。
    It is an operation management method executed by the operation management system of the aircraft.
    A flight reservation reception step that receives a reservation transaction that specifies a specific flight route and a specific time zone that the target aircraft plans to fly, which is transmitted from the flight object terminal corresponding to the target aircraft.
    The specific flight specified by the reservation transaction with reference to a distributed operation management ledger that records the flight record or flight reservation of the flight object for each time zone for the specific flight route in chronological order. A flight permission determination step for determining whether or not to permit the flight of the target aircraft in the route and the specific time zone, and
    Addition of a transaction for adding the reserved transaction as the flight transaction to the operation management ledger when the flight of the target aircraft is permitted in the specific flight route and the specific time zone by the flight permission determination step. A transaction addition step to execute the process and
    Operation management method equipped with.
  8.  コンピュータを、
     対象飛行体に対応した飛行体端末から送信される、前記対象飛行体が飛行を予定する特定飛行経路と特定時間帯とを指定した予約トランザクションを受信する飛行予約受付部と、
     前記特定飛行経路についての時間帯毎の飛行体の飛行実績又は飛行予約である飛行トランザクションを、時系列に記録した分散型の運行管理台帳を参照して、前記予約トランザクションにより指定された前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行を許可するか否かを判断する飛行許可判断部と、
     前記飛行許可判断部により、前記特定飛行経路及び前記特定時間帯での前記対象飛行体の飛行が許可されたときに、前記予約トランザクションを前記飛行トランザクションとして前記運行管理台帳に追加するためのトランザクション追加処理を実行するトランザクション追加部と、
     として機能させるための運行管理用プログラム。
    Computer,
    A flight reservation reception unit that receives a reservation transaction that specifies a specific flight route and a specific time zone that the target aircraft plans to fly, which is transmitted from the flight object terminal corresponding to the target aircraft.
    The specific flight specified by the reservation transaction with reference to a distributed operation management ledger that records the flight record or flight reservation of the flight object for each time zone for the specific flight route in chronological order. A flight permission determination unit that determines whether or not to permit the flight of the target aircraft in the route and the specific time zone, and
    Addition of a transaction for adding the reserved transaction as the flight transaction to the operation management ledger when the flight permission determination unit permits the flight of the target aircraft in the specific flight route and the specific time zone. Transaction addition part that executes processing and
    Operation management program to function as.
PCT/JP2020/027142 2019-09-13 2020-07-10 Operation management system, operation management method, and operation management program WO2021049155A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-166992 2019-09-13
JP2019166992 2019-09-13

Publications (1)

Publication Number Publication Date
WO2021049155A1 true WO2021049155A1 (en) 2021-03-18

Family

ID=74866114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027142 WO2021049155A1 (en) 2019-09-13 2020-07-10 Operation management system, operation management method, and operation management program

Country Status (1)

Country Link
WO (1) WO2021049155A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063423A1 (en) * 2021-10-14 2023-04-20 和男 吉原 Aerial vehicle system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005500611A (en) * 2001-08-17 2005-01-06 エクスペディア インコーポレイテッド System and method for managing reservation requests for one or more product inventory items
US20100191458A1 (en) * 2009-01-23 2010-07-29 Daniel Baker System and method for optimized flight planning
US20180270244A1 (en) * 2017-03-20 2018-09-20 International Business Machines Corporation Unmanned aerial vehicle data management
JP2019028713A (en) * 2017-07-31 2019-02-21 株式会社Aerial Lab Industries Anonymization system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005500611A (en) * 2001-08-17 2005-01-06 エクスペディア インコーポレイテッド System and method for managing reservation requests for one or more product inventory items
US20100191458A1 (en) * 2009-01-23 2010-07-29 Daniel Baker System and method for optimized flight planning
US20180270244A1 (en) * 2017-03-20 2018-09-20 International Business Machines Corporation Unmanned aerial vehicle data management
JP2019028713A (en) * 2017-07-31 2019-02-21 株式会社Aerial Lab Industries Anonymization system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063423A1 (en) * 2021-10-14 2023-04-20 和男 吉原 Aerial vehicle system

Similar Documents

Publication Publication Date Title
KR102174665B1 (en) Secure provisioning and management of devices
US20220255796A1 (en) Object identification for groups of iot devices
US20180218454A1 (en) Managing participation in a monitored system using blockchain technology
CN111143378B (en) Method for processing data and device for implementing the method
US5968177A (en) Method and apparatus for processing administration of a secured community
CN101669128B (en) Cascading authentication system
CN105516110B (en) Mobile device security data transmission method
US11151512B2 (en) Interlocking blockchains for aircraft part history and current aircraft configuration
EP2942921B1 (en) System and method for filtering digital certificates
US20220147337A1 (en) Software updates distribution to vehicles via v2v communication and verification by a community of vehicles
US20190141048A1 (en) Blockchain identification system
US11729175B2 (en) Blockchain folding
US9967102B2 (en) Managing transfer of device ownership
WO2021049155A1 (en) Operation management system, operation management method, and operation management program
JP5865386B2 (en) Backend constraint delegation model
CN110807189B (en) Authority segmentation method in block chain access control
WO2022091183A1 (en) Authentication/authorization system, device, authentication/authorization method, and program
JP2021530169A (en) Extensible certificate management system architecture
US20230089487A1 (en) Communication network, communication network node, user equipment, method
US20230237469A1 (en) Utilities linked to digital non-fungible assets
Zakir Improving Aviation Data Communication and Storage Security using Blockchain Based Approach
JP2016039427A (en) Determination device, terminal device, determination program, terminal program, and communication system
JP2005339120A (en) Device, system, and method for outputting attribute information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP